
PHYSICAL REVIEW D 1 JANUARY 1998VOLUME 57, NUMBER 1
Threshold resummation of the total cross section for heavy quark production
in hadronic collisions

Edmond L. Berger and Harry Contopanagos*
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 2 June 1997; published 4 December 1997!

We discuss calculations of the inclusive total cross section for heavy quark production at hadron collider
energies within the context of perturbative quantum chromodynamics, including resummation of the effects of
initial-state soft gluon radiation to all orders in the strong coupling strength. We resum the universal leading-
logarithm contributions, and we restrict our integrations to the region of phase space that is demonstrably
perturbative. We include a detailed comparison of the differences between ours and other methods. We provide
predictions of the physical cross section as a function of the heavy quark mass in proton-antiproton reactions
at center-of-mass energies of 1.8 and 2.0 TeV, and we discuss the estimated uncertainties.
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I. INTRODUCTION AND MOTIVATION

In this report we present and discuss calculations car
out in perturbative quantum chromodynamics~QCD! of the
inclusive cross section for the production of heavy qua
antiquark pairs in hadron reactions@1–4#. In most of the
paper, we identify the heavy quark as a top quarkt but the
results are valid more generally as long as the mass of
quark is sufficiently heavy. For example, they should ap
as well to production of a fourth-generation quark, such a
postulatedb8.

In inclusive hadron interactions at collider energies,h1

1h2→t1 t̄ 1X, t t̄ pair production proceeds through pa
tonic hard-scattering processes involving initial-state lig
quarksq and gluonsg. In lowest-order QCD, atO(as

2), the

two partonic subprocesses areq1 q̄→t1 t̄ and g1g→t

1 t̄ . Calculations of the cross section through next-
leading orderO(as

3) involve gluonic radiative corrections t
these lowest-order subprocesses as well as contribu
from the q1g initial state @5#. A complete fixed-order cal-
culation at orderO(as

n), n>4 does not exist. In this pape
we do not examine mechanisms for the production of sin
top quarks or antiquarks@6#.

The physical cross section for each production channe
obtained through the factorization theorem

s i j ~S,m2!5
4m2

S E
0

S/4m2 21
dhF i j

3F4m2

S
~11h!,m2G ŝ i j ~h,m2,m2!. ~1!

The square of the total hadronic center-of-mass energy iS,
and the square of the partonic center-of-mass energy is.
The mass of the heavy quark ism, and m is the common
renormalization/factorization scale of the problem. The va
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able h5 s/4m221 measures the distance from the parto

threshold. The indicesi j P$q q̄,gg% denote the initial parton

channel. The partonic cross sectionŝ i j (h,m2,m2) is ob-
tained commonly from fixed-order QCD calculations@5# or,
as described here, from calculations that go beyond fix
order perturbation theory through the inclusion of gluon
summation @1–4#. The parton flux is F i j (y,m2)
5*y

1 (dx/x) f i /h1
(x,m2) f j /h2

(y/x,m2), where f i /h1
(x,m2) is

the density of partons of typei in hadronh1 . We use the
notation a(m)[as(m)/p. Unless otherwise specified,a
[a(m5m) throughout this paper. The total physical cro
section is obtained after incoherent addition of the contri

tions from the theq q̄ and gg production channels. In this
paper, we ignore the small contribution from theqg channel.

Comparison of the partonic cross section at next-
leading order with its lowest-order value reveals that the
tio becomes very large in the near-threshold region. Inde

ash→0, the ‘‘K factor’’ at the partonic levelK̂(h) grows in
proportion toa ln2(h). An illustration of this behavior may
be seen in Fig. 7 of Ref.@3#. The very large mass of the to

quark notwithstanding, the large ratioK̂(h) makes it evident
that the next-to-leading order result does not necessarily
vide a trustworthy quantitative prediction of the top qua
production cross section at the energy of the Fermilab Te
tron collider. The large ratio casts doubt on the reliability
simple fixed-order perturbation theory for physical proces
for which the near-threshold region in the subenergy varia
contributes significantly to the physical cross section. T
quark production at the Fermilab Tevatron is one such p
cess, because the top mass is relatively large compared t
energy available. Other examples include the production
hadronic jets that carry large values of transverse momen
and the production of pairs of supersymmetric particles w
large mass. To obtain more dependable theoretical estim
of the cross section in perturbative QCD, it is important fi
to identify and isolate the terms that provide the large ne
to-leading order enhancement and then to resum these ef
to all orders in the strong coupling strength.
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We begin in Sec. II with the motivation for the inclusio
of the effects of intial state soft gluon radiation to all orde
in the QCD coupling strength, and we review the gene
formalism of resummation. In Sec. III, we outline th
method and domain of applicability of perturbative resu
mation that we developed in the past year@2,3#. We present
predictions in Sec. IV of the physical cross section as a fu
tion of the heavy quark mass in proton-antiproton reacti
at center-of-mass energies of 1.8 and 2.0 TeV, and we
cuss estimated uncertainties. Our calculation is in go
agreement with the measured cross section at the repo
mass of the top quark@7#. At m5175 GeV and AS
51.8 TeV, the all-orders resummed cross section is ab
9% greater than the next-to-leading order value. Since
large threshold logarithms are mastered by resummation
theoretical reliability of the resummed result is considera
greater than that of the fixed order calculation. At other v
ues ofm andAS, where the ratiom/AS is larger, the numeri-
cal effects of resummation can be more significant. In Se
V and VI, we compare our approach and results with ot
methods@1,4# and address criticisms that have been ma
@4#. The difference between our approach and that of Ref.@4#
resides in the treatment of subleading logarithmic contri
tions, and we explain our reasons for preferring our meth
Conclusions are summarized in Sec. VII.

II. GLUON RADIATION AND RESUMMATION

The origin of the large threshold enhancement may
traced to initial-state gluonic radiative corrections to t
lowest-order channels. To avoid misunderstanding, we
mark that we are calculating the inclusive total cross sec
for the production of a top quark-antiquark pair, i.e., the to
cross section fort1 t̄ 1anything. The partonic subenerg
threshold in question is the threshold fort1 t̄ 1any number
of gluons. This coincides with the threshold in the invaria
mass of thet1 t̄ system for the lowest order subprocess
only.

To specify the kinematic variables, we consider the tw
to-three parton subprocessi (k1)1 j (k2)→t(p1)1 t̄ (p2)
1g(k). We define the variablez through the partonic invari-
ants@1#

s5~k11k2!2, t15~k22p2!22m2,

u15~k12p2!22m2, ~12z!m25s1t11u1 . ~2!

Alternatively, (12z)5 2k•p1 /m2. In the limit that z→1,
the radiated gluong(k) carries zero momentum. After can
cellation of soft singularities and factorization of colline
singularities inO(a3), there are left-over integrable logarith
mic contributions to the cross section associated with init
state gluon radiation. The contributions of interest here, o
expressed in terms of ‘‘plus’’ distributions, are proportion
to ln(12z). These logarithmic terms are vestiges of the c
celed infrared singularities.

