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Phase structure and nonperturbative states in a three-dimensional adjoint Higgs model
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The thermodynamics of a three-dimensio(&D) adjoint Higgs model is considered. We study the proper-
ties of the Polyakov loop correlators and the critical behavior at the deconfinement phase transition. Our main
tool is a reduction to the 2D sine-Gordon model. The Polyakov loops appear to be connected with the soliton
operators in it. The known exact results in the sine-Gordon theory allow us to study in detail the temperature
dependence of the string tension, as well as to get some information about the nonperturbative dynamics in the
confinement phase. We also consider symmetry restoration at high temperature which makes it possible to
construct the phase diagram of the model complef&9556-282(98)00802-9

PACS numbds): 11.10.Wx, 11.10.Kk

[. INTRODUCTION classical calculations, therefore, can be interpreted as a world
sheet of the string which confine the charges. More recently,
The adjoint Higgs model in three dimensions exhibits asome progress has been made in the dynamical consideration
number of features which probably are shared by fourof such stringd3]. The arguments were givg3] that be-
dimensional gauge theories in the confining phase. Thigond the semiclassical approximation string world sheet
theory possesses a mass gap, although a part of the gauectuates and the Wilson loop averag&C) in the gauge
symmetry remains unbroken. The charges of the unbroketheory can be represented as a sum over surfaces bounded by
subgroup are confined by a string of electric flux with thethe contourC whose Boltzmann weight is determined by
energy proportional to its length. The confinement, as well asome string action.
the mass gap, arise nonperturbatively due to the Euclidean The three-dimensional3D) adjoint Higgs model pos-
field configurations of the magnetic monopole tyfié sesses interesting thermodynamic properties. It undergoes a
In three dimensions, the magnetic charge is a counterpadeconfinement phase transition and in the high temperature
of the instanton number. The classical solutions which carrnphase linear forces between static charges are replaced by the
a unit of the magnetic charge are the well known 't Hooft—Coulomb logarithmic interaction. The universality argu-
Polyakov monopoles[2]. The effects driven by these ments, as well as the renormalization group methods, were
pseudoparticles can be studied at weak coupling by standargsed to study this phase transition in a closely related model
semiclassical techniques and the nonperturbative phenomené lattice UW1) gauge theonf4]. The phase transition was
can be investigated in much detail, without any uncontrol-shown to be of the Berezinskii-Kosterlitz-ThouleKT)
lable approximations. type. The reasons are based on the dimensional reduction of
At low energies, the relevant degrees of freedom in thishe monopole plasma at finite temperature to a two-
model are gauge fields of the unbroken Abelian subgrouplimensional Coulomb gas which is known to undergo the
and monopoles. It is important to take into account the longBKT phase transitiofi5]. Because at weak coupling the ef-
range interactions between pseudoparticld3, so the fects of the monopoles are exponentially small, the confine-
vacuum of the theory is a Coulomb plasma of monopolesnent scale of the theory is very large and the dimensional
and antimonopoles, globally neutral and dilute at weak coureduction should work well even for rather low temperatures.
pling. The monopole gas is conveniently described by a scafhus, the deconfinement phase transition can be accurately
lar field theory with a cosine interaction, the coupling beingdescribed within the two-dimensional theory.
proportional to the mean monopole dendify. The scalar In the present paper 3D adjoint Higgs model at finite tem-
field is dual to the photon in the sense of the usual electricperature is studied in more detail. We shall be primarily in-
magnetic duality—the monopoles are the sources of thiserested in the behavior of the Polyakov loops which mea-
field. sure the free energy of static charged sources and play the
When a probe charge is inserted in the vacuum, its elecrole of an order parameter for the deconfinement phase tran-
tric field is screened by monopoles and form a tube withsition[6]. We find the operators corresponding to them in the
thickness of order of the correlation length in the Coulombeffective sine-Gordon model. In two dimensions, the sine-
plasma. The surface spanned by the trajectory of the charg@ordon theory is completely integrable and many quantities
serves as a source of the dual scalar field. The action of the it can be calculated exactly. The dimensional reduction
corresponding classical configuration is proportional to theenables us to utilize some of these exact results.
area of this surfacgl]. The surface appearing in the semi-  The thermodynamics of 3D adjoint Higgs model is inter-
esting by itself, but there exist some other motivations to
study it. The point is that the dimensional reduction is ex-
*Email address: agasyan@vxitep.itep.ru pected to be a good approximation at comparably low tem-
"Email address: zarembo@Uvxitep.itep.ru peratures. This fact allows us to use it in the study of the
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confinement phase. The theory considerably simplifies aftewherer=|x| and q=+1-is a magnetic charge. The func-
passing from three to two dimensions and some principaiionsf andu fall exponentially at the distances of ordaj,*
questions become more tractable, in particular, the problersr m;*. At the origin they behave so that the solution is
of string representation for Wilson loop averages. The temnonsingular. The monopoles have a finite action and their
poral degrees of freedom of the confining string decoupleontribution can be calculated by the conventional semiclas-
under the dimensional reduction and a sum over surfacesical techniques. In the dilute gas approximation the Boltz-
reduces to a sum over paths which is more familiar in themann weight of a single pseudoparticle and their interactions
field theory and can be investigated in more detalil. AnOthEQre treated Separate|y_ The one-partide partition fundtiisn

important question which can be studied with the help of thehen obtained by the loop expansion around the classical
dimensional reduction concerns a spectrum of light degreesp|ution (2.4):

of freedom in the confinement phase.
We also discuss the non-Abelian gauge symmetry resto-
ration at high temperaturg’]. This permits to examine the 712
. My, 2
phase diagram of the model more completely. An extrapola- {=const— e~ (4mmw/g)e(my /my) (2.5
tion of the results obtained leads to interesting predictions
about the phase structure in the nonperturbative strong cou-

pling region. The exponential is the classical action of the monopole. The
dimensionless functioa(my /my,) varies frome(0)=1 [12]

