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Quantum bubble nucleation beyond the WKB approximation:
Resummation of vacuum bubble diagrams

Hiroshi Suzuki* and Hirofumi Yasuta†

Department of Physics, Ibaraki University, Mito 310, Japan
~Received 5 September 1997; published 21 January 1998!

On the basis of Borel resummation, we propose a systematical improvement of the bounce calculus of the
quantum bubble nucleation rate. We study a metastable super-renormalizable field theory,D-dimensional,
O(N) symmetricf4 model (D,4) with an attractive interaction. The validity of our proposal is tested in
D51 ~quantum mechanics! by using the perturbation series of ground state energy to high orders. We also
present a result inD52, based on an explicit calculation of vacuum bubble diagrams to five loop orders.
@S0556-2821~98!06204-3#

PACS number~s!: 11.15.Bt, 11.15.Tk, 11.27.1d
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I. INTRODUCTION

In this paper, we propose a new approach for the tun
ing phenomenon in a metastable super-renormalizable
theory, aiming at a systematical improvement of the bou
~or instanton! calculus @1,2#. We shall study a
(D21)-dimensional system (D,4) whose Hamiltonian is
defined by

H5E dD21xFc2

2
p21

1

2
~]xf!21

1

2
m2f2

2
1

4!
g~f2!2G , g.0 , ~1.1!

wheref is anN component real scalar field (f2[f•f) and
p is its conjugate momentum. The Hamiltonian~1.1! may be
regarded as a Ginsburg-Landau-like effective theory
which the classical time evolution of the order parametef
is determined by the first term. Our present approach th
fore might become relevant for tunneling problems in co
densed matter physics.

We study an imaginary part of the vacuum energy d
sity. Since the potential energy in~1.1! is not bounded from
below, the quantum tunneling makes the naive ground s
~vacuum! f50 metastable. Therefore, physical quantit
have to be defined by an analytic continuation from a ne
tive g. In particular, the continuation produces an imagina
part of the vacuum energy density ImE, which can be re-
garded as a total decay width per unit volume of t
quasivacuum,1 i.e., G522 Im E/\.

The standard method for calculating such a tunneling a
plitude in field theory is the bounce calculus@1,2#. The ex-
istence of the bounce solution, an extreme of the Euclid
action with one negative Gaussian eigenvalue, signifies a
cay of the vacuum due to quantum tunneling@1,2#. The lead-

*Email address: hsuzuki@mito.ipc.ibaraki.ac.jp
†Email address: yasuta@mito.ipc.ibaraki.ac.jp
1One can find a detailed account on this point in@3#.
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ing bounce approximation furthermore gives a quantitativ
reliable estimation of the tunneling amplitude in the we
coupling regiong!1.

The systematical evaluation of higher order corrections
the leading bounce result, however, is difficult. One has
consider ‘‘interactions’’ among bounces and an integrat
over the quasicollective coordinates. Simultaneously, per
bative corrections around bounces have to be taken into
count. One also has to resolve the ‘‘mixing’’ of those tw
effects. Even if this difficult task could be done, such
‘‘instanton expansion’’ is likely to be an asymptotic expa
sion, thus we do not expect the quantitative validity in t
strong coupling region.

We tackle this issue, i.e., asystematical quantitativeim-
provement of bounce calculus, from a completely differe
viewpoint. Namely we utilize an information of theconven-
tional perturbation series around thenaivevacuum to evalu-
ate the tunneling rate. This should sound strange beca
usually the quantum tunneling is regarded as a nonpertu
tive phenomenon. However, extensive studies on the la
order behavior of the perturbation series@4# have revealed an
intrinsic connection between the quantum tunneling and
nature of perturbation series. This connection is the ba
bone of our approach. Technically, we utilize the Borel
summation method@4# for extracting the tunneling rate from
the perturbation series: Singularities of the Borel transfo
are expected to reproduce an imaginary part of the vacu
energy density.

