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We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes
whose size is comparable to that of the cosmological horizon, this process differs significantly from the
evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave
and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that
nearly maximal quantum Schwarzschild—de Sitter black holes anti-evaporate. However, there is a different
perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of
cosmological holes nucleatd$0556-282198)00606-1

PACS numbdrs): 04.70.Dy, 04.60-m, 04.62:+v, 98.80.Hw

[. INTRODUCTION the thermal equilibrium of the Nariai solution to be unstable.
The initial stages of such a runaway would be an interesting

Of the effects expected of a quantum theory of gravity,and novel quantum gravitational effect quite different from
black hole radiancél] plays a particularly significant role. the evaporation of an asymptotically flat black hole. In this
So far, however, mostly asymptotically flat black holes havePaper we will investigate whether, and how, an instability
been considered. In this work, we investigate a qualitativelydevelops in a two-dimensional model derived from four-
different black hole spacetime, in which the black hole is indimensional general relativity. We include quantum effects
a radiative equilibrium with a cosmological horizon. at the one-loop level.

The evaporation of black holes has been studied using The paper is structured as follows: In Sec. Il we review
two-dimensional toy mode|S, in which one_|oop guantum ef-t e Schwarzschild—de Sitter solutions and the Nariai limit.
fects were included2—4]. We have recently shown how to We discuss the qualitative expectations for the evaporation
implement quantum effects in a more realistic class of two0f degenerate black holes, which motivate our one-loop
dimensional models, which includes the important case oftudy. The two-dimensional model corresponding to this
dimensionally reduced general relativitg]. The result we physical situation is presented in Sec. Ill, and the equations
obtained for the trace anomaly of a dilaton-coupled scalaPf motion are derived. In Sec. IV the stability of the quantum

field will be used here to study the evaporation of cosmoNariai solution under different types of perturbations is in-
logical black holes. vestigated. We find, quite unexpectedly, that the

We shall consider the Schwarzschild—de Sitter fam"y OfSChWarZSCh“d—de Sitter solution is Stable, but we also iden-

black holes. The size of these black holes varies betweelify an unstable mode. Finally, the no-boundary condition is
zero and the size of the cosmological horizon. If the blackapplied in Sec. V to study the stability of spontaneously
hole is much smaller than the cosmological horizon, the efiucleated cosmological black holes.

fect of the radiation coming from the cosmological horizon is

negligible, and one would expect the evaporation to be simi-

lar to that of Schwarzschild black holes. Therefore we shall Il. COSMOLOGICAL BLACK HOLES

not be interested in this case. Instead, we wish to investigate A. Metric

the quantum evolution of nearly degenerate

Schwarzschild—de Sitter black holes. The degenerate so%— The neutral, static, spherically symmetric solutions of the

instein equation with a cosmological constantaire given

tion, in which the black hole has the maximum size, is calle X ; ;
y the Schwarzschild—de Sitter metric

the Nariai solutiorj6]. In this solution the two horizons have
the same size and the same temperature. Therefore they will ds?=—V(r)dt2+V(r) " Ldr2+r2dQ? 2.1)
be in thermal equilibrium. Intuitively, one would expect any ’

slight perturbation of the geometry to cause the black hole to

become hotter than the background. Thus, one may suspeghere
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dQ? is the metric on a unit two-sphere andis a mass 1. TWO-DIMENSIONAL MODEL

parameter. For & 4<3A Y2 V has two positive roots, The four-dimensional Lorentzian Einstein-Hilbert action
andry,, corresponding to the cosmological and the black holewith a cosmological constant is

horizons, respectively. The limit whege— 0 corresponds to

the de Sitter solution. In the Iimi(tc—%/.\*l’2 the size of the o dix(— g™y
black hole horizon approaches the size of the cosmological 167

N
1
RY—2A - EZ V'Vfi)z},

horizon, and the above coordinates become inappropriate, (3.1
since V(r)—0 between the two horizons. Following Gin-
sparg and Perr{i7], we write whereR"Y andg"V are the four-dimensional Ricci scalar and
oy ) metric determinant, and thg are scalar fields which will
IuA=1-3¢°, O=<e<l. (2.3

carry the quantum radiation.

