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Series expansions for three-dimensional QED
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Strong-coupling series expansions are calculated for the Hamiltonian version of compact lattice electrody-
namics in(2+1) dimensions, with 4-component fermions. Series are calculated for the ground-state energy per
site, the chiral condensate, and the masses of “glueball” and positronium states. Comparisons are made with
results obtained by other techniqugS0556-282(98)00906-(

PACS numbds): 11.15.Ha, 12.38.Gc

I. INTRODUCTION den and Hame[16] (hereafter referred to as.llt is well-
known that Euclidean Monte Carlo techniques are difficult

Quantum electrodynamics in+2l dimensions(QED;) and expensive to apply to models with dynamical fermions,
has generated considerable interest over recent years. ThBd so it seems worthwhile to see if other techniques such as
model is super-renormalizable, but shares a number of imstrong-coupling expansions can give useful information in
portant features with gquantum chromodynam{G@CD) in such cases. A previous analysis of the Schwinger mi@&3|
3+1 dimensions: it is believed to be confining at large dis-did indeed show that strong-coupling series approximants
tances(in the quenched approximation, at lgasthile in the  can converge well into the weak coupling region. While not
massless fermion limit it displays a chiral-like symmetry quite as accurate as the exact finite-lattice technique, the se-
which is spontaneously brokéf,?2]. It is thus an ideal labo- ries approach did give quantitative estimates of the lowest
ratory for testing nonperturbative methods of analysis. Verbound-state mass in the continuum limit, at about the
sions of the model may also be relevant to theories of th&®—10 % level of accuracy.
new high-T, superconductor$3]. The version with two- The paper begins with an outline of the lattice formulation
component massless fermions generates a dynamical magkthe model in Sec. Il, followed by a brief summary of the
for the photon through a Chern-Simons te). This com-  methods of calculation in Sec. Ill. Our results are presented
plication can be avoided in the four-component vergihs],  in Sec. IV, discussing the ground-state energy, the chiral
where “chiral” symmetry is broken in the normal Goldstone condensate, the “glueball” masses, and the spectrum of the
fashion, leading to a doublet of massless Goldstone bosoriund-state mesons as a function of the bare fermion mass.
analogous to the pion in QCD. For the four-componentOur conclusions are summarized in Sec. V.
model withN; flavors of massless fermions, there has been a
debate running for some time whether chiral symmetry is Il. FORMALISM
broken for all valuedN; [1,2,6] or whether there is a critical
value N;=3.5 above which no spontaneous symmetry-
breaking takes placg7—10. We shall have nothing to say The continuum Lagrangian density takes the standard

A. Continuum formulation

about this question. form
The four-component version has been studied by several 1
different techniques, but we remain far from a complete un- _ s
. i \ =—— + —eA-
derstanding of the model. Euclidean lattice Monte Carlo £ 4F’”F p(id—eA-my @

simulations have been performed by several groups
[7,11,1. A number of authors[2,6,9,13,1% have used Where
Schwinger-Dyson techniques to study the chiral symmetry
breaking, and Allen and Burdefl5] have also produced

estimates of the bound-state meson spectrum at finite fet; .| Jrentz indiceg, v=0, 1 or 2. The electric coupling

mion masses. The Hamiltonian lattice version has been stu%— in (2+1) dimensions has the dimensions of (Ma&s)
ied by means of strong-coupling expansi¢h6é] and a loop Choosing the timelike axial gauge
expansion techniqugl7]. A light-front approach has also

been discusseld 8,19; and the nonrelativistic limit has been Ay=0 3
analyzed in some detdil5,19-21.

Here we treat the Hamiltonian lattice model by usingthe Hamiltonian is found to be
linked-cluster technique$22] to generate further strong-
coupling series, thus extending the previous results of Bur-

F,u.Vzﬁ,uAv_avA,u (2)

. . — 1.
H= f dzx{ —ip(Y+ieA)y+myy+ §(E2+ B2} (4)
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and

B=9,A%—g,A%. (5b)

Note that the magnetic fielB has only one component in
(2+1)D. Here ¢ is taken as a single four-component Dirac

spinor[2], andyy, y1, v» are 4x 4 Dirac matrices, for which
we shall use the Dirac representation where necessary:

o3 0 foy O
Y= o — o)’ n=l —oy)’

[ O2 0

(6)

In the zero-mass limit, the Hamiltonia@) possesses a

global U2) “chiral” symmetry [2], whose Lie algebra is
spanned by the matrices
0 | (0 —I
Iy '}’4— | 0 [l 75_| I o ) (7)

and y,s= —

zero value of the chiral condensatg i),

At large fermion masses, a nonrelativistic analysis can be

carried ouf19—21]. Cornwall and Tiktopoulos and S¢R0]

showed that if the divergences were regulated by giving a
massv to the photon, then at one-loop order the renormal-

ized self-mass of the fermion is

e? [2m
Mgr=m+ —In -

8

i y4vs. This symmetry is expected to be sponta-
neously brokerf2], which should be manifested by a non-

C. J. HAMER, J. OITMAA, AND ZHENG WEIHONG 57

Eo= ¢ 2.6566- = | 29" 12
0= 27 2006 3N iz 12
for |=1. At leading order the binding energies are indepen-

dent of “spin,” so that each of these energy levels should be
fourfold degenerate in the four-component fermion model.

