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Phase structure and nonperturbative states in a three-dimensional adjoint Higgs model

N. O. Agasyan* and K. Zarembo†

Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117259 Moscow, Russia
~Received 11 August 1997; published 28 January 1998!

The thermodynamics of a three-dimensional~3D! adjoint Higgs model is considered. We study the proper-
ties of the Polyakov loop correlators and the critical behavior at the deconfinement phase transition. Our main
tool is a reduction to the 2D sine-Gordon model. The Polyakov loops appear to be connected with the soliton
operators in it. The known exact results in the sine-Gordon theory allow us to study in detail the temperature
dependence of the string tension, as well as to get some information about the nonperturbative dynamics in the
confinement phase. We also consider symmetry restoration at high temperature which makes it possible to
construct the phase diagram of the model completely.@S0556-2821~98!00802-9#

PACS number~s!: 11.10.Wx, 11.10.Kk
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I. INTRODUCTION

The adjoint Higgs model in three dimensions exhibits
number of features which probably are shared by fo
dimensional gauge theories in the confining phase. T
theory possesses a mass gap, although a part of the g
symmetry remains unbroken. The charges of the unbro
subgroup are confined by a string of electric flux with t
energy proportional to its length. The confinement, as wel
the mass gap, arise nonperturbatively due to the Euclid
field configurations of the magnetic monopole type@1#.

In three dimensions, the magnetic charge is a counter
of the instanton number. The classical solutions which ca
a unit of the magnetic charge are the well known ’t Hoof
Polyakov monopoles@2#. The effects driven by thes
pseudoparticles can be studied at weak coupling by stan
semiclassical techniques and the nonperturbative phenom
can be investigated in much detail, without any uncontr
lable approximations.

At low energies, the relevant degrees of freedom in t
model are gauge fields of the unbroken Abelian subgr
and monopoles. It is important to take into account the lo
range interactions between pseudoparticles@1#, so the
vacuum of the theory is a Coulomb plasma of monopo
and antimonopoles, globally neutral and dilute at weak c
pling. The monopole gas is conveniently described by a s
lar field theory with a cosine interaction, the coupling bei
proportional to the mean monopole density@1#. The scalar
field is dual to the photon in the sense of the usual elect
magnetic duality—the monopoles are the sources of
field.

When a probe charge is inserted in the vacuum, its e
tric field is screened by monopoles and form a tube w
thickness of order of the correlation length in the Coulom
plasma. The surface spanned by the trajectory of the ch
serves as a source of the dual scalar field. The action of
corresponding classical configuration is proportional to
area of this surface@1#. The surface appearing in the sem
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classical calculations, therefore, can be interpreted as a w
sheet of the string which confine the charges. More recen
some progress has been made in the dynamical consider
of such strings@3#. The arguments were given@3# that be-
yond the semiclassical approximation string world sh
fluctuates and the Wilson loop averageW(C) in the gauge
theory can be represented as a sum over surfaces bound
the contourC whose Boltzmann weight is determined b
some string action.

The three-dimensional~3D! adjoint Higgs model pos-
sesses interesting thermodynamic properties. It undergo
deconfinement phase transition and in the high tempera
phase linear forces between static charges are replaced b
Coulomb logarithmic interaction. The universality arg
ments, as well as the renormalization group methods, w
used to study this phase transition in a closely related mo
of lattice U~1! gauge theory@4#. The phase transition wa
shown to be of the Berezinskii-Kosterlitz-Thouless~BKT!
type. The reasons are based on the dimensional reductio
the monopole plasma at finite temperature to a tw
dimensional Coulomb gas which is known to undergo
BKT phase transition@5#. Because at weak coupling the e
fects of the monopoles are exponentially small, the confi
ment scale of the theory is very large and the dimensio
reduction should work well even for rather low temperatur
Thus, the deconfinement phase transition can be accura
described within the two-dimensional theory.

In the present paper 3D adjoint Higgs model at finite te
perature is studied in more detail. We shall be primarily
terested in the behavior of the Polyakov loops which m
sure the free energy of static charged sources and play
role of an order parameter for the deconfinement phase t
sition @6#. We find the operators corresponding to them in t
effective sine-Gordon model. In two dimensions, the sin
Gordon theory is completely integrable and many quanti
in it can be calculated exactly. The dimensional reduct
enables us to utilize some of these exact results.

The thermodynamics of 3D adjoint Higgs model is inte
esting by itself, but there exist some other motivations
study it. The point is that the dimensional reduction is e
pected to be a good approximation at comparably low te
peratures. This fact allows us to use it in the study of
2475 © 1998 The American Physical Society
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2476 57N. O. AGASYAN AND K. ZAREMBO
confinement phase. The theory considerably simplifies a
passing from three to two dimensions and some princ
questions become more tractable, in particular, the prob
of string representation for Wilson loop averages. The te
poral degrees of freedom of the confining string decou
under the dimensional reduction and a sum over surfa
reduces to a sum over paths which is more familiar in
field theory and can be investigated in more detail. Anot
important question which can be studied with the help of
dimensional reduction concerns a spectrum of light degr
of freedom in the confinement phase.

We also discuss the non-Abelian gauge symmetry re
ration at high temperature@7#. This permits to examine the
phase diagram of the model more completely. An extrapo
tion of the results obtained leads to interesting predicti
about the phase structure in the nonperturbative strong
pling region.