We shall consider only spherically symmetric fields and
quantum fluctuations. Thus, we make a spherically symmet-
ric metric ansatz

Then the degenerate case corresponds-t0. We define
new time and radial coordinatesand y by

1
T=——=Yy, I

1
VA A
. _ where the remaining two-dimensional metric has been writ-
In these coordinates the black hole horizon corresponds tgn in conformal gauge is the coordinate on the one-sphere

x=0 and the cosmological horizon jo=. The new met-  and has a period of22 Now the spherical coordinates can be
ric obtained from the transformations is, to first ordefein  integrated out, and the action is reduced to

1—€ COSX_EEZ (24) dSZZGZP(—dtZ-i-dXz)+672¢dQZ, (32)

6

ds’= ! 1 2 ir? ydy? 1
== 5| 1+ e cosy|sir? xdy S= 1o f d2x(—g) Y229 R+ 2(V )2+ 2626 — 2
i 1—ze cosX)d)(2+ —(1-2¢ COS)()dQ2 N
TR A -2 (W)Z} (33
(2.9 B
This metric describes Schwarzschild—de Sitter solutions ofvhere the gravitational coupling has been rescaled into the
nearly maximal black hole size. standard form. Note that the scalar fields have acquired an

In these coordinates the topology of the spacelike section€XPonential coupling to the dilaton in the dimensional reduc-
of Schwarzschild—de Sitter becomes manifex S2. |n ton. In order to take quantum effects into account, we will
general, the radius, of the two-spheres varies along t8& find the classical solutions to the acu@crvv*_ W* !s the _
coordinatey, with the minimal(maxima) two-sphere corre- scale-dependent part of t'he one—loqp effectlve action for di-
sponding to the black holécosmological horizon. In the laton coupled scalars, which we derived in a recent pger

degenerate case, the two-spheres all have the same radius.

vw*——i d?x(— g)”z[l ! R—G(Vqﬁ)ziR
B. Thermodynamics 2 0 O

The surface gravities of the two horizons are giver{ &y

—2¢R}. (3.4)

2
Kep= JK( 1:—6) +0(éd), (2.6)
3 The (V¢)? term will be neglected; we justify this neglect at
an appropriate place below.

where the uppeftlower) sign is for the cosmologicablack Following Hayward[9], we render this action local by

hole) horizon. In the degenerate case, the two horizons hav%troducing an independent scalar figddwhich mimics the
the same surface gravity and, since «/2, the same tem- Erace anomaly. Thd fields have the classical solutioi

perature. They are in thermal equilibrium; one could say tha 0 and can be integrated out. Thus we obtain the action
the black hole loses as much energy due to evaporation as it

gains due to the incoming radiation from the cosmological
horizon. Away from thermal equilibrium, for nearly degen- g— _—_ f d2x(— g)l/Z[( —2¢4 —(Z+W¢))R— —(VZ)?
erate Schwarzschild—de Sitter black holes, one could make 167

the simplifying assumption that the horizons still radiate

thermally, with temperatures proportional to their surface +2+2e‘2"”(V¢)2—2e‘2¢’A}, (3.5
gravities. This would lead one to expect an instability: By

Eq. (2.6), the black hole will be hotter than the cosmological

horizon, and will therefore suffer a net loss of radiation en-Where

ergy. To investigate this suspected instability, a two-

dimensional model is constructed below, in which one-loop 2N

terms are included. K=—3- (3.6
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There is some debate about the coefficient ofdifeterm in ~ equation for each Fourier coefficient gf Similarly, the sec-

the effective action. Our resUlb] corresponds to the choice ond constraint yields one algebraic equation for the time de-
w=2; the Russo-Susskind-Thorlaci(®ST) coefficient[3] rivative of each Fourier coefficient of. If the initial slice
corresponds tav=1, and the result of Nojiri and Odintsov was non-compact, this argument would suffice. Here it must
[10] can be represented by choosing=—6. In Ref.[9],  be verified, however, thap and 7 will have a period of .
probably erroneouslyy=—1 was chosen. We take the large The problem reduces to the question of whether the two con-
N limit, in which the quantum fluctuations of the metric are stant mode constraint equations can be satisfied. Indeed,
dominated by the quantum fluctuations of tecalars; thus, while for each oscillatory mode of there are two degrees of
x>1. In addition, for quantum corrections to be small wefreedom(the Fourier coefficient and its time derivatjy¢he

assume thav= kA <1. To first order irb, we shall find that  second time derivative of the constant mode coefficiegt,
the behavior of the system is independentof must vanish by Eq(3.15. Thus there is only one degree of

