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Optimal renormalization scale and scheme for exclusive processes
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We use the Brodsky-Lepage-Mackenzie~BLM ! method to fix the renormalization scale of the QCD cou-
pling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form
factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are
established which connect the hard scattering subprocess amplitudes that control exclusive processes to other
QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The
commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to
the photon-to-pion transition form factor is in excellent agreement withge→p0e data assuming that the pion
distribution amplitude is close to its asymptotic formA3 f px(12x). We also reproduce the scaling and
normalization of thegg→p1p2 data at large momentum transfer. Because the renormalization scale is small,
we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the
data. However, the normalization of the space-like pion form factorFp(Q2) obtained from electroproduction
experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This
discrepancy may be due to systematic errors introduced by the extrapolation of theg* p→p1n electroproduc-
tion data to the pion pole.@S0556-2821~98!01801-3#

PACS number~s!: 12.38.Cy, 11.10.Hi, 13.65.1i
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I. INTRODUCTION

One of the most critical problems in making reliable pr
dictions in quantum chromodynamics is how to deal with
dependence of the truncated perturbative series on the ch
of renormalization scalem and scheme for the QCD couplin
as(m) @1–3#. For processes such as jet production ine1e2

annihilation and heavy flavor production in hadron collisio
where only the leading and next-to-leading predictions
known, the theoretical uncertainties from the choice of ren
malization scale and scheme are larger than the experim
uncertainties. The ambiguities due to the renormalizat
conventions are compounded in processes involving m
than one physical scale.

Perturbative QCD has been used to analyze a numbe
exclusive processes involving large momentum transfers
cluding the decay of heavy hadrons to specific channels s
asB→pp andY→p p̄, baryon form factors at larget, and
fixed uc.m. hadronic scattering amplitudes such asgp→p1n
at high energies. As in the case of inclusive reactions,
torization theorems for exclusive processes@4,5# allow the
analytic separation of the perturbatively-calculable sho
distance contributions from the long-distance no
perturbative dynamics associated with hadronic binding.
reviews of this formalism with many additional reference
see@6,7#.

The scale ambiguities for the underlying quark-gluon s
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processes are particularly acute in the case of QCD pre
tions for exclusive processes, since the running couplingas

enters at a high power. Furthermore, since each external
mentum entering an exclusive reaction is partitioned am
the many propagators of the underlying hard-scattering
plitude, the physical scales that control these processes
inevitably much softer than the overall momentum transf
Exclusive process phenomenology is further complicated
the fact that the scales of the running couplings in the ha
scattering amplitude depend themselves on the shape o
hadronic wave functions.

The renormalization scale ambiguity problem can be
solved if one can optimize the choices of scale and sche
according to some sensible criteria. In the Brodsky-Lepa
Mackenzie~BLM ! procedure, the renormalization scales a
chosen such that all vacuum polarization effects from
QCD b function are re-summed into the running coupling
The coefficients of the perturbative series are thus ident
to the perturbative coefficients of the corresponding conf
mally invariant theory withb50. The BLM method has the
important advantage of ‘‘pre-summing’’ the large an
strongly divergent terms in the perturbative QCD~PQCD!
series which grow asn!(asb0)n, i.e., the infrared renorma
lons associated with coupling constant renormalization@8,9#.
Furthermore, the renormalization scalesQ* in the BLM
method are physical in the sense that they reflect the m
virtuality of the gluon propagators@3,9–11#. In fact, in the
245 © 1997 The American Physical Society
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aV(Q) scheme, where the QCD coupling is defined from
heavy quark potential, the renormalization scale is by defi
tion the momentum transfer caused by the gluon.

In this paper we will use the BLM method to fix th
renormalization scale of the QCD coupling in exclusive ha
ronic amplitudes such as the pion form factor, the photon
pion transition form factor andgg→p1p2 at large momen-
tum transfer. Renormalization-scheme-independent c
mensurate scale relations will be established which con
the hard scattering subprocess amplitudes that control t
exclusive processes to other QCD observables such as
heavy quark potential and the electron-positron annihilat
cross section. Because the renormalization scale is smal
will argue that the effective coupling is nearly constant, th
accounting for the nominal scaling behavior of the d
@12,13#.