The partonic cross section may be expressed general

ŝ i j ~h,m2!5E
zmin

1

dzHi j ~z,a!ŝ i j8 ~h,m2,z!. ~3!
l
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We work in the modified minimal subtraction~MS! factor-
ization scheme in which theq, q̄ , andg densities and the
next-to-leading order partonic cross sections are defined
ambiguously. The lower limit of integrationzmin5124(1
1h)14A11h is set by kinematics. The derivativ
ŝ i j8 (h,m2,z)5d@ŝ i j

(0)(h,m2,z)#/dz, and ŝ i j
(0) is the lowest-

order O(a2) partonic cross section expressed in terms
inelastic kinematic variables to account for the emitted rad
tion.

Keeping only the leading logarithmic contribution
throughO(a3), we may approximate the total partonic cro
section as

ŝ i j
~011!~h,m2!5E

zmin

1

dz$11a2Ci j ln2~12z!%ŝ i j8 ~h,z,m2!

[E
zmin

1

dzHi j
~011!~z,a!ŝ i j8 ~h,z,m2!, ~4!

whereCq q̄5CF54/3 andCgg5CA53. As is illustrated in
Fig. 1, the leading logarithmic contribution, integrated ov
the near-threshold region 1>z>0, provides an excellent ap
proximation to the exact full next-to-leading order physic
cross section as a function of the heavy quark mass.

Although a fixed-orderO(a4) calculation oft t̄ pair pro-
duction does not exist, we may invoke universality with ma
sive lepton-pair production (l l̄ ), the Drell-Yan process, to
generalize Eq.~4! to higher order. In the near-threshold r
gion, the hard kernel becomes

FIG. 1. Physical cross sections in theq q̄ channel as a function
of the heavy quark mass, in theMS scheme. The solid lines denot
the finite-order partial sums of the universal leading-logarithm
contributions from the explicitO(a3) andO(a4) calculations for

the t t̄ and Drell-Yan processes, respectively. Lower solid:s (0);
middle solid:s (011); upper solid:s (01112). The dashed curve rep

resents the exact next-to-leading order calculation fort t̄ produc-
tion, in excellent agreement withs (011). The dotted curve is our
resummed prediction.
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Hi j
~01112!~z,a!.112aCi j ln2~12z!1a2F2Ci j

2 ln4~12z!

2
4

3
Ci j b2 ln3~12z!G . ~5!

The coefficientb25(11CA22nf)/12, and the number of fla
vors nf55. We note that the leading logarithmic contrib
tions in each order of perturbation theory are all positive
overall sign@8# so that the leading logarithm threshold e
hancement keeps building in magnitude at each fixed o
of perturbation theory. The further enhancement of
physical cross section produced by theO(a4) leading loga-
rithmic terms in the near-threshold region is shown in Fig
At m5175 GeV, we compute the following ratios of th
physical cross sections in the leading logarithmic approxim
tion: s i j

(011)/s i j
(0)51.22, ands i j

(01112)/s i j
(011)51.14.

The goal of gluon resummation is to sum the series
an ln2n(12z) to all orders ina in order to obtain a more
trustworthy prediction. This procedure has been studied
tensively for the Drell-Yan process@9#, and good agreemen
with data is achieved. In essentially all resummation pro
dures, the large logarithmic contributions are exponentia
into a function of the QCD running coupling strength, itse
evaluated at a variable momentum scale that is a measu
the radiated gluon momentum. For example, in the appro
of Laenen, Smith, and van Neerven~LSvN! @1#, the re-
summed partonic cross section is written as

ŝ i j
R;IRC~h,mo!5E

zmin

12~mo /m!3

dzeEi j ~z,m2!ŝ i j8 ~h,m2,z!, ~6!

where the exponent

Ei j ~z,m2!}Ci j a@~12z!2/3m2# ln2~12z!. ~7!

We note that in Eq.~7!, the strong coupling strength is evalu
ated at the variable momentum scale (12z)2/3m2.

Different methods of resummation differ in theoretica
and phenomenologically important respects. The set
purely leading monomialsan ln 2n(12z) in ŝ i j exponentiates
directly, with a evaluated at a fixed large scalem5m, as
may be appreciated from a glance at Eq.~5!. This simple
result does not mean that a theory of resummation is red
dant, even if only leading logarithms are to be resumm
Indeed, straightforward replacement of the term within
brackets of Eq.~4! with the exponential ofa2Ci j ln 2(12z)
would lead to an exponentially divergent integral~and there-
fore cross section! since the coefficient of the logarithm i
positive. The naive approach, therefore, fails from the st
and more sophisticated resummation approaches mus
employed, involving scaling and Lorentz-transformati
properties of the classes of terms to be summed. The m
sophisticated approaches are not free from problems, h
ever. Formally, if not explicitly in some approaches, an
tegral over the radiated gluon momentumz must be done
over regions in whichz→0. Therefore, one significant dis
tinction among methods has to do with how the inevita
‘‘nonperturbative’’ region is handled in each case. Examin
tion of Eqs.~6! and ~7! shows that an infrared singularity i
encountered in the soft-gluon limitz→1; owing to the loga-
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rithmic behavior of a(q2), a(q2)} ln21(q2/LQCD
2 ), a@(1

2z)2/3m2#→` asz→1. The infrared singularity is a mani
festation of nonperturbative physics. In the approach
LSvN, this divergence of the integrand at the upper limit
integration necessitates introduction of the undetermined
frared cutoff~IRC! m0 in Eq. ~6!, with LQCD<m0<m. The
cutoff prevents the integration overz from reaching the Lan-
dau pole of the QCD running coupling constant. The pr
ence of an extra scale spoils the renormalization group p
erties of the overall expression. The unfortunate depende
of the resummed cross section on this cutoff is import
numerically since it appears in an exponent@1#. Theoretical
uncertainties are not easy to evaluate quantitatively in
method that relies on an undetermined infrared cutoff.

III. PERTURBATIVE RESUMMATION

The method of resummation we employ@2,3# is based on
a perturbative truncation of principal-value resummati
~PVR!. The principal-value method@9# has an important
technical advantage in that it does not require arbitrary in
red cutoffs, as all Landau-pole singularities are bypassed
a Cauchy principal-value prescription. Because extra un
termined scales are absent, the method also permits an e
ation its perturbative regime of applicability, i.e., the regi
of the gluon radiation phase space where resummed pe
bation theory should be valid.

To illustrate how infrared cutoffs are avoided in the PV
method, it is useful to begin with an expression in mome
(n) space for the exponent that resums the ln(12z) terms
@10#. Factorization and evolution lead directly to exponent
tion in moment space:

E~n,m2!52E
0

1

dx
xn2121

12x E
~12x!2

1 dl

l
g@a~lm2!#.