I. 3D ADJOINT HIGGS MODEL to e€(c)=1.787-- [13]. The constant in the pre-exponential

Before considering the thermodynamics we briefly de-{"’lcéOr '? d%termlr?tedfbyt:]he |O:Jp corfr(tarc]:tlons andtls expicted

scribe the properties of the theory involved at zero tempera—0 e of order unity for the values of the parameters satisfy-

ture following Ref.[1]. The Euclidean action of the model |ng_Eq.(2_.3). Howgver, itis known t,ha'g the one-loop cont_ri-
has the form bution diverges in the Bogomol'nyi-Prasad-Sommerfield

(BPS limit my—0 [14]. Hence, the BPS limit lies outside
the region of applicability of the semiclassical approxima-

1 1 tion.
S:j d*x 4_92 ff‘wfiﬁ EDMq’aDuq)a The monopoles interact as Coulomb charges of the mag-
nitude \4m/g. The vacuum of the theory is, therefore, a
+E)\(q>acba— 2)2} 2.1) Coulomb gas of monopoles and antimonopoles. At weak
4 ) ' coupling the monopole gas is dilute. The dependence of the

monopole density on couplings was studied numerically in
The scalar field transforms in the adjoint representation. IrRef. [10] and was found to be actually small in the pertur-
this paper we consider §P) gauge group, but a generaliza- bative regime. In the dilute gas approximation, the mono-
tion to SU(N) with arbitraryN is also possibl¢8,9]. poles contribute to the correlation functions via their classi-

The non-Abelian symmetry of Eq2.1) is spontaneously cal long-range fields. Obviously, only the Abelian fields of
broken to U1), unlessz? is not too small, when the transi- the solution(2.4) survive on the distances much larger than
tion to the symmetric phase can occur. This transition washe monopole size. This can be checked by transforming the
recently studied numerically in much detgi0,11]. The per-  classical solution to the unitary gauget=0=®?2. The re-
turbative spectrum of the model consists of the massless phoaaining long-range componeAI,lEAi obeys the superpo-
ton W and Higgs bosons with masses sition principle for multimonopole configurations. Zero
mode integration in the functional integral leads to the aver-
aging over all configurations of this type.

Although the contribution of the pseudopatrticles is expo-
nentially small, it has more important consequences than
powerlike perturbative corrections, and the monopoles
should be retained in the low energy Abelian theory. Due to

my~my>g2, (2.3)  the Debye screening by monopoles the photon acquires the
mass[1]
the massive fields decouple at low energies and we are left
with free U1) gauge theory. As it was shown [d], this
simple picture is spoiled by nonperturbative effects related to 32m2¢
monopoles. m=—- (2.6
The monopole solutions have the form 9

ma =027, Mi=2\72, (2.2

respectively. In the perturbative regime,

and the Wilson loop expectation values exhibit an area law

XV . . . .
AfL:saMr—z[l—f(r)], (2.4a  behavior with the string tensidri,9]:
Xa g’m,
@azan[l—u(r)], (24b) 0'022—772—. (27)
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I1l. PARTITION FUNCTION +oo
—PG(X)=478(X) D, 8(Xo—Np). (3.5
n=-—ow

The partition function of the system defined by the action
(2.1) at the temperatur@ is conventionally represented by
the functional integral with periodic boundary conditions in Therefore, in the dilute gas approximation, the partition

the imaginary time: function has the following form:
- 3 27
zzf [dAJ[d® e S Sor~Son 3.1) z= thgo q2+1 aﬂ d*a xp ~ 7
whereSy and Sy, are gauge fixing and ghost terms, respec- X D QaQbG(Xa—Xb))- (3.6)
tively. All fields are periodic inxy with the period=1/T. a,b

The integral overxy in Eg. (2.1) is also assumed to range : .
from Otc?,B 0 a2 g The Boltzmann factor corresponds to the interaction of

monopoles and antimonopoles, and the fugacity is deter-
mined by the one-monopole partition function. We denote a
free photon contribution by,