II. 3D ADJOINT HIGGS MODEL

Before considering the thermodynamics we briefly d
scribe the properties of the theory involved at zero tempe
ture following Ref.@1#. The Euclidean action of the mode
has the form

S5E d3xF 1

4g2 Fmn
a Fmn

a 1
1

2
DmFaDmFa

1
1

4
l~FaFa2h2!2G . ~2.1!

The scalar field transforms in the adjoint representation
this paper we consider SU~2! gauge group, but a generaliza
tion to SU(N) with arbitraryN is also possible@8,9#.

The non-Abelian symmetry of Eq.~2.1! is spontaneously
broken to U~1!, unlessh2 is not too small, when the trans
tion to the symmetric phase can occur. This transition w
recently studied numerically in much detail@10,11#. The per-
turbative spectrum of the model consists of the massless
ton W and Higgs bosons with masses

mW
2 5g2h2, mH

2 52lh2, ~2.2!

respectively. In the perturbative regime,

mH;mW@g2, ~2.3!

the massive fields decouple at low energies and we are
with free U~1! gauge theory. As it was shown in@1#, this
simple picture is spoiled by nonperturbative effects related
monopoles.

The monopole solutions have the form

Am
a 5«amn

xn

r 2 @12 f ~r !#, ~2.4a!

Fa5qh
xa

r
@12u~r !#, ~2.4b!
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where r 5uxu and q561 –is a magnetic charge. The func
tions f andu fall exponentially at the distances of ordermW

21

or mH
21 . At the origin they behave so that the solution

nonsingular. The monopoles have a finite action and th
contribution can be calculated by the conventional semic
sical techniques. In the dilute gas approximation the Bo
mann weight of a single pseudoparticle and their interacti
are treated separately. The one-particle partition functionz is
then obtained by the loop expansion around the class
solution ~2.4!:

z5const
mW

7/2

g
e2~4pmW /g2!e~mH /mW!. ~2.5!

The exponential is the classical action of the monopole. T
dimensionless functione(mH /mW) varies frome(0)51 @12#
to e(`)51.787••• @13#. The constant in the pre-exponenti
factor is determined by the loop corrections and is expec
to be of order unity for the values of the parameters satis
ing Eq. ~2.3!. However, it is known that the one-loop contr
bution diverges in the Bogomol’nyi-Prasad-Sommerfie
~BPS! limit mH→0 @14#. Hence, the BPS limit lies outsid
the region of applicability of the semiclassical approxim
tion.

The monopoles interact as Coulomb charges of the m
nitude A4p/g. The vacuum of the theory is, therefore,
Coulomb gas of monopoles and antimonopoles. At we
coupling the monopole gas is dilute. The dependence of
monopole density on couplings was studied numerically
Ref. @10# and was found to be actually small in the pertu
bative regime. In the dilute gas approximation, the mon
poles contribute to the correlation functions via their clas
cal long-range fields. Obviously, only the Abelian fields
the solution~2.4! survive on the distances much larger th
the monopole size. This can be checked by transforming
classical solution to the unitary gaugeF1505F2. The re-
maining long-range componentAm[Am

3 obeys the superpo
sition principle for multimonopole configurations. Zer
mode integration in the functional integral leads to the av
aging over all configurations of this type.

Although the contribution of the pseudoparticles is exp
nentially small, it has more important consequences t
powerlike perturbative corrections, and the monopo
should be retained in the low energy Abelian theory. Due
the Debye screening by monopoles the photon acquires
mass@1#

mg
25

32p2z

g2 ~2.6!

and the Wilson loop expectation values exhibit an area
behavior with the string tension@1,9#:

s05
g2mg

2p2 . ~2.7!
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57 2477PHASE STRUCTURE AND NONPERTURBATIVE STATES . . .
III. PARTITION FUNCTION

The partition function of the system defined by the act
~2.1! at the temperatureT is conventionally represented b
the functional integral with periodic boundary conditions
the imaginary time:

Z5E @dA#@dF#e2S2Sgf2Sgh, ~3.1!

whereSgf andSgh are gauge fixing and ghost terms, respe
tively. All fields are periodic inx0 with the periodb51/T.
The integral overx0 in Eq. ~2.1! is also assumed to rang
from 0 to b.

At sufficiently low temperatures,

T!mW , ~3.2!

only Abelian degrees of freedom are relevant. Apart from
free photons, we must also take into account the monop
contribution. The corresponding classical field configuratio
now do not coincide with Eq.~2.4!, because they shoul
respect the periodic boundary conditions. This can be ea
achieved by considering the periodic chains of monopo
placed at the points with coordinatesxm

(n)5xm1dm 0nb.
SincebmW@1, the distance between neighboring monopo
in the chain is much larger than their size and such class
configurations can be treated within the dilute gas appro
mation, so the one-particle partition function for the period
monopole in this approximation is the same as in Eq.~2.5!.
To be more precise, one should also take into account
Coulomb repulsion of elementary monopole from its imag
in the chain, but it is convenient to consider this repulsion
a part of the interaction energy, when we take into acco
the multimonopole configurations. For the interaction ene
in the gas of the monopoles, therefore, we have

Sint5
2p

g2 (
a,b

(
n

8
qaqb

uxa2xb
~n!u

, ~3.3!

where the first sum runs over all pseudoparticles,qa561
are their magnetic charges and the prime means that the
with n50 is omitted fora5b.