B. Lattice formulation

A ‘“staggered” Hamiltonian lattice formulation of this
model has been discussed in reference I. The four compo-
nents of the continuum fermion field fit naturally onto the
four sites of a X2 unit cell on the 2-dimensional spatial
lattice, leading to a lattice Hamiltonian as follows:

2

H= gaw (13
where
W=Wy+yW; +y?W, (14)
an

wo:we+wﬂ=2| EZ+u (—1) 12" L f () x(r)
r

(158
Wi=2 m(DIX (DU x(r+1)+H.c] (15b)
-2 (Up+U)). (150

p

while the potential due to one-photon exchange between theerer =(r,r2) labels the sited, the links,p the plaquettes

electron and positron is

+0(1%r?)
9

vr
V(r)=- y+in%

|kr e2
J( 77) kz—i-v2 27

where y is Euler's constant. Both quantities show Iogarith—

andi = 1,2 the directions on a square two-dimensional spatial
lattice with spacinga. The dimensionless coupling and
mass parametex are defined in terms of their continuum
counterparte and m by

) 2am 2m
g’=e%a and u=—5=—

g = (16)

mic divergences, but these divergences cancel in the Schro

dinger equation for the positronium bound states
- 1., -
EW(r)= —aVr+2(mR— m)+V(r) [¥(r)

1Ve2 e? | -
o r+%(’y+ nmr) |¢(r).

(10

Numerical solutions of this equati¢&9—21 give the “bind-
ing energies” of the lowest positronium states as

2

B~ an

(11a

1 [(2g?
1.7968- —In —
mar

so{ s )
E%= 5 29323—_|nm_77 (11b

for angular momenturh=0, and

while y=1/g2, and 7,(r)=(—1)"2*1, ,(r)=1. The term
W, is the electric field termyV, is the fermion mass term,
W, is the fermion kinetic energy, and/, is the magnetic
field energy, involving the usual plaquette oper

The correspondences between the lattice fields and their
continuum counterparts are for gauge fields

e N
SE—EX) (173

A—A(X) (17

where the link operator

The fermion mass term given in reference | had the wrong sign.
As it turns out, that did not affect the results for the quantities they
calculated.
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| 4 3 by one unit, respectively. Each site of the lattice can be in
one of two fermionic statest+) or | —) obeying
X'=)=1+), x'l+)=0 (233
1 2 x|=)=0, x|+)=[-). (23b)

Consider first the massless theoy=0. In the strong-
(r1,72) = (0,0) coupling limit, the variabley=0 and the HamiltoniarWV
reduces toN,. The ground state is then highly degenerate,
having fluxn;=0 on each link, but with the fermionic state
entirely arbitrary. This degeneracy is broken at the next order
) . by the kinetic termW,, leaving only two degenerate states
Ui=exflieaA(r)] (18 |A) and|B) whose fermionic content is

while for the fermion field components

FIG. 1. Assignment of spinor components to sites of the22
unit cell.

A |+), on odd sites; ”
0 —-i 0 177¢4 Iy |A)= |-), on even sites @49
1 1 O —-i O
| &2 . 2 (19 and
2\y2a|—-i 0 1 0|é& Y3
0 1 0 -—illé& iy B)= |—), onodd sites; 5
|+), oneven sites.

where[24]

TR 20 The chiral shifts of Eqs(22a), (22b) map these two states
g(r)=i x(r) (20) into each other. When the mass tevkh, is included, chiral

and the components, 1. . .4 areassigned to sites of the 2 symmetry is explicitly broken and statB) is favored ener-
X 2 unit cell as shown in Fig. 1. getically. We thus takelB) as the unperturbed strong-

The commutation relations between the lattice fields areCOUPliNg ground state for both the massive and massless
cases, and interpret this as the state with no fermion excita-

[E,,U, ]=U,8, (219  tions present.
An excitation on an odd or even site creates a positively
[E, ,UlT,]: — U|T5||r (21b or negatively charged fermion respectively, i.e. a positron or
electron. The first-order perturbatidid; creates or destroys
{XT(;),X(;,)}:& :, (219 an electron-positron pair on neighboring sites, joined by a
' link of flux. The second-order perturbation tek, creates
[E; x(O]=[E, . x (NI=[U, x(DH]=[U, .x"("]=0. or destroys a plaquette of flux. Gauge invariance ensures that

10 for any state obtained from the unperturbed vacuum by ap-
plication of the operator®/, andW,, the net flux from any
With these correspondences, it can be sh¢®é] that the site is equal to the charge of the fermion at that site, i.e.,
lattice Hamiltonian(13) reduces to the continuum Hamil- Gauss’ law is obeyed.
tonian(4) in the naive continuum limia—0.
The introduction of the lattice breaks thg2) “chiral” D. Positronium states

symmetry down to a discrete symmetry generated by shifts
of one lattice spacinf16]. A unit shift in either thex ory > ek
direction leaves the kinetic term in the Hamiltoni&r®) in- the only fermionic states with finite energy are expected to

variant, but alters the sign of the mass term. The corresponcp-e electrlcall!y nle_ut_ral r‘]‘polsnronlum” bound _state_s. In the
ing continuum field transformations, frofa9), are strong-coupling limit, the lowest energy positronium states
consist of an electron-positron pair on neighboring sites, con-

This theory is expected to display confinemg2d], and

Yy—e (T2 ray, (229 nected by a link of unit flux. There are eight translationally-

invariant states of this type, corresponding to the eight links

or in the unit cell, and we need to identify the linear combina-
i(m12) tions of these states which correspond to eigenstates of the
p—e Y (22b) lattice symmetry operators. The corresponding procedure for

meson states in four-dimensional Euclidean lattice QCD has
been discussed by Goltermf2b].

The symmetry group of the lattice Hamiltonidt3) is
composed of the following elements:

respectively.

C. The strong-coupling limit

The Hamiltonian(13) acts on a Fock space spanned by
the usual strong-coupling bagig5]. With each link is asso- 1. Even translations
ciated an integer electric flux such thag,|n;)=n|n;). The R o ) o
operatordJ, ander increase and decrease the flux on link X(r)—x(r+2i), Uj(r)—U;(r+2i). (26)
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4 3 1 4 5. "Axial parity” inversion, A

The “axial parity” inversion is discussed by Burden and
Allen [13,15. In the continuum, it corresponds to the opera-
tions:

3 3 P(X)— ' (X' )= Ag(xX), ¢ (X)— ¢ (X' )= (XA~
(r17r2) = (0,0) (33

FIG. 2. A square lattice rotation by/2. Point 1 is assumed and the vector field transforms as
fixed.