II. RENORMALIZATION SCALE FIXING
IN EXCLUSIVE PROCESSES

A basic principle of renormalization theory is the requir
ment that the relations between physical observables mu
independent of renormalization scale and scheme con
tions to any fixed order of perturbation theory@14#. This
property can be explicitly expressed in the form of ‘‘com
mensurate scale relations’’~CSR’s! @15#. A primary example
of a CSR is the generalized Crewther relation@15,16#, in
which the radiative corrections to the Bjorken sum rule
deep inelastic lepton-proton scattering at a given momen
transferQ are predicted from measurements of thee1e2

annihilation cross section at a corresponding commensu
energy scaleAs}Q.

A scale-fixed relation between any two physical obse
ablesA andB can be derived by applying BLM scale-fixin
to their respective perturbative predictions in, say, the mo
fied minimal subtraction (MS̄) scheme and then algebra
ically eliminating aMS̄ . The choice of the BLM scale en
sures that the resulting CSR betweenA andB is independent
of the choice of the intermediate renormalization sche
@15#. Thus, using this formalism one can relate any pertur
tively calculable observables, such as the annihilation r
Re1e2, the heavy quark potential, and the radiative corr
tions to structure function sum rules, to each other with
any renormalization scale or scheme ambiguity@17#.

The heavy-quark potentialV(Q2) can be identified via the
two-particle-irreducible scattering amplitude of test charg
i.e., the scattering of an infinitely-heavy quark and antiqu
at momentum transfert52Q2. The relation

V~Q2!52
4pCFaV~Q2!

Q2 , ~1!

with CF5(NC
2 21)/2NC54/3, then defines the effectiv

chargeaV(Q). This coupling provides a physically-based a
ternative to the usual MS̄scheme. Recent lattice calculation
have provided strong constraints on the normalization
shape ofaV(Q2).

As in the corresponding case of Abelian QED, the scaleQ
of the couplingaV(Q) is identified with the exchanged mo
mentum. All vacuum polarization corrections due to fermi
pairs are incorporated in the usual vacuum polarization k
e
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nels defined in terms of physical mass thresholds. The
two termsb051122nf /3 andb15102238nf /3 in the ex-
pansion of theb function defined from the logarithmic de
rivative of aV(Q) are universal, i.e., identical for all effec
tive charges atQ2@4mf

2 . The coefficientb2 for aV has

recently been calculated in the MS̄scheme@18#.
The scale-fixed relation betweenaV and the conventiona

MS̄ coupling is

aV~Q!5aMS̄~e25/6Q!S 12
2CA

3

aMS̄

p
1••• D , ~2!

above or below any quark mass threshold. The fac
e25/6.0.4346 is the ratio of commensurate scales betw
the two schemes to this order. It arises because of the
ventions used in defining the modified minimal subtracti
scheme. The scale in the MS̄scheme is thus a factor;0.4
smaller than the physical scale. The coefficient 2CA/3 in the
next-to-leading-order~NLO! term is a feature of the non
Abelian couplings of QCD; the same coefficient would occ
even if the theory were conformally invariant withb050.

As we shall see, the couplingaV provides a natural
scheme for computing exclusive amplitudes. Once we rel
e.g., form factors to effective charges based on observab
there are no ambiguities due to scale or scheme convent

The use ofaV as the expansion parameter with BLM
scale-fixing has also been found to be valuable in latt
gauge theory, greatly increasing the convergence of per
bative expansions relative to those using the bare lattice c
pling @10#. In fact, new lattice calculations of theY spectrum
@19# have been used to determine the normalization of
static heavy quark potential and its effective charge:

aV
~3!~8.2 GeV!50.196~3!, ~3!

where the effective number of light flavors isnf53. The
corresponding modified minimal subtraction couplin
evolved to theZ mass using Eq.~2! is given by

aMS̄
~5!

