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We use the Brodsky-Lepage-Mackenzi® M) method to fix the renormalization scale of the QCD cou-
pling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form
factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are
established which connect the hard scattering subprocess amplitudes that control exclusive processes to other
QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The
commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to
the photon-to-pion transition form factor is in excellent agreement with> 7% data assuming that the pion
distribution amplitude is close to its asymptotic fortf8f. x(1—x). We also reproduce the scaling and
normalization of theyy— 7+ 7w~ data at large momentum transfer. Because the renormalization scale is small,
we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the
data. However, the normalization of the space-like pion form faEtgiIQ?) obtained from electroproduction
experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This
discrepancy may be due to systematic errors introduced by the extrapolatiomdfighe 7 * n electroproduc-
tion data to the pion pol¢ S0556-282198)01801-3

PACS numbgs): 12.38.Cy, 11.10.Hi, 13.65.i

I. INTRODUCTION processes are particularly acute in the case of QCD predic-
tions for exclusive processes, since the running coupling
One of the most critical problems in making reliable pre-enters at a high power. Furthermore, since each external mo-
dictions in quantum chromodynamics is how to deal with thementum entering an exclusive reaction is partitioned among
dependence of the truncated perturbative series on the choigee many propagators of the underlying hard-scattering am-
of renormalization scalg and scheme for the QCD coupling plitude, the physical scales that control these processes are
ag(n) [1-3]. For processes such as jet productioreire™  inevitably much softer than the overall momentum transfer.
annihilation and heavy flavor production in hadron collision, Exclusive process phenomenology is further complicated by
where only the leading and next-to-leading predictions arehe fact that the scales of the running couplings in the hard-
known, the theoretical uncertainties from the choice of renorscattering amplitude depend themselves on the shape of the
malization scale and scheme are larger than the experimentighdronic wave functions.
uncertainties. The ambiguities due to the renormalization The renormalization scale ambiguity problem can be re-
conventions are compounded in processes involving morgolved if one can optimize the choices of scale and scheme
than one physical scale. according to some sensible criteria. In the Brodsky-Lepage-
Perturbative QCD has been used to analyze a number ®fiackenzie(BLM) procedure, the renormalization scales are
exclusive processes involving large momentum transfers, inchosen such that all vacuum polarization effects from the
cluding the decay of heavy hadrons to specific channels suayCD g function are re-summed into the running couplings.
asB— ma andY — pp, baryon form factors at largg and  The coefficients of the perturbative series are thus identical
fixed 6, ., hadronic scattering amplitudes suchygs— 7" n to the perturbative coefficients of the corresponding confor-
at high energies. As in the case of inclusive reactions, facmally invariant theory with3=0. The BLM method has the
torization theorems for exclusive proces$dsh| allow the  important advantage of “pre-summing” the large and
analytic separation of the perturbatively-calculable shortstrongly divergent terms in the perturbative Q@BQCD
distance contributions from the long-distance non-series which grow as!(asBo)", i.e., the infrared renorma-
perturbative dynamics associated with hadronic binding. Folons associated with coupling constant renormalizai&.
reviews of this formalism with many additional references,Furthermore, the renormalization scal€s in the BLM
see[6,7]. method are physical in the sense that they reflect the mean
The scale ambiguities for the underlying quark-gluon sub-virtuality of the gluon propagator3,9—11. In fact, in the
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ay(Q) scheme, where the QCD coupling is defined from thenels defined in terms of physical mass thresholds. The first
heavy quark potential, the renormalization scale is by definitwo termsBy=11—2n/3 and 8,;=102—-38n/3 in the ex-
tion the momentum transfer caused by the gluon. pansion of theg function defined from the logarithmic de-

