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Possible physical consequences of a recently discovered non-Abelian dual symmetry are explored in the
standard model. It is found that both Higgs fields and fermion generations can be assigned a natural place in the
dual framework, with Higgs fields appearing as frantes “ N-beins”) in internal symmetry space, and
generations appearing as spontaneously broken dual color. Fermions then occur in exactly three generations
and have a factorizable mass matrix which gives automatically one generation much heavier than the other two.
The CKM matrix is the identity at zeroth order, but acquires mixing through higher loop corrections. Prelimi-
nary considerations are given to calculating the CKM matrix and lower generation masses. New vector and
Higgs bosons are predictefd50556-282(98)02704-(

PACS numbsds): 11.15.Ex, 12.15.Ff

I. INTRODUCTION ity for Yang-Mills theory in general terms for indications in
which areas physical consequences may be expected to arise.

The long-standing interest in the electric-magnetic duality We recall first some basic tenets of our earlier pda&t
[1-6] and its non-Abelian generalizatiof$,7—11 has seen 0on non-Abelian duality. The standard Hodge transform
an active revival in the last few yeaf¢2-16 and much
effort has been devoted to finding their physical conse- *Fu=- j€
guences.

In a previous papefl7] it was shown that Yang-Mills under which electromagnetism is symmetric, has long been
theories are symmetric under a generalized dual transforlnown not to leave non-Abelian Yang-Mills theory invari-

which reduces to the familiar Hodge star operation in theant. The main difficulty is that althoudh,,, is a gauge field
Abelian case. The purpose of the present paper is to examingsrivable from a potential, thus

what physical consequences this dual symmetry might have
when applied to the standard model with gauge symmetry F,=d,A,—d,A,+ig[A, Al (1.2)
su(3)Xsu(2)xu(l1), which seems to embody all presently . oo .
knc\)/\\/lvn facts in part'de phyS|cs_ apart from gravity. there is in general no corresponding poten'ﬁglfrom which
e note that, in contrast with many other approaches tQF can be similarly derived; thus
duality adopted in the literature which aim at extending the = #” ' '
standard model to a larger theory making use of supersym-  _ .
metry and higher dimensions of space-time and/or constitu- *Fu=a,A,—d,A,+ig[A, Al 1.3
ents of matter(such as strings and membrapese choose
here to aim for economy. In other words, instead of lookinglt has therefore remained unclear for some time whether
“beyond the standard model” as is often done, we shallthere is in fact a generalization of electric-magnetic duality
remain strictly within the standard model framework in four to non-Abelian Yang-Mills theory. 1f17], we suggested that
space-time dimensions, and ask merely whether, within thithe answer is affirmative provided one replaces the Hodge
framework, the recently discovered generalized non-Abeliastar in Eq.(1.1) by a generalized dual transform, which
dual symmetry can lead to physical consequences which atlough differing from Eq(1.1) for non-Abelian theories, re-
as yet unknown or unexplored. duces back to the Hodge star for the Abelian theory, thus
Now although this generalized dual symmetry has strictlyrecovering the standard electric-magnetic duality as a special
speaking been established only for classical fields, we wiskase. Unfortunately, a generalized dual transform with the
to show that when supplemented by some general knowrequired properties has to be rather complicated, and so far
facts in quantum field theories, plus some seemingly reasorwe have succeeded only in formulating it in the language of
able assumptions special to our treatment, the symmetrpop space. However, for our considerations in this paper,
when applied to the standard model can lead to predictiongery little is needed of the details of this generalized trans-
of quite considerable interest. Before studying these for théorm. In what follows, therefore, we shall just note down
standard model in detail, however, let us first examine dualsome of its salient features so as to give a flavor of what is
involved, and then highlight the very few points which are
necessary for our future discussion.
*Email address: chanhm@v2.rl.ac.uk Explicitly, the generalized dual transform proposed in
"Email address: tsou@maths.ox.ac.uk [17] reads as

Fro, (1.1

unvpo
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_ 2 . same quantity in terms oA ,(x), though presumably pos-
w1(77(t))EM[77|t]w(77(t))=—ﬁewpgn”f SEdsP[€|s] sible, would be extremely complicated. In particular, the

Wilson operator
Pexp(ig § Adef‘”, (1.6
C
which is expressed in terms of some loop space variables

. =~ L ! in the words of 't Hooft[10], measures magnetic flux
E,[¢]s] and its duak,[¢]s] _descnblng. the gauge field. The_ throughC and creates elegtrig flux alor@. Ther£1J by dual
actual formalism of Yang-Mills theory in terms of these vari- mmetrv the operator
ables is unfortunately somewhat involved and delicate, bu%y y P
for the purpose of the present paper, we need only mention o
Pex;(ig ﬁlAﬂdxl‘)

the following few points. The variableS [ £[s] are nonlo- B(C)=Tr
should measure electric flux throughand create magnetic

cal, depending on a segment of the parametrized 1§op
around the poing(s) on the loop labelled by the valueof

flux alongC. And indeed, using the generalized dual trans-
form (1.4), one can show}18] that this operatoB(C) does

the loop parameter. The segment has widtlthich eventu-
ally is to be taken to zero, and in the limit-0,
- satisfy the following commutation relation with(C), which
EuLéls]—F . (&(s)E"(s), (1.9 \was Used by 't Hooft to abstractly define tBéC) operator:

X E7(S) € %(3) 8(&(s)— n(1)),
(1.9 A(C)=Tr

.7

where the overdot denotes differentiation with respect to the A(C)B(C')=B(C')A(C)exp2min/N), (1.8

loop parametes. In other words, in the limit of zero seg-

mental width, E[£|s] is just the Yang-Mills field at the wheren is the number of time€’ winds aroundC andN is
point £(s) dotted into the tangent to the loop at that point. for the gauge grouBU(N).

However, the rules of operation are such that the limit Using the commutation relatiof1.8), 't Hooft derived the

—0 is to be taken only after all loop differentiations and important result that if the electric field is confined, then the
integrations, such as that occurring in the dual transformmagnetic field is in the Higgs phase, and vice versa. Suppose
(1.4, have already been performed. This generalized duaiow that A(C) is confined; thenB(C) should be in the

transfor_m is thus a rather complicated affai_r, but is known t_OHiggs phase, and its corresponding poteﬁiglrepresenting
reduce just to the Hodge star for the Ab_ehan theory and inpe “qual gauge boson should then acquire a mass and be
the general case to share the property with the Hodge star Bfermitted to propagate freely through space. At first sight,

being its_own.inverse apart from a sign. A new f_eature, ho‘_"”[his may seem contradictory to the statement fatcolor)
ever, which did not occur in the Abelian theory, is the matriX;s -onfined meaning tha, can be nonvanishing only in-
’ 12

«(x) which transforms from the internal symmetry framg ( side hadrons, sinc&,, and'ﬂﬂ are supposed to represent just

frame in which fields of the direct formulation are measured the same degrees of freedom. We believe, however, that this
. Is not the case. By confinement we mean that colored objects

®annot propagate freely in space, and a gl#gn, being
colored, has therefore to remain inside a hadron. The dual
quonKM, however, is not coloretelectrically, that is This

n be seen in the generalized dual transform of (Ed).

nder an ordinary color gaugehat is, in our present lan-
guage, an electrit) gauge transformationS(x),

a major significance in our future discussion.
The result of our earlier paper was that Yang-Mills theory
is symmetric under the generalized transfditm), and our
present purpose is to explore the consequences. We note fi
that this symmetry implies that in addition to the original
gauge invariance, says, the theory will possess a further
gauge invariancéthe dual invariandeG, having the same E [ £s]—S(£(s)E [ £s]S™(&(s)). (1.9
group structure but an opposite parity to the first, so that it g #
has in all aGx G local gauge invariance. Further, it implies This change, however, is compensated in @) by a cor-
that a dual potentiaﬁﬂ(x) exists which plays a role exactly responding transformation in the matrixx), which trans-
dual to that of the ordinary Yang-Mills potential,(x). No-  forms underS(x) as

tice that'Av\”(x) doe§ no'tvrepre.sent an additional degree of 0(X)— 0(x)S1(x), (1.10
freedom toA,(x) since A, (x) is related to the dual field

variableE [ £|s] in exactly the same way as,(X) is related  leaving thusE [ 7|t] and hence alsd,, invariant. Like

to E,[£[s], andE, is given in terms o, via the general- E [|t], A, is magnetically colored but electrically color-
ized transform(1.4). However,ﬂﬂ(x) provides an alternative less. It has thus no reason to be confined. And altholigh
description of the gauge field to that providedAy(x), and  andA, represent the same degrees of freedom, specifying an
for certain phenomena, the former may be much more COMA, outside hadrons in free space is not double counting since
venient than the latter. For example, in termsAgf(x) the  thereA,,, by virtue of confinement, does not propagate. In
phase transport of the wave function ofl@lor) magnetic  other words, we are saying that although the gluon, being
charge is simple, being just e[xﬁj&ﬂ(x)dxf‘] from x to a  colored, is confined inside hadrons, the degree of freedom it
neighboring pointx+dx*, whereas an expression of the represents can still manifest itself in the free space outside
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hadrons as a massive, color-magnetically charged, but colohappy position where the Higgs fields required in the theory,
electrically neutral, dual gluon. which normally we have to introduce by hand to give the