~8!

The functiong(a) is calculable perturbatively, but the be
havior of a(lm2) leads to a divergence of the integran
whenlm2→LQCD

2 . To tame the divergence, a cutoff can b
introduced in the integral overx or directly in momentum
space, in the fashion of LSvN. In the principal-value rede
nition of resummation, the singularity is avoided by replac
ment of the integral over the real axisx in Eq. ~8! by an
integral in the complex plane along a contourP that has the
same endpoints and is symmetric under reflections acros
real axis:

EPV~n,m2![2E
P
dz

zn2121

12z E
~12z!2

1 dl

l
g@a~lm2!#.

~9!

The functionEPV(n,m2) is finite since the Landau pole sin
gularity is bypassed. Moreover, limn→`EPV(n,m2)52`,
and, therefore, the corresponding partonic cross sectio
finite as z→1(n→1`). In Eq. ~9!, all large soft-gluon
threshold contributions are included through the two-lo
running ofa.

Equations~8! and~9! have identical perturbative conten
but they have different nonperturbative content since the
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frared region is treated differently in the two cases. The n
perturbative content is not a prediction of perturbative QC
In our study of top quark production, we choose to use
exponent only in the region of phase space in which
perturbative content dominates.

We use the attractive finiteness of Eq.~9! to derive a
perturbative asymptotic representation ofE„x,a(m)… that is
valid in the moment-space interval

1,x[ ln n,t[
1

2ab2
. ~10!

This perturbative asymptotic representation is

Ei j ~x,a!.Ei j @x,a,N~ t !#52Ci j (
r51

N~ t !11

ar (
j 50

r11

sj ,rxj .

~11!

Here

sj ,r52b2
r21~21!r1 j2rcr112 j~r21!!/ j !, ~12!

andG(11z)5(k50
` ckz

k, whereG is the Euler gamma func
tion. The number of perturbative termsN(t) in Eq. ~11! is
obtained@3# by optimizing the asymptotic approximation

uE~x,a!2E„x,a,N~ t !…u5min. ~13!

Because of the range of validity in Eq.~10! and owing to the
optimization Eq.~13!, terms in the exponent of the form
ak lnk n are of order unity, and terms with fewer powers
logarithms,ak lnk2m n, are negligible. The optimization as
sures us that the coefficients of the various terms are ben
Resummation is completed in a finite number of steps. W
a two-loop expression for the running coupling strength,
monomials of the formak lnk11 n, ak lnk n are produced in
the exponent of Eq.~11!. Because of the restricted leadin
logarithm universality between thet t̄ and l l̄ processes, we
discard monomials of the formak lnk n in the exponent.

The exponent we use is the truncation

Ei j ~x,a,N!52Ci j (
r51

N~ t !11

arsrxr11, ~14!

with the coefficients sr[sr11,r5b2
r212r/r(r11). The

number of perturbative termsN(t) is a function of only the
top quark massm. This expression contains no factorial
growing ~renormalon! terms. The perturbative region o
phase space is far removed from the part of phase spac
which renormalons could be influential.

In Fig. 2 we illustrate the validity of the asymptotic ap
proximation for a value of t corresponding to m
5175 GeV. Optimization works perfectly, withN(t)56,
and the plot demonstrates the typical breakdown of
asymptotic approximation ifN is allowed to increase beyon
N(t). This rise represents the exponential growth of the
frared ~IR! renormalons, the (r21)! growth in the second
term of Eq.~12!. As long asn is in the interval of Eq.~10!,
all the members of the family inn are optimized at the sam
N(t), showing that the optimum number of perturbati
terms is a function oft, i.e., of m only.
-
.
e
e

n.
h
ll

in

e

-

It is valuable to stress that we can derive the perturba
expressions, Eqs.~10!, ~11!, and ~12!, from the unregulated
exponent Eq.~8! without the PVR prescription, althoug
with less certitude. We discuss this point in some detail
Sec. III B of our long paper@3#.

After inversion of the Mellin transform from momen
space to the physically relevant momentum space, the
summed partonic cross sections, including all large thresh
corrections, can be written in the form of Eq.~3!, but with
the hard kernel replaced by the resummed form

Hi j
R~z,a!5E

0

ln@1/~12z!#

dxeEi j ~x,a!(
j 50

`

Qj~x,a!. ~15!

The leading large threshold corrections are contained in
exponentEi j (x,a), a calculable polynomial inx. The func-
tions $Qj (x,a)% arise from the analytical inversion of th
Mellin transform from moment space to momentum spa
These functions are produced by the resummation and
expressed in terms of successive derivatives ofE: Pk(x,a)
[]kE(x,a)/k! ]kx. EachQj contains j more powers ofa
than ofx so that Eq.~15! embodies a natural power-countin
of threshold logarithms.

The functional form ofEi j for t t̄ production is identical
to that for l l̄ production, except for the identification of th
two separate channels, denoted by the subscripti j . However,
only the leading threshold corrections are universal. Fina
state gluon radiation as well as initial-state–final-state in
ference effects produce subleading logarithmic contributi
that differ for processes with different final states. Accor
ingly, there is no physical basis for accepting the validity
the particular subleading terms that appear in Eq.~15!.
Among all $Qj% in Eq. ~15!, only the very leading one is
universal. This is the linear term inP1 contained inQ0 , that

FIG. 2. Optimum number of perturbative terms in the expon
with PVR. The solid family is for PVR and the dashed set for t
perturbative approximation, both families increasing, for parame
valuesn510,20,30,40.



e

io

he
fi

m

in

b

a
a

f
in

rly
tl

o
n

gr

ff
s
e-

-
a
i

o
w

e

lo

e-

m

ons

to
lly.

be

up
he

he
nd

of
en-

ial

for

ar-
ob-

is

ed

rom

0

as
tral
ith
e
of

er-
tral

e
the

-to-
ark
f

n

we

57 257THRESHOLD RESUMMATION OF THE TOTAL CROSS . . .
turns out to beP1 itself. Since we intend to resum only th
universal leading logarithms, we retain onlyP1 . Hence, Eq.
~15! can be integrated explicitly, and the resummed vers
of Eq. ~3! is

ŝ i j
R;pert~h,m2!5E

zmin

zmax
dzeEi j $ ln@1/~12z!#,a%ŝ i j8 ~h,m2,z!.

~16!

We have inserted an upper limit of integration,zmax, in
Eq. ~16!. This upper limit is set by the boundary between t
perturbative and nonperturbative regimes. An intuitive de
nition of the perturbative region, where inverse power ter
are unimportant, is provided by the inequalityLQCD/(1
2z)m<1. This inequality is identical to the expression
moment space, Eq.~10!, with the identificationn5 1/(1
2z). In momentum space, the same condition is realized
the constraint that all$Qj%, j >1 be small compared toQ0 .
From the explicit expressions@3# for the $Qj%, one may
show that this constraint corresponds to

P1F lnS 1

12zD ,a G<1. ~17!