In this paper we will use the BLM method to fix the rivative of ay(Q) are universal, i.e., identical for all effec-
renormalization scale of the QCD coupling in exclusive had-tive charges aQ?>4m?. The coefficients, for ay has
ronic amplitudes such as the pion form factor, the photon—to—recenﬂy been calculated in trWiSheme[m].
pion transition form factor angy— ="~ at large momen- The scale-fixed relation betweer, and the conventional
tum transfer. Renormalization-scheme-independent CO"&I? ling i
mensurate scale relations will be established which conne coupling 1s
the hard scattering subprocess amplitudes that control these p—
exclusive processes to other QCD observables such as the _ —5/ _4%A EMs
heavy quark potential and the electron-positron annihilation a(Q) = ams(e Q)| 1 3 7 ) @
cross section. Because the renormalization scale is small, we
will argue that the effective coupling is nearly constant, thusahove or below any quark mass threshold. The factor
accounting for the nominal scaling behavior of the datag=5/6~(.4346 is the ratio of commensurate scales between

[12,13. the two schemes to this order. It arises because of the con-
ventions used in defining the modified minimal subtraction
Il. RENORMALIZATION SCALE FIXING scheme. The scale in the M&heme is thus a factor 0.4
IN EXCLUSIVE PROCESSES smaller than the physical scale. The coefficie@,23 in the

A basic principle of renormalization theory is the require- "€xt-to-leading-ordefNLO) term is a feature of the non-
ment that the relations between physical observables must eP€lian couplings of QCD; the same coefficient would occur
independent of renormalization scale and scheme convefgven if the theory were conformally invariant wiy=0.

tions to any fixed order of perturbation theof¥4]. This As we shall see, the coupling, provides a natural
property can be explicitly expressed in the form of “com- Scheme for computing exclusive amplitudes. Once we relate,
mensurate scale relation§CSR’s [15]. A primary example €., form factors to effective charges based on observables,
of a CSR is the generalized Crewther relatid®,16, in  there are no ambiguities due to scale or scheme conventions.
which the radiative corrections to the Bjorken sum rule for The use ofay as the expansion parameter with BLM
deep inelastic lepton-proton scattering at a given momenturicale-fixing has also been found to be valuable in lattice
transferQ are predicted from measurements of #hee~  gauge theory, greatly increasing the convergence of pertur-

annihilation cross section at a corresponding commensuraf@livé expansions relative to those using the bare lattice cou-
energy scale/s=Q. pling [10]. In fact, new lattice calculations of thé spectrum

A scale-fixed relation between any two physical observ[19] have been used to determine the normalization of the

ablesA andB can be derived by applying BLM scale-fixing static heavy quark potential and its effective charge:
to their respective perturbative predictions in, say, the modi-

fied minimal subtraction (MBS scheme and then algebra- (8.2 GeV=0.1963), ()
ically eliminating ajy5- The choice of the BLM scale en-
sures that the resulting CSR betwe®@andB is independent where the effective number of light flavors ig=3. The
of the choice of the intermediate renormalization schemeorresponding modified minimal subtraction coupling
[15]. Thus, using this formalism one can relate any perturbaevolved to theZ mass using Eq2) is given by
tively calculable observables, such as the annihilation ratio
F_ee+ef, the heavy quark potential, and the radiative correc- aﬁ; ,)=0.1152). ()
tions to structure function sum rules, to each other without
any renormalization scale or scheme ambigiity]. _ ) ] _

The heavy-quark potentia(Q2) can be identified via the Th|s_ va_lue_ is consistent W|th_ the world average of 0(;!53,7
two-particle-irreducible scattering amplitude of test chargestt is significantly more precise. These results are valid up to
i.e., the scattering of an infinitely-heavy quark and antiquar LO.

at momentum transfer= — Q2. The relation Exclusive processes are particularly challenging to com-
pute in quantum chromodynamics because of their sensitivity

47rCray(Q?) to the unknown non-perturbative bound state dynamics of

V(Q%) =~ —az (1) the hadrons. However, in some important cases, the leading

power-law behavior of an exclusive amplitude at large mo-
with CF=(Né— 1)/2No=4/3, then defines the effective mentum transfer can be computed rigorously via a factoriza-
chargea,(Q). This coupling provides a physically-based al- tion theorem which separates the soft and hard dynamics.