Perhaps a more physical way of presenting the above comtesired symmetry-breaking pattern, actually arise in a natural
clusion, which may make it easier to visualize, is to picturemanner as just the transformation matrix between the direct
w(x) itself as a field. It represents then a color dyon, carry-and dual gauge frames of the theory. It may even mean that
ing both a color-electric and a color-magnetic charge, transcertain aspects in the symmetry-breaking pattern of the
forming underU transformationsS(x) as the fundamental theory can be predicted.

representation and undér transformation$S(x) as the con- The classical considerations of our previous papers, how-
jugate fundamental representation; thus, ever, give only the vacuum configuration of the “Higgs
fields” as w(x) but leave open the question of how exactly
0(X)— S(X) @(X)S™H(X). (1.1  the “promotion” of w(x) to physical Higgs fieldgs(x) is to

be effected. Our proposal for doing so will be given below in

The dual fie|dEM in Eq. (1.4 can then be pictured as a S€c. Ill when applying the idea-to the standard model. We
composite objecta bound stateformed from an(electri- ~ Note that the vacuum expectation valuegx) themselves
cally) colored fieldE, belonging to the adjoint representa- have to do only with the pattern of symmetry breaking but
tion and anw-w pair, in such a way as to make the whole Ot with the symmetry-breaking scales. These latter are gov-
color-electrically  neutral, though  color-magnetically erned by how easily the Higgs fiel_ds can fluctuate frc_Jm their
charged. The result is thus, in a sense, also a hadron, and hg&cuum values, and by how rapidly these fluctuations are
the right to propagate through space as any other hadrogllowed to vary from point to point in space-time. These
That being the case, there seems no reason why they canrieces of information are encoded in standard formulations
be detected experimentally in principle. in the sizes of the kinetic energy ter ¢d* ¢, the “mass”

The observation in the preceding paragraph about the mderm — u?¢?, and the quartic term ¢* of the Higgs action,
trix w(x) brings us to another point in duality which may relative both to one another and to the rest of the action.
have observable consequences. Although introduced at fir§hese parameters are ultimately related to the masses of the
by us in all innocence as just a transformation matrix to keegrliggs bosons and the gauge bosons transformed by the
track of the gauge invariance, this(x) is seen to have Higgs mechanism, which are thus still free parameters in the
gradually acquired more and more physical attributes. Thugpresent theory to be determined by phenomenology. Later
for example, it was seen already in earlier papé6s17 that ~ on, we shall mention some possibilities whereby duality may
in the presence of charges, whether electric or magneti@|so help in constraining these parameters.
o(x) will have to be patched. This means that it cannot Supposing that Higgs fields can indeed be constructed in
arbitrarily be put to unity everywhere by a gauge transfor-this way; then theE . field which was pictured as a compos-

mation as one might expect for a mere transformation Mage formed from combining the gauge fief, with an -0
trix. Now, we find further thatw(x) can be combined with  pair can be considered as a genuine bound state of the gauge
other fields to fundamentally change their physical behaviorgng Higgs fields. Now it has already been noted by ’t Hooft
We propose therefore to consider promotinx) to the sta-  [10] that a confined system with scalar fields in the funda-
tus of a genyine fielld variabl_e. Noyv in the classical field ental representation of the gauge group can appear very
theory, o(x) is a unitary matrix, being an element of the similar to a system in the Higgs phase, since the fundamental
gauge group. By promoting it to a physical field, we mean,«Hjggs fields” can combine with colored fields to form col-
presumably, allowing it to fluctuate about its classicalgrless bound states which need no longer be confined. Our
(vacuum value. We ask in such a case what physical signifi-picture here can thus be regarded as just a special case of the
cance it might have. . o 't Hooft scenario, in which the naturally occurring funda-
We note first that bemg a tran_sformatlon matrix in inter- mental scalar field(x) plays the role of the Higgs field, and
nal symmetry spacey(x) is invariant under Lorentz trans- combines with the confined gluon to give the massive, freely
formations. It takes a wave function for an electric charge t%ropagating dual gluon. What is slightly unusual is that both
one for a magnetic charge, and if we give opposite parities tictures here apply concurrently.
the two wave functions, as would seem natural, the matrix \we have considered above only the pure gauge theory.
w(x) would be a space-time pseudoscalar. Unde-gauge  when charges are introduced, then further consequences of
(electrig transformation, the rows ab(x) transform as the quality may result. It has been shown that charges in one
conjugate fundamental representation, while under @escription appear as monopoles in the dual description, and
U-gauge(magnetig transformation, its columns transform as monopoles, being topological obstructions, can only have
the fundamental representation. Further, its vacuum valueertain charges prescribed by the topology of the gauge
being a unitary matrix, its rows and columns all havegroup. Thus, given the electric charges of a theory, one can
vacuum values of unit length. In particular, then, for andeduce what magnetic charges can occur. Further, 't Hooft's
SU(2) theory, a row ofw(x) would represent a space-time result quoted above implies that if the electric group is un-
pseudoscalar, isodoublet field with a vacuum value of fixecdbroken and confined, then the dual group is broken and trans-
(unit) length, as is wanted for the Higgs field of the elec-formed by the Higgs mechanism, and vice versa. Hence
troweak theory. It is thus interesting to entertain the possigiven the charges we know, we have a fair idea how their
bility that the rows and columns ab(x) are indeed the dual charges will behave. It would therefore be interesting to
Higgs fields in the theory responsible for symmetry breakinginquire whether any of these dual charges may correspond to
If this turns out to be so, we would find ourselves in thequantum numbers already known to us but yet unexplained.
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We have in mind in particular the question of whether theWe shall call this groupJ, 3, a version ofS(U(3)xU(2)).

generation index which is so far entirely phenomenologicalWe note also that when restricted only to the electroweak

with no theoretical indication of its origin, can be interpretedsector, the gauge group 19(2)=SU(2)xU(1)/Z,, and

as dual color. This last has the advantage of occurring natuvhen restricted only to chromodynamics and electromagne-

rally in the gauge theory and of numbering exactly 3, astism, the gauge group i(3)=SU(3)xU(1)/Z3; in nei-

seems indicated for the generation index by recent experther case is the gauge group the maximal group generated by

ment. Such questions, however, are best discussed belawe corresponding gauge Lie algebra.

where we examine in our framework the standard model in The topology of the gauge group determines the values

detail. that the monopole charges of the theory can take. Thus, gen-
eralizing the arguments leading to the Dirac quantization

Il. MONOPOLES OF THE STANDARD MODEL condition for monopole charges in electromagnetism, one

can deduce in general that monopole charges are given by

We begin by CO”eCting together some b|tS Of informationthe e|ements of the fundamenta' grou@(G) of the gauge
on the Standard mOde| essential to our diSCUSSion |ater Whicﬁlroqu_ These are the homotopy C|asses of C|Osed curves in
though published already in the literatifd] may yet notbe G where members of each class are curves continuously de-
too widely known. o _ formable withinG into one another. In particular, forla(1)

In most(perturbative applications of gauge theories, one theory when the gauge group has the topology of the circle,
needs to specify only the gauge Lie algebra, but for studying,l(G):Z; it follows then that monopole charges here are
monopoles, one needs also the gauge group. Different groupspelied by integers, namely, the winding numbers around
may correspond to the same algebra. For example, both thge circle representing (1), which is the old Dirac result.
groups SU(2) and SQ(3)=SU(2)/Z, correspond to the Applied to the gauge group, 5, this implies that mono-
sa_me_algebr’asu(Z), andwhether monopole charges may pole charges of the standard model are also labelled by inte-
exist in a theory depends on whether the gauge group i§ers, where a monopole labelled bycan be regarded as

SUY(2) or SQ(3). _ carrying, simultaneousl¥,
Given the gauge Lie algebra, the gauge group of a theory

is to be determined by examining what fields occur in the

theory [20,21]. For example, the maximal group generated (@) adual color chargey=exp(2min/3),

by su(2) isSU(2), but in thepure Yang-Mills theory where

only the gauge fields in the adjoint representation occur, two (b) adual weak isospin charge=(—1)",
elements inSU(2) differing by a sign will have the same (2.3

physical effect and have thus to be identified. Hence the
f the th iSU(2)/Z,=SO(3 d not =~
gﬁ%‘; i%;g:;_p of the theory ISU(2)/2,=SX(3) and no (c) adual weak hypercharg¥ =2mn/3g; .

An analysis along these lines taking account of all pres- _
ently known particles and fields gives as the gauge group ohny monopole in the theory will have to carry the combina-
the standard model not the maximal gro8pJ(3)xSU(2)  tion of charges listed in Eq$2.3) for some choice of integer
X U(1) generated by the algebsai(3)xsu(2)xu(1), but  n. We note that in Eg(2.3) dual color and dual weak isospin
a group obtained by identifying the following sextets of ele-take values only irZ; and Z,, respectively. Thus for dual

ments in the maximal group: weak isospiny= + corresponds to the vacuum= — to a
monopole, and a monopole is its own conjugate, but for dual
(c,f,y).(ccq,foyyr), (ccy,foyy,),(c,ff_yy ), color, =1 -corresponds to the vacuum, whileg

=exp(2mi/3) and{=exp(4mi/3) correspond to monopoles of
(cey, ffo yy-y1), (cco,ff_,yy_y,), (2.)  conjugate charges.
) So far, one has made no use yet of dual symmetry. For the
wherec, f, andy are elements respectively U(3),  standard model, dual symmetry implies that in addition to

SU(2), andU(1), with the original gauge symmetry generated by the algebra
_ su(3)Xsu(2)Xu(l1), there is a further gauge symmetry
c =exp<277—”)\ ) r—12 generated by another algelsa(3)xsu(2)x u(1) with the
' J3 ’ " same structure but opposite parity. Moreover, dual symmetry
says that charges in one gauge symmetry are monopoles in
f_=exp2miTy), the dual gauge symmetry and vice versa. Hence, the mono-
pole charges otJ,; listed in Egs.(2.3) above can also be
y,=exp4mirY), r=1,2, regarded as ordinarfelectrig charges of the dual symmetry
su(3)xsu(2)xu(1). Butcharges of gauge symmetries are
y_=exp6miY). (2.2 usually assigned to representations of the gauge symmetry.

