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Threshold resummation of the total cross section for heavy quark production
in hadronic collisions
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We discuss calculations of the inclusive total cross section for heavy quark production at hadron collider
energies within the context of perturbative quantum chromodynamics, including resummation of the effects of
initial-state soft gluon radiation to all orders in the strong coupling strength. We resum the universal leading-
logarithm contributions, and we restrict our integrations to the region of phase space that is demonstrably
perturbative. We include a detailed comparison of the differences between ours and other methods. We provide
predictions of the physical cross section as a function of the heavy quark mass in proton-antiproton reactions
at center-of-mass energies of 1.8 and 2.0 TeV, and we discuss the estimated uncertainties.
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[. INTRODUCTION AND MOTIVATION able »= s/4m?—1 measures the distance from the partonic
) ) ) ~ threshold. The indiceg§ {qq,gg} denote the initial parton
In this report we present and discuss calculations Cameghannel. The partonic cross sectiémj(n,mz,uz) is ob-

out in perturbative quantum chromodynami€¥CD) of the : N i
inclusive cross section for the production of heavy quark-ta"n(‘jd co_gm;orr: ly frofm f'XEdlor?etr QC?hC?ICUIaJ'O[@ (cj)r%_ d
antiquark pairs in hadron reactiof&—4]. In most of the as described here, from caicuations that go beyond fixed-

paper, we identify the heavy quark as a top quabiut the order pgrturbation theory through the incIu;ion of glutz)n re-
results are valid more generally as long as the mass of th%unlmanon [1-4]. 2The partozn flux s q’ij(yz’r“_)
quark is sufficiently heavy. For example, they should apply=/Jy (dX/X) fin (X, %) Fn,(y/x, %), where fin (x, %) is
as well to production of a fourth-generation quark, such as #he density of partons of typein hadronh;. We use the
postulatedb’. notation a(u)=ags(u)/w. Unless otherwise specifiedy

In inclusive hadron interactions at collider energibg, =a(u=m) throughout this paper. The total physical cross

+h,—t+t+X, tt pair production proceeds through par- section is obtained after incoherent addition of the contribu-

tonic hard-scattering processes involving initial-state lightiions from the theqq and gg production channels. In this
quarksg and gluong. In lowest-order QCD, ab(a?), the  paper, we ignore the small contribution from thg channel.
two partonic subprocesses age- q—t+t and g+g—t Comparison of the partonic cross section at next-to-
+t. Calculations of the cross section through next-to-leading order with its lowest-order value reveals that the ra-

leading ordei®(a?) involve gluonic radiative corrections to tio becomes very large in the near-threshold region. Indeed,
these lowest-order subprocesses as well as contributiorss 7—0, the “K factor” at the partonic leveK (7) grows in
from the g+ g initial state[5]. A complete fixed-order cal- proportion toa In?(7). An illustration of this behavior may
culation at ordeiO(ay), n=4 does not exist. In this paper, be seen in Fig. 7 of Ref3]. The very large mass of the top
we do not examir)e mechanisms for the production of singl@uark notwithstanding, the large rafﬁi 7) makes it evident
top quarks or antiquarks)]. _ that the next-to-leading order result does not necessarily pro-
The physical cross section for each production channel igije 5 trystworthy quantitative prediction of the top quark
obtained through the factorization theorem production cross section at the energy of the Fermilab Teva-
Am? (sam? -1 tron collider. The large ratio casts doubt on the reliability of
aii (S, m?)=—— dnd;; simple fixed-order perturbation theory for physical processes

S Jo for which the near-threshold region in the subenergy variable
am? R contributes significantly to the physical cross section. Top
X5 (1+ n).u?|oj(n.m?,u?). (1) quark production at the Fermilab Tevatron is one such pro-

cess, because the top mass is relatively large compared to the

The square of the total hadronic center-of-mass ener@y is €nergy available. Other examples include the production of
and the square of the partonic center-of-mass energy is hadronic jets that carry large values of transverse momentum
The mass of the heavy quark ii8, and u is the common and the production of pairs of supersymmetric particles with
renormalization/factorization scale of the problem. The varilarge mass. To obtain more dependable theoretical estimates
of the cross section in perturbative QCD, it is important first
to identify and isolate the terms that provide the large next-
*Current address: Electrical Engineering Department, Universityto-leading order enhancement and then to resum these effects
of California at Los Angeles, Los Angeles, CA 90024. to all orders in the strong coupling strength.
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We begin in Sec. Il with the motivation for the inclusion 2
of the effects of intial state soft gluon radiation to all orders
in the QCD coupling strength, and we review the general
formalism of resummation. In Sec. Ill, we outline the 1o |
method and domain of applicability of perturbative resum-
mation that we developed in the past yg2)3]. We present
predictions in Sec. IV of the physical cross section as a func- s
tion of the heavy quark mass in proton-antiproton reactions <
at center-of-mass energies of 1.8 and 2.0 TeV, and we dis= ' [
cuss estimated uncertainties. Our calculation is in good& ¢ |-
agreement with the measured cross section at the reporte
mass of the top quar7]. At m=175GeV and /S E°r
=1.8 TeV, the all-orders resummed cross section is abou , |
9% greater than the next-to-leading order value. Since the
large threshold logarithms are mastered by resummation, the 3
theoretical reliability of the resummed result is considerably
greater than that of the fixed order calculation. At other val-
ues ofm and+/S, where the ration/+/Siis larger, the numeri- 1F
cal effects of resummation can be more significant. InSecs | | .. .\ . oo

11

- pp—tt+X Vs=1.8 TeV

V and VI, we compare our approach and results with other 190 160 " (Gev) 190 20 e
methods[1,4] and address criticisms that have been made
[4]. The difference between our approach and that of Réf. FIG. 1. Physical cross sections in thg channel as a function

resides in the treatment of subleading logarithmic contribuys the heavy quark mass, in théS scheme. The solid lines denote
tions, and we explain our reasons for preferring our methode finite-order partial sums of the universal leading-logarithmic

Conclusions are summarized in Sec. VII. contributions from the explicit)(«®) and O(a*) calculations for
thett and Drell-Yan processes, respectively. Lower sobid®;
Il. GLUON RADIATION AND RESUMMATION middle solid:°*V; upper solid:c°*1*2), The dashed curve rep-

L. resents the exact next-to-leading order calculationtBrproduc-
The origin of the large threshold enhancement may b‘?ion, in excellent agreement with(®* D The dotted curve is our

traced to initial-state gluonic radiative corrections to the;agymmed prediction.
lowest-order channels. To avoid misunderstanding, we re-

mark that we are calculating the inclusive total cross sectiogye work in the modified minimal subtractio(rM_S) factor-

for the production ofitop quark-antiquark pair, i.e., the totalization scheme in which tha, q_ andg densities and the

cross section fo+ t +anything. The partonic SUDENergY next.to-leading order partonic cross sections are defined un-

threshold in question is the threshold tor t +any number ambiguously. The lower limit of integratiod,,=1—4(1

of gluons. This coincides with the threshold in the invariant+n)+4 [1+7 is set by kinematics. The derivative

mass of the+ t system for the lowest order subprocesses(}i'j(U'mZ'Z):d[(}i(jo)(,],mz'z)]/dz, and (}i(jo) is the lowest-

only. _ _ ) ) ) order O(a?) partonic cross section expressed in terms of
To specify the kinematic variables, we con3|der_the tWO-inelastic kinematic variables to account for the emitted radia-

to-three parton subprocess(k;)+j(k,)—t(p1)+ t(p2) tion.

