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Physical consequences of non-Abelian duality in the standard model
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Possible physical consequences of a recently discovered non-Abelian dual symmetry are explored in the
standard model. It is found that both Higgs fields and fermion generations can be assigned a natural place in the
dual framework, with Higgs fields appearing as frames~or ‘‘ N-beins’’! in internal symmetry space, and
generations appearing as spontaneously broken dual color. Fermions then occur in exactly three generations
and have a factorizable mass matrix which gives automatically one generation much heavier than the other two.
The CKM matrix is the identity at zeroth order, but acquires mixing through higher loop corrections. Prelimi-
nary considerations are given to calculating the CKM matrix and lower generation masses. New vector and
Higgs bosons are predicted.@S0556-2821~98!02704-0#

PACS number~s!: 11.15.Ex, 12.15.Ff
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I. INTRODUCTION

The long-standing interest in the electric-magnetic dua
@1–6# and its non-Abelian generalizations@4,7–11# has seen
an active revival in the last few years@12–16# and much
effort has been devoted to finding their physical con
quences.

In a previous paper@17# it was shown that Yang-Mills
theories are symmetric under a generalized dual transf
which reduces to the familiar Hodge star operation in
Abelian case. The purpose of the present paper is to exam
what physical consequences this dual symmetry might h
when applied to the standard model with gauge symm
su(3)3su(2)3u(1), which seems to embody all present
known facts in particle physics apart from gravity.

We note that, in contrast with many other approaches
duality adopted in the literature which aim at extending
standard model to a larger theory making use of supers
metry and higher dimensions of space-time and/or cons
ents of matter~such as strings and membranes!, we choose
here to aim for economy. In other words, instead of look
‘‘beyond the standard model’’ as is often done, we sh
remain strictly within the standard model framework in fo
space-time dimensions, and ask merely whether, within
framework, the recently discovered generalized non-Abe
dual symmetry can lead to physical consequences which
as yet unknown or unexplored.

Now although this generalized dual symmetry has stric
speaking been established only for classical fields, we w
to show that when supplemented by some general kn
facts in quantum field theories, plus some seemingly reas
able assumptions special to our treatment, the symm
when applied to the standard model can lead to predict
of quite considerable interest. Before studying these for
standard model in detail, however, let us first examine du
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ity for Yang-Mills theory in general terms for indications i
which areas physical consequences may be expected to a

We recall first some basic tenets of our earlier paper@17#
on non-Abelian duality. The standard Hodge transform

* Fmn52 1
2 emnrsFrs, ~1.1!

under which electromagnetism is symmetric, has long b
known not to leave non-Abelian Yang-Mills theory invar
ant. The main difficulty is that althoughFmn is a gauge field
derivable from a potential, thus

Fmn5]nAm2]mAn1 ig@Am ,An#, ~1.2!

there is in general no corresponding potentialÃm from which
* Fmn can be similarly derived; thus,

* Fmn5
?
]nÃm2]mÃn1 i g̃ @Ãm ,Ãn#. ~1.3!

It has therefore remained unclear for some time whet
there is in fact a generalization of electric-magnetic dua
to non-Abelian Yang-Mills theory. In@17#, we suggested tha
the answer is affirmative provided one replaces the Ho
star in Eq. ~1.1! by a generalized dual transform, whic
though differing from Eq.~1.1! for non-Abelian theories, re-
duces back to the Hodge star for the Abelian theory, th
recovering the standard electric-magnetic duality as a spe
case. Unfortunately, a generalized dual transform with
required properties has to be rather complicated, and so
we have succeeded only in formulating it in the language
loop space. However, for our considerations in this pap
very little is needed of the details of this generalized tra
form. In what follows, therefore, we shall just note dow
some of its salient features so as to give a flavor of wha
involved, and then highlight the very few points which a
necessary for our future discussion.

Explicitly, the generalized dual transform proposed
@17# reads as
2507 © 1998 The American Physical Society
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v21
„h~ t !…Ẽm@hut#v„h~ t !…52

2

N̄
emnrsḣnE djdsEr@jus#

3 j̇s~s!j̇22~s!d„j~s!2h~ t !…,
~1.4!

which is expressed in terms of some loop space varia
Em@jus# and its dualẼm@jus# describing the gauge field. Th
actual formalism of Yang-Mills theory in terms of these va
ables is unfortunately somewhat involved and delicate,
for the purpose of the present paper, we need only men
the following few points. The variablesEm@jus# are nonlo-
cal, depending on a segment of the parametrized looj
around the pointj(s) on the loop labelled by the values of
the loop parameter. The segment has widthe which eventu-
ally is to be taken to zero, and in the limite→0,

Em@jus#→Fmn„j~s!…j̇n~s!, ~1.5!

where the overdot denotes differentiation with respect to
loop parameters. In other words, in the limit of zero seg
mental width,Em@jus# is just the Yang-Mills field at the
point j(s) dotted into the tangent to the loop at that poi
However, the rules of operation are such that the limie
→0 is to be taken only after all loop differentiations an
integrations, such as that occurring in the dual transfo
~1.4!, have already been performed. This generalized d
transform is thus a rather complicated affair, but is known
reduce just to the Hodge star for the Abelian theory and
the general case to share the property with the Hodge st
being its own inverse apart from a sign. A new feature, ho
ever, which did not occur in the Abelian theory, is the mat
v(x) which transforms from the internal symmetry frame (U
frame! in which fields of the direct formulation are measur
to the frame (Ũ frame! in which fields of the dual formula-
tion are measured. As we shall see, this quantity will acqu
a major significance in our future discussion.

The result of our earlier paper was that Yang-Mills theo
is symmetric under the generalized transform~1.4!, and our
present purpose is to explore the consequences. We note
that this symmetry implies that in addition to the origin
gauge invariance, say,G, the theory will possess a furthe
gauge invariance~the dual invariance! G̃, having the same
group structure but an opposite parity to the first, so tha
has in all aG3G̃ local gauge invariance. Further, it implie
that a dual potentialÃm(x) exists which plays a role exactl
dual to that of the ordinary Yang-Mills potentialAm(x). No-
tice that Ãm(x) does not represent an additional degree
freedom toAm(x) since Ãm(x) is related to the dual field
variableẼm@jus# in exactly the same way asAm(x) is related
to Em@jus#, andẼm is given in terms ofEm via the general-
ized transform~1.4!. However,Ãm(x) provides an alternative
description of the gauge field to that provided byAm(x), and
for certain phenomena, the former may be much more c
venient than the latter. For example, in terms ofÃm(x) the
phase transport of the wave function of a~color! magnetic
charge is simple, being just exp@ig̃Ãm(x)dxm# from x to a
neighboring pointx1dxm, whereas an expression of th
es
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same quantity in terms ofAm(x), though presumably pos
sible, would be extremely complicated. In particular, t
Wilson operator

A~C!5TrFPexpS ig R
C
AmdxmD G , ~1.6!

in the words of ’t Hooft @10#, measures magnetic flu
throughC and creates electric flux alongC. Then by dual
symmetry the operator

B~C!5TrFPexpS i g̃ R
C

ÃmdxmD G ~1.7!

should measure electric flux throughC and create magnetic
flux alongC. And indeed, using the generalized dual tran
form ~1.4!, one can show@18# that this operatorB(C) does
satisfy the following commutation relation withA(C), which
was used by ’t Hooft to abstractly define theB(C) operator:

A~C!B~C8!5B~C8!A~C!exp~2p in/N!, ~1.8!

wheren is the number of timesC8 winds aroundC andN is
for the gauge groupSU(N).

Using the commutation relation~1.8!, ’t Hooft derived the
important result that if the electric field is confined, then t
magnetic field is in the Higgs phase, and vice versa. Supp
now that A(C) is confined; thenB(C) should be in the
Higgs phase, and its corresponding potentialÃm representing
the dual gauge boson should then acquire a mass an
permitted to propagate freely through space. At first sig
this may seem contradictory to the statement thatAm ~color!
is confined, meaning thatAm can be nonvanishing only in
side hadrons, sinceAm andÃm are supposed to represent ju
the same degrees of freedom. We believe, however, that
is not the case. By confinement we mean that colored obj
cannot propagate freely in space, and a gluonAm , being
colored, has therefore to remain inside a hadron. The d
gluon Ãm , however, is not colored~electrically, that is!. This
can be seen in the generalized dual transform of Eq.~1.4!.
Under an ordinary color gauge~that is, in our present lan
guage, an electricU gauge! transformationS(x),

Em@jus#→S„j~s!…Em@jus#S21
„j~s!…. ~1.9!

This change, however, is compensated in Eq.~1.4! by a cor-
responding transformation in the matrixv(x), which trans-
forms underS(x) as

v~x!→v~x!S21~x!, ~1.10!

leaving thusẼm@hut# and hence alsoÃm , invariant. Like
Ẽm@hut#, Ãm is magnetically colored but electrically color
less. It has thus no reason to be confined. And althoughAm

andÃm represent the same degrees of freedom, specifyin
Ãm outside hadrons in free space is not double counting s
thereAm , by virtue of confinement, does not propagate.
other words, we are saying that although the gluon, be
colored, is confined inside hadrons, the degree of freedo
represents can still manifest itself in the free space outs
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hadrons as a massive, color-magnetically charged, but co
electrically neutral, dual gluon.

Perhaps a more physical way of presenting the above
clusion, which may make it easier to visualize, is to pictu
v(x) itself as a field. It represents then a color dyon, car
ing both a color-electric and a color-magnetic charge, tra
forming underŨ transformationsS̃(x) as the fundamenta
representation and underU transformationsS(x) as the con-
jugate fundamental representation; thus,

v~x!→ S̃~x!v~x!S21~x!. ~1.11!