Equation~17! is equivalent to the requirement that terms th
are subleading according to perturbative power counting
indeed subleading numerically; Eq.~17! is the essence o
perturbation theory in this context. It assures us that our
tegration is carried out only over a range in which poo
specified subleading terms would not contribute significan
even if they had been retained.

As remarked above, we accept only the perturbative c
tent of principal-value resummation, and our cross sectio
evaluated accordingly. Specifically, we use Eq.~16! with the
upper limit of integration,zmax, calculated from Eq.~17!.
The upshot is an effective threshold boundary on the inte
over the scaled subenergy variableh, but one that is calcu-
lable, not arbitrary. While reminiscent perhaps of the cuto
used in the LSvN approach, our threshold boundary ha
very different and well defined origin. Our perturbative r
summation probes the threshold down to the pointh>h0
5(12zmax)/2. Below this value, perturbation theory, re
summed or otherwise, is not to be trusted. For a top m
m5175 GeV, we determine that the perturbative regime
restricted toh>0.007 for theq q̄ channel andh>0.05 for
the gg channel. These numbers may be converted to m
readily understood values of the subenergy above which
judge our perturbative approach is valid: atm5175 GeV,
these are 1.22 GeV above the threshold in theq q̄ channel,
and 8.64 GeV above the threshold in thegg channel. The
difference reflects the larger color factor in thegg case. A
larger color factor makes the nonperturbative region larg
@One could attempt to apply Eq.~16! all the way tozmax
51, i.e., toh50, but one would then be using amodelfor
nonperturbative effects, the one suggested by PVR, be
the region justified by perturbation theory.# We note that the
value 1.22 GeV in theq q̄ channel is comparable to the d
cay width of the top quarkG(t→bW1)51.55 GeV. The
width itself provides a natural definition of the minimu
n

-
s

y

t
re

-

y

n-
is

al

a

ss
s

re
e

r.

w

nonperturbative region. The two independent determinati
of the nonperturbative region are in agreement@11#.

IV. PHYSICAL CROSS SECTION

In order to achieve the best accuracy available we wish
include in our predictions as much as is known theoretica
Our final resummed partonic cross section can therefore
written @2,3#

ŝ i j
pert~h,m2,m2!5ŝ i j

R;pert~h,m2,m2!2ŝ i j
~011!~h,m2,m2!uR;pert

1ŝ i j
~011!~h,m2,m2!. ~18!

The second term is the part of the partonic cross section
to one-loop that is included in the resummation, while t
last term is the exact one-loop cross section@5#. To obtain
physical cross sections, we insert Eq.~18! into Eq. ~1!, and
we integrate overh. Other than the heavy quark mass, t
only undetermined scales are the QCD factorization a
renormalization scales. We adopt a common valuem for
both, and we vary this scale over the intervalm/m
P$0.5,2% in order to evaluate the theoretical uncertainty
the numerical predictions. We use the CTEQ3M parton d
sities @12#.

A quantity of phenomenological interest is the different
cross sectionds i j (S,m2,h)/dh. Its integral overh is the
total cross section. In Fig. 3 we plot these distributions
m5175 GeV,AS51.8 TeV, andm5m. The full range ofh
extends to 25, but we display the behavior only in the ne
threshold region where resummation is important. We
serve that, at the energy of the Tevatron, resummation
significant for theq q̄ channel and less so for thegg channel.
In Fig. 1, the dotted curve shows that our final resumm
cross section in theq q̄ channel, after integration over allh,
lies about half way between the cross sections obtained f
the near-threshold leading logarithms at ordersO(a3) and
O(a4). The latter have been integrated over the region
,z,1.

We display our inclusive total production cross section
a function of the heavy quark mass in Fig. 4. The cen
value of our predictions is defined as the value obtained w
the choicem/m51, and the lower and upper limits are th
maximum and minimum of the cross section in the range
the hard scalem/mP$0.5,2%. This definition of the central
value is common, but it results here in an asymmetric unc
tainty estimate; the extent of the range above the cen
value is smaller than that below. Atm5175 GeV, the full
width of the uncertainty band is about 10%. In Fig. 5, w
show the variation of our resummed cross section as
value of the renormalization-factorization scalem is
changed. As is to be expected, less variation withm is evi-
dent in the resummed cross section than in the next
leading order cross section, also shown in Fig. 5. We rem
that the cross section reaches its maximum at a value om
just slightly larger thanm/2. We consider that the variatio
of the cross section over the rangem/mP$0.5,2% provides a
good overall estimate of uncertainty. For comparison,
note that over the same range ofm, the strong coupling
strengtha varies by610% atm5175 GeV. Using a differ-
ent choice of parton densities@13#, we find a 4% difference
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258 57EDMOND L. BERGER AND HARRY CONTOPANAGOS
in the central value of our prediction@2# at m5175 GeV. A
comparison of the predictions@3# in theMS and deep inelas
tic scattering~DIS! factorization schemes also shows a mo
est difference at the level of 4%.

In estimating uncertainties, we do not consider expl
variations of our nonperturbative boundary, expres
through Eq.~17!. For a fixedm andm, Eq. ~17! is obtained
by enforcing dominance of the leading hard kernel~deter-
mined through perturbative power counting! over the sub-
leading ones, all of which are calculable. Therefore, Eq.~17!
is derived and is not a source of uncertainty. However,
fixed m, the boundary necessarily varies asm and thusa
vary.

Our prediction of the cross section in Fig. 4 is in agre
ment with the data on top quark production@7#. We find

FIG. 3. Differential cross sectionsds/dh for p p̄→t t̄ X at AS

51.8 TeV andm5175 GeV in theMS scheme for~a! the q q̄ and
~b! the gg channel: Born~dotted!, next-to-leading order~dashed!,
and resummed~solid!.
-

t
d

t

-

s t t̄ (m5175 GeV,AS51.8 TeV)55.5220.42
10.07 pb. The central

value of this cross section is larger than the next-to-lead
order value atm5m by about 9%.

Extending our calculation atAS51.8 TeV to much larger
values ofm than shown in Fig. 4, we find that resummatio
in the principalq q̄ channel produces enhancements over
next-to-leading order cross section of 21, 26, and 34%,
spectively, atm5500, 600, and 700 GeV. The reason for t
increase of the enhancements with mass at fixed energ
that the threshold region becomes increasingly domin
Since theq q̄ channel also dominates in the production
hadronic jets at very large values of transverse momenta
suggest that on the order of 20% of the excess cross se
reported by the CDF Collaboration@14# may well be ac-
counted for by resummation.