+g(k). We define the variable through the partonic invari- Keeping only the leading logarithmic contributions
ants[1] throughO(«®), we may approximate the total partonic cross
section as

s=(kyt+ky)?, t1=(Ky—pp)2—m?,

~ 1 ~
U=(ki—po)2— M2, (L—z)m’=s+t;+u;. (2 o (pmd)= f dz{1+a2C;; In(1-2)}oyj(7,2,m?)
min

Alternatively, (1—2z)= 2k-p,/m?. In the limit thatz—1, 1 (0+1) ., )
the radiated gluom(k) carries zero momentum. After can- = . dzHij (2, @) ajj(,2,m"), (4)
cellation of soft singularities and factorization of collinear mn
singularities inO(a®), there are left-over integrable logarith- where Cqq=Cr=4/3 andCyy=C,=3. As is illustrated in
mic contributions to the cross section associated with initial-Fig. 1, the leading logarithmic contribution, integrated over
state gluon radiation. The contributions of interest here, oftefihe near-threshold region=1z=0, provides an excellent ap-
expressed in terms of “plus” distributions, are proportional proximation to the exact full next-to-leading order physical
to In(1-2). These logarithmic terms are vestiges of the cancross section as a function of the heavy quark mass.

Cel_?ﬁ mfra{ed' smgularltle\?. b d " Although a fixed-orde®(a*) calculation oftt_pair pro-
€ partonic cross section may be expressed generally 4 ction does not exist, we may invoke universality with mas-
1 sive lepton-pair productionl ( ), the Drell-Yan process, to
(}ij(n,m2): dZHij(Z.a)(ATi’j(ﬂ,mz.Z)- (3 g_eneralize Eq(4) to higher order. In the near-threshold re-
Zmin gion, the hard kernel becomes
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rithmic behavior of a(g?), a(q?)*In"q¥Acp), al(1
—2)?Pm?]—» asz—1. The infrared singularity is a mani-
festation of nonperturbative physics. In the approach of
5) LSvN, this divergence of the integrand at the upper limit of
' integration necessitates introduction of the undetermined in-
frared cutoff(IRC) u in Eq. (6), with Agcp=puo<=m. The
The coefficienb, = (11C,—2n;)/12, and the number of fla-  cutoff prevents the integration overfrom reaching the Lan-
vors n;=5. We note that the leading logarithmic contribu- dau pole of the QCD running coupling constant. The pres-
tions in each order of perturbation theory are all positive inence of an extra scale spoils the renormalization group prop-
overall sign[8] so that the leading logarithm threshold en- erties of the overall expression. The unfortunate dependence
hancement keeps building in magnitude at each fixed ordesf the resummed cross section on this cutoff is important
of perturbation theory. The further enhancement of thaqumericany since it appears in an exponght Theoretical
physical cross section produced by éa”) leading loga-  uncertainties are not easy to evaluate quantitatively in a
rithmic terms in the near-threshold region is shown in Fig. 1.method that relies on an undetermined infrared cutoff.
At m=175 GeV, we compute the following ratios of the
physical cross sections in the leading logarithmic approxima-
tion: O'i(j0+l)/0'i(j0): 1.2, andO'i(joJrHZ)/ai(le): 114, I1l. PERTURBATIVE RESUMMATION
The goal of gluon resummation is to sum the series in

N [12n(1 — H H ; X . 7 X
a" In"(1-2) to all orders in« in order to obtain a more . perturbative truncation of principal-value resummation

trustworthy prediction. This procedure has been studied eXPVR). The princi ;
) . principal-value method9] has an important
tensively for the Drell-Yan proceg¢S], and good agreement 4o .ppica advantage in that it does not require arbitrary infra-

with data is achieved. In essentially all resummation ProCeteq cutoffs, as all Landau-pole singularities are bypassed by

dures, the large logarithmic contributions are exponentiateg Cauchy principal-value prescription. Because extra unde-

into a function of t_he QCD running coupling sf[rength, itself tormined scales are absent, the method also permits an evalu-
evaluated at a variable momentum scale that is a measure ion its perturbative regime of applicability, i.e., the region

the radiated gluon momentum. For example, in the approacg e gjuon radiation phase space where resummed pertur-
of Laenen, Smith, and van NeervéhSvN) [1], the re- bation theory should be valid.
summed partonic cross section is written as To illustrate how infrared cutoffs are avoided in the PVR
L (e 1m? method, it is useful to begin with an expression in moment
t}ﬁ;'RC(ﬂ,Mo): Ko dzeEiﬂZ’mz)(}i’j(n,mZ,z), (6) (n) space for 'Fhe exponent _that resums the H)lterms .
Zmin [10]. Factorization and evolution lead directly to exponentia-
tion in moment space:

HO 1 D(z,0)=1+2aC;; INX(1-2)+a?

2C7 In*(1-2)

4 3
- §C|Jb2 In (1-2)

The method of resummation we empl®;3] is based on

where the exponent

2 21301272 e dx
Eij(z,m?)xCijal (1-2)*Pm?]In*(1-2). (7) E(n,mz):—f dx?f —gla(Am?)].
0 X Ja-x2 A
We note that in Eq(7), the strong coupling strength is evalu- ©)]
ated at the variable momentum scale«4) #*m?
Different methods of resummation differ in theoretically The functiong(e) is calculable perturbatively, but the be-
and phenomenologically important respects. The set ohavior of a()\rznz) leads to a divergence of the integrand
purely leading monomiala™ In 2'(1—2) in (}ij exponentiates when)\m2—>AQCD. To tame the divergence, a cutoff can be

directly, with « evaluated at a fixed large scale=m, as introduqed in the _integral ovex or direct_ly _in momentum
may be appreciated from a glance at E§). This simple SPace, in the fashlpn of LSyN. In the pnnmpal-value redefi-
result does not mean that a theory of resummation is redurflition of resummation, the singularity is avoided by replace-
dant, even if only leading logarithms are to be resummedment of the integral over the real axisin Eq. (8) by an
Indeed, straightforward replacement of the term within thentégral in the complex plane along a contduthat has the
brackets of Eq(4) with the exponential 0f:2C;; In 2(1—2) same e_ndpomts and is symmetric under reflections across the
would lead to an exponentially divergent integfahd there-  real axis:
fore cross sectionsince the coefficient of the logarithm is o1
positive. The naive approach, therefore, fails from the start, EPV(n mz)z—f dgg -1 rt d—)\g[a()\mz)]

and more sophisticated resummation approaches must be ’ P 1-¢ Ja-p2 A '
employed, involving scaling and Lorentz-transformation (9
properties of the classes of terms to be summed. The more

sophisticated approaches are not free from problems, howFhe functionE™V(n,m?) is finite since the Landau pole sin-
ever. Formally, if not explicitly in some approaches, an in-gularity is bypassed. Moreover, ljm..EPY(n,m?)=—,
tegral over the radiated gluon momentmmmust be done and, therefore, the corresponding partonic cross section is
over regions in whicle— 0. Therefore, one significant dis- finite as z—1(n—+®). In Eqg. (9), all large soft-gluon
tinction among methods has to do with how the inevitablethreshold contributions are included through the two-loop
“nonperturbative” region is handled in each case. Examina+tunning of .