AX)—A’(X")=—A(X) (34)
This corresponds to spatial translational invariance in the _ _
continuum model. wherex’ = (x%, —xt,—x?). A suitable representation for the
fermion operato is the matrixi y,.
2. Odd translations On the lattice, this is simply
x(N—x(r+1), U(N—-Ui(r+l) (279 X(N)—x(=r) (359
or Ui(n—uf(-r-T) (35b)

x(N—(—1)"x(r+2), Ui(n—Ui(r+2). (27  which is equivalent tR?, a rotation byIl in 2+1 dimen-

sions.
These are the discrete lattice versions of “chiral” symmetry
corresponding to Eq$223,(22b). The massless Hamiltonian 6. Reflection II
is symmetric under these transformations, but not the mas- L ,
sive one. A reflection in they axis corresponds to
3. Diagonal shift D x(r)—x(r") (369

A c_om_bination_of a_shift _by one s_ite in thed?rection and Ul(F)_’UI(F, ~1) (36h)
one site in they direction gives a diagonal shift

XO—(~Dx(f+1+2), UH—=U(F+1+2). Ua(r)—=Ux(r") (369

28 \where
This corresponds to a discrejgg rotation in the continuum P=—r Pl=r (37)
fields ;o Tt
J—i yasih. (29 7. Charge conjugation, C

The charge conjugation operation is also discussed by
Burden and Allen13,15. In the continuum, it corresponds
to the operators:

This remains a symmetry of the massive Hamiltonian also.

4. Square lattice rotations, R

Let R denote a lattice rotation by/2 about a perpendicu-  (x)— ' (X)=Cy 1 (X), ¢ (X)—¢'(X)=— ¢ (x)CT

lar axis, as shown by Fig. 2: (39
X(N—=R(")x(r") (30g  and
® o — _ AM
U ()= Uy (F) (300) AX(X)— A (X) AX(X). (39
N . The fermion operator can be represented, up to an arbitrary
Uy(N—UXr'—2) (300  phase, by the matrix,. The translation to lattice variables is
slightly involved, and is best handled in terms of the figdds
where defined in Eqs(19), (20). We shall not go into further details
ri=r ro=—r (3D here. . . . o .
1772 T2 L The translationally invariant positronium eigenstates can
and be classified in terms of their eigenvalues under these sym-

metry operations. The group of square rotation€sthe
1 cyclic group of 4 elements. It has 4 irreducible representa-
R(ry,rp)=5[(=1)+(=1)2+(-1)"1""2=1]. (32  tions, each with dimension 1. The allowed eigenvalueR of
simply consist of the 4th roots of unitfi.e. powers ofe
Repeated rotations generate the rotational symmetry group efe” 2™/%). The shiftD, reflectionIl and axial parityA each
a square, with 4 elements. It corresponds to rotation in botlgenerate 2-element groups, with eigenvaltielsfor the pos-
space and “spin” in the continuum model. itronium states with translational symmetry.
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TABLE I. Link excitations on the unit cell corresponding to 8 7
positronium states in the strong-coupling limit, with sites labelled
according to Fig. 3. 1) 8)
Link state Operator equivalent 4 3 6
1) x'(2)U1(1)x(1) 15) 16)
2) x'(2)U4(2)x(5) 13) |7y
3) X (4U(1)x(1)
|4) x'(4)Uo(4)x(8) I 5 5
5) X (U4 (x(3) ) 12)
|6) x'(6)U1(3)x(3) - - i -

FIG. 3. Numbering of sites and “link” states on the unit cell.

7) x'(2)U,(2)x(3)
|8) X" (TUL3)x(3) transcribe to simple combinations of quark and antiquark

fields on the lattice, and correspond to “vector” states in the

In the strong-coupling limit, the “link excitations” on the language of Burden and Allefil3,15, with JA¢=1"",
unit cell corresponding to the lowest energy positroniumwhereJ is the “total angular momentum.” The stateg;)
states consist of the eight states listed in Table I, numberet |#4), on the other hand, contain an admixture of gauge
according to Fig. 3. These states transform into each othéfelds in the naive continuum limit, and have no direct coun-
under the action of the symmetry operators. By taking lineaf€rparts in the catalogue of quark-antiquark states discussed
combinations of these states, one can form eigenstatdy Burden and Allen. The stafe);) is a scalar state, having

|4h1), . .. i) Of the lattice symmetry operators, as listed in the same guantum numbers as the vacuum.

Table II. Note that the states with rotation eigenvalRre e

=—i or R=€3=—i cannot simultaneously be eigenstates of E. Weak-coupling expansion

11, because a reflection convels=i to R=—i, and vice Some useful information on the ground-state properties, at

versa. We have chosen to list stals) to [¢5) which cor- |east can be gained by performing a “weak-coupling” ex-
respond to eigenstates Hf, and are thus symmetric or anti- pansion for the lattice system as—x. For the present
symmetric combinations of the states Witk =i. Similarly,  mogel, this exercise was carried out in reference |.

we have chosen to list statps,) and|y,) which are eigen- The ground-state energy per site has an asymptotic expan-
states ofC, rather tharR. All eight states are degenerate in sjon in the weak-coupling limit:

energy in the strong-coupling limit— 0. The fact that the

Hamiltonian is symmetric under both rotations and reflec- ) 4y (=2 /2
tions implies that the pairys) and|yg) will remain degen- wo~ —2y°+1.9163 — ?Jo dchfo dap
erate at all couplings, and likewise the phir;) and|sg).

cogq,

The combination of rotation and charge conjugation symme- 2112
try implies that the paity,) and|,) will also remain de- +cosg,+ 2y2 +0(1) as y—w (40)
generate.

In the “naive continuum limit” a—0, when U,—1  where the integral arises from a sum over the fermionic de-
+ieaA, one finds that the quartet of statpss) to |ig) grees of freedom. At very large one finds

TABLE Il. Linear combinations of the link states forming eigenstates of the lattice symmetry group
(|#;)=alli)), and their symmetry eigenvalues.