The top quark cross section increases quickly with
energy of thep p̄ collider. We provide predictions in Fig. 6
for an upgraded Tevatron operating atAS52 TeV. We de-
termine s t t̄ (m5175 GeV,AS52 TeV)57.5620.55

10.10 pb. The

FIG. 4. Inclusive cross section for heavy quark production
AS51.8 TeV in theMS scheme. The dashed curves show our p
turbative uncertainty band, while the solid curve is our central p
diction.

FIG. 5. Renormalization/factorization hard scale dependenc
the resummed~solid! and next-to-leading order~dashed! cross sec-
tions atAS51.8 TeV form5175 GeV.
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57 259THRESHOLD RESUMMATION OF THE TOTAL CROSS . . .
2 pb increase in the predicted top quark cross section ove
value atAS51.8 TeV is about a 37% gain. The central val
rises to 22.4 pb atAS53 TeV and 46 pb atAS54 TeV. For
a fixed mass of the heavy quark, the fraction of the cr
section supplied by thegg subprocess increases rapidly. F
m5175 GeV, this fraction is about 15% atAS52 TeV and
51% atAS54 TeV.

Turning topp scattering at the energies of the ERN Lar
Hadron Collider~LHC! at CERN, we note a few significan
differences fromp p̄ scattering at the energy of the Tevatro
The dominance of theq q̄ production channel is replaced b
gg dominance at the LHC. Owing to the much larger val
of AS, the near-threshold region in the subenergy variabl
relatively less important, reducing the significance of initi
state soft gluon radiation. Lastly, physics in the region
large subenergy, where straightforward next-to-leading or
QCD is also inadequate, becomes significant fort t̄ produc-
tion at LHC energies. Using the approach described in
paper, we estimate s t t̄ (m5175 GeV,AS514 TeV)
5760 pb.

V. OTHER METHODS OF RESUMMATION

The groups of Laenen, Smith, and van Neerven~LSvN!
and of Catani, Mangano, Nason, and Trentadue~CMNT!
have also published predictions for the total cross sec
based on resummation of initial state soft gluon radiati
At m5175 GeV and AS51.8 TeV, the three value
are s t t̄ (BC @2,3#)55.5220.42

10.07 pb, s t t̄ (LSvN @1#)

54.9520.40
10.70 pb, ands t t̄ (CMNT @4#)54.7520.68

10.63 pb. From
the purely numerical point of view, all three prediction
agree within their estimates of theoretical uncertainty. Ho
ever, the resummation methods differ, the methods for e

FIG. 6. Inclusive cross section for heavy quark production
AS52 TeV in theMS scheme. The dashed curves show our per
bative uncertainty band, while the solid curve is our central pred
tion.
its
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mating the uncertainties differ, and different parton sets
used. Comparing with LSvN@1#, we find that our central
values are 10–14% larger, and our estimated theoretical
certainty is 9–10% compared with their 28220%. The
larger central value is attributable, in part, to the use of d
ferent parton densities; our Born cross section is about 3–
larger than the LSvN Born cross section. However, it is
choice of the infrared cutoffm0 in the LSvN method that
controls the size of their cross section. The cutoffm0 is se-
lected so that the resummed cross section is about equ
the next-to-next-to-leading order leading-logarithm cro
sections i j

(01112) , obtained from Eq.~5!. In contrast, in our
approach the nonperturbative boundaryzmax is derived
within the context of the calculation by the requirement th
the universal leading-logarithmic terms be dominant. Th
is noa priori reason that our resummed result should be o
10% greater than the next-to-leading order cross sectio
m5175 GeV andAS51.8 TeV. As such, we regard the ap
proximate agreement of our result and that of LSvN as so
what fortuitous. Both the central value and the band of u
certainty of the LSvN predictions are sensitive to th
infrared cutoffs, as we described previously@3#.

From a theoretical point of view, study of the variation
the predicted cross section with the hard scalem, illustrated
here in Fig. 5, is important because it reflects the stability
the calculation under changes of a perturbative but not
rectly determinable renormalization-factorization scale. O
of the advantages of a resummation calculation should
diminished dependence of the cross section onm, less varia-
tion than is present in a fixed-order calculation. To estim
theoretical uncertainty, we use the standardm variation, and
we find a band of uncertainty of about 10% atm
5175 GeV andAS51.8 TeV. The LSvN group obtain thei
uncertainty primarily from variations of their infrared cuto
whose role is to measure ignorance of nonperturbative
fects in that approach.

The group of Catani, Mangano, Nason, and Trentadue@4#
calculate a central value of the resummed cross section~also
with m/m51! that is less than 1% above the exact next-
leading order value. There are similarities and differen
between our approach to resummation and the method
Ref. @4#. We both begin in moment space with the sam
universal leading-logarithm expression, but differences oc
after the transformation to momentum space. In this pa
we set aside comments on mathematical aspects of their
cedure and focus instead on phenomenological issues o
terest. As remarked above, the Mellin transformation gen
ates subleading terms in momentum space. The suppres
of the effects of resummation arises from the retention
Ref. @4# of numerically significant nonuniversal subleadin
logarithmic terms.

CMNT choose to retain all of these inasmuch as th
perform the Mellin inversion numerically. Instead, in kee
ing with the fact that subleading logarithmic terms are n
universal, we retain only the universal leading logarith
terms in momentum space, and we restrict our phase s
integration to the region in which the subleading term
would not be numerically significant regardless. The diffe
ences in the two approaches can be stated more explicit
we examine the perturbative expansion of the ker
Hi j

R(z,a), Eq. ~15!. If, instead of restricting the resummatio

t
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260 57EDMOND L. BERGER AND HARRY CONTOPANAGOS
to the universal leading logarithms only, we were to use
full content of Eq.~15!, we would arrive at an analytic ex
pression that is equivalent to the numerical inversion of R
@4#:

Hi j
R.112aCi j @ ln2~12z!12gE ln~12z!#1O~a2!,

~19!

wheregE is Euler’s constant. In terms of this expansion,
our work we retain only the leading term ln2(12z) at ordera,
but CMNT retain both this term and the subleading te
2gE ln(12z). Indeed, if the subleading term 2gE ln(12z) is
discarded in Eq.~19!, the residualsd i j /s i j

NLO defined in Ref.

@4# increase from 0.18 to 1.3% in theq q̄ production channe
and from 5.4 to 20.2% in thegg channel@15#. After addition
of the two channels, the total residuald/sNLO grows from
the negligible value of about 0.8% cited in Ref.@4# to the
value 3.5%. While still smaller than the increase of about
that we obtain, the increase of 3.5 vs. 0.8% shows the s
stantial influence of the subleading logarithmic terms
tained in Ref.@4#.