In this approach based on the conventional perturba
expansion, every step of calculation~such as the renormal
ization! are well-understood and, in principle, the order
approximation can be systematically increased. To
knowledge, this kind of approach to tunneling phenomena
quantum mechanics was initiated in@5# on the basis of an-
other kind of resummation method. See@6# and references
therein. Our present proposal can be regarded as the na
generalization of@6# to quantum field theory.

We will take the ‘‘natural unit’’\5c51 in what follows.

II. BOUNCE CALCULUS

Let us first recapitulate the result of bounce calculus@1,2#
of the tunneling amplitude. It gives an important informatio
2500 © 1998 The American Physical Society
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57 2501QUANTUM BUBBLE NUCLEATION BEYOND THE WKB . . .
on the nature of a Borel singularity and, simultaneously, p
vides the ‘‘standard’’ with which our results can be com
pared.

The Lorentzian action corresponding to Hamiltonian~1.1!
is given by

S@f#5E dDxF1

2
]mf]mf2

1

2
m2f21

1

4!
g~f2!2G

[ iSE@f#, ~2.1!

where we have defined the Euclidean actionSE@f# ~the time
coordinate of Euclidean spacetime is defined byxD5 i t !. We
also assume an appropriate counter termScount@f# to remove
the ultraviolet~UV! divergences:

Scount@f#5E dDxFN

2 E dDk

i ~2p!D ln~m22k22 i e!1••• G .
~2.2!

The structure of abbreviated terms depends on the space
dimensionD. See Eq.~5.1! as the example forD52.

We repeat the procedure in@2# to yield the imaginary part
of the vacuum energy density forg!1,

@ Im Ẽ~ g̃!#bounce52ANCD,NS S0

2pg̃D ~D1N21!/2

e2S0 / g̃,

~2.3!

where dimensionless combinationsẼ[E/mD and g̃
[g/m42D have been introduced.

We briefly explain how the various factors in~2.3!
emerge. One expands the Euclidean functional inte
around the spherically symmetric bouncefc(r ), which is a
solution of the Euclidean equation of motion,2Dfc(r )
1m2fc(r )2gfc(r )3/3!50. The spherically symmetric
bounce has the least action@7# whose value is numerically
given by2 (SE@fc#[S0 /g̃)

S05
3

2
I 45H 8

35.10269
113.38351

for D51,
for D52,
for D53.

~2.4!

Gaussian integrations around the bounce except the
modes give rise to the coefficientCD,N :

CD,N5eiScount@fc#m2~D1N21!~42D !~N21!/2

3udet8~2D1m22gfc
2/2!u21/2

3@det8~2D1m22gfc
2/3! !#2~N21!/2. ~2.5!

The determinant can be evaluated analytically inD51 and
numerically inD52 andD53 @8#:

2The numbers,I 4 , I 6 , D̄R(1) andD̄R(1/3) are defined in@8#: Eq.
~58! of @8# should be read asDT

'5(42D)D̄(1/3)/4 for a generalD.
-

me

al

ro

CD,N5F D̄R~1!S DI 4/4

I 62I 4
D DG21/2

@D̄R~1/3!/4#2~N21!/2

5H 2)3~2) !N21

0.35033~1.652!N21

10.1893~1.6569!N21

for D51,
for D52,
for D53.

~2.6!

Since the quadratic operator2D1m22gfc
2/2 has one nega

tive eigenvalue@2,7,8#, the square root of the eigenvalue pr
duces a factor6 i . A physical requirement that we are con
cerned with a decaying process specified the branch in~2.3!.
The Jacobian from a zero mode to a collective coordinat
AS0 /(2pg̃). Because there areD1N21 collective coordi-
nates~the spacetime position and the direction of bounce
N dimensional internal space!, the power in~2.3! is resulted.
The integration over the bounce direction in the intern
space gives a factorAN , the half area ofN21 dimensional
unit sphere,AN[pN/2/G(N/2). Finally the integration over
the position of bounce produces a factor, the system volu
times the time period, which is divided to give the ener
density: This completes our quick review of the bounce
sult ~2.3!.