At sufficiently low temperatures,

T<my, (3.2
W

1 (8
only Abelian degrees of freedom are relevant. Apart from the th:f [DA]EXF’( T ag? L dXOJ deFwa) '
free photons, we must also take into account the monopole 3.7)
contribution. The corresponding classical field configurations
now do not coincide with Eq(2.4), because they should HereF,, is the Abelian field strengtl ,,=d,A,—
respect the periodic boundary conditions. This can be easilyye use the unitary gaug@’=0=®2, in wh|ch A= Aé‘
achieved by considering the periodic chains of monopoleshe correlation functions receive the contribution both from
placed at the points with coordinates’=x,+ 8, gnB.  the free photon part and from the monopoles.
SinceBm,,>1, the distance between neighboring monopoles At low temperature the partition functiof.6) describes
in the chain is much larger than their size and such classicahe globally neutral Coulomb plasma. But, as the tempera-
configurations can be treated within the dilute gas approxiture is raised, the monopoles form bound states with anti-
mation, so the one-particle partition function for the periodicmonopoles and the system passes to the molecular phase.
monopole in this approximation is the same as in @95).  The existence of the BKT phase transition from the plasma
To be more precise, one should also take into account th& the molecular phase can be demonstrated by the following
Coulomb repulsion of elementary monopole from its imagesimple argument due to Kosterlitz and Thoul¢§$. The
in the chain, but it is convenient to consider this repulsion asreen function(3.4) behaves at large spatial separation,
a part of the interaction energy, when we take into accounx|> g, as
the multimonopole configurations. For the interaction energy
in the gas of the monopoles, therefore, we have

2
G(x)= = ZIn([x|1) (38
2 > qaqb (3.3  whereu is an IR cutoff. Restricting ourselves to the two—
n X | particle partition function, we find that the mean squared

_ _ separation between monopole and antimonopole diverges at
where the first sum runs over all pseudopartickgss =1 low temperature as

are their magnetic charges and the prime means that the term
with n=0 is omitted fora=b. -
The interaction energy is divergent in the infrared, unless <r2>~J d2X|X|2e(477/gZ)G(Xo’X)~J drr3-879°8.
the total magnetic charggq, is equal to zero. So, strictly
speaking, it is necessary to insert the delta funcﬁ@@a,O in But beyond the critical point,

the summation over all monopole configurations. However,
the neutrality condition in the Coulomb plasma is satisfied
automaticallyf 1], infrared divergencies cancel by themselves Te=n— (3.9
and there is no need to worry about them. These properties
are essentially the consequences of the Debye screening.

The properly regularized sum the integral converges at large distances. Consequently, the

mean separation becomes finite and monopoles and anti-
monopoles form the bound states.

+o0 1 There is no Debye screening in the molecular phase of the
G(x)= E —_— (3.9 monopole gas. On the other hand, the Debye screening of
n=== JX“+(Xo—np) monopoles is responsible for the linear confining forces be-

tween electric charges. So, the BKT phase transition is asso-
defines the periodic Green function of the Laplace operatorciated with the deconfinement of electric charge in the ad-
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joint Higgs model. The temperature dependence of the order T2
parameter for the deconfinement phase transition—the

Polyakov loop—is discussed in the next section. Polyakov loop Q = ¢

IV. POLYAKOV LOOPS

The Polyakov loop is a phase factor associated with the monopole z
contour which closes due to the periodic boundary condi-
tions
i (B FIG. 1. The definition ofp(x).
L(Xx)=ex > dXxoAp(Xg,X) |. 4.1
0

Here and below we mark by tilde the fields in the infinite
uclidean space which do not obey periodic boundary con-
itions. The gauge potentials for the Dirac monopole can be
hosen as follows:

It describes a static charge inserted in the vacuum at th
point x. We consider charge 1/2 Polyakov loops. The reasorn
is that they correspond to the matter field in the fundamental
representation of S(@)—after the symmetry breaking the
latter splits into the two fields of charge1/2. _

The correlation functions of Polyakov loops play a distin- Ao=— Q( 1-—
guished role in gauge theories at finite temperature, since
they measure the free energy of the static charge so[6tes
The expectation value of the Polyakov loop is equal to zero _
in the confinement phase, because the energy of a single Alzq(l—
charged particle is infinite. In principle, the Polyakov loop
should acquire a nonzero expectation value in the deconfine-
ment phase, but it is not the case for the model under con- ~
sideration due to the infrared divergencies related to the low Az=0. (4.60
dimensionality of the problerf4]. More appropriate param- _ o o )
eter is the two-point correlator of the Polyakov loops, which The Dirac string in this gauge is directed along iheaxis.

is related to the interaction potential between particles of The relevant classical configurations at finite temperature
opposite chargg6]: are the periodic chains of monopoles. For them,

(4.6a

(4.6b

+ o
L(x)LT(y)y=e AV, 4.2 =
(LOILT(y)) (4.2) A#(xo,x)zn; A, (Xg+NB,X). 4.7
In the confinement phase the potential grows linearly at
large separation between charges, which is equivalent to theo calculate the contribution of the periodic monopole to the
screening of the Polyakov loops: Polyakov loop, we need not perform the summatioig4iry)
explicitly, since

(LOOLT(y))~e Aoy, 4.3
B =B -
The screening length determines the string tensiohe fo dXOAO(XO'X):nZE_w fo dXoAo(Xo+NS,X)
deconfinement transition is associated with the disappear-
ance of the screening, and in the deconfinement phase the too
two-point correlator has a power-law behavidt = f_w dXoAo(Xg,X).