tion of Egs.(6) and (7) shows that an infrared singularity is Equations(8) and(9) have identical perturbative content,
encountered in the soft-gluon linit—1; owing to the loga- but they have different nonperturbative content since the in-
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frared region is treated differently in the two cases. The non- '8
perturbative content is not a prediction of perturbative QCD. 15 |
In our study of top quark production, we choose to use the 14 |
exponent only in the region of phase space in which the .,
perturbative content dominates.

We use the attractive finiteness of E@§) to derive a
perturbative asymptotic representationkifx, «(m)) that is

valid in the moment-space interval |
N

E@ ____________
1<x=In n<t= . 10 Zosr e
2ab, ( ) oorf
) e
This perturbative asymptotic representation is N
NO+1  p+l 04 b e -
Eij(x,@)=E;j[x,a,N(1)]=2C;; X a’>, s X. 05 |-
p=1 j=0
(12) 2 r
01
Here P S N N Y T T T Y T U T Y O S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
_ - . N
§;.,= b5 (—1)P2kc, g j(p— D!, (12

FIG. 2. Optimum number of perturbative terms in the exponent
andT'(1+2)=3j_,cz", wherel is the Euler gamma func- with PVR. The solid family is for PVR and the dashed set for the
tion. The number of perturbative ternN(t) in Eq. (11) is perturbative approximation, both families increasing, for parametric
obtained[3] by optimizing the asymptotic approximation  valuesn=10,20,30,40.

|E(X,a) — E(X,a,N(t))|=min. (13 It is valuable to stress that we can derive the perturbative
L ) expressions, Eq€10), (11), and(12), from the unregulated
Because of the range of validity in E¢L0) and owing to the exponent Eq.(8) without the PVR prescription, although

optimization Eq.(13), terms in the exponent of the form \\ith |ess certitude. We discuss this point in some detail in

a* In*n are of order unity, and terms with fewer powers of gec 11 B of our long papef3].

logarithms, o In“"™n, are negligible. The optimization as- ~ After inversion of the Mellin transform from moment
sures us that the coefficients of the various terms are beniggpace to the physically relevant momentum space, the re-
Resummation is completed in a finite number of steps. Withy, ymed partonic cross sections, including all large threshold
a two-loop expression for the running coupling strength, all.grrections. can be written in the form of E@), but with
monomials of the forma* In“"*n, o In“n are produced in  {he hard kernel replaced by the resummed form
the exponent of Eq(11). Because of the restricted leading-
logarithm universality between the andl| processes, we [ 1(1-2)] ®
discard monomials of the form* In®n in the exponent. Hﬁ(z,@:f dxefii(xa > Qj(x,a). (19
The exponent we use is the truncation 0 =0
N +1 The leading large threshold corrections are contained in the
Eij(x,a,N)=2C;; 21 afs X’ (14 exponentE;;(x,a), a calculable polynomial ix. The func-

. tions {Qj(x,a)} arise from the analytical inversion of the
with the coefficients spzsp+1,{,=b§’12”/p(p+ 1). The Mellin transform from moment space to momentum space.
number of perturbative termis(t) is a function of only the These func_tlons are produced_by the_ resummatlon and are
top quark massn. This expression contains no factorially expkressed In terms of successive derivative& oPy(x, )
growing (renormalon terms. The perturbative region of —¢ E(X,a)/K!d"x. EachQ; containsj more powers ofx
phase space is far removed from the part of phase space §fjan 0fx so that Eq(15) embodies a natural power-counting
which renormalons could be influential. of threshold logarithms. .

In Fig. 2 we illustrate the validity of the asymptotic ap- ~ The functional form ofg;; for tt production is identical
proximation for a value oft corresponding tom  to that forl | production, except for the identification of the
=175 GeV. Optimization works perfectly, witfN(t)=6, two separate channels, denoted by the subsigrigtowever,
and the plot demonstrates the typical breakdown of thenly the leading threshold corrections are universal. Final-
asymptotic approximation i is allowed to increase beyond state gluon radiation as well as initial-state—final-state inter-
N(t). This rise represents the exponential growth of the inference effects produce subleading logarithmic contributions
frared (IR) renormalons, thed—1)! growth in the second that differ for processes with different final states. Accord-
term of Eq.(12). As long asn is in the interval of Eq(10), ingly, there is no physical basis for accepting the validity of
all the members of the family in are optimized at the same the particular subleading terms that appear in ELp).
N(t), showing that the optimum number of perturbative Among all {Q;} in Eg. (15), only the very leading one is
terms is a function of, i.e., of m only. universal. This is the linear term B, contained inQ,, that
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turns out to beP, itself. Since we intend to resum only the nonperturbative region. The two independent determinations
universal leading logarithms, we retain orf®y. Hence, Eq.  of the nonperturbative region are in agreemdri].
(15 can be integrated explicitly, and the resummed version

of Eq. (3) is IV. PHYSICAL CROSS SECTION
2 In order to achieve the best accuracy available we wish to
P 3, m?) = f dzefin1=2lal gl (5 m? z). include in our predictions as much as is known theoretically.
Znin Our final resummed partonic cross section can therefore be

(16 written[2,3]

We havg inserted_ an upper limit of integratian,,,, in 3ﬁef‘(n,m2,ﬂ2):(}ﬁipe"( 77,mZ,ILﬂ)_(}i<j°+1>(77,mZ,,42)|R;pen
Eq. (16). This upper limit is set by the boundary between the
perturbative and nonperturbative regimes. An intuitive defi- +ol0 D (n,m?, u?). (18
nition of the perturbative region, where inverse power terms
are unimportant, is provided by the inequalityocp/(1  The second term is the part of the partonic cross section up
—z)m=1. This inequality is identical to the expression in to one-loop that is included in the resummation, while the
moment space, Eq(10), with the identificationn=1/(1  last term is the exact one-loop cross secfibh To obtain
—2). In momentum space, the same condition is realized byhysical cross sections, we insert Ef8) into Eq. (1), and
the constraint that alQ;}, j=1 be small compared 1Q,.  Wwe integrate over. Other than the heavy quark mass, the
From the explicit expressiong3] for the {Q;}, one may only undetermined scales are the QCD factorization and
show that this constraint corresponds to renormalization scales. We adopt a common vagludor
both, and we vary this scale over the intervalm
€{0.5,2 in order to evaluate the theoretical uncertainty of
<1. (17)  the numerical predictions. We use the CTEQ3M parton den-
sities[12].
A quantity of phenomenological interest is the differential
Equation(17) is equivalent to the requirement that terms thatcross sectiomgij(s,m{n)/d,?_ Its integral overy is the
are subleading according to perturbative power counting argtal cross section. In Fig. 3 we plot these distributions for
indeed subleading numerically; E¢L7) is the essence of m=175 GeV,\/S=1.8 TeV, andu=m. The full range ofy
perturbation theory in this context. It assures us that our ingxtends to 25, but we display the behavior only in the near-
tegration is carried out only over a range in which poorlythreshold region where resummation is important. We ob-
specified subleading terms would not contribute significantlyserve that, at the energy of the Tevatron, resummation is