The dual fieldẼm in Eq. ~1.4! can then be pictured as
composite object~a bound state! formed from an~electri-
cally! colored fieldEm belonging to the adjoint represent
tion and anv-v̄ pair, in such a way as to make the who
color-electrically neutral, though color-magnetical
charged. The result is thus, in a sense, also a hadron, an
the right to propagate through space as any other had
That being the case, there seems no reason why they ca
be detected experimentally in principle.

The observation in the preceding paragraph about the
trix v(x) brings us to another point in duality which ma
have observable consequences. Although introduced at
by us in all innocence as just a transformation matrix to ke
track of the gauge invariance, thisv(x) is seen to have
gradually acquired more and more physical attributes. Th
for example, it was seen already in earlier papers@16,17# that
in the presence of charges, whether electric or magn
v(x) will have to be patched. This means that it cann
arbitrarily be put to unity everywhere by a gauge transf
mation as one might expect for a mere transformation m
trix. Now, we find further thatv(x) can be combined with
other fields to fundamentally change their physical behav
We propose therefore to consider promotingv(x) to the sta-
tus of a genuine field variable. Now in the classical fie
theory, v(x) is a unitary matrix, being an element of th
gauge group. By promoting it to a physical field, we mea
presumably, allowing it to fluctuate about its classic
~vacuum! value. We ask in such a case what physical sign
cance it might have.

We note first that being a transformation matrix in inte
nal symmetry space,v(x) is invariant under Lorentz trans
formations. It takes a wave function for an electric charge
one for a magnetic charge, and if we give opposite paritie
the two wave functions, as would seem natural, the ma
v(x) would be a space-time pseudoscalar. Under aU-gauge
~electric! transformation, the rows ofv(x) transform as the
conjugate fundamental representation, while under
Ũ-gauge~magnetic! transformation, its columns transform a
the fundamental representation. Further, its vacuum va
being a unitary matrix, its rows and columns all ha
vacuum values of unit length. In particular, then, for
SU(2) theory, a row ofv(x) would represent a space-tim
pseudoscalar, isodoublet field with a vacuum value of fix
~unit! length, as is wanted for the Higgs field of the ele
troweak theory. It is thus interesting to entertain the pos
bility that the rows and columns ofv(x) are indeed the
Higgs fields in the theory responsible for symmetry breaki
If this turns out to be so, we would find ourselves in t
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happy position where the Higgs fields required in the theo
which normally we have to introduce by hand to give t
desired symmetry-breaking pattern, actually arise in a nat
manner as just the transformation matrix between the di
and dual gauge frames of the theory. It may even mean
certain aspects in the symmetry-breaking pattern of
theory can be predicted.

The classical considerations of our previous papers, h
ever, give only the vacuum configuration of the ‘‘Higg
fields’’ as v(x) but leave open the question of how exac
the ‘‘promotion’’ of v(x) to physical Higgs fieldsf(x) is to
be effected. Our proposal for doing so will be given below
Sec. III when applying the idea to the standard model.
note that the vacuum expectation valuesv(x) themselves
have to do only with the pattern of symmetry breaking b
not with the symmetry-breaking scales. These latter are g
erned by how easily the Higgs fields can fluctuate from th
vacuum values, and by how rapidly these fluctuations
allowed to vary from point to point in space-time. The
pieces of information are encoded in standard formulati
in the sizes of the kinetic energy term]mf]mf, the ‘‘mass’’
term 2m2f2, and the quartic termlf4 of the Higgs action,
relative both to one another and to the rest of the acti
These parameters are ultimately related to the masses o
Higgs bosons and the gauge bosons transformed by
Higgs mechanism, which are thus still free parameters in
present theory to be determined by phenomenology. L
on, we shall mention some possibilities whereby duality m
also help in constraining these parameters.

Supposing that Higgs fields can indeed be constructe
this way; then theẼm field which was pictured as a compo
ite formed from combining the gauge fieldEm with an v-v̄
pair can be considered as a genuine bound state of the g
and Higgs fields. Now it has already been noted by ’t Ho
@10# that a confined system with scalar fields in the fund
mental representation of the gauge group can appear
similar to a system in the Higgs phase, since the fundame
‘‘Higgs fields’’ can combine with colored fields to form col
orless bound states which need no longer be confined.
picture here can thus be regarded as just a special case o
’t Hooft scenario, in which the naturally occurring funda
mental scalar fieldv(x) plays the role of the Higgs field, an
combines with the confined gluon to give the massive, fre
propagating dual gluon. What is slightly unusual is that bo
pictures here apply concurrently.

We have considered above only the pure gauge the
When charges are introduced, then further consequence
duality may result. It has been shown that charges in
description appear as monopoles in the dual description,
monopoles, being topological obstructions, can only ha
certain charges prescribed by the topology of the ga
group. Thus, given the electric charges of a theory, one
deduce what magnetic charges can occur. Further, ’t Hoo
result quoted above implies that if the electric group is u
broken and confined, then the dual group is broken and tra
formed by the Higgs mechanism, and vice versa. He
given the charges we know, we have a fair idea how th
dual charges will behave. It would therefore be interesting
inquire whether any of these dual charges may correspon
quantum numbers already known to us but yet unexplain
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We have in mind in particular the question of whether t
generation index which is so far entirely phenomenologic
with no theoretical indication of its origin, can be interpret
as dual color. This last has the advantage of occurring n
rally in the gauge theory and of numbering exactly 3,
seems indicated for the generation index by recent exp
ment. Such questions, however, are best discussed b
where we examine in our framework the standard mode
detail.

II. MONOPOLES OF THE STANDARD MODEL

We begin by collecting together some bits of informati
on the standard model essential to our discussion later w
though published already in the literature@19# may yet not be
too widely known.

In most~perturbative! applications of gauge theories, on
needs to specify only the gauge Lie algebra, but for study
monopoles, one needs also the gauge group. Different gr
may correspond to the same algebra. For example, both
groups SU(2) and SO(3)5SU(2)/Z2 correspond to the
same algebra1 su(2), andwhether monopole charges ma
exist in a theory depends on whether the gauge grou
SU(2) or SO(3).

Given the gauge Lie algebra, the gauge group of a the
is to be determined by examining what fields occur in
theory @20,21#. For example, the maximal group generat
by su(2) is SU(2), but in thepure Yang-Mills theory where
only the gauge fields in the adjoint representation occur,
elements inSU(2) differing by a sign will have the sam
physical effect and have thus to be identified. Hence
gauge group of the theory isSU(2)/Z25SO(3) and not
SU(2) itself.

An analysis along these lines taking account of all pr
ently known particles and fields gives as the gauge grou
the standard model not the maximal groupSU(3)3SU(2)
3U(1) generated by the algebrasu(3)3su(2)3u(1), but
a group obtained by identifying the following sextets of e
ments in the maximal group:

~c, f ,y!,~cc1 , f ,yy1!, ~cc2 , f ,yy2!,~c, f f 2 ,yy2!,

~cc1 , f f 2 ,yy2y1!, ~cc2 , f f 2 ,yy2y2!, ~2.1!

where c, f , and y are elements respectively ofSU(3),
SU(2), andU(1), with

cr5expS 2p ir

A3
l8D , r 51,2,

f 25exp~2p iT3!,

yr5exp~4p irY !, r 51,2,

y25exp~6p iY!. ~2.2!

1We shall use capital letters for groups but small letters for al
bras. Although it is more correct to denote semisimple algebra
direct sums, we shall adhere to the product notation to avoid c
fusion.
l,
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We shall call this groupU2,3, a version ofS„U(3)3U(2)….
We note also that when restricted only to the electrowe
sector, the gauge group isU(2)5SU(2)3U(1)/Z2, and
when restricted only to chromodynamics and electromag
tism, the gauge group isU(3)5SU(3)3U(1)/Z3; in nei-
ther case is the gauge group the maximal group generate
the corresponding gauge Lie algebra.

The topology of the gauge group determines the val
that the monopole charges of the theory can take. Thus,
eralizing the arguments leading to the Dirac quantizat
condition for monopole charges in electromagnetism, o
can deduce in general that monopole charges are give
the elements of the fundamental groupp1(G) of the gauge
groupG. These are the homotopy classes of closed curve
G where members of each class are curves continuously
formable withinG into one another. In particular, for aU(1)
theory when the gauge group has the topology of the cir
p1(G)5Z; it follows then that monopole charges here a
labelled by integers, namely, the winding numbers arou
the circle representingU(1), which is the old Dirac result.

Applied to the gauge groupU2,3, this implies that mono-
pole charges of the standard model are also labelled by i
gers, where a monopole labelled byn can be regarded a
carrying, simultaneously,2

~a! a dual color chargez5exp~2p in/3!,

~b! a dual weak isospin chargeh5~21!n,
~2.3!

~c! a dual weak hyperchargeỸ52pn/3g1 .

Any monopole in the theory will have to carry the combin
tion of charges listed in Eqs.~2.3! for some choice of intege
n. We note that in Eq.~2.3! dual color and dual weak isospi
take values only inZ3 and Z2, respectively. Thus for dua
weak isospin,h51 corresponds to the vacuum,h52 to a
monopole, and a monopole is its own conjugate, but for d
color, z51 corresponds to the vacuum, whilez
5exp(2pi/3) andz5exp(4pi/3) correspond to monopoles o
conjugate charges.