(L)LY (y))~|x—y|Pe, (4.4  Substituting the field of the monopolé.6) for A, we find:

indicating the Coulomb logarithmic interaction of charged B
particles. f dXoAg(Xg,X)=
In the dilute gas approximation, the monopoles contribute 0
to the Polyakov loop via their classical fields. The long range
field of the 't Hooft—Polyakov solutiorf2.4) in the unitary ~ This result shows that the contribution of a single monopole
gauge coincides with that of a Dirac monopole to the Polyakov loop(x) is equal to &¢X whereg(x) is
an angle of the direction from the monopole position to the
point x with x, axis, as depicted in Fig. 1. The contributions
~ X\ of individual monopoles sum up and, for example, for the

F‘“’:qs"““r_3' 4.5 two-point correlator of Polyakov loops we get

g. (4.9

X2
2 arctan——
X1
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9° (8 y
Z+1 a];[ d3x, <exp(g jo dfOdegigijan)>

, .
xexr{ — g—z Z‘) Ja0bG(Xa—Xp) 7;3 Z 2 H d3xa< exp( ig Gax(Xa)

ga=*1

lef\c

(LOOLT(y)= 7" S

N=0

N=0
z (B y
13 a0 paly)] r o [Ma, fxdaei,-ajx)>o. @1

g where(---), denotes the Gaussian average oyeThis av-

T 16x7 dfof d 70 G(£0=770,0) erage after some transformations can be represented in the
following form:

(4.9
< f{ E qax Xa)+ g J ngJ d§|3|1(9]X>>

The last term in the exponential represents a perturbative 2
N R . -
contribution of _thg free phot(_)ns. The_ gengrahzqmon of this  _ o — il 2 905G (Xa— Xp)
formula to multipoint correlation functions is obvious.
The partition function3.6) has the convenient functional

—G(éo— m0.x—Y)]|.

0

representatiofl] + = E qaf dgof déieijd;G(E—X,)
=7 f dy]ex J dx J d? X3 d
ph [dx] ;{ 0 ( X) 3271_ dgof déie ij d7o
-2 _ 4.1 Y
{ cosy ] (4.10 X Ldnksk|<9jr?|G(§— 77))
The expansion of this path integral ingenerates the grand B ™
canonical partition function for monopolé8.6), which can —eXR T g7 az:‘, Ga0bG(Xa=Xp)

be checked using Eq3.5 in the calculation of Gaussian
integrals overy. .
Correlation functions also admit the functional represen- +'§ Al a(X) ~¢a(y)] = 75— fo déo
tation. Our present goal is to find the operators in the sine-
Gordon theory(4.10 corresponding to the Polyakov loops. B
The correlation functions which reduce to the form similar to X 0 d70[ G(£0= 770,0) = G(§o= 70, X=Y) ]|
Eqg. (4.9 have been considered in RéiL5] for 2D lattice
model, closely related to the sine-Gordon theory. Motivated (4.13

by these results, we propose the following identification:  Tjs result is a simple generalization of the formula which
has been used in Rgf16] to construct a path-integral ver-
g2 (8 sion of_ soliton operators in 2D sine-Gordon_ thgory. In the_
L(x)=exp(8— J' d§of dgisijan)v (4.113 der.|vat|on we have a_f,sumed thaF the regulgnzqﬂon is used in
™ Jo which §(0)=0. Substitution of this expression in E@.12
reduces the latter to the forfd.9).
@ (s The averagd4.12 in the sine-Gordon theory reproduces
toon y not only the monopole contribution to the correlator of the
L (y)—exp(— JO dgof dgﬁiiﬁiX)' (4.110 Polyakov loops, but the whole answer containing also the
free photon part. It is interesting that the same property holds
for the string representation proposed in R8&l.for the Wil-
son loop averages at zero temperature—this representation

(X1,%52) plane or can end on the Polyakov loop of the oppo- ¢ ticall ters th Curbati hot b
site charge. These formulas should be understood as operaﬁﬂ omatically encounters ine perturbative photon contriou-
tion. The Gaussian nature of the functional averages in each

equalities—any correlation functions of the Polyakov loops
in the U(1) gauge theory with monopoles are equal to the order of the expansion i ensures the validity of the iden-
tification (4.12) for arbitrary correlation functions. The op-

correlation functions of the operators on the right-hand side
where the averaging overis defined by the partition func- efatofs(“ 19 POSSEss a numbe_r of peculiar properties which
tion (4.10) are discussed in the next section.

Here the contour of integration ovér goes to infinity in the

The identification(4.11) is established by developing the
correlation functions of the operatai.11) in {. As a result,
one recovers correlation functions for the Coulomb gas of The partition function(4.10 defines the interacting field
type (4.9. In the specific case of the two-point correlator, theory in three dimensions. Although the nonlinearity is

V. DIMENSIONAL REDUCTION
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caused by instantons and the coefficient before casiiseof A ~b%47 \where A is an UV cutoff. It is worth mentioning

order exp(-constmy/g?), the interaction in the theory is not that the dimensional arguments clarify the origin of the BKT
weak. The point is thaf is the dimensional parameter and phase transition—at the critical point the dimension of the
the strength of interaction depends on the scale. At very |ar96perator :code: is 2, and the perturbation in E¢5.3) be-
distances, of order of the inverse photon mass,ldefined  comes marginal.

by Eq.(2.6), the effects of interaction are not small and they  The temperature defines the natural UV cutoff of 2D
cannot be neglected. The consideration of a system at th@eory. Actually, the dimensional reduction is valid only at
finite temperature, actually, introduces a characteristic scalgistances much larger than the inverse temperature, on
B=1T. Some simplifications do occur, when this scale issmaller scales the dynamics is governed by the full 3D
much smaller than the correlation Iength, i.e., when the temtheory_ In particu|ar, the exact propaga@(x) cannot be

perature is not extremely low: replaced by its large distance asymptotics |fdr- 3. How-
ever, due to the renormalizability all the effects of the dy-
m, <T. (5.)  namics at short distances can be absorbed into a multiplica-