We shall use capital letters for groups but small letters for alge- ?We use here a different normalization convention for the gauge
bras. Although it is more correct to denote semisimple algebras afields and their couplings from that used in our earlier publications,
direct sums, we shall adhere to the product notation to avoid cone.g.,[19], so as to conform with the usual practice in the literature
fusion. on the standard model.
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So we have to ask to what representations of the dual symef the dual symmetry. However, not knowing the experimen-
metries the monopoles in EgR.3) should correspond. The tal spectrum of the dual charges, if any exist, we cannot as

answer is as follows: yet specify the dual gauge group or yet the admissible
_ charges its monopoles can have. However, if we assume that
(8 ¢=1~ dual color singlet1, the dual gauge group is anothek 3, say,U, 3, so that its
{=exp(2mi/3)~ dual color triplet 3 monopole charges are .again given by E@3), then it is
o seen that all known particles can be accommodated as mono-
{=exp(4mi/3)~ dual color antitriplet 3, poles of the dual group with appropriate choicesnofOne

(24  can thus assume without any inconsistency that the overall

_ gauge group of the standard modelUs 3x 0'213, although
n=— ~ dual weak isospin doublep, our considerations in what follows will not depend on this

(© Y=ngy,3 assumption.
=ng,/3.

(b) %=+~ dual weak isospin singlet,

Besides representations of the dual symmetries, the mono- lll. PROMOTION OF & TO HIGGS FIELDS
poles in Egs(2.3), when considered as charges in these sym- \we wish now to specify what we mean by promoting the
metries, hjlveNto be fﬂrther characterized by thelr couplingows and columns of the transformation matwxx) to be
strengths,gs, g,, and g, to the dual gauge field§ ,(x), Higgs fields.
W, (x), andB,,(x) for, respectively, dual color, dual weak  We recall thatw(x) was originally conceived as the ma-
isospin, and dual weak hypercharge. Furthermore, these cotrix relating the internal symmetry frame to the dual sym-
plings themselves ought to be related to the usual colomnetry U frame. The rows ofw therefore transform as the
weak isospin, and weak hypercharge couplingsg,, and  conjugate fundamental representation of thesymmetry,
0, by conditions similar to the familiar Dirac condition re- i.e., as3 of color or 2 of weak isospin, while its columns

lating the strengths of quantized electric and magneti?ransform as the fundamental representation of the tual

charges. The exact form of these generalized Dirac condi- mmetrv ie. a8 of dual color or2 of dual weak iSospin
tions depends on how the various quantities are normalized” Y 1€ pin.

For weak hypercharge, the condition is the same as for eled-et us then introduce Higgs fiels® and ¢©, with the
tromagnetism, namely, index (i) running over 1,2,3 forSU(3) and over 1,2 for

SU(2), having the above transformation properties under,

010:1=2, (2.5  respectively, th&) andU symmetries.

We want the vacuum expectation values of these Higgs
as already implied in Egqs2.3) and (2.4). For color and fields to be such as to give an orthonormal triad $ds(3)
weak isospin, if we follow the standard convention and writeand an orthonormal dyad f@&U(2); thus,
the free action as

1 B B (x)— ¢ v} (%), (3.2)
AO:ZJ d4xTr(FWFW)+f d*x (i, y*—m)y, e =)
with where, at any,
F,=4C,—9d,C,+igsC,,C,], (2.7 — i
© v % 93[C,.C,] Ek: ;g)vh)z U(').‘U(J.)z 58)), (3.3
C,=CiN,2, a=1,....8, (2.8
for color, and ; ;(kiqa):;(i).;(j): 58; (3.4
Fu=0,W,—d,W,+ig[W, ,W,], (2.9
so that we have, for the transformation matxifx) at anyx,
W,=W 7,02, p=1.23, (2.10
A\, and 7, being, respectively, the Gell-Mann and Pauli ma- k=2 ol (3.9

trices, and similar formulas also for the dual quantities, then 0

the generalized Dirac conditions read as folldu8]: We notice that the quantitieéi) and?}i) are actually just

~_ the frame vectors in, respectively, the direct and dual de-
gg=4mw (2.19 - i :
scriptions of internal symmetry space. In promoting them to

for both color and weak isospin. With these conditions thedynamical variables as the Higgs fielg’ and 4{" as we
translation into the dual description of the information in do here is thus similar in spirit to the Palatini treatment of
Egs.(2.3) on the monopole charges is now complete. gravity in terms of the frame vectors or vierbeins as dynami-

Conversely, charges in the originéllirec) symmetry cal variables[22], with the transformation matrixo here
su(3)Xsu(2)Xu(1) can also be considered as monopolesplaying the role of the metric.
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Next, if we follow the standard procedure for Higgs so far not entered into our argument with are not yet
fields, we would wish presumably to obtain their vacuumcompletely specified. Given that our present electroweak
expectationaf” andv{" as usual by minimizing some po- theory has gauge group(2), asexplained in the last sec-
tential V ¢, 1. Let us see what sort of a potential we need.tion. It foIIows_thatd;‘l_) and ¢ can only hav_e_ weak hyper-
First, of course)V should be invariant under thg and U chargesn/2 with n being an odd integefpositive or nega-

transformations, given the above transformation properties ine)' However, we are still free to choosﬁ(l) and ¢(2)
9 prop aving various odd half-integral values, and the resultant pat-

¢ and ¢. Second, we wank to be symmetric under permu- tern of symmetry breaking will depend on the choice.
tations of the indexi() of ¢ andp(®, given that thep()’s An easy way to deduce the symmetry-breaking pattern for
for different (i) have exactly equivalent status. Third, given some given choice of hypercharges for the Higgs fields is to
't Hooft’s result that if one symmetry is broken by the Higgs examine the mass matrix for the gauge bosons arising from
mechanism, then the dual symmetry is in the confined phaseéhe kinetic energy term in the action for the Higgs fields:

we wantV to be such that ifp,>0, then'$,=0, and vice

versa. Fourth, given that the resulting theory should be renor 2 DM¢(')D"¢('>, (3.9

malizable, we want to be a polynomial in¢g and ¢ of M

degree no higher than 4. Notice that although the potential i§\/here we have insisted, as in the Higgs potential, that sym-

requlred_to be symmetric under permutat|ons¢df, one metry should be maintained between the two Higgs fields
expects in general that this permutation symmetry will alSO¢(1) and (2. Both these Higgs field having been designated

be spo_ntaneously broken along W('it)h the _contlnuous SYMMESs weak isospin doublets, it follows that the covariant deriva-
try, giving then different values tey’ for different (). Can tive is

we find an appropriate potential with such properties and yet

have the above vacuum configuration as its minima? ) W Te N
We suggest the following: D,=0,7192W,(%) 5 ~i915B,(X) (3.9
Vb, $1=V[¢]+V[ 4], (3.6)  for both, each with its appropriate choice moffor weak hy-
percharge. The mass matrix for the gauge bosons is then
where given as
. . 2 ’ ’ Ta n 2 .
VIgl=-n2 601740 2 |¢<')|2] W Mo g W2H= 2, ¢7V'>[—gzwzg—glgB,LJ v
| 1
(3.10
+k 2 ¢ W2, (3.7 where the primed indices’,8’ on the left-hand side are

O meant to run over 1, 2, 3, and 0, with =B, , while the

with the stipulation thaj be odd whileh and x be even vacuum expection values{” and ¢{7’ of the Higgs fields
under the dual transform, namelg=—pu, A=A>0, x  ©On the right may be taken as

= k>0. This potential is interesting in that its minimum oc- v 0

curs (for u>0) when the¢’s are mutually orthogonal and V= O)’ S’Z):(w) (3.11)
is':n conformity with Egs.(3.1) and(3.3) above.

when = ;)| ¢M|?=pu/2\, independently of the individual v
lengths of the differenty’s. The minimum has thus a sym-