~MZ!50.115~2!. ~4!

This value is consistent with the world average of 0.117~5!,
but is significantly more precise. These results are valid u
NLO.

Exclusive processes are particularly challenging to co
pute in quantum chromodynamics because of their sensiti
to the unknown non-perturbative bound state dynamics
the hadrons. However, in some important cases, the lea
power-law behavior of an exclusive amplitude at large m
mentum transfer can be computed rigorously via a factor
tion theorem which separates the soft and hard dynam
For example, the leading 1/Q2 fall-off of the meson form
factors can be computed as a perturbative expansion in
QCD coupling@4,5#:

FM~Q2!5E
0

1

dxE
0

1

dyfM~x,Q̃!TH~x,y,Q2!fM~y,Q̃!,

~5!
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wherefM(x,Q̃) is the process-independent meson distrib
tion amplitude, which encodes the non-perturbative dyna
ics of the bound valence Fock state up to the resolution s
Q̃, and

TH~x,y,Q2!5
16pCFas~m!

~12x!~12y!Q2 @11O~as!# ~6!

is the leading-twist perturbatively-calculable subprocess
plitude g* q(x) q̄ (12x)→q(y) q̄ (12y), obtained by re-
placing the incident and final mesons by valence quarks
linear up to the resolution scaleQ̃. The contributions from
non-valence Fock states and the correction from neglec
the transverse momentum in the subprocess amplitude
the non-perturbative region are higher twist, i.e., power-l
suppressed. The transverse momenta in the perturbative
main lead to the evolution of the distribution amplitude a
to NLO corrections inas . The contribution from the end
point regions of integration,x;1 andy;1, are power-law
and Sudakov suppressed and thus can only contribute co
tions at higher order in 1/Q @4#.

The distribution amplitudef(x,Q̃) is boost and gauge
invariant and evolves in lnQ̃ through an evolution equatio
@4#. It can be computed from the integral over transve
momenta of the renormalized hadron valence wave func
in the light-cone gauge at fixed light-cone time@4#:
in
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f~x,Q̃!5E d2kW'uS Q̃22
kW'

2

x~12x!
Dc~Q̃!~x,kW'!. ~7!

The physical pion form factor must be independent of
separation scaleQ̃. The natural variable in which to mak
this separation is the light-cone energy, or equivalently
invariant massM25kW'

2 /x(12x), of the off-shell partonic
system@20,4#. Any residual dependence on the choice ofQ̃
for the distribution amplitude will be compensated by a c
responding dependence of the NLO correction inTH . How-
ever, the NLO prediction for the pion form factor depen
strongly on the form of the pion distribution amplitude
well as the choice of renormalization scalem and scheme.

It is straightforward to obtain the commensurate scale
lation betweenFp andaV following the procedure outlined
above. The appropriate BLM scale forFp is determined
from the explicit calculations of the NLO corrections give
by Dittes and Radyushkin@21# and Fieldet al. @22#. These
may be written in the form@A(m)nf1B(m)#as /p, whereA
is independent of the separation scaleQ̃. Thenf dependence
allows one to uniquely identify the dependence onb0, which
is then absorbed into the running coupling by a shift to
BLM scale Q* 5e3A(m)m. An important check of self-
consistency is that the resulting value forQ* is independent
of the choice of the starting scalem.

Combining this result with the BLM scale-fixed expre
sion for aV , and eliminating the intermediate coupling, w
find
Fp~Q2!5E
0

1

dxfp~x!E
0

1

dyfp~y!
16pCFaV~QV!