. _ tive renormalization of u. Thus, the UV cutoff is
As before, the interaction cannot be completely neglectedyroportional to the temperature with some numerical coeffi-
rather some degrees of freedom become irrelevant. The fieldgsent depending on the renormalization scheme. For the nor-

with nontrivial dependence on the time coordinatede-  mal ordering prescription this coefficient is calculated in the
couple, since their Matsubara frequencies are large comparechpendix:

to the characteristic mass scale determinedny This ar-
gument justifies the dimensional reduction procedure, typical

" o ; e’
for the field theory at finite temperature. As a result of this A=—T, (5.5
procedure, we are left with the two-dimensional sine-Gordon 2
model:

where y=0.5772-- is the Euler constant. Thus, the renor-

) malized value ofu is given by

9B
I 2_
Sreduced_J' dx 32,”_2((9)() 2{B cosy|. (5.2 ¢ (e —b2/am gzmz o —4nTIg?
Y
] ) ) ) pu==|=T = —T) (5.6)
In the Coulomb gas picture, the dimensional reduction T ( 2 327°T | 2

can be understood as a substitution of the large distance as-
ymptotics(3.8) for the exact three-dimensional Green func- A. Polyakov loops and solitons
tion in Eq.(3.6). The discussion at the end of Sec. Il dem- The peculiar proerty of the sine-Gordon theorv is the
onstrates that the time dependence is irrelevant for the P _property . yIs
description of the deconfinement phase transifién More- presence of so_htons in th_e 'spectrum of ph_ysu:al excitations.
over, the condition5.1) shows that the dimensional reduc- QIassmaIIy, ;ohtons are finite energy so!utlons of the equa-
tion is a good approximation in a wide range of temperr;lturegon.S of motion. They are very massive in .the sem|clas_3|cal
below the phase transition. This circumstance allows us t§e9'on but all more light particles can be viewed as soht_on-
use the reduced theory in the study of the confinement phasgmISOIIton bound stat_eEl?]. The existence of solitons is

: . : .+ . Closely related to the hidden(l) symmetry generated by the
The dimensional reduction actually leads to substantial SIM:loaical current
plification, since 2D sine-Gordon model is a classic example polog
of completely integrable field theory and some of its proper-
ties are known exactly.

The conventional sine-Gordon action is obtained after the
rescaling of the fieldp(x)= x(x)g/B/4m:

) b
Jizﬁgijaj(ﬁv (5.7

which is identically conserved. Solitons carry a unit charge
corresponding to this current.

SSGZJ d?x E((w)z_z# coshg |, (5.3 According to the results of the previous section, we asso-
2 ciate with the Polyakov loops the following operators:
where 2
Loo=exd = f d P f d
16227 . (X)=ex 8T |, &ieijdjx | =ex o ), igijdjd |,
b?=——5—=87—. (5.4) (5.8a
g Te

This parameter plays the role of a Plank constant in the sine- . g® (v B 27
Gordon theoryf17]. Consequently, the low-temperature limit | (Y)=€XP g | d&eijdjx | =exp - ydgisiiajd’ -

of the theory is semiclassical. (5.8b

The parameter depends on the renormalization scheme,
i.e., on a definition of the operator cbg. The conventional It turns out that these operators have topological charges 1
regularization procedure is based on the normal orderingand —1, respectively. There are many possibilities to dem-
Since the dimension of the operator :¢uk is b%/4m, the  onstrate this fact. For example, one can use operator product
coupling w differs from its “bare” value {8 by the factor expansionNOPE of the topological currents
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b’ xixg| 1 (pl2) [ al[L(p+1)] |(PHL2
JiX)j(0)=—5=3 (5'k_2—2'> =+ (5.9 - ( ) ,
| 8 | 7 T X% 1K JaT[(p+1)/2] | Tlpl(p+1)T ¥
5.1
to show that (619
where
. o 1ox
Ji(X)L(O)——EWL(O)‘F'“ , (5.10a . b2 T 16
P02 T—T '
i T(0)= i Xt After some algebra we obtain for the string tension
JiIL(0) =5~ |x|2" (0)+--- . (5.10b
TI(T,—T) _ T /(2T,—2T)
Defining the topological charge operator o(T)= 0 m, T[(Tc—T)/Tc]
eT (T +T)/T,]
, 22T~ T)/(2T.—2T)]
= ¢ dxe; : 5.1 ,
Q %C Xi€ik) k(X) (5.1 T[(2T—T)/(T.—T)] (5.19

where the contou€ encircles counterclockwise the origin, It is worth mentioning that the dependence of the soliton

we readily find that. (L") behaves as charge (L) op- mass onu and, consequently, of the string tension oy,

erator under (1) transformations generated K. follows from a dimensional consideration. The remaining
factor, which is a function ob? or, equivalently, of the

adimensional ratiol/T,., cannot be found by elementar
QL(0)=L(0), (5128 otode. c y y

