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Series expansions for three-dimensional QED
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Strong-coupling series expansions are calculated for the Hamiltonian version of compact lattice electrody-
namics in~211! dimensions, with 4-component fermions. Series are calculated for the ground-state energy per
site, the chiral condensate, and the masses of ‘‘glueball’’ and positronium states. Comparisons are made with
results obtained by other techniques.@S0556-2821~98!00906-0#

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Quantum electrodynamics in 211 dimensions~QED3)
has generated considerable interest over recent years.
model is super-renormalizable, but shares a number of
portant features with quantum chromodynamics~QCD! in
311 dimensions: it is believed to be confining at large d
tances~in the quenched approximation, at least!, while in the
massless fermion limit it displays a chiral-like symmet
which is spontaneously broken@1,2#. It is thus an ideal labo-
ratory for testing nonperturbative methods of analysis. V
sions of the model may also be relevant to theories of
new high-Tc superconductors@3#. The version with two-
component massless fermions generates a dynamical
for the photon through a Chern-Simons term@4#. This com-
plication can be avoided in the four-component version@1,5#,
where ‘‘chiral’’ symmetry is broken in the normal Goldston
fashion, leading to a doublet of massless Goldstone bos
analogous to the pion in QCD. For the four-compone
model withNf flavors of massless fermions, there has bee
debate running for some time whether chiral symmetry
broken for all valuesNf @1,2,6# or whether there is a critica
value Nc.3.5 above which no spontaneous symmet
breaking takes place@7–10#. We shall have nothing to sa
about this question.

The four-component version has been studied by sev
different techniques, but we remain far from a complete
derstanding of the model. Euclidean lattice Monte Ca
simulations have been performed by several gro
@7,11,12#. A number of authors@2,6,9,13,14# have used
Schwinger-Dyson techniques to study the chiral symme
breaking, and Allen and Burden@15# have also produced
estimates of the bound-state meson spectrum at finite
mion masses. The Hamiltonian lattice version has been s
ied by means of strong-coupling expansions@16# and a loop
expansion technique@17#. A light-front approach has also
been discussed@18,19#; and the nonrelativistic limit has bee
analyzed in some detail@15,19–21#.

Here we treat the Hamiltonian lattice model by usi
linked-cluster techniques@22# to generate further strong
coupling series, thus extending the previous results of B
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den and Hamer@16# ~hereafter referred to as I!. It is well-
known that Euclidean Monte Carlo techniques are diffic
and expensive to apply to models with dynamical fermio
and so it seems worthwhile to see if other techniques suc
strong-coupling expansions can give useful information
such cases. A previous analysis of the Schwinger model@23#
did indeed show that strong-coupling series approxima
can converge well into the weak coupling region. While n
quite as accurate as the exact finite-lattice technique, the
ries approach did give quantitative estimates of the low
bound-state mass in the continuum limit, at about
5–10 % level of accuracy.

The paper begins with an outline of the lattice formulati
of the model in Sec. II, followed by a brief summary of th
methods of calculation in Sec. III. Our results are presen
in Sec. IV, discussing the ground-state energy, the ch
condensate, the ‘‘glueball’’ masses, and the spectrum of
bound-state mesons as a function of the bare fermion m
Our conclusions are summarized in Sec. V.

II. FORMALISM

A. Continuum formulation

The continuum Lagrangian density takes the stand
form

L52
1

4
FmnFmn1 c̄ ~ i ]”2eA” 2m!c ~1!

where

Fmn5]mAn2]nAm ~2!

and the Lorentz indicesm,n50, 1 or 2. The electric coupling
e in ~211! dimensions has the dimensions of (mass)1/2.
Choosing the timelike axial gauge

A050 ~3!

the Hamiltonian is found to be

H5E d2xH 2 i c̄ ~¹”W 1 ieA”W !c1mc̄c1
1

2
~EW 21B2!J ~4!

where

Ei5Fi052Ȧi ~5a!
2523 © 1998 The American Physical Society
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and

B5]1A22]2A1. ~5b!

Note that the magnetic fieldB has only one component i
~211!D. Herec is taken as a single four-component Dir
spinor@2#, andg0, g1, g2 are 434 Dirac matrices, for which
we shall use the Dirac representation where necessary:

g05S s3 0

0 2s3
D , g15 i S s1 0

0 2s1
D ,

g25 i S s2 0

0 2s2
D . ~6!

In the zero-mass limit, the Hamiltonian~4! possesses a
global U~2! ‘‘chiral’’ symmetry @2#, whose Lie algebra is
spanned by the matrices

I , g45S 0 I

I 0D , g55 i S 0 2I

I 0 D , ~7!

andg4552 ig4g5. This symmetry is expected to be spont
neously broken@2#, which should be manifested by a no
zero value of the chiral condensate^c̄ c&0.

At large fermion masses, a nonrelativistic analysis can
carried out@19–21#. Cornwall and Tiktopoulos and Sen@20#
showed that if the divergences were regulated by givin
massn to the photon, then at one-loop order the renorm
ized self-mass of the fermion is

mR5m1
e2

4p
lnS 2m

n D ~8!

while the potential due to one-photon exchange between
electron and positron is

V~r !52e2E d2k

~2p!2

eik̄ • r̄

kW21n2
5

e2

2pS g1 ln
nr

2 D1O~n2r 2!

~9!

whereg is Euler’s constant. Both quantities show logarit
mic divergences, but these divergences cancel in the Sc¨-
dinger equation for the positronium bound states

EC~rW !5F2
1

m
¹W r

212~mR2m!1V~r !Gc~rW !

5F2
1

m
¹W r

21
e2

2p
~g1 lnmr!Gc~rW !. ~10!

Numerical solutions of this equation@19–21# give the ‘‘bind-
ing energies’’ of the lowest positronium states as

E0
05

e2

2pS 1.79682
1

2
lnS 2g2

mp D D ~11a!

