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Quantum gravity near the apparent horizon and two-dimensional dilaton gravity

Ichiro Oda*
Edogawa University, 474 Komaki, Nagareyama City, Chiba 270-01, Japan

~Received 25 April 1997; published 13 January 1998!

We study Hawking radiation in a two-dimensional dilaton black hole by means of quantum gravity holding
near the apparent horizon. First of all, we construct the canonical formalism of the dilaton gravity in two
dimensions. Then the Vaidya metric corresponding to the dilaton black hole is established where it is shown
that the dilaton field takes the form of a linear dilaton. Based on the canonical formalism and the Vaidya
metric, we proceed to analyze the quantum properties of a dynamical black hole. It is found that the mass loss
rate of Hawking radiation is independent of the black hole mass and at the same time the apparent horizon
recedes to the singularity as shown in other studies of two-dimensional gravity. It is interesting that one can
construct quantum gravity even near the origin in the spherical coordinate and draw the same conclusion with
respect to Hawking radiation as the above-mentioned picture. Unfortunately, the present formalism seems to be
ignorant of the contributions from the functional measures over the gravitational field, the dilaton, and the
ghosts.@S0556-2821~98!02604-6#

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

More than 20 years ago, Hawking@1# showed that black
holes are not completely black and emit thermal radiat
with a definite temperature through quantum mechanical
creation of particles near the horizon in a gravitational fi
where one member of the pair drops in a black hole while
other escapes to infinity. This result was derived in the c
text of the ‘‘semiclassical’’ approach, where the effects
gravitation are still represented by a classical spacet
(M ,gab), while matter fields are treated as quantum fie
propagating in this classical spacetime. Subsequent inv
gations have focused on understanding the serious prob
raised by Hawking radiation, concerning the fate of quant
information @2#, the statistical mechanical picture of blac
hole thermodynamics@3#, etc.

In recent papers, a quantum formalism has been propo
for the study of black hole quantum mechanics@4,5#. The
critical idea behind this formalism is that some essential f
tures of quantum black holes might be intimately related
the quantum mechanical behavior of the black hole horiz
thus, it might be sufficient to establish that quantum grav
holds particularly near the horizon to understand an ove
picture of quantum black holes. Indeed, afterward, this f
malism was fruitfully applied to several problems associa
with quantum black holes in three@6# and four@7# spacetime
dimensions.

In the course of the applications, we have wondered
what extent quantum gravity near the horizon would desc
the quantum aspects of a black hole. To address this q
tion, it is tempting to try to apply the formalism to a wel
understood model of quantum black holes, that is, dila
gravity in 111 dimensions @Callan-Giddings-Harvey-
Strominger~CGHS! model# @8#. Dilaton gravity in two di-
mensions enjoys the nice features of black hole forma
and/or evaporation shared with a spherically symme
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black hole in 311 dimensions. Therefore, this toy model h
raised hopes that a satisfactory description of black hole e
lution might be accounted for in a very simplified setting.

This article is organized as follows. In Sec. II, we co
struct the canonical formalism of two-dimensional dilat
gravity. In Sec. III, we derive the Vaidya metric correspon
ing to the dilaton black hole. The canonical formalism a
the Vaidya metric are used to construct a quantum the
holding in the vicinity of the apparent horizon of the dilato
black hole in Sec. IV. In Sec. V, we analyze Hawking rad
tion from a purely quantum mechanical viewpoint. Here it
shown that the mass loss rate is independent of the b
hole mass. The last section is devoted to a discussion w
a comparison of the present formalism with fully quantiz
dilaton gravity over the whole spacetime region is co
mented on.

II. ADM CANONICAL FORMALISM
OF TWO-DIMENSIONAL DILATON GRAVITY

We begin our investigations by constructing the Arnowi
Deser-Misner~ADM ! first-order canonical formalism of two
dimensional dilaton gravity.

