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Quantum bubble nucleation beyond the WKB approximation:
Resummation of vacuum bubble diagrams
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On the basis of Borel resummation, we propose a systematical improvement of the bounce calculus of the
guantum bubble nucleation rate. We study a metastable super-renormalizable field Brwabnyensional,
O(N) symmetric¢* model (D<4) with an attractive interaction. The validity of our proposal is tested in
D=1 (quantum mechani¢dy using the perturbation series of ground state energy to high orders. We also
present a result ilD=2, based on an explicit calculation of vacuum bubble diagrams to five loop orders.
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[. INTRODUCTION ing bounce approximation furthermore gives a quantitatively
. reliable estimation of the tunneling amplitude in the weak
In this paper, we propose a new approach for the tunnel- lina reciona <1
ing phenomenon in a metastable super-renormalizable fielg”uPNg reégiong==_. . . ;

e o The systematical evaluation of higher order corrections to
theory, aiming at a systematical improvement of the bounc?he leading bounce result, however, is difficult. One has to
(or instanton calculus [1,2]. We shall study a id 9 e o b ' d o t §i
(D—1)-dimensional system(<4) whose Hamiltonian is consider “intéractions” among bounces and an integration
defined by over the quas_|collect|ve coordinates. Simultaneously, pertur-

bative corrections around bounces have to be taken into ac-
count. One also has to resolve the “mixing” of those two
effects. Even if this difficult task could be done, such an

H :f dP1x “instanton expansion” is likely to be an asymptotic expan-

sion, thus we do not expect the quantitative validity in the

1 strong coupling region.

- g(¢2)2}, g>0, (1.2 We tackle this issue, i.e., systematical quantitativam-

4! provement of bounce calculus, from a completely different
viewpoint. Namely we utilize an information of treonven-
tional perturbation series around thaivevacuum to evalu-

whered is anN component real scalar fieldt=¢- ¢) and  ate the tunneling rate. This should sound strange because
 is its conjugate momentum. The Hamiltoniénl) may be  uysually the quantum tunneling is regarded as a nonperturba-
regarded as a Ginsburg-Landau-like effective theory inive phenomenon. However, extensive studies on the large
which the classical time evolution of the order parameter order behavior of the perturbation serjé$ have revealed an
is determined by the first term. Our present approach theré@ntrinsic connection between the quantum tunneling and the
fore might become relevant for tunneling problems in con-nature of perturbation series. This connection is the back-
densed matter physics. bone of our approach. Technically, we utilize the Borel re-
We study an imaginary part of the vacuum energy densummation methof#] for extracting the tunneling rate from
sity. Since the potential energy {@.1) is not bounded from the perturbation series: Singularities of the Borel transform
below, the quantum tunneling makes the naive ground statgre expected to reproduce an imaginary part of the vacuum
(vacuum ¢=0 metastable. Therefore, physical quantitiesenergy density.
have to be defined by an analytic continuation from a nega- In this approach based on the conventional perturbation
tive g. In particular, the continuation produces an imaginaryexpansion, every step of calculatigsuch as the renormal-
part of the vacuum energy density in which can be re- ization) are well-understood and, in principle, the order of
garded as a total decay width per unit volume of theapproximation can be systematically increased. To our
quasivacuund,i.e., I'=—2Im &/4. knowledge, this kind of approach to tunneling phenomena in
The standard method for calculating such a tunneling amguantum mechanics was initiated [i&] on the basis of an-
plitude in field theory is the bounce calcull52]. The ex-  other kind of resummation method. SE8] and references
istence of the bounce solution, an extreme of the Euclideatherein. Our present proposal can be regarded as the natural
action with one negative Gaussian eigenvalue, signifies a dejeneralization of6] to quantum field theory.
cay of the vacuum due to quantum tunneljdg?]. The lead- We will take the “natural unit’#=c=1 in what follows.

. . L L Il. BOUNCE CALCULUS
*Email address: hsuzuki@mito.ipc.ibaraki.ac.jp

"Email address: yasuta@mito.ipc.ibaraki.ac.jp Let us first recapitulate the result of bounce calcylLig]
0ne can find a detailed account on this poinf3h of the tunneling amplitude. It gives an important information
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on the nature of a Borel singularity and, simultaneously, pro-
vides the “standard” with which our results can be com-

pared.
The Lorentzian action corresponding to Hamilton{art)
is given by

1 1 1
5 dudd"d— 5 M+ 5 g(4%)?