The interaction energy is divergent in the infrared, unle
the total magnetic chargeSqa is equal to zero. So, strictly
speaking, it is necessary to insert the delta functiondSqa ,0 in
the summation over all monopole configurations. Howev
the neutrality condition in the Coulomb plasma is satisfi
automatically@1#, infrared divergencies cancel by themselv
and there is no need to worry about them. These prope
are essentially the consequences of the Debye screenin

The properly regularized sum

G~x!5 (
n52`

1`
1

Ax21~x02nb!2
~3.4!

defines the periodic Green function of the Laplace opera
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2]2G~x!54pd~x! (
n52`

1`

d~x02nb!. ~3.5!

Therefore, in the dilute gas approximation, the partiti
function has the following form:

Z5Zph(
N50

`
zN

N! (
qa561

E )
a51

N

d3xa expS 2
2p

g2

3(
a,b

qaqbG~xa2xb! D . ~3.6!

The Boltzmann factor corresponds to the interaction
monopoles and antimonopoles, and the fugacity is de
mined by the one-monopole partition function. We denot
free photon contribution byZph:

Zph5E @DA#expS 2
1

4g2 E
0

b

dx0E d2xFmnFmnD .

~3.7!

Here Fmn is the Abelian field strengthFmn5]mAn2]nAm .
We use the unitary gaugeF1505F2, in which Am[Am

3 .
The correlation functions receive the contribution both fro
the free photon part and from the monopoles.

At low temperature the partition function~3.6! describes
the globally neutral Coulomb plasma. But, as the tempe
ture is raised, the monopoles form bound states with a
monopoles and the system passes to the molecular ph
The existence of the BKT phase transition from the plas
to the molecular phase can be demonstrated by the follow
simple argument due to Kosterlitz and Thouless@5#. The
Green function~3.4! behaves at large spatial separatio
uxu@b, as

G~x!.2
2

b
ln~ uxum!, ~3.8!

wherem is an IR cutoff. Restricting ourselves to the two
particle partition function, we find that the mean squar
separation between monopole and antimonopole diverge
low temperature as

^r 2&;E d2xuxu2e~4p/g2!G~x0 ,x!;E`

dr r 328p/g2b.

But beyond the critical point,

Tc5
g2

2p
, ~3.9!

the integral converges at large distances. Consequently
mean separation becomes finite and monopoles and
monopoles form the bound states.

There is no Debye screening in the molecular phase of
monopole gas. On the other hand, the Debye screenin
monopoles is responsible for the linear confining forces
tween electric charges. So, the BKT phase transition is a
ciated with the deconfinement of electric charge in the
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2478 57N. O. AGASYAN AND K. ZAREMBO
joint Higgs model. The temperature dependence of the o
parameter for the deconfinement phase transition—
Polyakov loop—is discussed in the next section.

IV. POLYAKOV LOOPS

The Polyakov loop is a phase factor associated with
contour which closes due to the periodic boundary con
tions

L~x!5expS i

2 E0

b

dx0A0~x0 ,x! D . ~4.1!

It describes a static charge inserted in the vacuum at
point x. We consider charge 1/2 Polyakov loops. The rea
is that they correspond to the matter field in the fundame
representation of SU~2!—after the symmetry breaking th
latter splits into the two fields of charge61/2.

The correlation functions of Polyakov loops play a dist
guished role in gauge theories at finite temperature, s
they measure the free energy of the static charge sources@6#.
The expectation value of the Polyakov loop is equal to z
in the confinement phase, because the energy of a si
charged particle is infinite. In principle, the Polyakov loo
should acquire a nonzero expectation value in the decon
ment phase, but it is not the case for the model under c
sideration due to the infrared divergencies related to the
dimensionality of the problem@4#. More appropriate param
eter is the two-point correlator of the Polyakov loops, whi
is related to the interaction potential between particles
opposite charge@6#:

^L~x!L†~y!&5e2bV~x2y!. ~4.2!

In the confinement phase the potential grows linearly
large separation between charges, which is equivalent to
screening of the Polyakov loops:

^L~x!L†~y!&;e2bsux2yu. ~4.3!

The screening length determines the string tensions. The
deconfinement transition is associated with the disapp
ance of the screening, and in the deconfinement phase
two-point correlator has a power-law behavior@4#

^L~x!L†~y!&;ux2yu2ba, ~4.4!

indicating the Coulomb logarithmic interaction of charg
particles.

In the dilute gas approximation, the monopoles contrib
to the Polyakov loop via their classical fields. The long ran
field of the ’t Hooft–Polyakov solution~2.4! in the unitary
gauge coincides with that of a Dirac monopole

F̃mn5q«mnl

xl

r 3 . ~4.5!
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Here and below we mark by tilde the fields in the infini
Euclidean space which do not obey periodic boundary c
ditions. The gauge potentials for the Dirac monopole can
chosen as follows:

Ã052qS 12
x2

r D x1

x0
21x1

2 , ~4.6a!

Ã15qS 12
x2

r D x0

x0
21x1

2 , ~4.6b!

Ã250. ~4.6c!

The Dirac string in this gauge is directed along thex2 axis.
The relevant classical configurations at finite temperat

are the periodic chains of monopoles. For them,

Am~x0 ,x!5 (
n52`

1`

Ãm~x01nb,x!. ~4.7!

To calculate the contribution of the periodic monopole to t
Polyakov loop, we need not perform the summation in~4.7!
explicitly, since

E
0

b

dx0A0~x0 ,x!5 (
n52`

1` E
0

b

dx0Ã0~x01nb,x!

5E
2`

1`

dx0Ã0~x0 ,x!.

Substituting the field of the monopole~4.6! for Ã0 we find:

E
0

b

dx0A0~x0 ,x!5S 2 arctan
x2

x1
2p Dq. ~4.8!