In our approach, we do not need the explicit value of t
determinant factor~2.6!. It will be used merely for a com-
parison. On the other hand, the value of the bounce ac
~2.4! and the number of collective coordinates are import
because they tell the position and the strength of the nea
Borel singularity to the origin of Borel plane.3 They can be
easily obtained. One only has to solve a one dimensio
differential equation to find the bounce action, and a sy
metrical consideration fixes the number of corrective coor
nates.

III. RESUMMATION OF VACUUM BUBBLES

The leading bounce result~2.3! is reliable for the weak
coupling regiong̃!1. In this section, we present our pro
posal which is expected to work even in the strong coupl
region.

We start with theconventionalperturbative expansion o
the vacuum energy density, namely a sum of the vacu
bubble diagrams,

Ẽ~ g̃!; (
n50

`

cng̃n, ~3.1!

where we have assumed an appropriate renormaliza
which makescns finite. For super-renormalizable casesD
,4, only first severalcns are UV divergent.

From the perturbation series~3.1!, we construct the Bore
~more precisely Borel-Leroy! transform:

B~z![ (
n50

`
cn

G„n1~D1N!/2…

zn. ~3.2!

3However, if one has perturbative coefficients tosufficiently
higher orders, even those information from bounce calculus ma
deduced from the perturbation series. See@6#.
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2502 57HIROSHI SUZUKI AND HIROFUMI YASUTA
The argument of gamma function in the denominator
been chosen so that a singularity of the Borel transform n
est to the origin becomes a square root branch point@see
~3.5!#.

When the coupling constantg is negative in ~1.1! and
~2.1!, namely with a bounded potential, the proof of t
Borel summability of Green’s functions@9# may be general-
ized to the vacuum energy density. With our definition~3.2!,
the Borel summability is expressed as

Ẽ~ g̃!5
1

~2g̃!~D1N!/2 E
0

`

dz ez/ g̃z~D1N!/221B~2z!.

~3.3!

Now, we assume that the Borel transformB(z) is analytic on
the complexz plane and possible singularities ofB(z) exist
only on the positive real axis. Precisely the same assump
on the Borel transform of Green’s functions has been m
in the perturbation approach to the critical phenome
@11,4#. We also assume the behavior ofB(z) at z5` is
moderate enough and the convergence of the integral~3.3! is
determined by the exponential factor.

Under these assumptions, we may rotate the integra
contour in ~3.3! as z→e7p iz as it goes along the uppe
~lower! side of the positive real axis. This operation giv
rise to the analytic continuation forg.0,

Ẽ~ g̃!5
1

g̃ ~D1N!/2 E
0

`

dz e2z/ g̃z~D1N!/221B~z6 i«!,

~3.4!

which is our basic equation.
With ~3.4!, the leading bounce result~2.3! of the imagi-

nary part forg̃!1 implies that there exists a singularity o
Borel transform atz5S0 @4#. Because of the structure o
~3.4!, it is the nearest singularity to the origin. A comparis
of ~2.3! with ~3.4! shows that the singularity is a square ro
branch point:

B~z!52
1

Ap
ANCD,N

S0
1/2

~2p!~D1N21!/2 ~S02z!21/21••• .

~3.5!

When substituted in~3.4!, the branch cut~3.5! reproduces
the imaginary part~2.3! for g̃!1. The sign of the singularity
~3.5! itself is not determined solely from the comparison
~2.3! with ~3.4! because there are two possible choices of
integration contour~upper side or lower side of the positiv
real axis!. As a consistency test, we note that the expans
of ~3.5! with respect toz yields negativecns in view of ~3.2!,
which is nothing but the large order behavior of the pert
bation series@4#. As we will see below, this is a correc
property of actual perturbation coefficients when we follo
the 2 i e prescription. This consideration also shows that
have to take theupper contour to obtain anegativeimagi-
nary part, which is the physical one.

