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Kerr spinning patrticle, strings, and superparticle models
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A combined model of the Kerr spinning particle and superparticle is considered. The structure of Kerr
geometry is presented in a complex form as being created by a complex source. A natural supergeneralization
of this construction is obtained corresponding to a complex “supersource.” Performing a supershift to the Kerr
and Kerr-Sen solutions we obtain metrics of supergravity black holes with a nonlinear realization of broken
supersymmetry.S0556-282(98)00204-5
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I. INTRODUCTION “source” of the supergeneralized Kerr geometry. Our treat-
ment is based on the formalism by Debney, Kerr, and Schild
It was mentioned about 30 years ago that Kerr geometry2] adopted to the above-mentioned complex representation
displays some remarkable features suggesting certain rel@f Kerr geometry.
tionships with the spinning elementary particles. In particu- The main idea of this work is extremely simple: to replace
lar, the gyromagnetic ratio of the Kerr-Newman solution isthe mysterious complex source of Kerr geometry by a com-
the same as that of the Dirac electron. This fact stimulatedlex supersource which can be obtained by an extra super-
treatment of the models of spinning particles based on Kerrshift.
Newman geometrj1—6]. Some stringlike structures were  Tugai and Zheltukhir{18] have recently shown that the
obtained in Kerr geometry. The first one is connected with &pplication of the supershift to Coulomb solution in a flat
singular ring of the Kerr solutiorf6,7]. Two others are Space gives rise to a Maxwell supermultiplet of fields. On the
linked with a complex representation of Kerr geomeini-  Other hand it was shown by Appel as early as in 1889]
tiated by Lind and Newmaf8]) in which the Kerr-Newman that a complex shift yields a ringlike singularity and specific
solution is considered as a retarded-time field generated bylserr's twofoldedness of space. Therefore, on the basis of
mysterious complex source propagating along a complefiese examples one can mention that the methods of a com-
world line. It was mentionef] that the complex world line plex shift and supershift have much in common mathemati-
is really a world sheet or a special type of string. The stringycally, though they lead to very different physical conse-
boundary conditions for this complex world line are con-guences. In this paper examples of the simultaneous
nected with a third stringy structure of Kerr geometry_anappncation of both above transformations to the Kerr and to
orbifold [9]. the Kerr-Sen solutions are givérAs a result we derive the
A new and a very important period was started by Wittenmetrics of rotating super black holes with broken four-
[10] who pointed out the role of black holes in string theory dimensional supersymmetry generated by a superparticle
and also especially with the paper by Jédd] who gave a  Source.
generalization of the Kerr solution to low energy string
theory. Il. COMPLEX STRUCTURE OF THE KERR SOLUTION
It was showr{ 7] that near the Kerr singular ring the Kerr- . ) )
Sen solution acquires a metric similar to the field around a Starting from the Kerr-Schild form of metrig; = 7.
heterotic string. Recently, much attention has also been paid 2hkikk; where 7 =diag—1,1,1,3 is the auxiliary
to multidimensional Kerr solutions and to a treatment ofMinkowski metric in Cartesian coordinates,X,y,z), one
black holes as fundamental string stte$,17, leadingtoa  an see that' the main peculiarities qf the Kerr so.lut|on are
conclusion, suggested from different points of view, thatconnected with a form of the harmonic scalar functioand

some black holes should be treated as elementary particlégctor fieldk of principal null directions(PN congruence

[13]. The functionh is the Appel potential
On the other hand, after obtaining supersymmetry, great _
attention has been paid to the models of spinning particles h=mRe 1/r ), D

based on the Grassmann anticommuting paramétei&ov
and Akulov[14], Casalbuon[15], Brink and SchwarZ16],

a”‘?' other$17,18],.wh|ch has also found an important appli- lin spite of a quite long story of supersymmetry the number of
cation in superstring theory. known nontrivial supersolutions in electrodynamics and supergrav-
_In this paper we consider one very natural way to cOM- is very small. Nontrivial supergravity solutions cannot be ob-
bine the Kerr spinning particle and superparticle models iNajned by a supergauge transformation from the corresponding
such a manner that the superparticle plays the role of gnown solutions of Einstein’s gravity. The only nontrivial super-

black-hole (BH) solution known to us is a supergeneralization of
the Reissner-Nordstno solution given by Aichelburg and ®an
*Email address: grg@ibrae.ac.ru [20].
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which may be expressed in oblate spheroidal coordirmates The Kerr theoreni2,6,21] allows one to describe the geo-
as desic and shear-free PN congruences in twistor terms via the
function Y(x) which is a solution of the equatidn
T=r+iacow. 2 F(Y,\1,NA5)=0, F being an analytical function. The com-
S . o ~ plex radial distancer may be expressed as=—dF/dY.
It has a ringlike singularity = cost=0 which is a branch line  singular regions are defined as caustics of the congruence
of Kerr geometry. The space is covered by two sheets corresatisfying the system of equatiofis=0, dF/dY=0.

sponding to the positive and negative values ofhe func- For the Kerr congruence the functiéhcan be expressed
tion r may also be represented as a complex radial distanoga parameters of the complex world lixg(7) [6,9,2]
T = VX Xon) C—XY), a=1,23, 3 F=(\=ADKAZ= (2= ADKAS, ®

from the complex poinky=(0,0ja). It involves a complex WhereK=[d,xy(7)]4;, an‘_jkovkcz) are values of the twistor
interpretation of the Kerr solution, initiated by Lind and coordinates on the world liney(7). The resulting functior
Newman([8], in which Kerr geometry is represented as aiS quadratic inY and the solutionY(x) may be given in
retarded-time field generated by a “complex point source”explicit form. _

which propagates in complex Minkowski spac#1* along a Therefore, the Kerr solution may be represented as a
complex “world line” Xio(T) (i=0,1,2,3), parametrized by a retarde’(,j-tlme f|elq crgated by a mysterlous “complex pomt
complex time parametef:tﬂg:xg(ﬁ' This interpreta- source” propagating in the auxiliary complex Minkowski

tion is also suggested by the analysis of the field of principa’lspaceCM4'
null directionsk which is geodesic and shear free.