evin i theykha:jd ti)een retained. v th bati significant for theg q channel and less so for tiggy channel.
s remarked above, we accept only the perturbative conp, Fig. 1, the dotted curve shows that our final resummed

tent of principal-value resummation, and our cross section is L — . _

evaluated accordingly. Specifically, we use Etf) with the ~ CTOSS Section in theq channel, after integration over ajl

upper limit of integration,z,.,, calculated from Eq(17). lies about half way between the cross sections obtained from

; : 3

The upshot is an effective threshold boundary on the integrdf’® Qear-threshold leading logarithms at ordéx&”) and
over the scaled subenergy variabjebut one that is calcu- (@")- The latter have been integrated over the region 0
lable, not arbitrary. While reminiscent perhaps of the cutoff <z<l _ _ ) _ )

used in the LSVN approach, our threshold boundary has a We display our inclusive total production cross section as

very different and well defined origin. Our perturbative re- & function of the heavy quark mass in Fig. 4. The central
summation probes the threshold down to the pojat 7, value of our predictions is defined as the value obtained with

—(1—24)/2. Below this value, perturbation theory, re- the choiceu/m=1, and the lower and upper limits are the

summed or otherwise, is not to be trusted. For a top mad@iaximum and minimum of the cross section in the range of
m=175 GeV, we determine that the perturbative regime idhe hard scalex/me{0.5,2. This definition of the central

. — value is common, but it results here in an asymmetric uncer-
restricted ton=0.007 for theqq channel andp=0.05 for y

tainty estimate; the extent of the range above the central
the gg channel. These numbers may be converted to mor y g

. . Value is smaller than that below. A= 175 GeV, the full
readily understood values of the subenergy above which W&idth of the uncertainty band is about 10%. In Fig. 5, we
judge our perturbative approach is valid: rat= 175 GeV, -

il show the variation of our resummed cross section as the
these are 1.22 GeV above the threshold indfiechannel,  value of the renormalization-factorization scale is

and 8.64 GeV above the threshold in thg channel. The changed. As is to be expected, less variation witfs evi-
difference reflects the larger color factor in thg case. A dent in the resummed cross section than in the next-to-
larger color factor makes the nonperturbative region largenieading order cross section, also shown in Fig. 5. We remark
[One could attempt to apply Eq16) all the way t0z,.  that the cross section reaches its maximum at a valye of
=1, i.e,, top=0, but one would then be usingraodelfor just slightly larger tharm/2. We consider that the variation
nonperturbative effects, the one suggested by PVR, belowf the cross section over the rangéme {0.5,2 provides a
the region justified by perturbation theofWe note that the good overall estimate of uncertainty. For comparison, we
value 1.22 GeV in theq channel is comparable to the de- note that over the same range gf the strong coupling
cay width of the top quark’(t—bW")=1.55 GeV. The strengtha varies by=10% atm=175 GeV. Using a differ-
width itself provides a natural definition of the minimum ent choice of parton densiti¢43], we find a 4% difference

Py

, X

| 1
n 1-z
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ol p p—> 1T+ X, Vs=1.8 TeV, m=175 GeV 0 F
1=
g
=3
E
h=
g
©

L

pp—tt+X, Vs=1.8 TeV
PRRE T T TN WU TR R R SR U I SR SR WU R SR S I S S
140 160 180 200 220 240 260

m (GeV)

FIG. 4. Inclusive cross section for heavy quark production at

b B> tT+ X, Ys=1.8 TeV, m=175 GeV JS=1.8TeV in theMS scheme. The dashed curves show our per-
' ’ turbative uncertainty band, while the solid curve is our central pre-
diction.

o't(m=175 GeV,/S=1.8 TeV)=5.52"5% pb. The central
value of this cross section is larger than the next-to-leading
order value ajw=m by about 9%.

Extending our calculation afS=1.8 TeV to much larger
values ofm than shown in Fig. 4, we find that resummation

in the principalg g channel produces enhancements over the
next-to-leading order cross section of 21, 26, and 34%, re-
spectively, am=500, 600, and 700 GeV. The reason for the
increase of the enhancements with mass at fixed energy is
that the threshold region becomes increasingly dominant.
Since theqq channel also dominates in the production of
hadronic jets at very large values of transverse momenta, we
(b) n suggest that on the order of 20% of the excess cross section

reported by the CDF Collaboratiofi4] may well be ac-
FIG. 3. Differential cross sectiorgo/d» for pp—ttX at \/S counted for by resummation.

do(n)/dn (pb, gg)

=1.8 TeV andm= 175 GeV in theMS scheme fofa) the g q and The top qua_rk cross section increases quickly with the
(b) the gg channel: Born(dotted, next-to-leading ordefdasheyy ~ €nergy of thep p collider. We provide predictions in Fig. 6
and resummedsolid). for an upgraded Tevatron operating #=2 TeV. We de-

. o termine o''(m=175 GeV,/S=2 TeV)=7.56"31 ph. The
in the central value of our predictid2] atm=175 GeV. A

comparison of the predictior§8] in the MS and deep inelas- 6
tic scattering(DIS) factorization schemes also shows a mod-
est difference at the level of 4%. = F
In estimating uncertainties, we do not consider explicit g ° F
variations of our nonperturbative boundary, expressed% 45 F
through Eq.(17). For a fixedm and u, Eq. (17) is obtained :
by enforcing dominance of the leading hard kerfdster- © : pp— tt+X, Vs=1.8 TeV, m=175 GeV
mined through perturbative power countingver the sub- 85 F
leading ones, all of which are calculable. Therefore, @a) R TS A R S AP EE B I I
. . . . 0.2 04 0.6 08 1 1.2 14 1.6 1.8 2
is derivedand is not a source of uncertainty. However, at wm
fixed m, the boundary necessarily varies asand thusa
vary. FIG. 5. Renormalization/factorization hard scale dependence of
Our prediction of the cross section in Fig. 4 is in agree-the resummedsolid) and next-to-leading ordedasheg cross sec-
ment with the data on top quark productipfi]. We find  tions atyS=1.8 TeV form=175 GeV.