So far, one has made no use yet of dual symmetry. For
standard model, dual symmetry implies that in addition
the original gauge symmetry generated by the alge
su(3)3su(2)3u(1), there is a further gauge symmetr
generated by another algebrasũ(3)3sũ(2)3 ũ(1) with the
same structure but opposite parity. Moreover, dual symm
says that charges in one gauge symmetry are monopole
the dual gauge symmetry and vice versa. Hence, the mo
pole charges ofU2,3 listed in Eqs.~2.3! above can also be
regarded as ordinary~electric! charges of the dual symmetr
sũ(3)3sũ(2)3 ũ(1). But charges of gauge symmetries a
usually assigned to representations of the gauge symm

-
as
n-

2We use here a different normalization convention for the ga
fields and their couplings from that used in our earlier publicatio
e.g.,@19#, so as to conform with the usual practice in the literatu
on the standard model.
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So we have to ask to what representations of the dual s
metries the monopoles in Eqs.~2.3! should correspond. The
answer is as follows:

~a! z51; dual color singlet 1̃,

z5exp~2p i /3!; dual color triplet 3̃,

z5exp~4p i /3!; dual color antitriplet 3̄̃,

~b! h51; dual weak isospin singlet1̃,

h52; dual weak isospin doublet2̃,

~c! Ỹ5n g̃1/3.

~2.4!

Besides representations of the dual symmetries, the m
poles in Eqs.~2.3!, when considered as charges in these sy
metries, have to be further characterized by their coup
strengths,g̃3, g̃2, and g̃1, to the dual gauge fieldsC̃m(x),
W̃m(x), and B̃m(x) for, respectively, dual color, dual wea
isospin, and dual weak hypercharge. Furthermore, these
plings themselves ought to be related to the usual co
weak isospin, and weak hypercharge couplingsg3, g2, and
g1 by conditions similar to the familiar Dirac condition re
lating the strengths of quantized electric and magn
charges. The exact form of these generalized Dirac co
tions depends on how the various quantities are normali
For weak hypercharge, the condition is the same as for e
tromagnetism, namely,

g1g̃152p, ~2.5!

as already implied in Eqs.~2.3! and ~2.4!. For color and
weak isospin, if we follow the standard convention and wr
the free action as

A05
1

4E d4xTr~FmnFmn!1E d4xc̄ ~ i ]mgm2m!c,

~2.6!

with

Fmn5]nCm2]mCn1 ig3@Cm ,Cn#, ~2.7!

Cm5Cm
ala/2, a51, . . . ,8, ~2.8!

for color, and

Fmn5]nWm2]mWn1 ig2@Wm ,Wn#, ~2.9!

Wm5Wm
r tr/2, r51,2,3, ~2.10!

la andtr being, respectively, the Gell-Mann and Pauli m
trices, and similar formulas also for the dual quantities, th
the generalized Dirac conditions read as follows@18#:

g g̃54p ~2.11!

for both color and weak isospin. With these conditions
translation into the dual description of the information
Eqs.~2.3! on the monopole charges is now complete.

Conversely, charges in the original~direct! symmetry
su(3)3su(2)3u(1) can also be considered as monopo
-

o-
-
g

u-
r,
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-
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of the dual symmetry. However, not knowing the experime
tal spectrum of the dual charges, if any exist, we canno
yet specify the dual gauge group or yet the admissi
charges its monopoles can have. However, if we assume
the dual gauge group is anotherU2,3, say,Ũ2,3, so that its
monopole charges are again given by Eqs.~2.3!, then it is
seen that all known particles can be accommodated as m
poles of the dual group with appropriate choices ofñ . One
can thus assume without any inconsistency that the ove
gauge group of the standard model isU2,33Ũ2,3, although
our considerations in what follows will not depend on th
assumption.

III. PROMOTION OF v TO HIGGS FIELDS

We wish now to specify what we mean by promoting t
rows and columns of the transformation matrixv(x) to be
Higgs fields.

We recall thatv(x) was originally conceived as the ma
trix relating the internal symmetryU frame to the dual sym-
metry Ũ frame. The rows ofv therefore transform as th
conjugate fundamental representation of theU symmetry,
i.e., as3̄ of color or 2̄ of weak isospin, while its columns
transform as the fundamental representation of the duaŨ
symmetry, i.e., as3 of dual color or2 of dual weak isospin.
Let us then introduce Higgs fieldf ( i ) and f̃ ( i ), with the
index (i ) running over 1,2,3 forSU(3) and over 1,2 for
SU(2), having the above transformation properties und
respectively, theU and Ũ symmetries.

We want the vacuum expectation values of these Hi
fields to be such as to give an orthonormal triad forSU(3)
and an orthonormal dyad forSU(2); thus,

f j
~ i !~x!→f0

~ i !y j
~ i !~x!, ~3.1!

f̃ j
~ i !~x!→f̃0

~ i ! ỹ j
~ i !~x!, ~3.2!

where, at anyx,

(
k

ȳ k
~ i !y~ j !

k 5 ȳ ~ i !
•y~ j !5d~ j !

~ i ! , ~3.3!

(
k

ȳ̃ k
~ i ! ỹ ~ j !

k 5 ȳ̃ ~ i !
• ỹ ~ j !5d~ j !

~ i ! , ~3.4!

so that we have, for the transformation matrixv(x) at anyx,

v j
k5(

~ i !
y j

~ i ! ȳ̃ ~ i !
k . ~3.5!

We notice that the quantitiesy j
( i ) and ỹ j

( i ) are actually just
the frame vectors in, respectively, the direct and dual
scriptions of internal symmetry space. In promoting them
dynamical variables as the Higgs fieldsf j

( i ) and f̃ j
( i ) as we

do here is thus similar in spirit to the Palatini treatment
gravity in terms of the frame vectors or vierbeins as dyna
cal variables@22#, with the transformation matrixv here
playing the role of the metric.
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Next, if we follow the standard procedure for Higg
fields, we would wish presumably to obtain their vacuu
expectationsy j

( i ) and ỹ j
( i ) as usual by minimizing some po

tentialV@f,f̃#. Let us see what sort of a potential we nee
First, of course,V should be invariant under theU and Ũ
transformations, given the above transformation propertie
f andf̃. Second, we wantV to be symmetric under permu
tations of the index (i ) of f ( i ) andf̃ ( i ), given that thef ( i )’s
for different (i ) have exactly equivalent status. Third, give
’t Hooft’s result that if one symmetry is broken by the Higg
mechanism, then the dual symmetry is in the confined ph
we wantV to be such that iff0.0, thenf̃050, and vice
versa. Fourth, given that the resulting theory should be re
malizable, we wantV to be a polynomial inf and f̃ of
degree no higher than 4. Notice that although the potentia
required to be symmetric under permutations off ( i ), one
expects in general that this permutation symmetry will a
be spontaneously broken along with the continuous sym
try, giving then different values tof0

( i ) for different (i ). Can
we find an appropriate potential with such properties and
have the above vacuum configuration as its minima?

We suggest the following:

V@f,f̃#5V@f#1V@f̃#, ~3.6!

where

V@f#52m(
~ i !

uf~ i !u21lH(
~ i !

uf~ i !u2J 2

1k (
~ i !Þ~ j !

uf̄~ i !
•f~ j !u2, ~3.7!

with the stipulation thatm be odd whilel and k be even
under the dual transform, namely,m̃52m, l̃5l.0, k̃
5k.0. This potential is interesting in that its minimum o
curs ~for m.0) when thef ’s are mutually orthogonal and
when ( ( i )uf ( i )u25m/2l, independently of the individua
lengths of the differentf ’s. The minimum has thus a sym
metry greater than that contained in the potential which
only symmetric under permutations of thef ( i )’s, so that dif-
ferent vacua from that degenerate set contained in the m
mum can be physically inequivalent. A vacuum chosen r
domly from the set will in general have different vacuu
expectations values for allf ( i ) and we shall develop ou
future arguments for this general case for which the poten
~3.7! applies. Our considerations below, however, will n
depend on the explicit form of the potential.

With the above proposal as Higgs fields, let us exam
the familiar case of electroweak symmetry breaking. Here
course, we know from experiment exactly how the symme
should be broken, namely, as in the Salam-Weinberg m
ner, so that a rederivation of this result will serve as a ch
on the validity of the present approach. We note first tha
contrast to most theories, one is not allowed here to cho
whatever Higgs fields one wants to give the desi
symmetry-breaking pattern but is obliged to introduce t
~and only two! weak isodoubletsf (1) andf (2) as our Higgs
fields. The weak hypercharges off ( i ), however, which have
.
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so far not entered into our argument withv, are not yet
completely specified. Given that our present electrowe
theory has gauge groupU(2), asexplained in the last sec
tion, it follows thatf (1) andf (2) can only have weak hyper
chargesn/2 with n being an odd integer~positive or nega-
tive!. However, we are still free to choosef (1) and f (2)

having various odd half-integral values, and the resultant p
tern of symmetry breaking will depend on the choice.

An easy way to deduce the symmetry-breaking pattern
some given choice of hypercharges for the Higgs fields is
examine the mass matrix for the gauge bosons arising f
the kinetic energy term in the action for the Higgs fields:

(
~ i !

