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Unruh effect with back reaction—A first-quantized treatment
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We present a first-quantized treatment of the back reaction on an accelerated particle detector. The evaluated
transition amplitude for detection agrees with previously obtained results.@S0556-2821~98!05804-4#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

In view of the close connection of black hole radiatio
and acceleration radiation@1–3# it is reasonable to expec
that some of the difficulties regarding the former case co
be mirrored and examined on the latter simpler problem
particular, it can be anticipated that the modifications of
Unruh effect due to the detector’s recoil and the quant
smearing may have similar consequences for the Hawk
effect.

Surprisingly, since the work of Unruh@2# two decades
ago, this problem has attracted little attention. In his origi
paper @2#, Unruh suggested a two-field model for a fini
mass particle detector. Two scalar fieldsCM and xM8 , of
massesM andM 85M1V, respectively, were taken to rep
resent two states of a detector. When the coupling to a sc
field f is given byefxM8CM , ‘‘excitation’’ of this detector
corresponds to a detection of af particle of energyV.

The two-field model was used recently by Parentani@4# to
study the consequences of recoil and smearing on the U
effect. In this work two charged scalar fields were acce
ated by means of a classical constant external electric fi
The transition amplitude was obtained to first order in
coupling. Parentani showed that when the recoil and sm
ing are taken into account, up toV/M corrections, the tran-
sition amplitude is modified only by a phase. Therefore,
this order the thermal distribution and the Unruh temperat
are unmodified. The new aspect that Parentani emphas
was the appearance of an additional phase in the trans
amplitude which generates decoherence in successive e
sions by the detector.

In this article we shall present an alternative first qua
tized treatment and rederive Parentani’s result. We shal
studying the same problem of a finite mass particle dete
in a constant electric field, but we use a different toy mod
The accelerating detector is described as a first quanti
charged, pointlike particle in a constant electric field w
internal energy levels. A quantum version of~canonically
conjugate! future and past Rindler horizon operators can
introduced@5#, which facilitate the calculation of the trans
tion amplitude and provides a simple intuitive physical p
ture of the recoil.

The model is then used to obtain the transition amplitu
In the zeroth order, neglectingV/M correction, we recover
Parentani’s result of an unmodified exact thermalization
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the Unruh effect. The phase found in@4#, that induces deco-
herence effects, is also obtained. In our approach, the p
is directly obtained by acting on the wave function with t
horizon shift operator which induces the recoil.

The article is organized as follows. In Sec. II we introdu
our model for an accelerated particle detector and const
the Rindler horizon operators. In Sec. III, the transition a
plitude is calculated and the result compared with that
Ref. @4#. The recoil and quantum smearing are explici
manifested in Sec. IV, and a qualitative simple picture of
recoil in terms of the shifting operators is demonstrated.
the following we adopt the units in which\5kB5c5G51.

II. ACCELERATED DETECTOR WITH FINITE MASS

In this section we present a model for a particle detec
of finite mass which takes into account also the quant
nature of the detector’s trajectory.

Consider a particle detector of rest massM and chargeq
in a constant external electric fieldEx in 111 dimensions.
Let us describe the internal structure by a harmonic oscilla
with a coordinateh and frequencyV. The internal oscillator
is coupled to a free scalar fieldf. The total effective action is

S52ME dt2qExE Xdt1
1

2 E XS dh

dt D 2

2V2h2Cdt

1E g0hf„X~ t~t!!,t~t!…dt1SF . ~1!

Here,t is the proper time in the detector’s rest frame,X is
the position of the detector,g0 is the coupling strength with
a scalar fieldf and SF is the action of the field. Since we
would like to describe the back reaction on the trajectory
us rewrite this action in terms of the inertial frame timet.
The action of the accelerated detector is then given by

E @„2M2g0hf~X,t !…A12Ẋ22qExX#dt

1
1

2 E F 1

A12Ẋ2
S dh

dt D
2

2A12Ẋ2V2h2Gdt. ~2!

This yields a simple expression for the Hamiltonian of t
total system with respect to the inertial frame:

H5AP21Me f f
2 2qExX1HF , ~3!

where the effective massMe f f is given by
2403 © 1998 The American Physical Society
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2404 57B. REZNIK
Me f f5M1
1

2
~ph

21Vh2!1g0hf~X!, ~4!

andph5 ]L/]ḣ5ḣ/A12Ẋ2. The validity of our model rest
upon the assumption that the Schwinger pair creation ef
can be neglected for our detector.