This result shows that the contribution of a single monop
to the Polyakov loopL(x) is equal to eiqw(x), wherew~x! is
an angle of the direction from the monopole position to t
point x with x2 axis, as depicted in Fig. 1. The contribution
of individual monopoles sum up and, for example, for t
two-point correlator of Polyakov loops we get

FIG. 1. The definition ofw~x!.
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57 2479PHASE STRUCTURE AND NONPERTURBATIVE STATES . . .
^L~x!L†~y!&5
Zph

Z (
N50

`
zN

N! (
qa561

E )
a51

N

d3xa

3expF2
2p

g2 (
a,b

qaqbG~xa2xb!

1 i(
a

qa@wa~x!2wa~y!#

2
g2

16p E
0

b

dj0E
0

b

dh0@G~j02h0 ,0!

2G~j02h0 ,x2y!#G . ~4.9!

The last term in the exponential represents a perturba
contribution of the free photons. The generalization of t
formula to multipoint correlation functions is obvious.

The partition function~3.6! has the convenient functiona
representation@1#

Z5ZphE @dx#expH 2E
0

b

dx0E d2xF g2

32p2 ~]x!2

22z cosxG J . ~4.10!

The expansion of this path integral inz generates the gran
canonical partition function for monopoles~3.6!, which can
be checked using Eq.~3.5! in the calculation of Gaussia
integrals overx.

Correlation functions also admit the functional repres
tation. Our present goal is to find the operators in the si
Gordon theory~4.10! corresponding to the Polyakov loop
The correlation functions which reduce to the form similar
Eq. ~4.9! have been considered in Ref.@15# for 2D lattice
model, closely related to the sine-Gordon theory. Motiva
by these results, we propose the following identification:

L~x!5expS g2

8p E
0

b

dj0E
x
dj i« i j ] jx D , ~4.11a!

L†~y!5expS g2

8p E
0

b

dj0Ey
dj i« i j ] jx D . ~4.11b!

Here the contour of integration overj i goes to infinity in the
(x1 ,x2) plane or can end on the Polyakov loop of the opp
site charge. These formulas should be understood as ope
equalities—any correlation functions of the Polyakov loo
in the U~1! gauge theory with monopoles are equal to t
correlation functions of the operators on the right-hand s
where the averaging overx is defined by the partition func
tion ~4.10!.

The identification~4.11! is established by developing th
correlation functions of the operators~4.11! in z. As a result,
one recovers correlation functions for the Coulomb gas
type ~4.9!. In the specific case of the two-point correlator,
e
s

-
-

d

-
tor

s

e,

f

K expS g2

8p E
0

b

dj0E
x

y
dj i« i j ] jx D L

5
Zph

Z (
N50

`
zN

N! (
qa561

E )
a51

N

d3xaK expS i(
a

qax~xa!

1
g2

8p E
0

b

dj0E
x

y
dj i« i j ] jx D L

0

, ~4.12!

where^•••&0 denotes the Gaussian average overx. This av-
erage after some transformations can be represented in
following form:

K expS i(
a

qax~xa!1
g2

8p E
0

b

dj0E
x

y
dj i« i j ] jx D L

0

5expS 2
2p

g2 (
a,b

qaqbG~xa2xb!

1
i

2 (
a

qaE
0

b

dj0E
x

y
dj i« i j ] jG~j2xa!

2
g2

32p E
0

b

dj0E
x

y
dj i« i j E

0

b

dh0

3E
x

y
dhk«kl] j] lG~j2h! D

5expF2
2p

g2 (
a,b

qaqbG~xa2xb!

1 i(
a

qa@wa~x!2wa~y!#2
g2

16p E
0

b

dj0

3E
0

b

dh0@G~j02h0 ,0!2G~j02h0 ,x2y!#G .
~4.13!

This result is a simple generalization of the formula whi
has been used in Ref.@16# to construct a path-integral ver
sion of soliton operators in 2D sine-Gordon theory. In t
derivation we have assumed that the regularization is use
which d(0)50. Substitution of this expression in Eq.~4.12!
reduces the latter to the form~4.9!.

The average~4.12! in the sine-Gordon theory reproduce
not only the monopole contribution to the correlator of t
Polyakov loops, but the whole answer containing also
free photon part. It is interesting that the same property ho
for the string representation proposed in Ref.@3# for the Wil-
son loop averages at zero temperature—this represent
automatically encounters the perturbative photon contri
tion. The Gaussian nature of the functional averages in e
order of the expansion inz ensures the validity of the iden
tification ~4.11! for arbitrary correlation functions. The op
erators~4.11! possess a number of peculiar properties wh
are discussed in the next section.

V. DIMENSIONAL REDUCTION

The partition function~4.10! defines the interacting field
theory in three dimensions. Although the nonlinearity
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2480 57N. O. AGASYAN AND K. ZAREMBO
caused by instantons and the coefficient before cosinez, is of
order exp(2constmW/g2), the interaction in the theory is no
weak. The point is thatz is the dimensional parameter an
the strength of interaction depends on the scale. At very la
distances, of order of the inverse photon mass 1/mg defined
by Eq.~2.6!, the effects of interaction are not small and th
cannot be neglected. The consideration of a system at
finite temperature, actually, introduces a characteristic s
b51/T. Some simplifications do occur, when this scale
much smaller than the correlation length, i.e., when the te
perature is not extremely low:

mg!T. ~5.1!