Dmf~ i !Dmf~ i !, ~3.8!

where we have insisted, as in the Higgs potential, that s
metry should be maintained between the two Higgs fie
f (1) andf (2). Both these Higgs field having been designat
as weak isospin doublets, it follows that the covariant deri
tive is

Dm5]m2 ig2Wm
a~x!

ta

2
2 ig1

n

2
Bm~x! ~3.9!

for both, each with its appropriate choice ofn for weak hy-
percharge. The mass matrix for the gauge bosons is
given as

Wm
a8Ma8b8W

b8m5(
~ i !

f̄V
~ i !H 2g2Wm

a ta

2
2g1

n

2
BmJ 2

fV
~ i ! ,

~3.10!

where the primed indicesa8,b8 on the left-hand side are
meant to run over 1, 2, 3, and 0, withWm

0 5Bm , while the
vacuum expection valuesfV

(1) and fV
(2) of the Higgs fields

on the right may be taken as

fV
~1!5S v

0D , fV
~2!5S 0

wD ~3.11!

in conformity with Eqs.~3.1! and ~3.3! above.
From Eq.~3.10!, it is clear thatMa8b8 is diagonal fora8

or b851,2, namely, that

Ma8b85
g2

2

4
~v21w2!da8b8, ~3.12!

which means that the gauge bosonsWm
1,2 are unmixed, with

each acquiring a mass of (g2/2)Av21w2. The other two
gauge bosonsa8,b853,0, on the other hand, will have th
following mass submatrix:

Ma8b8

5
1

4S g2
2~v21w2! g2g1~n~1!v

22n~2!w
2!

g2g1~n~1!v
22n~2!w

2! g1
2~n~1!

2 v21n~2!
2 w2!

D ,

~3.13!

for which mixing will in general occur~except whenn(1)
5n(2) andv5w). Furthermore, both the eigenstates will
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general acquire a mass, in which case the electroweakU(2)
symmetry will be completely broken. The only situatio
when this will not happen is whenn(1)52n(2)5n, namely,
when the two Higgs fieldsf ( i ) have opposite hypercharge
in which case the matrix becomes

Ma8b85
1

4
~v21w2!S g2

2 ng2g1

ng2g1 n2g1
2 D , ~3.14!

which is of rank 1, and hence has one vanishing eigenva
As a result, the electroweak symmetryU(2) will be broken
down to a residualU(1) with the zero-mass eigenstate as t
photon.

One sees therefore that the standard Salam-Wein
theory does occur as a special case of the Higgs sch
proposed above, corresponding to the choicen51 and v
5w. Different choices ofn give different hypercharges t
the Higgs fields, and the simplest choicen51 is the one
needed to give Yukawa couplings to the existing quarks
leptons. Different choices forvÞw, on the other hand, will
change only the predictions for the Higgs bosons themse
which are not yet discovered. Thus, as far as those o
essential features are concerned which have so far been
tested by experiment, the Salam-Weinberg theory is
unique solution in the suggested approach, as long as
stipulated that a residual symmetry remains after the sym
try is broken. It seems therefore that the idea of promot
the transformation matrixv to Higgs fields is quite viable
having passed the test in the only example of spontane
symmetry breaking in particle physics which has so far b
confirmed by experiment.

The choice ofv5w would be natural if one assumes as
the minimal single Higgs model thatf (2) is theC conjugate
of f (1). Here, however, we have no good theoretical rea
to make this special choice. Although there is also noth
against doing so, it would seem perhaps more natural in v
of the proposed interpretation of Higgs fields as frame v
tors to regardf (1) and f (2) as independent fields. In tha
case, there will be more Higgs bosons, but also natur
different values forv and w, with the advantage of giving
different masses tou- and d-type quarks without requiring
widely different values for their Yukawa couplings.

IV. BREAKING OF DUAL COLOR

From dual symmetry, one deduces that dual to the us
su(3) color symmetry, there is ansũ(3) symmetry for dual
color, and from ’t Hooft’s argument@10# plus the empirical
fact that color is unbroken and confined, one deduces
this sũ(3) for dual color will be broken by the Higgs mech
nism.

How is the breaking ofsũ(3) to be achieved? At this
point, we enter an uncharted domain with no longer exp
mental facts or previous experience to guide us, but acc
ing to the suggestions above, the symmetry breaking is to
attained by introducing as Higgs fields three triple
f̃ (a), (a)51,2,3 of dual color corresponding to the rows
the transformation matrixv. Thesef̃ ’s can carry also dua
or magnetic hypercharges which, according to the analys
Sec. II, can only take the values (ñ11/3)g̃1, with ñ an
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integer~positive or negative!, and g̃152p/g1. As with the
breaking of the electroweak symmetry treated in the prec
ing section, the symmetry-breaking pattern here will depe
on what dual hypercharges are assigned to the Higgs fi
f̃ (a).

To identify the breaking pattern, let us examine again
gauge boson mass matrix arising from the kinetic energy
the Higgs fields:

(
~a!

Dmf̃̄~a!Dmf̃~a!, ~4.1!

with

Dm5]m2 i g̃ 3C̃m
ala

2
2 i g̃ 1~ ñ ~a!11/3!B̃m , ~4.2!

whereC̃m and B̃m are, respectively, the gauge potentials f
dual color and dual hypercharge which, through our previo
work @17#, we know exist. The mass matrix for the gau
bosons is given as

C̃m
a8Ma8b8C̃

a8m

5(
~a!

f̃̄V
~a!F2 g̃3C̃m

a la

2
2 g̃1~ ñ ~a!11/3!B̃mG2

f̃V
~a! ,

~4.3!

where a8,b850,1, . . . ,8 with C̃m
0 5B̃m , and f̃V

(a) , the
vacuum expectations for the Higgs fields, can be chosen

f̃V
~1!5S x

0

0
D , f̃V

~2!5S 0

y

0
D , f̃V

~3!5S 0

0

z
D . ~4.4!

A similar analysis to that given for electroweak symme
breaking in Sec. III then shows that the dual gluonsC̃m

a for
a51,2,4,5,6,7 remain unmixed but acquire, respectively,
following masses:

a51,2: Ma5
g̃3

2
Ax21y2;

a54,5: Ma5
g̃3

2
Ax21z2; ~4.5!

a57,6: Ma5
g̃3

2
Ay21z2,

whereas the other two componentsC̃m
a for a53,8 will in

general mix with each other and with the dual hypercha
potential B̃m . As for the breaking of the electroweak sym
metry studied in Sec. III, the mass matrix here will leave
residual symmetry only for exceptional choices of the in
gers ñ (1) , ñ (2) , ñ (3) and of the parametersx,y,z. For ex-
ample, forñ (1)5 ñ (2)50, ñ (3)521, andx5y5z, there is a
u(1) symmetry left which involves both dual color and du
hypercharge, but this symmetry is not the dual to elect
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magnetism and has in fact no particular physical sign
cance. Rather, we want here dual color to be comple
broken, for which case there is a wide choice. For lack of a
other guidance, we choose to work with the simplest c
when all ñ (a)’s are the same and equal to, say,ñ . In particu-
lar, we focus onñ521 giving the common dual hyper
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charge of allf̃ (a) as 22 g̃1/3, for, according to the resul
~2.3! of our analysis in Sec. II, this is the smallest dual h
percharge a monopole ofU2,3 can have which is at the sam
time a dual color triplet and a dual weak isospin singlet
the Higgs fieldsf̃ (a) are supposed to be. In that case, t
mass matrix for the gauge bosonsC̃m

a , a53,8,0 reads as
S g̃3
2

4
~x21y2!

g̃3
2

4A3
~x22y2! 2

g̃3g̃1

3
~x22y2!

g̃3
2

4A3
~x22y2!

g̃3
2

12
~x21y214z2! 2

g̃3g̃1

3A3
~x21y222z2!

2
g̃3g̃1

3
~x22y2! 2

g̃3g̃1

3A3
~x21y222z2!

4 g̃1
2

9
~x21y21z2!

D . ~4.6!
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This mass matrix is a little messy to diagonalize and it is
particularly illuminating algebraically. We shall thus do s
only when dealing later with numerical results. Here,
need only note that since thesũ(3)3 ũ(1) symmetry is here
completely broken, all the associated nine gauge bosons
acquire nonzero masses.

We have argued already in the Introduction that th
dual color and dual hypercharge gauge bosons can exi
freely propagating particles. Their masses are unknown
long as the vacuum expectation valuesx,y,z of the Higgs
fields f̃ (a) remain undetermined parameters. Presuma
however, the masses will be high, at least in the TeV ran
for otherwise the bosons would have already been fou
Apart from possibly being observed directly as particles
future, they can also be exchanged between dual color
dual hypercharges, if such exist—and we shall be consi
ing this possibility in the next section—giving rise to inte
actions between them. The fact, however, that these ga
bosons are supposed to represent just the same degre
freedom as the color gluonsCm and the hypercharge poten
tial Bm makes the physical effects of their exchange a li
hard to envisage. We suggest the following picture.

Consider first a pure dual color charge of strengthg̃3. It
can interact with a similar charge via the exchange of a d
gluon C̃m . In general, we recall, the color3 and 8 compo-
nents of C̃m will mix with one another and with the dua
hypercharge potentialB̃m and will not remain thus a physica
state, but for simpler presentation, let us pretend in this
cussion that this does not happen. The interaction looks
it will then have a short range of the order of the inverse d
gluon mass which we have already stipulated to be la
However,C̃m is supposed to represent just the same deg
of freedom as the color potentialCm . Indeed, through the
dual transform~1.4!, one has in principle an explicit proce
dure, though a very complicated one, for constructingCm

from C̃m . In particle language, this would seem to mean t
a dual gluon can transform itself, or ‘‘metamorphose,’’ into
gluon. Will this then affect our conclusion above about t
t
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range of the interaction? We think not, for the gluon, thou
massless, is confined and cannot propagate in free spac
that the range of the interaction will still be characterized
the mass of the dual gluon. In particular, at energies l
compared with that mass scale, the interaction will
strongly suppressed by the dual gluon propagator, in
same way that weak interactions historically were conside
‘‘weak’’ in spite of its sizable couplingg2 because of its
suppression at low energy by the ‘‘large’’W boson mass.