. . . For example, the leading Q7 fall-off of the meson form
ternative to the usual MSchem_e - Recent lattice cqlcul_aﬂonsf ctors can be computed as a perturbative expansion in the
have provided strong constraints on the normalization an

shape ofay(Q?). CD coupling[4,5]:
As in the corresponding case of Abelian QED, the sCale

of the couplingay(Q) is identified with the exchanged mo- Fiu(Q?)= fldeldych(X O)TH(X,y,Q%) dy(Y,0)
mentum. All vacuum polarization corrections due to fermion o Jo ' 7 T

pairs are incorporated in the usual vacuum polarization ker- (5
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2
L

X(1—x)

where ¢,(x,Q) is the process-independent meson distribu- _ .-
tion amplitude, which encodes the non-perturbative dynam- ¢>(X,Q)=j d?k, 6| Q>
ics of the bound valence Fock state up to the resolution scale
0, and The physical pion form factor must be independent of the
separation scal€®. The natural variable in which to make
this separation is the light-cone energy, or equivalently the
167Cras(p) : : 2_2 i
W[l-i- O(ay)] (6) invariant massM“=k{/x(1—x), of the off-shell partonic
( system[20,4]. Any residual dependence on the choicef
for the distribution amplitude will be compensated by a cor-
is the leading-twist perturbatively-calculable subprocess amresponding dependence of the NLO correctio in. How-
plitude y*q(x)q(1—x)—q(y)q(1—y), obtained by re- ever, the NLO prediction for the pion form factor depends

placing the incident and final mesons by valence quarks coFStrcl’lnglyﬂ?” t:]‘e_ forn; of the pli_ont_distribution dampr)]litude as
linear up to the resolution scaf@. The contributions from we? as the choice of renormanization scaleand scheme.

. . It is straightforward to obtain the commensurate scale re-
non-valence Fock states and the correction from neglectm%ﬂ

) . on betweerF . and oy following the procedure outlined
the transverse momentum in the subprocess amplitude fro%ove The appropriate BLM scale fét, is determined
" w

the non-perturbative region are higher twist, i.e., power-lamyom the explicit calculations of the NLO corrections given
suppressed. The transverse momenta in the perturbative dgy pittes and Radyushkif21] and Fieldet al. [22]. These
main lead to thg evqlution of the di;tribgtion amplitude andmay pe written in the formA(w)n;+ B( ) ]as/, whereA
to _NLO corrections inas. The contribution from the end- ¢ independent of the separation so@leThen, dependence
point regions of integratiorx~1 andy~1, are power-law  y16\ys one to uniquely identify the dependenceyawhich
apd Suda'kov suppregsed and thus can only contribute COITeS then absorbed into the running coupling by a shift to the
tions at higher order in @ [4]. BLM scale Q*=e3*® . An important check of self-
The distribution amplitudep(x,Q) is boost and gauge consistency is that the resulting value @F is independent
invariant and evolves in @ through an evolution equation of the choice of the starting scale.
[4]. It can be computed from the integral over transverse Combining this result with the BLM scale-fixed expres-
momenta of the renormalized hadron valence wave functiosion for a,, and eliminating the intermediate coupling, we
in the light-cone gauge at fixed light-cone tir: find

)¢<5><x,|21>. )

TH(X1y1Q2) =

167Cray(Qy)
(1-x)(1-y)Q*

av(Qv))
T

1 1
FTr(QZ): jO dX(ZS,n.(X) fO dy¢ﬂ(y) ( 1+CV

1+Cy

®

. 1 1 2 av(Qv))
——a ax,00 | aya. Q) —

whereC,,= —1.91 is the same coefficient one would obtainwhere the ratio of commensurate scales to this order is
in a conformally invariant theory with3=0, and Qgr/Qy=e?¥1?2(=0.614.