Basically we construct the Borel transform~3.2! from the
actual perturbation seriescn and substitute it in~3.4! for
extracting the ‘‘nonperturbative’’ information. However th
radius of convergence of the series~3.2! is finite (5S0) due
to the singularity~3.5! and we have to analytically continu
s
r-

on
e
a

n

t

f
e

n

-

e

the series~3.2! outside the convergence circle to perform t
Borel integration~3.4!. This is an impossible task withou
knowing all the perturbative coefficients. However, as is w
known, this difficulty can be avoided by the conformal ma
ping technique@10#. We thus introduce a new variablel by

z54S0

l

~11l!2 . ~3.6!

The point is that the convergence circle of the series~3.2! in
terms ofl is now a unit circle, within which the whole cutz
plane is mapped. In particular, the real axisz.S0 is mapped
on the circleulu51. Therefore we may use a finite orde
truncation of the series ofl in the Borel integration~3.4!
order by order. Then we may expect the sequence conve
to ~3.4! ~as was the case in quantum mechanics@6#!.

In terms ofl, the Borel transform~3.2! is expressed as

B~z!5 (
k50

`

dkl
k,

dk[ (
n50

k

~21!k2n
G~k1n!~4S0!n

~k2n!!G~2n!G„n1~D1N!/2…

cn .

~3.7!

Combining~3.4!, ~3.6!, and~3.7!, and parametrizing the uni
circle byl5eiu, we find thePth order approximation of the
imaginary part,

@ Im Ẽ~g!#P5S S0

g̃ D ~D1N!/2E
0

p

du expS 2
S0

g̃

1

cos2 u/2D
3

sin u/2

cosD1N11u/2 (
k50

P

dk sin ku. ~3.8!

Note that this issolelyexpressed by the firstP perturbative
coefficientscn and the value of bounce actionS0 .

Our formula~3.8! relates the value of vacuum bubble di
gramscn and an imaginary part of the vacuum energy de
sity. In quantum field theory, usually one never seriou
computes the vacuum bubble diagrams because one sh
be free to adjust the origin of areal part of the energy den
sity and thus it has no direct physical meaning. On the ot
hand, theimaginarypart of the vacuum energy density has
definite physical meaning as the decay width of the qua
vacuum. Therefore the latter should not be modified unde
change of convention for the former. How can this gene
consideration and the formula~3.8!, which relates those two
quantities, be reconciled?

In fact, there is no real contradiction. For example, su
pose that we perform a finite renormalization of the vacu
energy density to eliminate the firstQ perturbation coeffi-
cients. ~Note that we cannot takeQ5` because a simple
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57 2503QUANTUM BUBBLE NUCLEATION BEYOND THE WKB . . .
sum of the perturbation series is diverging.! Then the new
Borel transform would be defined by

B~z!new[ (
n5Q11

`
cn

G„n1~D1N!/2…

zn

5B~z!2 (
n50

Q
cn

G„n1~D1N!/2…

zn. ~3.9!

Note that the lastfinite series ~i.e., polynomial! does not
develop a singularity and thus cannot contribute to a
imaginary part via the Borel integral. Therefore the ima
nary part, as it should be, is invariant under such a chang
y
-
of

the origin of the energy density. Contrary to its pecul
looking, the formula~3.8! is workable in this way.

IV. QUANTUM MECHANICS

We can extensively test the validity of our master formu
~3.8! in quantum mechanicsD51. In this case, perturbative
coefficients of the vacuum energy, namely the ground s
energy, to very high orders are available. The most effici
way for computing them is the recursion formula meth
@12#. By generalizing it to theO(N) symmetric model, we
have computedcn to n550. The first several coefficient
are4
c05
N

2
, c152

N~N12!

96
, c252

N~N12!~2N15!

4608
,

c352
N~N12!~8N2143N160!

221184
,

c452
N~N12!~168N311437N214270N14420!

42467328
,

c552
N~N12!~1024N4112277N3157668N21126128N1108480!

