PHYSICAL REVIEW D VOLUME 57, NUMBER 4 15 FEBRUARY 1998

Quantum gravity near the apparent horizon and two-dimensional dilaton gravity
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We study Hawking radiation in a two-dimensional dilaton black hole by means of quantum gravity holding
near the apparent horizon. First of all, we construct the canonical formalism of the dilaton gravity in two
dimensions. Then the Vaidya metric corresponding to the dilaton black hole is established where it is shown
that the dilaton field takes the form of a linear dilaton. Based on the canonical formalism and the Vaidya
metric, we proceed to analyze the quantum properties of a dynamical black hole. It is found that the mass loss
rate of Hawking radiation is independent of the black hole mass and at the same time the apparent horizon
recedes to the singularity as shown in other studies of two-dimensional gravity. It is interesting that one can
construct quantum gravity even near the origin in the spherical coordinate and draw the same conclusion with
respect to Hawking radiation as the above-mentioned picture. Unfortunately, the present formalism seems to be
ignorant of the contributions from the functional measures over the gravitational field, the dilaton, and the
ghosts[S0556-282(198)02604-4

PACS numbes): 04.70.Dy

I. INTRODUCTION black hole in 3+ 1 dimensions. Therefore, this toy model has

. raised hopes that a satisfactory description of black hole evo-
More than 20 years ago, Hawkind] showed that black lution might be accounted for in a very simplified setting.

hqles are not completely black and emit thermal ra_ldiation This article is organized as follows. In Sec. Il, we con-
with a definite temperature through quantum mechanical paigy ¢t the canonical formalism of two-dimensional dilaton
creation of particles near the horizon in a gravitational f'eldgravity. In Sec. Ill, we derive the Vaidya metric correspond-
where one member of the pair drops in a black hole while thgng to the dilaton black hole. The canonical formalism and
other escapes to infinity. This result was derived in the contne Vaidya metric are used to construct a quantum theory
text of the “semiclassical” approach, where the effects ofholding in the vicinity of the apparent horizon of the dilaton
gravitation are still represented by a classical spacetimglack hole in Sec. IV. In Sec. V, we analyze Hawking radia-
(M,gap), while matter fields are treated as quantum fieldstion from a purely quantum mechanical viewpoint. Here it is
propagating in this classical spacetime. Subsequent investshown that the mass loss rate is independent of the black
gations have focused on understanding the serious problerh®le mass. The last section is devoted to a discussion where
raised by Hawking radiation, concerning the fate of quantuna comparison of the present formalism with fully quantized
information [2], the statistical mechanical picture of black dilaton gravity over the whole spacetime region is com-

hole thermodynamicE3], etc. mented on.

In recent papers, a quantum formalism has been proposed
for the study of black hole quantum mechanjds5]. The 1. ADM CANONICAL FORMALISM
critical idea behind this formalism is that some essential fea- OF TWO-DIMENSIONAL DILATON GRAVITY

tures of quantum black holes might be intimately related to
the quantum mechanical behavior of the black hole horizon; We begin our investigations by constructing the Arnowitt-
thus, it might be sufficient to establish that quantum gravityPeser-MisnefADM) first-order canonical formalism of two-
holds particularly near the horizon to understand an overaflimensional dilaton gravity. -

picture of quantum black holes. Indeed, afterward, this for- The action that we start with has the well-known foi8j
malism was fruitfully applied to several problems associated
with quantum black holes in thr¢é] and four[7] spacetime

