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Unruh effect with back reaction—A first-quantized treatment
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We present a first-quantized treatment of the back reaction on an accelerated particle detector. The evaluated
transition amplitude for detection agrees with previously obtained re$8i&56-282(98)05804-4

PACS numbdss): 04.70.Dy, 04.62+v

[. INTRODUCTION the Unruh effect. The phase found[], that induces deco-
herence effects, is also obtained. In our approach, the phase

In view of the close connection of black hole radiation is directly obtained by acting on the wave function with the
and acceleration radiatiofl—3] it is reasonable to expect horizon shift operator which induces the recoil.
that some of the difficulties regarding the former case could The article is organized as follows. In Sec. Il we introduce
be mirrored and examined on the latter simpler problem. Irour model for an accelerated particle detector and construct
particular, it can be anticipated that the modifications of thethe Rindler horizon operators. In Sec. Ill, the transition am-
Unruh effect due to the detector’s recoil and the quantunplitude is calculated and the result compared with that of
smearing may have similar consequences for the Hawkingef. [4]. The recoil and quantum smearing are explicitly
effect. manifested in Sec. IV, and a qualitative simple picture of the

Surprisingly, since the work of Unruf2] two decades recoil in terms of the shifting operators is demonstrated. In
ago, this problem has attracted little attention. In his originalthe following we adopt the units in which=kg=c=G=1.
paper[2], Unruh suggested a two-field model for a finite
mass particle detector. Two scalar fiels, and xy,, of Il. ACCELERATED DETECTOR WITH FINITE MASS
massesM andM’' =M + (), respectively, were taken to rep- ) ) i
resent two states of a detector. When the coupling to a scalar, N this section we present a model for a particle detector
field ¢ is given byedyy ¥, “excitation” of this detector of finite mass which ,takes_, into account also the quantum
corresponds to a detection ofgaparticle of energy(). nature of the detector’s trajectory.

The two-field model was used recently by Parenfahto ~ Consider a particle detector of rest magsand charge
study the consequences of recoil and smearing on the Unrdfl & constant external electric fielgl in 1+1 dimensions.

effect. In this work two charged scalar fields were acceler L€t us describe the internal structure by a harmonic oscillator

ated by means of a classical constant external electric fieldVith @ coordinaten and frequency). The internal oscillator

The transition amplitude was obtained to first order in the'S coupled to a free scalar fielfl The total effective action is

coupling. Parentani showed that when the recoil and smear- 1 dy)2

ing are taken into account, up fo/M corrections, the tran- S= —Mf dT—quf Xdt+ = f ((—) —Q2n2)d7
sition amplitude is modified only by a phase. Therefore, to 2 dr

this order the thermal distribution and the Unruh temperature

are unmodified. The new aspect that Parentani emphasized +j Jond(X(t(7)),t(7))d7+ S¢. (1)
was the appearance of an additional phase in the transition

amplitude which generates decoherence in successive emigere, r is the proper time in the detector’s rest frameijs
sions by the detector. o the position of the detectog, is the coupling strength with
_ In this article we shall present an alternative first quan-y scalar fieldg and S: is the action of the field. Since we
tized treatment and rederive Parentani’s result. We shall by like to describe the back reaction on the trajectory let
studying the same problem of a finite mass particle detectqis rewrite this action in terms of the inertial frame tihe

in a constant electric field, but we use a different toy modelhe action of the accelerated detector is then given by
The accelerating detector is described as a first quantized,

charged, pointlike particle in a constant electric field with \/—2

internal energy levels. A quantum version @anonically f [(=M—=go7¢(X,1))V1-X"—qE,X]dt

conjugate future and past Rindler horizon operators can be

introduced[5], which facilitate the calculation of the transi- 1 1 dzy)\? \/—2 -

tion amplitude and provides a simple intuitive physical pic- ts f A 1-XQ%p%|dt. (2
; 1-X

ture of the recaoil.