.For compactness of notation, we d.enote d'ﬁerent'at'or}reedom,}yo, for the two constant mode equations. However,
W'th respect tot(x) by an overdot(a primg. Further, we since we have introduced no odd modes., modes of the
define, for any function$ andg, form sinkx) in the perturbation ofp, none of the fields will
37 contain any odd modes. Since each term in Bql3 con-

' tains exactly one spatial derivative, each term will be odd.
and Therefore all even mode components of the second con-

straint vanish identically. In particular the constant mode
sfeg=fg+f'g’, s°g=g+g’. (3.9  component will thus be automatically satisfied. Then the
freedom in7y can be used to satisfy the constant mode com-
Variation with respect tg, ¢ andZ leads to the following ponent of the remaining constraint, E@.12, through the

ofag=—fg+f'g’, sg=-g+g’,

equations of motion: first! term on the right hand side.
WK 6] -2 2, K 242
- 1- Te IPp+2(dp)°+ Ze 0°Z IV. PERTURBATIVE STABILITY
+ez"+2¢(Ae*2¢— 1)=0, 3.9 A. Perturbation ansatz

With the model developed above we can describe the
WK o4l o ) ) 2p_ guantum behavior of a cosmological black hole of maximal
1= e70p=°¢+(9$)°+Ae®=0, (310  mass under perturbations. The Nariai solution is still charac-
terized by the constancy of the two-sphere radais?. Be-
?Z—-29%p=0. (3.1)  cause of quantum corrections, this radius will no longer be
exactly A "2 Instead, the solution is given by

There are two equations of constraint: L1

= — 2= (4.
w ’ 2
(1_TKe2¢)(52¢_25¢5p)_(5¢)2 Aq cost
where
= X e29[(52)2+28°2— 457 5p] (3.12
8 P ' 1 1
= ga 4 (WH2)b+V16-8(w—2)b+(w+2)%b7],
W o)\ ! 4.2
1-—€|(¢'—pd'—p' )~ ¢¢ 4.2
K . . . . 1 2,2
=gel2zZ/ 22/ 2(pZ' +p'2)]. (313 Az 4t (wi2)b- V16—8(w—2)b+(w+2)%b?].
4.3
From Eq.(3.11), it follows that
Expanding to first order if, one obtains
Z=2p+ 7, (3.19
where 7 satisfies Y P wb (4.4)
Ay A 4 ) '
#n=0. (3.15
The remaining freedom im can be used to satisfy the AZQA(l_ 9) (4.5
constraint equations for any choice @fp, ¢ and ¢ on an 2

initial spacelike section. This can be seen most easily by

decomposing the fields and the constraint equations into

Fourier modes on the initia®'. By solving for the second  Note thaty, can thus be purely imaginary, as indeed it will be
term on the right hand side of E3.12), and by using Egs. for the Nariai solution, signaling a negative energy density of the
(3.14 and (3.15, the first constraint yields one algebraic quantum field.
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Let us now perturb this solution so that the two-spheréWe will focus on the early time evolution of the black hole
radius,e” ?, varies slightly along the one-sphere coordinate horizon; the treatment of the cosmological horizon is com-
X: pletely equivalent.
26 To obtain explicitly the evolution of the black hole hori-
e“?=A,[1+2eo0(t)cosx], (4.8 zon radiusy(t), one must solve Eq4.7) for o(t), and use
the result in Eq(4.13 to evaluate Eq(4.12. If the horizon
perturbation grows, the black hole is shrinking: This corre-
does not enter the equation of motion toat first order ine. sponds to_evaporation. It will be Sho_W_’? below,_however, that
This equation is obtained by eliminatingZ and 42p from the behavior of5(t) depends on the initial conditions chosen

Eq. (3.9 using Egs.(3.1) and (3.10, and inserting the for the metric perturbationy, andoy.
above perturbation ansatz. This yields

where we takee<<1. We will call o the metric perturbation
A similar perturbation could be introduced fef?, but it