2038431744
. ~4.1!
of
he
-
wo

the
the
real
d
e

ct
:
es

ivial
The exact complex quasiground state energy is also ava
able by a numerical diagonalization of the Hamiltonian in a
~unconventional! Hilbert space with a rotated boundary con-
dition ~see, for example@6#!. Therefore we can compare our
formula~3.8! and the bounce result~2.3! with the exact value
of the imaginary part.

In Fig. 1, we have plotted the result of~3.8! with N51

FIG. 1. Ratio of an imaginary part of the quasiground stat
energy to the leading bounce result inD51 andN51 case. The
solid line is the exact numerical value. Eq.~3.8! with P54 ~circle!,
P55 ~filled square!, andP515 ~filled circle!, is plotted. The bro-
ken line is the leading bounce result with the two loop correctio
~4.2!.
il-andP54, P55, andP515, respectively.5 The solid line is
the exact value obtained by the numerical diagonalization
the Hamiltonian. The imaginary part is normalized by t
leading bounce result~2.3!. The broken line, which is de
picted for a comparison, is the bounce result including t
loop radiative corrections@13#,

@ Im Ẽ~g!#bounce plus two loops

52ANC1,NS S0

2pg̃D N/2

e2S0 / g̃S 12
21N2154N120

576
g̃D .

~4.2!
We see an excellent convergence of~3.8! to the exact value
and, as was announced, the proposal in fact gives rise to
improvement of bounce calculus. The plotted range of
coupling constant was determined by a criterion that the
part of ground state energy~which can also be compute
numerically! is lower than the potential barrier. Therefore th
plotted range may be regarded as the quantum tunneling~not
classically sliding! region. The agreement with the exa
value is better forg̃ larger but this is physically reasonable
When g̃ becomes smaller, the potential barrier becom

4It is worthwhile to note that all the coefficients~exceptc0! are
proportional toN12; this holds in an arbitrary dimensionD. This
can be proven by noting that the partition function forN522 can
be expressed by a single component fermionic system with a tr
interaction (c̄c)2[0.

5This result has already been reported in@6#.
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2504 57HIROSHI SUZUKI AND HIROFUMI YASUTA
higher and wider and thus the tunneling phenomena is dif
cult to be detected from a perturbative expansion around
potential origin.

Figure 2 is the same as Fig. 1, but forN52. In this case,
P515 shows a small excess in the weak coupling regio
However we verified that~3.8! eventually converges to the
exact value, as indicated by the plots ofP530 ~squares!.

In both figures, the bounce calculus including two-loo
corrections~the broken line! is giving a rather nice fitting of
the exact value. Therefore one may wonder whether t
imaginary part is almost saturated by the perturbation corre
tions around the bounce, or, the multibounce contribution
crucial in this coupling constant region. It is thus of interes
to study how large the multibounce contribution is. We ma
estimate the two bounce contribution by studying the inte
action between bounces and the quasicollective coordin
~e.g., separation between two bounces! integration@14#. The
interaction is attractive when they have the same orientati
and thus the two bounce contribution dominates the fun
tional integral when the separation is small. However, sin
the notion of multibounce is meaningful only for a large
separation, one may define the partition function by an an
lytic continuation from the negativeg @14#. In this way, we
find, for N51,6

@ Im Ẽ~g!# two bounces56
p

2
@ Im Ẽ~g!#bounce

2 56
24

g̃
e216/g̃,

~4.3!

which is 42% of the one bounce contribution forg̃54, the
boundary of the tunneling region. Therefore, if one pursu
the bounce calculus, the inclusion of multi-bounce contrib
tions should be crucial in this coupling constant region.

From the excellent agreements in Figs. 1 and 2, therefo
we conclude that our approach based on the perturbat
series around the trivial vacuum is in fact taking into accou
the multi-bounce contributions. In other words, our assum
tion ~3.4! contains a statement that an imaginary part of th

6The sign of the contribution cannot be fixed by this prescriptio
alone.