The model is then used to obtain the transition amplitudexys yields a simple expression for the Hamiltonian of the
In the zeroth order, neglecting/M correction, we recover ;o system with respect to the inertial frame:
Parentani’s result of an unmodified exact thermalization in
H= P2+ M2 —qEX+HE, 3

*Email address: reznik@t6-serv.lanl.gov where the effective madd ¢ is given by
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Mes=M+ %(7737+Q772)+907l¢(x), (@) A=—i(Honr—HowA=i[AH ] (1D

and

andw,= dL/dn=n/\1—X2 The validity of our model rest m
upon the assumption that the Schwinger pair creation effect (D_mfz)qs(x,t):ig(t) _N,(AT_A) S(x—X)t. (12
can be neglected for our detector. Hp

Since the Schwinger pair creation process is damped by
the factor exptmM?qE) this implies the limitation
M2>qE,. Notice that since the accelerationas qE, /M,

In the zeroth order approximatiore€ 0) the solution of
Egs.(9)—(11) is

this implies thatM>a=2#T,. In the following we set 1
E,=1 for convenience. XO(t)=Xo+ =[Hp(t)—Hp(to)],
To obtain a quantum mechanical model we simply need q
to impose quantization conditions on the conjugate p&irs PO(t)=Py+q(t—tp), (13
and n,7, and use the standard quantization procedure for
the scalar field. It is convenient to introduce internal energy HO(1) = V(Po+a(t—te) 2+ (M+QAIALZ,  (14)

level raising and lowering operatofé andA. The harmonic
oscillator Hamiltonian can then be replaced ®ATA=QN and
and the internal coordinate byy=i(AT—A)/\2Q. This
form can also be used in other, more general cases, however
the simple commutation relatidiA,A"]=1 in the case of a
harmonic oscillator, needs to be modified accordingly.

So far we have not imposed a limitation on the couplingHere the subscript was used to denote the operator at time
strengthgg. In the case of small couplingy(t) =e€(t) the t=ty and the superscript to denote the zeroth order solution.

t
A<°>(t):exp[—if (Hp,ny+1—Hong)dt [Ag.  (15)
to

Hamiltonian can be written to first order #(t) as To simplify notation we shall drop the superscript. Notice
that NozAng is a constant of motion in the zeroth order
H=Hp—qX+Hg+H,. (5)  approximation.
H It is now useful to introduce a proper tineperator 7(t):
ere
M+QATA  Tq(t—tg)+Pg
Hp=Hp(P,N)=yP2+(M+QATA)? (6) )=——" MiaAA |- (10
is the free detector Hamiltoniakir. is the free field Hamil-  the factor M+ QATA)/Hp=my/Hp= dr/dt appearing in
tonian the coupling to the fiel@iEq. (8)] can therefore be interpreted
1 as an operator boost factdff(t)/dt, from the inertial frame
HF:E f dx’[l‘[fﬁ (V)2+mie?], (7 :Jnghs detector’s rest frame. Notice thadepends only o
and In terms of the proper time operator, the detector’s trajec-

tory can be simplified to
Hi=ie(t)] T, (AT A) (X, ®) S
Hp’ i t—to—To—g sinhar, a7

wheremy=M+NQ =M+ QA'A and the anticommutator, 1
{A,B}= 1(AB+BA), maintains hermiticity. We have also X=Xg=7 coshar, (18
absorbed a factor of $2Q in the definition ofe(t). Com-
paring this interaction term with that used in the absence of ghere
back reaction we note that apart from the appearance of an
anticommutator there is also a new factog/Hp. As we ~ Po ~ Hp—gX
shall see, it corresponds to an operator boost factor from the To=- q Xo=— ' (19)
inertial rest frame to the detector’s rest frame.
In the Heisenberg representation the equations of motioand the acceleratioa is given by theoperator
for the detector’'s coordinates and P are given by

a=ay= a -9 (20)
myP TNTMEOATA T my

. P
X=H——ie(t){H—3,(AT—A)¢(X)}, 9
D D ~ ~
The operatord, and X, determine the location of the Rin-
. ) My dler coordinate system of the detector with respect to the
P=qg-i f(t)(H_’(AT_AW'(X't)J : (100 Minkowski coordinatest(x). The space-time location of the
o intersection point of the future and past Rindler horizons is

where ¢’ = d¢p/dx. We also have given by (—to—To,— X,). Since
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- i Finally, H.. satisfy the commutation relation:
[Xo,Tol= q’ (21

the location of this space-time point becomes quantum me-
chanically smeared.