S[¢]=f d®x

=iSe[ 4], (2.1

where we have defined the Euclidean actBf¢] (the time
coordinate of Euclidean spacetime is definedkBy=it). We
also assume an appropriate counter t&g.[ ¢] to remove
the ultraviolet(UV) divergences:

N dPk
Ef W|n(m2—k2—ié)+"' .
(2.2

Scounl 1= f d®x

The structure of abbreviated terms depends on the spaceti

dimensionD. See Eq(5.1) as the example fob = 2.
We repeat the procedure [i#] to yield the imaginary part
of the vacuum energy density fgr<1,

~ SO (D+N-1)/2 _
[Im g(g)]bounce:_ANCD,N(m) e S/9

2.3

where dimensionless combinationg= &/mP
=g/m*~P have been introduced.
We briefly explain how the various factors if2.3

and g

emerge. One expands the Euclidean functional integral

around the spherically symmetric boungg(r), which is a
solution of the Euclidean equation of motion; A ¢(r)

2501

-12

— [ Dlg4\®
Con= DR(l)(ﬁ) [Dr(1/3)/4] N1
6~ '4
2v3x (2v3)N-1t for D=1,
=1{0.3503<(1.652N"*  for D=2, (2.6)
10.189x (1.6569N"! for D=3.

Since the quadratic operaterA +m?— g¢§/2 has one nega-
tive eigenvalug2,7,8), the square root of the eigenvalue pro-
duces a factor-i. A physical requirement that we are con-
cerned with a decaying process specified the brancB.8).

The Jacobian from a zero mode to a collective coordinate is
VSo/(27g). Because there al®@+N—1 collective coordi-
nates(the spacetime position and the direction of bounce in
N dimensional internal spagethe power in(2.3) is resulted.
The integration over the bounce direction in the internal
space gives a factdky, the half area oN—1 dimensional
unit sphere Ay=7""?T'(N/2). Finally the integration over
the position of bounce produces a factor, the system volume
times the time period, which is divided to give the energy

n(iignsity: This completes our quick review of the bounce re-

sult (2.3).

In our approach, we do not need the explicit value of the
determinant factof2.6). It will be used merely for a com-
parison. On the other hand, the value of the bounce action
(2.4) and the number of collective coordinates are important
because they tell the position and the strength of the nearest
Borel singularity to the origin of Borel plakThey can be
easily obtained. One only has to solve a one dimensional
differential equation to find the bounce action, and a sym-
metrical consideration fixes the number of corrective coordi-
nates.

IIl. RESUMMATION OF VACUUM BUBBLES

The leading bounce resul2.3) is reliable for the weak

+m2p(r)—gb.(r)33!=0. The spherically symmetric coupling regiong<1. In this section, we present our pro-

bounce has the least actipfi] whose value is numerically

given by (Sel $c]=S/9)

8 for D=1,
35.10269 for D=2,
113.38351 for D=3.

3
SO=§ 4= (2.9

Gaussian integrations around the bounce except the zero

modes give rise to the coefficie@l y:

Co N:eiscoun£¢c]m—(D+N—1)(4_ D)<N—1)/2
X |det (—A+m2—g¢p2/2)| =12

X[det (—A+m2—gg2/31)]~(N"D2 (25

The determinant can be evaluated analyticall\Dis 1 and

numerically inD=2 andD =3 [8]:

°The numbersl,, Ig, D:(l) andD7R(1@ are defined if8]: Eq.
(58) of [8] should be read as1=(4—D)D(1/3)/4 for a generaD.

posal which is expected to work even in the strong coupling
region.

We start with theconventionalperturbative expansion of
the vacuum energy density, namely a sum of the vacuum
bubble diagrams,

©

E@) ~ 2 Cnanr

n=0

(3.9

where we have assumed an appropriate renormalization
which makesc,s finite. For super-renormalizable casBs
<4, only first severat,s are UV divergent.