QL'(0)=-L%0). (5.12h B. Deconfinement phase transition

) o The temperature dependence of the string tension is
On the other hand, the Polyakov loop, by its definition, cre-ghown in Fig. 2. At low temperaturesy,<T<T,, the string
ates an electric charge. This means that the following idencansion falls rapidly: 4

tification holds: topological charge?Xelectric charge, and
the W(1) symmetry of the sine-Gordon model corresponds to
the invariance of the original three-dimensional theory under my T/TCNU eXp( _ 4m?e(my /my)myT
global gauge transformations. e'T 0 g*

The fact that Polyakov loops create solitons has important (5.18
consequences. In particular, the large distance behavior of ) ) )
the two-point correlator of the Polyakov loops is governed!n€ increase ot (T) at T~m,, certainly, is an artifact of

by the lightest state with the topological charge one, i.e., by® dimensional reduction which is inapplicable at such
the soliton: small temperatures. It is interesting that the low-temperature

behavior of the string tension is completely determined by
R b the dimensional arguments.
(LOOLT(y)y~e Mo, (5.13 Let us turn to the critical behavior. The string tension has

an essential singularity at the point of the phase transition:
Here M is a soliton mass. Comparing this expression with

Og=09

Eq. (4.3 we find that the temperature dependence of the 5 TI(2T4—2T)
string tension is determined by the mass of the soliton =0 \/E o312y m,
°V?2 4T (T—T)
o(T)=TM. (5.19 T.—T
x[1+0 °T . (5.19
Cc

In the zero temperature limit the semiclassical approximation
is valid. The classical mass of the soliton is equal {®g/b -
[17], and we obtain ,-\\

[g]
8T\V2u 89°¢
G-(O): b = 71_2 =00,

whereoy is given by Eq(2.7). Thus, the result of Ref9] is

recovered. 0 T, T
In fact, the soliton mass in the sine-Gordon theory is

known exactly[18] FIG. 2. The string tension(T).
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The string tension decreases up to the temperature very closénereM is the soliton mass ang is defined in Eq(5.16.
to the transition point The number of bound states depends on the coupling con-
stantb, i.e., on the temperature. If the breathers survive the
m2 zero temperature limit, their number becomes infinite and
To=T.— 2 they form a linear “Regge trajectory”:
m=Te” 2@ I,

where it reaches a vanishingly small value, my—nm,,. (5.23
T 2e27*1T§ mi A possible interpretation of these particles is that they are
Tmin= 0\ 5 exp 2—y— m 1+0 /| threshold bound states of photons. The existence of exci-
b% c

tations with masses which can be arbitrarily large compared

Then the string tension grows rapidly and at the critical pointt0 m,, but which are much smaller thamy,, gives the

turns to infinity. This result is essentially nonperturbative. Itfg;igg evidence of a nontrivial dynamics in the intermediate

Wer the dimensional analysis sufficent, the crtioal benavs, . Probabl the most important feature oftygauge theory
y ! ith monopoles is its connection to string theory. On the

lor of the string tension would be determined by the secon evel of classical equations of motion for the Wilson loop, a

factor in Eq.(5.17) and the string tension would vanish at .
T=T,. This is not the case. Actually, the third factor has asurfage spanngd by thg loop_parametrize naturally.corre-
¢ ' sponding classical solutiofil]. The arguments were given
mt'hat, beyond the semiclassical approximation, this surface
fluctuates and Wilson loop average can be represented as a
sum over random surfaces with some weight depending on
C. Confinement phase the surfacd3]. This representation will be practically useful,

Certainly, the reduced 2D theory is much simpler than thdf the effective s_tring action has a simple form in some rea-
original 3D model. On the other hand, the dimensional re-Sonable approximation. _ _
duction is a good approximation up to very low tempera- The same reasoning should b@r valid for thg two-point cor-
tures, and one might think that the results obtained for th&elator of Polyakov loopg(L(x)L(y)). In this cisllse,_lthe
reduced model can be even extrapolated to zero temperatuf@fing world sheet is spanned by the contadyf,, £, “T',",

The fact that the string tension obtained from the mass of thwhere £,={(Xo,2)|0<x,<p} andT', is some curve con-
soliton in two dimensions agrees with the result of the seminectingx with y in the (x;,x;) plane. We expect that at
classical analyses of Wilson loops directly in the three-sufficiently high temperatures/o,<T<T,, the temporal
dimensional theory1,9] supports this assumption. There are fluctuations of the string are irrelevant, in other words, the
two points we are going to discuss. typical surfaces have the forpd,3]xT',, . So, the sum over

(i) Perturbatively, the only light particle in the 3D adjoint random surfaces is replaced by a sum over paths:

Higgs model is the photon with the mass,. Other degrees

of freedom have substantially larger massgg andmy . It

was conjectured that the dynamics in the intermediate region
may be nontrivial and there are excitations with the masses
m,<m<my, [3]. The known exact spectrum of the reduced
theory provides a way to check this conjecture, since non-

. : An important remark concerning this representation is in
Eg:;irﬁc?\}\"\/:t ?ii%reeﬁztoéggﬁ?gmpser;gzj%;n;?_gi themselveosrder_ According to Ref[3], the string world sheet for a
- : ; : ! v given field configurationy(x) is defined by the equation

tior(1lIf)oﬁ?h(zhlggl;rglfgsﬁgg% E):g??ellea:?olrz the string representa-cosX(X):_l_ This is consistent with semiclassical analyses

We begin with the consideration of the spectrum. The[3]. On the other hand, in the reduced 2D sine-Gordon model