E1
05

e2

2pS 2.93232
1

2
lnS 2g2

mp D D ~11b!

for angular momentuml 50, and
-

e

a
l-

he

ro

E0
15

e2

2pS 2.65662
1

2
lnS 2g2

mp D D ~12!

for l 51. At leading order the binding energies are indepe
dent of ‘‘spin,’’ so that each of these energy levels should
fourfold degenerate in the four-component fermion mode

B. Lattice formulation

A ‘‘staggered’’ Hamiltonian lattice formulation of this
model has been discussed in reference I. The four com
nents of the continuum fermion field fit naturally onto th
four sites of a 232 unit cell on the 2-dimensional spatia
lattice, leading to a lattice Hamiltonian as follows:

H5
g2

2a
W ~13!

where

W5W01yW11y2W2 ~14!

and1

W05We1Wm5(
l

El
21m(

rW
~21!r 11r 211x†~rW !x~rW !

~15a!

W15(
rW,i

h i~rW !@x†~rW !Ui~rW !x~rW1 î !1H.c.# ~15b!

W252(
p

~Up1Up
†!. ~15c!

HererW5(r 1 ,r 2) labels the sites,l the links,p the plaquettes
andi 51,2 the directions on a square two-dimensional spa
lattice with spacinga. The dimensionless couplingg and
mass parameterm are defined in terms of their continuum
counterpartse andm by

g25e2a and m5
2am

g2 5
2m

e2 ~16!

while y51/g2, andh1(rW)5(21)r 211, h2(rW)51. The term
We is the electric field term,Wm is the fermion mass term
W1 is the fermion kinetic energy, andW2 is the magnetic
field energy, involving the usual plaquette operatorUp .

The correspondences between the lattice fields and t
continuum counterparts are for gauge fields

e

a
El→Ei~xW ! ~17a!

Al→Ai~xW ! ~17b!

where the link operator

1The fermion mass term given in reference I had the wrong s
As it turns out, that did not affect the results for the quantities th
calculated.
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Ul5exp@ ieaAl~rW !# ~18!

while for the fermion field components

1

2A2aF 0 2 i 0 1

1 0 2 i 0

2 i 0 1 0

0 1 0 2 i

GF j1

j2

j3

j4

G→F c1

c2

c3

c4

G ~19!

where@24#

j~rW !5 i r 11r 2x~rW ! ~20!

and the components 1, . . . ,4 areassigned to sites of the 2
32 unit cell as shown in Fig. 1.

The commutation relations between the lattice fields a

@El ,Ul 8#5Uld l l 8 ~21a!

@El ,Ul 8
†

#52Ul
†d l l 8 ~21b!

$x†~rW !,x~rW8!%5d rW,rW8 ~21c!

@El ,x~rW !#5@El ,x†~rW !#5@Ul ,x~rW !#5@Ul ,x†~rW !#50.
~21d!

With these correspondences, it can be shown@16# that the
lattice Hamiltonian~13! reduces to the continuum Hami
tonian ~4! in the naive continuum limita→0.

The introduction of the lattice breaks the U~2! ‘‘chiral’’
symmetry down to a discrete symmetry generated by sh
of one lattice spacing@16#. A unit shift in either thex or y
direction leaves the kinetic term in the Hamiltonian~13! in-
variant, but alters the sign of the mass term. The correspo
ing continuum field transformations, from~19!, are

c→ei ~p/2!g4c ~22a!

or

c→ei ~p/2!g5c ~22b!

respectively.

C. The strong-coupling limit

The Hamiltonian~13! acts on a Fock space spanned
the usual strong-coupling basis@25#. With each link is asso-
ciated an integer electric fluxnl such thatEl unl&5nl unl&. The
operatorsUl andUl

† increase and decrease the flux on linkl

FIG. 1. Assignment of spinor components to sites of the 232
unit cell.
ts

d-

by one unit, respectively. Each site of the lattice can be
one of two fermionic statesu1& or u2& obeying

x†u2&5u1&, x†u1&50 ~23a!

xu2&50, xu1&5u2&. ~23b!

Consider first the massless theory,m50. In the strong-
coupling limit, the variabley50 and the HamiltonianW
reduces toWe . The ground state is then highly degenera
having fluxnl50 on each link, but with the fermionic stat
entirely arbitrary. This degeneracy is broken at the next or
by the kinetic termW1, leaving only two degenerate state
uA& and uB& whose fermionic content is

uA&5H u1&, on odd sites;

u2&, on even sites
~24!

and

uB&5H u2&, on odd sites;

u1&, on even sites.
~25!

The chiral shifts of Eqs.~22a!, ~22b! map these two state
into each other. When the mass termWm is included, chiral
symmetry is explicitly broken and stateuB& is favored ener-
getically. We thus takeuB& as the unperturbed strong
coupling ground state for both the massive and mass
cases, and interpret this as the state with no fermion exc
tions present.

An excitation on an odd or even site creates a positiv
or negatively charged fermion respectively, i.e. a positron
electron. The first-order perturbationW1 creates or destroys
an electron-positron pair on neighboring sites, joined b
link of flux. The second-order perturbation termW2 creates
or destroys a plaquette of flux. Gauge invariance ensures
for any state obtained from the unperturbed vacuum by
plication of the operatorsW1 andW2, the net flux from any
site is equal to the charge of the fermion at that site, i
Gauss’ law is obeyed.

D. Positronium states

This theory is expected to display confinement@20#, and
the only fermionic states with finite energy are expected
be electrically neutral ‘‘positronium’’ bound states. In th
strong-coupling limit, the lowest energy positronium sta
consist of an electron-positron pair on neighboring sites, c
nected by a link of unit flux. There are eight translational
invariant states of this type, corresponding to the eight lin
in the unit cell, and we need to identify the linear combin
tions of these states which correspond to eigenstates o
lattice symmetry operators. The corresponding procedure
meson states in four-dimensional Euclidean lattice QCD
been discussed by Golterman@26#.

The symmetry group of the lattice Hamiltonian~13! is
composed of the following elements:

1. Even translations

x~rW !→x~rW12 î !, U j~rW !→U j~rW12 î !. ~26!
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This corresponds to spatial translational invariance in
continuum model.