From the perturbation seri€8.1), we construct the Borel
(more precisely Borel-Lergytransform:

oo

B(2)= (3.2

Cn .
nZO T+ (D+N)2) %

*However, if one has perturbative coefficients sofficiently
higher orders, even those information from bounce calculus may be
deduced from the perturbation series. $&f
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The argument of gamma function in the denominator hashe serieg3.2) outside the convergence circle to perform the
been chosen so that a singularity of the Borel transform neaBorel integration(3.4). This is an impossible task without
est to the origin becomes a square root branch paieé knowing all the perturbative coefficients. However, as is well
(3.9]. known, this difficulty can be avoided by the conformal map-
When the coupling constarg is negativein (1.1) and  ping techniqud10]. We thus introduce a new variableby
(2.2, namely with a bounded potential, the proof of the
Borel summability of Green'’s functio®] may be general-
ized to the vacuum energy density. With our definitiGrR),

the Borel summability is expressed as 2=45 (1+0)2 (3.6

~ 1 % -
MN= ——— g-(D+N)2—1p/ _
£(9) (—7g)PTN”2 fo dz &%z B(=2). The point is that the convergence circle of the sef&9) in

(3.3 terms of\ is now a unit circle, within which the whole cat
plane is mapped. In particular, the real axisS; is mapped
Now, we assume that the Borel transfoB(e) is analytic on  on the circle|]\|=1. Therefore we may use a finite order
the complexz plane and possible singularities B{z) exist  truncation of the series af in the Borel integration3.4)
only on the positive real axis. Precisely the same assumptioorder by order. Then we may expect the sequence converges
on the Borel transform of Green’s functions has been madeo (3.4) (as was the case in quantum mechaf&js.
in the perturbation approach to the critical phenomena In terms of\, the Borel transforn{3.2) is expressed as
[11,4]. We also assume the behavior Bfz) at z=« is
moderate enough and the convergence of the int¢gralis
determined by the exponential factor. *
Under these assumptions, we may rotate the integration B(Z)=k2 din,

contour in (3.3 as z—e*™z as it goes along the upper -0
(lower) side of the positive real axis. This operation gives
rise to the analytic continuation fa>0,

k
_ I'(k+n)(4Sy)"
se__ L (" g oeniz-1g =2, V" GO TN o
£(g)—w o dz e z B(zxie), (3.7)
(3.9
which is our basic equation. Combining(3.4), (3.6), and(3.7), and parametrizing the unit

With (3.4), the leading bounce resul2.3) of the imagi-  Ccircle byr=e'?, we find thePth order approximation of the
nary part forg<1 implies that there exists a singularity of imaginary part,
Borel transform atz=S, [4]. Because of the structure of
(3.4), it is the nearest singularity to the origin. A comparison 5| (02 5, 1
of (2.3) with (3.4) shows that the singularity is a square root [Im E(Q)]PZ (3) f de exp( _ )
0

branch point: g cod 6/2
. P
1 sy? - sin 612 )
B(Z):_\/_;ANCD,N(ZW)(D—WD/Z(SO_Z) V24 ... X oD N Ig IZO dy sinké. (3.9
(3.9

When substituted in3.4), the branch cuf3.5 reproduces Note that this issolely expressed by the firg® perturbative
the imaginary par€2.3) for g<1. The sign of the singularity coefficientsc, and the value of bounce acti&.

(3.5 itself is not determined solely from the comparison of  Our formula(3.8) relates the value of vacuum bubble dia-
(2.3 with (3.4) because there are two possible choices of thgramsc,, and an imaginary part of the vacuum energy den-
integration contoufupper side or lower side of the positive sity. In quantum field theory, usually one never seriously
real axig. As a consistency test, we note that the expansiomomputes the vacuum bubble diagrams because one should
of (3.5 with respect t@ yields negativee,;s in view of (3.2), be free to adjust the origin of eeal part of the energy den-
which is nothing but the large order behavior of the pertur-sity and thus it has no direct physical meaning. On the other
bation seried4]. As we will see below, this is a correct hand, thamaginarypart of the vacuum energy density has a
property of actual perturbation coefficients when we followdefinite physical meaning as the decay width of the quasi-
the —i e prescription. This consideration also shows that wevacuum. Therefore the latter should not be modified under a

have to take theipper contour to obtain anegativeimagi-  change of convention for the former. How can this general

nary part, which is the physical one. consideration and the formul8.8), which relates those two
Basically we construct the Borel transfoif®.2) from the  quantities, be reconciled?