Since the Schwinger pair creation process is damped
the factor exp(2pM2/qEx) this implies the limitation
M2.qEx . Notice that since the acceleration isa5qEx /M ,
this implies thatM.a52pTU . In the following we set
Ex51 for convenience.

To obtain a quantum mechanical model we simply ne
to impose quantization conditions on the conjugate pairsX,P
and h,ph and use the standard quantization procedure
the scalar field. It is convenient to introduce internal ene
level raising and lowering operatorsA† andA. The harmonic
oscillator Hamiltonian can then be replaced byVA†A[VN
and the internal coordinate byh5 i (A†2A)/A2V. This
form can also be used in other, more general cases, how
the simple commutation relation@A,A†#51 in the case of a
harmonic oscillator, needs to be modified accordingly.

So far we have not imposed a limitation on the coupli
strengthg0 . In the case of small couplingg0(t)5e(t) the
Hamiltonian can be written to first order ine(t) as

H5HD2qX1HF1HI . ~5!

Here

HD5HD~P,N!5AP21~M1VA†A!2 ~6!

is the free detector Hamiltonian,HF is the free field Hamil-
tonian

HF5
1

2 E dx8@Pf
2 1~¹f!21mf

2f2#, ~7!

and

HI5 i e~ t !H mN

HD
,~A†2A!f~X,t !J , ~8!

where mN[M1NV5M1VA†A and the anticommutator

$A,B%5 1
2 (AB1BA), maintains hermiticity. We have als

absorbed a factor of 1/A2V in the definition ofe(t). Com-
paring this interaction term with that used in the absence
back reaction we note that apart from the appearance o
anticommutator there is also a new factormN /HD . As we
shall see, it corresponds to an operator boost factor from
inertial rest frame to the detector’s rest frame.

In the Heisenberg representation the equations of mo
for the detector’s coordinatesX andP are given by

Ẋ5
P

HD
2 i e~ t !H mNP

HD
3 ,~A†2A!f~X!J , ~9!

Ṗ5q2 i e~ t !H mN

HD
,~A†2A!f8~X,t !J , ~10!

wheref85 ]f/]x. We also have
ct

y

d

r
y

ver

a
an

he

n

Ȧ52 i ~HD,N112HD,N!A2 i @A,HI #, ~11!

and

~h2mf
2!f~x,t !5 i e~ t !H mN

HD
,~A†2A!d~x2X!J . ~12!

In the zeroth order approximation (e50) the solution of
Eqs.~9!–~11! is

X~0!~ t !5X01
1

q
@HD~ t !2HD~ t0!#,

P~0!~ t !5P01q~ t2t0!, ~13!

HD
~0!~ t !5A„P01q~ t2t0!…21~M1VA0

†A0!2, ~14!

and

A~0!~ t !5expF2 i E
t0

t

~HD,N0112HD,N0
!dt8GA0 . ~15!

Here the subscript was used to denote the operator at
t5t0 and the superscript to denote the zeroth order solut
To simplify notation we shall drop the superscript. Noti
that N05A0

†A0 is a constant of motion in the zeroth ord
approximation.

It is now useful to introduce a proper timeoperatort(t):

t~ t !5
M1VA†A

q
sinh21Fq~ t2t0!1P0

M1VA†A G . ~16!

The factor (M1VA†A)/HD5mN /HD5 dt/dt appearing in
the coupling to the field@Eq. ~8!# can therefore be interprete
as an operator boost factordt̂(t)/dt, from the inertial frame
to the detector’s rest frame. Notice thatt depends only onP0
andN.

In terms of the proper time operator, the detector’s traj
tory can be simplified to

t2t02 T̃05
1

a
sinh at, ~17!

X2X̃05
1

a
coshat, ~18!

where

T̃052
P0

q
X̃052

HD2qX

q
, ~19!

and the accelerationa is given by theoperator

a5aN5
q

M1VA†A
5

q

mN
. ~20!

The operatorsT̃0 and X̃0 determine the location of the Rin
dler coordinate system of the detector with respect to
Minkowski coordinates (t,x). The space-time location of th
intersection point of the future and past Rindler horizons
given by (2t02 T̃0 ,2X̃0). Since
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@X̃0 ,T̃0#5
i

q
, ~21!

the location of this space-time point becomes quantum
chanically smeared.