portlH
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mating the uncertainties differ, and different parton sets are
used. Comparing with LSvN1], we find that our central
values are 10—14% larger, and our estimated theoretical un-
certainty is 9—-10% compared with their 220%. The
larger central value is attributable, in part, to the use of dif-
ferent parton densities; our Born cross section is about 3—5%
larger than the LSvN Born cross section. However, it is the
choice of the infrared cutoffxy in the LSVN method that
controls the size of their cross section. The cueffis se-
lected so that the resummed cross section is about equal to
the next-to-next-to-leading order leading-logarithm cross
sectiona ("2, obtained from Eq(5). In contrast, in our
approach the nonperturbative boundazy,, is derived
within the context of the calculation by the requirement that
the universal leading-logarithmic terms be dominant. There
is noa priori reason that our resummed result should be only
10% greater than the next-to-leading order cross section at
m=175 GeV and/S=1.8 TeV. As such, we regard the ap-
R N S S TR SR proximate agreement of our result and that of LSvN as some-
" b P m@ey 240 20 what fortuitous. Both the central value and the band of un-
certainty of the LSvN predictions are sensitive to their
FIG. 6. Inclusive cross section for heavy quark production atinfrared cutoffs, as we described previoupdy.
JS=2 TeV in theMS scheme. The dashed curves show our pertur- From a theoretical point of view, study of the variation of
bative uncertainty band, while the solid curve is our central predicthe predicted cross section with the hard sqaléllustrated
tion. here in Fig. 5, is important because it reflects the stability of
the calculation under changes of a perturbative but not di-
2 pb increase in the predicted top quark cross section over if&ctly determinable renormalization-factorization scale. One
value aty/S=1.8 TeV is about a 37% gain. The central valueof t_he advantages of a resummation ca_lculatlon sho_uld be
rises to 22.4 pb ayS=3 TeV and 46 pb at/S=4 Tev. For  diminished dependence of the cross sectionuoless varia-
a fixed mass of the heavy quark, the fraction of the crosdon th"’?” IS present in a fixed-order calculat|or_1. TO estimate
section supplied by thgg subprocess increases rapidly. Fortheorgtlcal uncertainty, we use_the stand/ardarlatlcz)n, and
m=175 GeV, this fraction is about 15% gS=2TeV and "¢ find & band of uncertainty of about 10% at
51% atyS=4 TeV. =175 GeV an_d\/§_= 1.8 TeV. Th_e LSvN group obtain their
Turning topp scattering at the energies of the ERN I_argeuncertalnty prlmarlly from vgrlatlons of their infrared cgtoff
Hadron Collider(LHC) at CERN. we note a few significant whose role is to measure ignorance of nonperturbative ef-

_ . fects in that approach.
differences fromp p scattering at the energy of the Tevatron.  Tp¢ group of Catani, Mangano, Nason, and Trentddlie

The dominance of thg q production channel is replaced by calculate a central value of the resummed cross setiisn
gg dominance at the LHC. Owing to the much larger valuewith u/m=1) that is less than 1% above the exact next-to-
of \/S, the near-threshold region in the subenergy variable iseading order value. There are similarities and differences
relatively less important, reducing the significance of initial- between our approach to resummation and the method of
state soft gluon radiation. Lastly, physics in the region ofRef. [4]. We both begin in moment space with the same
large subenergy, where straightforward next-to-leading ordemnniversal leading-logarithm expression, but differences occur
QCD is also inadequate, becomes significanttfoproduc- ~ after the transformation to momentum space. In this paper,
tion at LHC energies. Using the approach described in thigve set aside comments on mathematical aspects of their pro-
paper, we estimate o''(m=175 GeV,/S=14 TeV) cedure and focus instead on phenomenologlcal issues of in-
=760 pb. terest. As remarked abpve, the Mellin transformation gener-
ates subleading terms in momentum space. The suppression
of the effects of resummation arises from the retention in
V. OTHER METHODS OF RESUMMATION Ref. [4] of numerically significant nonuniversal subleading
logarithmic terms.

Gpen(M) (Pb, t1)

pp—tt+X, Vs=2.0 TeV

ghef gcroups_ of Laenen, Smith, anddvan Neergi/lﬁvN) CMNT choose to retain all of these inasmuch as they
2gveoalsoata3tl;li;\:|1239ap;dic':ligzcsmf’o?r:heTtroetgfa(cﬂrossN-sr;ctio erform the Mellin inversion numerically. Instead, in keep-
based on rzsummatiopn of initial state soft gluon radiationi g with the fact that subleading logarithmic terms are not
universal, we retain only the universal leading logarithm

At m=175GeV and VS=1.8 TeV, the three values tormg in momentum space, and we restrict our phase space
are  o''(BC [2,3])=552'g%;pb,  ¢'"'(LSVN [1])  integration to the region in which the subleading terms
=4.95'37%pb, and o' (CMNT [4])=4.75"38 pb. From would not be numerically significant regardless. The differ-
the purely numerical point of view, all three predictions ences in the two approaches can be stated more explicitly if
agree within their estimates of theoretical uncertainty. Howwe examine the perturbative expansion of the kernel

ever, the resummation methods differ, the methods for estrHﬁ(z,a), Eqg.(15). If, instead of restricting the resummation
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to the universal leading logarithms only, we were to use thevith g=2C;; andx=In n. The corresponding hard kernels in
full content of Eq.(15), we would arrive at an analytic ex- momentum space can be derived from Bdp), according to
pression that is equivalent to the numerical inversion of Refthe formulas(91)—(94) of Ref. [3]. In the notation of Ref.
[4]: [3], we retain terms up to those that are lineaPin Alter-
natively, one can perform the analytical Mellin inversion di-
Hﬁ=1+2acij[ln2(1—z)+27E In(1—2)]+O(a?), rectly, beginning with Eq(20). The two methods provide
(190 identical results down to the monomiat$a?; x,=In[1/(1
—2)]. Here we quote results based on the explicit inversion
where yg is Euler's constant. In terms of this expansion, in of Eq. (20). (The monomiakzaz can be obtained also in the
our work we retain only the leading tern?({i—2) at ordere, first approach if we keep the quadratic termPg.) After a
but CMNT retain both this term and the subleading termtrivial integration is performed, the results for the one- and
2ve In(1—2). Indeed, if the subleading term2 In(1-2) is two-loop hard kernels are

discarded in Eq(19), the residualss;; /ofj*° defined in Ref.