. > . the same equation, cbg)(X)=—1, is a conventional defi-
semiclassical spectrum of 2.D sine G_ordon thg[dr?] turns nition of a soliton patH20] for a field configurationg(x).
out to be exacf19] and consists of solitons, antisolitons, and Thus, the paths in the functional inteqrd.22) are inter-
their bound statetbreathers The lightest bound state can be ’ P gre.

identified with the perturbative excitation of the sine-Gordonpreted as sollton_ trajectories. It W(.)UId be interesting to find
field [17] which, in turn, corresponds to a dual photon of thesuch representation for the two-point correlator of the Polya-

original 3D theor kov loop operator$5.8). Being the counterpart of the string
9 Y- representation for the Wilson loop averages, it may help to

Solitons and antisolitons disappear from the spectrum act:larify the dynamics of the confining string.

T—0, since their mass determines the string tension by EQ- At present, we do not know how to construct the repre-

(5.14) and the string tension has the finite zero temperature - . . .
limit. The exact masses of the breathers are given by thsentat|on(5.22) with a reasonably simple actiodl X(r)].

following expressiof17,19; We know only one example of the simple sum-over-path

= representation for correlation functions—the case when the
operators are described by a local field theory. The sine-
Gordon solitons are actually described by a local theory,
namely, by the massive Thirring modé&1,22

peratures very close to the point of the phase transition.

(LOOLT(y)= fxx(;)_zxy[dXJeqX“”. (5.22

mmnp

m,=2M sin 5

1
n=1.2,...; n<5 ., (5.20
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sz (¢7#6M¢+MT¢¢+ 2 W?’#WM’# ) \l
(5.23 -7
where gr=4m?/b?>— 7. However, the solitons obey Fermi

statistics and soliton operatof2] (more precisely, their
Euclidean-space counterpalis]) differ from the Polyakov
loops (5.8) by an additional factor:

FIG. 3. Tadpole diagrams corresponding to the contribution of
W bosons, complex scalar fieftl™ = (d1+i®?)/v2, Higgs boson,
and ghosts to the vacuum expectation value of the Higgs field.

27 (x i 1
GX%FJ déieijdjo+ qu&(x)): So=527 f d3x(9, A5+ ag®e®*W D)2, (6.1)
W(x) = - , 9
—|:ex;{Tj déieijdj ¢ quﬁ(x)): wherea is a gauge parameter. This is a conventional choice
(5.243  which is convenient because it cancels a mixing betwé&en
bosons and the complex scalar fielf" = (d1+id?)/v2
> . coming from the covariant derivative df squared. We al-
T i N
i:exr{—J' déieijd;p+ —bd)(x)): ways assume that the vacuum value of the scalar field is
— b Jx 2 directed along the third axis in the color space and denote it
Px)= 27 i ' by v: v3=6*35. The ghost term in the chosen gauge is
_fdgisija'd’__b(f)(x) :
(5.24b

Sgh=f d*x[d,c?D e+ ag?n(P3cic?~d2cic?)].
These operators have an interesting interpretation in the 6.2
gauge theory. The operator exf(1b¢)=exp(+1/2y) cre- '
ates a monopole with magnetic chargel/2. So, from this
point of view, the soliton can be regarded as a “dyon"—the.
superposition of magnetic and electric charges, both equal
1/2 in magnitude.

The free fermion propagator has the well known sum-
over-path representation with an additional integration over
Grassmannian world-line variabl¢23]. The world-line ac-
tion in this representation is supersymmetric, although the
supersymmetry is broken by boundary conditions. This al-

The reason for the symmetry restoration phase transition
|s the presence of the thermal corrections to the vacuum av-
8rage<d>3> which is equal ton at zero temperature. In order
to find them, we expand?® as®3(x) = »+ o(x) and calcu-
late (o). To the lowest order of perturbation theokys) is
given by four tadpole diagrams depicted in Fig. 3. It is con-
venient to denote bl (m?) the contribution of a scalar loop:

lows us to speculate that a modification of the Wilson loop 1

by particular monopole operators in 3D theory has a string F(mZ)ZTE j (2m)2 P2+ w2+ m?
representation with supersymmetric world-sheet action. The " .

loop corrections due to the four-fermion term in E§.23 —(T=0)(w,=27nT). 6.3

can be regarded as contact string interactions. Unfortunately,
in the zero temperature limit both the mads and the cou-  The zero temperature part is subtracted because temperature

pling constangr becomes infinite. independent contribution tP3) merely renormalize;. We
can, actually, denote by the renormalized value of the
VI. SYMMETRY RESTORATION Higgs condensate. Then the sum of the diagrams depicted in