From Eq.(3.10, it is clear thatM ./ 4 is diagonal fora’
pr B'=1,2, namely, that

metry greater than that contained in the potential which
only symmetric under permutations of ti#é"’s, so that dif-
ferent vacua from that degenerate set contained in the min
mum can be physically inequivalent. A vacuum chosen ran- 2

il i i 92, 5. >
domly from the set will in general have different vacuum Migr=— (024 W?) 84, (3.12
expectations values for atp() and we shall develop our 4

future arguments for this general case for which the potential , . 2 . .
(3.7) applies. Our considerations below, however, will notWhICh means that the gauge boscwé are unmixed, with

depend on the explicit form of the potential. each acquiring a mass of#/2)Jv”+w’. The other two
With the above proposal as Higgs fields, let us examinéjauge bosona’,3’=3,0, on the other hand, will have the

the familiar case of electroweak symmetry breaking. Here, ofollowing mass submatrix:

course, we know from experiment exactly how the symmetry

should be broken, namely, as in the Salam-Weinberg manYie’ 8"

ner, so that a rederivation of this result will serve as a check 1 92(v2+w?) 9201(N(1yp%— N2 W?)
on the validity of the present approach. We note first that in = 5 5 B
contrast to most theories, one is not allowed here to choose 4\ 9291(Nv°—NW?)  gI(Ny v +niEwo)
whatever Higgs fields one wants to give the desired (3.13

symmetry-breaking pattern but is obliged to introduce two
(and only two weak isodoubletgp™) and ¢(?) as our Higgs ~ for which mixing will in general occurexcept whemj,
fields. The weak hypercharges ¢f", however, which have =Nz andv=w). Furthermore, both the eigenstates will in
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general acquire a mass, in which case the electrowd@  integer(positive or negative andg,=2m/g;. As with the
symmetry will be completely broken. The only situation preaking of the electroweak symmetry treated in the preced-
when this will not happen is whemy= —n;)=n, namely,  ing section, the symmetry-breaking pattern here will depend

when the two Higgs fieldgs!) have opposite hypercharges, on what dual hypercharges are assigned to the Higgs fields
in which case the matrix becomes piCh

To identify the breaking pattern, let us examine again the
), (3.14 gauge boson mass matrix arising from the kinetic energy of
the Higgs fields:

95 ng,0:

M, /IE(UZ‘FWZ)(

“ra Ngg: n°gl
which is of rank 1, and hence has one vanishing eigenvalue. = a7 ()

As a result, the electroweak symmetty(2) will be broken % D¢ D", (4.2)
down to a residudl (1) with the zero-mass eigenstate as the
photon. with

One sees therefore that the standard Salam-Weinberg
theory does occur as a special case of the Higgs scheme
proposed above, corresponding to the chaicel andv
=w. Different choices ofn give different hypercharges to
the Higgs fields, and the simplest choine=1 is the one whereéﬂ and’éﬂ are, respectively, the gauge potentials for
needed to give Yukawa couplings to the existing quarks andual color and dual hypercharge which, through our previous
leptons. Different choices far#w, on the other hand, will work [17], we know exist. The mass matrix for the gauge
change only the predictions for the Higgs bosons themselvesosons is given as
which are not yet discovered. Thus, as far as those of its
essential features are concerned which have so far been been 'C":Z'M a,ﬁfé""’“
tested by experiment, the Salam-Weinberg theory is the \ 5
unique solution in the suggested approach, as long as it is _N J@ = male ~ ~ = | =
stipulated that a residual symmetry remains after the symme- _% ¢ ~9:CL 5 ~ 9@ T UIB,| ¢y,
try is broken. It seems therefore that the idea of promoting 4.3
the transformation matrixo to Higgs fields is quite viable, '
having tpasbsedkt_he Fest i?_ tlhe cr)]nly exarr?_plhehof Spo?tageoﬁhere «',8'=0,1,...,8 with ESL:EM’ and a;s/a)' the
Symmelry bréaking in particie physics which has so far beeq,, ., m expectations for the Higgs fields, can be chosen as
confirmed by experiment.

The choice ob =w would be natur(a; if one assumes as in X
the minimal single Higgs model that(® is theC conjugate ~ ~ ~
of V. Here, however, we have no good theoretical reason = 0], dP=|v|, ¢P=|0]. @4
to make this special choice. Although there is also nothing 0 0 z
against doing so, it would seem perhaps more natural in view
of the proposed interpretation of Higgs fields as frame vecA similar analysis to that given for electroweak symmetry
tors to regardg® and ¢ as independent fields. In that breaking in Sec. Il then shows that the dual glu@fs for
case, there will be more Higgs bosons, but also naturallyy=1,2,4,5,6,7 remain unmixed but acquire, respectively, the
different values forv andw, with the advantage of giving following masses:
different masses to- and d-type quarks without requiring
widely different values for their Yukawa couplings.

e Ne -
D’u:aﬂ_|g3cﬂ?_|g1(n(a)+1/3)BM, (42)

0 0

IV. BREAKING OF DUAL COLOR

From dual symmetry, one.degyces that dual to the usual a=45: Ma:% ¥+ 22 4.5
su(3) color symmetry, there is asu(3) symmetry for dual 2
color, and from 't Hooft's argumentlO] plus the empirical _
fact that color is unbroken and confined, one deduces that _ 93
this su(3) for dual color will be broken by the Higgs mecha- a=18: M“_? y
nism.

How is the breaking o6u(3) to be achieved? At this whereas the other two componemﬁf% for «=3,8 will in
point, we enter an uncharted domain with no longer experigeneral mix with each other and with the dual hypercharge
mental facts or previous experience to guide us, but aCCOFCbotentiaIEM. As for the breaking of the electroweak sym-
ing to the suggestions above, the symmetry breaking is to bgetry studied in Sec. Ill, the mass matrix here will leave a
attained by introducing as Higgs fields three tripletsresidual symmetry only for exceptional choices of the inte-
$®, (a)=1,2,3 of dual color corresponding to the rows of gers'ﬁ(l),ﬁ(z),ﬁ(g) and of the parameters,y,z. For ex-
the transformation matrix. These'’s can carry also dual ample, forﬁ(1)=ﬁ(2)=0,ﬁ(3)= —1, andx=y=z, there is a
or magnetic hypercharges which, according to the analysis in(1) symmetry left which involves both dual color and dual
Sec. I, can only take the values ¢1/3)g,, with n an  hypercharge, but this symmetry is not the dual to electro-
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magnetism and has in fact no particular physical S|gn|f|-charge of a||¢(a) as — 291/3 for, accordmg to the result
cance. Rather, we want here dual color to be completely2 3) of our analysis in Sec. Il this is the smallest dual hy-
broken, for which case there is a wide choice. For lack of anyhercharge a monopole &f, ; can have which is at the same
other guidance, we choose to work with the simplest caséme a dual color triplet and a dual weak isospin singlet as

when alln(a) s are the same and equal to, say,In particu-  the Higgs fields$® are supposed to be. In that case, the
lar, we focus onn=—1 giving the common dual hyper- mass matrix for the gauge bosoﬁ§ «=3,8,0 reads as

03 0391
2 _T9 2 \2 _ 2_\,2
(X+y) 4@0( y9) 3 (Y9
~ 5 _—
ﬁ(xz—yz) (X +y2+472) _ 959 L(x? +y?-27%) |. (4.6)
443 12 33
930; 930; 93

4
-3 (x2—y?) 3\/—(X +y?—27%) %(x +y2+7?)

This mass matrix is a little messy to diagonalize and it is notrange of the interaction? We think not, for the gluon, though
particularly illuminating algebraically. We shall thus do so massless, is confined and cannot propagate in free space, so
only when dealing later with numerical results. Here, wethat the range of the interaction will still be characterized by
need only note that since tise(3)x u(1) symmetry is here the mass of the dual gluon. In particular, at energies low
completely broken, all the associated nine gauge bosons wilompared with that mass scale, the interaction will be
acquire nonzero masses. strongly suppressed by the dual gluon propagator, in the
We have argued already in the Introduction that thesesame way that weak interactions historically were considered
dual color and dual hypercharge gauge bosons can exist daeak” in spite of its sizable couplingy, because of its
freely propagating particles. Their masses are unknown asuppression at low energy by the “larg& boson mass.
long as the vacuum expectation valuey,z of the Higgs What will happen, however, to the interaction between

fields ¢® remain undetermined parameters. Presumablygyal hypercharges? They will couple with strengthto the

Powet\r/]er, t_he r?r?sst()as will be hi%h,hat Ieaslt indthebTeV ]r(angadual hypercharge potentiﬁlﬂ which is also massive, and so
or ofherwise the bosons wou ave aready been Toungy |,y s as if the interaction will again be short ranged. This,
Apart from possibly being observed directly as particles in

future, they can also be exchanged between dual color arffPWever, need not be the case &y, like the dual gluon
dual hypercharges, if such exist—and we shall be conside@POVe, may also metamorphose intB a, but, in contrast to

ing this possibility in the next section—giving rise to inter- the color caseB, has, via electrowek mixing, a component
actions between them. The fact, however, that these gaude the photon which is not confined and can propagate in free
bosons are supposed to represent just the same degreesspfice. It seems to us therefore that it is eventually the photon
freedom as the color gluor@, and the hypercharge poten- that will govern the range of the interaction, but that the

tial B, makes the physical effects of their exchange a littleeffective coupling is reduced from the originaﬁl to
hard to envisage. We suggest the following picture.

Consider first a pure dual color charge of strength It ind ict that ted bolically in Fig. 1,
can interact with a similar charge via the exchange of a dua{f1 mind a picture as that represented symbolically in 9.

gluon C#. In general, we recall, the col@ and 8 compo- where a wavy line represer@t a dotted line a photon, and

~ : a little circle some sort of “metamorphosis” vertex. In other
nents of C, will mix with one another and with the dual . .