Q\Z/E(l_x)(l_y)QZ_ In this analysis we have assumed If we expand the QCD coupling about a fixed point in
that the pion distribution amplitude has the asymptotic formNLO [10]: as(Qy) = as(Qo)[1—~ (Boas(Qo)/2m)IN(Qy/Qo)],
&= \3f _x(1—x), where the pion decay constantiis=93 then the mtegra_ll over the effect|ve_ charge in E8). can b(_a _
MeV. In this simplified case the distribution amplitude doesP€rformed explicitly. Thus, assuming the asymptotic distri-
not evolve, and there is no dependence on the separatidiition amplitude, the pion form factor at NLO is

scaleQ. This commensurate scale relation betw&erfQ?) ay(Q*)
and(ay(Qy)) represents a general connection between the Qsz(Qz)zlﬁwfiav(Q*)(1—1.91 ) (10
form factor of a bound-state system and the irreducible ker- m
nel that describes the scattering of its constituents. *_ -3/
Alternatively, we can express the pion form factor in where Q*=¢ Q.

In this approximation |@*2

. . =(In(1—x)(1—y)Q?), in agreement with the explicit calcula-
terms of other effective charges such as the coupligg/s)  ion A striking feature of this result is that the physical scale

that defines the QCD ragilatlve corrections to #i& —X  ,nolling the meson form factor in the, scheme is very
cross SeCt'OnR(S_)E?’Eeq[lJF“R(‘/E)/W]- The CSR be- |oy: e-320=0.220, reflecting the characteristic momentum
tweenay andag is transfer experienced by the spectator valence quark in
lepton-meson elastic scattering.
We may also determine the renormalization scalexgf
ay(Qy) = an(Qp)| 1— 35@4_ o ) for more general forms of the coupling by direct integration
VARV TRURR 12 : overx andy in Eq.(8), assuming a specific analytic form for
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the coupling. Notice, however, that small corrections to the Contrary to the discussion by Chyla4], the optimized
BLM scale will be compensated by a corresponding chang®* is alwaysschemedependent. For example, in théS
in the NLO coefficient. scheme one findé}fﬂ—s= e (1-x)(1-y)Q? for F_(Q?)
Another exclusive amplitude of interest is the transition[22 3] whereas in thea, scheme the BLM scale is
form factor between a photon and a neutral hadron such 52— (1 —x)(1—y)Q2. The final results connecting observ-
FYW(QZ)’ which has now been rneasure/d %FQ?KS GeV?  aples are of course scheme-independent. The resu@ids
in the tagged two-photon collisioresy— e’ by the CLEO  gypected since in they scheme the scale of the coupling is
and CELLO Collaborations. In this case the amplitude hagyentified with the virtuality of the exchanged gluon propa-
the factorized form gator, just as in the usual QED scheme, and here, to leading
twist, the virtuality of the gluon is- (1—x)(1—y)Q?. The
resulting relations between the form factors and the heavy
quark coupling are independent of the choice of intermediate
renormalization scheme, however; they thus have no scale or
scheme ambiguities.

4 (1
(@)= 5 fodxm(x,QZ)TLM(x,QZ), (11

where the hard scattering amplitude fmx*ﬂqq_is

Ill. THE BEHAVIOR OF THE QCD COUPLING

T';M(X,QZ): ﬁ[ﬂ O(ay)]. (12 AT LOW MOMENTUM
Effective charges such as, and ag are defined from
The leading QCD corrections have been computed byhysical observables and thus must be finite even at low
Braaten23]; however, the NLO corrections are necessary tomomenta. The conventional solutions of the renormalization
fix the BLM scale at LO. Thus it is not yet possible to rig- group equation for the QCD coupling which are singular at
orously determine the BLM scale for this quantity. We shallQ=Acp are not accurate representations of the effective
here assume that this scale is the same as that occurring @uplings at low momentum transfer. It is clear that more
the prediction forF . For the asymptotic distribution ampli- parameters and information are needed to specify the cou-
tude we thus predict pling in the non-perturbative domain.
A number of proposals have been suggested for the form
) ) 5 ay(Q*) of the QCD coupling in the low-momentum regime. For ex-
QF,(Q9)=2f,| 1~ 37 (13 ample, Parisi and Petronz[@5] have argued that the cou-
pling must freeze at low momentum transfer in order that