2. Odd translations

x~rW !→x~rW11̂!, Ui~rW !→Ui~rW11̂! ~27a!

or

x~rW !→~21!r 1x~rW12̂!, Ui~rW !→Ui~rW12̂!. ~27b!

These are the discrete lattice versions of ‘‘chiral’’ symme
corresponding to Eqs.~22a!,~22b!. The massless Hamiltonia
is symmetric under these transformations, but not the m
sive one.

3. Diagonal shift D

A combination of a shift by one site in thex direction and
one site in they direction gives a diagonal shift

x~rW !→~21!r 1x~rW11̂12̂!, Ui~rW !→Ui~rW11̂12̂!.
~28!

This corresponds to a discreteg45 rotation in the continuum
fields

c→ ig45c. ~29!

This remains a symmetry of the massive Hamiltonian als

4. Square lattice rotations, R

Let R denote a lattice rotation byp/2 about a perpendicu
lar axis, as shown by Fig. 2:

x~rW !→R~rW8!x~rW8! ~30a!

U2~rW !→U1~rW8! ~30b!

U1~rW !→U2
†~rW822̂! ~30c!

where

r 185r 2 , r 2852r 1 ~31!

and

R~r 1 ,r 2!5
1

2
@~21!r 11~21!r 21~21!r 11r 221#. ~32!

Repeated rotations generate the rotational symmetry grou
a square, with 4 elements. It corresponds to rotation in b
space and ‘‘spin’’ in the continuum model.

FIG. 2. A square lattice rotation byp/2. Point 1 is assumed
fixed.
e

s-

.

of
th

5. ‘‘Axial parity’’ inversion, A

The ‘‘axial parity’’ inversion is discussed by Burden an
Allen @13,15#. In the continuum, it corresponds to the oper
tions:

c~x!→c8~x8!5Ac~x!,c̄ ~x!→c̄ 8~x8!5c̄ ~x!A21

~33!

and the vector field transforms as

AW ~x!→AW 8~x8!52AW ~x! ~34!

wherex85(x0,2x1,2x2). A suitable representation for th
fermion operatorA is the matrixig0.

On the lattice, this is simply

x~rW !→x~2rW ! ~35a!

Ui~rW !→Ui
†~2rW2 î ! ~35b!

which is equivalent toR2, a rotation byP in 211 dimen-
sions.

6. Reflection,P

A reflection in they axis corresponds to

x~rW !→x~rW8! ~36a!

U1~rW !→U1
†~rW821̂! ~36b!

U2~rW !→U2~rW8! ~36c!

where

r 1852r 1 , r 285r 2 . ~37!

7. Charge conjugation, C

The charge conjugation operation is also discussed
Burden and Allen@13,15#. In the continuum, it correspond
to the operators:

c~x!→c8~x!5Cc̄ T~x!, c̄ ~x!→c̄ 8~x!52cT~x!C†

~38!

and

Am~x!→Am8~x!52Am~x!. ~39!

The fermion operator can be represented, up to an arbit
phase, by the matrixg2. The translation to lattice variables i
slightly involved, and is best handled in terms of the fieldsj i
defined in Eqs.~19!, ~20!. We shall not go into further details
here.

The translationally invariant positronium eigenstates c
be classified in terms of their eigenvalues under these s
metry operations. The group of square rotations isC4, the
cyclic group of 4 elements. It has 4 irreducible represen
tions, each with dimension 1. The allowed eigenvalues oR
simply consist of the 4th roots of unity~i.e. powers ofe
[e22p i /4). The shiftD, reflectionP and axial parityA each
generate 2-element groups, with eigenvalues61 for the pos-
itronium states with translational symmetry.
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In the strong-coupling limit, the ‘‘link excitations’’ on the
unit cell corresponding to the lowest energy positroniu
states consist of the eight states listed in Table I, numbe
according to Fig. 3. These states transform into each o
under the action of the symmetry operators. By taking lin
combinations of these states, one can form eigenst
uc1&, . . . ,uc8& of the lattice symmetry operators, as listed
Table II. Note that the states with rotation eigenvalueR5e
52i or R5e352 i cannot simultaneously be eigenstates
P, because a reflection convertsR5 i to R52 i , and vice
versa. We have chosen to list statesuc5& to uc8& which cor-
respond to eigenstates ofP, and are thus symmetric or ant
symmetric combinations of the states withR56 i . Similarly,
we have chosen to list statesuc2& anduc4& which are eigen-
states ofC, rather thanR. All eight states are degenerate
energy in the strong-coupling limity→0. The fact that the
Hamiltonian is symmetric under both rotations and refl
tions implies that the pairuc5& and uc6& will remain degen-
erate at all couplings, and likewise the pairuc7& and uc8&.
The combination of rotation and charge conjugation symm
try implies that the pairuc2& and uc4& will also remain de-
generate.

In the ‘‘naive continuum limit’’ a→0, when Ul→1
1 ieaAl , one finds that the quartet of statesuc5& to uc8&

TABLE I. Link excitations on the unit cell corresponding t
positronium states in the strong-coupling limit, with sites label
according to Fig. 3.

Link state Operator equivalent

u1& x†(2)U1
†(1)x(1)

u2& x†(2)U1(2)x(5)
u3& x†(4)U2

†(1)x(1)
u4& x†(4)U2(4)x(8)
u5& x†(4)U1(4)x(3)
u6& x†(6)U1

†(3)x(3)
u7& x†(2)U2(2)x(3)
u8& x†(7)U2

†(3)x(3)
ed
er
r
es

f

-

-

transcribe to simple combinations of quark and antiqu
fields on the lattice, and correspond to ‘‘vector’’ states in t
language of Burden and Allen@13,15#, with JAC5122,
whereJ is the ‘‘total angular momentum.’’ The statesuc1&
to uc4&, on the other hand, contain an admixture of gau
fields in the naive continuum limit, and have no direct cou
terparts in the catalogue of quark-antiquark states discu
by Burden and Allen. The stateuc1& is a scalar state, having
the same quantum numbers as the vacuum.