~12x!~12y!Q2S 11CV

aV~QV!

p D
524E

0

1

dxfp~x!E
0

1

dyfp~y!V~QV
2 !S 11CV

aV~QV!

p D , ~8!
r is

in

tri-

-
le

m
in
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r

whereCV521.91 is the same coefficient one would obta
in a conformally invariant theory with b50, and
QV

2[(12x)(12y)Q2. In this analysis we have assume
that the pion distribution amplitude has the asymptotic fo
fp5A3 f px(12x), where the pion decay constant isf p.93
MeV. In this simplified case the distribution amplitude do
not evolve, and there is no dependence on the separa
scaleQ̃. This commensurate scale relation betweenFp(Q2)
and ^aV(QV)& represents a general connection between
form factor of a bound-state system and the irreducible k
nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor
terms of other effective charges such as the couplingaR(As)
that defines the QCD radiative corrections to thee1e2→X
cross section:R(s)[3Seq

2@11aR(As)/p#. The CSR be-
tweenaV andaR is

aV~QV!5aR~QR!S 12
25

12

aR

p
1••• D , ~9!
ion

e
r-

where the ratio of commensurate scales to this orde
QR /QV5e23/1222z3.0.614.

If we expand the QCD coupling about a fixed point
NLO @10#: as(QV).as(Q0)@12„b0as(Q0)/2p…ln(QV /Q0)#,
then the integral over the effective charge in Eq.~8! can be
performed explicitly. Thus, assuming the asymptotic dis
bution amplitude, the pion form factor at NLO is

Q2Fp~Q2!516p f p
2 aV~Q* !S 121.91

aV~Q* !

p D , ~10!

where Q* 5e23/2Q. In this approximation lnQ*2

5^ ln(12x)(12y)Q2&, in agreement with the explicit calcula
tion. A striking feature of this result is that the physical sca
controlling the meson form factor in theaV scheme is very
low: e23/2Q.0.22Q, reflecting the characteristic momentu
transfer experienced by the spectator valence quark
lepton-meson elastic scattering.

We may also determine the renormalization scale ofaV
for more general forms of the coupling by direct integrati
overx andy in Eq. ~8!, assuming a specific analytic form fo



th
ng

on
h

a

b
t
-

al
g

-

d

n
.
e

e

ry

-

is
a-
ding

avy
iate
le or

low
ion
at
ive
re
ou-

orm
x-
-
at

lar

za-
l
t for

nce
ear

c-

e
he

ults
e

n

int

re-

248 57BRODSKY, JI, PANG, AND ROBERTSON
the coupling. Notice, however, that small corrections to
BLM scale will be compensated by a corresponding cha
in the NLO coefficient.

Another exclusive amplitude of interest is the transiti
form factor between a photon and a neutral hadron suc
Fgp(Q2), which has now been measured up toQ2,8 GeV2

in the tagged two-photon collisionseg→e8p0 by the CLEO
and CELLO Collaborations. In this case the amplitude h
the factorized form

FgM~Q2!5
4

A3
E

0

1

dxfM~x,Q2!Tg→M
H ~x,Q2!, ~11!

where the hard scattering amplitude forgg*→q q̄ is

TgM
H ~x,Q2!5

1

~12x!Q2 @11O~as!#. ~12!

The leading QCD corrections have been computed
Braaten@23#; however, the NLO corrections are necessary
fix the BLM scale at LO. Thus it is not yet possible to rig
orously determine the BLM scale for this quantity. We sh
here assume that this scale is the same as that occurrin
the prediction forFp . For the asymptotic distribution ampli
tude we thus predict

Q2Fgp~Q2!52 f pS 12
5

3

aV~Q* !

p D . ~13!

As we shall see, given the phenomenological form ofaV we
employ~discussed below!, this result is not terribly sensitive
to the precise value of the scale.

An important prediction resulting from the factorize
form of these results is that the normalization of the ratio

Rp~Q2![
Fp~Q2!

4pQ2uFpg~Q2!u2
~14!

5aMS̄~e214/6Q!S 120.56
aMS̄

p D
~15!

5aV~e23/2Q!S 111.43
aV

p D
~16!