The action that we start with has the well-known form@8#

S5
1

2G E d2xA2ge22f@R14~¹f!214l2#

2
1

2 E d2xA2g~¹ f !2, ~1!

with the dilaton fieldf, the cosmological constantl, and the
single massless conformal matter fieldf . Differing from the
original CGHS convention@8# where G5p, we will take
G5 1

2 in this paper. Related to this choice, we have modifi
the coefficient in front of the matter action from the CGH
value21/4p to 2 1

2 , which is natural from the viewpoint o
a spherically symmetric reduction of four-dimensional gra
ity @9#.
2415 © 1998 The American Physical Society
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2416 57ICHIRO ODA
Let us adopt the ADM splitting of (111)-dimensional
spacetime given by

gab5S 2a21
b2

g
b

b g
D . ~2!

Then the normal unit vectorna orthogonal to the hypersur
facesx05const reads

na5S 1

a
,2

b

ag D , ~3!

and the projection operatorhab over thex05const hypersur-
faces becomes

hab5gab1nanb5S 0 0

0
1

g
D . ~4!

In terms of the ADM parametrization~2!, after some calcu-
lations the action~1! can be written as

S5E d2xL5E d2xF4aAge22fH l22~na]af!21
1

g
~f8!2

1Kna]af2
a8

ag
f8J 1

1

2
aAgH ~na]af !22

1

g
~ f 8!2J G ,

~5!

where the trace of the extrinsic curvatureK5gabKab is

K5
1

A2g
]a~A2gna!5

ġ

2ag
2

b8

ag
1

b

2ag2 g8, ~6!

and]/]x05]0 and]/]x15]1 are also denoted by an overd
and a prime, respectively. In deriving Eq.~5!, we have used
the formula@9,10#

R52na]aK12K22
2

aAg
S a8

Ag
D 8

. ~7!

The action~5! indicates thata and b are nondynamica
Lagrange multiplier fields due to the absence of the te
including x0 differentiation, and so we regard the massle
matter field f , the dilaton fieldf, and the ‘‘graviton’’ g as
dynamical fields. Then the canonical conjugate momenta
be read off from the action~5!:

pf5Agna]af ,

pf54Age22f~22na]af1K !,

pg5
2

Ag
e22fna]af. ~8!

Now it is straightforward to derive the Hamiltonian who
result is given by
s

an

H5E dx1~pf ḟ 1pfḟ1pgġ2L !5E dx1~aH01bH1!,

~9!

where the constraints are explicitly of the form

H05
1

2Ag
pf

224Age22fl22
4

Ag
e22f~f8!2

2S 4

Ag
e22ff8D 8

1
1

2Ag
~ f 8!21

Ag

2
e12fpfpg

1gAge12fpg
2, ~10!

H15
1

g
pf f 81

1

g
pff822pg82

1

g
pgg8. ~11!

Note thatH0 and H1 are generators corresponding to t
time translation and the spatial displacement, respectiv
Also let us notice thata and b are certainly the Lagrange
multiplier fields as mentioned before. At this stage, it is ea
to derive the ADM surface term via the dual Legendre tra
formation by following Regge and Teitelboim@11#, though
we now omit the details since it is not so important for la
discussions.

III. VAIDYA METRIC

In this section, we will construct the Vaidya metric to th
two-dimensional dilaton black hole. This Vaidya metric w
be used in later sections when we wish to discuss Hawk
radiation arising from a dynamical black hole.

As a simple illustration, let us recall how to build th
Vaidya metric to the Schwarzschild black hole in four d
mensions. Neglecting the irrelevant angular parts~u,w!,
Schwarzschild geometry has the famous form

ds252S 12
2M

r Ddt21
1

12
2M

r

dr2. ~12!

Introducing the advanced time coordinatev5t1r * with the
tortoise coordinatedr* 5dr/(2g00) , in the (v,r ) coordi-
nates the Schwarzschild metric can be transformed to

ds252S 12
2M

r Ddv212dv dr. ~13!