- 2y [Cqa—24 2 2
dimensions. S 2G d>xV-ge RTA(VA)T+AN]
In the course of the applications, we have wondered to 1
what extent quantum gravity near the horizon would describe _ = f d2x/—a(V§ )2 1
the quantum aspects of a black hole. To address this ques- 2 XV=9(vVi)% @

tion, it is tempting to try to apply the formalism to a well-
understood model of quantum black holes, that is, dilatorwith the dilaton fielde, the cosmological constakt and the
gravity in 1+1 dimensions [Callan-Giddings-Harvey- single massless conformal matter fiéldDiffering from the
Strominger(CGHS model] [8]. Dilaton gravity in two di-  original CGHS conventiori8] where G=, we will take
mensions enjoys the nice features of black hole formatiorG = 3 in this paper. Related to this choice, we have modified
and/or evaporation shared with a spherically symmetriche coefficient in front of the matter action from the CGHS
value — 1/47 to — 3, which is natural from the viewpoint of
a spherically symmetric reduction of four-dimensional grav-
*Email address: ioda@edogawa-u.ac.jp ity [9].
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Let us adopt the ADM splitting of (% 1)-dimensional L . i L
spacetime given by HZJ dx(psf+pyop+ Pﬂ"—):f dx*(aHo+BHy),
e C)
_2e
Jab= @t Yy k (2)  where the constraints are explicitly of the form

B 04

1
. Y 2 g a2y 2 Y 240 402
Then the normal unit vectar® orthogonal to the hypersur- 1o 20y Pf—4vye “°A N e “%(¢")
facesx®= const reads

4 ’ Vy
1 B —(—e‘2¢¢’ +——=(f")%+ - e"2%pyp
a_ |- _ 2 oy
we(2- 2], ® 7 207
+y\yet??p?, 10
and the projection operatt@® over thex°= const hypersur- y\/; Py (10
faces becomes
1 ! 1 ! ! l !
0 0 H1=; pef +;p¢¢ —ZpV—;pﬂ- (13)
ab_ ~ab anb_ 1
h=g™+n™n o —[° @ Note thatH, and H, are generators corresponding to the

Y time translation and the spatial displacement, respectively.
Also let us notice thatx and 8 are certainly the Lagrange
multiplier fields as mentioned before. At this stage, it is easy
to derive the ADM surface term via the dual Legendre trans-
1 formation by following Regge and Teitelboifl1], though
4a\/;’e_2¢( NZ=(n%0,)%+ > (¢')2  we now omit the details since it is not so important for later

In terms of the ADM parametrizatio(®), after some calcu-
lations the action(1) can be written as

S=f dzxL=f d?x

discussions.
a a’ ’ 1 a 2 1 1\2
K Gad— = @'+ 5 [y} (n?a,f ) -5 (2] lll. VAIDYA METRIC
(5) In this section, we will construct the Vaidya metric to the
two-dimensional dilaton black hole. This Vaidya metric will
where the trace of the extrinsic curvatute= g2°K ,, is be used in later sections when we wish to discuss Hawking

radiation arising from a dynamical black hole.
1 Y B’ B As a simple illustration, let us recall how to build the
- _ ay ~ ’ . ] . ) ;
K o da(V—gn?) ay ay 2ay2 " (6)  Vvaidya metric to the Schwarzschild black hole in four di

mensions. Neglecting the irrelevant angular paltsp),

Schwarzschild geometry has the famous form
anda/ 9x°= 9, andd/ 9x* = 9, are also denoted by an overdot g y

and a prime, respectively. In deriving E&), we have used

the formula[9,10] d52:_<1_2_M dt2+
r

dr2. (12)

2M

2 a'\’ r
R=2n%9,K + 2K?— —— (—) . (7)
a\/; \/; Introducing the advanced time coordinate t+r* with the

. - . tortoise coordinatadr* =dr/(—gqg), in the (v,r) coordi-
The actlon(E_>) |_nd|c_ates thatx and j are nondynamical nates the Schwarzschild metric can be transformed to
Lagrange multiplier fields due to the absence of the term
including x° differentiation, and so we regard the massless
matter fieldf, the dilaton field¢, and the “graviton” y as d<?=—
dynamical fields. Then the canonical conjugate momenta can
be read off from the actio(b):

2M
1— —
r

dv?+2dv dr. (13

A generalization of a constant malk to the mass function

= \/;naaaf, M(v) gives rise to the Vaidya metric corresponding to the
Schwarzschild black hole. The reason why we prefer the
p¢=4\/7ye‘2¢(—2naaa¢+K) Vaidya metric to the Schwarzschild one is that the former

satisfies the classical field equations as it is when there is a
flow of matter with a form of the energy-momentum tensor
py:i e 29023, . (8) T(_v), while in the latter the mass fun<_:tion must hav_e a com-
0% plicated dependence on the coordinates to satisfy them,
which makes the following analysis ugly. In other words, the
Now it is straightforward to derive the Hamiltonian whose Vaidya form of a black hole provides us a convenient play-
result is given by ground to discuss the properties of a dynamical black hole.



