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We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes
whose size is comparable to that of the cosmological horizon, this process differs significantly from the
evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave
and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that
nearly maximal quantum Schwarzschild–de Sitter black holes anti-evaporate. However, there is a different
perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of
cosmological holes nucleates.@S0556-2821~98!00606-7#
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I. INTRODUCTION

Of the effects expected of a quantum theory of grav
black hole radiance@1# plays a particularly significant role
So far, however, mostly asymptotically flat black holes ha
been considered. In this work, we investigate a qualitativ
different black hole spacetime, in which the black hole is
a radiative equilibrium with a cosmological horizon.

The evaporation of black holes has been studied us
two-dimensional toy models, in which one-loop quantum
fects were included@2–4#. We have recently shown how t
implement quantum effects in a more realistic class of tw
dimensional models, which includes the important case
dimensionally reduced general relativity@5#. The result we
obtained for the trace anomaly of a dilaton-coupled sca
field will be used here to study the evaporation of cosm
logical black holes.

We shall consider the Schwarzschild–de Sitter family
black holes. The size of these black holes varies betw
zero and the size of the cosmological horizon. If the bla
hole is much smaller than the cosmological horizon, the
fect of the radiation coming from the cosmological horizon
negligible, and one would expect the evaporation to be si
lar to that of Schwarzschild black holes. Therefore we sh
not be interested in this case. Instead, we wish to investi
the quantum evolution of nearly degenera
Schwarzschild–de Sitter black holes. The degenerate s
tion, in which the black hole has the maximum size, is cal
the Nariai solution@6#. In this solution the two horizons hav
the same size and the same temperature. Therefore they
be in thermal equilibrium. Intuitively, one would expect an
slight perturbation of the geometry to cause the black hol
become hotter than the background. Thus, one may sus
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the thermal equilibrium of the Nariai solution to be unstab
The initial stages of such a runaway would be an interes
and novel quantum gravitational effect quite different fro
the evaporation of an asymptotically flat black hole. In th
paper we will investigate whether, and how, an instabil
develops in a two-dimensional model derived from fou
dimensional general relativity. We include quantum effe
at the one-loop level.

The paper is structured as follows: In Sec. II we revie
the Schwarzschild–de Sitter solutions and the Nariai lim
We discuss the qualitative expectations for the evapora
of degenerate black holes, which motivate our one-lo
study. The two-dimensional model corresponding to t
physical situation is presented in Sec. III, and the equati
of motion are derived. In Sec. IV the stability of the quantu
Nariai solution under different types of perturbations is
vestigated. We find, quite unexpectedly, that t
Schwarzschild–de Sitter solution is stable, but we also id
tify an unstable mode. Finally, the no-boundary condition
applied in Sec. V to study the stability of spontaneou
nucleated cosmological black holes.

II. COSMOLOGICAL BLACK HOLES

A. Metric

The neutral, static, spherically symmetric solutions of t
Einstein equation with a cosmological constantL are given
by the Schwarzschild–de Sitter metric

ds252V~r !dt21V~r !21dr21r 2dV2, ~2.1!

where

V~r !512
2m

r
2

L

3
r 2, ~2.2!
2436 © 1998 The American Physical Society
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57 2437~ANTI- !EVAPORATION OF SCHWARZSCHILD–de . . .
dV2 is the metric on a unit two-sphere andm is a mass

parameter. For 0,m, 1
3 L21/2, V has two positive rootsr c

andr b , corresponding to the cosmological and the black h
horizons, respectively. The limit wherem→0 corresponds to

the de Sitter solution. In the limitm→ 1
3 L21/2 the size of the

black hole horizon approaches the size of the cosmolog
horizon, and the above coordinates become inappropr
since V(r )→0 between the two horizons. Following Gin
sparg and Perry@7#, we write

9m2L5123e2, 0<e!1. ~2.3!

Then the degenerate case corresponds toe→0. We define
new time and radial coordinatesc andx by

t5
1

eAL
c, r 5

1

AL
F12e cosx2

1

6
e2G . ~2.4!

In these coordinates the black hole horizon correspond
x50 and the cosmological horizon tox5p. The new met-
ric obtained from the transformations is, to first order ine,

ds252
1

L S 11
2

3
e cosx D sin2 xdc2

1
1

L S 12
2

3
e cosx Ddx21

1

L
~122e cosx!dV2

2 .

~2.5!