State: |$h1) |2) [4r3) |h) |s) |¥6) l¢7) |g)
Amplitudes of the link states
a; 1 1 1 0 1 0 1 0
a, 1 1 1 0 -1 0 -1 0
as -1 0 1 1 0 1 0 1
a, -1 0 1 1 0 -1 0 -1
as -1 1 -1 0 1 0 -1 0
ag -1 1 -1 0 -1 0 1 0
a, -1 0 1 -1 0 -1 0 1
ag -1 0 1 -1 0 1 0 -1
Eigenvalues
R +1 - -1 - - - - -
D +1 -1 +1 -1 +1 +1 -1 -1
11 +1 +1 +1 +1 -1 +1 -1 +1
C +1 +1 +1 -1 -1 -1 -1 -1
A +1 +1 +1 +1 -1 -1 -1 -1
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FIG. 5. The last graphs contributing at orgef.

a) b) c)

~ FIG. 4. Lattice perturbation theory diagrams at second ordefn \which any fermion excitation is fixed at its initial lattice
involving excitation of an ¢"e~) pair. The associated gauge field site, and apart from the mass term the remaining lattice
excitations are not shown. Horizontal lines represent the action Oﬁamiltonian is simply that of the pure gauge theory.
“Iink”.excitatic.)n oper.ato'rs fromW,; vertical lines represent the To allow the fermions to move or migrate on the lattice,
resuilting fermion excitations. one has to go to the next order in powers g#,1the mass
parameter, and allow second-order diagrams involving the
excitation of an ¢*e™) pair on neighboring sites, as shown
in Fig. 4. Figure 4a) represents a loop diagram in the
vacuum sector, and(d) a similar diagram in the one-
fermion sector; Fig. &) illustrates a “hopping” diagram, in
which an existing fermion hops two lattice sites. This allows
fermion migration to take place.

It is useful to define new fermion variables representing
the excitations on the strong-coupling ground-state: namely,

wo~—2y?+0.958y+0(1) as y—» (41

but for finitey andw it is more useful to evaluate the integral
as it stands.

The ground-state expectation value of the chiral conden
sate was also calculat¢d6] as

cogq; + cofq, ()= '), (r,+r,)even; .

T\ lattice K Tr/zd 71'lzd
(Y o) d: az
x(1), (r,+r,)odd.

2
T™YJo 0

MZ —-1/2
+—} +0(y %) as y—» (42)

4y
so that
where
¢(r)|0)=0 47)
o 1 - -
lattice__ - 4\ Fro+1 ot
(94 _<¢° N; (=D ()X ()] o where |0)=|B) is the strong-coupling ground state. The
(43) Hamiltonian (14) and link excitations(Table |) are easily
translated in terms of the new variables.
In the quenched approximation outlined above, the effec-
1 _ tive Hamiltonian in the vacuum sector is
:_e4y2 < l// l/l>contlnuum (44)

€

N 2
wo =——,u—Ny—+We+y2W2 (48)
in terms of the continuum chiral condensate. This quantity is K
given by the Feynman Hellmann theorem as

(where N is the number of sites on the latticevhich is

simply the pure gauge field Hamiltonian plus a constant. The
(45 first constant term is the negative energy of the “Dirac sea”

on the lattice, while the second constant term is the contri-

bution of the second-order diagram, Figa¥ More interest-

ing is the effective Hamiltonian in thee( e~) sector, which

takes the form

0

<l/l_¢>lattice= i ﬂi
N du

wherewy is the ground-state eigenvalue \of.

F. Nonrelativistic limit m/e>—x

When the fermion mass becomes very large, it should te- (N—4) y? ) -
be possible to study the model in a “quenched” approxima- Wer® =~ 2 ”_(N_4);+We+y Wty Wy
tion, where fermion loop diagrams are suppressed. In a stag- (49

gered lattice formulation such as the present one, the sup-
pression of all fermion loops will lead to the “static” limit, where
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Wi (—1)? T = DU =D IUT) S+ 1)+ (= 1)2 UU (T~ 2) (r —2) + UL (T +2))]

:ﬂfodd
+oT(r=2)UN(r=2)[Ua(Ne(r+2)+(—1)"2" (N ¢(r+1)]+ (- 1)2 1T (r+2)U,(NUL(N(r+1)+H.c}

1 - - . - . A - A - A o e
5 2 (DG DU DU S+ D)+ (= 1) HUKT=2) 4T~ 2)+ Ual(N) (7 +2))]

+T(r=2)Ux(r—=2)[UNNp(r+2)+(—1)2" U (N $(r+1)]+ (- D)2 1T (r+2)UNNULN G(r+1)+H.c).
(50)

This clumsy expression is merely a constant, plus the pure The calculation of glueball masses involves a list of clus-
gauge Hamiltonian, plus “hopping” terms for the fermions ters, both connected and disconnected, with at least one
in the six different paths allowed for a double hop on theplaquette in each graph. There are 457 graphs which contrib-
staggered lattice. The associated phase factor ute to ordery®.

The calculation of meson masses generally involves a list
of both connected and disconnected clusf2®. The eight
51) different links in the unit cell(shown in Fig. 3 are not
unoccupied equivalent in those calculations, which means we cannot
identify clusters which are topologically equivalent, or even
) ) ) . use rotation or reflection symmetry. Thus the separate clus-
accounts for the change of sign if the hopping fermioniers proliferate enormously in this case: there are 164142

“passes through” an occupied site. These hopping termgysiers contributing up to order'®. For the scalar meson

c_orrespond to th_e kinetic energy in the nonrelativistic CONynassm,, the eight different bond types are equivalent, so we
tinuum Hamiltonian.

only need actually one bond type, and there are only 569
The effective Hamiltonian is more complicated in form y y vp y

Cl , VIS clusters which contribute up to ordgt?
than the original lattice Hamiltonian, but does not allow any
further fermion excitations, and would therefore be quicker
and easier to implement in numerical calculations. We have IV. RESULTS
not attempted any such calculations as yet.