A generalization of a constant massM to the mass function
M (v) gives rise to the Vaidya metric corresponding to t
Schwarzschild black hole. The reason why we prefer
Vaidya metric to the Schwarzschild one is that the form
satisfies the classical field equations as it is when there
flow of matter with a form of the energy-momentum tens
T(v), while in the latter the mass function must have a co
plicated dependence on the coordinates to satisfy th
which makes the following analysis ugly. In other words, t
Vaidya form of a black hole provides us a convenient pla
ground to discuss the properties of a dynamical black ho
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57 2417QUANTUM GRAVITY NEAR THE APPARENT HORIZON . . .
In order to have a close relationship with the work
CGHS @8#, let us start with their black hole solution in ligh
cone coordinates@12#,

ds252e2rdx1dx252
1

M

l
2l2x1x2

dx1dx2. ~14!

Transforming the coordinates from (x1,x2) to the (v,r )
which are related to each other,

x15
AM

lAl
elv,

~15!

x252
1

AlM
S e2lr2

M

l De2lv,

the two-dimensional line element~14! reduces to

ds252S 12
M

l
e22lr Ddv212dv dr. ~16!

Then the Vaidya metric corresponding to the dilaton bla
hole can be obtained by promoting a constant mass to
mass functionM (v) depending on only thev coordinate.
Here it is worthwhile to notice that in the newly introduce
coordinates (v,r ), the dilaton field, which was given byf
5r in light cone coordinates (x1,x2), takes a remarkably
simple form, that is, a linear dilaton form

f52lr . ~17!

This would lead to a great advantage in analyzing the c
straints as well as the field equations below.

Indeed, it is verified that the solutions~16! and~17! are an
extremum of the action~1! near the apparent horizon,

r AH52
1

2l
log

l

M
, ~18!

whose definition arises from the conditiongvv50, which is
also consistent with the usual definition (¹f)250 in two-
dimensional dilaton gravity. The classical field equations
easily obtained from the action~1!:

2e22f@¹a¹bf1gab$~¹f!22¹2f2l2%#

5 1
2 @¹af ¹bf 2 1

2 gab~¹ f !2#, ~19!

R14l214¹2f24~¹f!250, ~20!

¹2f 50. ~21!

Since we are interested in physics only in the vicinity of t
apparent horizon, it is sufficient to verify that the Vaidy
metric ~16! and the dilaton field~17! are consistent with the
field equations~19!–~21! near the apparent horizon. Afte
some manipulation, the field equations are required to sa

] r f 5]v] r f '0, ~22!

]vM' 1
2 ~]v f !2, ~23!
k
he

n-

e

fy

where we shall use' to express the equalities holding a
proximately near the apparent horizons from now on. Fr
Eqs.~22! and ~23!, we find the general solution

f ~v !'6Ev
dvA2]vM . ~24!

Consequently, it has been checked that the solutions~16! and
~17! are at least classically consistent with the field equati
near the apparent horizon as long as Eq.~24! is satisfied.
Incidentally, Eq.~24! represents the physical fact that th
increase of the black hole mass,]vM.0, is classically al-
lowed, but the loss of it,]vM,0, i.e., Hawking radiation, is
classically forbidden and can occur only through the qu
tum tunneling effects owing tof (v) being a real scalar field

IV. QUANTUM GRAVITY NEAR
THE APPARENT HORIZON

We now consider the dynamical black hole~16! and the
linear dilaton ~17!. Our main concern in this section is t
construct a quantum theory of two-dimensional dilaton gr
ity holding near the apparent horizon.

Let us begin by introducing the coordinates

xa5~x0,x1!5~v2r ,r !. ~25!

Next we set up the gauge conditions such that the ga
symmetries associated with the two-dimensional repar
etrization invariances are completely fixed,

gab5S 2a21
b2

g
b

b g
D

5S 2S 12
M

l
e22lr D M

l
e22lr

M

l
e22lr 11

M

l
e22lr

D , ~26!

where the black hole massM is a function of the two-
dimensional coordinatesxa. Notice that we have chose
these gauge conditions to correspond to the Vaidya me
built in the previous section. Of course, at this stage,
cannot restrict the mass function to be a function depend
on only thev coordinate from an argument of symmetrie
Near the apparent horizons~18!, Eq. ~26! yields

a'
1

&
, b'1, g5

1

a2 '2. ~27!