actual perturbation series, and substitute it in(3.4) for In fact, there is no real contradiction. For example, sup-

extracting the “nonperturbative” information. However the pose that we perform a finite renormalization of the vacuum
radius of convergence of the serig@s?2) is finite (=S;) due  energy density to eliminate the firQ perturbation coeffi-
to the singularity(3.5 and we have to analytically continue cients. (Note that we cannot tak@=o because a simple
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sum of the perturbation series is diverginghen the new the origin of the energy density. Contrary to its peculiar

Borel transform would be defined by looking, the formula(3.8) is workable in this way.
= _— IV. QUANTUM MECHANICS
BDnew= 2 Tt (D+N)2) 2 Q

We can extensively test the validity of our master formula
(3.9 in quantum mechanic® = 1. In this case, perturbative
coefficients of the vacuum energy, namely the ground state
energy, to very high orders are available. The most efficient
Note that the lasfinite series(i.e., polynomial does not way for computing them is the recursion formula method
develop a singularity and thus cannot contribute to any12]. By generalizing it to theO(N) symmetric model, we
imaginary part via the Borel integral. Therefore the imagi-have computed, to n=50. The first several coefficients
nary part, as it should be, is invariant under such a change @fré!

Q

- 2 Cn n
—B(Z)—n=0 mz . (39)

N _ N(N+2) _ N(N+2)(2N+5)
Com=pr =779 G277 4608 ’
_ N(N+2)(8N?+43N+60)
3=~ 221184 '
~ N(N+2)(168N°+143MN?+ 427N +4420
4 42467328 :

~ N(N+2)(1024N%+1227N°+ 57668+ 126128 + 108480

5 2038431744 4.0

The exact complex quasiground state energy is also avaiand P=4, P=5, andP=15, respectively.The solid line is
able by a numerical diagonalization of the Hamiltonian in athe exact value obtained by the numerical diagonalization of
(unconventionalHilbert space with a rotated boundary con- the Hamiltonian. The imaginary part is normalized by the
dition (see, for exampl§6]). Therefore we can compare our !€ading bounce resul2.3. The broken line, which is de-
formula(3.8) and the bounce resu(2.3) with the exact value Picted for a comparison, is the bounce result including two
of the imaginary part. loop radiative correctiongl3],

In Fig. 1, we have plotted the result ¢3.8) with N=1 [Im E(g)]bounce olus two loops

S, \V2 5 2IN?+54N+20 _
1 = ANClN(ZWE) e S (1 576 gl.

s 4.2
o We see an excellent convergence(®®) to the exact value
Ho.8 and, as was announced, the proposal in fact gives rise to the
A improvement of bounce calculus. The plotted range of the
P 0.7 coupling constant was determined by a criterion that the real
o 0.6 part of ground state energyvhich can also be computed
o numerically is lower than the potential barrier. Therefore the
£ os plotted range may be regarded as the quantum tunngiioty
a classically sliding region. The agreement with the exact

value is better foly larger but this is physically reasonable:
When g becomes smaller, the potential barrier becomes

FIG. 1. Ratio of an imaginary part of the quasiground state 41t is worthwhile to note that all the coefficientexceptc,) are
energy to the leading bounce resultiin=1 andN=1 case. The proportional toN+ 2; this holds in an arbitrary dimensidh. This
solid line is the exact numerical value. E§.8) with P=4 (circle), can be proven by noting that the partition function k= —2 can
P=5 (filled squarg, andP=15 (filled circle), is plotted. The bro- be expressed by a single component fermionic system with a trivial
ken line is the leading bounce result with the two loop correctioninteraction ()2=0.

(4.2. SThis result has already been reported6i
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FIG. 2. Same as Fig. 1, but fad=2. Eq. (3.8) with P=30 FIG. 3. Same as Fig. 1, but with the first two perturbation co-
(squarg is also plotted for a comparison. efficients are set by hand to ze,=c;=0.

higher and wider and thus the tunneling phenomena is diffivacuum energy density is completely saturated by Borel sin-
cult to be detected from a perturbative expansion around thgularities of the perturbation series around theial con-
potential origin. figuration.