5aR~e5/1222z3Q!S 120.65
aR

p D
~17!

is formally independent of the form of the pion distributio
amplitude. TheaMS̄ correction follows from combined Refs
@21–23#. The next-to-leading correction given here assum
the asymptotic distribution amplitude.

We emphasize that when we relateRp to aV or aR we
relate observable to observable and thus there is no sch
ambiguity. The coefficients20.56, 1.43 and20.65 in Eqs.
~15!–~17! are identical to those one would have in a theo
with b50, i.e., conformally invariant theory.
e
e
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s

y
o
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s

me

Contrary to the discussion by Chyla@24#, the optimized
Q* is alwaysschemedependent. For example, in theMS
scheme one findsQMS̄

2
5e25/3(12x)(12y)Q2 for Fp(Q2)

@22,3#, whereas in theaV scheme the BLM scale is
QV

25(12x)(12y)Q2. The final results connecting observ
ables are of course scheme-independent. The result forQV

2 is
expected since in theaV scheme the scale of the coupling
identified with the virtuality of the exchanged gluon prop
gator, just as in the usual QED scheme, and here, to lea
twist, the virtuality of the gluon is2(12x)(12y)Q2. The
resulting relations between the form factors and the he
quark coupling are independent of the choice of intermed
renormalization scheme, however; they thus have no sca
scheme ambiguities.

III. THE BEHAVIOR OF THE QCD COUPLING
AT LOW MOMENTUM

Effective charges such asaV and aR are defined from
physical observables and thus must be finite even at
momenta. The conventional solutions of the renormalizat
group equation for the QCD coupling which are singular
Q.LQCD are not accurate representations of the effect
couplings at low momentum transfer. It is clear that mo
parameters and information are needed to specify the c
pling in the non-perturbative domain.

A number of proposals have been suggested for the f
of the QCD coupling in the low-momentum regime. For e
ample, Parisi and Petronzio@25# have argued that the cou
pling must freeze at low momentum transfer in order th
perturbative QCD loop integrations be well defined. Simi
ideas may be found in Ref.@26#. Mattingly and Stevenson
@27# have incorporated such behavior into their parametri
tions of aR at low scales. Gribov@28# has presented nove
dynamical arguments related to the nature of confinemen
a fixed coupling at low scales. Bornet al. @29# have noted the
heavy quark potential must saturate to a Yukawa form si
the light-quark production processes will screen the lin
confining potential at large distances. Cornwall@30# and oth-
ers @31,32# have argued that the gluon propagator will a
quire an effective gluon massmg from non-perturbative dy-
namics, which again will regulate the form of the effectiv
couplings at low momentum. In this work we shall adopt t
simple parametrization

aV~Q!5
4p

b0lnS Q214mg
2

LV
2 D , ~18!

which effectively freezes theaV effective charge to a finite
value forQ2<4mg

2 .
We can use the non-relativistic heavy quark lattice res

@19,33# to fix the parameters. A fit to the lattice data of th
above parametrization givesLV50.16 GeV if we use the
well-known momentum-dependentnf @34#. Furthermore, the
value mg

250.19 GeV2 gives consistency with the froze
value of aR advocated by Mattingly and Stevenson@27#.
Their parametrization implies the approximate constra
aR(Q)/p.0.27 for Q5As,0.3 GeV, which leads to
aV(0.5 GeV).0.37 using the NLO commensurate scale
lation betweenaV and aR . The resulting form foraV is
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shown in Fig. 1. The corresponding predictions foraR and
aMS using the CSRs at NLO are also shown. Note that
low Q2 the couplings, although frozen, are large. Thus
NLO and higher-order terms in the CSRs are large, and
verting them perturbatively to NLO does not give accur
results at low scales. In addition, higher-twist contributio
to aV and aR , which are not reflected in the CSR relatin
them, may be expected to be important for lowQ2 @35#.