E. Weak-coupling expansion

Some useful information on the ground-state properties
least, can be gained by performing a ‘‘weak-coupling’’ e
pansion for the lattice system asy→`. For the present
model, this exercise was carried out in reference I.

The ground-state energy per site has an asymptotic ex
sion in the weak-coupling limit:

v0;22y211.9162y2
4y

p2E
0

p/2

dq1E
0

p/2

dq2Fcos2q1

1cos2q21
m2

4y2G1/2

1O~1! as y→` ~40!

where the integral arises from a sum over the fermionic
grees of freedom. At very largey one finds

FIG. 3. Numbering of sites and ‘‘link’’ states on the unit cel
roup
TABLE II. Linear combinations of the link states forming eigenstates of the lattice symmetry g
(uc j&5ai

j u i &), and their symmetry eigenvalues.

State: uc1& uc2& uc3& uc4& uc5& uc6& uc7& uc8&

Amplitudes of the link states
a1 1 1 1 0 1 0 1 0
a2 1 1 1 0 21 0 21 0
a3 21 0 1 1 0 1 0 1
a4 21 0 1 1 0 21 0 21
a5 21 1 21 0 1 0 21 0
a6 21 1 21 0 21 0 1 0
a7 21 0 1 21 0 21 0 1
a8 21 0 1 21 0 1 0 21

Eigenvalues
R 11 2 21 2 2 2 2 2

D 11 21 11 21 11 11 21 21
P 11 11 11 11 21 11 21 11
C 11 11 11 21 21 21 21 21
A 11 11 11 11 21 21 21 21
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v0;22y210.9581y1O~1! as y→` ~41!

but for finitey andm it is more useful to evaluate the integr
as it stands.

The ground-state expectation value of the chiral cond
sate was also calculated@16# as

^c̄ c& lattice;2
m

p2yE0

p/2

dq1E
0

p/2

dq2Fcos2q11cos2q2

1
m2

4y2G21/2

1O~y22! as y→` ~42!

where

^c̄ c& lattice5K c0U 1

N(
rW

~21!r 11r 211x†~rW !x~rW !Uc0L
~43!

5
1

e4y2 ^c̄ c&continuum ~44!

in terms of the continuum chiral condensate. This quantit
given by the Feynman Hellmann theorem as

^c̄ c& lattice5
1

N

]v0

]m
~45!

wherev0 is the ground-state eigenvalue ofW.

F. Nonrelativistic limit m/e2
˜`

When the fermion massm becomes very large, it shoul
be possible to study the model in a ‘‘quenched’’ approxim
tion, where fermion loop diagrams are suppressed. In a s
gered lattice formulation such as the present one, the
pression of all fermion loops will lead to the ‘‘static’’ limit

FIG. 4. Lattice perturbation theory diagrams at second or
involving excitation of an (e1e2) pair. The associated gauge fie
excitations are not shown. Horizontal lines represent the actio
‘‘link’’ excitation operators fromW1; vertical lines represent the
resulting fermion excitations.
n-

is

-
g-
p-

in which any fermion excitation is fixed at its initial lattic
site, and apart from the mass term the remaining lat
Hamiltonian is simply that of the pure gauge theory.

To allow the fermions to move or migrate on the lattic
one has to go to the next order in powers of 1/m, the mass
parameter, and allow second-order diagrams involving
excitation of an (e1e2) pair on neighboring sites, as show
in Fig. 4. Figure 4~a! represents a loop diagram in th
vacuum sector, and 4~b! a similar diagram in the one
fermion sector; Fig. 4~c! illustrates a ‘‘hopping’’ diagram, in
which an existing fermion hops two lattice sites. This allow
fermion migration to take place.

It is useful to define new fermion variables represent
the excitations on the strong-coupling ground-state: nam

f~rW !5H x†~rW !, ~r 11r 2!even;

x~rW !, ~r 11r 2!odd.
~46!

so that

f~rW !u0&50 ~47!

where u0&5uB& is the strong-coupling ground state. Th
Hamiltonian ~14! and link excitations~Table I! are easily
translated in terms of the new variables.

In the quenched approximation outlined above, the eff
tive Hamiltonian in the vacuum sector is

Weff
0 52

N

2
m2N

y2

m
1We1y2W2 ~48!

~where N is the number of sites on the lattice! which is
simply the pure gauge field Hamiltonian plus a constant. T
first constant term is the negative energy of the ‘‘Dirac se
on the lattice, while the second constant term is the con
bution of the second-order diagram, Fig. 4~a!. More interest-
ing is the effective Hamiltonian in the (e1e2) sector, which
takes the form

Weff
e1e2

52
~N24!

2
m2~N24!

y2

m
1We1y2W21y2W18

~49!

where

r

of

FIG. 5. The last graphs contributing at ordery22.
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W185
1

2m (
rW odd

~21!f†f~rW !$f†~rW21̂!U1
†~rW21̂!@U1

†~rW !f~rW11̂!1~21!r 211
„U2~rW22̂!f~rW22̂!1U2

†~rW !f~rW12̂!…#

1f†~rW22̂!U2
†~rW22̂!@U2~rW !f~rW12̂!1~21!r 211U1

†~rW !f~rW11̂!#1~21!r 211f†~rW12̂!U2~rW !U1~rW !f~rW11̂!1H.c.%

1
1

2m (
rW even

~21!f†f~rW !$f†~rW21̂!U1~rW21̂!@U1~rW !f~rW11̂!1~21!r 211
„U2

†~rW22̂!f~rW22̂!1U2~rW !f~rW12̂!…#

1f†~rW22̂!U2~rW22̂!@U2
†~rW !f~rW12̂!1~21!r 211U1~rW !f~rW11̂!#1~21!r 211f†~rW12̂!U2

†~rW !U1
†~rW !f~rW11̂!1H.c.%.

~50!
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This clumsy expression is merely a constant, plus the p
gauge Hamiltonian, plus ‘‘hopping’’ terms for the fermion
in the six different paths allowed for a double hop on t
staggered lattice. The associated phase factor

~21!f†f~rW ![H 11, if site rW occupied;

21, if site rW unoccupied
~51!

accounts for the change of sign if the hopping fermi
‘‘passes through’’ an occupied site. These hopping ter
correspond to the kinetic energy in the nonrelativistic co
tinuum Hamiltonian.