This metric describes Schwarzschild–de Sitter solutions
nearly maximal black hole size.

In these coordinates the topology of the spacelike sect
of Schwarzschild–de Sitter becomes manifest:S13S2. In
general, the radius,r , of the two-spheres varies along theS1

coordinate,x, with the minimal~maximal! two-sphere corre-
sponding to the black hole~cosmological! horizon. In the
degenerate case, the two-spheres all have the same rad

B. Thermodynamics

The surface gravities of the two horizons are given by@8#

kc,b5ALS 17
2

3
e D1O~e2!, ~2.6!

where the upper~lower! sign is for the cosmological~black
hole! horizon. In the degenerate case, the two horizons h
the same surface gravity and, sinceT5k/2p, the same tem-
perature. They are in thermal equilibrium; one could say t
the black hole loses as much energy due to evaporation
gains due to the incoming radiation from the cosmologi
horizon. Away from thermal equilibrium, for nearly dege
erate Schwarzschild–de Sitter black holes, one could m
the simplifying assumption that the horizons still radia
thermally, with temperatures proportional to their surfa
gravities. This would lead one to expect an instability: B
Eq. ~2.6!, the black hole will be hotter than the cosmologic
horizon, and will therefore suffer a net loss of radiation e
ergy. To investigate this suspected instability, a tw
dimensional model is constructed below, in which one-lo
terms are included.
e
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III. TWO-DIMENSIONAL MODEL

The four-dimensional Lorentzian Einstein-Hilbert actio
with a cosmological constant is

S5
1

16p E d4x~2gIV !1/2FRIV22L2
1

2 (
i 51

N

~¹ IV f i !
2G ,

~3.1!

whereRIV andgIV are the four-dimensional Ricci scalar an
metric determinant, and thef i are scalar fields which will
carry the quantum radiation.

We shall consider only spherically symmetric fields a
quantum fluctuations. Thus, we make a spherically symm
ric metric ansatz

ds25e2r~2dt21dx2!1e22fdV2, ~3.2!

where the remaining two-dimensional metric has been w
ten in conformal gauge;x is the coordinate on the one-sphe
and has a period of 2p. Now the spherical coordinates can b
integrated out, and the action is reduced to

S5
1

16p E d2x~2g!1/2e22fFR12~¹f!212e2f22L

2(
i 51

N

~¹ f i !
2G , ~3.3!

where the gravitational coupling has been rescaled into
standard form. Note that the scalar fields have acquired
exponential coupling to the dilaton in the dimensional red
tion. In order to take quantum effects into account, we w
find the classical solutions to the actionS1W* . W* is the
scale-dependent part of the one-loop effective action for
laton coupled scalars, which we derived in a recent paper@5#:

W* 52
1

48p E d2x~2g!1/2F1

2
R

1

h
R26~¹f!2

1

h
R

22fRG . ~3.4!

The (¹f)2 term will be neglected; we justify this neglect a
an appropriate place below.

Following Hayward@9#, we render this action local by
introducing an independent scalar fieldZ which mimics the
trace anomaly. Thef fields have the classical solutionf i
50 and can be integrated out. Thus we obtain the action

S5
1

16p E d2x~2g!1/2F S e22f1
k

2
~Z1wf! DR2

k

4
~¹Z!2

1212e22f~¹f!222e22fLG , ~3.5!

where

k[
2N

3
. ~3.6!
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2438 57RAPHAEL BOUSSO AND STEPHEN W. HAWKING
There is some debate about the coefficient of thefR term in
the effective action. Our result@5# corresponds to the choic
w52; the Russo-Susskind-Thorlacius~RST! coefficient@3#
corresponds tow51, and the result of Nojiri and Odintso
@10# can be represented by choosingw526. In Ref. @9#,
probably erroneously,w521 was chosen. We take the larg
N limit, in which the quantum fluctuations of the metric a
dominated by the quantum fluctuations of theN scalars; thus,
k@1. In addition, for quantum corrections to be small w
assume thatb[kL!1. To first order inb, we shall find that
the behavior of the system is independent ofw.

For compactness of notation, we denote differentiat
with respect tot(x) by an overdot~a prime!. Further, we
define, for any functionsf andg,

] f ]g[2 ḟ ġ1 f 8g8, ]2g[2g̈1g9, ~3.7!

and

d f dg[ ḟ ġ1 f 8g8, d2g[g̈1g9. ~3.8!