(1)_ 2
[4] increase from 0.18 to 1.3% in theg production channel H=Xa19% 11 +Xa{g(S11+ 26189, (2D)
and from 5.4 to 20.2% in thgg channe[15]. After addition
of the two channels, the total residudlo™N° grows from
the negligible value of about 0.8% cited in Ré#] to the H? = x402fq2s2 12V + x3 a2 +02(S, 181 1+ 2C1S2

value 3.5%. While still smaller than the increase of about 9% 201078 /24 PTG O (S 514t 201550

and

that we pbtain, the increase of 3.5 vs. 0.8% shpws the sub- +x§a2{g(52,2+ 30133,2)+gz(s§]1/2+ 3C1811521
stantial influence of the subleading logarithmic terms re- ) 5 5
tained in Ref[4]. + 82,150,171 S24 6Co— T} + X2 {g(S1 21 2€1S;

We judge that it is preferable to integrate over only the
region of phase space in which the subleading term is sup-
pressed numerically. Our reasons include the fact that the +5,451 4 6Co— 2]+ 52 [12c,— 272¢, )} (22)
subleading term is not universal, is not the same as the sub- o '
leading term in the exacO(a®) calculation, and can be All the constants are defined in Eqd.1) and (12). We re-
changed if one elects to keep nonleading terms in momenhark that Eq(21) includes a leading logarithmic terrf«,
space. The subleading term is negative and numerically verys well as a next-to-leading temga.
significant when it is integrated throughout phase siaeg The question we now address is whether it is justified and
into the region ofz above ourz,,,). In the qg channel at meaningful to retain all of the terms in Eq&1) and(22) in
m=175 GeV and\S=1.8 TeV, its inclusion eliminates the computation of the resummed cross section. The issue
more than half of the contribution from the leading term. Inhas to do with what one intends by resummation of leading
our view, the presence of numerically significant subleadindogarithms. We use the terteading logarithmresummation
contributions begs the question of consistency. A further justo denote the case in which the moment space exponent, Eq.
tification for the retention of only the leading term is that it (20), contains only the constan®, | ={s,;,,,0}. This is
approximates the exact next-to-leading order result well, aglso what is done in the method of Rpf], and the exponent
shown in Fig. 1. The choice made in R¢#] reproduces in moment spacén their work is identical to that used for
only one-third of the exact next-to-leading order result. Theour predictions, Eg(14). However, in contrast to our expres-
influence of subleading terms is amplified at higher orderssion in momentum space, E{L6), the corresponding ex-
where additional subleading structures occur in the approagpression in momentum space of Rlef] includes the numeri-
of Ref. [4] with significant numerical coefficients propor- cal equivalent of all terms in Eqg21) and (22) that are
tional to 72, £(3), and so forth. We present a more detailedproportional t0S, 4 1,-
discussion of this issue in the next section. If expressed analytically, the corresponding hard ker-

nels in the method of Ref4] are

2 2 2
+5346C,— 7°]) +9°(Sp 181,11 2C1S0,1S2,11 €187 1

VI. FURTHER DISCUSSION OF THE CMNT APPROACH
HY =x2ag—x,a29ye, (23)

In this section we offer a more systematic analysis of the
role played in the approach of R¢#] by nonuniversal sub- and

leading logarithms. We are interested in expansions of the ) 4 , , 3 7 2 o
resummed momentum-space kermel, E&5), up to two /L = Xz@® 9772+ X;a"{2gby/3—2yeg Tt + Xz 0 — 2gb; ve

loops. Therefore, the corresponding cross sections are inte- +gz[3yé—772/2]}+xza2{29b2[3y§—772/2]/3
grable down to threshold,,,,=1 and7=0. As we will see,
though, the effects of the various classes of logarithms are + 0 yem?—2y2—4L(3)]}, (24)
pronounced if one continues the region of integration outside
our perturbative regime. where{(s) is the Riemann zeta functiof(3)=1.2020569.
In moment space, the exponent to two-loops is obtainetvaluating the expressions numerically for tpg channel,
from Eq. (11): we obtain
EZI(x, @) = ga(sp 0P+ 5y X+ S0.9) + a?(S5. 53+ 55 2 HY=x2aX 2.66666- x,a X 3.07848 (25)

+ 81X+ 502, (20 and
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H(2 =x4a?x 3.55555- X2 a? X 4.80189- x2a®x 33.88456 ~ kernel. As shown in Ref3], it yields an excellent approxi-
mation to the exact next-to-leading order cross section. On

—X,a° X 9.82479. (26)  the other hand, our two-loop projection contains only the
i . first two terms of Eq(28). The term proportional ta>a? is
Apart from the leading monomials that are the same as thoSgesent in our case, along with the leading term proportional
in our approach, Eqd25) and (26) include a series of sub- 15 44,2 hecause it comes from the leading logarithms in the
leading terms, each of which has a significant negative coe sxponentE(n), through two-loop running of the coupling

ficient. In practice, these subleading terms in the approach trength. In contrast to EG24), Eq. (28) relegates the influ-

Ref. [4] suppress the effects of resummation e.ssef‘“a”y COMance of the ambiguous constant coefficients to lower powers
pletely. One of the effects of this suppression is that th

4 partoni tiorsimallerthan it ot f X, (but with larger negative coefficientdn the amended
lresg_mme dpar onlct cross; ;e?r:orsrs!ahir han és ngxl- 9" scheme of Refl4], the unphysicalyg terms are still present
eading or r?.r r?ct);:n erp?rt 'T d(? nelgd or 0? 7’# 28 inthe two-loop result, Eq28), along with7? and{(3) terms
'Ei%%otgllgswolr? its Iea rngee)fst Séﬁjaesmgrﬁirs E:)ﬁf:rigr}'lfug?;segeiﬁfhat may be expected but whose coefficients have no well
Fig. 3 of the second paper in R&#]. defined physical origin. Recast in numerical form, E&Y)

Although the specific set of subleading terms in EG$) and(28) become
and (26) is generated in the inversion of the Mellin trans- HE, =x2a X 2.66666 (29)
form, we would argue that the terms are accidental, at best.
Our reasoning is based on an examination of the exact nexénd
to-leading order calculation of the cross section for heavy
quark production and of similar calculations of the Drell-Yan M., =Xsa?X 3.55555F x2a?X 3.40739-x2a?X 37.46119
process up to two-loops. First, terms involving do not
appear in the exact next-to-leading order calculation of the — XX 54.41253. (30

hard part, since they are removed in the specification of th¢ye ¢4 attention to the significant difference between the
MS factorization scheme. Therefore, the term proportional tQpefficients of all but the very leading power % in Egs.
ve in EQ. (23) is suspect. Sec_:ond, if we extract t3he specifiC(25) and(26) with respect to those in Eq&29) and(30), and
value of the subleading logarithm from the fda”) next-  tg the fact that the numerical coefficients grow in magnitude
to-leading order calculatior{5], we find [16] X,2(29  as the power ok, decreases.
—41/6) instead of the term-x,a2gye in the equivalent Using their NLL amendment, CMNT find that the central
CMl\éT th (23). Refer?ng tf?_ EQ-(Zg)b%e‘léemafk thatldmr; value of their resummed cross section exceeds the next-to-
stead of the numerical coefficient 3. one would hav : -

. . ' eading order result by 3.5%both qq and gg channels
the smaller value 1.5 if the subleading logarithm of the exac dded. This increase is about 4 times larger than the central