The effective Hamiltonian is more complicated in for
than the original lattice Hamiltonian, but does not allow a
further fermion excitations, and would therefore be quick
and easier to implement in numerical calculations. We h
not attempted any such calculations as yet.

III. METHOD

To calculate the strong-coupling series for the model,
used Nickel’s cluster expansion method. The techniques
essary were reviewed in Heet al. @22#, and will not be re-
peated here. In these calculations, theW0 in Eq. ~14! is taken
as the unperturbed Hamiltonian, diagonal in the basis
eigenvectors ofEl , while theW1 andW2 in Eq. ~14! then act
as perturbations.

To generate the series for the ground state energy,
need to generate a list of connected plaquette configurat
together with their lattice constants and embedding c
stants. Since the first-order perturbationW1 and second-orde
perturbationW2 involve links and plaquettes, respectively,
clustera will contribute termsO(ya), wherea is given by

a>2np1nl ~52!

wherenp is the number of plaquettes ina, andnl the number
of links not contained in plaquettes. Up to the ordery22 con-
sidered in the current paper, there is only one graph~Fig. 5!
which does not obey the above relation, it actually contr
utes to ordery22 ~due to the combination ofW2 on each
plaquette andW1 in outer links! instead ofy24 according to
Eq. ~52!. There are a total of 5494 graphs which contribu
up to ordery22 for the ground-state properties.
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The calculation of glueball masses involves a list of clu
ters, both connected and disconnected, with at least
plaquette in each graph. There are 457 graphs which con
ute to ordery10.

The calculation of meson masses generally involves a
of both connected and disconnected clusters@22#. The eight
different links in the unit cell~shown in Fig. 3! are not
equivalent in those calculations, which means we can
identify clusters which are topologically equivalent, or ev
use rotation or reflection symmetry. Thus the separate c
ters proliferate enormously in this case: there are 164
clusters contributing up to ordery10. For the scalar meson
massm1, the eight different bond types are equivalent, so
only need actually one bond type, and there are only 5
clusters which contribute up to ordery12.

IV. RESULTS

A. Ground-state energy

Using the linked-cluster expansion method, series h
been calculated for the ground-state energy per site u
ordery22. The first few terms are

v0 /N52
m

2
2

2y2

112m
2

y4

2
1

14y4

~112m!3

1
y6~2474225084m21640m22368m3264m4!

~112m!5~312m!~712m!

1••• ~53!

wherev0 is the ground-state eigenvalue ofW. The coeffi-
cients are listed for various fixed values of the dimensionl
mass parameterm52m/e2 in Table III. These coefficients
agree with those of reference I up toO(y16).

Extrapolating these series into the weak-coupling reg
using integrated differential approximants@27#, one obtains
results as shown in Fig. 6. For the large-mass case,m510, it
can be seen that the strong-coupling approximants matc
to the weak-coupling form~40! very nicely at around 1/y
.0.5. For the lower masses, the strong-coupling appro
mants do not converge well enough to establish a pre
matching, but they are clearly quite consistent with t
asymptotic form ~40!. It is noteworthy that the
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TABLE III. Series coefficients ofy2n in strong-coupling expansions of the ground-state energyv0 and chiral condensatêc̄ c& lattice.

n m50 m50.5 m51 m52 m510

Ground state energy
0 0.000000000000 22.50000000000031021 25.00000000000031021 21.000000000000 25.000000000000
1 22.000000000000 21.000000000000 26.66666666666731021 24.00000000000031021 29.52380952381031022

2 1.3500000000003101 1.250000000000 1.85185185185231022 23.88000000000031021 24.98488284202631021

3 22.2580952380953102 27.562500000000 21.088065843621 21.05716363636431021 24.84019031041531024

4 4.7404933496323103 4.1681901041673101 2.828630278758 1.44041348151331021 3.80541726903231022

5 21.1453321204043105 22.6413937746753102 28.251436202716 21.19637218016731021 7.58005088372831025

6 3.0191122719933106 1.8289092117803103 2.6732083033673101 1.52872543487331021 22.82981716624231023

7 28.4460458641043107 21.3439617345363104 29.1956769382173101 22.14626482088231021 28.31615801711831026

8 2.4672104784693109 1.0311830724193105 3.3029842373543102 3.07575436661931021 26.08485194929431024

9 27.44799209106631010 28.1758292048903105 21.2260603612593103 24.58092396720231021 23.10325487971431026

10 2.30729255032231012 6.6515732049173106 4.6700665185323103 6.98936797256931021 4.68527419098131024

11 27.29847591795431013 25.5252419397273107 21.8162175811543104 21.087547736352 2.78401619997231026

Chiral condensate
0 5.00000000000031021 5.00000000000031021 5.00000000000031021 5.00000000000031021 5.00000000000031021

1 24.000000000000 21.000000000000 24.44444444444431021 21.60000000000031021 29.07029478458131023

2 8.4000000000003101 5.250000000000 1.037037037037 1.34400000000031021 4.31918799265731024

3 22.2310566893423103 23.6617187500003101 23.414650205761 21.85604533648231021 21.49023395614831024

4 6.5341586385923104 2.8094900173613102 1.2224123060723101 2.63245277851431021 1.64577622922031025

5 22.0257378471763106 22.2843820494233103 24.6399990141783101 23.92104857244531021 2.00550374524831025

6 6.5182947676793107 1.9290131015103104 1.8318188730723102 6.16529824917631021 22.12728345526031026

7 22.1532037416293109 21.6726762573463105 27.4299333261063102 29.97819596803531021 22.07037476993331026

8 7.25297729778331010 1.4791582049943106 3.0742448345933103 1.648612396832 1.79980218736231027

9 22.48030160212131012 21.3279763949163107 21.2916272458903104 22.768670289809 29.30063042874131027

10 8.58450965536531013 1.2066753885883108 5.4929042239873104 4.708649820309 1.11011004526831027

11 23.00044431433131015 21.1072461125973109 22.3590891450083105 28.090428010991 7.85772015014131027
-
1/

ts
lid
FIG. 6. Graph of the ground-state energy per site,y22v0 /N
versus 1/y, for various fixed values of the mass parameterm
50,0.5,2,10. The curves at large 1/y are integrated differential ap
proximants to the strong-coupling series; while those at smally
correspond to the asymptotic weak-coupling form~40!.
FIG. 7. Graph of the chiral condensate,^c̄ c& lattice versusm/y,
for various finite values of the mass parameterm50.5,2,10. The
curves at large 1/y are various integrated differential approximan
and Pade´ approximants to strong-coupling series, while the so
line at smallm/y is the weak-coupling asymptotic form~42!.
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m-independent form~41! is only attained for very weak cou
plings m2/y2&0.4.