© = i , ) words, we are suggesting that perhaps, even though magnetic

hypercgar?e potenltm and will not rlemam thus adphysr:cald charges may exist as dual hypercharges and as such can still
state utth ?rﬂflmg er pretsintatmn Ter: us tpretetn lln tkISI k'lnteract via long-ranged Coulomb-like forces, the effective
_cus_5|on at this does not happen. The interac 1on 100K 1l trength of their interaction is drastically reduced from that
it will then have a short range of the order of the inverse dua

| hich h readv stipulated to be lar xpected from the Dirac quantization value.
gluon mass which we have already stipulated to be large. | 5iar on, we shall attempt to assign dual color and dual

However,C,, is supposed to represent just the same degreRypercharges to existing particles, in which case, for the as-
of freedom as the color potentiél , . Indeed, through the signment to make physical sense, it will be essential to avoid
dual transform(1.4), one has in principle an explicit proce- having unwanted forces between the particles arising out of
dure, though a very complicated one, for construct®lg  these dual charges. If the picture given above for the inter-
from E#. In particle language, this would seem to mean thataction of dual charges is correct, then one sees that embar-
a dual gluon can transform itself, or “metamorphose,” into arassment can be avoided by supposing sufficiently large
gluon. Will this then affect our conclusion above about themasses for the dual color and dual hypercharge gauge

91/M2_ whereM5, is a measure of thE, mass. We have
91 1 I
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of dual color neutral right-handed fermion fields. With this
choice of dual color for fermions, we can then write the
Yukawa coupling as

5 Vi 2 (05 ()l 5.0

for quarks, and a similar one for leptons, where we have
maintained again, as in the Higgs potential and in the kinetic
energy of the Higgs fields, a symmetry betweéf® for
different (@).

The mass matrixn for fermions is to be obtained by
inserting for ¢ in Eq. (5.1) their vacuum expectations
bosons, which is possible as long as the vacuum expectatidiven in Egs.(4.4), giving
valuesx,y,z of the Higgs fields can be freely chosen.

FIG. 1. Interaction of dual hypercharges.

xa Xxb xc X
V. DUAL COLOR AS GENERATION INDEX m=| ya yb yc|=|y](ab,c), (5.2)
The attractiveness to us of making dual color into the za zb z z

generation index is twofold. On the one hand, dual color is 3

in number, just like generations, and being there already itvhere we have writtea=Y;, b=Y|5), ¢= Y3 for short.

the gauge theory, it would be surprising, as Dirac said ofFor this we obtain, fop?=(|al?+|b|?+|c|?),

monopole charges when he first discovered them, that nature

should make no use of it. Besides, if our interpretation in the X
revious sections were correct, dual color would in an 2 2

gase manifest itself in a number of new phenomena, andyif mm'=pc| ¥X Y yz =p7| Y|y, (53

it is not as generation, then it has to be otherwise accommo- zx zy 2 z

dated. On the other hand, from the historical point of view,

generation appears in the standard model just as an empiricahich, being factorizable as shown, is a matrix of rank 1,

concept introduced to fit experiment. As such it sticks outhaving thus only one nonzero eigenvajei@?, with {2=x2

uncomfortably in a theory which is otherwise quite geometri-+Y?+22 The matrixmm' can be diagonalized by

cal, and demands from us some understanding of its theoret-

ical origin. ax ay az

By dgal symmetry, a gauge theory can be. described BIx Bw?ly Bolz
equally in terms of either the gauge potential or its dual. In U=
the usual description of the standard model in terms of the yo o o A0y
color potentialC,, , dual color charges appear as monopoles. Y72 y Y y X
In Sec. Il, we have already analyzed what color monopoles (5.9
may occur. Our first task, therefore, in attempting to interpret
generations as dual color is to assign each particle occurringith
in nature a place in the table of permissible color monopoles.

In the preceding section, we have effectively done so already a ?=x’+y?+72,
for the gauge bosons and the Higgs fields. We shall try now
to do the same for the fermion fields.

For the moment, let us ignore weak isospin. Each fermion B 2=+ += (5.5)
then, whether quark or lepton, occurs in three generations. If X2y
we wish to identify generation with dual color, then it would
be natural to assign the fermions to dual color triplets, which,
according to Sec. Il, are permissible to color monopoles. Not —2—

2 Xy xz X

yw? zo Z Xo? Xw Y

(X2y44‘y224+'22X44‘X4y2

both the left- and right-handed fermions, however, can be
assigned to dual color triplets, for otherwise we would not be
able to construct a Yukawa coupling of the fermions with the

Higgs fields @ introduced above which are themselves
dual color triplets. Taking then a hint from the Salam-

XZyZZZ
+y47%+ 2*x?+ 3x%y?7?%)

—a 2872,

Weinberg theory, let us make the left-handed fermions duahnd w = exp(2i/3) a cube root of unity. Thus

color triplets but give no dual color charges at all to right-
handed fermions; thus, ¥ ).3.(¥r)Y' for quarks and
()73, (yR)P! for leptons, where the index denotes color,

a dual color, both running from 1 to 3, while the indph],

Umm'uT=diag p?¢?,0,0). (5.6)

We conclude therefore that all the mass in this mass ma-

though also running from 1 to 3, is just a label for three typedrix is soaked up by one single massive state, leaving the



2516 CHAN HONG-MO AND TSOU SHEUNG TSUN 57

other two massless. Furthermore, since the diagonalizing m@roblem. The left-handed fermion is not only a triplet of dual
trix U in Eqg. (5.6 depends onIy on the vacuum expectationco|or but also 9 doublet of weak isospin; thug,lLI?a for

valuesx,y,z of the Higgs ﬁ‘?|d3<~b(a) which are themselves quarks and ¢, )? for leptons while the right-handed fermion
independent of which fermions they are coupled to, it fol-is a singlet in both. Thus, given that our Higgs field&)
lows thatU must be the same far-type andd-type quarks, and ¢V carry each only dual color or weak isospin, we

giving thus the identity matrix as the Cabibbo-Kobayashi-yqy1q need both to build an invariant coupling with the fer-
Moskawa(CKM) matrix. Now, although such a mass matrix mion fields, e.g., for quarks:

is highly degenerate, it is not at all bad as a first approxima-
tion to the physical situation, given that for baiktype and =

(@) b
d-type quarks and also for leptons the empirical masses for [Eb; Y[b]% (YOG D (g I
the two lower generations are in every case no more than 6%
of the highest generation mass, while the empirical CKM ' —\aa 7@ 4 (2)r [blr2]
matrix has its diagonal elements all differing from unity by +[2b‘j Y[b]% (WO e ¢ (PRl
at most 3% and its largest off-diagonal element of order only (5.7
20% [23]. Indeed, these significant empirical facts are a bit '

of a myste.ry in conventior_lal formulatio.ns of the standard_where the indice§1] and[2] denote the two types of right-
model, having there no obvious explanation, and we regard anded isosinglets with hypercharges, respectively, of 2/3
as an attractive feature of our scheme that it should leagnd— 1/3. This is not properly a Yukawa coupling and looks
immediately to such a sensible zeroth order approximationijke being nonrenormalizable.

In the next section, we shall consider the means whereby the |t \ve expand the Higgs fieldsh and ¢ about their
above degeneracy at zeroth order may be lifted perturbazacyum values, we would obtain the mass matrices ofithe
tively to give nonvanishing values for the lower generationandd-type quarks, respectively, as

masses and for the off-diagonal CKM matrix elements. Here

we only note that the masses of the highest generation, X

namely,t, b, andr, can of course be fitted to the experimen-

tal values by adjusting the Higgs fields vacuum expectation my=v| Y | (ab,c), (5.8
valuesx,y,z and the Yukawa couplings,b,c. z

Obviously, the great danger in interpreting generations as
a broken gauge symmetry is that gauge symmetries imply
gauge interactions, and none has been observed between
generations besides the usual color and electrowaadt of
course gravitationalforces. This is particularly worrisome z
with dual color, for the gauge interactions here are in prin-
ciple strong. Thus, for example, the neutrinos, which carry aand Yukawa-type coupling to the oscillatiogé and ¢’ of
generation index, and hence in the present scheme also duhk Higgs fields about their respective vacuum expectations;
color, can in principle interact strongly with one another,thus,
which would be far from the truth as we now know it. How-
ever, as already pointed out in the last section, dual color is

2
|
=

<

(a’,b’,c’), (5.9

—\aa, 7 (@) b][1
broken, with all gauge bosons acquiring masses. The effect % Y[b]% ()% (d")3 v(¢r)g "
of their exchange is therefore suppressed by their propaga- .
tors at energies low compared with their masses. Thus, by +(,ﬂL)?aU—lma[b]((ﬁ/)<1>r(¢R)gb][1] (5.10

choosing the gauge boson masses sufficiently high, one can

in principle always reduce the gauge interaction due to dugfor the u-type quarks and a similar expression for théype
color Sufficiently to keep within experimental bounds. For quarksl The mass matricé€s.8) and(5.9) are of the form we

example, a crude estimate shows that by choosing dual gluapanted in Eq(5.2) apart from a different normalization con-

masses greater than 1 TeV, we can make the dual color ifjantion. The Yukawa couplings to the fieldd and ¢’ are

teractions between neutrinos in the present scheme weakgjc) o expected, with the second term being the familiar
%han the standard weak mterac'uorr]]s between the:;n. No‘féoupling to the Higgs field of standard electroweak theory,
rom Egs.(4.5 and(4.6), one sees that one can make dual, . the first term being a coupling for the dual color Higgs

gluon masses as large as one likes as long as the Vacuytht we can accept. There will be, however, a further term in

expectqtion values,y,z of the Higgs fields¢!® remain un- the expansion in which bothh’ and¢’ occur which, though
constrained. At the same time, one sees from B that  50,aply small for oscillations small compared with their

one can still kee_p the quark masses at around the eXper,imGOécuum expectation values, can nevertheless make the
tal scale by adjusting appropriately the Yukawa couplmgs[heory nonrenormalizable.