Variation with respect tor, f andZ leads to the following
equations of motion:

2S 12
wk

4
e2fD ]2f12~]f!21

k

4
e2f]2Z

1e2r12f~Le22f21!50, ~3.9!

S 12
wk

4
e2fD ]2r2]2f1~]f!21Le2r50, ~3.10!

]2Z22]2r50. ~3.11!

There are two equations of constraint:

S 12
wk

4
e2fD ~d2f22dfdr!2~df!2

5
k

8
e2f@~dZ!212d2Z24dZdr#, ~3.12!

S 12
wk

4
e2fD ~ḟ82 ṙf82r8ḟ !2ḟf8

5
k

8
e2f@ ŻZ812Ż822~ ṙZ81r8Ż!#. ~3.13!

From Eq.~3.11!, it follows that

Z52r1h, ~3.14!

whereh satisfies

]2h50. ~3.15!

The remaining freedom inh can be used to satisfy th
constraint equations for any choice ofr, ṙ, f and ḟ on an
initial spacelike section. This can be seen most easily
decomposing the fields and the constraint equations
Fourier modes on the initialS1. By solving for the second
term on the right hand side of Eq.~3.12!, and by using Eqs
~3.14! and ~3.15!, the first constraint yields one algebra
n

y
to

equation for each Fourier coefficient ofh. Similarly, the sec-
ond constraint yields one algebraic equation for the time
rivative of each Fourier coefficient ofh. If the initial slice
was non-compact, this argument would suffice. Here it m
be verified, however, thath andḣ will have a period of 2p.
The problem reduces to the question of whether the two c
stant mode constraint equations can be satisfied. Ind
while for each oscillatory mode ofh there are two degrees o
freedom~the Fourier coefficient and its time derivative!, the
second time derivative of the constant mode coefficient,ḧ0 ,
must vanish by Eq.~3.15!. Thus there is only one degree o
freedom,ḣ0 , for the two constant mode equations. Howev
since we have introduced no odd modes~i.e., modes of the
form sinkx! in the perturbation off, none of the fields will
contain any odd modes. Since each term in Eq.~3.13! con-
tains exactly one spatial derivative, each term will be o
Therefore all even mode components of the second c
straint vanish identically. In particular the constant mo
component will thus be automatically satisfied. Then t
freedom inḣ0 can be used to satisfy the constant mode co
ponent of the remaining constraint, Eq.~3.12!, through the
first1 term on the right hand side.

IV. PERTURBATIVE STABILITY

A. Perturbation ansatz

With the model developed above we can describe
quantum behavior of a cosmological black hole of maxim
mass under perturbations. The Nariai solution is still char
terized by the constancy of the two-sphere radius,e2f. Be-
cause of quantum corrections, this radius will no longer
exactlyL21/2. Instead, the solution is given by

e2r5
1

L1

1

cos2t
, e2f5L2 , ~4.1!

where

1

L1
5

1

8L
@42~w12!b1A1628~w22!b1~w12!2b2#,

~4.2!

L25
1

2wk
@41~w12!b2A1628~w22!b1~w12!2b2#.

~4.3!

Expanding to first order inb, one obtains

1

L1
'

1

L S 12
wb

4 D , ~4.4!

L2'LS 12
b

2D . ~4.5!

1Note thatḣ0 can thus be purely imaginary, as indeed it will b
for the Nariai solution, signaling a negative energy density of
quantum field.
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57 2439~ANTI- !EVAPORATION OF SCHWARZSCHILD–de . . .
Let us now perturb this solution so that the two-sph
radius,e2f, varies slightly along the one-sphere coordina
x:

e2f5L2@112es~ t !cosx#, ~4.6!

where we takee!1. We will call s themetric perturbation.
A similar perturbation could be introduced fore2r, but it
does not enter the equation of motion fors at first order ine.
This equation is obtained by eliminating]2Z and ]2r from
Eq. ~3.9! using Eqs.~3.11! and ~3.10!, and inserting the
above perturbation ansatz. This yields

s̈

s
5

a

cos2 t
21, ~4.7!

where

a[
2A1628~w22!b1~w12!2b2

42wb
~4.8!