+1, ifsite

-1, ifsite

(- 1)¢T¢<F>E occupied,;

=y T

A. Ground-state energy
Using the linked-cluster expansion method, series have
been calculated for the ground-state energy per site up to

To calculate the strong-coupling series for the model, weordery?. The first few terms are
used Nickel's cluster expansion method. The techniques nec-

. METHOD

essary were reviewed in Het al. [22], and will not be re- 2 4 4

i i i 2y y 14y
peated here. In these calculations, Wigin Eq. (14) is taken woIN=— r_o A A
as the unperturbed Hamiltonian, diagonal in the basis of 2 1+2p 2 (1+2u)

Z!ngg\r/zﬁ)ogocﬁl, while theW; andW, in Eq. (14) then act yO(— 47425084 — 1640u?— 368u°— 644%)
To generate the series for the ground state energy, we (1+2u)°(3+2u)(T+2u)
need to generate a list of connected plaquette configurations, . (53)
together with their lattice constants and embedding con-
stants. Since the first-order perturbatidh and second-order
perturbationW, involve links and plaquettes, respectively, a
clustera will contribute termsO(y®), wherea is given by  where w, is the ground-state eigenvalue Wf. The coeffi-
cients are listed for various fixed values of the dimensionless
mass parameten=2m/e? in Table Ill. These coefficients
agree with those of reference | up @&(y*9).
Extrapolating these series into the weak-coupling region
wheren, is the number of plaquettes in, andn, the number  using integrated differential approximarj7], one obtains
of links not contained in plaquettes. Up to the orgi& con-  results as shown in Fig. 6. For the large-mass casel0, it
sidered in the current paper, there is only one grdpg. 5 can be seen that the strong-coupling approximants match on
which does not obey the above relation, it actually contrib-to the weak-coupling form40) very nicely at around ¥/
utes to ordery?? (due to the combination ofV, on each =0.5. For the lower masses, the strong-coupling approxi-
plaquette andV, in outer linkg instead ofy?* according to  mants do not converge well enough to establish a precise
Eq. (52). There are a total of 5494 graphs which contributematching, but they are clearly quite consistent with the
up to ordery?? for the ground-state properties. asymptotic form (40). It is noteworthy that the

a=2n,+n (52
p |
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TABLE llI. Series coefficients of/?" in strong-coupling expansions of the ground-state energgnd chiral condensatgy )2t

n u=0 u=0.5 u=1 n=2 n=10

Ground state energy
0 0.000000000000 —2.500000000008 10 * —5.00000000000€10° 1 — 1.000000000000 —5.000000000000
1 —2.000000000000 —1.000000000000 —6.66666666666% 10 * —4.00000000000810° ! —9.52380952381R10 2
2 1.35000000000010"  1.250000000000 1.8518518518520 2 —3.880000000000 10 —4.984882842028 101
3 —2.25809523809810° —7.562500000000 —1.088065843621 —1.057163636364 10 1 —4.84019031041810 %
4  4.74049334963210°  4.16819010416% 10 2.828630278758 1.4404134815430 1 3.805417269032 10 2
5 —1.14533212040410° —2.64139377467810° —8.251436202716 —1.19637218016% 10 * 7.580050883728 10 °
6 3.01911227199810°  1.82890921178R1C° 2.67320830336% 10 1.52872543487810° 1 —2.82981716624210 3
7 —8.44604586410410° —1.34396173453810" —9.19567693821%10' —2.14626482088210 ' —8.31615801711810 &
8 2.46721047846910° 1.031183072418910° 3.302984237354 107 3.07575436661910° 1 —6.084851949294 10 4
9 —7.447992091068 10'° —8.17582920489@10° —1.22606036125810° —4.58092396720210 1 —3.10325487971410 6
10 2.30729255032210% 6.65157320491% 10° 4.67006651853% 10° 6.98936797256910 1  4.68527419098% 10 *
11 —7.298475917954 10" —5.52524193972%10° —1.81621758115410" —1.087547736352 2.7840161999720 ©

Chiral condensate

0 5.00000000000010 % 5.00000000000810°' 5.00000000000810°* 5.00000000000810° ! 5.00000000000Q 10~ *
1 —4.000000000000 —1.000000000000 —4.44444444444410° —1.60000000000810 1 —9.07029478458% 10 2
2 8.40000000000010"  5.250000000000 1.037037037037 1.34400000800D0 1  4.31918799265% 10 *
3 —2.23105668934210° —3.66171875000810" —3.414650205761 —1.856045336482 10 1 —1.49023395614810 *
4 6.53415863859210"  2.80949001736% 107 1.222412306072 10* 2.632452778514 10  1.64577622922R10°°
5 —2.02573784717810° —2.28438204942810° —4.63999901417810' —3.92104857244%10° ! 2.00550374524810 >
6 6.51829476767910"  1.92901310151R10* 1.831818873072 107 6.165298249176 101  —2.12728345526Q 10 °
7 —2.15320374162910° —1.67267625734810° —7.4299333261061(0° —9.97819596803810 1 —2.07037476993310° ¢
8 7.25297729778810'° 1.479158204994 10° 3.074244834598 10° 1.648612396832 1.7998021873620 '
9 —2.48030160212% 10" —1.32797639491810° —1.29162724589010" —2.768670289809 —9.30063042874%10 7
10 8.58450965536510° 1.206675388588 10° 5.492904223987 10"  4.708649820309 1.1101100452680 *

11 —3.00044431433% 10'°

—1.10724611259% 10°

—2.359089145008 10°

—8.090428010991

7.8577201502410° 7
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FIG. 6. Graph of the ground-state energy per sjte?wy/N FIG. 7. Graph of the chiral condensa(ea/?,b)'a“‘ce versusuly,
versus 1y, for various fixed values of the mass parameter for various finite values of the mass parameter 0.5,2,10. The

=0,0.5,2,10. The curves at largeyldre integrated differential ap- curves at large ¥/ are various integrated differential approximants
proximants to the strong-coupling series; while those at smyll 1/ and Padeapproximants to strong-coupling series, while the solid
correspond to the asymptotic weak-coupling foi0). line at smallu/y is the weak-coupling asymptotic for@2).
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u-independent forni41) is only attained for very weak cou- enough to provide useful information about the weak-
plings u?/y?<0.4. coupling (continuun behavior.