C. Classical evolution

g_ a -1 (4.7) As a first check, one can examine the classical case,
o cost =0. This hasa=2, and Eq.(4.7) can be solved exactly.
h From the constraint equations, E®.12 and (3.13), it fol-
where lows that
a=2\/16_8(w_2)b+(w+2)2b2 9 o= tant. (4.14
4—-wb Therefore the appropriate boundary conditiort-af is &0
To first order inb, one finds that =0. The solution is
a~2+b, (4.9 -7
o(t) cost’ (4.15

Whi(_:h means thatv and, thgrefore, th@R term in _the ef- _Then Eq.(4.13 yields

fective action play no role in the horizon dynamics at this

level of approximation. This is also the right place to discuss 8(t)=oy=const. (4.16

why the termy—g(V ¢)2(1/0)R in the effective action can . _ . _
be neglected. In conformal coordinates this term is proporSince the quantum fields are switched off, no evaporation
tional to (9¢)%p. Thus, in thep-equation of motion, Eq. takes place; the horizon size remains that of the initial per-
(3.9), it will lead to a (9¢)? term, which is of second order turbation. This simply describes the case of a static
in e and can be neglected. In thieequation of motion, Eq. Schwarzschild—de Sitter solution of nearly maximal mass, as
(3.10, it yields terms proportional ta that are of first order ~given in Eq.(2.6).

in e. They will enter the equation of motion far via the

ke??9?Z term in Eq.(3.10. Thus they will be of second D. Quantum evolution

order inb and can be dropped. The neglect of the idg

TP When we turn on the quantum radiatiorn>0) the con-
term[5] can be justified in the same way. d +0)

straints no longer fix the initial conditions on the metric per-
turbation. There will thus be two linearly independent types
B. Horizon tracing of initial perturbation. The first is the one we were forced to

In order to describe the evolution of the black hole, onechoose in the classical casey>0, 0o=0. It describes the
must know where the horizon is located. The condition for aspatial section of a quantum-corrected Schwarzschild—de

horizon is V ¢)?=0. Equation(4.6) yields Sitter solution of nearly maximal mass. Thus one might ex-
pect the black hole to evaporate. Ror 2, Eq.(4.7) cannot

d¢p . d¢ . be solved analytically. Since we are interested in the early

g €OCOSX, o= TeosinX (4.10 stages of the evaporation process, however, it will suffice to

solve foro as a power series in Using Eq.(4.13 one finds
Therefore, the black hole and cosmological horizons are lothat
cated at
~0y

1 1
8(t) =0y 1—§(a—1)(a—2)t2+0(t4) 1—§bt2}
v XD =7 X(1). (411 (4.17

The horizon perturbation shrinks from its initial value. Thus,
the black hole sizéncreases and the black hole grows, at
least initially, back towards the maximal radius. One could
say that nearly maximal Schwarzschild—de Sitter black holes
“anti-evaporate.”

This is a surprising result, since intuitive thermodynamic
arguments would have led to the opposite conclusion. The
1 anti-evaporation can be understood in the following way. By

413 specifying the metric perturbation, the radiation distribution
' of the Z field is implicitly fixed through the constraint equa-

(o

o
Xp(t) = arcta+

To first order ine, the size of the black hole horizon,, is
given by

rp(t) 2=e?t XM= A [1+2€8(1)], (412
where we define thorizon perturbation

0_2

o0=cosxp,=o| 1+ —
(o
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tions (3.12 and (3.13. Our result shows that radiation is _

heading towards the black hole if the boundary conditon  cosu=—tanh7, cotu=—sinhr, du= Cosh7:

00>0, 0p=0 is chosen. (5.4)
Let us now turn to the second type of initial metric per-

turbation:o,=0, oy>0. Here the spatial geometry is unper- With the new time coordinata, the solution takes the form

turbed on the initial slice, but it is given a kind of “push” 1 1
that corresponds to a perturbation in the radiation bath. Solv- (dsV)?=—(du?+sir? udx®)+ -—dQ2. (5.5
) \ . o A Ay
ing once again forr with these boundary conditions, and
using Eq.(4.13, one finds, for smalt, Now the south pole lies at=0, and the nucleation path runs
] to u=/2, and then parallel to the imaginary axis=f 7/2
8(t)=oot?. (4189  +iv) fromv=0 tov=c».
The perturbation 0&€2¢, Eq.(4.6), introduces the variable

The horizon perturbation grows. This perturbation mode is;. \which satisfies the Euclidean version of E4.7):
unstable, and leads to evaporation.