As we Sha” see, given the phenomeno'ogica| forlmofvve perturbative QCD IOOp integrations be We” deﬁned. S|m|lar
employ (discussed belowthis result is not terribly sensitive ideas may be found in Ref26]. Mattingly and Stevenson
to the precise value of the scale. [27] have incorporated such behavior into their parametriza-
An important prediction resulting from the factorized tions of ax at low scales. Griboy28] has presented novel
form of these results is that the normalization of the ratio dynamical arguments related to the nature of confinement for
a fixed coupling at low scales. Boat al.[29] have noted the

F_(Q?) heavy quark potential must saturate to a Yukawa form since
R.(Q?%)= 2” NG (14)  the light-quark production processes will screen the linear
47Q%F ,(Q?)] confining potential at large distances. Cornwal] and oth-
ers[31,32 have argued that the gluon propagator will ac-
_ 14 _ EaMS quire an effective gluon massy from non-perturbative dy-
= ays(® GQ)( 1-05 J namics, which again will regulate the form of the effective

(15) couplings at low momentum. In this work we shall adopt the
simple parametrization

_ ay
=ay(e Q)| 1+ 1.43—)
avie ") = a(Q)= T (19
(16) Beln Q +4mg
0 A\Z/
_ 5/12-2¢ aR . . . -
=ag(e *Q){1-0.65— which effectively freezes the, effective charge to a finite

(17)  Vvalue forQ®=<4mj.

We can use the non-relativistic heavy quark lattice results
is formally independent of the form of the pion distribution [19,33 to fix the parameters. A fit to the lattice data of the
amplitude. Thexys correction follows from combined Refs. above parametrization gives,=0.16 GeV if we use the
[21-23. The next-to-leading correction given here assumegvell-known momentum-dependent [34]. Furthermore, the
the asymptotic distribution amplitude. value m3=0.19 GeV? gives consistency with the frozen

We emphasize that when we relde to ay or ag we  value of ag advocated by Mattingly and Stevens@a7].
relate observable to observable and thus there is no scheni@eir parametrization implies the approximate constraint
ambiguity. The coefficients-0.56, 1.43 and-0.65 in Egs.  ar(Q)/7=0.27 for Q=/s<0.3 GeV, which leads to
(15—(17) are identical to those one would have in a theorya,, (0.5 GeV)=0.37 using the NLO commensurate scale re-
with =0, i.e., conformally invariant theory. lation betweenay, and ag. The resulting form foray, is
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0.1+ i
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0.1 - 0 ' L t '
0 2 4 6 8 10
0 : . : Q* (Gev?)
0 5 10 15 20
Q® (GeV?) FIG. 2. They— =° transition form factor. The solid line is the
full prediction including the QCD correctiofEg. (19)]; the dotted
FIG. 1. The coupling function»,(Q?) as given in Eq.(18). lineis the LO predictiorQ?F,(Q?%) =2f .
Also shown are the corresponding predictions d@fsand ay fol-
lowing from the NLO commensurate scale relati¢iss. (2) and 5 av(e’e"zQ)
P (QY)=2f |1- 5 ———— (19)
O] QF,o(Q%)=2f,| 1- 3 ———|.