The successful matching between the strong-coupling ap-
proximants and the weak-coupling asymptotic form gives
some confidence that the series coefficients have been calcu- A more interesting quantity is the chiral condensate. The
lated correctly, and that the approximants converge welfirst few terms in the series are

B. Chiral condensate

— vatice_ _ L, 4y? 84y* +8y6(122987+245156u,+18166&2+646561L3+13392u4+204&L5+192M6)
()y==3 1+2u  (1+2u)° (1+2w)%3+2u)A(T+2u)2

L (54)

Further coefficients at fixed values gf are listed in Table proximants behave in a more consistent fashion. If taken at
ll. Figure 7 shows the extrapolation of these series into thédace value, the Padapproximants would indicate a very
weak-coupling region, as compared with the weak-couplindarge value of the chiral condensate in the continuum limit
form (42). Once again, the large mass resujis<(10) match  1/y—0,
very well to the weak-coupling form, while the lower-mass
ones have not yet attained it before convergence of the
strong-coupling approximants is lost.

The most_intere_sting _case;isO, the z_ero_mass limit. A e~ 43 )PVsa 0,284 10). (55)
graph ofy?( s y)'3c against 1y is shown in Fig. 8. It can be
seen that integrated differential approximants to the series
fail to converge below about Yi#~1.5, although Padep-

Also shown in Fig. 8, however, are some Monte Carlo esti-
mates of the chiral condensate for the Euclidean version of
this modef by Burkitt and Irving[12]. Their results are
roughly compatible with ours at abouty® 0.6, but show a
dramatic decrease in magnitude beyond that point. Since this
occurs well below the region of convergence of the series
approximants, the series provide little evidence either to con-
firm or deny this phenomenon.

Another Monte Carlo calculation of the chiral condensate
in the noncompact version of the model has been carried out
by Dagotto, Kogut and Kocif7]. They found a quite differ-
ent behavior, in whichB%(y gt (where g=y=1/g?)
plunges rapidly toward zero at a loWw value aroundg
=0.4, and then levels out to a plateau at a very small value,

] aroundB?(y )=0.001. Although this value is only tracked

- 720 B : to B=1, they take this as evidence of chiral symmetry break-

720 I : ing in the continuum limit. A more extensive study by Hands

and Kogut[28] revealed substantial finite-size effects, but

came to a similar conclusion.

R l —— 1'5' —— 5 It wo_uld bg interesting to see a more extensive Monte
1/y ‘ Carlo simulation of the compact lattice model, to check

whether the decrease seen by Burkitt and Infibg] is real,

FIG. 8. Graph of the chiral condensagé{ ¥ ¢/)" versus 1y, and whether the chiral con_densate subsequently levels out at
for the massless cage=0. The curves shown are integrated dif- a small plateau val_ue as in the noncompact mpdel. There
ferential approximantgsolid lineg and[n/(n+1)] Padeapproxi- ~ S€€MS to be very little prospect that. further series calcula-
mants (broken lines to the strong-coupling series. The last two tiONs could shed light on these questions.

Padeapproximants are almost indistinguishable, and the successive

intercepts at /=0 are 0.232,0.274,0.283 and 0.284. The data

points are from the Euclidean Monte Carlo simulation by Burkitt 2In making this comparison, we assumed the Euclidean coupling
and Irving [12]: filled points are from quenched approximation, ge and Hamiltonian couplingy are equal, lacking information on
open points for dynamical fermions. a more precise connection.
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2
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TABLE IV. Series coefficients of?" in strong-coupling expansions of the symmetric and antisymmetric glueball masmgapsim,

of the dimensionless Hamiltonian.

n n=0 n=0.5 pu=1 n=2 n=10
Symmetric glueball mass gapss

0 4.000000000000 4.000000000000 4.000000000000 4.000000000000 4.000000000000

1 5.333333333333 1.500000000000 —1.066666666667 —1.52380952381010 % —1.74348915767%10 3

2 —4.18981481481810" —3.135416666667 4.769703703704 —2.35246949573810° 1 —4.16563187034210 1

3 5.93530734463610° —1.17091049382%10 2 —2.39471519744210' —4.89055293189810 1 —3.93770889715410 *

4 —3.22931900098810° 8.663828760718 10" 1.50126411883010°  2.073466005647 4.9454862845780 1

5 —6.43023233902810° —1.61750304206%10° —8.784848865978910° —5.575125327898 1.0713383235520 °
Antisymmetric glueball mass gaps,

0 4.000000000000 4.000000000000 4.000000000000 4.000000000000 4.000000000000

1 5.333333333333 1.500000000000 —1.066666666667 —1.52380952381010 % —1.74348915767%10 2

2 —4.30648148148% 10" —4.302083333333 3.603037037037 —1.401913616240 —1.583229853701

3 6.05510532443410° 1.83834876543210°%2  —2.77650437123% 10" —3.47320851264410 % —1.35823016316R10 3

4 9.05392333735910° 5.354226523059 10" 1.574287286648 10  1.695152914866 1.162208030611

5 —1.37759683017%10° —5.97088155086810° —9.10358805580810° —7.26013667115010 % 2.44926137776%10 °

C. “Glueball” masses

Strong-coupling series for the “photonball” masses,

andmyg, corresponding in the strong-coupling limit to single

plaquette excitations which are antisymmetric and symmetric ™ s
have been calculated to ordd? Figs. 9 and 10, and compared with the results for the pure

under reflections, respectively,
y1% The leading terms for both series are

Mg a=4+16y?/(1+24)(1—2p)(3+2u))+O(y")
(56)

ordery*. Further coefficients at fixed values pf are listed

in Table IV. The coefficients up t®(y®) were previously
calculated in1].