Another set of useful operatof§] we shall introduce is
that of the location of the future and past Rindler horizon
‘H. and’H_, respectively. They can be found from the re-
lations

[
[H_,H+]=26. (28

Examining Eqs(21) and(28), we notice that sincg=aM,
Jn the limit of constant acceleration but large mass, the com-
mutators vanish ab ~! and the classical trajectory limit is
restored.

H,o(H)=1lim X(t), H_(t)= lim X(t). (22) Ill. THE TRANSITION AMPLITUDE
t—oo t——x

We shall now proceed to calculate the first order transi-
We find tion amplitude between the internal energy levelndn+ 1
PO H X of the detector. To this end it will be most convenient to use
—_ —_ f— q . . . . . _
Mo (t)=—Tot+ X+ (t—to) = _ b (23 the interaction representation. The operators in this represen

q q tation are the solutions of the free equations of motion given
by (15), (16), (17), (18), and the wave function satisfies the
and Schralinger equation
_ o~ P(t Hp—qgX i =
Ho () =Tyt Ko (1—t 0)__%)_ qu Y P9 W)y=H,|P). (29

Given att=ty by the initial wave function|¥), to first

Therefore we can expre2qt) as order ine the final state at time is given by
1 - [t [m+OQATA
X(t)=H,(t)+—-e 3 — H (1), (25) |W(t))= 1—.[ ) —pfz——(AT-A)
a to D
and ’ ’
X (Xt ))dt }N’(to))- (30)
t——o
XO)=H_(t)+ e ——H_ (1), (26) Let us set initial conditions for the internal oscillator to be

in the nth exited statén), and for the scalar field to be in a
In terms of .., the Hamiltonian of the detector in an exter- Minkowski vacuum stat¢0y,). The initial state of the total
nal electric field has the simple form: system is therefore given by (ty))=|0y)®|n)®|¢p),
where | ) denotes the space component of the detector’s
wave function. Using the solutiofil5) for A and A", the

q
Hp—aqX=- E(H++H’)' @7) transition amplitude can be expressed as:

€
T() =¥ (1)~ 5 f dt

¢n+|n+1% -39 04y (1)) + €M 8 X, (1), 1)
D,n

—hnln— 1>( - "“” I P (Xn(t) 1)+ & it (X

®|0m)® | ¢p)- (31)

Here we used the notatiahH,=Hp ,—Hp ,—1. The subscriph [e.g. inX(t")], means that we need to substitute the free
solutions withN=n. In two dimensions the solutions for a free massless scalar field can always be separated into right and left
moving waves, i.e¢p= ¢ (V) + ¢pr(U) whereU=t—x, V=t+X. For simplicity we will limit the discussion to massless
scalar fields and examine the solution only for right moving waves. Therefore, we substitgie for

o0 | do

. T (e”'*Va, +e“Val). (32
mTw

Using Eqgs.(17), (18), (23) we find that on the trajectory of the detector the light cone coordibate given by
1
U|D=t_X=_H+O_tO_ aeiaf. (33)

Neglecting the constant phase factor éxfy), the final state can be written as



2406 B. REZNIK 57

Mp+1 el AH, 10t gio(=H gn— (Lay) €™ 2nn)

HD,n+1

Vn+1|n+1)

€ dw t
wO)=v) - | 2= | ar

1 @ AHn 180 glo(= T on (V) e~ T ) ~hln- 1>(—mnl o /A glo(~ . on= (La) %)
HD,n HD,n—l

4 e I AHL gio(=H  gn= (Vay) €™ 2nn) Mn
H

D,n

®|1wM>®|¢D>' (34)

This is an exact result in the first order approximation ina function of P, only. Therefore[ H, ,P,]=i. Noting that

€. So far we have not introduced additional assumptions ORe second term in the exponential depends onlPgnand

M, Q or a,=q/m,. We shall now apply a large mass limit. ;sing the Campbell-Baker-Hansdorff identity yields
We shall assume that

q
M>a, M (35 ex;{—iw(Hanie‘anTn”

an

This restriction is indeed equivalent to a suppression of the .