We have seen that the radiation equilibrium of a Nariai . d’oc do ,
universe displays unusual and non-trivial stability properties. ~ SIN" Uz +sinu cosug-—(1-a sir? u)o=0.
The evolution of the black hole horizon depends crucially on (5.6)

the type of metric perturbation. Nevertheless, one may ask

the question whether a cosmological black hole will typically In addition, the nature of the Euclidean geometry enforces
evaporate or not. Unless is very small, cosmological black the boundary condition that the perturbation vanish at the
holes cannot come into existence through classical gravitasouth pole:
tional collapse, since they exist in an exponentially expand- o
ing de Sitter background. The only natural way for them to o(u=0)=0. 5.7

appear is through the quantum process of pair credf¢n  Otherwise,e?® would not be single valued, because the co-

This pair creation process can also occur in an inflationary, i atex degenerates at this point. This leaveas the only

universe, because of its similarity to de Sitter spacedegree of freedom in the boundary conditionsiat.
[8,11,12. The nucleation of a Lorentzian black hole space- |, i he useful to define the parameterby the relation

time is described as the analytic continuation of an appropriz ¢ 1)=a. The classical casea=2, corresponds ta
ate complex solution of the Einstein equations, which satls-zl. for small b, they receive the quantum correctioas
fies the no boundary conditidd3]. We will show below that ' '

the no boundary condition selects a particular linear combi-:2+b and c=1+b/3. With the boundary condition, Eq.
nation of the two types of initial metric perturbation, thus (5.7), the equation of motion for, Eq. (5.6), can be solved

allowing us to determine the fate of the black hole. g??ﬁg%o?my for integerc(a=2,6,12,20,...). The solution is

V. NO BOUNDARY CONDITION o(u)= A, sin(c—2K)u, (5.9
To obtain the unperturbed Euclidean Nariai solution in O=k=cl2

conformal gauge, one performs the analytic continuation with constantsA,. Even for non-integec, however, this
=i7 in the Lorentzian solution, Ed4.1). This yields turns out to be a good approximation in the regios
=< /2 of the (U,v) plane. Since we are interested in the case

VN2 _ 52 2 2 —2¢ 2 . .
(ds¥)*=e™(d7°+dx") +e “"dQ (51 whereb<1, the sum in Eq(5.8) contains only one term, and
and we use the approximatién
1 1
e =— . €29=A,. (5.2 . N
Aq cosit 7 Treating Eq.(5.6) perturbatively inb arounda=2 leads to un-

. . . . ractable integrals. Fortunately the guessed approximation in Eg.
In four dimensions, this describes the product of two roun 5.9) turns out to be rather accurate, especially for late Lorentzian

two-spheres of slightly different radid; 12 andA, 1/.2- The  timesy, which is the regime in which we claim our results to be
analytic continuation to a Lorentzian Nariai solution corre-yajid. It is easy to check numerically that for sufficiently large
sponds to a path in the plane, first along the reat axis,  ,(y>10), both the real and imaginary parts of H§.9) have a
from 7=— to 7=0, and then along the imaginary axis relative errorb/30 or less. The result for the phase of the prefactor,
from t=0 to t=a/2. This can be visualized geometrically Eq. (5.13, has a relative error of less than1{) independently of
by cutting the first two sphere in half, and joining to it a b. Crucially, the exponential behavior at late Lorentzian times is
Lorentzian (I+1)-dimensional de Sitter hyperboloid. Be- reproduced perfectly, as the ratio

cause the £,x) sphere has its nortfsouth pole at r=w daldv
(7= —00), it is convenient to rescale time: T’
using the approximation, agrees with the numerical result to ma-
sinu= 1 (5.3 chine accuracy. Therefore the relative error in &q15 is the same
coshr'’ ' as in Eq.(5.9); in both equations it is located practically entirely in

the magnitude of the prefactor. These statements hold fob 0
or, equivalently, <1, which really is a wider interval than necessary.
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forming the time coordinate, the expression for the growth of
the horizon perturbation, E¢4.13, becomes