It is clear that exclusive processes such as the pion
photon to pion transition form factors can provide a valua
window for determining the magnitude and the shape of
effective charges at quite low momentum transfers. In p
ticular, we can check consistency with theaV prediction
from lattice gauge theory. A complimentary method for d
terminingaV at low momentum is to use the angular anis
ropy of e1e2→QQ̄ at the heavy quark thresholds@36#. It
should be emphasized that the parametrization~18! is just an
approximate form. The actual behavior ofaV(Q2) at low Q2

is one of the key uncertainties in QCD phenomenology.
this paper we shall use exclusive observables to deduce
formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sen
to the magnitude and shape of the QCD couplings at q
low momentum transfer: QV*

2.e23Q2.Q2/20 and
QR*

2.Q2/50 @37#. The fact that the data for exclusive pro
cesses such as form factors, two photon processes su
gg→p1p2, and photoproduction at fixeduc.m. are consis-
tent with the nominal scaling of the leading-twist QCD pr
dictions~dimensional counting! at momentum transfersQ up
to the order of a few GeV can be immediately understoo
the effective chargesaV and aR are slowly varying at low
momentum. The scaling of the exclusive amplitude then
lows that of the subprocess amplitudeTH with effectively
fixed coupling. Note also that the Sudakov effect of the e
point region is the exponential of a double log series if
coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data@38# for the
photon to pion transition form factor with the prediction

FIG. 1. The coupling functionaV(Q2) as given in Eq.~18!.
Also shown are the corresponding predictions foraMS̄ andaR fol-
lowing from the NLO commensurate scale relations@Eqs. ~2! and
~9!#.
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Q2Fgp~Q2!52 f pS 12
5

3

aV~e23/2Q!

p D . ~19!

The flat scaling of theQ2Fgp(Q2) data from Q252 to
Q258 GeV2 provides an important confirmation of the a
plicability of leading twist QCD to this process. The magn
tude of Q2Fgp(Q2) is remarkably consistent with the pre
dicted form assuming the asymptotic distribution amplitu
and including the LO QCD radiative correction wit
aV(e23/2Q)/p.0.12. Radyushkin@39#, Ong @40# and Kroll
@41# have also noted that the scaling and normalization of
photon-to-pion transition form factor tends to favor th
asymptotic form for the pion distribution amplitude and rul
out broader distributions such as the two-humped form s
gested by QCD sum rules@42#. One cannot obtain a uniqu
solution for the non-perturbative wave function from theFpg
data alone. However, we have the constraint that

1

3K 1

12xL F12
5

3

aV~Q* !

p G.0.8 ~20!

@assuming the renormalization scale we have chosen in
~13! is approximately correct#. Thus one could allow for
some broadening of the distribution amplitude with a cor
sponding increase in the value ofaV at low scales.

In Fig. 3 we compare the existing measurements of
space-like pion form factorFp(Q2) @43,44# ~obtained from
the extrapolation ofg* p→p1n data to the pion pole! with
the QCD prediction~10!, again assuming the asymptot
form of the pion distribution amplitude. The scaling of th

FIG. 2. Theg→p0 transition form factor. The solid line is the
full prediction including the QCD correction@Eq. ~19!#; the dotted
line is the LO predictionQ2Fgp(Q2)52 f p .

FIG. 3. The space-like pion form factor.
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250 57BRODSKY, JI, PANG, AND ROBERTSON
pion form factor data is again important evidence for t
nominal scaling of the leading twist prediction. However, t
prediction is lower than the data by approximately a factor
2. The same feature can be seen in the ratioRp(Q2) ~Fig. 4!,
in which the uncertainties due to the unknown form of t
pion distribution amplitude tend to cancel out.

We can estimate the sensitivity of these results to
choice of distribution amplitude by comparing the results
the asymptotic amplitude to, e.g., those obtained using
Chernyak-Zhitnitsky~CZ! form. A full analysis at NLO of
this kind is somewhat beyond the scope of the present w
however, because of the need to include the fullO(as

2) evo-
lution of the CZ amplitude in order to consistently calcula
to NLO. At LO, however, we find thatFp is increased by
roughly a factor of three for the CZ amplitude~relative to the
LO result for the asymptotic amplitude, of course!, while
Fgp increases by a factor of about 1.5. These estimates
probably quite crude, but give an indication of the typic
range over which the results can vary.