As before, the interaction cannot be completely neglec
rather some degrees of freedom become irrelevant. The fi
with nontrivial dependence on the time coordinatex0 de-
couple, since their Matsubara frequencies are large comp
to the characteristic mass scale determined bymg . This ar-
gument justifies the dimensional reduction procedure, typ
for the field theory at finite temperature. As a result of th
procedure, we are left with the two-dimensional sine-Gord
model:

Sreduced5E d2xF g2b

32p2 ~]x!222zb cosxG . ~5.2!

In the Coulomb gas picture, the dimensional reduct
can be understood as a substitution of the large distance
ymptotics~3.8! for the exact three-dimensional Green fun
tion in Eq. ~3.6!. The discussion at the end of Sec. III dem
onstrates that the time dependence is irrelevant for
description of the deconfinement phase transition@4#. More-
over, the condition~5.1! shows that the dimensional redu
tion is a good approximation in a wide range of temperatu
below the phase transition. This circumstance allows us
use the reduced theory in the study of the confinement ph
The dimensional reduction actually leads to substantial s
plification, since 2D sine-Gordon model is a classic exam
of completely integrable field theory and some of its prop
ties are known exactly.

The conventional sine-Gordon action is obtained after
rescaling of the fieldf(x)[x(x)gAb/4p:

SSG5E d2xF1

2
~]f!222m cosbf G , ~5.3!

where

b25
16p2T

g2 58p
T

Tc
. ~5.4!

This parameter plays the role of a Plank constant in the s
Gordon theory@17#. Consequently, the low-temperature lim
of the theory is semiclassical.

The parameterm depends on the renormalization schem
i.e., on a definition of the operator cosbf. The conventional
regularization procedure is based on the normal order
Since the dimension of the operator :cosbf: is b2/4p, the
coupling m differs from its ‘‘bare’’ valuezb by the factor
e

he
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d,
lds
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n

n
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e

s
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se.
-

le
-

e

e-

,

g.

L2b2/4p, whereL is an UV cutoff. It is worth mentioning
that the dimensional arguments clarify the origin of the BK
phase transition—at the critical point the dimension of t
operator :cosbf: is 2, and the perturbation in Eq.~5.3! be-
comes marginal.

The temperature defines the natural UV cutoff of 2
theory. Actually, the dimensional reduction is valid only
distances much larger than the inverse temperature,
smaller scales the dynamics is governed by the full
theory. In particular, the exact propagatorG(x) cannot be
replaced by its large distance asymptotics foruxu;b. How-
ever, due to the renormalizability all the effects of the d
namics at short distances can be absorbed into a multip
tive renormalization of m. Thus, the UV cutoff is
proportional to the temperature with some numerical coe
cient depending on the renormalization scheme. For the
mal ordering prescription this coefficient is calculated in t
Appendix:

L5
eg

2
T, ~5.5!

whereg50.5772••• is the Euler constant. Thus, the reno
malized value ofm is given by

m5
z

T S eg

2
TD 2b2/4p

5
g2mg

2

32p2T S eg

2
TD 24pT/g2

. ~5.6!

A. Polyakov loops and solitons

The peculiar property of the sine-Gordon theory is t
presence of solitons in the spectrum of physical excitatio
Classically, solitons are finite energy solutions of the eq
tions of motion. They are very massive in the semiclass
region, but all more light particles can be viewed as solito
antisoliton bound states@17#. The existence of solitons is
closely related to the hidden U~1! symmetry generated by th
topological current

j i5
b

2p
« i j ] jf, ~5.7!

which is identically conserved. Solitons carry a unit char
corresponding to this current.

According to the results of the previous section, we as
ciate with the Polyakov loops the following operators:

L~x!5expS g2

8pT E
x
dj i« i j ] jx D 5expS 2p

b E
x
dj i« i j ] jf D ,

~5.8a!

L†~y!5expS g2

8pT Ey
dj i« i j ] jx D 5expS 2p

b E
y
dj i« i j ] jf D .

~5.8b!

It turns out that these operators have topological charge
and 21, respectively. There are many possibilities to de
onstrate this fact. For example, one can use operator pro
expansion~OPE! of the topological currents
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j i~x! j k~0!52
b2

8p3 S d ik22
xixk

uxu2 D 1

uxu2
1••• ~5.9!

to show that

j i~x!L~0!52
1

2p

xi

uxu2
L~0!1••• , ~5.10a!

j i~x!L†~0!5
1

2p

xi

uxu2
L†~0!1••• . ~5.10b!

Defining the topological charge operator

Q5 R
C
dxi« ik j k~x!, ~5.11!

where the contourC encircles counterclockwise the origin
we readily find thatL (L†) behaves as charge 1 (21) op-
erator under U~1! transformations generated byQ:

QL~0!5L~0!, ~5.12a!

QL†~0!52L†~0!. ~5.12b!

On the other hand, the Polyakov loop, by its definition, c
ates an electric charge. This means that the following id
tification holds: topological charge523electric charge, and
the U~1! symmetry of the sine-Gordon model corresponds
the invariance of the original three-dimensional theory un
global gauge transformations.

The fact that Polyakov loops create solitons has impor
consequences. In particular, the large distance behavio
the two-point correlator of the Polyakov loops is govern
by the lightest state with the topological charge one, i.e.,
the soliton:

^L~x!L†~y!&;e2M ux2yu. ~5.13!

Here M is a soliton mass. Comparing this expression w
Eq. ~4.3! we find that the temperature dependence of
string tension is determined by the mass of the soliton

s~T!5TM. ~5.14!