The successful matching between the strong-coupling
proximants and the weak-coupling asymptotic form giv
some confidence that the series coefficients have been c
lated correctly, and that the approximants converge w
th
in
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enough to provide useful information about the wea
coupling ~continuum! behavior.

B. Chiral condensate

A more interesting quantity is the chiral condensate. T
first few terms in the series are
^c̄ c& lattice52
1

2
1

4y2

112m
2

84y4

~112m!41
8y6~1229871245156m1181668m2164656m3113392m412048m51192m6!

~112m!6~312m!2~712m!2

1••• . ~54!
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Further coefficients at fixed values ofm are listed in Table
III. Figure 7 shows the extrapolation of these series into
weak-coupling region, as compared with the weak-coupl
form ~42!. Once again, the large mass results (m510) match
very well to the weak-coupling form, while the lower-ma
ones have not yet attained it before convergence of
strong-coupling approximants is lost.

The most interesting case ism50, the zero mass limit. A
graph ofy2^c̄ c& lattice against 1/y is shown in Fig. 8. It can be
seen that integrated differential approximants to the se
fail to converge below about 1/y.1.5, although Pade´ ap-

FIG. 8. Graph of the chiral condensate,y2^c̄ c& lattice versus 1/y,
for the massless casem50. The curves shown are integrated d
ferential approximants~solid lines! and @n/(n11)# Padéapproxi-
mants ~broken lines! to the strong-coupling series. The last tw
Padéapproximants are almost indistinguishable, and the succes
intercepts at 1/y50 are 0.232,0.274,0.283 and 0.284. The d
points are from the Euclidean Monte Carlo simulation by Burk
and Irving @12#: filled points are from quenched approximatio
open points for dynamical fermions.
e
g

e

s

proximants behave in a more consistent fashion. If taken
face value, the Pade´ approximants would indicate a ver
large value of the chiral condensate in the continuum lim
1/y→0,

e24^c̄ c&physical520.284~10!. ~55!

Also shown in Fig. 8, however, are some Monte Carlo e
mates of the chiral condensate for the Euclidean version
this model2 by Burkitt and Irving @12#. Their results are
roughly compatible with ours at about 1/y.0.6, but show a
dramatic decrease in magnitude beyond that point. Since
occurs well below the region of convergence of the ser
approximants, the series provide little evidence either to c
firm or deny this phenomenon.

Another Monte Carlo calculation of the chiral condensa
in the noncompact version of the model has been carried
by Dagotto, Kogut and Kocic@7#. They found a quite differ-
ent behavior, in whichb2^c̄ c& lattice ~where b5y51/g2)
plunges rapidly toward zero at a lowb value aroundb
.0.4, and then levels out to a plateau at a very small va
aroundb2^c̄ c&.0.001. Although this value is only tracke
to b.1, they take this as evidence of chiral symmetry bre
ing in the continuum limit. A more extensive study by Han
and Kogut @28# revealed substantial finite-size effects, b
came to a similar conclusion.

It would be interesting to see a more extensive Mo
Carlo simulation of the compact lattice model, to che
whether the decrease seen by Burkitt and Irving@12# is real,
and whether the chiral condensate subsequently levels o
a small plateau value as in the noncompact model. Th
seems to be very little prospect that further series calc
tions could shed light on these questions.

2In making this comparison, we assumed the Euclidean coup
gE and Hamiltonian couplinggH are equal, lacking information on
a more precise connection.
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TABLE IV. Series coefficients ofy2n in strong-coupling expansions of the symmetric and antisymmetric glueball mass gapsmS andmA

of the dimensionless HamiltonianW.

n m50 m50.5 m51 m52 m510

Symmetric glueball mass gapsmS

0 4.000000000000 4.000000000000 4.000000000000 4.000000000000 4.000000000000
1 5.333333333333 1.500000000000 21.066666666667 21.52380952381031021 21.74348915767731023

2 24.1898148148153101 23.135416666667 4.769703703704 22.35246949573531021 24.16563187034231021

3 5.9353073446363102 21.17091049382731022 22.3947151974423101 24.89055293189331021 23.93770889715431024

4 23.2293190009853103 8.6638287607133101 1.5012641188303102 2.073466005647 4.94548628457831021

5 26.4302323390233105 21.6175030420673103 28.7848488659793102 25.575125327898 1.07133832355231023

Antisymmetric glueball mass gapsmA

0 4.000000000000 4.000000000000 4.000000000000 4.000000000000 4.000000000000
1 5.333333333333 1.500000000000 21.066666666667 21.52380952381031021 21.74348915767731023

2 24.3064814814813101 24.302083333333 3.603037037037 21.401913616240 21.583229853701
3 6.0551053244343102 1.83834876543231022 22.7765043712313101 23.47320851264431021 21.35823016316031023

4 9.0539233373593103 5.3542265230593101 1.5742872866463102 1.695152914866 1.162208030611
5 21.3775968301773106 25.9708815508663102 29.1035880558063102 27.26013667115031021 2.44926137776131023
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C. ‘‘Glueball’’ masses

Strong-coupling series for the ‘‘photonball’’ masses,mA
andmS , corresponding in the strong-coupling limit to sing
plaquette excitations which are antisymmetric and symme
under reflections, respectively, have been calculated to o
y10. The leading terms for both series are

mS,A54116y2/„~112m!~122m!~312m!…1O~y4!
~56!

with the difference between the two series only emerging

FIG. 9. The massmA as a function ofy, for m50,0.5,2,10,
Various integrated differential approximants and Pade´ approxi-
mants to strong-coupling series are shown, together with co
sponding results for the ‘‘pure gauge’’ case (m5`).
ic
er

at

ordery4. Further coefficients at fixed values ofm are listed
in Table IV. The coefficients up toO(y8) were previously
calculated in@1#.