O(a’) c_alculatlon were qsed. Thus, not only IS K a) value of the increase obtained in their first method, closer to
subleading term retained in the gpprpa_ch of FR@]_dlﬁerent our increase of about 9%. The reason for the significant
fro_m that of the exact caIcuIauon_, it is numerically about change of the increase resides with the subleading structures,
twice as large. Third, we would claim that the results afla viz., in the differences between thé. version Eqs(25) and

resummation should not rely on the subleading structures “?26) and theNLL version Egs(29) and(30). The subleading

Eny ;g”'“ﬁ?‘”ﬁ .W?%’ ) How<|ever, In Fhefapprfo;ch of R, dterms at two-loops cause a total suppression of the two-loop
g.(23), which is the one-loop projection of their resumme contribution (in fact, that contribution is negatiyeif one

g 3
predmugn, rehprog%;:%s _only 1/3 olfl tr&ebexéﬁtta ) enhancg- integrates all the way into what we call the nonperturbative
ment, the other eing cancelled by the secarahuni- regime. This suppression explains why an enhancement of

versa) term of Eq.(23). Correspondingly, the method of only 3.5% is obtained in the amended method of Réf,
Ref. [4] fails an important consistency check: it sets out O, ather than our 9%

resum the threshold corrections responsible for the large en- CMNT argue that retention of their subleading terms in

hancement of the cross section at next-to-leading order; iﬂqomentum space is important for “energy conservation.”

theAzr;d, I QOes not _reproduce _mosc; Of_t::'s enhancer1n7ent. By this statement, they mean that one begins the formulation
ressing questions associated with theterms[17] ¢ oqymmation with an expression in momentum space con-

CMNT examine a type ONL_L resummation in th_e second taining a é function representing conservation of the frac-
paper of Ref. [4]. In this NLL resummation, the j5na1 partonic momenta. In moment space, thifunction
{Sp+1,:S,,0y terms are retained in the exponent of E20). g psequently unconvolves the resummation. Therefore, when
The corresponding hard kernels become one inverts the Mellin transform to return to momentum
space, the full set of logarithms generated by this inversion

(1) _2
HNCL =Xz a9 27) are required by the original energy conservation. This line of
and reasoning would be compelling the complete exponent
E(n) in moment space were known exacilg., if the resum-
HD = x40202/12+ x3a220b./3— x2a 202 v2+ w22 mation in moment space were exact in representing the cross
NLL= X247 d 202903 X;a"g Vet 2] section to all orders. However, the exponent is truncated in
—x,a{gb,[2yE+ w%3]+g24{(3)}. (28)  all approaches, and knowledge of the logarithms it resums

reliably is limited both in moment and in momentum space.
Comparing Egs(27) and(28) with Eqg. (5), we observe that Hence, the set of logarithms produced by the Mellin inver-
Eq. (27) is identical to the one-loop projection of our hard sion in momentum space should also be restricted. In our
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approach energy conservation is obeyed in momentum spagg1) and a similar expression containiag,,. The result is
consistently with the class of logarithms resummed. On theyumerically smaller, but both of the pieces are multiplied by
other hand, in the method of R¢#], knowledge is claimed |1,

of all logarithms generated from the Mellin inversion, de-  The factorial coefficient! is neither the only nor the most
spite the fact that the truncation in moment space makegnportant source of enhancement. For the leading logarithms
energy conservation a constraint restricted to the class Qft two-loop order] =2m=4, and the overall combinatorial
logarithms that is resummable, i.e., a constraint restricted b¥oefficient from Eqs(31) and (32) is (2m)!/m!=12. For
the truncation of the exponerti(n). The two approaches comparison, at representative valuesipohear thresholdy
would be equivalent provided a constraint be in place on the-0.1 and 0.01, the sum of logarithmic terms in Eg1)
effects of subleading logarithms. This constraint is preciselyyrovides factors of 16.1 and 314.3, respectively. Similarly,
our Eq.(17). By contrast, no such constraint is furnished in the (multiplicative) color factors at this order of perturbation
Ref. [4]. For this reason the results of R¢f] are numeri- theory are (23”)2=7.1 and 36 for thejq andgg channels,

caIIytunstabIe |f.onedse§ odf the“ltc;]garltflms generat;'d mt mO'respectively. All of these features are connected to the way
mentum spacet_ls% opde thas € se ((:jorre_tshpon Thg 0 et'?ﬁreshold logarithmic contributions appear in finite-order
ergy conservation, - and theén compared with another S€lpqcp 409 how they signal the presence of the nonperturba-

produced by a different truncation &{(n). . . . -
We have identified the terms responsible for the diﬁer-m{gngggge' Thus, preoccupation with th factor seems

ence between our answer for the resummed cross section an “ . : "

that of Ref.[4]. These differences reside with subleadingn ;zeth‘)ezhlrgggritr?r%?:erjwfwz:r?g(ta?::lltgrgxtshen? i;;pg;rssatnod re
logarithms whose presence is not substantiated by physic 2), after the integral ovez. On the other hand acc.ording
agrg:.uments.. Th? eEss?ln;:)e_ of our'deltert?irsa.tio?hpf the. pertu 0 o,ur understanding, the c.IaiEA] of “absence o,f factorial

ative regime in is precise at, in this regime, . .
subleadingg structu?es arep alsnurzerically sublea?;lin,g gro_vvth 'S .ba.lSEd on the use n R¢f] of Eq. (_26) for the_|r
. : . _main predictions, an expression that contains nonuniversal

whether or not the classes of subleading logarithms Comlngubleading logarithms, all with significant negative coeffi-

from different truncation of the master formula for the re- cients. Mathematically, factorial growth is present for each
summeq hard ke.rnel, E@Y), are included. 1_'he results pre- of the powers of the logarithm in E¢31), since these mo-
sented in note Fig. 11 of Ref3], show that if we alter our nomials are irreducibldlinearly independent Absence of

. L . . WI&3 ctorial growth based on a numerical cancellation between
but still St".iy W'th'n our perturbative geg'me’. the resulting arious classes of logarithms, most of them with physically
cross section is reduced by about 4%, within our band o nsubstantiated coefficients, appears to us to be an incorrect

perturbative uncertainty. use of terminolo X
g ; L . . gy, rather than a transparent expression of
A criticism [4] is that of putative “spurious factorial e mathematics.