Approximants to these strong-coupling series are graphed

gauge theory, which we have calculated previoyg9] to
ordery®2 It can be seen that for large values the series
behave very similarly to the pure gauge case, and appear to
be decreasing exponentially towards zery ascreases. Our
results are consistent with those of Burkitt and Irvidg],

who found a systematic downward shiftim, for moderate
quark masses, as seen for the case? in Figs. 9 and 10. At

5

M,
w

pure gauge

FIG. 9. The massn, as a function ofy, for ©=0,0.5,2,10,
Various integrated differential approximants and Paxgoroxi-

somewhat. In the regiop=<1, there is substantial overlap
and level crossing between the glueball and meson states in

Mg

mants to strong-coupling series are shown, together with corre-

sponding results for the “pure gauge” casg = «).

FIG. 10. The massg as a function ofy, as in Fig. 9.
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the strong-coupling region, and the picture becomes more D. Positronium masses

confused. The series approximants show an initial rise for

the glueball masses in the strong-coupling region, followed ) . ) ]
by an apparent turnover, at least in the=0.5 case, but the Strong-coupling series for the meson states discussed in

1 1
convergence is not sufficient to track the behavior reliably>€C- Il have been calculated @(y ) [or to O(y™) for my].
into the weak-coupling region. The first three terms for arbitrany are

my=1+2u+14y%/(142u) — y*(535+ 186w+ 60u®+ 8u®)/[3(1+2u)3]+ O(y®) (57a
my=m,=1+2u+10y%/(1+2u)—y*(283+42u+ 12u?+8u>)/[3(1+21)3]+ O(y®) (57b)
Mg=1+2u+6y%/(1+2u)+y*(— 175+ 6+ 36u2—8u®)/[3(1+2u1)3]+O(y®) (570
Ms=mg=1+2u+ 6y?/(1+2u)—y*(199H+ 66w+ 12u?+8u>)/[3(1+2u)3]+O(y®) (570
my=mg=1+2u+6y?/(1+2u) — y*(199+ 66w+ 12u?+8u3)/[3(1+2u)3]+O(y®). (578

Further terms at selected valuesofare given in Table V.  would be interesting to study their behavior, but we have not
Figure 11 graphs the various meson masses as functioyet attempted such a study, owing to technical complica-

of 1ly, at a fixed, large mass parameger: 10. It can be seen tions.

that the series approximants for these masses do not con-

verge below about $/~1.5. For the lowest vector meson V. SUMMARY AND DISCUSSION

states there is a suggestion that the mass reaches a peak ahew strong-counli ies h b ted for th
1/=1.5, and then turns downward. A crude linear extrapo- 9 piing series have been presented for the

lation has been made to estimate the continuum limit, but thground—s’t’ate ehergy apd chiral con_densate, along with 'the
o . . glueball” and positronium masses, in 4-component Hamil-
uncertainly in the estimate is large.

tonian lattice QED., with full dynamical fermions. This

The resulting values for the vector mass are graphed as @, osents the first attempt at a series calculation for the pos-
function of » in Fig. 12, along with the Schwinger-Dyson jionium states in this model.

estimates of Allen and Burdef15], and the nonrelativistic Two major features are evident from these results. Firstly,
prediction[19-21]. It can be seen that the lattice estimates ofihere is a very clear separation of scales between the “glue-
the positronium binding energy have large errors, especiallpa|ls” and the positronium states as the continuum limit is
at smaller , and lie about three times higher than the gpproached. At large fermion mags the positronium ener-
Schwinger-Dyson values. Neither the Schwinger-Dyson nogies remain finite in the continuum limit, while the “glue-
the lattice estimates show any definite evidence of the logeball” masses scale exponentially towards zero, presumably
rithmic increase at large. predicted by the nonrelativistic corresponding in the limit to massless photon states. The
theory. same thing appears to happen at smalleralues, although
Figure 13 shows the masses as functions gffbf the  our evidence for the exponential decrease of the glueball
massless casg=0. Once again, convergence is lost atmass is rather slim. This separation of scales is consistent
rather smally values, around ¥£2.5, and it is hardly pos- with earlier discussions of the pure gauge mdaél: in the
sible to make useful estimates of the continuum limit. Therenonrelativistic or static fermion limit, if one sticks to naive
is no sign of any of the masses dropping towards zero, ofengineering” dimension scales one will end up with a
acting like a Goldstone boson. This is because the expectdtieory of free, massless photons as above, whereas if one
Goldstone boson states are the “axiscalar’ and “axipseudofenormalizes the scale as discussed by Polydlat} or
scalar” stateg15], which are not among the single-link ex- Gopfert and Mack[32] one will obtain a theory of free,
citations in the strong-coupling limit which we have treated massivebosons.
here(see Sec. Il . The Goldstone bosons probably corre- The second feature is that the addition of dynamical fer-
spond to L-shaped double-link excitations, which will trans-mions does not greatly affect the glueball masses at large
form into each other under a single plaquette excitation. lat w=2, for instance, the only effect was a reduction of the
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TABLE V. Series coefficients of?" in strong-coupling expansions of the meson mass gapé =1,2,