shown in Fig. 1. The corresponding predictions &g and ~ The flat scaling of theQ?F,,(Q? data from Q*=2 to
ags using the CSRs at NLO are also shown. Note that forQ?=8 GeV? provides an important confirmation of the ap-
low Q? the couplings, although frozen, are large. Thus theplicability of leading twist QCD to this process. The magni-
NLO and higher-order terms in the CSRs are large, and intude onZFW(QZ) is remarkably consistent with the pre-
verting them perturbatively to NLO does not give accuratedicted form assuming the asymptotic distribution amplitude
results at low scales. In addition, higher-twist contributionsand including the LO QCD radiative correction with
to ay and ag, which are not reflected in the CSR relating ay(e~¥?Q)/7=0.12. Radyushkii39], Ong[40] and Kroll
them, may be expected to be important for 1Q% [35]. [41] have also noted that the scaling and normalization of the
It is clear that exclusive processes such as the pion anghoton-to-pion transition form factor tends to favor the
photon to pion transition form factors can provide a valuableasymptotic form for the pion distribution amplitude and rules
window for determining the magnitude and the shape of theut broader distributions such as the two-humped form sug-
effective charges at quite low momentum transfers. In pargested by QCD sum ruldg2]. One cannot obtain a unique
ticular, we can check consistency with tle, prediction  solution for the non-perturbative wave function from the,
from lattice gauge theory. A complimentary method for de-data alone. However, we have the constraint that
termining oy at low momentum is to use the angular anisot- .
ropy of e"e” —QQ at the heavy quark threshold36]. It 1<L> — E av(Q7)
should be emphasized that the parametrizati@ s just an 3 3
approximate form. The actual behavior@§(Q?) at low Q?

=0.8 (20

rlassuming the renormalization scale we have chosen in Eg.
#13) is approximately corre¢t Thus one could allow for
some broadening of the distribution amplitude with a corre-
sponding increase in the value @f, at low scales.

In Fig. 3 we compare the existing measurements of the
IV. APPLICATIONS space-like pion form factoF . (Q?) [43,44 (obtained from

; * K . .
As we have emphasized, exclusive processes are sensiti%e extrapolation ofy*p—"n data to the pion polewith

: . -fhe QCD prediction(10), again assuming the asymptotic
;cgv\';he r?oangglr:z?ri arl?aizlipf Sf* yfe(?EQszgjzr;gggS ;rgdqwt orm of the pion distribution amplitude. The scaling of the
D QY= =

this paper we shall use exclusive observables to deduce i
formation on this quantity.

Q’FQZZQZ/SO [37]. The fact that the data for exclusive pro- 0.6 : : : :
cesses such as form factors, two photon processes such |
vy— a7, and photoproduction at fixe@, ,, are consis- 05 - 7

tent with the nominal scaling of the leading-twist QCD pre- 1
dictions(dimensional countingat momentum transfei@ up 0°FA(Q?) g
to the order of a few GeV can be immediately understood if * " " 031 % .

2
the effective charges,, and ag are slowly varying at low GV x
momentum. The scaling of the exclusive amplitude then fol- 02 K 1
lows that of the subprocess amplitudig with effectively 01| m
fixed coupling. Note also that the Sudakov effect of the end-
point region is the exponential of a double log series if the ° ) ) " . 0

coupling is frozen, and thus is strong.
In Fig. 2, we compare the recent CLEO d@ss] for the
photon to pion transition form factor with the prediction FIG. 3. The space-like pion form factor.

Q7 (Gev?)
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FIG. 4. The ratioR,(Q%)=F.(Q")/47Q |F7W(Q ). FIG. 6. Two-photon  annihilation  cross  section

o(yy—7"m ,K'K7) as a function of CMS energy, for
pion form factor data is again important evidence for the|cos#*|<0.6.
nominal scaling of the leading twist prediction. However, the
prediction is lower than the data by approximately a factor ofin the c¢.m. system{CMS), wheredt=(s/2)d(cos,,) and
2. The same feature can be seen in the @tj(Q?) (Fig. 4,  hereF .(s) is thetime-likepion form factor. The ratio of the
in which the uncertainties due to the unknown form of thetime-like to space-like pion form factor for the asymptotic

pion distribution amplitude tend to cancel out. distribution amplitude is given by
We can estimate the sensitivity of these results to the
choice of distribution amplitude by comparing the results for |Fltimelke—Q2)| | ay(—Q*2)]
the asymptotic amplitude to, e.g., those obtained using the (Spacelike, 2. = - (22
Chernyak-Zhitnitsky(CZ) form. A full analysis at NLO of F (Q9) ay(Q*%)

this kind is somewhat beyond the scope of the present work . _ . 2
however, because of the need to include the(ﬂ(lhg) evo- It we simply continue Eq(18) to negative values @@ (Fig.