?hm"Y”]] ofdour resumlmed t(;lrotss SeCtl'_O”: a:)c:jv? and beyon From a purely phenomenological point of view, one can-
€ infrared renormalons fhat are eliminated from Our apy,,i cjaim that a 9% increase of the top quark cross section at

proach. g he (;ZSUG, e:js we dem(_)lns_;rated 'B (E.Q) of Ref. m=175 GeV and/S= 1.8 TeV reveals factorial growth but
E'i]élczn Sa?in re;is:az (rgg)s t ga;'golli(gﬁ sy mit('furts) ﬁ:ﬂi’( MONQhat an 0.8% increase does not. In the approach taken in Ref.
into E pF()3) ang inte ?éte o’vez ya ' z [4], the effects of resummation are suppressed by a series of
9 9 ' subleading logarithms with large negative coefficients. If
there is no physical basis for preference of Eg8) and(24)

1
a™c(l,m) dz In' x,= a™c(l,m)(1—z)! over Egs.(27) and (28), as the authors of Ref4] seem to
Zmin suggest, then the difference in the resulting cross sections
[ can be interpreted as a measure of theoretical uncertainty.
><E N[ 11—z ]- This interpretation would not justify firm conclusions of a
i=o0

minimal 0.8% increment based on the choice of E@®)
(31) and (24).
As remarked in Sec. IV, the value quoted in Ref] for
For the purposes of this demonstration we sgt=1. The the physical cross section am=175GeV and VS

coefficientsc(l,m) can be read directly from Eq22). For ~=1.8 TeV, including theoretical uncertainty, lies within our
the leading logarithmic terms, uncertainty band. Therefore, the numerical differences be-
tween us for the specific case of top quark production at the

c(2m,m)ec1/mt, (32)  Tevatron have little practical significance. However, there

) ) ) o are important differences of principle in our treatment of
where this factorial comes directly from exponentiation. Af- 5 pleading contributions that will have more significant con-
ter the integration over the entizerange, the power of the sequences for predictions in other processes or at other val-

logarithm inx, becomes a factorial multiplicative factdt,  yes of top mass and/or at other energies, particularly in re-
The presence dfl follows directly from the existence of the zctions dominated bgg subprocesses.

powers of Inx, that are present explicitly in the finite-order

result in p_erturbat_lve _QCIZQPQCD) and is therefore inevi- VII. DISCUSSION AND CONCLUSIONS

table. If this exercise is repeated, but with the range of inte-

gration in Eq.(31) constrained to our perturbative regime, In this paper, we present and discuss the calculation of the
one obtains the difference between the right-hand side of Ednclusive cross section for top quark production in perturba-
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tive QCD, including the resummation of initial-state gluon production, to establish the possible pattern of subleading
radiation to all orders in the strong coupling strength. Thelogarithms, and resummation of both leading and subleading
advantages of the perturbative resummation mefg® we  logarithms. An analysis in moment space of the issues in-
espouse are that there are no arbitrary infrared cutoffs andolved in resummation of next-to-leading logarithms for
there is a well-defined perturbative region of applicability heavy quark production is presented in R@f8]. Inversion
where subleading logarithmic terms are numerically sup©f the resummed moments to the physically relevant momen-
pressed. Our theoretical analysis shows that perturbative réym space requires considerable work and is beyond the
summation without a model for nonperturbative behavior isScOPe Of the present paper. Full implementation of the re-

both possible and advantageous. In perturbative resummgummation of next-to-leading logarithms would reduce the
tion, the perturbative region of phase space is separat fference somewhat between our results and those of Ref.

cleanly from the region of nonperturbative behavior. 4] and move the debate to the level of next-to-next-to-

When evaluated for top quark production afS leading Ioga}nt_hms. : - .
—1.8 TeV, our resummed cross sections are about 9% above U predlctlt_)n agrees W.'th data,_wnhln the large experi-
the next—té—leading order cross sections computed with th ental uncertainties. Despite the different treatment of sub-
same parton distributions. The renormalization-factorizatio ea(t:hng teml:s, ogr ctqlcula;ttlﬂn Igf th(_al 'EC_:_US'Vf crossds;ﬁcttlorf]
scale dependence of our cross section is fairly flat, resultin r top quark production at the r-ermriab Tevatron and that o

in a 9—10% theoretical uncertainty. This variation is smaller, ef. [4] fall within the estimated uncertainties of each other.

than the corresponding dependence of the next-to-leading & Cross section significantly different from ours is mea-
red in future experiments at the Tevatron with greater sta-

cross section, as should be expected. Our perturbative”,. . : .
boundary of 1.22 GeV above the threshold in the dominanESt'Cal precision, we would look for explanations in effects

— eyond QCD perturbation theory. These explanations might
gq channel is comparable to the hadronic width of the top; y Q P y b g

FMinclude unexpectedly substantial nonperturbative effects or

quark, a natural definition of the perturbative boundary. Nei, 4, production mechanisms. An examination of the distri-

ther this, nor the somewhat larger value of 8.64 GeV abov) ;iion in 7 might be revealing.

threshold in thegg channel, associated with the larger color , this paper, we concentrate on the all-orders summation
factor in thegg channel, is “unphysically large{4]. In ot |arge logarithmic terms that are important in the near-
recent paperf4], the authors state that the increase in crossreshold region of small values of the scaled partonic sub-
section they find with their resummation method is no MOr€anergy, 7— 0. Our specific case is top quark production at
than 1% over next-to-leading order. The numerical differ-y,o Fermilab Tevatron collider. Other processes for which
ence in the two approaches boils down to the treatment of th,eshold resummation and our methodology will also be
subleading logarithms, which can easily shift the results by &ertinent include the production of hadronic jets that carry
few percent, if proper care is not taken. Our approach injarge values of transverse momentum and the production of
cludes the un_lversal leading _Ioganthms only vyh|le theirs IN-nairs of supersymmetric particles with large mass. There is a
cludes nonuniversal subleading structures which produce t%mplementary region of large, »— 1, in which the resum-
suppression they find. In Sec. VI, we explained why wenaiion of different large logarithms may also be important.
judge that that our treatment of the subleading structures $he production of heavy quarkd in the limit that the had-

preferable. ronic center-of-mass energy is much larger than the quark

Our theoretical analysis and the stability of our cross S€Cinass provides an example. The dominant production channel

tions underu variation provide confidence that our perturba- . OX- the ratio of th t-to-leadi d toni
tive resummation procedure yields an accurate calculation df ggHQQ_ » (€ ralio orine next-lo-ieading order partonic
the inclusive top quark cross section at Tevatron energie ross section divided by its Ieang-order.approxmatlon IS
and exhausts present understanding of the perturbative colieY Iargg at largey. Corre;pondmgly, .the fixed-order cross
tent of the theory. Our resummed top quark cross section jgection W'I.I not offer a rehablg prediction, and an all-orders
about 9% above the next-to-leading order cross section Witﬁpproach is called frl9]. Particular cases include the total

an estimated theoretical uncertainty of 9—10%, associate?irodsst SeCt'Onlf for dbot:_om qf?r:k Fgggl:\ft;_on at ;[_'he dTevzgr(?n
with w variation. An entirely different procedure to estimate and top quark production at the arge hadron L.ol-

the overall theoretical uncertainty is to compare our enhancé'—der'
ment of the cross section above the next-to-leading order
value to that of Ref[4], again yielding about 10%. An in-
teresting question is whether theory can aspire to an accuracy Work in the High Energy Physics Division at Argonne
of better than 10% for the calculation of the top quark crosNational Laboratory is supported by the U.S. Department of
section. To this end, a mastery of subleading logarithm&nergy, Division of High Energy Physics, Contract W-31-
would be desirable, perhaps requiring a formidable complet@09-ENG-38. ELB is grateful to J. Schlereth for valuable and
calculation at next-to-next-to-leading order of heavy quarktimely assistance.
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