What will happen, however, to the interaction betwe

dual hypercharges? They will couple with strengthg̃1 to the

dual hypercharge potentialB̃m which is also massive, and s
it looks as if the interaction will again be short ranged. Th

however, need not be the case forB̃m , like the dual gluon
above, may also metamorphose into aBm , but, in contrast to
the color case,Bm has, via electrowek mixing, a compone
in the photon which is not confined and can propagate in f
space. It seems to us therefore that it is eventually the pho
that will govern the range of the interaction, but that t

effective coupling is reduced from the originalg̃1 to

g̃1 /M g̃1

2 whereM g̃1
is a measure of theB̃m mass. We have

in mind a picture as that represented symbolically in Fig.

where a wavy line representsB̃m , a dotted line a photon, an
a little circle some sort of ‘‘metamorphosis’’ vertex. In othe
words, we are suggesting that perhaps, even though mag
charges may exist as dual hypercharges and as such can
interact via long-ranged Coulomb-like forces, the effecti
strength of their interaction is drastically reduced from th
expected from the Dirac quantization value.

Later on, we shall attempt to assign dual color and d
hypercharges to existing particles, in which case, for the
signment to make physical sense, it will be essential to av
having unwanted forces between the particles arising ou
these dual charges. If the picture given above for the in
action of dual charges is correct, then one sees that em
rassment can be avoided by supposing sufficiently la
masses for the dual color and dual hypercharge ga
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bosons, which is possible as long as the vacuum expecta
valuesx,y,z of the Higgs fields can be freely chosen.

V. DUAL COLOR AS GENERATION INDEX

The attractiveness to us of making dual color into t
generation index is twofold. On the one hand, dual color i
in number, just like generations, and being there alread
the gauge theory, it would be surprising, as Dirac said
monopole charges when he first discovered them, that na
should make no use of it. Besides, if our interpretation in
previous sections were correct, dual color would in a
case manifest itself in a number of new phenomena, an
it is not as generation, then it has to be otherwise accom
dated. On the other hand, from the historical point of vie
generation appears in the standard model just as an emp
concept introduced to fit experiment. As such it sticks o
uncomfortably in a theory which is otherwise quite geome
cal, and demands from us some understanding of its theo
ical origin.

By dual symmetry, a gauge theory can be describ
equally in terms of either the gauge potential or its dual.
the usual description of the standard model in terms of
color potentialCm , dual color charges appear as monopol
In Sec. II, we have already analyzed what color monopo
may occur. Our first task, therefore, in attempting to interp
generations as dual color is to assign each particle occur
in nature a place in the table of permissible color monopo
In the preceding section, we have effectively done so alre
for the gauge bosons and the Higgs fields. We shall try n
to do the same for the fermion fields.

For the moment, let us ignore weak isospin. Each ferm
then, whether quark or lepton, occurs in three generation
we wish to identify generation with dual color, then it wou
be natural to assign the fermions to dual color triplets, whi
according to Sec. II, are permissible to color monopoles.
both the left- and right-handed fermions, however, can
assigned to dual color triplets, for otherwise we would not
able to construct a Yukawa coupling of the fermions with t
Higgs fields f̃ (a) introduced above which are themselv
dual color triplets. Taking then a hint from the Salam
Weinberg theory, let us make the left-handed fermions d
color triplets but give no dual color charges at all to righ
handed fermions; thus, (cL)a ã ,(cR)a

@b# for quarks and
(cL) ã ,(cR) @b# for leptons, where the indexa denotes color,
ã dual color, both running from 1 to 3, while the index@b#,
though also running from 1 to 3, is just a label for three typ

FIG. 1. Interaction of dual hypercharges.
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of dual color neutral right-handed fermion fields. With th
choice of dual color for fermions, we can then write th
Yukawa coupling as

(
@b#

Y@b#(
~a!

~ c̄L!a ãf̃ ã
~a!

~cR!a
@b# ~5.1!

for quarks, and a similar one for leptons, where we ha
maintained again, as in the Higgs potential and in the kine
energy of the Higgs fields, a symmetry betweenf̃ (a) for
different (a).

The mass matrixm for fermions is to be obtained by
inserting for f̃ (a) in Eq. ~5.1! their vacuum expectation
given in Eqs.~4.4!, giving

m5S xa xb xc

ya yb yc

za zb zc
D 5S x

y

z
D ~a,b,c!, ~5.2!

where we have writtena5Y@1# , b5Y@2# , c5Y@3# for short.
For this we obtain, forr25(uau21ubu21ucu2),

mm†5r2S x2 xy xz

yx y2 yz

zx zy z2
D 5r2S x

y

z
D ~x,y,z!, ~5.3!

which, being factorizable as shown, is a matrix of rank
having thus only one nonzero eigenvaluer2z2, with z25x2

1y21z2. The matrixmm† can be diagonalized by

U5S ax ay az

b/x bv2/y bv/z

gFyv2

z
2

zv

y G gF z

x
2

xv2

z G gFxv

y
2

y

xG D ,

~5.4!

with

a225x21y21z2,

b225
1

x2
1

1

y2
1

1

z2
, ~5.5!

g225
1

x2y2z2
~x2y41y2z41z2x41x4y2

1y4z21z4x213x2y2z2!

5a22b22,

andv5exp(2pi/3) a cube root of unity. Thus

Umm†U†5diag~r2z2,0,0!. ~5.6!

We conclude therefore that all the mass in this mass
trix is soaked up by one single massive state, leaving
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other two massless. Furthermore, since the diagonalizing
trix U in Eq. ~5.6! depends only on the vacuum expectati

valuesx,y,z of the Higgs fieldsf̃ (a) which are themselves
independent of which fermions they are coupled to, it f
lows thatU must be the same foru-type andd-type quarks,
giving thus the identity matrix as the Cabibbo-Kobayas
Moskawa~CKM! matrix. Now, although such a mass matr
is highly degenerate, it is not at all bad as a first approxim
tion to the physical situation, given that for bothu-type and
d-type quarks and also for leptons the empirical masses
the two lower generations are in every case no more than
of the highest generation mass, while the empirical CK
matrix has its diagonal elements all differing from unity b
at most 3% and its largest off-diagonal element of order o
20% @23#. Indeed, these significant empirical facts are a
of a mystery in conventional formulations of the standa
model, having there no obvious explanation, and we rega
as an attractive feature of our scheme that it should l
immediately to such a sensible zeroth order approximat
In the next section, we shall consider the means whereby
above degeneracy at zeroth order may be lifted pertu
tively to give nonvanishing values for the lower generati
masses and for the off-diagonal CKM matrix elements. H
we only note that the masses of the highest generat
namely,t, b, andt, can of course be fitted to the experime
tal values by adjusting the Higgs fields vacuum expecta
valuesx,y,z and the Yukawa couplingsa,b,c.

Obviously, the great danger in interpreting generations
a broken gauge symmetry is that gauge symmetries im
gauge interactions, and none has been observed bet
generations besides the usual color and electroweak~and of
course gravitational! forces. This is particularly worrisome
with dual color, for the gauge interactions here are in pr
ciple strong. Thus, for example, the neutrinos, which carr
generation index, and hence in the present scheme also
color, can in principle interact strongly with one anoth
which would be far from the truth as we now know it. How
ever, as already pointed out in the last section, dual colo
broken, with all gauge bosons acquiring masses. The e
of their exchange is therefore suppressed by their prop
tors at energies low compared with their masses. Thus
choosing the gauge boson masses sufficiently high, one
in principle always reduce the gauge interaction due to d
color sufficiently to keep within experimental bounds. F
example, a crude estimate shows that by choosing dual g
masses greater than 1 TeV, we can make the dual colo
teractions between neutrinos in the present scheme we
than the standard weak interactions between them. N
from Eqs.~4.5! and ~4.6!, one sees that one can make du
gluon masses as large as one likes as long as the vac
expectation valuesx,y,z of the Higgs fieldsf̃ (a) remain un-
constrained. At the same time, one sees from Eq.~5.6! that
one can still keep the quark masses at around the experim
tal scale by adjusting appropriately the Yukawa couplin
a,b,c. This is the tactic we shall advocate, which is at le
possible when we are treating the breaking of dual colo
isolation from the breaking of weak isospin as we have b
doing so far in this section.

However, in combining the treatment of symmetry brea
ing for both dual color and weak isospin, we meet with
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problem. The left-handed fermion is not only a triplet of du

color but also a doublet of weak isospin; thus, (cL) r
a ã for

quarks and (cL) r
ã for leptons while the right-handed fermio

is a singlet in both. Thus, given that our Higgs fieldsf̃ (a)

and f (r ) carry each only dual color or weak isospin, w
would need both to build an invariant coupling with the fe
mion fields, e.g., for quarks:

(
@b#

Y@b#(
~a!

~ c̄L!r
a ãf̃ ã

~a!f~1!r~cR!a
@b#@1#

1(
@b#

Y@b#8 (
~a!

~ c̄L!r
a ãf̃ ã

~a!
f~2!r~cR!a

@b#@2# ,

~5.7!

where the indices@1# and @2# denote the two types of right
handed isosinglets with hypercharges, respectively, of
and21/3. This is not properly a Yukawa coupling and loo
like being nonrenormalizable.