Note that the dynamical degrees of freedom representing
‘‘graviton’’ g are effectively fixed in Eq.~27!. At this point,
let us make physically plausible assumptions@4,5# near the
apparent horizon,

f ' f ~v !, M'M ~v !, f'2lr . ~28!

As shown in Sec. III, these assumptions are consistent w
the field equations, but their quantum mechanical meanin
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not clear at present. Given the assumptions~28!, near the
apparent horizon the canonical conjugate momenta~8! be-
come

pf']v f ,

pf'22M2
1

l
]vM , ~29!

pg'M .

Then after a bit lengthy calculation, one arrives at the
markable relation that the Hamiltonian constraintH050 be-
comes proportional to the supermomentum constraintH1
50:

&H0'2H1'pf
212lpf14lM . ~30!

This relation can be understood from an observation that
time translation generated by the Hamiltonian constrain
frozen on the apparent horizon due to gravitational time
lation in the present coordinate system@6#.

We are now ready to carry out the canonical quantizat
of the model. Following Dirac’s quantization procedure
the first-class constraints@13#, residual symmetry~30! is im-
posed on the state,

S 2
]2

] f 222il
]

]f
14lM DC50, ~31!

which is nothing but the Wheeler-DeWitt equation. A spec
solution can be found to be

C5~BeAA f~v !1Ce2AA f~v !!expS i
A24lM

2l
f D , ~32!

whereA, B, andC are integration constants. Without losin
generality, we shall choose the boundary conditionB50.

V. HAWKING RADIATION

We now turn our attention to an application of quantu
gravity near the apparent horizon for an understand
Hawking radiation in two-dimensional dilaton gravity.
similar analysis was carried out in four-@4,5# and three-@6#
dimensional black holes. The main motivation behind
present work is to clarify to what extent quantum grav
holding near the apparent horizon reflects the physical p
erties of quantum black holes since we have a better gras
the quantum mechanical features of a black hole in tw
dimensional dilaton gravity compared to four- and thre
dimensional gravities.

To begin with, let us define the expectation value^O& of
an operatorO by

^O&5
1

*d f uCu2 E d f C†OC. ~33!

Under this definition, it is straightforward to evaluate t
expectation value of the change rate in black hole mass
-

e
is
i-

n
f

l

g

e

p-
of
-
-

^]vM &52
A

2
, ~34!

where the constraint~30! @or pf in Eq. ~29!# and the physical
state~32! were used. Moreover, in a similar manner one c
calculate that in the radius in the apparent horizon

^]vr AH&52
A

4l^M &
. ~35!

To represent Hawking radiation, we have to select
integration constantA to be a positive constant, for exampl
k1

2; then, Eqs.~32!, ~34!, and~35! reduce to

C5C expS 2uk1u f ~v !1 i
A24lM

2l
f D , ~36!

^]vM &52
k1

2

2
, ~37!

^]vr AH&52
k1

2

4l^M &
. ~38!

To see explicitly that this is in fact Hawking radiation carrie
by the matter fieldf , it is useful to argue the expectatio
value of the energy-momentum tensor of the matter fie
which is defined as

^Tf
ab&5K 1

A2g

dSf

dgabL 52
1

2 K ¹af ¹bf 2
1

2
gab~¹ f !2L ,

~39!

whereSf is the matter part in the action~1!. ThenTvv , in
which we are interested, is calculated to be

^Tf
vv&5

k1
2

2
, ~40!

which is precisely equal to the opposite sign of Eq.~37! and
thus means that the matter flux is equivalent to Hawk
radiation, as expected. Alternatively, if we chooseA to be a
negative constant, e.g.,2k2

2, we gain a physical situation
where external neutral matter flows into a black hole acr
the horizon.