Another set of useful operators@5# we shall introduce is
that of the location of the future and past Rindler horizo
H1 andH2 , respectively. They can be found from the r
lations

H1~ t !5 lim
t→`

X~ t !, H2~ t !5 lim
t→2`

X~ t !. ~22!

We find

H1~ t !52 T̃01X̃01~ t2t0!5
P~ t !

q
2

HD2qX

q
, ~23!

and

H2~ t !5 T̃01X̃02~ t2t0!52
P~ t !

q
2

HD2qX

q
. ~24!

Therefore we can expressX(t) as

X~ t !5H1~ t !1
1

a
e2at ——→

t→`

H1~ t !, ~25!

and

X~ t !5H2~ t !1
1

a
eat ——→

t→2`

H2~ t !. ~26!

In terms ofH6 , the Hamiltonian of the detector in an exte
nal electric field has the simple form:

HD2qX52
q

2
~H11H2!. ~27!
e-

s

Finally,H6 satisfy the commutation relation:

@H2 ,H1#52
i

q
. ~28!

Examining Eqs.~21! and~28!, we notice that sinceq5aM,
in the limit of constant acceleration but large mass, the co
mutators vanish asM 21 and the classical trajectory limit is
restored.

III. THE TRANSITION AMPLITUDE

We shall now proceed to calculate the first order tran
tion amplitude between the internal energy levelsn andn11
of the detector. To this end it will be most convenient to u
the interaction representation. The operators in this repre
tation are the solutions of the free equations of motion giv
by ~15!, ~16!, ~17!, ~18!, and the wave function satisfies th
Schrödinger equation

i ] tuC&5HI uC&. ~29!

Given at t5t0 by the initial wave functionuC0&, to first
order ine the final state at timet is given by

uC~ t !&5F12 i E
t0

t

e~ t8!H m1VA†A

HD
,i ~A†2A!

3f~X,t8!J dt8G uC~ t0!&. ~30!

Let us set initial conditions for the internal oscillator to b
in the nth exited stateun&, and for the scalar field to be in
Minkowski vacuum stateu0M&. The initial state of the total
system is therefore given byuC(t0)&5u0M& ^ un& ^ ucD&,
where ucD& denotes the space component of the detect
wave function. Using the solution~15! for A and A†, the
transition amplitude can be expressed as:
ee
and left
s

uC~ t !&5uC~ t0!&2
e

2 E
t0

t

dt8FAn11un11&S mn11

HD,n11
ei * t0

t8DHn11dt9f„Xn~ t8!,t8…1ei * t0

t8DHn11dt9f„Xn~ t8!,t8…
mn

HD,n
D

2Anun21&S mn21

HD,n21
e2 i * t0

t8DHndt9f„Xn~ t8!,t8…1e2 i * t0

t8DHndt9f„Xn~ t8!,t8…
mn

HD,n
D G ^ u0M& ^ ucD&. ~31!

Here we used the notationDHn5HD,n2HD,n21 . The subscriptn @e.g. inXn(t8)#, means that we need to substitute the fr
solutions withN5n. In two dimensions the solutions for a free massless scalar field can always be separated into right
moving waves, i.e.f5fL(V)1fR(U) whereU5t2x, V5t1X. For simplicity we will limit the discussion to massles
scalar fields and examine the solution only for right moving waves. Therefore, we substitute forf:

fR~U !5E
0

` dv

A4pv
~e2 ivUav1eivUav

† !. ~32!

Using Eqs.~17!, ~18!, ~23! we find that on the trajectory of the detector the light cone coordinateU is given by

UuD5t2X52H102t02
1

a
e2at. ~33!

Neglecting the constant phase factor exp(ivt0), the final state can be written as
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uC~ t !&5uC~ t0!&2
e

2 E dv

A4pv
E

t0

t

dt8FAn11un11&S mn11

HD,n11
ei *DHn11dt9eiv„2H10n2 ~1/an! e2antn…

1ei *DHn11dt9eiv„2H10n2 ~1/an! e2antn…

mn

HD,n
D2Anun21&S mn21

HD,n21
e2 i *DHndt9eiv„2H10n2 ~1/an! e2antn…

1e2 i *DHndt9eiv„2H10n2 ~1/an! e2antn…

mn

HD,n
D G ^ u1vM& ^ ucD&. ~34!
in
o
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This is an exact result in the first order approximation
e. So far we have not introduced additional assumptions
M , V or an5q/mn . We shall now apply a large mass limi
We shall assume that

M@a05
q

M
. ~35!