Approximants to these strong-coupling series are grap
in Figs. 9 and 10, and compared with the results for the p
gauge theory, which we have calculated previously@29# to
order y32. It can be seen that for largem values the series
behave very similarly to the pure gauge case, and appea
be decreasing exponentially towards zero asy increases. Our
results are consistent with those of Burkitt and Irving@12#,
who found a systematic downward shift inmA for moderate
quark masses, as seen for the casem52 in Figs. 9 and 10. At
small m values, however, the behavior appears to cha
somewhat. In the regionm&1, there is substantial overla
and level crossing between the glueball and meson state

e-
FIG. 10. The massmS as a function ofy, as in Fig. 9.
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the strong-coupling region, and the picture becomes m
confused. The series approximants show an initial rise
the glueball masses in the strong-coupling region, follow
by an apparent turnover, at least in them50.5 case, but the
convergence is not sufficient to track the behavior relia
into the weak-coupling region.
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D. Positronium masses

Strong-coupling series for the meson states discusse
Sec. II have been calculated toO(y10) @or to O(y12) for m1].
The first three terms for arbitrarym are
m15112m114y2/~112m!2y4~5351186m160m218m3!/@3~112m!3#1O~y6! ~57a!

m25m45112m110y2/~112m!2y4~283142m112m218m3!/@3~112m!3#1O~y6! ~57b!

m35112m16y2/~112m!1y4~217516m136m228m3!/@3~112m!3#1O~y6! ~57c!

m55m65112m16y2/~112m!2y4~199166m112m218m3!/@3~112m!3#1O~y6! ~57d!

m75m85112m16y2/~112m!2y4~199166m112m218m3!/@3~112m!3#1O~y6!. ~57e!
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Further terms at selected values ofm are given in Table V.
Figure 11 graphs the various meson masses as func

of 1/y, at a fixed, large mass parameterm510. It can be seen
that the series approximants for these masses do not
verge below about 1/y.1.5. For the lowest vector meso
states there is a suggestion that the mass reaches a pe
1/y.1.5, and then turns downward. A crude linear extrap
lation has been made to estimate the continuum limit, but
uncertainly in the estimate is large.

The resulting values for the vector mass are graphed
function of m in Fig. 12, along with the Schwinger-Dyso
estimates of Allen and Burden@15#, and the nonrelativistic
prediction@19–21#. It can be seen that the lattice estimates
the positronium binding energy have large errors, especi
at smaller m, and lie about three times higher than t
Schwinger-Dyson values. Neither the Schwinger-Dyson
the lattice estimates show any definite evidence of the lo
rithmic increase at largem predicted by the nonrelativistic
theory.

Figure 13 shows the masses as functions of 1/y for the
massless casem50. Once again, convergence is lost
rather smally values, around 1/y.2.5, and it is hardly pos-
sible to make useful estimates of the continuum limit. Th
is no sign of any of the masses dropping towards zero
acting like a Goldstone boson. This is because the expe
Goldstone boson states are the ‘‘axiscalar’’ and ‘‘axipseu
scalar’’ states@15#, which are not among the single-link ex
citations in the strong-coupling limit which we have treat
here~see Sec. II D!. The Goldstone bosons probably corr
spond to L-shaped double-link excitations, which will tran
form into each other under a single plaquette excitation
ns

n-

k at
-
e

a

f
ly

r
a-

t

e
or
ed
-

-
It

would be interesting to study their behavior, but we have
yet attempted such a study, owing to technical compli
tions.

V. SUMMARY AND DISCUSSION

New strong-coupling series have been presented for
ground-state energy and chiral condensate, along with
‘‘glueball’’ and positronium masses, in 4-component Ham
tonian lattice QED211 with full dynamical fermions. This
represents the first attempt at a series calculation for the
itronium states in this model.

Two major features are evident from these results. Firs
there is a very clear separation of scales between the ‘‘g
balls’’ and the positronium states as the continuum limit
approached. At large fermion massm, the positronium ener-
gies remain finite in the continuum limit, while the ‘‘glue
ball’’ masses scale exponentially towards zero, presuma
corresponding in the limit to massless photon states.
same thing appears to happen at smallerm values, although
our evidence for the exponential decrease of the glue
mass is rather slim. This separation of scales is consis
with earlier discussions of the pure gauge model@30#: in the
nonrelativistic or static fermion limit, if one sticks to naiv
‘‘engineering’’ dimension scales one will end up with
theory of free, massless photons as above, whereas if
renormalizes the scale as discussed by Polyakov@31# or
Göpfert and Mack@32# one will obtain a theory of free,
massivebosons.