We judge that it is preferable to integrate over only t
region of phase space in which the subleading term is s
pressed numerically. Our reasons include the fact that
subleading term is not universal, is not the same as the
leading term in the exactO(a3) calculation, and can be
changed if one elects to keep nonleading terms in mom
space. The subleading term is negative and numerically v
significant when it is integrated throughout phase space~i.e.,
into the region ofz above ourzmax!. In the q q̄ channel at
m5175 GeV andAS51.8 TeV, its inclusion eliminates
more than half of the contribution from the leading term.
our view, the presence of numerically significant sublead
contributions begs the question of consistency. A further j
tification for the retention of only the leading term is that
approximates the exact next-to-leading order result well
shown in Fig. 1. The choice made in Ref.@4# reproduces
only one-third of the exact next-to-leading order result. T
influence of subleading terms is amplified at higher ord
where additional subleading structures occur in the appro
of Ref. @4# with significant numerical coefficients propo
tional to p2, z~3!, and so forth. We present a more detail
discussion of this issue in the next section.

VI. FURTHER DISCUSSION OF THE CMNT APPROACH

In this section we offer a more systematic analysis of
role played in the approach of Ref.@4# by nonuniversal sub-
leading logarithms. We are interested in expansions of
resummed momentum-space kernel, Eq.~15!, up to two
loops. Therefore, the corresponding cross sections are
grable down to threshold,zmax51 andh50. As we will see,
though, the effects of the various classes of logarithms
pronounced if one continues the region of integration outs
our perturbative regime.

In moment space, the exponent to two-loops is obtai
from Eq. ~11!:

Ei j
@2#~x,a!5ga~s2,1x

21s1,1x1s0,1!1ga2~s3,2x
31s2,2x

2

1s1,2x1s0,2!, ~20!
e

f.
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-
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with g52Ci j andx5 ln n. The corresponding hard kernels
momentum space can be derived from Eq.~15!, according to
the formulas~91!–~94! of Ref. @3#. In the notation of Ref.
@3#, we retain terms up to those that are linear inP2 . Alter-
natively, one can perform the analytical Mellin inversion d
rectly, beginning with Eq.~20!. The two methods provide
identical results down to the monomialsxz

2a2; xz[ ln@1/(1
2z)#. Here we quote results based on the explicit invers
of Eq. ~20!. ~The monomialxza

2 can be obtained also in th
first approach if we keep the quadratic term inP2 .! After a
trivial integration is performed, the results for the one- a
two-loop hard kernels are

H~1!5xz
2a$gs2,1%1xza$g~s1,112c1s2,1!%, ~21!

and

H~2!5xz
4a2$g2s2,1

2 /2%1xz
3a2$gs3,21g2~s2,1s1,112c1s2,1

2 !%

1xz
2a2$g~s2,213c1s3,2!1g2~s1,1

2 /213c1s1,1s2,1

1s2,1s0,11s2,1
2 @6c22p2#%1xza

2$g~s1,212c1s2,2

1s3,2@6c22p2# !1g2~s0,1s1,112c1s0,1s2,11c1s1,1
2

1s2,1s1,1@6c22p2#1s2,1
2 @12c322p2c1# !%. ~22!

All the constants are defined in Eqs.~11! and ~12!. We re-
mark that Eq.~21! includes a leading logarithmic termxz

2a,
as well as a next-to-leading termxza.

The question we now address is whether it is justified a
meaningful to retain all of the terms in Eqs.~21! and~22! in
the computation of the resummed cross section. The is
has to do with what one intends by resummation of lead
logarithms. We use the termleading logarithmresummation
to denote the case in which the moment space exponent
~20!, contains only the constantsELL5$sr11,r,0%. This is
also what is done in the method of Ref.@4#, and the exponen
in moment spacein their work is identical to that used fo
our predictions, Eq.~14!. However, in contrast to our expres
sion in momentum space, Eq.~16!, the corresponding ex
pression in momentum space of Ref.@4# includes the numeri-
cal equivalent of all terms in Eqs.~21! and ~22! that are
proportional tosr11,r .

If expressed analytically, the correspondingLL hard ker-
nels in the method of Ref.@4# are

HLL
~1!5xz

2ag2xza2ggE , ~23!

and

HLL
~2!5xz

4a2g2/21xz
3a2$2gb2/322gEg2%1xz

2a2$22gb2gE

1g2@3gE
22p2/2#%1xza

2$2gb2@3gE
22p2/2#/3

1g2@gEp222g324z~3!#%, ~24!

wherez(s) is the Riemann zeta functionz(3)51.2020569.
Evaluating the expressions numerically for theq q̄ channel,
we obtain

HLL
~1!5xz

2a32.666662xza33.07848 ~25!

and
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HLL
~2!5xz

4a233.555552xz
3a234.801892xz

2a2333.88456

2xza
239.82479. ~26!

Apart from the leading monomials that are the same as th
in our approach, Eqs.~25! and ~26! include a series of sub
leading terms, each of which has a significant negative c
ficient. In practice, these subleading terms in the approac
Ref. @4# suppress the effects of resummation essentially c
pletely. One of the effects of this suppression is that
resummed partonic cross section issmaller than its next-to-
leading order counterpart in the neighborhood ofh50.1, a
region in which the next-to-leading order partonic cross s
tion takes on its largest values. This point is illustrated
Fig. 3 of the second paper in Ref.@4#.

Although the specific set of subleading terms in Eqs.~25!
and ~26! is generated in the inversion of the Mellin tran
form, we would argue that the terms are accidental, at b
Our reasoning is based on an examination of the exact n
to-leading order calculation of the cross section for hea
quark production and of similar calculations of the Drell-Y
process up to two-loops. First, terms involvinggE do not
appear in the exact next-to-leading order calculation of
hard part, since they are removed in the specification of
MS factorization scheme. Therefore, the term proportiona
gE in Eq. ~23! is suspect. Second, if we extract the spec
value of the subleading logarithm from the fullO(a3) next-
to-leading order calculation@5#, we find @16# xza(2g
241/6) instead of the term2xza2ggE in the equivalent
CMNT Eq. ~23!. Referring to Eq.~25!, we remark that in-
stead of the numerical coefficient 3.07848, one would h
the smaller value 1.5 if the subleading logarithm of the ex
O(a3) calculation were used. Thus, not only is theO~a!
subleading term retained in the approach of Ref.@4# different
from that of the exact calculation, it is numerically abo
twice as large. Third, we would claim that the results of aLL
resummation should not rely on the subleading structure
any significant way. However, in the approach of Ref.@4#,
Eq. ~23!, which is the one-loop projection of their resumm
prediction, reproduces only 1/3 of the exactO(a3) enhance-
ment, the other 2/3 being cancelled by the second~nonuni-
versal! term of Eq. ~23!. Correspondingly, the method o
Ref. @4# fails an important consistency check: it sets out
resum the threshold corrections responsible for the large
hancement of the cross section at next-to-leading order
the end, it does not reproduce most of this enhancemen

Addressing questions associated with thegE terms @17#
CMNT examine a type ofNLL resummation in the secon
paper of Ref. @4#. In this NLL resummation, the
$sr11,r ,sr,r% terms are retained in the exponent of Eq.~20!.
The corresponding hard kernels become

HNLL
~1! 5xz

2ag ~27!

and

HNLL
~2! 5xz

4a2g2/21xz
3a22gb2/32xz

2a2g2@gE
21p2/2#

2xza
2$gb2@2gE

21p2/3#1g24z~3!%. ~28!