This restriction is indeed equivalent to a suppression of
Schwinger pair production process. Since for the Unruh
diation we need only detector energy gaps w
V5O(a/2p), we also require

M@V, ~36!

Under these assumptions let us proceed to simplify
pression~34!.

First consider the term exp(*DHn11dt):

i E
t0

t

DHn11dt85 iVE
t0

t mn

HD,n
F11

1

2

V

mn

P2

HD,n
2 G

1O~V3/M3!

5 iVtn1
i

2
V2F 1

mn
tn2

1

q
tanh~antn!G

1c~P0!1O~V3/M3!

. iVS tn1
1

2

V

mn
tn2

V

2q

3„122 exp~22antn!…D1c~P0!

1O~V3/M3!, ~37!

wherec(P0) is a constant, and in the last line we have us
the larget approximation. This approximation is justifie
since the transition amplitude is dominated by contributio
arising from integration over larget. In the following we
shall hence neglect the exponential correction and the c
stantc(P0) which gives rise only to an overall phase, a
use the approximation:

i E
t0

t

DHn11dt85 iVtnS 11
1

2

V

mn
D . ~38!

Next consider the exponential terms in~34! which contain
the horizon operatorH10 . Only these terms maintain a de
pendence on the operatorX asH105X1G(P0), whereG is
n

e
-

-

d

s

n-

a function ofP0 only. Therefore,@H1 ,P0#5 i . Noting that
the second term in the exponential depends only onP0 , and
using the Campbell-Baker-Hansdorff identity yields

expF2 ivSH101
1

an
e2antnD G

5expF i

2q
v2e2antn

mn

HD,n
1O~M 22a0

22!G
3expS 2 iv

1

an
e2antnDexp~2 ivH10!. ~39!

Notice that the unitary operatore2 ivH10 generates the
translation:p0→p01v. This corresponds to a recoil of th
detector and ensures total momentum conservation when
detector is excited and emits a Minkowski photon.

Finally, we consider the boost operator:

mn11

HD,n11
5

mn

HD,n
F11

V

mn
S 12

mn
2

HD,n
2 D 1O~V2/M2!G .

~40!

Since, for larget,

mn

HD,n
5

1

cosh~antn!
52e2antn2O~2e23antn!, ~41!

we shall approximate this boost factor by

mn11

HD,n11
5

mn

HD,n
F11

V

mn
G . ~42!

We can now return to the transition amplitude~34! and
for simplicity focus only on the amplitude
A(v,n11,p)5^1v ,n11,puC(t)&. The indices v,n11,p
correspond to the outgoing states of the photon, internal
tector levels and to the detector’s momentum, respectiv
Using Eqs.~38!, ~39!, ~42! we find
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A~v,n11,p!52
i e

2
An11

4pv E
t0

t

dt8F X mn

HD,n~p01v!

1
mn

HD,n~p0! S 11
V

mn
D C

3expXiVS 11
1

2

V

mn
D tn2 iv

1

an
e2antn

1
i

2q
v2e2atn

mn

HD,n
CGfD~p1v!. ~43!

Here,fD(p)5^pucD&. To obtain~43! we used a represen
tation withH10 andP0 as conjugate operators, and used
unitary operator exp2ivH10 to generate translations in th
momentum. At this point the transition amplitude is e
pressed as a c-number integral.

Let us proceed to investigate this integral. For larget the
phaseu of the integrand can be approximated by

u5VS 11
1

2

V

mn
D tn2v

1

an
e2antn1

1

q
v2e22antn. ~44!

The stationary phase condition yield

v52VS 12
V

mn
1O~V2/M2! Deantn. ~45!

This can be compared with the case of a classical trajec
obtained by sendingm→`. In the present case, the fre
quency at the stationary point is shifted by (V2/mn)eantn,
which is in agreement with Ref.@4# up to a numerical factor
of 1/2. As long asV/mn,1, the correction is small and th
saddle point frequency remains exponentially high.