Schwinger pair production process. Since for the Unruh ra- :exﬁ{'_wze—anrnﬂJro(M—za—z)

diation we need only detector energy gaps with 2q Hon 0

Q=0(al/27), we also require 1

M Q. (36) xex;{—iwa—neanTn)exp(—in+o). (39

Under these assumptions let us proceed to simplify ex-
pression(34).
First consider the term expdH,,, 1dt):

[t o ftm [ 10Q P?
|f AHant’:le 1+ —
to t H

Notice that the unitary operata '“’+o generates the
translation:py— py+ w. This corresponds to a recoil of the
detector and ensures total momentum conservation when the
detector is excited and emits a Minkowski photon.

oHonl" 2myHp, Finally, we consider the boost operator:
+0(Q%/M3)
i 1 1 m m Q m;
=iQr,+=0%—7 ——tanha,r nti _ _n +— 11— 2+ 2/Mm?
nt 2 o T g M@ oy Hoo |t m |1 2, O(Q%M?)|.
+¢(Po)+0(Q3M3) “0
_ 10 Q
=iQ| 7+ > ﬁrn— ﬁ Since, for larger,
X(1-2 exq—ZanTn))) +c(Pop) mp, 1
Hp. cosia,r,) =2e7Mm-0(2e7),  (4Y
+0(Q3IM3), (37) on n

wherec(P,) is a constant, and in the last line we have used : .

the large = approximation. This approximation is justified we shall approximate this boost factor by
since the transition amplitude is dominated by contributions

arising from integration over large. In the following we

shall hence neglect the exponential correction and the con- Ma1 _ Mh
stantc(Py) which gives rise only to an overall phase, and Hpn+1 Hopn
use the approximation:

(42)

We can now return to the transition amplitu@®) and
for simplicity focus only on the amplitude
A(o,n+1p)=(1,,n+1p|¥(t)). The indicesw,n+1p

Next consider the exponential terms(84) which contain  correspond to the outgoing states of the photon, internal de-
the horizon operatot{, ,. Only these terms maintain a de- tector levels and to the detector's momentum, respectively.
pendence on the operatdras’H , = X+ G(Py), whereG is Using Eqgs.(38), (39), (42) we find

t
if AH,,dt"=iQ7,
to

:I.:LQ 38
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In+1 ( For transitions with7,(t) — 7,(tg)>1/a,, this transforma-
A(o,n+1p)=— ino Jt Ho. n(po+w) tion does not modify the integral. Hence in termsmf
dr/
M, M T 48
FHon(po) |-, ) Hon(pto) dt 9
) 1 The second, unshifted, boost factor can be expressed in
Xexp i) 1+§m—n Tn—lwa—ne nn terms of 7, as
+i earnm”) (p+w). (43 M 1+Q— rI‘1+19+ a7y
2q“ Hp , Po(pt ). Hp.n m,  dt mn( we™n")
Here, ¢p(p) =(p|¢p). To obtain(43) we used a represen- 21en2
tation with’H, o and Py as conjugate operators, and used the +O(QIMT . (49

unitary operator expioH, o to generate translations in the
momentum. At this point the transition amplitude is ex- Hence by expressing the integfdB) in terms of 7 we find

pressed as a c-number integral. that the two terms are equal up to ord@(Q?/M?) and an
Let us proceed to investigate this integral. For larghe  additional piece thafup to this ordervanishes at the station-

phaseéd of the integrand can be approximated by ary point(45).