)2
The late time evolution is given by (v)=(A/2)e®. This
yields, for largev,

a(u)~A sincu. (5.9
It is instructive to consider the classical case fi(Bhysi-
cally, this is questionable, since the no boundary condition
violates the constraints at second orderinFor b=0, the
solution o-(u)=A sinu is exact. Along the Lorentzian line
(u=m/2+iv), this solution becomes(v)=A coshv. By
transforming back to the Lorentzian time variabjeone can
check that this is the stable solution found in the previous
section, withoo=A, oo=0. For realA, it is real everywhere
along the nucleation path. Thus, when the quantum fields are
turned Off, the Euclidean formalism prediCtS that the Unstablq’his result confirms that pair created Cosm0|ogica| black
mode will not be excited. This is a welcome result, sincenples will indeed evaporate. The magnitude of the horizon

daldv | 2] 12

8(v)=0c| 1+cosif v (5.14

U

3 ) (5.19

A A
Sv)~ Eec"(1+ c?e?) 2~ zexp{

there are no fields that could transport energy from one hoperturbation is proportional to the initial perturbation

rizon to another.
Onceb is non-zero, however, it is easy to see thafdu
no longer vanishes at the origin of Lorentzian time,

= /2. This indicates that the unstable modgz 0, will be
excited. Unfortunately, checking this is not entirely straight-
forward, because is no longer real everywhere along the

nucleation path. One must impose the condition thahdo
be real at late Lorentzian times. We will first show that this
can be achieved by a suitable complex choicé&oDne can
then calculate the horizon perturbatiaf from the real late-
time evolution of the metric perturbation;, to demonstrate
that evaporation takes place.

From Eq.(5.9) one obtains the Lorentzian evolution @f

~ o
o(v)=A sinc(5+iv) (5.10
~ Cc
=A(sin— coshcv
2
Cc
+i 0037 sinh c:;). (5.11

For late Lorentzian timesi.e., largev), coshcv~sinhcv
~e®/2, and so the equation becomes

(5.12

NE’A —icm/2\ aCv
U(v)~2 (ie )e'.

strength A. The evaporation rate grows with\. This agrees

with intuitive expectations, since measures the number of

quantum fields that carry the radiation.

VI. SUMMARY

We have investigated the quantum stability of the
Schwarzschild—de Sitter black holes of maximal mass, the
Nariai solutions. From four-dimensional spherically symmet-
ric general relativity with a cosmological constant aNd
minimally coupled scalar fields we obtained a two-
dimensional model in which the scalars couple to the dilaton.
The one-loop terms were included in the lafddimit, and
the action was made local by introducing a fi@dwhich
mimics the trace anomaly.

We found the quantum corrected Nariai solution and ana-
lyzed its behavior under perturbations away from degen-
eracy. There are two possible ways of specifying the initial
conditions for a perturbation on a Lorentzian spacelike sec-
tion. The first possibility is that the displacement away from
the Nariai solution is non-zero, but its time derivative van-
ishes. This perturbation corresponds to nearly degenerate
Schwarzschild—de Sitter space, and somewhat surprisingly,
this perturbation is stable at least initially. The second pos-
sibility is a vanishing displacement and non-vanishing de-
rivative. These initial conditions lead directly to evaporation.
The different behavior of these two types of perturbations
can be explained by the fact that the initial radiation distri-
bution is implicitly specified by the initial conditions,

This can be rendered purely real by choosing the compleshrough the constraint equations.

constantA to be
A=A(—iel°™?), (5.13

whereA is real.

If neutral black holes nucleate spontaneously in pairs on a
de Sitter background, the initial data will be constrained by
the no boundary condition: It selects a linear combination
of the two types of perturbations. By finding appropriate
complex compact instanton solutions we showed that this

Now we can return to the question of whether the Euclid-condition leads to black hole evaporation. Thus neutral pri-
ean boundary condition leads to evaporation. After transmordial black holes are unstable.
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