A second phase appears in the amplitude due to the
in the momentum of the particle. Let the initial wave fun
tion of the detector be in an eigenstate of momentu
ucD&5uk&. The horizon shift operator acting on the sta
yields

e2 ivH10uk&5e2 ivX0eivT0e2 iv2/2quk&

5e2 i ~vk1v2/2!/qe2 ivX̃0uk&

5e2 i ~vk1v2/2!/quk2v& ~46!

where in the first line we have used the Campbell-Bak
Hausdorff identity. The phase, (vk1v2/2)/q, is identical to
that obtained by Parentani@4#, ~the factorv2/2 arises here
from the noncommutativity ofX0 andT0!. Here, the phase is
directly obtained from the shift generated by the future ho
zon operator as a consequence of the recoil due to an e
sion of a scalar photon. This recoil is further discussed
Sec. IV.

Next consider the recoil affects on the boost fac
mn /HD,n(p1v) in Eq. ~43!. The shift of p→p1v in this
boost factor, is equivalent to a shift in time given b
t→t85t1v/q. In terms of the proper time~which is now a
c-number! this corresponds to the transformation

tn→tn85tn1
v

q
e2antn. ~47!
e

ry

ift

,

r-

-
is-
n

r

For transitions withtn(t)2tn(t0)@1/an , this transforma-
tion does not modify the integral. Hence in terms oftn8 :

mn

HD,n~p1v!
5

dtn8

dt
. ~48!

The second, unshifted, boost factor can be expresse
terms oftn8 as

mn

HD,n
S 11

V

mn
D5

dtn8

dt S 11
1

mn
~V1ve2antn8!

1O~V2/M2! D . ~49!

Hence by expressing the integral~43! in terms oftn8 we find
that the two terms are equal up to orderO(V2/M2) and an
additional piece that~up to this order! vanishes at the station
ary point ~45!.

Expressing the phase in terms oft8 we find

u5VS 11
1

2

V

mn
D tn82

v

an
S 11

V

mn
De2antn81O~V2/M2!.

~50!

where the term involving (v2/q)e22antn in Eq. ~44! has
dropped out and we are left only with the higher order c
rectionsO(V2/M2), which will be neglected.

In terms oftn8 the amplitudeA(v,n11,p) can be written
as

2 i eAn11

4pv
fD~p1v!F E dtn8 expXiVS 11

1

2

V

mn
D tn8

2 iv
1

an
S 11

V

mn
De2antn8C1 j

mn
G ~51!

where

j5
1

2 E dtn~V1ve2antn!expXiVtn2 i
v

an

3S 11
V

mn
De2antnC. ~52!

For largetn , j;O(V/M ), and the termj/mn can be ne-
glected.

Finally we obtain

A~v,n11,p!5 i eAn11

4pv
fD~p1v!an

21

3Xv

an
S 11

V

mn
D Ci ~V8/an!

GS 2 i
V8

an
D

3e2pV8/2an1O~V2/M2!, ~53!

whereG is the Gamma function, and

V85VS 11
1

2

V

mn
D5VS 11

1

2

V

M D1O~V2/M2!. ~54!



m
ea
-

ev

pl
b
p
ha
ec

or
a

th
m
e

-

a

n

nd

e
th

t
w

-
r
k

on

the

s,

the
cor-
ring
n

he
st

,
or

n-
me

e

ial

-

-

ht
f the

n
nt

2408 57B. REZNIK
This transition amplitude seems similar to the Unruh a
plitude obtained in the absence of recoil and quantum sm
ing. Our amplitude agrees,~when V/M corrections are ne
glected!, with the result obtained by Parentani@4#. As we
have already seen, the momentum dependent phase rel
to the decoherence process@4#, is also precisely obtained in
our method@Eq. ~46!#.

IV. RECOIL AND QUANTUM SMEARING

The purpose of this section is to give a qualitative sim
picture of the recoil. We shall show how this process can
simply expressed in terms of the effect of horizon shift o
erators on the detector’s wave function. Since as we s
see, the recoil involves exponentially large shifts, in this s
tion we can neglect the 1/M corrections.

Let us re-state the results of the last section in a m
qualitative way. For the case of a classical trajectory, it w
shown by Unruh and Wald@6# that if the detector is initially
in the ground state then the final state can be written as

uC~ t !&5uC~0!&2 i un51& ^ aRVu0M&. ~55!