Comparing Eqs.~27! and~28! with Eq. ~5!, we observe that
Eq. ~27! is identical to the one-loop projection of our ha
se
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kernel. As shown in Ref.@3#, it yields an excellent approxi-
mation to the exact next-to-leading order cross section.
the other hand, our two-loop projection contains only t
first two terms of Eq.~28!. The term proportional toxz

3a2 is
present in our case, along with the leading term proportio
to xz

4a2, because it comes from the leading logarithms in
exponentE(n), through two-loop running of the coupling
strength. In contrast to Eq.~24!, Eq. ~28! relegates the influ-
ence of the ambiguous constant coefficients to lower pow
of xz ~but with larger negative coefficients!. In the amended
scheme of Ref.@4#, the unphysicalgE terms are still presen
in the two-loop result, Eq.~28!, along withp2 andz~3! terms
that may be expected but whose coefficients have no w
defined physical origin. Recast in numerical form, Eqs.~27!
and ~28! become

HNLL
~1! 5xz

2a32.66666 ~29!

and

HNLL
~2! 5xz

4a233.555551xz
3a233.407392xz

2a2337.46119

2xza
2354.41253. ~30!

We call attention to the significant difference between
coefficients of all but the very leading power ofxz in Eqs.
~25! and~26! with respect to those in Eqs.~29! and~30!, and
to the fact that the numerical coefficients grow in magnitu
as the power ofxz decreases.

Using their NLL amendment, CMNT find that the centr
value of their resummed cross section exceeds the nex
leading order result by 3.5%~both q q̄ and gg channels
added!. This increase is about 4 times larger than the cen
value of the increase obtained in their first method, close
our increase of about 9%. The reason for the signific
change of the increase resides with the subleading structu
viz., in the differences between theLL version Eqs.~25! and
~26! and theNLL version Eqs.~29! and~30!. The subleading
terms at two-loops cause a total suppression of the two-l
contribution ~in fact, that contribution is negative!, if one
integrates all the way into what we call the nonperturbat
regime. This suppression explains why an enhancemen
only 3.5% is obtained in the amended method of Ref.@4#,
rather than our 9%.

CMNT argue that retention of their subleading terms
momentum space is important for ‘‘energy conservation
By this statement, they mean that one begins the formula
of resummation with an expression in momentum space c
taining a d function representing conservation of the fra
tional partonic momenta. In moment space, thisd function
subsequently unconvolves the resummation. Therefore, w
one inverts the Mellin transform to return to momentu
space, the full set of logarithms generated by this invers
are required by the original energy conservation. This line
reasoning would be compellingif the complete exponen
E(n) in moment space were known exactly, i.e., if the resum-
mation in moment space were exact in representing the c
section to all orders. However, the exponent is truncated
all approaches, and knowledge of the logarithms it resu
reliably is limited both in moment and in momentum spac
Hence, the set of logarithms produced by the Mellin inv
sion in momentum space should also be restricted. In
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262 57EDMOND L. BERGER AND HARRY CONTOPANAGOS
approach energy conservation is obeyed in momentum s
consistently with the class of logarithms resummed. On
other hand, in the method of Ref.@4#, knowledge is claimed
of all logarithms generated from the Mellin inversion, d
spite the fact that the truncation in moment space ma
energy conservation a constraint restricted to the clas
logarithms that is resummable, i.e., a constraint restricted
the truncation of the exponentE(n). The two approaches
would be equivalent provided a constraint be in place on
effects of subleading logarithms. This constraint is precis
our Eq.~17!. By contrast, no such constraint is furnished
Ref. @4#. For this reason the results of Ref.@4# are numeri-
cally unstable if one set of the logarithms generated in m
mentum space is adopted as ‘‘the set corresponding to
ergy conservation,’’ and then compared with another
produced by a different truncation ofE(n).

We have identified the terms responsible for the diff
ence between our answer for the resummed cross section
that of Ref. @4#. These differences reside with subleadi
logarithms whose presence is not substantiated by phy
arguments. The essence of our determination of the pe
bative regime in Eq.~17! is precisely that, in this regime
subleading structures are alsonumerically subleading,
whether or not the classes of subleading logarithms com
from different truncation of the master formula for the r
summed hard kernel, Eq.~15!, are included. The results pre
sented in note Fig. 11 of Ref.@3#, show that if we alter our
resummed hard kernel to account for subleading struct
but still stay within our perturbative regime, the resultin
cross section is reduced by about 4%, within our band
perturbative uncertainty.

A criticism @4# is that of putative ‘‘spurious factoria
growth’’ of our resummed cross section, above and bey
the infrared renormalons that are eliminated from our
proach. The issue, as we demonstrated in Eq.~29! of Ref.
@3#, can be addressed most easily if we substitute any mo
mial appearing in Eq.~22!, symbolically amc( l ,m)lnl xz,
into Eq. ~3! and integrate overz:

amc~ l ,m!E
zmin

1

dz lnl xz5amc~ l ,m!~12zmin!l !

3(
j 50

l

lnj@1/~12zmin!#.

~31!

For the purposes of this demonstration we setŝ i j8 51. The
coefficientsc( l ,m) can be read directly from Eq.~22!. For
the leading logarithmic terms,

c~2m,m!}1/m!, ~32!

where this factorial comes directly from exponentiation. A
ter the integration over the entirez-range, the power of the
logarithm inxz becomes a factorial multiplicative factor,l !.
The presence ofl ! follows directly from the existence of the
powers of lnxz that are present explicitly in the finite-orde
result in perturbative QCD~PQCD! and is therefore inevi-
table. If this exercise is repeated, but with the range of in
gration in Eq.~31! constrained to our perturbative regim
one obtains the difference between the right-hand side of
ce
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~31! and a similar expression containingzmax. The result is
numerically smaller, but both of the pieces are multiplied
l !.

The factorial coefficientl ! is neither the only nor the mos
important source of enhancement. For the leading logarith
at two-loop order,l 52m54, and the overall combinatoria
coefficient from Eqs.~31! and ~32! is (2m)!/m! 512. For
comparison, at representative values ofh near threshold,h
50.1 and 0.01, the sum of logarithmic terms in Eq.~31!
provides factors of 16.1 and 314.3, respectively. Similar
the ~multiplicative! color factors at this order of perturbatio
theory are (2Ci j )

257.1 and 36 for theq q̄ andgg channels,
respectively. All of these features are connected to the w
threshold logarithmic contributions appear in finite-ord
PQCD and how they signal the presence of the nonpertu
tive regime. Thus, preoccupation with thel ! factor seems
misplaced.