To first order inb, one finds that

a'21b, ~4.9!

which means thatw and, therefore, thefR term in the ef-
fective action play no role in the horizon dynamics at th
level of approximation. This is also the right place to discu
why the termA2g(¹f)2(1/h)R in the effective action can
be neglected. In conformal coordinates this term is prop
tional to (]f)2r. Thus, in ther-equation of motion, Eq.
~3.9!, it will lead to a (]f)2 term, which is of second orde
in e and can be neglected. In thef equation of motion, Eq.
~3.10!, it yields terms proportional tok that are of first order
in e. They will enter the equation of motion fors via the
ke2f]2Z term in Eq. ~3.10!. Thus they will be of second
order in b and can be dropped. The neglect of the logm2

term @5# can be justified in the same way.

B. Horizon tracing

In order to describe the evolution of the black hole, o
must know where the horizon is located. The condition fo
horizon is (¹f)250. Equation~4.6! yields

]f

]t
5eṡcosx,

]f

]x
52es sin x. ~4.10!

Therefore, the black hole and cosmological horizons are
cated at

xb~ t !5arctanUṡ
s
U, xc~ t !5p2xb~ t !. ~4.11!

To first order ine, the size of the black hole horizon,r b , is
given by

r b~ t !225e2f@ t,xb~ t !#5L2@112ed~ t !#, ~4.12!

where we define thehorizon perturbation

d[cosxb5sS 11
ṡ2

s2D 21/2

. ~4.13!
e
,

s

r-

e
a

-

We will focus on the early time evolution of the black ho
horizon; the treatment of the cosmological horizon is co
pletely equivalent.

To obtain explicitly the evolution of the black hole hor
zon radius,r b(t), one must solve Eq.~4.7! for s(t), and use
the result in Eq.~4.13! to evaluate Eq.~4.12!. If the horizon
perturbation grows, the black hole is shrinking: This cor
sponds to evaporation. It will be shown below, however, t
the behavior ofd(t) depends on the initial conditions chose
for the metric perturbation,s0 and ṡ0 .

C. Classical evolution

As a first check, one can examine the classical casek
50. This hasa52, and Eq.~4.7! can be solved exactly
From the constraint equations, Eq.~3.12! and ~3.13!, it fol-
lows that

ṡ5s tan t. ~4.14!

Therefore the appropriate boundary condition att50 is ṡ0
50. The solution is

s~ t !5
s0

cos t
. ~4.15!

Then Eq.~4.13! yields

d~ t !5s05const. ~4.16!

Since the quantum fields are switched off, no evaporat
takes place; the horizon size remains that of the initial p
turbation. This simply describes the case of a sta
Schwarzschild–de Sitter solution of nearly maximal mass
given in Eq.~2.6!.

D. Quantum evolution

When we turn on the quantum radiation (k.0) the con-
straints no longer fix the initial conditions on the metric pe
turbation. There will thus be two linearly independent typ
of initial perturbation. The first is the one we were forced
choose in the classical case:s0.0, ṡ050. It describes the
spatial section of a quantum-corrected Schwarzschild
Sitter solution of nearly maximal mass. Thus one might e
pect the black hole to evaporate. Fora.2, Eq. ~4.7! cannot
be solved analytically. Since we are interested in the ea
stages of the evaporation process, however, it will suffice
solve fors as a power series int. Using Eq.~4.13! one finds
that

d~ t !5s0F12
1

2
~a21!~a22!t21O~ t4!G's0F12

1

2
bt2G .
~4.17!

The horizon perturbation shrinks from its initial value. Thu
the black hole sizeincreases, and the black hole grows, a
least initially, back towards the maximal radius. One cou
say that nearly maximal Schwarzschild–de Sitter black ho
‘‘anti-evaporate.’’

This is a surprising result, since intuitive thermodynam
arguments would have led to the opposite conclusion. T
anti-evaporation can be understood in the following way.
specifying the metric perturbation, the radiation distributi
of theZ field is implicitly fixed through the constraint equa
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2440 57RAPHAEL BOUSSO AND STEPHEN W. HAWKING
tions ~3.12! and ~3.13!. Our result shows that radiation i
heading towards the black hole if the boundary condit
s0.0, ṡ050 is chosen.

Let us now turn to the second type of initial metric pe
turbation:s050, ṡ0.0. Here the spatial geometry is unpe
turbed on the initial slice, but it is given a kind of ‘‘push
that corresponds to a perturbation in the radiation bath. S
ing once again fors with these boundary conditions, an
using Eq.~4.13!, one finds, for smallt,

d~ t !5ṡ0t2. ~4.18!