We have also analyzed thegg→p1p2 data. These data
exhibit true leading-twist scaling~Fig. 6!, so that one would
expect this process to be a good test of theory. One can s
@45# that, to LO,

ds

dt
~gg→p1p2!

ds

dt
~gg→m1m2!

5
4uFp~s!u2

12cos4uc.m.

~21!

FIG. 4. The ratioRp(Q2)[Fp(Q2)/4pQ2uFpg(Q2)u2.

FIG. 5. Continuation of Eq.~18! to negativeQ2. Note that
Q* 2[e23Q2.
f

e
r
e

k,

re
l

ow

in the c.m. system~CMS!, wheredt5(s/2)d(cosuc.m.) and
hereFp(s) is thetime-likepion form factor. The ratio of the
time-like to space-like pion form factor for the asymptot
distribution amplitude is given by

uFp
~ t imelike!~2Q2!u

Fp
~spacelike!~Q2!

5
uaV~2Q* 2!u

aV~Q* 2!
. ~22!

If we simply continue Eq.~18! to negative values ofQ2 ~Fig.
5!, then for 1,Q2,10 GeV2, and hence 0.05,Q* 2,0.5
GeV2, the ratio of couplings in Eq.~22! is of order 1.5. Of
course this assumes the analytic application of Eq.~18!. Thus
if we assume the asymptotic form for the distribution amp
tude, then we predictFp

(t imelike)(2Q2).(0.3 GeV2)/Q2

and hence

ds

dt
~gg→p1p2!

ds

dt
~gg→m1m2!

.
.36

s2

1

12cos4uc.m.

. ~23!

The resulting prediction for the combined cross sectio1

s(gg→p1p2,K1K2) is shown in Fig. 6, along with the
data of Ref.@46#. Considering the possible contribution o
the resonancef 2(1270), the agreement is reasonable.

It should be noted that the leading-twist predictio
Q2Fp

(t imelike)(2Q2)50.3 GeV2 is a factor of two below the
measurement of the pion form factor obtained from t
J/c→p1p2 branching ratio. TheJ/c analysis assumes tha
thep1p2 is created only through virtual photons. Howeve
if the J/c→p1p2 amplitude proceeds through channe
such asggg, then the branching ratio is not a precise meth
for obtainingFp

(t imelike) . It is thus important to have direc
measurement of thee1e2→p1p2 amplitude off-resonance
We also show the prediction for the pion form factor in t
time-like region compared with the data of Bolliniet al. @47#
in Fig. 7. We emphasize that the normalization of the p
diction

1The contribution from kaons is obtained at this order simply
rescaling the prediction for pions by a factor (f K / f p)4.2.2.

FIG. 6. Two-photon annihilation cross sectio
s(gg→p1p2,K1K2) as a function of CMS energy, fo
ucosu* u,0.6.
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57 251OPTIMAL RENORMALIZATION SCALE AND SCHEME . . .
Fp
~ t imelike!~2Q2!5

16p f p
2

Q2 aV~2Q* 2!S 121.9
aV

p D
.

0.3 GeV2

Q2
~24!

assumes the asymptotic form for the pion distribution am
tude and the form ofaV given in Eq.~18!, with the param-
etersmg

250.19 GeV2 and LV50.16 GeV. There is clearly
some room to readjust these parameters. However, eve
the initial stage of approximation done in this paper, wh
includes NLO corrections at the BLM scale, there is no s
nificant discrepancy with the relevant experiments.