The phrase ‘‘spurious factorial growth’’ appears to r
name the logarithmic enhancements present in Eqs.~21! and
~22!, after the integral overz. On the other hand, accordin
to our understanding, the claim@4# of ‘‘absence of factorial
growth’’ is based on the use in Ref.@4# of Eq. ~26! for their
main predictions, an expression that contains nonunive
subleading logarithms, all with significant negative coef
cients. Mathematically, factorial growth is present for ea
of the powers of the logarithm in Eq.~31!, since these mo-
nomials are irreducible~linearly independent!. Absence of
factorial growth based on a numerical cancellation betw
various classes of logarithms, most of them with physica
unsubstantiated coefficients, appears to us to be an inco
use of terminology, rather than a transparent expressio
the mathematics.

From a purely phenomenological point of view, one ca
not claim that a 9% increase of the top quark cross sectio
m5175 GeV andAS51.8 TeV reveals factorial growth bu
that an 0.8% increase does not. In the approach taken in
@4#, the effects of resummation are suppressed by a serie
subleading logarithms with large negative coefficients.
there is no physical basis for preference of Eqs.~23! and~24!
over Eqs.~27! and ~28!, as the authors of Ref.@4# seem to
suggest, then the difference in the resulting cross sect
can be interpreted as a measure of theoretical uncerta
This interpretation would not justify firm conclusions of
minimal 0.8% increment based on the choice of Eqs.~23!
and ~24!.

As remarked in Sec. IV, the value quoted in Ref.@4# for
the physical cross section atm5175 GeV and AS
51.8 TeV, including theoretical uncertainty, lies within ou
uncertainty band. Therefore, the numerical differences
tween us for the specific case of top quark production at
Tevatron have little practical significance. However, the
are important differences of principle in our treatment
subleading contributions that will have more significant co
sequences for predictions in other processes or at other
ues of top mass and/or at other energies, particularly in
actions dominated bygg subprocesses.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we present and discuss the calculation of
inclusive cross section for top quark production in perturb
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tive QCD, including the resummation of initial-state gluo
radiation to all orders in the strong coupling strength. T
advantages of the perturbative resummation method@2,3# we
espouse are that there are no arbitrary infrared cutoffs
there is a well-defined perturbative region of applicabil
where subleading logarithmic terms are numerically s
pressed. Our theoretical analysis shows that perturbative
summation without a model for nonperturbative behavior
both possible and advantageous. In perturbative resum
tion, the perturbative region of phase space is separ
cleanly from the region of nonperturbative behavior.

When evaluated for top quark production atAS
51.8 TeV, our resummed cross sections are about 9% ab
the next-to-leading order cross sections computed with
same parton distributions. The renormalization-factorizat
scale dependence of our cross section is fairly flat, resul
in a 9–10% theoretical uncertainty. This variation is sma
than the corresponding dependence of the next-to-lea
cross section, as should be expected. Our perturba
boundary of 1.22 GeV above the threshold in the domin
q q̄ channel is comparable to the hadronic width of the
quark, a natural definition of the perturbative boundary. N
ther this, nor the somewhat larger value of 8.64 GeV ab
threshold in thegg channel, associated with the larger col
factor in the gg channel, is ‘‘unphysically large’’@4#. In
recent papers@4#, the authors state that the increase in cr
section they find with their resummation method is no m
than 1% over next-to-leading order. The numerical diff
ence in the two approaches boils down to the treatment of
subleading logarithms, which can easily shift the results b
few percent, if proper care is not taken. Our approach
cludes the universal leading logarithms only while theirs
cludes nonuniversal subleading structures which produce
suppression they find. In Sec. VI, we explained why
judge that that our treatment of the subleading structure
preferable.

Our theoretical analysis and the stability of our cross s
tions underm variation provide confidence that our perturb
tive resummation procedure yields an accurate calculatio
the inclusive top quark cross section at Tevatron ener
and exhausts present understanding of the perturbative
tent of the theory. Our resummed top quark cross sectio
about 9% above the next-to-leading order cross section
an estimated theoretical uncertainty of 9–10%, associa
with m variation. An entirely different procedure to estima
the overall theoretical uncertainty is to compare our enhan
ment of the cross section above the next-to-leading o
value to that of Ref.@4#, again yielding about 10%. An in
teresting question is whether theory can aspire to an accu
of better than 10% for the calculation of the top quark cro
section. To this end, a mastery of subleading logarith
would be desirable, perhaps requiring a formidable comp
calculation at next-to-next-to-leading order of heavy qu
e
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production, to establish the possible pattern of sublead
logarithms, and resummation of both leading and sublead
logarithms. An analysis in moment space of the issues
volved in resummation of next-to-leading logarithms f
heavy quark production is presented in Ref.@18#. Inversion
of the resummed moments to the physically relevant mom
tum space requires considerable work and is beyond
scope of the present paper. Full implementation of the
summation of next-to-leading logarithms would reduce
difference somewhat between our results and those of
@4# and move the debate to the level of next-to-next-
leading logarithms.

Our prediction agrees with data, within the large expe
mental uncertainties. Despite the different treatment of s
leading terms, our calculation of the inclusive cross sect
for top quark production at the Fermilab Tevatron and tha
Ref. @4# fall within the estimated uncertainties of each oth
If a cross section significantly different from ours is me
sured in future experiments at the Tevatron with greater
tistical precision, we would look for explanations in effec
beyond QCD perturbation theory. These explanations m
include unexpectedly substantial nonperturbative effects
new production mechanisms. An examination of the dis
bution in h might be revealing.

In this paper, we concentrate on the all-orders summa
of large logarithmic terms that are important in the ne
threshold region of small values of the scaled partonic s
energy,h→0. Our specific case is top quark production
the Fermilab Tevatron collider. Other processes for wh
threshold resummation and our methodology will also
pertinent include the production of hadronic jets that ca
large values of transverse momentum and the productio
pairs of supersymmetric particles with large mass. There
complementary region of largeh,h→1, in which the resum-
mation of different large logarithms may also be importa
The production of heavy quarksQ in the limit that the had-
ronic center-of-mass energy is much larger than the qu
mass provides an example. The dominant production cha
is gg→QQ̄X; the ratio of the next-to-leading order parton
cross section divided by its leading-order approximation
very large at largeh. Correspondingly, the fixed-order cros
section will not offer a reliable prediction, and an all-orde
approach is called for@19#. Particular cases include the tot
cross sections for bottom quark production at the Tevat
and top quark production at the CERN Large Hadron C
lider.
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