57 QUANTUM GRAVITY NEAR THE APPARENT HORIZON . .. 2417

In order to have a close relationship with the work of where we shall use= to express the equalities holding ap-
CGHS|[8], let us start with their black hole solution in light proximately near the apparent horizons from now on. From

cone coordinategl2], Egs.(22) and(23), we find the general solution
1 v
dsz=—e2de+dx*=—M—dx*dx*. (14 f(v)~¢J dvv24,M. (24)
T—)\Zx*x*

Consequently, it has been checked that the solutib@jsand
Transforming the coordinates fromx{,x~) to the @,r) (17) are at least classically consistent with the field equations
which are related to each other, near the apparent horizon as long as Ef)) is satisfied.

Incidentally, Eq.(24) represents the physical fact that the

. M Ao increase of the black hole masg,M>0, is classically al-
X BV e lowed, but the loss of itj,M <0, i.e., Hawking radiation, is
(15 classically forbidden and can occur only through the quan-
1 M tum tunneling effects owing tb(v) being a real scalar field.
- VAN S e—)\v,
VAM k)

IV. QUANTUM GRAVITY NEAR

the two-dimensional line elemefit4) reduces to THE APPARENT HORIZON

We now consider the dynamical black hdl) and the
dv2+2dw dr. (16) linear dilaton(17). Our main concern in this seqtion is to
construct a quantum theory of two-dimensional dilaton grav-

. , . ) ity holding near the apparent horizon.
Then the Vaidya metric corresponding to the dilaton black ™ | ot s begin by introducing the coordinates

hole can be obtained by promoting a constant mass to the

mass functionM(v) depending on only the coordinate. x2=(x°xH)=(v—r,r). (25)
Here it is worthwhile to notice that in the newly introduced

coordinates ¢,r), the dilaton field, which was given b$  Next we set up the gauge conditions such that the gauge
=p in light cone coordinatesx(",x"), takes a remarkably symmetries associated with the two-dimensional reparam-

M
_ _ —2\r
ds?’= (1 T e

simple form, that is, a linear dilaton form etrization invariances are completely fixed,
—a?+— B
This would lead to a great advantage in analyzing the con- Gab™ Y
straints as well as the field equations below. B Y
Indeed, it is verified that the solutioi%6) and(17) are an
extremum of the actiofil) near the apparent horizon, B ( 1- M e‘z“) M N
I N
1 A = . (26)
=— — log — M M
I aH N log M’ (18) = e 2\ 1+ N @2\

whose definition arises from the conditigy, =0, which is ) .
also consistent with the usual definitioRf $)2=0 in two- ~ Where the black hole mas#l is a function of the two-

dimensional dilaton gravity. The classical field equations arélimensional coordinatex®. Notice that we have chosen

easily obtained from the actiofl): these gauge conditions to correspond to the Vaidya metric

built in the previous section. Of course, at this stage, we

2e 29V Vyd+dapl(Vh)2—V2p—N?}] cannot restrict the mass function to be a function depending

on only thev coordinate from an argument of symmetries.
=V iV, f—30.,(V T )?], (19  Near the apparent horizoti$8), Eq. (26) yields
R+4N?+4V2¢—4(V ¢)?=0, (20) 1 1
a~—, p=1l, y=—=2. (27