The values for the space-like pion form factorFp(Q2)
obtained from the extrapolation ofg* p→p1n data to the
pion pole thus appear to be systematically higher in norm
ization than predicted by commensurate scale relations; h
ever, it should be emphasized that this discrepancy ma
due to systematic errors introduced by the extrapolation p
cedure@48#. What is at best measured in electroproduction
the transition amplitude between a mesonic state with
effective space-like massm25t,0 and the physical pion. I
is theoretically possible that the off-shell form fact
Fp(Q2,t) is significantly larger than the physical form fact
because of its bias towards more point-likeqq̄ valence con-
figurations in its Fock state structure. The extrapolation
the pole att5mp

2 also requires knowing the analytic depe
dence ofFp(Q2,t) on t. These considerations are discuss
further in Ref.@49#. If we assume that there are no significa
errors induced by the electroproduction extrapolation, th
one must look for other sources for the discrepancy in n
malization. Note that the NLO corrections in Eqs.~10! and
~16! are of order 20–30%. Thus there may be large con
butions from NNLO and higher corrections which need to
re-summed. There are also possible corrections from p
rescattering in the final state of the electroproduction p
cess. It thus would be very interesting to have unambigu
data on the pion form factors from electron-pion collision
say, by scattering electrons on a secondary pion beam a
SLAC Linear Collider. In addition, it is possible that pre
asymptotic contributions from higher-twist or soft Feynma
type physics are important.

We also note that the normalization ofaV could be larger
at low momentum than our estimate. This would also im
a broadening of the pion distribution amplitude compared
its asymptotic form since one needs to raise the expecta

FIG. 7. Pion electromagnetic form factor in the time-like regio
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value of 1/(12x) in order to maintain consistency with th
magnitude of theFgp(Q2) data. A full analysis will then
also require consideration of the breaking of scaling from
evolution of the distribution amplitude.

In any case, we find no compelling argument for sign
cant higher-twist contributions in the few GeV regime fro
the hard scattering amplitude or the endpoint regions, si
such corrections violate the observed scaling behavior of
data.

The time-like pion form factor data obtained from
e1e2→p1p2 annihilation does not have complication
from off-shell extrapolations or rescattering, but it is al
more sensitive to nearby vector meson poles in thet channel.
If we analytically continue the leading twist prediction an
the effective form ofaV to the time-like regime, we obtain
the prediction shown in Fig. 7, again assuming t
asymptotic form of the pion distribution amplitude.

The analysis we have presented here suggests a sys
atic program for estimating exclusive amplitudes in QC
The central input isaV(0), or

a V̄5
1

Q0
2E

0

Q0
2

dQ82aV~Q82!, Q0
2<1 GeV2, ~25!

which largely controls the magnitude of the underlyin
quark-gluon subprocesses for hard processes in the few-
region. In this work, the mean coupling value forQ0

2.0.5
GeV2 is aV.0.38. The main focus will then be to determin
the shapes and normalization of the process-independent
son and baryon distribution amplitudes.

V. CONCLUSIONS

In this paper we have shown that dimensional count
rules emerge if the effective couplingaV(Q* ) is approxi-
mately constant in the domain ofQ* relevant to the hard
scattering amplitudes of exclusive processes. In the low-Q*
domain, evolution of the quark distribution amplitudes
also minimal. Furthermore, Sudakov suppression of the lo
distance contributions is strengthened if the coupling is f
zen because of the exponentiation of a double log series.
ansatz of a frozen coupling at small momentum transfer
not been demonstrated from first principles. However,
behavior of exclusive amplitudes point strongly to scali
behavior in the kinematic regions we discussed. We h
also found that the CSR connecting the heavy quark po
tial, as determined from lattice gauge theory, to the phot
to-pion transition form factor is in excellent agreement w
ge→p0e data assuming that the pion distribution amplitu
is close to its asymptotic formA3 f px(12x). We also repro-
duce the scaling and normalization of thegg→p1p2 data
at large momentum transfer. However, the normalization
the space-like pion form factorFp(Q2) obtained from elec-
troproduction experiments is somewhat higher than that p
dicted by the corresponding commensurate scale relat
This discrepancy may be due to systematic errors introdu
by the extrapolation of theg* p→p1n electroproduction
data to the pion pole.

.
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