In the zero temperature limit the semiclassical approxima
is valid. The classical mass of the soliton is equal to 8A2m/b
@17#, and we obtain

s~0!5
8TA2m

b
5A8g2z

p2 5s0 ,

wheres0 is given by Eq.~2.7!. Thus, the result of Ref.@9# is
recovered.

In fact, the soliton mass in the sine-Gordon theory
known exactly@18#
-
n-

o
r

nt
of

y

e

n

s

M5
2G~p/2!

ApG@~p11!/2#
S pG@1/~p11!#

G@p/~p11!#
m D ~p11!/2

,

~5.15!

where

p5
b2

8p2b2 5
T

Tc2T
. ~5.16!

After some algebra we obtain for the string tension

s~T!5s0S mg

egTD T/~Tc2T!S G@~Tc2T!/Tc#

G@~Tc1T!/Tc#
D Tc /~2Tc22T!

3
G2@~2Tc2T!/~2Tc22T!#

G@~2Tc2T!/~Tc2T!#
. ~5.17!

It is worth mentioning that the dependence of the solit
mass onm and, consequently, of the string tension onmg ,
follows from a dimensional consideration. The remaini
factor, which is a function ofb2 or, equivalently, of the
adimensional ratioT/Tc , cannot be found by elementar
methods.

B. Deconfinement phase transition

The temperature dependence of the string tension
shown in Fig. 2. At low temperatures,mg!T!Tc , the string
tension falls rapidly:

s.s0S mg

egTD T/Tc

;s0 expS 2
4p2e~mH /mW!mWT

g4 D .

~5.18!

The increase ofs(T) at T;mg , certainly, is an artifact of
the dimensional reduction which is inapplicable at su
small temperatures. It is interesting that the low-temperat
behavior of the string tension is completely determined
the dimensional arguments.

Let us turn to the critical behavior. The string tension h
an essential singularity at the point of the phase transitio

s5s0Ap

2
e3/22gF mg

2

4e2gTc~Tc2T!
GT/~2Tc22T!

3F11OS Tc2T

Tc
D G . ~5.19!

FIG. 2. The string tensions~T!.
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The string tension decreases up to the temperature very c
to the transition point

Tm.Tc2
mg

2

4e2g21Tc
,

where it reaches a vanishingly small value,

smin5s0Ap

2
expS 22g2

2e2g21Tc
2

mg
2 D F11OS mg

2

Tc
2 D G .

Then the string tension grows rapidly and at the critical po
turns to infinity. This result is essentially nonperturbative
cannot be obtained from the dimensional considerat
Were the dimensional analysis sufficient, the critical beh
ior of the string tension would be determined by the seco
factor in Eq.~5.17! and the string tension would vanish
T5Tc . This is not the case. Actually, the third factor has
stronger singularity and becomes more important at the t
peratures very close to the point of the phase transition.

C. Confinement phase

Certainly, the reduced 2D theory is much simpler than
original 3D model. On the other hand, the dimensional
duction is a good approximation up to very low tempe
tures, and one might think that the results obtained for
reduced model can be even extrapolated to zero tempera
The fact that the string tension obtained from the mass of
soliton in two dimensions agrees with the result of the se
classical analyses of Wilson loops directly in the thre
dimensional theory@1,9# supports this assumption. There a
two points we are going to discuss.

~i! Perturbatively, the only light particle in the 3D adjoin
Higgs model is the photon with the massmg . Other degrees
of freedom have substantially larger massesmW andmH . It
was conjectured that the dynamics in the intermediate reg
may be nontrivial and there are excitations with the mas
mg!m!mW @3#. The known exact spectrum of the reduc
theory provides a way to check this conjecture, since n
perturbative degrees of freedom should manifest themse
somehow at finite but small temperatures,Tc@T@mg .

~ii ! Another interesting problem is the string represen
tion for the Polyakov loop correlators.

We begin with the consideration of the spectrum. T
semiclassical spectrum of 2D sine-Gordon theory@17# turns
out to be exact@19# and consists of solitons, antisolitons, a
their bound states~breathers!. The lightest bound state can b
identified with the perturbative excitation of the sine-Gord
field @17# which, in turn, corresponds to a dual photon of t
original 3D theory.

Solitons and antisolitons disappear from the spectrum
T→0, since their mass determines the string tension by
~5.14! and the string tension has the finite zero tempera
limit. The exact masses of the breathers are given by
following expression@17,19#:

mn52M sin
pnp

2 S n51,2, . . . ; n,
1

pD , ~5.20!
se

t
t
n.
-
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whereM is the soliton mass andp is defined in Eq.~5.16!.
The number of bound states depends on the coupling c
stantb, i.e., on the temperature. If the breathers survive
zero temperature limit, their number becomes infinite a
they form a linear ‘‘Regge trajectory’’:

mn→nmg . ~5.21!

A possible interpretation of these particles is that they
threshold bound states ofn photons. The existence of exc
tations with masses which can be arbitrarily large compa
to mg , but which are much smaller thanmW , gives the
strong evidence of a nontrivial dynamics in the intermedi
region.

Probably the most important feature of U~1! gauge theory
with monopoles is its connection to string theory. On t
level of classical equations of motion for the Wilson loop
surface spanned by the loop parametrize naturally co
sponding classical solution@1#. The arguments were give
that, beyond the semiclassical approximation, this surf
fluctuates and Wilson loop average can be represented
sum over random surfaces with some weight depending
the surface@3#. This representation will be practically usefu
if the effective string action has a simple form in some re
sonable approximation.