V2f=0. (21) V2 a

Since we are interested in physics only in the vicinity of theNote that the dynamical degrees of freedom representing the
apparent horizon, it is sufficient to verify that the Vaidya “‘graviton” vy are effectively fixed in Eq(27). At this point,
metric (16) and the dilaton field17) are consistent with the let us make physically plausible assumptigas] near the
field equations(19)—(21) near the apparent horizon. After apparent horizon,

some manipulation, the field equations are required to satisfy
f~f(v), M=M(v), ¢=~—Nhr. (28

d,f=a,0,f~0, (22
As shown in Sec. lll, these assumptions are consistent with
a,M~3(3,f)?, (23)  the field equations, but their guantum mechanical meaning is
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not clear at present. Given the assumpti¢28), near the A
apparent horizon the canonical conjugate momé8tsbe- (9,M)=— 5 (34)
come

where the constrain80) [or p4 in Eq.(29)] and the physical

Pr=~dyf, state(32) were used. Moreover, in a similar manner one can
1 calculate that in the radius in the apparent horizon
p¢,~—2M—XaUM, (29 A ,
<(9vrAH>—_W. ( 5)
p,~M.

To represent Hawking radiation, we have to select the
Then after a bit lengthy calculation, one arrives at the reintegration constam to be a positive constant, for example,
markable relation that the Hamiltonian constrdihg=0 be-  k2; then, Eqs(32), (34), and(35) reduce to
comes proportional to the supermomentum constréint
=0:

T o, (36)

v=C exp( —|kq|f(v)+i
V2ZHo~2H,~pf+2\p,+4AM. (30)
2

This relation can be understood from an observation that the (I, M)=— ey (37)
time translation generated by the Hamiltonian constraint is 2
frozen on the apparent horizon due to gravitational time di- )
lation in the present coordinate syst¢6i. B ki

We are now ready to carry out the canonical quantization (9o an)=— AN(M)" (38)
of the model. Following Dirac’s quantization procedure of
the first-class constrainfd3], residual symmetry30) is im-  To see explicitly that this is in fact Hawking radiation carried
posed on the state, by the matter fieldf, it is useful to argue the expectation
value of the energy-momentum tensor of the matter field,

F o4 _ which is defined as
—W—ZI)\ ﬁ+4)\M ¥=0, (31
; 1 85 1 5
which is nothing but the Wheeler-DeWitt equation. A special (T ab>:< NEr 5ga5> ~ T2 <Vafvbf_ 2 Gan(VF) >
solution can be found to be (39)

where S; is the matter part in the actiofl). ThenT,,, in

W= (Be™W 4 Ce Fhex | LM o) (3p)
2\ ! which we are interested, is calculated to be

whereA, B, andC are integration constants. Without losing _ kf
generality, we shall choose the boundary condifion0. (Tho)= 2 (40)
V. HAWKING RADIATION which is precisely equal to the opposite sign of E2{) and

. o thus means that the matter flux is equivalent to Hawking
We now turn our attention to an application of quantumradiation, as expected. Alternatively, if we chodséo be a
gravity near the apparent horizon for an understandlng]egative constant, e.g= k2, we gain a physical situation

Hawking radiation in two-dimensional dilaton gravity. A \yhere external neutral matter flows into a black hole across
similar analysis was carried out in foud,5] and three{6] i1 horizon.

dimensional black holes. The main motivation behind the gayeral comments about E486)—(38) are now in order.
present work is to clarify to what extent quantum gravity gjrst Eq.(36) shows that the physical state has an exponen-
holding near the apparent horizon reflects the physical propa|ly dampinglike form in the classically forbidden region,
erties of quantum black holes since we have a better grasp %plying a quantum tunneling process. This behavior seems
the quantum mechanical features of a black hole in WOy, match our interpretation of the present situation as Hawk-
dimensional dilaton gravity compared to four- and three-mg radiation. Second, from Eq37), the Hawking radiation

dimensional gravities. , , rate is independent of the black hole mass in contrast with