If we expand the Higgs fieldsf̃ and f about their
vacuum values, we would obtain the mass matrices of theu-
andd-type quarks, respectively, as

mu5vS x

y

z
D ~a,b,c!, ~5.8!

md5wS x

y

z
D ~a8,b8,c8!, ~5.9!

and Yukawa-type coupling to the oscillationsf̃8 andf8 of
the Higgs fields about their respective vacuum expectatio
thus,

(
@b#

Y@b#(
~a!

~ c̄L!1
a ã~f̃8! ã

~a!v~cR!a
@b#@1#

1~ c̄L!r
a ãv21mã@b#~f8!~1!r~cR!a

@b#@1# ~5.10!

for theu-type quarks and a similar expression for thed-type
quarks. The mass matrices~5.8! and~5.9! are of the form we
wanted in Eq.~5.2! apart from a different normalization con
vention. The Yukawa couplings to the fieldsf̃8 andf8 are
also as expected, with the second term being the fam
coupling to the Higgs field of standard electroweak theo
and the first term being a coupling for the dual color Hig
that we can accept. There will be, however, a further term
the expansion in which bothf̃8 andf8 occur which, though
arguably small for oscillations small compared with the
vacuum expectation values, can nevertheless make
theory nonrenormalizable.

We have considered two ways of addressing this probl
The first is to combine the two sets of Higgs fieldsf̃ ã

(a) and

f r
(r ) into a single set, say,F ãr

(a)(r ) , carrying both dual color
and weak isospin. In that case, we can write down a genu
Yukawa coupling for our fermions as follows:
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(
~a!@b#~r !@s#

Y@b#@s#~ c̄L!a ãrF ãr
~a!~r !

~cR!a
@b#@s# . ~5.11!

The disadvantage, however, is that the breaking of dual c
and weak isospin will then be governed by the same vau
expectation values of these Higgs fields, and hence wo
occur at comparable energy scales. It would thus remove
freedom of pushing the dual color gauge bosons to h
masses so as to suppress unwanted interactions between
erations as we had advocated above. If one takes this ro
therefore, one will have to find some other cleverer way
suppressing the unwanted interactions to within experime
bounds, which though perhaps possible seems to us so
what contrived and difficult to achieve.

The alternative that we prefer which leaves free
symmetry-breaking scale for dual color compared with t
for weak isospin is to accept Eq.~5.7! but to regard the
present scheme as just a low energy effective theory
some of the fields we have so far listed as composites
some yet undiscovered more fundamental fields. Within
present dual framework, there is good reason to suspect
that may indeed be the case. Dual symmetry implies that
electroweaksu(2) symmetry should have a dual, i.e., a
sũ(2) symmetry. At the fundamental level, therefore, o
expects that Higgs fields~frames! and fermion fields should
carry alsosũ(2) indices. Up to now, however, we have co
sidered onlysũ(2) singlets which are all that is required s
far to accommodate the known particle spectrum. The ra
nale for that, we suggest, is that the electroweaksu(2) sym-
metry being broken by the Higgs mechanism, ’t Hooft’s a
gument @10# would imply that its dualsũ(2) should be
unbroken and confined. In that case, onlysũ(2) singlets can
exist in the free state, which are all that one has see
present, and unless one can perform deep inelastic ex
ment at high enough energy, one would not be able to
their sũ(2) internal structure. One can even argue that
sũ(2) couplingg̃2, as estimated from the experimental val
of a25g2

2/4p;0.033 and the Dirac quantization conditio
~2.11!, being more than 10 times larger than thesu(3) color
couplingg3, the confinement by dual weak isospin would
much deeper than by color and would require much hig
energy to detect. Now, if some of the ‘‘fundamental’’ pa
ticles we know are in fact composites, it would not be s
prising if some of their couplings, in particular th
‘‘Yukawa’’ coupling ~5.7!, appear nonrenormalizable. It
not easy, of course, to guess the fundamental fields and
plings at the deeper level, but it is not hard to find examp
which can give rise to the effective coupling~5.7! we want.
The construction in Fig. 2 is a possibility, in which each li

FIG. 2. Example of an effective coupling.
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is labeled by the indices it carries,a being color, ã dual
color, r weak isospin, r̃ dual weak isospin, and the las
number dual weak hypercharge. Each line in Fig. 2 is
admissible combination of dual charges as listed in Eqs.~2.3!
as it ought to be. The first~from left! and last fermion lines
are thecL andcR above, and the first Higgs line isf r , while
the second and third Higgs lines are supposed to be confi
together by their dual weak isospin as indicated byr̃ to form
the other Higgs fieldsf̃ ã as composites. If the remainin
fermion lines are assumed to be heavy, we would obtain
~5.7! as an effective coupling.

For the present, we leave the choice of the two alter
tives open as it will make no difference yet to our pheno
enology, although in the considerations which follow, o
thinking may have been biased towards the second choi

VI. CKM MATRIX AND MASSES
FOR LOWER GENERATIONS

Although zero masses for lower generations and the id
tity matrix as the CKM matrix are reasonable as zeroth or
approximations, one would need of course to envisage s
mechanism whereby this degenerate scenario can be lifte
as to give eventually more realistic values for these para
eters. Within the framework of the standard model, loop c
rections are an obvious possibility. However, the fermi
mass matrix here being at zeroth order factorizable as in
~5.2!, loop corrections are quite restricted in property and
is not obvious at first sight that they are capable of perfor
ing that function. What we wish to show now is that they c
indeed do so, at least in principle, although whether they w
actually give the correct answers to fit with experiment c
only be decided by detailed calculations.

Some one-loop corrections to the fermion mass matrix
depicted in Fig. 3, where a solid line represents fermions
wavy line gauge bosons, and a dotted line Higgs boso
However, even before performing any calculation, one c
see that these corrections will not alter the factorized form
the mass matrix. Figures 3~a! and 3~b! will only premultiply
the factorized zeroth order mass matrix by another matrix
that the result has to remain in the factorized form. On
other hand, Figs. 3~c!, 3~d!, and 3~e! are linear combinations
of matrices all of the factorized form~5.2! with the same
parametersa, b, andc so that the result is again factorize

A ‘‘vertex renormalization’’ diagram of the type shown i

FIG. 3. One-loop corrections to the fermion mass matrix.
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Fig. 4~a! can in principle break factorizability, but in th
present framework, such diagrams do not exist. Since o
the left-handed fermions here carry non-Abelian charges3
for dual color and2 for weak isospin! with the right-handed
fermions neutral under both these symmetries, the co

sponding gauge bosons~namely, the dual gluonsC̃m
ã , and the

weak bosonsWm
r ) couple only tocL , not tocR . U(1) and

Ũ(1) gauge bosons can couple to bothcL andcR , depend-
ing on theirU(1) andŨ(1) charges, but these, however, d
not rotate the generation~i.e., dual color! indices, leaving
thus the factorized form of the mass matrix still intact. O
the other hand, although the diagram Fig. 4~b! with a Higgs
loop does exist since the Higgs boson couplescL to cR as
shown, the diagram has a factorized Yukawa coupling ma
on the extreme left and right, and must therefore remain
the factorized form.

The above analyis can be extended to diagrams w
higher loops. For basically the same reasons as those g
above for one-loop diagrams, it can be seen that even hi
loop diagrams will find it hard to break the factorizability o
the mass matrix, and indeed we have not found a single
capable of doing so. We are thus forced to accept that,
ring nonperturbative effects, the factorized form of the m
matrix will remain intact to all orders.

The fact that the mass matrix should remain factoriz
however, does not necessarily mean that loop corrections
never lift the degeneracy at the zeroth order. Take, for
ample, the dual gluon loop diagram of Fig. 3~a!. Although it
cannot break the factorizability ofm, it will in general rotate
its left-hand factor; thus,

m05S x

y

z
D ~a,b,c!→m15S x1

y1

z1

D ~a,b,c!. ~6.1!

The amount of this rotation will depend on the parameter
the original zeroth order mass matrix. In particular, the
parameters being different for theu-type andd-type quarks,
for example, the resultant left-hand factor (x1 ,y1 ,z1) after
the one-loop correction will be different foru andd. It fol-
lows then that the matricesU andU8 diagonalizingm1m1

† ,
respectively, foru and d as given in Eq.~5.4! will also be
different, giving thus a nontrivial~i.e., nonidentity! CKM
matrix V5UU821. We notice, however, that this will hap
pen only when the vacuum expectation valuesx,y,z of the
Higgs fields are different.

As the mass matrix remains factorizable after loop corr
tions, it is still of rank 1 and has thus still only one nonze
eigenvalue. It might then appear that the two lower gene

FIG. 4. Vertex renormalizations to the fermion mass matrix.
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tions will still have vanishing mass. However, this need n
be the case, for loop corrections, apart from rotating the m
matrix as in Eq.~6.1!, also make it run by virtue of the
renormalization group equation, and when the mass ma
changes its value depending on the energy scale at which
measured, it is not immediately clear how the actual mas
of particles ought to be defined. When considering only o
particle, the conventional wisdom is that the running squa
massm2(Q2) has to be evaluated at a value ofQ2 equal to
its own value at thatQ2, which is then designated asthe
mass of the particle. When we are dealing with a mass ma
of the factorized form~5.2!, however, or indeed with any
matrix of rank 1, it is not so obvious what the proper proc
dure to define particle masses ought to be. We sugges
following.