Figure 2 is the same as Fig. 1, but fér= 2. In this case, As the final application of the quantum mechanical
P=15 shows a small excess in the weak coupling regionmodel, we may test our assertion madg3rd) that a finite
However we verified that3.8) eventually converges to the subtraction of the perturbation series does not affect the
exact value, as indicated by the plotsR# 30 (squares imaginary part wherP is sufficiently large. Figure 3 is the

In both figures, the bounce calculus including two-loopsame as Fig. 1 but the first two coefficiestsandc, are set
corrections(the broken lingis giving a rather nice fitting of ~ to zeroby hand We see the same kind of convergence be-
the exact value. Therefore one may wonder whether th&avior even with this subtractiofexcept the intermediate
imaginary part is almost saturated by the perturbation correg@scillating behavior; note th@=4 is better tharlP=5) and
tions around the bounce, or, the multibounce contribution iF? =15 reproduces almost the same result as Fig. 1.
crucial in this coupling constant region. It is thus of interest
to study how large the multibounce contribution is. We may
estimate the two bounce contribution by studying the inter-
action between bounces and the quasicollective coordinate After observing our proposal works quite well in quantum
(e.g., separation between two boundesegration[14]. The  mechanics, let us try to apply our formu&8) to D=2, that
interaction is attractive when they have the same orientatiorepresents a certain one dimensional systéne or wire).
and thus the two bounce contribution dominates the funcFor D=2, we assume the following counter terms(&2):
tional integral when the separation is small. However, since
the notion of multibounce is meaningful only for a large N d2k

Scoun[d’]:f dzx(g f

V. TUNNELING ON LINE

separation, one may define the partition function by an ana- (2m)? In(m?—k2—ie)
lytic continuation from the negativg [14]. In this way, we

find, for N=1,° 1 d’k 1 )
_1_2(N+2)9f (2m2 mi—ke—ic ®
_ T _ 24
[Im g(g)]two bounces™ i? [Im g(g)]gounce: i? e—16/§, 4 i N(N+2) J d2k 1 2
4.3 24 9) iem? m—K2—ie |’

(5.7

which is 42% of the one bounce contribution fp=4, the
boundary of the tunneling region. Therefore, if one pursuesyhere the first and third terms remove the zero-point energy
the bounce calculus, the inclusion of multi-bounce contribu+o two loop orders, and the second is the counter term for the
tions should be crucial in this coup_ling_ constant region. one loop self energf/.Since the present system is super-

From the excellent agreements in Figs. 1 and 2, thereforgenormalizable, the counter ternds.1) remove all the UV
we conclude that our approach based on the perturbatiogivergences to higher orders.
series around the trivial vacuum is in fact taking into account
the multi-bounce contributions. In other words, our assump=———

tion (3.4) contains a statement that an imaginary part of the
(3.4 9 yp "Therefore, our coupling constagtis not the physical four point

scattering amplitude. The finite renormalization, which is required
to translate the result into the one in terms of the physical coupling
5The sign of the contribution cannot be fixed by this prescriptionconstant, might be performed by utilizing the resumngefinction
alone. in [11].
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FIG. 4. Vacuum bubble diagrams with the counter tetm$) to

five loop orders.

To find the lower order perturbative coefficients in
(3.1), we have explicitly calculated the vacuum bubble dia-
grams to five loop orders. With the counter ter(bsl), c,
=c,=0, and there are five diagrams to be evaludkgd. 4).

We have the following numbers: The diagrda,

N(N+2)

Cp=— ——3— X8.833 895K 10" °. (5.2
The diagram(b),
N(N+2)(N+8) _
3=~ ———57 — X3.012767 29%10 °.
(5.3

The diagramgc), (d), and(e), respectively,

N(N+2)(N?+ 6N+ 20)
a 81

C4= X 5.657 478 653 058 108

N(N+
)
N(N+2)(5N+22)
81

2)2
—7
% 1.006 825 5 10

X2x1077.

(5.9
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FIG. 5. Ratio of the imaginary part of the vacuum energy den-
sity computed by(3.8) to the leading bounce result D=2 and
N=1 case.P=2 (circle), P=3 (filled square, and P=4 (filled
circle), are plotted.

Y, |22 N+2)Xx6.18<10°“g 2|m2¢p2+ - --
(5.5

where the counter term$.1) have been taken into account.
To the two loop order, the real part of the vacuum energy
density vanishesgy=c,;=0. Therefore we may regard the
value ofg which changes the sign of curvature of the effec-
tive potential at the origin as a measure of the tunneling
region. This rough estimation indicates<@=</3/(N+2)

X 30 is the tunneling region.