To begin with, let us define the expectation val@® of  {he case of the four-dimensional Schwarzschild black hole
an operato© by where it is shown thatd,M)=—1/(M?) [4,5] inferred by
Hawking in his semiclassical approagh]. This surprising

_ df vTOw. 33 result, however, has been already found in studies of the

(0) [df|w|? f o 33 two-dimensional dilaton and other two-dimensional gravities

[14]. This is because in two dimensions there exists a beau-
Under this definition, it is straightforward to evaluate thetiful relation between the trace anomaly and Hawking radia-
expectation value of the change rate in black hole mass, tion [15]. Namely, although foN species of massless scalar
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field the trace of the energy-momentum tensor vanishes clas- 2 ) 2M
sically, quantum mechanically there is the trace anomaly pi=d,f, py~-— %N (3,M+2M%), p,~ B
N (46)
T =57 R. 41
(0T =22 4y VrHo= yH1=pi+ N ypy+ 4M2, @7

_ 2

- = CA—4M
(Up to now we have taken account of the cibe 1) As a w=(BeA) 4 Ce- \Af(v))eXF{l > ¢)' 49)

result, in the coordinates where the metric is asymptotically
constant on the null infinitie%, , the Hawking radiation rate

is asymptotically independent of the black hole mass and
approaches the constant valt?/48 [8]. One might ask
what would happen if one replaces a single scalar métter
with N species of scalaf; (i=1,2, ... N) in our formalism  These results, in particular, E@L9), are obviously consistent
as considered in the original work of CGHS. In this case, thewith results obtained by means of quantum gravity holding

A
<(9UM>:_§' (49)

physical stat€32) is replaced by near the apparent horizon. One interesting problem in the
future would be to find the physical state holding in the
N A—4NM region between the curvature singularity and the apparent
‘I’ZHl (Bievwifi(”)ﬂtCie‘vWifi(”)exy{i — ) horizon by connecting the two staté32) and (49) consis-
= tently.

(42)
. VI. DISCUSSION
with
In this paper, we have investigated Hawking radiation in
N terms of quantum gravity holding near the apparent horizon.
> A=A (43 In particular, it was found that the Hawking radiation rate is
=1 independent of the black hole mass, and it scales with the

) . o : number of massless scalar fields when thereNaidentical
and the result with respect to Hawking radiatiGd) remains 1 avers as shown in the other analysis of two-dimensional
unchanged. If we consider completely identibacalar mat-  qijaton gravity.

ters such thaA=NA (A;=A,="--=Ay=A), Hawking ra- As mentioned in the Introduction, one of the main moti-
diation rate becomes, to scale with vations in this paper is to compare the results obtained in
quantum gravity holding near the apparent horizon with
those in fully quantized two-dimensional dilaton gravity
(M) =— o (449 \where we know an exact solution of guantum black holes;

thus, in this section we would like to make comments on

I ; _their relation more closely. As a model of fully quantized

which is equal to the result derived by CGHS up to a nu dilaton gravity, we shall consider the study in REL6].

merical constant. H s fair t tion that h i vet hed
Finally, Eq.(38) shows that as a black hole emits Hawk- owever, it 1s tair to mention that we have not yet reached a
mplete understanding and a consensus of opinion as to

ing radiation and loses mass, the apparent horizon reced&8" h model v d i full behavior of
toward the singularity. This is a very plausible picture from\l;"I 'Ck r:ncl) el really (;SCI’I esa ufy qu?jntum € al\/lglrl ora
physical considerations. In the lim{iM)—0, this equation ack hole even in the context of two-dimensional dilaton

indicates that(d,ray)— —%, suggesting that the apparent gravity.

horizon disappears and the curvature singularity might be I?rst Ogi”’ in Ref.d[1|6] ?r: exa(ljc_t Oper.amfl qdqlartmzatlon 'Its
visible to external observefsiolation of weak cosmic cen- periormed for a modetl or two-dimensional diiaton gravity

sorship. However, in order to get a definite answer to thiSfor the specific case of 24 massless matter scalars since the

problem, it seems that we need a more improved and sophi nodel can be canonically mapped to a free conformal field
ticated n'*nodel as discussed in the next section eory and hence can be solved analytically. On the other

Before closing this section, it is valuable to inquire what 2?1”‘?52;;;2”2?;;?3'” tu!ihpapsrlgageczae ;‘gtgggy Zug;b:rr
would happen near the origin=0. To keep the role of the » Which wou v 9 u

x% coordinate as time, we here assume the inequality work.