a,b,c. This is the tactic we shall advocate, which is at least We have considered two ways of addressing this problem.

possible when we are treating the breaking of dual color i o . . C ~(a)
isolation from the breaking of weak isospin as we have beer;[he first is to combine the two sets of Higgs field§” and

doing so far in this section. #{" into a single set, sayb%ar)(r), carrying both dual color
However, in combining the treatment of symmetry break-and weak isospin. In that case, we can write down a genuine
ing for both dual color and weak isospin, we meet with aYukawa coupling for our fermions as follows:
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a,d,r,2/3 0,6,2/3 a,&,'l:,—]_/:‘; a’O _&_:_-_ _QT—
t : :
1,0 o1 e 1/3
|: H] i 3 a PR (a) (b)
; | | - | |
FIG. 2. Example of an effective coupling. \/::\‘ {:} O
w0 d
> Ypg(p0? g (g (5.1 () (a) ()
(a)[b](r)[s]

) FIG. 3. One-loop corrections to the fermion mass matrix.
The disadvantage, however, is that the breaking of dual color

and weak isospin will then be governed by the same vauum - . . . ~
expectation values of these Higgs fields, and hence woult? labeled by the mduies it carries, being color,a dual
occur at comparable energy scales. It would thus remove theolor, r weak isospin,r dual weak isospin, and the last
freedom of pushing the dual color gauge bosons to higfiumber dual weak hypercharge. Each line in Fig. 2 is an
masses so as to suppress unwanted interactions between gafmissible combination of dual charges as listed in E48)
erations as we had advocated above. If one takes this routd$ it ought to be. The firgfrom left) and last fermion lines
therefore, one will have to find some other cleverer way fordre they andyg above, and the first Higgs line &', while
suppressing the unwanted interactions to within experimentdhe second and third Higgs lines are supposed to be confined
bounds, which though perhaps possible seems to us somigether by their dual weak isospin as indicatedrbtp form

what contrived and difficult to achieve. the other Higgs fieldsp? as composites. If the remaining
The alternative that we prefer which leaves free thefermion lines are assumed to be heavy, we would obtain Eq.

symmetry-breaking scale for dual color compared with tha{s.7) as an effective coupling.

for weak isospin is to accept E¢5.7) but to regard the For the present, we leave the choice of the two alterna-

present scheme as just a low energy effective theory anfles open as it will make no difference yet to our phenom-

some of the fields we have so far listed as composites adnology, although in the considerations which follow, our

some yet undiscovered more fgndamental fields. Within tth|nk|ng may have been biased towards the second choice.
present dual framework, there is good reason to suspect that

that may indeed be the case. Dual symmetry implies that the
electroweaksu(2) symmetry should have a dual, i.e., an VI. CKM MATRIX AND MASSES

su(2) symmetry. At the fundamental level, therefore, one FOR LOWER GENERATIONS
expects that Higgs field§rames and fermion fields should  Ajthough zero masses for lower generations and the iden-

carry alsosu(2) indices. Up to now, however, we have con- tity matrix as the CKM matrix are reasonable as zeroth order
sidered onlysu(2) singlets which are all that is required so approximations, one would need of course to envisage some
far to accommodate the known particle spectrum. The ratiomechanism whereby this degenerate scenario can be lifted so
nale for that, we suggest, is that the electrowsaf?) sym-  as to give eventually more realistic values for these param-
metry being broken by the Higgs mechanism, 't Hooft's ar-eters. Within the framework of the standard model, loop cor-
gument[10] would imply that its dualSu(2) should be TFections are an obvious possibility. However, the fermion

. — . mass matrix here being at zeroth order factorizable as in Eq.
unbroken and confined. In that case, osly2) singlets can 2), loop corrections are quite restricted in property and it
e?(iassteinrl the dfreel state, which aref al tgat one |ha§' seen |s? .no't obvious at first sight that they are capable of gerform—
P » and-uniess one can periorm deep INelastic eXpeﬂig that function. What we wish to show now is that they can

ment at high enough energy, one would not be able to Chdeed do S0, at least in principle, although whether they will

their su(2) internal structure. One can even argue that theycyally give the correct answers to fit with experiment can
su(2) couplingg,, as estimated from the experimental valueonly be decided by detailed calculations.

of a,=g5/47~0.033 and the Dirac quantization condition ~ Some one-loop corrections to the fermion mass matrix are
(2.11), being more than 10 times larger than #1€3) color  depicted in Fig. 3, where a solid line represents fermions, a
couplinggs, the confinement by dual weak isospin would bewavy line gauge bosons, and a dotted line Higgs bosons.
much deeper than by color and would require much higheHowever, even before performing any calculation, one can
energy to detect. Now, if some of the “fundamental” par- see that these corrections will not alter the factorized form of
ticles we know are in fact composites, it would not be sur-the mass matrix. Figureg&@ and 3b) will only premultiply
prising if some of their couplings, in particular the the factorized zeroth order mass matrix by another matrix so
“Yukawa” coupling (5.7), appear nonrenormalizable. It is that the result has to remain in the factorized form. On the
not easy, of course, to guess the fundamental fields and coother hand, Figs.(®), 3(d), and 3e) are linear combinations
plings at the deeper level, but it is not hard to find exampleof matrices all of the factorized forn6.2) with the same
which can give rise to the effective coupliri§.7) we want.  parameters, b, andc so that the result is again factorized.
The construction in Fig. 2 is a possibility, in which each line A “vertex renormalization” diagram of the type shown in
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AN tions will still have vanishing mass. However, this need not
ﬁi\m_%’zl_ ‘ ™ be the case, for loop corrections, apart from rotating the mass
L R L R L R matrix as in Eq.(6.1), also make it run by virtue of the

renormalization group equation, and when the mass matrix
changes its value depending on the energy scale at which itis
measured, it is not immediately clear how the actual masses
of particles ought to be defined. When considering only one
particle, the conventional wisdom is that the running squared
massm?(Q?) has to be evaluated at a value@f equal to
its own value at thaQ?, which is then designated ake
mass of the particle. When we are dealing with a mass matrix
of the factorized form(5.2), however, or indeed with any
¥natrix of rank 1, it is not so obvious what the proper proce-
dure to define particle masses ought to be. We suggest the
ef_ollowing.

Given that loop corrections are not supposed to break the

(a) (b)
FIG. 4. Vertex renormalizations to the fermion mass matrix.

Fig. 4@ can in principle break factorizability, but in the
present framework, such diagrams do not exist. Since onl
the left-handed fermions here carry non-Abelian charges (
for dual color and for weak isospii with the right-handed

fermions neutral under both these symmetries, the corr

3 oa
sponding gauge bosofisamely, the dual gluon§,, , and the factorized form of the fermion mass matri%.2), it will re-

weak bosonsV,,) couple only toy , not togr. U(1) and i ot rank 1 at all energy scales so that the eigenstate with
U(1) gauge bosons can couple to bgthand 4z, depend-  the highest eigenvalue can always be defined without any
ing on theirU(1) andU(1) charges, but these, however, do difficulty. The other two states with zero eigenvalues, how-
not rotate the generatiofi.e., dual coloy indices, leaving ever, are indistinguishable. Imagine then that the mass ma-
thus the factorized form of the mass matrix still intact. Ontrix is run via the renormalization group equation from a
the other hand, although the diagram Fi¢o)4with a Higgs  high energy scale down. At every scale, we can diagonalize
loop does exist since the Higgs boson couplgsto ¢ @S the matrix and identify the eigenstate with the nonzero ei-
shown, the diagram has a factorized Yukawa coupling matrixyenyalue. Let us then run the scale down until this eigen-
on the extreme left and right, and must therefore remain iR,5) e takes on the same value as the scale at which it is
the factorized form. _ _evaluated. Recalling the conventional wisdom cited above
. The above analy|§ can be extended to diagrams V‘."tl?or defining the mass in the case of a single particle, we can
higher loops. For basically the same reasons as those IVehen legitimately define this value as the mass of the highest

above'for one—Iopp .dlagrams, it can be seen tha’( even hlgh%reneration fermion. At this energy, of course, as indeed at
loop diagrams will find it hard to break the factorizability of anv enerav. since the mass matrix remains of rank 1. the
the mass matrix, and indeed we have not found a single oné y 9y y

capable of doing so. We are thus forced to accept that, baP—ther two eigenvalues are zero, but they should not be inter-

ring nonperturbative effects, the factorized form of the mas% :ztzt\j/azlijattzz ;ntatshseeivgnthié\glz Ic')l'v(\)lefli‘n%etr;]eeraglcc:[?:_i Ig;stggg
matrix will remain intact to all orders. 9 ; ’

The fact that the mass matrix should remain factorizedthe mass matrix should be run further down N scale and
) . bvaluated at the masses of the lower generations, whatever
however, does not necessarily mean that loop corrections ¢

never lift the degeneracy at the zeroth order. Take, for eXEtEHese may be. We have now to specify exactly how this

ample, the dual gluon loop diagram of FigaB Although it ought to be done.