FIG. 2. Same as Fig. 1, but forN52. Eq. ~3.8! with P530
~square! is also plotted for a comparison.
-
e

.

e
c-
is
t
y
-
te

n
-
e

a-

s
-

re
on
t
-
e

vacuum energy density is completely saturated by Borel sin
gularities of the perturbation series around thetrivial con-
figuration.

As the final application of the quantum mechanica
model, we may test our assertion made in~3.9! that a finite
subtraction of the perturbation series does not affect th
imaginary part whenP is sufficiently large. Figure 3 is the
same as Fig. 1 but the first two coefficientsc0 andc1 are set
to zeroby hand. We see the same kind of convergence be
havior even with this subtraction~except the intermediate
oscillating behavior; note thatP54 is better thanP55! and
P515 reproduces almost the same result as Fig. 1.

V. TUNNELING ON LINE

After observing our proposal works quite well in quantum
mechanics, let us try to apply our formula~3.8! to D52, that
represents a certain one dimensional system~line or wire!.
For D52, we assume the following counter terms in~2.2!:

Scount@f#5E d2xH N

2 E d2k

i ~2p!2 ln~m22k22 i e!

2
1

12
~N12!gE d2k

i ~2p!2

1

m22k22 i e
f2

1
1

24
N~N12!gF E d2k

i ~2p!2

1

m22k22 i eG2J ,

~5.1!

where the first and third terms remove the zero-point energ
to two loop orders, and the second is the counter term for th
one loop self energy.7 Since the present system is super-
renormalizable, the counter terms~5.1! remove all the UV
divergences to higher orders.

7Therefore, our coupling constantg is not the physical four point
scattering amplitude. The finite renormalization, which is required
to translate the result into the one in terms of the physical couplin
constant, might be performed by utilizing the resummedb function
in @11#.

FIG. 3. Same as Fig. 1, but with the first two perturbation co-
efficients are set by hand to zero,c05c150.
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57 2505QUANTUM BUBBLE NUCLEATION BEYOND THE WKB . . .
To find the lower order perturbative coefficientscn in
~3.1!, we have explicitly calculated the vacuum bubble d
grams to five loop orders. With the counter terms~5.1!, c0
5c150, and there are five diagrams to be evaluated~Fig. 4!.

We have the following numbers: The diagram~a!,

c252
N~N12!

3
38.833 895131025. ~5.2!

The diagram~b!,

c352
N~N12!~N18!

27
33.012 767 29431026.

~5.3!

The diagrams~c!, ~d!, and~e!, respectively,

c452
N~N12!~N216N120!

81
35.657 478 653 05831028

2
N~N12!2

9
31.006 825 5031027

2
N~N12!~5N122!

81
3231027. ~5.4!

In the above numbers, we have verified only the last d
contains the roundoff error due to numerical integrations
the diagram~e!, we used the analytical expression of o
loop triangle diagram evaluated by@15#. The numerical error
for the diagram~e! is much larger than others: However w
verified that the final result in Fig. 5 is quite insensitive to t
precise value of~e! by varying it within the estimated error
As the general property, all the diagrams have an ove
minus sign according to the2 i e prescription. Notice that we
are computing the energy density, instead of the effec
action.

We could not compare the exact value of the energy d
sity, although this task might be done by invoking a latti
formulation in a complex rotated functional space. Theref
it is not clear which range ofg̃ is the tunneling region in this
case. As anorder of magnitudeestimation, we may conside
the effective potential to two loops which behaves around
origin as

FIG. 4. Vacuum bubble diagrams with the counter terms~5.1! to
five loop orders.
-

it
n

ll

e

n-

e

e

Veff@f#5F1

2
2

1

3
~N12!36.1831024g̃ 2Gm2f21••• ,

~5.5!

where the counter terms~5.1! have been taken into account.
To the two loop order, the real part of the vacuum energy
density vanishes,c05c150. Therefore we may regard the
value of g̃ which changes the sign of curvature of the effec-
tive potential at the origin as a measure of the tunneling
region. This rough estimation indicates 0,g&A3/(N12)
330 is the tunneling region.