) . ) Fig. 3 is found to be
In the previous sections we have dealt with the low-

energy Abelian theory completely disregarding the massive

fields. The only remnant of the spontaneously broken non- r
Abelian gauge symmetry relevant for this consideration was

the presence of magnetic monopoles with finite action. This
approximation, valid at sufficiently low temperatures, be-

comes more and more worse as the temperature is raised, phase with
since the thermal fluctuations decrease the mass scale of the
complete non-Abelian theory. Ultimately bosons become

unbroken

gauge symmetry

massless and the non-Abelian symmetry is restored. In the Coulomb>

perturbative region2.3), the critical temperature should be phase \/ ~

very high, because the zero temperature value of the Higgs ~confinement ~

boson vacuum average is large and thermal fluctuations -~
which decrease it to zero should be sufficiently strong. In this phase

section we study the symmetry restoring phase transition in 0 2

the framework of thermal perturbation theory. g

We add to the actiofi2.1) the gauge fixing term FIG. 4. The phase diagram of 3D adjoint Higgs model.
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1 meet at the triple pointFig. 4). At sufficiently largeg? the
<<T>:—F{ZQZW[ZF(F“\ZNHaF(am\z/v)]+2?\ nF(amd) non-Abelian symmetry is restored directly in the confine-
H ment phase. The strong coupling behavior cannot be de-
+3N nF(mﬁ)—ZaganamSv)}- (6.4) scribed by perturbative methods and we have nothing to say

about the phase transition between confinement and symmet-
The loop integral(6.3) is easily calculable by Poisson ric phases, but numerical results of R¢f,11] show that at
resummatior 24]: zero temperature this is a first order transition terminating at
some point, so that symmetric and confinement phases are
connected by analytical continuation. Probably, the same is

E(m?) f d?p 1 1 true for the thermal phase transition as well.
m*)= = Our consideration of the critical behavior at the decon-
271_ 2 > 2 p2+m2_ . o :
(2m)” Jp*+m” & 1 finement phase transition is based on the operator represen-
1 ©  dég tation for the Polyakov loops in the effective sine-Gordon
=— -, (6.5 model describing the Coulomb gas of the monopoles. After
278 Jmp €6—1

the dimensional reduction Polyakov loop operators turn out

. . to be closely connected with the solitons in 2D sine-Gordon
First of all, this formula shows that at the temperatures mucfg eory. Using the known exact value of the soliton s
smaller than the mass scale the corrections to the condensat o Y- 9

are exponentially small. This result justifies the disregardin Véelf%ur.]rdhtehitfit:n%;ﬁgi‘j’; gne?(iizigngtlﬁgroz;ir:Saelrakl)tgrrgvliEo?-
of the temperature corrections to the masses and the vacuum” . g tens o o
. : o . .~ _near the phase transition. It grows rapidly in the vicinity of
expectation value of the Higgs field in the previous sections o . " .
. . the transition point and at the critical temperature diverges as
The corrections become comparable oat a very high

: : : exp(—In A/2A), whereA=(T.—T)/T,.
temperature-F>m. In this regime the functioff (m?) can . . N c .
be expanded as The interpretation of the known facts about 2D sine-

Gordon model enables us to draw some conclusions about

the properties of the confinement phase of 3D adjoint Higgs
T T2 model. There are strong arguments in favor of nontrivial dy-

F(m?)= 4—In s +0(m). (6.6 namics at the intermediate scales betwegnandmy, . Per-

m haps, the most interesting result is a possible appearance of

strings with a world-sheet supersymmetry, but this is only a

Thus, we find with logarithmic accuracy, . . . ) X .
conjecture which requires more serious confirmations.

2

Tn T
(D= n+{c)=7— e (5A+4g?)In—. (6.7 ACKNOWLEDGMENTS
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T Ay APPENDIX: UV SCALE OF THE REDUCED THEORY
* g2{[5+8(m3/m3)]In(my/g?) +O[In In(my/g?)1}’ '

(6.9 The normal ordered operator :coé: is defined by the

. o ) . two-point function in the free theory:
is very high in the perturbative regioi=>m,,, as ex-

pected. The symmetry restoration phase transition, most

probably, is the second order one, since the condensate of the . _ )

Higgs field is continuous at the critical point in the one-loop (:e/PPX): @7 DEW): Y = |x—y| P27, (A1)
approximation.

On the other hand, Eq4.10 determines the Gaussian aver-
VII. DISCUSSION age in three dimensions to be

The phase structure of 3D adjoint Higgs model can be
studied in detail at weak coupling. The system undergoes the
deconfinement transition of the BKT type and the second (eXXg=Ix¥) = (4mgA[G(0)~G(x~Y)] (A2)
order phase transition associated with the restoration of the 0 '
non-Abelian gauge symmetry. The temperatures of these
transitions differ in the order of magnitud&, >T.. ButT, whereG(x) is defined by Eq(3.4). The Coulomb gas rep-
rapidly decreases with the increase of the coupljfgat  resentation of the monopole partition functi¢®6) implies
fixed my, andmy,, while T, grows. So, ag?~my, the lines  the particular regularization of the divergent quant@y0).
of deconfinement and symmetry restoration phase transitiorls is defined by Eq(3.3):
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1
G(0)—G(x— y)—g Bl
1
; V(X=Y)?+ (Xg—Yo—NB)?
2 ex—yl 2y
—EIHT+O(8 2m=yIIBY - (A3)

2485

Comparing this equation with the correlation function of the
normal ordered operatofé&\1) we find that the definition of
the operator cob¢ in the monopole partition function is
connected with the normal ordering prescription by the mul-
tiplicative renormalization

Here y is the Euler constant. The dimensional reduction is
equivalent to the omitting of exponential terms. Hence, we

obtain

—87T/g?
ey) T ey

iIX(X)a=ix(Vy —| __
(XWe Xy g <2T

EA—bzlzwlx_yl—bzlzw_ (Ad)

coshé=cosy=A""74"cosbe:, (A5)
and the UV scale is given by
e'}'

A= ?T (AB)
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