Several comments about Eqs.~36!–~38! are now in order.
First, Eq.~36! shows that the physical state has an expon
tially dampinglike form in the classically forbidden region
implying a quantum tunneling process. This behavior see
to match our interpretation of the present situation as Ha
ing radiation. Second, from Eq.~37!, the Hawking radiation
rate is independent of the black hole mass in contrast w
the case of the four-dimensional Schwarzschild black h
where it is shown that̂]vM &}21/̂ M2& @4,5# inferred by
Hawking in his semiclassical approach@1#. This surprising
result, however, has been already found in studies of
two-dimensional dilaton and other two-dimensional gravit
@14#. This is because in two dimensions there exists a be
tiful relation between the trace anomaly and Hawking rad
tion @15#. Namely, although forN species of massless scal
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57 2419QUANTUM GRAVITY NEAR THE APPARENT HORIZON . . .
field the trace of the energy-momentum tensor vanishes c
sically, quantum mechanically there is the trace anomaly

^gabTf
ab&5

N

24
R. ~41!

~Up to now we have taken account of the caseN51.! As a
result, in the coordinates where the metric is asymptotic
constant on the null infinitiesIR6 , the Hawking radiation rate
is asymptotically independent of the black hole mass
approaches the constant valueNl2/48 @8#. One might ask
what would happen if one replaces a single scalar mattf
with N species of scalarf i ( i 51,2, . . . ,N) in our formalism
as considered in the original work of CGHS. In this case,
physical state~32! is replaced by

C5)
i 51

N

~BieAAi f i ~v !1Cie
2AAi f i ~v !!expS i

A24lM

2l
f D ,

~42!

with

(
i 51

N

Ai5A, ~43!

and the result with respect to Hawking radiation~34! remains
unchanged. If we consider completely identicalN scalar mat-
ters such thatA5NĀ (A15A25•••5AN[Ā), Hawking ra-
diation rate becomes, to scale withN,

^]vM &52
NĀ

2
, ~44!

which is equal to the result derived by CGHS up to a n
merical constant.

Finally, Eq. ~38! shows that as a black hole emits Haw
ing radiation and loses mass, the apparent horizon rec
toward the singularity. This is a very plausible picture fro
physical considerations. In the limit^M &→0, this equation
indicates that̂ ]vr AH&→2`, suggesting that the appare
horizon disappears and the curvature singularity might
visible to external observers~violation of weak cosmic cen
sorship!. However, in order to get a definite answer to th
problem, it seems that we need a more improved and sop
ticated model as discussed in the next section.

Before closing this section, it is valuable to inquire wh
would happen near the originr 50. To keep the role of the
x0 coordinate as time, we here assume the inequalityM
,l. Interesting enough, it turns out that one can also es
lish quantum gravity in this vicinity in a perfectly simila
way to the case of the apparent horizon. For example, an
gous equations to Eqs.~27!, ~29!, ~30!, ~32!, and~34! can be
deduced as follows:

a'
1

A11
M

l

, b'
M

l
, g5

1

a2 '11
M

l
, ~45!
s-

ly

d

e

-

es

e

is-

t

b-

lo-

pf']v f , pf'2
2

gl
~]vM12M2!, pg'

2M

g
,

~46!

AgH0'gH1'pf
21lgpf14M2, ~47!

C5~BeAA f~v !1Ce2AA f~v !!expS i
A24M2

lg
f D , ~48!

^]vM &52
A

2
. ~49!

These results, in particular, Eq.~49!, are obviously consisten
with results obtained by means of quantum gravity hold
near the apparent horizon. One interesting problem in
future would be to find the physical state holding in t
region between the curvature singularity and the appa
horizon by connecting the two states~32! and ~49! consis-
tently.

VI. DISCUSSION

In this paper, we have investigated Hawking radiation
terms of quantum gravity holding near the apparent horiz
In particular, it was found that the Hawking radiation rate
independent of the black hole mass, and it scales with
number of massless scalar fields when there areN identical
matters as shown in the other analysis of two-dimensio
dilaton gravity.