: - : - 5), then for 1<Q?<10 GeV?, and hence 0.05Q*?<0.5
lution of the CZ amplitude in order to consistently calculate™’ *, _ S .
to NLO. At LO, however, we find thaE . is increased by GeV?, the ratio of couplings in Eq22) is of order 1.5. Of

roughly a factor of three for the CZ amplitudelative to the course this assumes the an.alytic applicatior_l of(E&).. Thus .
LO result for the asymptotic amplitude, of couxsevhile if we assume the asy_mpt(?iﬂilfger)m forzthe distribution arznpll-
F,. increases by a factor of about 1.5. These estimates afdde, then we predict (—Q%)=(0.3 GeV)/Q
probably quite crude, but give an indication of the typical@nd hence
range over which the results can vary.

We have also analyzed they— = 7~ data. These data

do
- + -
exhibit true leading-twist scalin¢Fig. 6), so that one would dt (yyzmm) .36 1

expect this process to be a good test of theory. One can show do L -~ 1—codg. (23
[45] that, to LO, arYroRTe) em
do The resulting prediction for the combined cross section
E(yy—m-r*w‘) 4F (9)|? o(yy— w7 ,K*K™) is shown in Fig. 6, along with the
- m (21) data of Ref.[46]. Considering the possible contribution of
do 1—co6, m the resonancé,(1270), the agreement is reasonable.

— — + -
dt(yy pon) It should be noted that the leading-twist prediction

Q?F(timelikd(_ 32)=0.3 Ge\? is a factor of two below the

1 , , . . measurement of the pion form factor obtained from the
J/y— w7~ branching ratio. Thd/ analysis assumes that
0.8 . the 7" o~ is created only through virtual photons. However,

if the J/y— =" 7~ amplitude proceeds through channels

0.6 . such asygg, then the branching ratio is not a precise method
av(Q”) \ for obtaining F("Me"k9 |t is thus important to have direct

04 - N measurement of the*e” — =" 7~ amplitude off-resonance.
We also show the prediction for the pion form factor in the
0.2 T time-like region compared with the data of Bollieti al. [47]
. . . . in Fig. 7. We emphasize that the normalization of the pre-
% " P 9 P o diction
Q? (GeV?)

FIG. 5. Continuation of Eq(18) to negativeQ?. Note that The contribution from kaons is obtained at this order simply by
Q*?=e"3Q% rescaling the prediction for pions by a factdi(f,)*=2.2.
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3 ' . ' . value of 1/(1-x) in order to maintain consistency with the
magnitude of theFW(Qz) data. A full analysis will then
also require consideration of the breaking of scaling from the

25 1

2 2 evolution of the distribution amplitude.
Q2 Fltimelike) sl 1 { . T | In any case, we find no compelling argument for signifi-
Gev?) { 1 cant higher-twist contributions in the few GeV regime from
1F 1 1 . the hard scattering amplitude or the endpoint regions, since
osb i i such corrections violate the observed scaling behavior of the
' data.
0 ! 1 ! ' The time-like pion form factor data obtained from

0 2 4 6 8 10

o ete —x* 7~ annihilation does not have complications
Q? (GeV?)

from off-shell extrapolations or rescattering, but it is also

FIG. 7. Pion electromagnetic form factor in the time-like region. more senS|t|ye to near,by vector mesfon po_les |ntdgannel.

If we analytically continue the leading twist prediction and

the effective form ofa,, to the time-like regime, we obtain

the prediction shown in Fig. 7, again assuming the

asymptotic form of the pion distribution amplitude.