In Fig. 5, we have plotted an imaginary part of the
vacuum energy densit{3.8) with P=2, P=3, andP=4.
Again it is normalized by the bounce res(.3). Unfortu-
nately, it seems impossible to draw a definite conclusion
from Fig. 5: We do not observe the convergence behavior
and in some region even an unphysical result, the positive
imaginary part, can be found. It is not clear whether this is
due to the luck of orders of the perturbation series, or there
exists a fundamental obstruction for our approach we did not
encounter in quantum mechani¢¥he nature of the nearest
Borel singularity in the present cade=2 andN=1, is the
same as that oN=2 quantum mechanics, Fig.)2f we

In the above numbers, we have verified only the last digihevertheless take Fig. 5 at its face value, it is suggesting that
contains the roundoff error due to numerical integrations. Irthe true tunneling amplitude is muddrger than the leading

the diagram(e), we used the analytical expression of one
loop triangle diagram evaluated by5]. The numerical error
for the diagram(e) is much larger than others: However we
verified that the final result in Fig. 5 is quite insensitive to the
precise value ofe) by varying it within the estimated error.
As the general property, all the diagrams have an overa
minus sign according to the i e prescription. Notice that we

are computing the energy density, instead of the effective

action.

bounce result in the strong coupling region. However, this
would remain a speculation without having much higher or-
der perturbation coefficients, which will clarify the real con-

vergence property of our proposal.

I VI. CONCLUSION

In this paper, we have proposed a new approach to the
tunneling phenomena “the decay of the false vacuum” in a

We could not compare the exact value of the energy densuper-renormalizable field theory. Our approach utilizes the
sity, although this task might be done by invoking a latticeinformation of conventional perturbation series around the
formulation in a complex rotated functional space. Thereforenaive vacuum¢=0. We have verified numerically that the

it is not clear which range d is the tunneling region in this
case. As amorder of magnitudeestimation, we may consider

singularities of the Borel transform reproduce an accurate
tunneling rate in quantum mechanidd € 1). We have also

the effective potential to two loops which behaves around theresented a result iD=2, based on an explicit calculation

origin as

of vacuum bubble diagrams to five loop orders. Unfortu-
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nately the number of orders of the perturbation series is notmergence of the UV renormalofl6], another known
sufficient to make definite conclusions on the convergenceource of the Borel singularity. Interestingly, it does not
property and the true tunneling rate in this case. Only th&merge in our present case beca#i$enodel with anegative
higher order calculation will answer these questions. g is asymptotically fre2 (no Landau polg Of course, since
Although we have only presented results o=1 and  4* model inD=4 is trivial when the UV cutoff is removed,
D=2 in this paper, the formuld3.8) is waiting for the the relation to the “true” imaginary part is not obvious.
straightforward application tB=3=1+2 dimensional sys- presumably, our proposal for the four dimensio#aimodel

tem (tunneling on plane We expect a calculation of pertur-  js meaningful only with an UV cutoff, but such an UV cutoff
bative coefficients to six loops is tractable because the angs naturally provided in condensed matter physics.

lytical structure of one loop diagrams iB=3 is rather

simpler than that oD =2 [15]. As a consequence, definite

conclusions on a convergence property of the method and on

the true tunneling rate may be drawn. We hope to come back

this problem in a near future. The work of H.S. is supported in part by the Ministry of
Another possible test of our proposal is offered by anEducation Grant-in-Aid for Scientific Research, Nos.

interesting field theoretical model [i7], for which both the 08240207, 08640347, and 08640348.

bounce calculus and the perturbative calculation to very high

orders are possiblgL8].

Finally we briefly comment on a possible generalization 8A similar situation occurs when one evaluates an imaginary part

to the just renormalizaple cas®=4=1+3. The first . of the vacuum energy density due to the UV renormalon. See the
trouble one encounters is that all the vacuum bubble diag,iq reference of16].

grams have an overdli.e., not subdiagrainJV divergence.
A simple renormalization which sets all the coefficients  an  imaginary part of the vacuum energy density:
zero order by order, appears meaningﬁaﬁherefore anatu-  [1m &9)1ir renormato= — 1/(64) wexr —4/(bog(1))], Whereu is

ral procedure is that one first introduces an UV cutoff whilethe renormalization point anlo,=N/[3(4)?] is the one loop co-
hoping the imaginary paif3.8) is finite and independent of efficient of 8 function. This gives rise to a Borel singularity at
the regularization foP—oco. Next we are worried about an =4/b,.
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