The same reasoning should be valid for the two-point c
relator of Polyakov loopŝ L(x)L†(y)&. In this case, the
string world sheet is spanned by the contourLxGxyLy

21Gxy
21 ,

whereLz5$(x0 ,z)u0<x0<b% and Gxy is some curve con-
necting x with y in the (x1 ,x2) plane. We expect that a
sufficiently high temperatures,As0!T!Tc , the temporal
fluctuations of the string are irrelevant, in other words, t
typical surfaces have the form@0,b#3Gxy . So, the sum over
random surfaces is replaced by a sum over paths:

^L~x!L†~y!&5E
X~0!5x

X~1!5y
@dX#e2S@X~t!#. ~5.22!

An important remark concerning this representation is
order. According to Ref.@3#, the string world sheet for a
given field configurationx(x) is defined by the equation
cosx(X)521. This is consistent with semiclassical analys
@3#. On the other hand, in the reduced 2D sine-Gordon mo
the same equation, cosbf(X)521, is a conventional defi-
nition of a soliton path@20# for a field configurationf~x!.
Thus, the paths in the functional integral~5.22! are inter-
preted as soliton trajectories. It would be interesting to fi
such representation for the two-point correlator of the Pol
kov loop operators~5.8!. Being the counterpart of the strin
representation for the Wilson loop averages, it may help
clarify the dynamics of the confining string.

At present, we do not know how to construct the rep
sentation~5.22! with a reasonably simple actionS@X(t)#.
We know only one example of the simple sum-over-pa
representation for correlation functions—the case when
operators are described by a local field theory. The si
Gordon solitons are actually described by a local theo
namely, by the massive Thirring model@21,22#
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S5E d2xS c̄gm]mc1MTc̄c1
gT

2
c̄gmcc̄gmc D ,

~5.23!

where gT54p2/b22p. However, the solitons obey Ferm
statistics and soliton operators@22# ~more precisely, their
Euclidean-space counterparts@16#! differ from the Polyakov
loops ~5.8! by an additional factor:

c~x!5S :expS 2p

b Ex
dj i« i j ] jf1

i

2
bf~x! D :

2 i :expS 2p

b Ex
dj i« i j ] jf2

i

2
bf~x! D :

D ,

~5.24a!

c̄~x!5S i :expS 2p

b E
x
dj i« i j ] jf1

i

2
bf~x! D :

:expS 2p

b E
x
dj i« i j ] jf2

i

2
bf~x! D :

D .

~5.24b!

These operators have an interesting interpretation in
gauge theory. The operator exp(6i/1bf)5exp(61/2x) cre-
ates a monopole with magnetic charge61/2. So, from this
point of view, the soliton can be regarded as a ‘‘dyon’’—t
superposition of magnetic and electric charges, both equ
1/2 in magnitude.

The free fermion propagator has the well known su
over-path representation with an additional integration o
Grassmannian world-line variables@23#. The world-line ac-
tion in this representation is supersymmetric, although
supersymmetry is broken by boundary conditions. This
lows us to speculate that a modification of the Wilson lo
by particular monopole operators in 3D theory has a str
representation with supersymmetric world-sheet action.
loop corrections due to the four-fermion term in Eq.~5.23!
can be regarded as contact string interactions. Unfortuna
in the zero temperature limit both the massMT and the cou-
pling constantgT becomes infinite.

VI. SYMMETRY RESTORATION

In the previous sections we have dealt with the lo
energy Abelian theory completely disregarding the mass
fields. The only remnant of the spontaneously broken n
Abelian gauge symmetry relevant for this consideration w
the presence of magnetic monopoles with finite action. T
approximation, valid at sufficiently low temperatures, b
comes more and more worse as the temperature is ra
since the thermal fluctuations decrease the mass scale o
complete non-Abelian theory. Ultimately,W bosons become
massless and the non-Abelian symmetry is restored. In
perturbative region~2.3!, the critical temperature should b
very high, because the zero temperature value of the H
boson vacuum average is large and thermal fluctuat
which decrease it to zero should be sufficiently strong. In t
section we study the symmetry restoring phase transitio
the framework of thermal perturbation theory.

We add to the action~2.1! the gauge fixing term
e

to

-
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e
l-

g
e

ly,

-
e
-
s
is
-
ed,
the

he

gs
s

is
in

Sgf5
1

2ag2 E d3x~]mAm
a 1ag2«abcvbFc!2, ~6.1!

wherea is a gauge parameter. This is a conventional cho
which is convenient because it cancels a mixing betweenW
bosons and the complex scalar fieldF65(F16 iF2)/&
coming from the covariant derivative ofF squared. We al-
ways assume that the vacuum value of the scalar field
directed along the third axis in the color space and deno
by v: va5da3h. The ghost term in the chosen gauge is

Sgh5E d3x@]m c̄ aDmca1ag2h~F3 c̄ aca2Fa c̄ ac3!#.

~6.2!

The reason for the symmetry restoration phase transi
is the presence of the thermal corrections to the vacuum
eragê F3& which is equal toh at zero temperature. In orde
to find them, we expandF3 asF3(x)5h1s(x) and calcu-
late ^s&. To the lowest order of perturbation theory,^s& is
given by four tadpole diagrams depicted in Fig. 3. It is co
venient to denote byF(m2) the contribution of a scalar loop

F~m2!5T(
n
E d2p

~2p!2

1

p21vn
21m2

2~T50!~vn52pnT!. ~6.3!