10 1 1 Expressing the phase in terms df we find

0=Q(1+—— Th— 0 —€ a4 —ple 2T, (44)
2 10 Q )
T &n a 0=01+> —| 7= 2 1+ —|e @+ 0(QAUM?).
. i, . 2m, an my,
The stationary phase condition yield (50)
w=—0 1—£+O(QZIM2) eanTn. (45  Where the term involving ®*/q)e ™ in Eq. (44) has
m dropped out and we are left only with the higher order cor-

rectionsO(02/M?), which will be neglected.
This can be compared with the case of a classical trajectory In terms of =’ the amplitudeA(w,n+1,p) can be written
obtained by sendingn—~. In the present case, the fre- as n
guency at the stationary point is shifted bQL?(/mn)eanTn,
der'1 ex;{iﬂ

which is in agreement with Ref4] up to a numerical factor nti
of 1/2. As long ad)/m,<1, the correction is small and the \/ dp(p+w)
saddle point frequency remains exponentially high.

1ol
2m| ™

A second phase appears in the amplitude due to the shift 1 Q ) ¢
in the momentum of the particle. Let the initial wave func- —iwa— 1+ —]e @)+ — (51
tion of the detector be in an eigenstate of momentum, n n n
|z_//D>=|k>. The horizon shift operator acting on the state, hare
yields
e 19Mro|k) =g T@XoglTog~107/2d| k) §=§fdrn(9+we*anfn)ex Q7 —i—
n
—i(wk+w? —iwX
—e i(wk+ /2)/1:4e i X0|k> . ) . ) -
X|1+—]e @]
:efi(o)k+w2/2)/q|k_w> (46) m, © &2

where in the first line we have used the Campbell-BakerFor larger,, {~0O(Q/M), and the term¢/m, can be ne-
Hausdorff identity. The phasewk+ %/2)/q, is identical to  glected.

that obtained by Parentaf], (the factorw?/2 arises here Finally we obtain

from the noncommutativity oK, andT,). Here, the phase is —

directly obtained from the shift generated by the future hori- _..n -1

Zon operator as a consequence of the recoil due to an emis- Alont1p)=ie Ao ¢o(pto)a,

sion of a scalar photon. This recoil is further discussed in

Sec. IV. p Q) |@a Q'
Next consider the recoil affects on the boost factor X a_n 1+_n r _'a_n
m,/Hp n(p+ w) in Eq. (43). The shift of p—p+w in this ,
boost factor, is equivalent to a shift in time given by xe ™20+ 0(02/M?), (53)
t—t'=t+ w/q. In terms of the proper timéavhich is now a . _
c-numbey this corresponds to the transformation wherel is the Gamma function, and
e 4 a=al1+2 2 =0(1+ 1 2] voam2). (54
Tn_)Tn_Tn—"ae . ( 7) - 2 mn - 2 M ( ) ( )
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This transition amplitude seems similar to the Unruh am-  To illustrate these correlations, let us concentrate only on
plitude obtained in the absence of recoil and quantum smeathe left moving waves and exprea§ in terms of creation
ing. Our amplitude agreeswhen /M corrections are ne- operators of definite Minkowski frequency:
glected, with the result obtained by Parentddi]. As we
have already seen, the momentum dependent phase relevant af = f( yald (58)
to the decoherence procdgl, is also precisely obtained in MR @), 8@

our method Eqg. (46)].
dEq. (48] Equation(57) can now be written as

IV. RECOIL AND QUANTUM SMEARING

. The purpose Of.thIS section is to give a qualltatlve simple |6W)=—iC'|n= 1>f dwdh, e i@
picture of the recoil. We shall show how this process can be

simply expressed in terms of the effect of horizon shift op-

erators on the detector's wave function. Since as we shall X f(w)p(hy)|1,)®|h,). (59)

see, the recoil involves exponentially large shifts, in this sec-

tion we can neglect the W corrections.