o Lo The identification of the highest generation state at its
cannot break the factorizability afi, it will in general rotate - ; ;
. ) mass scale also specifies a two-dimensional subspace of
its left-hand factor; thus,

states orthogonal to the highest generation, namely, the

X X, eigensubspace with zero eigenvalues in this case. It is clear

that the state vectors of the two lower generations, being

me=| Y |(ab,c)—m;=| y1|(ab,c). (6.1 independent physical entities to the first, should lie in this
z Z subspace. Let us now run the mass matrix down to a lower

scale. We have seen already that loop corrections can rotate

The amount of this rotation will depend on the parameters inhe left factor of the mass matrix, so that, in general, the
the original zeroth order mass matrix. In particular, thesemm' matrix that we have diagonalized at the highest genera-
parameters being different for thetype andd-type quarks, tion mass will no longer remain diagonal at the lower energy.
for example, the resultant left-hand factor, (y,,z;) after ~ We can of course rediagonalize the matrix at the lower en-
the one-loop correction will be different far andd. It fol-  ergy, obtaining again 1 nonzero and two zero eigenvalues,
lows then that the matricdd andU’ diagonalizingmlmI, but the diagonalizing matrix at the lower energy will not be
respectively, foru andd as given in Eq(5.4) will also be the same as that at the mass of the highest generation we
different, giving thus a nontriviali.e., nonidentity CKM have obtained before. In other words, the two-dimensional
matrix V=UU’ 1. We notice, however, that this will hap- subspace we have identified before at the highest generation
pen only when the vacuum expectation valxeg,z of the  mass scale as containing the states of the two lower genera-
Higgs fields are different. tions will no longer lie within the eigensubspace of eigen-

As the mass matrix remains factorizable after loop correcvalue O at the lower energy. To be specific, suppose we call
tions, it is still of rank 1 and has thus still only one nonzerothe eigenvector for the highest generatignand define two
eigenvalue. It might then appear that the two lower generaether mutually orthogona{normalized vectorsv, and vj
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orthogonal also tos;, all at the mass scale of the highest berg [24] in a general Yang-Mills-Higgs framework. He

generation; then, the mass submatrix gave the answer as a sum of five terms, of which the last two
due to Higgs loops and tadpoles, callBd’ and 3! by
(vilmlvj), 1,j=2,3, (6.2  him, depend on the Higgs boson mass matrix of which we

have yet insufficient knowledge. The other three terms, de-

will in general be nonzero at the lower energy scale to whictpending on the Higgs fields’ vacuum expectation values but

it is run. But this, according to the preceding arguments, hasot on their masses, we can in principle evaluate modulo

to be interpreted as the mass submatrix for the two lowesome unknown parameters and ambiguities that we shall
generations. make clear. Furthermore, the term cal®g/; by Weinberg
The 2x2 matrix (6.2), being a nonzero submatrix of the rotates the fermion mass matnix the same way fou-type

rank 1 matrixm, is of course still rank 1, so that it can also and d-type quarks, whereas in order to contribute to the
be diagonalized at every energy, giving one nonzero eigencKM matrix, a loop correction has to rotatedifferently for

value and the other zero. We can then repeat the above prg-andd. There remain then only two terms which affect the
cedure and run the mass matrix on down via the renormalceKM matrix directly for us to consider: namely,

ization group equation until the nonzero eigenvalue of Eq.
(6.2) equals the scale at which it is evaluated. This value, in N 1

1 _ _
conformity with what has gone before, we should define as Zcft= % fo dX[ —2my t N (1=X) +4y4t nyamu]

the mass of the second highest generation and is, of course, 16m°
nonzero. m2x2\__
The diagonalization of the matri(6.2) at the second gen- XIn ,uﬁ,+ L) tn, (6.4
eration mass identifies in turn the eigenvector with the non- 1=x
zero eigenvalue as the state vector of the second generation. 1

Let us call this vectow,, which is by definition orthogonal SAS_
to vy, the state vector for the highest generation, and in gen- ©
eral different fromv,. Further, we can define the remaining
eigenvector with zero eigenvalwg as the state vector of the
lowest generation, and it is by construction orthogonal to
both v, and v, as it should be. At the mass scale of the
second generation, of course, the quantity (i1 submatrix

1 1 —
16172% p L DAL=)ma] yamuy, Tyl va

2.2
- mW
+ Val yamyy, t N]mw}[|”< l—x)
2

2
mgX —
—In| i+ ﬁ) ] Yal vamw, tnl, (6.9

(v3lm[vs) (6.3
where uy are the masses of the dual color and dual hyper-
vanishes, but as before, this should not be interpreted as tfdarge gauge bosons, namely, those listed in E4S) to-
mass of the lowest generation fermion since it is evaluated gether with the eigenvalues of the mass matrix in @cf).
the wrong scale. We have again to run it down further via thel he fermion mass matrix used here is
renormalization group equation fon until the value of Eq.

(6.3 equals the scale at which it is evaluated. At that scale, p X
v5 will not in general lie within the eigensubspacemfwith mw=z Y| (XY,2), (6.6)
zero eigenvalue, so that E¢.3) can be nonvanishing, or 7

that the lowest generation fermion also will have nonzero
mass. Since at each stage the leading remaining generatigrich is, crudely speaking, the square root of the matrix

soaks up all the mass in the matrix, leaving the next generann in Eq. (5.3). The couplingst y are defined as
tion to acquire only whatever mass it can by running, the

mass will go down by a large factor from each generation to o 03
the next, qualitatively the same as what experiment is telling N= T 7)\,\‘5(1— vs), N=1,2,456,7,
us.
One sees therefore that although the mass matrix remains - -
factorizable and of rank 1 after loop corrections, the effects Tl _ %)\ Conm %)\ Cont Ea c
of the corrections will nevertheless be sufficient to give non- N 2 "3TIN. o TBEN T 3¥1MON
zero masses to the lower generation fermions and to make
the CKM matrix deviate from the identity. However, xl(l— ys), N=3,8,0 (6.7)
whether these effects can be made to give numbers close to 2 ' T

the experimental values by adjusting the free parameters still i . ) ) )

remaining in the scheme is a question that can only be anf¥ith C being the matrix which diagonalizes E¢t.6) and

swered by a detailed calculation, which we have begun butn: N=1,...,8, theGell-Mann matrices.

are far from being in a position yet to report on. We can at Apart from the coupling constantg; and g, which can

present only give the following two trial calculations as il- be determined from the experimental values of their duals

lustrations for the sort of effects we shall get. 03= V4mas andg, = v4ma, via the Dirac quantization con-
As illustration for loop corrections to the identity CKM ditions (2.5 and (2.11), the expressions in Eq$6.4) and

matrix, let us consider for dual color the one-loop diagramg6.5) depend on the vacuum expectation values of the Higgs

listed in Fig. 3 which have already been evaluated by Weinfields x,y,z and on the Yukawa couplingsb,c throughp,
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as defined in Sec. V. The parametgrg,z are unknown, but the Higgs self-energy and gauge boson loop contributions
once these are given, thencan in principle be determined whose explicit forms need not here bother us.

by normalizingp ¢, the nonzero eigenvalue af, on the ex- The matricedJ andD can of course be diagonalized at
perimental mass of the highest generation fermion, namelygny scale, but do not remain diagonal in general on running,
Miop @nd Myeiom fOr, respectively, theu-type andd-type — and what interests us for the problem at hand are just those
guarks. In practice, however, there is here an ambiguity inerms which contribute towards the dediagonalizatiorJof
normalizing p for the following reason. There are terms in andD, namely, theDD' term in Eq.(6.9) and theUU" term
Eg’?fl) as well as in the other Weinberg terms that we haven Eg. (6.10. In the basis wher&) is diagonal,D is not
dropped which are scale dependent, and though either ngiagonal, and vice versa, by virtue of a nontrivial CKM ma-
rotatingmy, at all, or else rotatingn,, the same way fou-  trix V, so that for the dediagonalizing effects alone which
and d-type quarks, and so not affecting the CKM matrix interest us, we may write the renormalization group equa-
directly, nevertheless changes the normalizatiomgf This  tions(6.9) and(6.10 as

is presumably related ultimately to the running of these

guantities with changing scales which we have not yet sorted 16 zd_U _ EDDTU 6.1
out fully. As a result, we have to treatalso as a parameter Tt 2 ' (6.1
for the moment, and cannot fix the actual size of off-diagonal

CKM matrix elements. Further, not having sorted out the dD 3

running effects, we also cannot, using the method outlined 16W2E: — EUUTD. (6.12

earlier in this section, identify the quarks of the two lower
generations. Hence, we cannot at present spedifyand
Vg, Or distinguishV,, from V., and V4 from V.. The
significance of this present exercise is thus strictly limite

Putting in arbitrarily the parameters=1,y=2/3,z=1/3,

Now in the philosophy of the present scheme, the main
g. effect for dediagonalizing) and D is supposed to come
from diagrams with dual color gauge and Higgs boson loops,

we obtained from Eqs(6.4) and (6.5) the following matrix ~ &S already discussed above. These dual color loop effects,

for the absolute values of CKM matrix elements, where hOWever, have not been included in E¢6.9 and (6.10),

has been adjusted to give off-diagonal elements roughly ofhich indeed we do not even yet know how to calculate.
the order of a percent: However, since it was these omitted effects which are sup-

posed to give rise to the nontrivial CKM matrix in the first
place, the dediagonalizing effects from the mixing due to the
0.9998 0.0173 0.0130 CKM matrix itself which are included in Eqg6.11) and
0.0166 0.9998 0.0124, (6.8 (6.12 would have to be regarded in this philosophy as only
0.0130 0.0123 0.9998 secondary effects induced by the primary dual color loop
contributions. Nevertheless, we think it worthwhile to study
gs.(6.11) and(6.12 as illustrations for the effects on the
ower generation fermion masses that one can expect.