In Fig. 5, we have plotted an imaginary part of the
vacuum energy density~3.8! with P52, P53, and P54.
Again it is normalized by the bounce result~2.3!. Unfortu-
nately, it seems impossible to draw a definite conclusion
from Fig. 5: We do not observe the convergence behavio
and in some region even an unphysical result, the positiv
imaginary part, can be found. It is not clear whether this is
due to the luck of orders of the perturbation series, or ther
exists a fundamental obstruction for our approach we did no
encounter in quantum mechanics.~The nature of the nearest
Borel singularity in the present case,D52 andN51, is the
same as that ofN52 quantum mechanics, Fig. 2.! If we
nevertheless take Fig. 5 at its face value, it is suggesting th
the true tunneling amplitude is muchlarger than the leading
bounce result in the strong coupling region. However, this
would remain a speculation without having much higher or-
der perturbation coefficients, which will clarify the real con-
vergence property of our proposal.

VI. CONCLUSION

In this paper, we have proposed a new approach to th
tunneling phenomena ‘‘the decay of the false vacuum’’ in a
super-renormalizable field theory. Our approach utilizes th
information of conventional perturbation series around the
naive vacuumf50. We have verified numerically that the
singularities of the Borel transform reproduce an accurat
tunneling rate in quantum mechanics (D51). We have also
presented a result inD52, based on an explicit calculation
of vacuum bubble diagrams to five loop orders. Unfortu-

FIG. 5. Ratio of the imaginary part of the vacuum energy den-
sity computed by~3.8! to the leading bounce result inD52 and
N51 case.P52 ~circle!, P53 ~filled square!, and P54 ~filled
circle!, are plotted.
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nately the number of orders of the perturbation series is
sufficient to make definite conclusions on the converge
property and the true tunneling rate in this case. Only
higher order calculation will answer these questions.

Although we have only presented results forD51 and
D52 in this paper, the formula~3.8! is waiting for the
straightforward application toD535112 dimensional sys-
tem ~tunneling on plane!. We expect a calculation of pertur
bative coefficients to six loops is tractable because the a
lytical structure of one loop diagrams inD53 is rather
simpler than that ofD52 @15#. As a consequence, definit
conclusions on a convergence property of the method an
the true tunneling rate may be drawn. We hope to come b
this problem in a near future.

Another possible test of our proposal is offered by
interesting field theoretical model in@17#, for which both the
bounce calculus and the perturbative calculation to very h
orders are possible@18#.

Finally we briefly comment on a possible generalizati
to the just renormalizable case,D545113. The first
trouble one encounters is that all the vacuum bubble
grams have an overall~i.e., not subdiagram! UV divergence.
A simple renormalization which sets all the coefficientscn
zero order by order, appears meaningless.8 Therefore a natu-
ral procedure is that one first introduces an UV cutoff wh
hoping the imaginary part~3.8! is finite and independent o
the regularization forP→`. Next we are worried about a
-
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ot
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e

a-

on
ck

h

-

emergence of the UV renormalon@16#, another known
source of the Borel singularity. Interestingly, it does n
emerge in our present case becausef4 model with anegative
g is asymptotically free9 ~no Landau pole!. Of course, since
f4 model inD54 is trivial when the UV cutoff is removed
the relation to the ‘‘true’’ imaginary part is not obvious
Presumably, our proposal for the four dimensionalf4 model
is meaningful only with an UV cutoff, but such an UV cuto
is naturally provided in condensed matter physics.
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8A similar situation occurs when one evaluates an imaginary p
of the vacuum energy density due to the UV renormalon. See
third reference of@16#.

9In masslesstheory, the infrared~IR! renormalon produces
an imaginary part of the vacuum energy densi
@ Im E(g)# IR renormalon521/(64p)m4exp@24/„b0g(m)…#, wherem is
the renormalization point andb05N/@3(4p)2# is the one loop co-
efficient of b function. This gives rise to a Borel singularity atz
54/b0 .
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