Given that loop corrections are not supposed to break
factorized form of the fermion mass matrix~5.2!, it will re-
main of rank 1 at all energy scales so that the eigenstate
the highest eigenvalue can always be defined without
difficulty. The other two states with zero eigenvalues, ho
ever, are indistinguishable. Imagine then that the mass
trix is run via the renormalization group equation from
high energy scale down. At every scale, we can diagona
the matrix and identify the eigenstate with the nonzero
genvalue. Let us then run the scale down until this eig
value takes on the same value as the scale at which
evaluated. Recalling the conventional wisdom cited abo
for defining the mass in the case of a single particle, we
then legitimately define this value as the mass of the high
generation fermion. At this energy, of course, as indeed
any energy, since the mass matrix remains of rank 1,
other two eigenvalues are zero, but they should not be in
preted as the masses of the two lower generations, for
are evaluated at the wrong scale. To find the actual mas
the mass matrix should be run further down in scale a
evaluated at the masses of the lower generations, what
these may be. We have now to specify exactly how t
ought to be done.

The identification of the highest generation state at
mass scale also specifies a two-dimensional subspac
states orthogonal to the highest generation, namely,
eigensubspace with zero eigenvalues in this case. It is c
that the state vectors of the two lower generations, be
independent physical entities to the first, should lie in t
subspace. Let us now run the mass matrix down to a lo
scale. We have seen already that loop corrections can ro
the left factor of the mass matrix, so that, in general,
mm† matrix that we have diagonalized at the highest gene
tion mass will no longer remain diagonal at the lower ener
We can of course rediagonalize the matrix at the lower
ergy, obtaining again 1 nonzero and two zero eigenvalu
but the diagonalizing matrix at the lower energy will not b
the same as that at the mass of the highest generation
have obtained before. In other words, the two-dimensio
subspace we have identified before at the highest genera
mass scale as containing the states of the two lower gen
tions will no longer lie within the eigensubspace of eige
value 0 at the lower energy. To be specific, suppose we
the eigenvector for the highest generationv1 and define two
other mutually orthogonal~normalized! vectors v2 and v3



st

ic
ha
we

e
o
e
p
a
q

, i
a

ur

-
on
ti

l
e
g

e
t

he

t
d
th

al

r
er
at
er
th

t
lin

a
ct
n
a

r,
e
s
a
b
a

il-

m
in

e
two

we
de-
but
ulo
hall

he

e

er-

trix

als
-

ggs

57 2519PHYSICAL CONSEQUENCES OF NON-ABELIAN . . .
orthogonal also tov1, all at the mass scale of the highe
generation; then, the mass submatrix

^vi umuvj&, i , j 52,3, ~6.2!

will in general be nonzero at the lower energy scale to wh
it is run. But this, according to the preceding arguments,
to be interpreted as the mass submatrix for the two lo
generations.

The 232 matrix ~6.2!, being a nonzero submatrix of th
rank 1 matrixm, is of course still rank 1, so that it can als
be diagonalized at every energy, giving one nonzero eig
value and the other zero. We can then repeat the above
cedure and run the mass matrix on down via the renorm
ization group equation until the nonzero eigenvalue of E
~6.2! equals the scale at which it is evaluated. This value
conformity with what has gone before, we should define
the mass of the second highest generation and is, of co
nonzero.

The diagonalization of the matrix~6.2! at the second gen
eration mass identifies in turn the eigenvector with the n
zero eigenvalue as the state vector of the second genera
Let us call this vectorv28 , which is by definition orthogona
to v1, the state vector for the highest generation, and in g
eral different fromv2. Further, we can define the remainin
eigenvector with zero eigenvaluev38 as the state vector of th
lowest generation, and it is by construction orthogonal
both v1 and v28 as it should be. At the mass scale of t
second generation, of course, the quantity (131 submatrix!

^v38umuv38& ~6.3!

vanishes, but as before, this should not be interpreted as
mass of the lowest generation fermion since it is evaluate
the wrong scale. We have again to run it down further via
renormalization group equation form until the value of Eq.
~6.3! equals the scale at which it is evaluated. At that sc
v38 will not in general lie within the eigensubspace ofm with
zero eigenvalue, so that Eq.~6.3! can be nonvanishing, o
that the lowest generation fermion also will have nonz
mass. Since at each stage the leading remaining gener
soaks up all the mass in the matrix, leaving the next gen
tion to acquire only whatever mass it can by running,
mass will go down by a large factor from each generation
the next, qualitatively the same as what experiment is tel
us.

One sees therefore that although the mass matrix rem
factorizable and of rank 1 after loop corrections, the effe
of the corrections will nevertheless be sufficient to give no
zero masses to the lower generation fermions and to m
the CKM matrix deviate from the identity. Howeve
whether these effects can be made to give numbers clos
the experimental values by adjusting the free parameters
remaining in the scheme is a question that can only be
swered by a detailed calculation, which we have begun
are far from being in a position yet to report on. We can
present only give the following two trial calculations as
lustrations for the sort of effects we shall get.

As illustration for loop corrections to the identity CKM
matrix, let us consider for dual color the one-loop diagra
listed in Fig. 3 which have already been evaluated by We
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berg @24# in a general Yang-Mills-Higgs framework. H
gave the answer as a sum of five terms, of which the last
due to Higgs loops and tadpoles, calledSe f f

f1 and Se f f
T1 by

him, depend on the Higgs boson mass matrix of which
have yet insufficient knowledge. The other three terms,
pending on the Higgs fields’ vacuum expectation values
not on their masses, we can in principle evaluate mod
some unknown parameters and ambiguities that we s
make clear. Furthermore, the term calledSe f f

AT by Weinberg
rotates the fermion mass matrixm the same way foru-type
and d-type quarks, whereas in order to contribute to t
CKM matrix, a loop correction has to rotatem differently for
u andd. There remain then only two terms which affect th
CKM matrix directly for us to consider: namely,

Se f f
A1 5

1

16p2(N E
0

1

dx@22mW t̄ N~12x!14g4 t̄ Ng4mW#

3 lnS mN
2 1

mW
2 x2

12x D t̄ N , ~6.4!

Se f f
Af5

1

16p2(N
1

mN
2 E0

1

dx$~12x!mW@g4mW , t̄ N#g4

1g4@g4mW , t̄ N#mW%H lnS mW
2 x2

12x D
2 lnS mN

2 1
mW

2 x2

12x D J g4@g4mW , t̄ N#, ~6.5!

wheremN are the masses of the dual color and dual hyp
charge gauge bosons, namely, those listed in Eqs.~4.5! to-
gether with the eigenvalues of the mass matrix in Eq.~4.6!.
The fermion mass matrix used here is

mW5
r

zS x

y

z
D ~x,y,z!, ~6.6!

which is, crudely speaking, the square root of the ma
mm† in Eq. ~5.3!. The couplingst̄ N are defined as

t̄ N52
g̃3

2
lN

1

2
~12g5!, N51,2,4,5,6,7,

t̄ N5H 2
g̃3

2
l3C3N2

g̃3

2
l8C8N1

2

3
g̃1C0NJ

3
1

2
~12g5!, N53,8,0, ~6.7!

with C being the matrix which diagonalizes Eq.~4.6! and
lN , N51, . . . ,8, theGell-Mann matrices.

Apart from the coupling constantsg̃3 and g̃1 which can
be determined from the experimental values of their du
g35A4pa3 andg15A4pa1 via the Dirac quantization con
ditions ~2.5! and ~2.11!, the expressions in Eqs.~6.4! and
~6.5! depend on the vacuum expectation values of the Hi
fields x,y,z and on the Yukawa couplingsa,b,c throughr,
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as defined in Sec. V. The parametersx,y,z are unknown, but
once these are given, thenr can in principle be determine
by normalizingrz, the nonzero eigenvalue ofm, on the ex-
perimental mass of the highest generation fermion, nam
mtop and mbottom for, respectively, theu-type andd-type
quarks. In practice, however, there is here an ambiguity
normalizingr for the following reason. There are terms
Se f f

(A1) as well as in the other Weinberg terms that we ha
dropped which are scale dependent, and though either
rotatingmW at all, or else rotatingmW the same way foru-
and d-type quarks, and so not affecting the CKM matr
directly, nevertheless changes the normalization ofmW . This
is presumably related ultimately to the running of the
quantities with changing scales which we have not yet so
out fully. As a result, we have to treatr also as a paramete
for the moment, and cannot fix the actual size of off-diago
CKM matrix elements. Further, not having sorted out t
running effects, we also cannot, using the method outli
earlier in this section, identify the quarks of the two low
generations. Hence, we cannot at present specifyVus and
Vcd , or distinguishVub from Vcb and Vtd from Vts . The
significance of this present exercise is thus strictly limite

Putting in arbitrarily the parametersx51, y52/3, z51/3,
we obtained from Eqs.~6.4! and ~6.5! the following matrix
for the absolute values of CKM matrix elements, wherer
has been adjusted to give off-diagonal elements roughly
the order of a percent:

S 0.9998 0.0173 0.0130

0.0166 0.9998 0.0124

0.0130 0.0123 0.9998
D . ~6.8!

Given the limitations stated in the preceding paragraph,
only conclusions we can draw at present are that
‘‘mock’’ CKM matrix ~i! does get rotated from the identit
by loop corrections,~ii ! remains roughly though not exactl
symmetric, and~iii ! is in general complex, all of which ar
properties apparently exhibited by the actual CKM mat
obtained from experiment@23#. This is not much, but still
enough perhaps as encouragement for further exploratio

As illustration for generating masses for lower generat
fermions, consider the renormalization group equations u
ally given for the standard model@25#:

16p2
dU

dt
5

3

2
~UU†2DD†!U1~Su2Au!U, ~6.9!