As we shall be interested in running the equations only
over small ranges of the order of the mass differences be-
tween generations, we may take the linearized equations and
consider the CKM matrix itself as constant over these ranges.
Starting then with a diagonalized mass matrix at the mass

Given the limitations stated in the preceding paragraph, th
only conclusions we can draw at present are that thi
“mock” CKM matrix (i) does get rotated from the identity
by loop corrections(ii) remains roughly though not exactly
symmetric, andiii) is in general complex, all of which are
properties apparently exhibited by the actual CKM matrix
obtained from experimer[23]. This is not much, but still X ; : )
enough perhaps as encouragement for further exploration. SCa@lé of the highest generation, in our case drag(.,0,0)
As illustration for generating masses for lower generatiod©" the u-type and diagfisortom, 0,0) for thed-type quarks,
fermions, consider the renormalization group equations usy®"d running it down to lower energies, we obtain
ally given for the standard modg25]:

. 3(my,/w)t i
U,=Vdiag exd — ——,0,0| V™ “diagm;,,0,0),
16w2d—U=§(UUT—DDT)U+(E —-A)U, (6.9 32m*
dt 2 um Pl ' (6.13
dD 3 _ 3(my/v)?t _
16m2— =~ (DDT-UUND + (34— Ay)D, D=V~ !diag ex —(t— ,0,0] Vdiagm,0,0),
dt 2 3272
(6.10 (6.149

whereU andD are, respectively, the Yukawa coupling ma- where,V being nondiagonal, one sees that the mass matrices,
trices to the electroweak Higgs field for, respectively, thethough diagonalized at the highest generation mass, will be-
right-handedu- and d-type quarks, ands 4 andA, 4 are  come nondiagonal when run to the lower energy, as ex-
pected.
Now in the philosophy of the present scheme, the differ-

3The symbolU adopted here following the usual convention ence in the top and bottom masses comes mainly from the
should not, of course, be confused with the diagonalizing matrix inthe difference betweem andw, i.e., the vacuum expectation
Eq. (5.4). values of, resepectively, the Higgs fieldd®) and ¢, so
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that the Yukawa couplingsy, /v andm,/w are comparable niches exist because of it in the form of the transformation
in magnitude. In that case, we can put matrix « and of the concept of a local dual color symmetry.
But the actual assignment of these niches to Higgs fields and
m/v~m,/w~(180 GeV/i246 GeY.  (6.19 i fermion generations involves of course some, perhaps
Inserting this value in Eqg6.13 and(6.14) above, together SOmewhat daring bL_Jt to us quite reasonablg, assumptions and
with the experimentally measured values of the CKM matrixt€ merit or otherwise of these must rest in the end on the
elements, one obtains that on running from the highest gerfompatibility of their predictions with experiment.
eration to the next, say, e.g., from the tpottom to the As far as pres.elnt mvgsugauons go, the scheme has scored
charm (strange quark mass, the equations would generate2 Number of positive points, among which we count the pre-
off-diagonal elements ity or D of the order of 10° times  diction of exactly three generations, the mass hierarchy be-
the highest generation mass. This is not enough to explaifween them, the near identity CKM matrix, and the possibil-
the actual mass values of the second generation which is éfy of evaluating lower generation masses and off-diagonal
the order of a few percent of the highest generation. HowCKM matrix elements perturbatively. The first three points
ever, one recalls that the effects represented by 8q§3  are all significant and noted empirical facts which lack ex-
and (6.14) are supposed to be only secondary effects obplanation in the usual formulation of the standard model, but
tained from the primary dual color effects that we have notseem to have found each raison d'etre in the present
yet learned to calculate. If we argue naively that the factor okcheme.
suppression in mass from one generation to the next due to On the other hand, there are also consequences which can
the primary effect should be of the order of the square root ogjve rise to potential disagreement with experiment, among
that due to the secondary effect, then the answer we obtaingghich the most worrisome is the prediction of new interac-
is about right. The above argumen.t, for whatever it is worth¢jons due to dual gluon exchange. We argued above that
can be repeatqd for the suppression from the second to,”ﬂﬁese are suppressed by the dual gluon propagator, and as
Iowes_t generation anq the answer is still comparable W|tr]ong as these are large enough, we may not notice the inter-
what is seen in experiment. actions due to their exchange at the present experimental
energy. This suppression, however, has its limit, on two
VII. CONCLUDING REMARKS counts. First, the loop corrections, which we claimed in the
receding section may lead to nonzero off-diagonal CKM

concrete calculations which we hope soon to supply, has t atrix elements and lower generation masses, also depend

be considered at the present stage as largely speculative % the masses of dual gluon, and if one makes these latter
Juasses too large, then the loop correction may be too small

that a number of features at a deeper theoretical level ha I explain the experimental effects. One shall then h i
not been fully understood. This deficiency applies in particu- xplal Xper ) en have 1o

lar to the Higgs fields introduced as frame vectors in internageVIse other means for lifting the zeroth order degeneracy.

symmetry space, which give rise to symmetry breakingl econd, even if one can make the masses of dual gluons very

through some specially constructed Higgs potential. It is gen_arge, there will eventually come a point at which the propa-

erally believed, however, that a Higgs potential is merely fitr?]r guglprelssol(r)]newglhgr? I:nizr wgrk, aggt tf:aee |nteract:t_|0n
makeshift construct representative of an effect with a deep f ual glu X g¢, say, €., ween neutrinos

dynamical origin. In this aspect, therefore, the presenwht'ch T:atrry dual cotlor, W'". b(lacome ver?/ SFrOT% W'g t,r;'f’N
scheme has not advanced from the usual formulation of th8°! VI0'at€ SOme astronomical or cosmological bounds= Ve

Weinberg-Salam theory where a similar Higgs potential is 0 not know. By the same token, the scheme may conceiv-

introduced. Some would believe that not only the Higgs po_ably be in conflict with some currently held theoretical ideas

tential but even the Higgs fields themselves should have gn asymptotic bghel~\/ior. At fir.st sight, it may a‘?pear that the
dynamical origin. Introducing Higgs fields as we did abovedual color couplinggs, being inversely proportional to the
would seem to be at variance with this belief. Although atusual color couplings, will grow with energy and so spoil
the classical level, where the Higgs fields are replaced bompletely such cherished concepts as asymptotic freedom.
their vacuum expectation values, the generalized dual trangVe are, however, not sure that this will be so. As already
form (1.4) implies no increase in degrees of freedom fromstated repeatedly above, the dual glup does not repre-
the usual description of a gauge theory, when the theory isent a different degree of freedom to the gluGp, but
guantized, and the transformation matsxbecomes a field should rather be regarded as a compo&itéadron formed
in its own right, the situation is no longer clear. Superficially, from the usual color gluons and the colored Higgs fields. If
it would seem that the frame vectors in internal space whiclso, their exchange should be compared not with elementary
play the roles of Higgs fields would represent then genuinexchanges but with, say, pion exchange between hadrons
dynamical variables in much the same way as the vierbeinghich do not spoil asymptotic freedom. Nevertheless, at fi-
behave in the Palatini description of general relativity. nite energies, dual gluon exchanges will affect the running of
On the pragmatic side, however, in spite of the abovevarious quantities and hence may lead to potential discrep-
mentioned theoretical deficiencies, the present scheme hasaacy with experiment.
number of quite attractive features, among which the most Let us assume optimistically that the present scheme will
attractive we find is the possibility to assign both to thesurvive these possible pitfalls, either as it is here proposed or
Higgs fields and to the fermion generations each a naturakith some madifications utilizing some of the freedom still
place. This is a consequence of the recently discovered nomvailable. We shall find it interesting then to note that it has
Abelian dual symmetry17] to the extent that the necessary also some predictions which are probably accessible to ex-

The scheme proposed in this paper, until supported b
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perimental tests in the not too distant future. There are firsthis is true, then its effects would be unavoidable, and even if
the dual gauge bosons and dual colored Higgs bosons. Crud@e does not choose to interpret the internal symmetry
estimates from our trial calculation of the CKM matrix re- frames as Higgs fields and dual color as generation as we do
ported in Sec. VI suggest that dual gauge bosons may havere, the existence in theory of these niches as consequences
masses in the several TeV range, and if so may be accessilé¢ dual symmetry, on the one hand, and the empirical re-
to the LHC. As for the masses of the dual colored Higgsquirement of Higgs fields and fermion generations, on the
bosons, however, we have at present no idea of their magnather, would still have to be accounted for in some manner.
tudes. Second, there is the exciting possibility suggested at
the end of Sec. V that there may be yet a deeper level of
confinement than color with dual weak isospin. If so, future
deep-inelastic experiments at ultrahigh energy may reveal We are grateful to Bill Scott for teaching us some rudi-
internal structures to what are presently regarded as elemements of the CKM matrix and to Dick Roberts, Ben Alla-
tary objects such as quarks and leptons. nach, and Herbi Dreiner for helpful conversations on practi-
Finally, we remark that dual symmetry is claimed to becalities in running the fermion mass matrix. One of us
inherent to Yang-Mills theory as it is to electromagnetism. If (T.S.T) thanks the Wingate Foundation for partial support.
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