V The analysis we have presented here suggests a system-

20'3 Ge (24) atic program for estimating exclusive amplitudes in QCD.
Q? The central input isx,(0), or

- 16mf2 ay
F(7:|mellke)(_Q2): Q2 av(_Q*2)(1_1.9?

assumes the asymptotic form for the pion distribution ampli-

tude and the form ok, given in Eq.(18), with the param- — 1 ngdQ'zav(Q'z), Q=<1 Ge\?, (25
0

etersm;=0.19 GeV? and A,=0.16 GeV. There is clearly VT Q2

some room to readjust these parameters. However, even at

the initial stage of approximation done in this paper, which

includes NLO corrections at the BLM scale, there is no sig-which largely controls the magnitude of the underlying

nificant discrepancy with the relevant experiments. quark-gluon subprocesses for hard processes in the few-GeV
The values for the space-like pion form factr.(Q®)  region. In this work, the mean coupling value 192=0.5

obtained from the extrapolation of* p— 7" n data to the  GeV?2 is @y=0.38. The main focus will then be to determine

pion pole thus appear to be systematically higher in normalthe shapes and normalization of the process-independent me-
ization than predicted by commensurate scale relations; howson and baryon distribution amplitudes.

ever, it should be emphasized that this discrepancy may be
due to systematic errors introduced by the extrapolation pro-

cedure[48_]: What is_at best measured in elec_troproduct?on is V. CONCLUSIONS
the transition amplitude between a mesonic state with an
effective space-like masa?=t<0 and the physical pion. It In this paper we have shown that dimensional counting

is theoretically possible that the off-shell form factor rules emerge if the effective coupling,(Q*) is approxi-
F.(Q?21) is significantly larger than the physical form factor mately constant in the domain @* relevant to the hard
because of its bias towards more point-lixg valence con-  scattering amplitudes of exclusive processes. In the@w-
figurations in its Fock state structure. The extrapolation tadomain, evolution of the quark distribution amplitudes is
the pole at=m? also requires knowing the analytic depen- also minimal. Furthermore, Sudakov suppression of the long-
dence ofF .(Q?,t) ont. These considerations are discusseddistance contributions is strengthened if the coupling is fro-
further in Ref[49]. If we assume that there are no significantzen because of the exponentiation of a double log series. The
errors induced by the electroproduction extrapolation, thei@nsatz of a frozen coupling at small momentum transfer has
one must look for other sources for the discrepancy in norhot been demonstrated from first principles. However, the
malization. Note that the NLO corrections in E¢$0) and  behavior of exclusive amplitudes point strongly to scaling
(16) are of order 20—30%. Thus there may be large contribehavior in the kinematic regions we discussed. We have
butions from NNLO and higher corrections which need to bealso found that the CSR connecting the heavy quark poten-
re-summed. There are also possible corrections from piofial, as determined from lattice gauge theory, to the photon-
rescattering in the final state of the electroproduction prolo-pion transition form factor is in excellent agreement with
cess. It thus would be very interesting to have unambiguouge— 7°e data assuming that the pion distribution amplitude
data on the pion form factors from electron-pion collisions,is close to its asymptotic formg3f_x(1—x). We also repro-
say, by scattering electrons on a secondary pion beam at tfgice the scaling and normalization of the— =" 7~ data
SLAC Linear Collider. In addition, it is possible that pre- at large momentum transfer. However, the normalization of
asymptotic contributions from higher-twist or soft Feynman-the space-like pion form factd¥ .(Q?) obtained from elec-
type physics are important. troproduction experiments is somewhat higher than that pre-
We also note that the normalization @f, could be larger dicted by the corresponding commensurate scale relation.
at low momentum than our estimate. This would also implyThis discrepancy may be due to systematic errors introduced
a broadening of the pion distribution amplitude compared tdy the extrapolation of they* p— 7" n electroproduction
its asymptotic form since one needs to raise the expectatiothata to the pion pole.
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