The zero temperature part is subtracted because temper
independent contribution tôF3& merely renormalizeh. We
can, actually, denote byh the renormalized value of the
Higgs condensate. Then the sum of the diagrams depicte
Fig. 3 is found to be

FIG. 4. The phase diagram of 3D adjoint Higgs model.

FIG. 3. Tadpole diagrams corresponding to the contribution
W bosons, complex scalar fieldF65(F16 iF2)/&, Higgs boson,
and ghosts to the vacuum expectation value of the Higgs field.
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^s&52
1

mH
2 $2g2h@2F~mW

2 !1aF~amW
2 !#12lhF~amW

2 !

13lhF~mH
2 !22ag2hF~amW

2 !%. ~6.4!

The loop integral~6.3! is easily calculable by Poisso
resummation@24#:

F~m2!5E d2p

~2p!2

1

Ap21m2

1

ebAp21m2
21

5
1

2pb E
mb

` dj

ej21
. ~6.5!

First of all, this formula shows that at the temperatures m
smaller than the mass scale the corrections to the conde
are exponentially small. This result justifies the disregard
of the temperature corrections to the masses and the vac
expectation value of the Higgs field in the previous sectio
The corrections become comparable toh at a very high
temperature—T@m. In this regime the functionF(m2) can
be expanded as

F~m2!5
T

4p
ln

T2

m2 1O~m!. ~6.6!

Thus, we find with logarithmic accuracy,

^F3&5h1^s&.h2
Th

4pmH
2 ~5l14g2!ln

T2

mW
2 . ~6.7!

The dependence ona drops out from the final answer, as
should.

At the point of the phase transition̂F3& turns to zero.
The critical temperature

T* 5
4pmW

2

g2$@518~mW
2 /mH

2 !# ln~mW /g2! 1O@ ln ln~mW /g2!#%
,

~6.8!

is very high in the perturbative region–T* @mW , as ex-
pected. The symmetry restoration phase transition, m
probably, is the second order one, since the condensate o
Higgs field is continuous at the critical point in the one-lo
approximation.

VII. DISCUSSION

The phase structure of 3D adjoint Higgs model can
studied in detail at weak coupling. The system undergoes
deconfinement transition of the BKT type and the seco
order phase transition associated with the restoration of
non-Abelian gauge symmetry. The temperatures of th
transitions differ in the order of magnitude:T* @Tc . But T*
rapidly decreases with the increase of the couplingg2 at
fixed mW andmH , while Tc grows. So, atg2;mW the lines
of deconfinement and symmetry restoration phase transit
h
ate
g
um
s.

st
the

e
he
d
e

se

ns

meet at the triple point~Fig. 4!. At sufficiently largeg2 the
non-Abelian symmetry is restored directly in the confin
ment phase. The strong coupling behavior cannot be
scribed by perturbative methods and we have nothing to
about the phase transition between confinement and sym
ric phases, but numerical results of Refs.@10,11# show that at
zero temperature this is a first order transition terminating
some point, so that symmetric and confinement phases
connected by analytical continuation. Probably, the sam
true for the thermal phase transition as well.

Our consideration of the critical behavior at the deco
finement phase transition is based on the operator repre
tation for the Polyakov loops in the effective sine-Gord
model describing the Coulomb gas of the monopoles. A
the dimensional reduction Polyakov loop operators turn
to be closely connected with the solitons in 2D sine-Gord
theory. Using the known exact value of the soliton mass@18#
we found the string tension as a function of temperature,
~5.17!. The string tension exhibits rather unusual behav
near the phase transition. It grows rapidly in the vicinity
the transition point and at the critical temperature diverges
exp(2ln D/2D), whereD5(Tc2T)/Tc .

The interpretation of the known facts about 2D sin
Gordon model enables us to draw some conclusions a
the properties of the confinement phase of 3D adjoint Hig
model. There are strong arguments in favor of nontrivial d
namics at the intermediate scales betweenmg andmW . Per-
haps, the most interesting result is a possible appearanc
strings with a world-sheet supersymmetry, but this is onl
conjecture which requires more serious confirmations.
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APPENDIX: UV SCALE OF THE REDUCED THEORY

The normal ordered operator :cosbf: is defined by the
two-point function in the free theory:

^:eibf~x!::e2 ibf~y!:&0[ux2yu2b2/2p. ~A1!

On the other hand, Eq.~4.10! determines the Gaussian ave
age in three dimensions to be

^eix~x!e2 ix~y!&05e~4p/g2!@G~0!2G~x2y!#, ~A2!

whereG(x) is defined by Eq.~3.4!. The Coulomb gas rep
resentation of the monopole partition function~3.6! implies
the particular regularization of the divergent quantityG(0).
It is defined by Eq.~3.3!:
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G~0!2G~x2y!5 (
nÞ0

1

bunu

2(
n

1

A~x2y!21~x02y02nb!2

5
2

b
ln

egux2yu
2b

1O~e22pux2yu/b!. ~A3!

Here g is the Euler constant. The dimensional reduction
equivalent to the omitting of exponential terms. Hence,
obtain

^eix~x!e2 ix~y!&05S eg

2
TD 28pT/g2

ux2yu28pT/g2

[L2b2/2pux2yu2b2/2p. ~A4!
.

. B

ni-
s
e

Comparing this equation with the correlation function of t
normal ordered operators~A1! we find that the definition of
the operator cosbf in the monopole partition function is
connected with the normal ordering prescription by the m
tiplicative renormalization

cosbf5cosx5L2b2/4p:cosbf:, ~A5!

and the UV scale is given by

L5
eg

2
T. ~A6!
,
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