16p2
dD

dt
5

3

2
~DD†2UU†!D1~Sd2Ad!D,

~6.10!

whereU andD are, respectively, the Yukawa coupling m
trices to the electroweak Higgs field for, respectively, t
right-handedu- and d-type quarks,3 and Su,d and Au,d are

3The symbol U adopted here following the usual conventio
should not, of course, be confused with the diagonalizing matrix
Eq. ~5.4!.
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the Higgs self-energy and gauge boson loop contributi
whose explicit forms need not here bother us.

The matricesU and D can of course be diagonalized
any scale, but do not remain diagonal in general on runn
and what interests us for the problem at hand are just th
terms which contribute towards the dediagonalization ofU
andD, namely, theDD† term in Eq.~6.9! and theUU† term
in Eq. ~6.10!. In the basis whereU is diagonal,D is not
diagonal, and vice versa, by virtue of a nontrivial CKM m
trix V, so that for the dediagonalizing effects alone whi
interest us, we may write the renormalization group eq
tions ~6.9! and ~6.10! as

16p2
dU

dt
52

3

2
DD†U, ~6.11!

16p2
dD

dt
52

3

2
UU†D. ~6.12!

Now in the philosophy of the present scheme, the m
effect for dediagonalizingU and D is supposed to come
from diagrams with dual color gauge and Higgs boson loo
as already discussed above. These dual color loop effe
however, have not been included in Eqs.~6.9! and ~6.10!,
which indeed we do not even yet know how to calcula
However, since it was these omitted effects which are s
posed to give rise to the nontrivial CKM matrix in the fir
place, the dediagonalizing effects from the mixing due to
CKM matrix itself which are included in Eqs.~6.11! and
~6.12! would have to be regarded in this philosophy as o
secondary effects induced by the primary dual color lo
contributions. Nevertheless, we think it worthwhile to stu
Eqs. ~6.11! and ~6.12! as illustrations for the effects on th
lower generation fermion masses that one can expect.

As we shall be interested in running the equations o
over small ranges of the order of the mass differences
tween generations, we may take the linearized equations
consider the CKM matrix itself as constant over these rang
Starting then with a diagonalized mass matrix at the m
scale of the highest generation, in our case diag(mtop ,0,0)
for the u-type and diag(mbottom,0,0) for thed-type quarks,
and running it down to lower energies, we obtain

Ut5VdiagS expF2
3~mb /w!2t

32p2 G ,0,0D V21diag~mt ,0,0!,

~6.13!

Dt5V21diagS expF2
3~mt /v !2t

32p2 G ,0,0D Vdiag~mb ,0,0!,

~6.14!

where,V being nondiagonal, one sees that the mass matri
though diagonalized at the highest generation mass, will
come nondiagonal when run to the lower energy, as
pected.

Now in the philosophy of the present scheme, the diff
ence in the top and bottom masses comes mainly from
the difference betweenv andw, i.e., the vacuum expectatio
values of, resepectively, the Higgs fieldsf (1) and f (2), so

n
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that the Yukawa couplingsmt /v andmb /w are comparable
in magnitude. In that case, we can put

mt /v;mb /w;~180 GeV/246 GeV!. ~6.15!

Inserting this value in Eqs.~6.13! and~6.14! above, together
with the experimentally measured values of the CKM mat
elements, one obtains that on running from the highest g
eration to the next, say, e.g., from the top~bottom! to the
charm ~strange! quark mass, the equations would gener
off-diagonal elements inU or D of the order of 1023 times
the highest generation mass. This is not enough to exp
the actual mass values of the second generation which
the order of a few percent of the highest generation. Ho
ever, one recalls that the effects represented by Eqs.~6.13!
and ~6.14! are supposed to be only secondary effects
tained from the primary dual color effects that we have
yet learned to calculate. If we argue naively that the facto
suppression in mass from one generation to the next du
the primary effect should be of the order of the square roo
that due to the secondary effect, then the answer we obta
is about right. The above argument, for whatever it is wor
can be repeated for the suppression from the second to
lowest generation and the answer is still comparable w
what is seen in experiment.

VII. CONCLUDING REMARKS

The scheme proposed in this paper, until supported
concrete calculations which we hope soon to supply, ha
be considered at the present stage as largely speculati
that a number of features at a deeper theoretical level h
not been fully understood. This deficiency applies in parti
lar to the Higgs fields introduced as frame vectors in inter
symmetry space, which give rise to symmetry break
through some specially constructed Higgs potential. It is g
erally believed, however, that a Higgs potential is merel
makeshift construct representative of an effect with a dee
dynamical origin. In this aspect, therefore, the pres
scheme has not advanced from the usual formulation of
Weinberg-Salam theory where a similar Higgs potentia
introduced. Some would believe that not only the Higgs p
tential but even the Higgs fields themselves should hav
dynamical origin. Introducing Higgs fields as we did abo
would seem to be at variance with this belief. Although
the classical level, where the Higgs fields are replaced
their vacuum expectation values, the generalized dual tr
form ~1.4! implies no increase in degrees of freedom fro
the usual description of a gauge theory, when the theor
quantized, and the transformation matrixv becomes a field
in its own right, the situation is no longer clear. Superficial
it would seem that the frame vectors in internal space wh
play the roles of Higgs fields would represent then genu
dynamical variables in much the same way as the vierb
behave in the Palatini description of general relativity.

On the pragmatic side, however, in spite of the abo
mentioned theoretical deficiencies, the present scheme h
number of quite attractive features, among which the m
attractive we find is the possibility to assign both to t
Higgs fields and to the fermion generations each a nat
place. This is a consequence of the recently discovered
Abelian dual symmetry@17# to the extent that the necessa
n-
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niches exist because of it in the form of the transformat
matrix v and of the concept of a local dual color symmetr
But the actual assignment of these niches to Higgs fields
to fermion generations involves of course some, perh
somewhat daring but to us quite reasonable, assumptions
the merit or otherwise of these must rest in the end on
compatibility of their predictions with experiment.

As far as present investigations go, the scheme has sc
a number of positive points, among which we count the p
diction of exactly three generations, the mass hierarchy
tween them, the near identity CKM matrix, and the possib
ity of evaluating lower generation masses and off-diago
CKM matrix elements perturbatively. The first three poin
are all significant and noted empirical facts which lack e
planation in the usual formulation of the standard model,
seem to have found each araison d’etre in the present
scheme.

On the other hand, there are also consequences which
give rise to potential disagreement with experiment, amo
which the most worrisome is the prediction of new intera
tions due to dual gluon exchange. We argued above
these are suppressed by the dual gluon propagator, an
long as these are large enough, we may not notice the in
actions due to their exchange at the present experime
energy. This suppression, however, has its limit, on t
counts. First, the loop corrections, which we claimed in t
preceding section may lead to nonzero off-diagonal CK
matrix elements and lower generation masses, also dep
on the masses of dual gluon, and if one makes these la
masses too large, then the loop correction may be too s
to explain the experimental effects. One shall then have
devise other means for lifting the zeroth order degenera
Second, even if one can make the masses of dual gluons
large, there will eventually come a point at which the prop
gator suppression will no longer work, and the interacti
from dual gluon exchange, say, e.g., between neutri
which carry dual color, will become very strong. Will thi
not violate some astronomical or cosmological bounds?
do not know. By the same token, the scheme may conc
ably be in conflict with some currently held theoretical ide
on asymptotic behavior. At first sight, it may appear that
dual color couplingg̃3, being inversely proportional to the
usual color couplingg3, will grow with energy and so spoi
completely such cherished concepts as asymptotic freed
We are, however, not sure that this will be so. As alrea
stated repeatedly above, the dual gluonC̃m does not repre-
sent a different degree of freedom to the gluonCm , but
should rather be regarded as a composite~a hadron! formed
from the usual color gluons and the colored Higgs fields
so, their exchange should be compared not with elemen
exchanges but with, say, pion exchange between had
which do not spoil asymptotic freedom. Nevertheless, at
nite energies, dual gluon exchanges will affect the running
various quantities and hence may lead to potential disc
ancy with experiment.

Let us assume optimistically that the present scheme
survive these possible pitfalls, either as it is here propose
with some modifications utilizing some of the freedom s
available. We shall find it interesting then to note that it h
also some predictions which are probably accessible to
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perimental tests in the not too distant future. There are
the dual gauge bosons and dual colored Higgs bosons. C
estimates from our trial calculation of the CKM matrix r
ported in Sec. VI suggest that dual gauge bosons may h
masses in the several TeV range, and if so may be acces
to the LHC. As for the masses of the dual colored Hig
bosons, however, we have at present no idea of their ma
tudes. Second, there is the exciting possibility suggeste
the end of Sec. V that there may be yet a deeper leve
confinement than color with dual weak isospin. If so, futu
deep-inelastic experiments at ultrahigh energy may rev
internal structures to what are presently regarded as elem
tary objects such as quarks and leptons.

Finally, we remark that dual symmetry is claimed to
inherent to Yang-Mills theory as it is to electromagnetism
n
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this is true, then its effects would be unavoidable, and eve
one does not choose to interpret the internal symme
frames as Higgs fields and dual color as generation as w
here, the existence in theory of these niches as conseque
of dual symmetry, on the one hand, and the empirical
quirement of Higgs fields and fermion generations, on
other, would still have to be accounted for in some mann
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