The second feature is that the addition of dynamical f
mions does not greatly affect the glueball masses at largem:
at m52, for instance, the only effect was a reduction of t
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TABLE V. Series coefficients ofy2n in strong-coupling expansions of the meson mass gapsmi ( i 51,2, . . . ,8) of thedimensionless
HamiltonianW.

n m1 m25m4 m3 m55m6 m75m8

m50
0 1.000000000000 1.000000000000 1.000000000000 1.000000000000 1.000000000000
1 1.4000000000003101 1.0000000000003101 6.000000000000 6.000000000000 6.000000000000
2 21.7833333333333102 29.4333333333333101 25.8333333333333101 26.6333333333333101 26.6333333333333101

3 3.6251516754853103 1.7572936507943103 1.2001516754853103 1.3418492063493103 1.2532072310413103

4 29.1010992545093104 24.1648083397113104 22.9766720756093104 23.3242560607993104 23.0085096510893104

5 2.5349933502643106 1.1130363981123106 8.1774582884713105 9.1438401364373105 8.1153989634243105

6 27.5218078530583107

m50.5
0 2.000000000000 2.000000000000 2.000000000000 2.000000000000 2.000000000000
1 7.000000000000 5.000000000000 3.000000000000 3.000000000000 3.000000000000
2 22.6833333333333101 21.2833333333333101 26.833333333333 29.833333333333 29.833333333333
3 1.3653229166673102 6.1543402777783101 4.0754513888893101 5.4987847222223101 4.6837847222223101

4 28.9208383639223102 23.8761596602183102 22.7603448454033102 23.6782794518853102 22.8700757481813102

5 6.4360606682803103 2.7300713234113103 2.0115380524943103 2.6646916940413103 2.1104168785183103

6 24.9843339499873104

m51
0 3.000000000000 3.000000000000 3.000000000000 3.000000000000 3.000000000000
1 4.666666666667 3.333333333333 2.000000000000 2.000000000000 2.000000000000
2 29.740740740741 24.259259259259 21.740740740741 23.518518518519 23.518518518519
3 2.1179872802103101 9.052263374486 5.541189674523 9.760905349794 6.595922184811
4 27.1030518968013101 22.7467374787713101 21.9415535519603101 23.2814548998953101 22.1571737352753101

5 2.0545069829643102 9.0914438161053101 6.5900064512703101 1.1387941669953102 7.2099157330503101

6 28.3840731942753102

m52
0 5.000000000000 5.000000000000 5.000000000000 5.000000000000 5.000000000000
1 2.800000000000 2.000000000000 1.200000000000 1.200000000000 1.200000000000
2 23.229333333333 21.277333333333 22.21333333333331021 21.181333333333 21.181333333333
3 3.119580472860 8.46410851370931021 4.39875076035131021 1.428440057720 9.87036980797031021

4 24.249661491769 21.098495894429 28.94184689978231021 22.414224882476 21.183255224582
5 9.281773558871 1.580697986782 1.236101545345 4.024451851449 2.130785627667
6 22.6670770945453101

m510
0 2.1000000000003101 2.1000000000003101 2.1000000000003101 2.1000000000003101 2.1000000000003101

1 6.66666666666731021 4.76190476190531021 2.85714285714331021 2.85714285714331021 2.85714285714331021

2 25.90109059496831021 23.56440989094131021 21.62509448223731021 23.62055933484531021 23.62055933484531021

3 22.58250401968931023 21.05338545954131022 1.09017264337931022 3.81911146578431022 1.19982262785631022

4 2.45723510745231021 1.64679169751331021 7.34644289897131022 1.37328301550231021 1.74767873256631021

5 6.90077778258131022 1.21327862464431022 27.75277209465431023 5.18895850156331023 28.04740893474431023

6 21.75205676902631021
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glueball mass at fixedy of order a percent or two. Form
&0.5 the effect is more pronounced, however.

In general, the results of these calculations were so
what disappointing. The bulk ground-state energy per
converged well enough into the weak-coupling region to d
play a convincing match with analytic weak-coupling expa
sions @16#, and the ‘‘glueball’’ masses converged we
enough to justify the statements given above. Other qua
ties, however, were not mapped out with such success. S
approximants to the chiral condensate atm50 only con-
e-
te
-
-

ti-
ies

verged down to 1/y.1.5, and were unable to confirm o
deny the rapid plunge in magnitude seen by Burkitt and I
ing @12# around 1/y.0.5. It will require more detailed Monte
Carlo studies to confirm that this plunge really occurs, and
determine whether the chiral condensate then levels out
small but finite value.

Series approximants to the positronium masses likew
only converged down to 1/y.1.5, even at large massm,
making any extrapolations to the continuum limit very u
certain. Our estimates of the continuum ‘‘binding energ



lie
at
y
ts
rg

iu

arlo

ne
e

u-
be

y
he

ay
s.
.

cal-
se

on-
c-

ms
s,
of
he

e-
ful
on
in.
ed

ad
ch
rch

r

57 2535SERIES EXPANSIONS FOR THREE-DIMENSIONAL QED
are thus of little more than qualitative accuracy. They
about three times higher than the Schwinger-Dyson estim
of Allen and Burden@15#, which are not expected to be ver
accurate at large massm in any case. Neither set of resul
shows any definite sign of the logarithmic increase in ene
with m predicted by the nonrelativistic analyses@19–21#.
Once again, a detailed understanding of the positron

FIG. 11. Strong-coupling series approximants tom/m as func-
tions of 1/y for the meson statesm1 , . . . ,m8, at mass paramete
m510.

FIG. 12. Graph ofm/m versusm for the vector statem7.
es

y

m

spectrum must await a more accurate study, by Monte C
or other methods.

The question whether this model develops Goldsto
bosons in the massless limitm50 was not explored. Thes
‘‘axiscalar’’ and ‘‘axipseudoscalar’’ states@15# are not
among the single-link excitations for which we have calc
lated strong-coupling expansions. They are most likely to
found among the ‘‘double-link’’ excitations. It is technicall
more difficult to calculate strong-coupling series for t
double-link excitations; but on the other hand, the series m
well converge more quickly for these low-lying excitation
This might provide an interesting subject for further study

In general, however, the prospects for further series
culations look dim. In contrast to the Schwinger model ca
@23#, the strong-coupling series approximants do not c
verge far enough into the weak-coupling region to allow a
curate extrapolations to the continuum limit. Thus it see
there is still no real alternative to Monte Carlo method
whatever their limitations, for the detailed investigation
lattice gauge theories in three and four dimensions. T
strong-coupling series provide an accurate ‘‘platform’’ of r
sults in the strong-coupling region, which can provide use
calibration points for other methods; but their extrapolati
into the weak-coupling region remains rather uncerta
There is a possibility, however, that the use of an ‘‘improv
Hamiltonian’’ @33# could improve the situation here.
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FIG. 13. Series approximants tom1 , . . . ,m8 versus 1/y at
m50.
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