Let us re-state the results of the last section in a morélere we used a basis 6fy, :H.|h,)=h,|h,). We see
qualitative way. For the case of a classical trajectory, it waghat the recoil interaction generates correlations between the
shown by Unruh and Walfb] that if the detector is initially ~ shift h, in the u-time of the right moving “emitted”
in the ground state then the final state can be written as  Minkowski photons with the “horizons statesth.. ) of the

detector. Therefore, the effect of “horizon smearing” yields,
|¥(t))=|¥(0))—i|n=1)®ara|Oy)- (55  after emission, the final entangled sté#@). In each compo-
nent of this state, the Unruh effect is manifested, with the
Here, arq is the annihilation operator of a quantum with correction discussed in the previous section. Since the cor-
frequency() with respect to the Rindler coordinate systemrections do not depend on the uncertainty or the smearing
that is defined by the detector’s trajectory. Using the wellAh_ of the future event horizon, the overall wave function
known relation[2] of ary to Minkowski creation and anni-  still manifests the Unruh effect.

hilation operators,, andaI,,, they get In order to examine the effect of the emission on the
. detector we can rewrite E¢59) by using as a basis the past
|W(1))=|¥(0))—iC(Q,a)[n=1) horizon operatof{_ . We obtain:
e**er/Za ;
X (er/a_e—w&)/a)llzaM|0M>’ (56) |5\1f>:—ic'|n+1>f dodh_f(w)y(h_)|1,)e|h_— o),
(60)

where C is a normalization factor. Note that},, creates a ] ]

positive frequency Minkowskian photon, which is not in aWherey(h_)=(h_|¥p). SinceH. are conjugate operators,
state of definite frequency. Qualitatively we can use the the operator expiw’, has shifted the past horizon operator
stationary phase approximation Eg4) to relate the typical by w. It is interesting to notice that the shift lay of the past
frequency of this photon to the time of emissian horizon can be exponentially large. In fact, from the station-

We can now use the result obtained in the last section t8"Y Phase approximation we get that it is related to the time
replace Eq(56) with of emissionr as: (=) exp@r). Therefore a detection of a

particle of energy() generates an exponential shift in the

| (t))=|n=0,p,0n)—iC(Q,a,)|n=1) location of the past horizon of the detector:
e*')TQ/Za ) ;
X (ewslla_e—TrQ/a)1/2(e_IHFH+aMR oh_=h_ou—h_in=0 expar). (61)
e MF-al, ) 0w o) (57)

The meaning of this shift is as follows. We can use the initial
gstatey, to define the locatiom_;,, of the past horizon. We
can also use the final statlg of the detector and by propa-
s‘gating it to the pastwith the free Hamiltoniandetermine
the locationh_,,. These two locations differ by an expo-

Here we have restored the full coupling with the left an
right moving waves. The operatoes,, and aj, , corre-
spond to creation operators of right and left moving wave
respectively. This equation can be easily generalized to th ) X
case of transitions between any two level® n+1, as well nential shift.

as to the case of deexcitations. We have assumed that the The tpropagalicilon of atr\]/vave func;c]lon to the past mlgfhtth
scalar field is massless. However, for a massive field wgem strange. However the same phenomenon occurs 1t the

. i iH T iP X detector is excited in the past 0. In this case it emits a
simply need to replace "t o bye_ To Troetc. left moving Minkowski particle. We find that this induces an
The new feature of E57) is the insertion of the horizon o, nentially large shift in the location of the future event
shift operators expfiHgH.) which act on the wave func- horizon operatof., :

tion of the detector and of the scalar field. These shift opera-
tors generate correlations between the “emitted” Minkowski
scalar photon and the trajectory of the detector. oh,=h,oui—h_ih,=Q expg(—ar). (62
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The manifestation of the back reaction as an exponentiallyence of exponentially high frequencies in the vacuum. As in
large shift is related to the method of 't Hodff] and of the case of Hawking radiation, a naive cutoff eliminates the
Schoutens, Verlinde and Verlind8]. In their case, infalling  thermal spectrum seen by the Unruh detector.
matter into the black hole, induces an exponential shift of the
time of emission of the Hawking photon in the future. The
reason is that the Hawking photons stick so close to the ACKNOWLEDGMENTS
horizon that even a small shift of the horizon still modifies
the time of emission. In our case this exponential shift is | wish to thank W. G. Unruh for discussions and very
related to the exponential energy of the emitted Minkowskihelpful comments. | have also benefited from discussions
photon. In both cases, the back reaction requires the exisvith S. Nussinov and J. Oppenheim.
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