The horizon perturbation grows. This perturbation mode
unstable, and leads to evaporation.

We have seen that the radiation equilibrium of a Nar
universe displays unusual and non-trivial stability properti
The evolution of the black hole horizon depends crucially
the type of metric perturbation. Nevertheless, one may
the question whether a cosmological black hole will typica
evaporate or not. UnlessL is very small, cosmological black
holes cannot come into existence through classical grav
tional collapse, since they exist in an exponentially expa
ing de Sitter background. The only natural way for them
appear is through the quantum process of pair creation@7#.
This pair creation process can also occur in an inflation
universe, because of its similarity to de Sitter spa
@8,11,12#. The nucleation of a Lorentzian black hole spac
time is described as the analytic continuation of an appro
ate complex solution of the Einstein equations, which sa
fies the no boundary condition@13#. We will show below that
the no boundary condition selects a particular linear com
nation of the two types of initial metric perturbation, thu
allowing us to determine the fate of the black hole.

V. NO BOUNDARY CONDITION

To obtain the unperturbed Euclidean Nariai solution
conformal gauge, one performs the analytic continuatiot
5 i t in the Lorentzian solution, Eq.~4.1!. This yields

~dsIV !25e2r~dt21dx2!1e22fdV2 ~5.1!

and

e2r5
1

L1

1

cosh2 t
, e2f5L2 . ~5.2!

In four dimensions, this describes the product of two rou
two-spheres of slightly different radii,L1

21/2 andL2
21/2. The

analytic continuation to a Lorentzian Nariai solution corr
sponds to a path in thet plane, first along the realt axis,
from t52` to t50, and then along the imaginary ax
from t50 to t5p/2. This can be visualized geometrical
by cutting the first two sphere in half, and joining to it
Lorentzian (111)-dimensional de Sitter hyperboloid. Be
cause the (t,x) sphere has its north~south! pole at t5`
(t52`), it is convenient to rescale time:

sin u5
1

cosht
, ~5.3!

or, equivalently,
n

v-

s

i
.

n
k

a-
-

y
e
-
i-
-

i-

d

-

cosu52tanht, cot u52sinh t, du5
dt

cosht
.

~5.4!

With the new time coordinateu, the solution takes the form

~dsIV !25
1

L1
~du21sin2 udx2!1

1

L2
dV2. ~5.5!

Now the south pole lies atu50, and the nucleation path run
to u5p/2, and then parallel to the imaginary axis (u5p/2
1 iv) from v50 to v5`.

The perturbation ofe2f, Eq. ~4.6!, introduces the variable
s, which satisfies the Euclidean version of Eq.~4.7!:

sin2 u
d2s

du2 1sin u cosu
ds

du
2~12a sin2 u!s50.

~5.6!

In addition, the nature of the Euclidean geometry enfor
the boundary condition that the perturbation vanish at
south pole:

s~u50!50. ~5.7!

Otherwise,e2f would not be single valued, because the c
ordinatex degenerates at this point. This leavesṡ as the only
degree of freedom in the boundary conditions atu50.

It will be useful to define the parameterc by the relation
c(c11)[a. The classical case,a52, corresponds toc
51; for small b, they receive the quantum correctionsa
521b and c511b/3. With the boundary condition, Eq
~5.7!, the equation of motion fors, Eq. ~5.6!, can be solved
exactly only for integerc(a52,6,12,20,...). The solution is
of the form

s~u!5 (
0<k,c/2

Ak sin~c22k!u, ~5.8!

with constantsAk . Even for non-integerc, however, this
turns out to be a good approximation in the region 0<u
<p/2 of the (u,v) plane. Since we are interested in the ca
whereb!1, the sum in Eq.~5.8! contains only one term, and
we use the approximation2

2Treating Eq.~5.6! perturbatively inb arounda52 leads to un-
tractable integrals. Fortunately the guessed approximation in
~5.9! turns out to be rather accurate, especially for late Lorentz
times v, which is the regime in which we claim our results to b
valid. It is easy to check numerically that for sufficiently larg
v(v.10), both the real and imaginary parts of Eq.~5.9! have a
relative errorb/30 or less. The result for the phase of the prefact
Eq. ~5.13!, has a relative error of less than 1024, independently of
b. Crucially, the exponential behavior at late Lorentzian times
reproduced perfectly, as the ratio

]s/]v
s

,

using the approximation, agrees with the numerical result to m
chine accuracy. Therefore the relative error in Eq.~5.15! is the same
as in Eq.~5.9!; in both equations it is located practically entirely
the magnitude of the prefactor. These statements hold for 0<b
<1, which really is a wider interval than necessary.
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s~u!'Ã sin cu. ~5.9!