HamiltonianW.
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.,8) of thedimensionless

n my my=my my Ms=mMmg m;=mg

n=0
0 1.000000000000 1.000000000000 1.000000000000 1.000000000000 1.000000000000
1 1.40000000000010" 1.000000000008 10 6.000000000000 6.000000000000 6.000000000000
2 —1.78333333333810° —9.43333333333810"' —5.83333333333810" —6.63333333333810' —6.63333333333310"
3 3.62515167548810° 1.757293650794 10° 1.20015167548%8 10° 1.341849206349 10° 1.25320723104% 10°
4 —9.10109925450810" —4.16480833971%10" —2.97667207560910" —3.32425606079810° —3.008509651082 10"
5 2.53499335026410° 1.113036398118 1¢° 8.17745828847% 10° 9.14384013643% 10° 8.115398963424 10°
6 —7.521807853058 10’

n=0.5

0 2.000000000000 2.000000000000 2.000000000000 2.000000000000 2.000000000000
1 7.000000000000 5.000000000000 3.000000000000 3.000000000000 3.000000000000
2 —2.68333333333810' —1.28333333333810"' -—6.833333333333 —9.833333333333 —9.833333333333
3 1.36532291666% 107 6.154340277778 10 4.075451388889 10" 5.498784722222 10 4.683784722222 10"
4 —8.920838363922 10° —3.87615966021810° —2.76034484540810° —3.6782794518881(0° -—2.87007574818% 107
5 6.43606066828010° 2.73007132341% 106° 2.011538052494 10° 2.66469169404% 10° 2.110416878518 10°
6 —4.98433394998% 10*

u=1
0 3.000000000000 3.000000000000 3.000000000000 3.000000000000 3.000000000000
1 4.666666666667 3.333333333333 2.000000000000 2.000000000000 2.000000000000
2 —9.740740740741 —4.259259259259 —1.740740740741 —3.518518518519 —3.518518518519
3 2.117987280210 10" 9.052263374486 5.541189674523 9.760905349794 6.595922184811
4 —7.10305189680% 10" —2.74673747877%10" —1.94155355196R010" —3.28145489989810" —2.15717373527810"
5 2.054506982964 107 9.091443816108 10" 6.59000645127R 10" 1.138794166998 107 7.209915733058 10"
6 —8.384073194278 107

n=2
0 5.000000000000 5.000000000000 5.000000000000 5.000000000000 5.000000000000
1 2.800000000000 2.000000000000 1.200000000000 1.200000000000 1.200000000000
2 —3.229333333333 —1.277333333333 —2.21333333333810 ' —1.181333333333 —1.181333333333
3 3.119580472860 8.4641085133090 1  4.39875076035% 10 %  1.428440057720 9.8703698079700 *
4 —4.249661491769 —1.098495894429 —8.941846899782 10 1 —2.414224882476 —1.183255224582
5 9.281773558871 1.580697986782 1.236101545345 4.024451851449 2.130785627667
6

—2.66707709454%8 10

ook WwN RO

2.100000000008 10*
6.666666666667 10 *
—5.901090594968 10~ *
—2.582504019689 103
2.45723510745210*
6.90077778258110 2
—1.752056769028 10 *

2.100000000008 10*
4.761904761908 107 *
—3.56440989094% 10~ ¢
—1.05338545954% 102
1.646791697518107 1
1.213278624644 1072

u=10
2.10000000000R 10*
2.85714285714810 !
—1.62509448223%10 ¢
1.09017264337910 2
7.34644289897% 10 2
—7.752772094654 103

2.100000000008 10"
2.85714285714810 ¢
—3.62055933484%8 10 ¢
3.819111465784 10 2
1.37328301550210° !
5.188958501568 10 3

2.100000000008 10"
2.85714285714810 ¢
—3.62055933484%8 10 !
1.199822627858 10 2
1.74767873256810 1
—8.047408934744 10 3

glueball mass at fixe¢ of order a percent or two. Fqu verged down to Y¥=1.5, and were unable to confirm or

=<0.5 the effect is more pronounced, however. deny the rapid plunge in magnitude seen by Burkitt and Irv-
In general, the results of these calculations were somang[12] around 1y=0.5. It will require more detailed Monte

what disappointing. The bulk ground-state energy per sit€arlo studies to confirm that this plunge really occurs, and to

converged well enough into the weak-coupling region to dis-determine whether the chiral condensate then levels out at a

play a convincing match with analytic weak-coupling expan-small but finite value.

sions [16], and the “glueball” masses converged well  Series approximants to the positronium masses likewise

enough to justify the statements given above. Other quantienly converged down to §~1.5, even at large mass,

ties, however, were not mapped out with such success. Seriesaking any extrapolations to the continuum limit very un-

approximants to the chiral condensateat0 only con- certain. Our estimates of the continuum “binding energy”
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spectrum must await a more accurate study, by Monte Carlo

or other methods.
are thus of little more than qualitative accuracy. They lie The question whether this model develops Goldstone
about three times higher than the Schwinger-Dyson estimatdsosons in the massless limit=0 was not explored. These
of Allen and Burder{15], which are not expected to be very “axiscalar” and “axipseudoscalar’ state§l5] are not
accurate at large mags in any case. Neither set of results among the single-link excitations for which we have calcu-
shows any definite sign of the logarithmic increase in energyated strong-coupling expansions. They are most likely to be
with u predicted by the nonrelativistic analysEE9-21.  found among the “double-link” excitations. It is technically
Once again, a detailed understanding of the positroniunggre gifficult to calculate strong-coupling series for the

3

2.5
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m-—2u

0.5

.

\

©
=

FIG. 12. Graph ofm/u versusu for the vector staten.

1

10
92

100

double-link excitations; but on the other hand, the series may
well converge more quickly for these low-lying excitations.
This might provide an interesting subject for further study.
In general, however, the prospects for further series cal-
culations look dim. In contrast to the Schwinger model case
[23], the strong-coupling series approximants do not con-
verge far enough into the weak-coupling region to allow ac-
curate extrapolations to the continuum limit. Thus it seems
there is still no real alternative to Monte Carlo methods,
whatever their limitations, for the detailed investigation of
lattice gauge theories in three and four dimensions. The
strong-coupling series provide an accurate “platform” of re-
sults in the strong-coupling region, which can provide useful
calibration points for other methods; but their extrapolation
into the weak-coupling region remains rather uncertain.
There is a possibility, however, that the use of an “improved
Hamiltonian” [33] could improve the situation here.
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