Here, aRV is the annihilation operator of a quantum wi
frequencyV with respect to the Rindler coordinate syste
that is defined by the detector’s trajectory. Using the w
known relation@2# of aRV to Minkowski creation and anni
hilation operatorsaM andaM

† , they get

uC~ t !&5uC~0!&2 iC~V,a!un51&

3
e2pV/2a

~epV/a2e2pV/a!1/2aM
† u0M&, ~56!

where C is a normalization factor. Note thataM
† creates a

positive frequency Minkowskian photon, which is not in
state of definite frequencyv. Qualitatively we can use the
stationary phase approximation Eq.~44! to relate the typical
frequency of this photon to the time of emissiont.

We can now use the result obtained in the last sectio
replace Eq.~56! with

uC~ t !&5un50,cD,0M&2 iC~V,an!un51&

3
e2pV/2a

~epV/a2e2pV/a!1/2~e2 iH FH1aMR
†

1e1 iH FH2aML
† !u0M ,cD& ~57!

Here we have restored the full coupling with the left a
right moving waves. The operatorsaMR

† and aML
† , corre-

spond to creation operators of right and left moving wav
respectively. This equation can be easily generalized to
case of transitions between any two levelsn to n11, as well
as to the case of deexcitations. We have assumed tha
scalar field is massless. However, for a massive field
simply need to replacee2 iH fH10 by eiH f T̃02 iP f X̃0 etc.

The new feature of Eq.~57! is the insertion of the horizon
shift operators exp(6iHFH6) which act on the wave func
tion of the detector and of the scalar field. These shift ope
tors generate correlations between the ‘‘emitted’’ Minkows
scalar photon and the trajectory of the detector.
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To illustrate these correlations, let us concentrate only
the left moving waves and expressaMR

† in terms of creation
operators of definite Minkowski frequency:

aMR
† 5E f ~v!av

† dv. ~58!

Equation~57! can now be written as

udC&52 iC8un51&E dvdh1e2 ivh1

3 f ~v!c~h1!u1v& ^ uh1&. ~59!

Here we used a basis ofH01 :H1uh1&5h1uh1&. We see
that the recoil interaction generates correlations between
shift h1 in the u-time of the right moving ‘‘emitted’’
Minkowski photons with the ‘‘horizons states’’uh1& of the
detector. Therefore, the effect of ‘‘horizon smearing’’ yield
after emission, the final entangled state~59!. In each compo-
nent of this state, the Unruh effect is manifested, with
correction discussed in the previous section. Since the
rections do not depend on the uncertainty or the smea
Dh1 of the future event horizon, the overall wave functio
still manifests the Unruh effect.

In order to examine the effect of the emission on t
detector we can rewrite Eq.~59! by using as a basis the pa
horizon operatorH2 . We obtain:

udC&52 iC8un11&E dvdh2 f ~v!c~h2!u1v& ^ uh22v&,

~60!

wherec(h2)5^h2uCD&. SinceH6 are conjugate operators
the operator exp2ivH1 has shifted the past horizon operat
by v. It is interesting to notice that the shift byv of the past
horizon can be exponentially large. In fact, from the statio
ary phase approximation we get that it is related to the ti
of emissiont as:V.V exp(at). Therefore a detection of a
particle of energyV generates an exponential shift in th
location of the past horizon of the detector:

dh25h2out2h2 in.V exp~at!. ~61!

The meaning of this shift is as follows. We can use the init
statec in to define the locationh2 in of the past horizon. We
can also use the final statec f of the detector and by propa
gating it to the past~with the free Hamiltonian! determine
the locationh2out . These two locations differ by an expo
nential shift.

The propagation of a wave function to the past mig
seem strange. However the same phenomenon occurs i
detector is excited in the past att,0. In this case it emits a
left moving Minkowski particle. We find that this induces a
exponentially large shift in the location of the future eve
horizon operatorH1 :

dh15h1out2h2 in.V exp~2at!. ~62!
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The manifestation of the back reaction as an exponenti
large shift is related to the method of ’t Hooft@7# and of
Schoutens, Verlinde and Verlinde@8#. In their case, infalling
matter into the black hole, induces an exponential shift of
time of emission of the Hawking photon in the future. T
reason is that the Hawking photons stick so close to
horizon that even a small shift of the horizon still modifi
the time of emission. In our case this exponential shift
related to the exponential energy of the emitted Minkow
photon. In both cases, the back reaction requires the e
a
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tence of exponentially high frequencies in the vacuum. As
the case of Hawking radiation, a naive cutoff eliminates
thermal spectrum seen by the Unruh detector.
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