It is instructive to consider the classical case first.~Physi-
cally, this is questionable, since the no boundary condit
violates the constraints at second order ine.! For b50, the
solution s(u)5Ã sinu is exact. Along the Lorentzian line
(u5p/21 iv), this solution becomess(v)5Ã coshv. By
transforming back to the Lorentzian time variablet, one can
check that this is the stable solution found in the previo
section, withs05Ã, ṡ050. For realÃ, it is real everywhere
along the nucleation path. Thus, when the quantum fields
turned off, the Euclidean formalism predicts that the unsta
mode will not be excited. This is a welcome result, sin
there are no fields that could transport energy from one
rizon to another.

Onceb is non-zero, however, it is easy to see that]s/]u
no longer vanishes at the origin of Lorentzian time,u

5p/2. This indicates that the unstable mode,ṡ0Þ0, will be
excited. Unfortunately, checking this is not entirely straig
forward, becauses is no longer real everywhere along th
nucleation path. One must impose the condition thats andṡ
be real at late Lorentzian times. We will first show that th
can be achieved by a suitable complex choice ofA. One can
then calculate the horizon perturbation,d, from the real late-
time evolution of the metric perturbation,s, to demonstrate
that evaporation takes place.

From Eq.~5.9! one obtains the Lorentzian evolution ofs,

s~v !5Ã sin cS p

2
1 iv D ~5.10!

5ÃS sin
cp

2
coshcv

1 i cos
cp

2
sinh cv D . ~5.11!

For late Lorentzian times~i.e., large v!, coshcv'sinhcv
'ecv/2, and so the equation becomes

s~v !'
1

2
Ã~ ie2 icp/2!ecv. ~5.12!

This can be rendered purely real by choosing the comp
constantÃ to be

Ã5A~2 ieicp/2!, ~5.13!

whereA is real.
Now we can return to the question of whether the Euc

ean boundary condition leads to evaporation. After tra
er
n

s

re
le

o-

-

x

-
-

forming the time coordinate, the expression for the growth
the horizon perturbation, Eq.~4.13!, becomes

d~v !5sF11cosh2 vS ]s/]v
s D 2G21/2

. ~5.14!

The late time evolution is given bys(v)5(A/2)ecv. This
yields, for largev,

d~v !'
A

2
ecv~11c2e2v!21/2'

A

2c
expS b

3
v D . ~5.15!

This result confirms that pair created cosmological bla
holes will indeed evaporate. The magnitude of the horiz
perturbation is proportional to the initial perturbatio
strength,A. The evaporation rate grows withkL. This agrees
with intuitive expectations, sincek measures the number o
quantum fields that carry the radiation.

VI. SUMMARY

We have investigated the quantum stability of t
Schwarzschild–de Sitter black holes of maximal mass,
Nariai solutions. From four-dimensional spherically symm
ric general relativity with a cosmological constant andN
minimally coupled scalar fields we obtained a tw
dimensional model in which the scalars couple to the dilat
The one-loop terms were included in the largeN limit, and
the action was made local by introducing a fieldZ which
mimics the trace anomaly.

We found the quantum corrected Nariai solution and a
lyzed its behavior under perturbations away from deg
eracy. There are two possible ways of specifying the ini
conditions for a perturbation on a Lorentzian spacelike s
tion. The first possibility is that the displacement away fro
the Nariai solution is non-zero, but its time derivative va
ishes. This perturbation corresponds to nearly degene
Schwarzschild–de Sitter space, and somewhat surprisin
this perturbation is stable at least initially. The second p
sibility is a vanishing displacement and non-vanishing d
rivative. These initial conditions lead directly to evaporatio
The different behavior of these two types of perturbatio
can be explained by the fact that the initial radiation dis
bution is implicitly specified by the initial conditions
through the constraint equations.

If neutral black holes nucleate spontaneously in pairs o
de Sitter background, the initial data will be constrained
the no boundary condition: It selects a linear combinat
of the two types of perturbations. By finding appropria
complex compact instanton solutions we showed that
condition leads to black hole evaporation. Thus neutral p
mordial black holes are unstable.
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