<. Interesting enough, it turns out that one can also eStabéanC?;C%ni’r;?;rus Elg:tig;{iggtefr::?nlﬁg i[g%ﬁlslzzl stﬁte;(.:allr an
lish quantum gravity in this vicinity in a perfectly similar b q phy

way to the case of the apparent horizon. For example, anal tates can be built up by Del Guidice—Di Vecchia—Fubini

: DDF) states[17] and each physical state corresponds to a
gggz;qduztsﬂgﬁgevgqszn' (29). (30), (32), and(34) can be possible choice of the universe, all the events which occur in

each universe being involved in a selected state. Thus in
order to extract information on spacetime geometry it is nec-

1 M 1 M essary to choose by intuition an appropriate physical state to
a= i B~ N ?Nl“L T 49 matcha physical situation which we have in mind. Actually,
1+ — the authors of Ref.16] have explicitly shown that one of the

A physical states corresponds to the state describing quantum
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geometry in which the infalling matter energy distribution quantum gravity near the horizon has provided a nice de-
yields a black hole with or without a naked singularity. scription of Hawking radiation in a three-dimensional de Sit-
Speaking of our formalism, the physical state is almoster black hole[18] where there is no asymptotically flat re-
unique, i.e., Eq(32). This is because in the vicinity of the gions so that the usual technique cannot be applied to this
horizon we have looked for the physical state expressingasg6]. Next, as mentioned before, it was known that in two
black hole through the gauge fixing conditiof®6) from the  dimensions Hawking radiation stems from the trace anomaly
outset while an exact quantization is performed in the con{15]. Since the present formalism gives the qualitatively
formal gauge[16]. At present, we have no idea as to whatsame picture as the semiclassical approach, it is certain that
precise connection there is about physical states in both folur formalism respects the contribution from the trace
malisms. However, it seems to be valuable to point out thaAnomaly properly. However, it was conjectured[i#] and
the matter part in both physical states has a qualitativelshown in[16] that the functional measures over the gravita-
similar structure, which might be one of the key ingredientstional field, the dilaton, and the ghosts give rise to nontrivial
in understanding Hawking radiation within the quantum me-contributions which are different from the form of the trace
chanical framework. At this point, note that the energies caranomaly, and eventually yield the back reaction of Hawking
ried in by matter fields have the same behavior; namely, theadiation on the geometry. In this respect, unfortunately, it
total energy flux is divergent owing to a constant energyseems that our formalism largely ignores this issue. But this
density, but it is certain that we need more studies to gain problem is shared in the more general ADM or the Wheeler-
definite answer about this result. DeWitt formalisms in higher dimensions where we have no
Finally, we would like to close this section by comment- idea how to evaluate the functional measures. It is likely that
ing on other features and future problems in our formalismone should set up the Wheeler-DeWitt equation after esti-
We have shown that the value of the coefficient of the Hawk-mating the contributions from the functional measures care-
ing flux cannot be determined in the present formalismfully, although we do not know how to accomplish this pro-
which treats only the region in the vicinity of the horizon cedure except in two dimensions. Although we have a lot of
since it is fixed by imposing boundary conditions at null pastthings to overcome in the future, we believe that an improve-
infinities Z, andZ, [8,14]. Nevertheless, it is remarkable ment of the formalism at hand would give us a useful ana-
that the present formalism describes qualitative features djtical method for understanding various properties of quan-
Hawking radiation without paying much attention to the in- tum black holes and might to a certain extent realize the
terior and the exterior regions of a black hole. Actually, membrane paradigm of a black hgE9—-21.
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