As mentioned in the Introduction, one of the main mo
vations in this paper is to compare the results obtained
quantum gravity holding near the apparent horizon w
those in fully quantized two-dimensional dilaton gravi
where we know an exact solution of quantum black hol
thus, in this section we would like to make comments
their relation more closely. As a model of fully quantize
dilaton gravity, we shall consider the study in Ref.@16#.
However, it is fair to mention that we have not yet reache
complete understanding and a consensus of opinion a
which model really describes a fully quantum behavior o
black hole even in the context of two-dimensional dilat
gravity.

First of all, in Ref.@16# an exact operator quantization
performed for a model of two-dimensional dilaton gravi
for the specific case of 24 massless matter scalars since
model can be canonically mapped to a free conformal fi
theory and hence can be solved analytically. On the ot
hand, our formalism in this paper can cope with any num
of massless scalars, which would be an advantage of
work.

Second, let us turn our attention to physical states. In
exact operator quantization formalism@16# the physical
states can be built up by Del Guidice–Di Vecchia–Fub
~DDF! states@17# and each physical state corresponds to
possible choice of the universe, all the events which occu
each universe being involved in a selected state. Thu
order to extract information on spacetime geometry it is n
essary to choose by intuition an appropriate physical stat
match a physical situation which we have in mind. Actual
the authors of Ref.@16# have explicitly shown that one of th
physical states corresponds to the state describing quan
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2420 57ICHIRO ODA
geometry in which the infalling matter energy distributio
yields a black hole with or without a naked singularit
Speaking of our formalism, the physical state is alm
unique, i.e., Eq.~32!. This is because in the vicinity of th
horizon we have looked for the physical state express
black hole through the gauge fixing conditions~26! from the
outset while an exact quantization is performed in the c
formal gauge@16#. At present, we have no idea as to wh
precise connection there is about physical states in both
malisms. However, it seems to be valuable to point out t
the matter part in both physical states has a qualitativ
similar structure, which might be one of the key ingredie
in understanding Hawking radiation within the quantum m
chanical framework. At this point, note that the energies c
ried in by matter fields have the same behavior; namely,
total energy flux is divergent owing to a constant ene
density, but it is certain that we need more studies to ga
definite answer about this result.

Finally, we would like to close this section by commen
ing on other features and future problems in our formalis
We have shown that the value of the coefficient of the Haw
ing flux cannot be determined in the present formali
which treats only the region in the vicinity of the horizo
since it is fixed by imposing boundary conditions at null p
infinities IR2 and IL2 @8,14#. Nevertheless, it is remarkabl
that the present formalism describes qualitative feature
Hawking radiation without paying much attention to the i
terior and the exterior regions of a black hole. Actual
on

k
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er
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e
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.
-

t

of
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quantum gravity near the horizon has provided a nice
scription of Hawking radiation in a three-dimensional de S
ter black hole@18# where there is no asymptotically flat re
gions so that the usual technique cannot be applied to
case@6#. Next, as mentioned before, it was known that in tw
dimensions Hawking radiation stems from the trace anom
@15#. Since the present formalism gives the qualitative
same picture as the semiclassical approach, it is certain
our formalism respects the contribution from the tra
anomaly properly. However, it was conjectured in@14# and
shown in@16# that the functional measures over the gravi
tional field, the dilaton, and the ghosts give rise to nontriv
contributions which are different from the form of the tra
anomaly, and eventually yield the back reaction of Hawki
radiation on the geometry. In this respect, unfortunately
seems that our formalism largely ignores this issue. But
problem is shared in the more general ADM or the Whee
DeWitt formalisms in higher dimensions where we have
idea how to evaluate the functional measures. It is likely t
one should set up the Wheeler-DeWitt equation after e
mating the contributions from the functional measures ca
fully, although we do not know how to accomplish this pr
cedure except in two dimensions. Although we have a lo
things to overcome in the future, we believe that an impro
ment of the formalism at hand would give us a useful a
lytical method for understanding various properties of qu
tum black holes and might to a certain extent realize
membrane paradigm of a black hole@19–21#.
ck
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