An important role in this construction is played by com- IIl. GEOMETRY GENERATED
plex light cones, whose apexes lie on the complex “world BY THE SUPER WORLD LINE.

line” xo(7). The complex light cone Now we would like to generalize this complex retarded-

i Wi — time construction to the case of at complex “supersource”
K={x:x=xo(7)+ o . {'} (4 propagating along a super world line

may be split into two families of null planes: “right” Xi( T):XB(T)_iggig_ﬂggig_, 4(7), g_ir( 7). (9
(yYr=const; ¢ variable and “left” (  =const; g vari- o ] . ]
able. The rays of the PN congruenkéx) of Kerr geometry ~ Similarly to the above “real slice” we introduce a “B slice”
are the tracks of these complex null plarigght or lefy on ~ @s @ “body” of superspacg20], where the nilpotent part of
the real slice of Minkowski spacks,9,21. PN congruence x' is equal to zero. The “real slice” is a real subset of the “B
propagates from a “negative” sheet of three-space ontglice.” The real_shcie condition(6) takes now .the forns?
“positive” one crossing the disk spanned by the Kerr singu-=[Xi—Xi(7)][X' = Xg(7)]=0. Selecting the nilpotent parts
lar ring. In the null coordinatesi=(z+t)/\2, v=(z—t)/ of this equation we obtain the above real slice conditi®n

V2, £=(x+iy)IV2, E=(x—iy)/\2 we have and the B-slice conditions

k=kidX=P~3(du+Ydé+YdE-YYdv),  (5) X=X )00 £ = Lo 6)=0, -
T 2

whereY(x) is a complex projective spinor fief= 2, * (60f~{06)"=0. (1D

_12

=1. - ) . Equation(10) may be rewritten using Ed4) in the form

The condition for a complex light cone to have a real slice _ _ _
s (0°0100l "= L0100 0 PPogedP =0, (12
[Xx=xo(7)]?=0, 6 which yields

wherex is a real point. In the rest frame and with gaugﬁe Y 0=0, y{=0, (13)

=7 this equation may be split as a complex retarded-time

equation which in turn is_a condition of proportionality ﬂthe com-

_ g muting spinorsig(x) and anticommuting spinorg and ¢,
t—7=1=—(X—Xgi)Xo- (7)  providing the left null superplanes to reach the B slice. Tak-

ing into account thayy>=Y(x), ¢'=1 we obtain
It fixes the relation Im= o=acos(#) between the imaginary g v (), ¥

part of the complex time and a family of the null rays with B2=Y(x) 9. 9= 0ty 2=Y(x)7L Te=7lye
polar directiong, ¢. (x) 6% i L (& ¢ éVw(iél)

3The three parametep, )\l=u+YZ No,=¢&—Yuv are projective
’Here we use the spinor notation of RE2Z]. twistor coordinates.
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It also gives thatd 6= ¢ =0, and Eq.(11) is satisfied Starting from tetrad form of the Kerr solutions?
automatically. =2e'e?+2e%*, where

Therefore, the B-slice condition fixes a correspondence

= 1_dqée = b By 2_dz_Vd
between the coordinate®, ¢ and twistor null planes form- e =d¢=Ydv =dvio; lﬂdX/\/z’ e=d{—Ydy

ing the Kerr congruence, and consequently the coorditiate = dy o pdX /2, (18
of the super world line must be engaged partially to provide

a B slice and parametrize the “left” complex planes and the e3=du+Ydé+Ydé—YYdo= wa_@xi/\/i (19)
null rays of the Kerr congruence. The conjugate sector also ' '

gives °=Y(x)6%; however, the coordinate of the super e*=—gyoye’—he’, (20)

world line { remains independent, and can be left as an ar- ) )
bitrary function of time* Therefore, the roles of the chiral a@nd using the expressions
and antichiral Grassmann coordinates of the super world line . R I B
are to be divided. dx'=dx +i(6'¢Y) (dvipa’ H)AY+i(60* L) (Yo' dyip)dY

J’he retarded~time equatio(r?) takes the formt—T=R +i6_i( ol aY%dY, 21)
=1+ 7, where R=—(x;—Xg;)Xp is a superdistance. The
“body part” of this equation satisfies the above relati@; obtained from the coordinate transformati¢hg) under con-
T=r7— 7 is a supertime containing the nilpotent term straints (14), and also substitutiolR— T, one obtains the

L - following tetrad:
7=i100°0—i¢(7)a°0. (15 L L
e'l=el+(A—Clohdy, e'?=e?+AdY, (22

In the stationary case,=(1,0,0,0),.=0 we have, on the B

slice, e'3=e3—C391dY, e'*=dv+he’s, (23
R=r+iacos+ifc’C —iz(t)o%6. (16) wheredY=R'(Pe'-Pe?®), and

The corresponding supergeneralization of the Kerr theorem A=i\2(6'¢Y), C=iel({a'dyy), (24

may be achieved by substitution of the super world line _ _ L

Xo(7) instead ofxy(7) in the functionF. As a result one can h=m(ReR™1)/P3, P=\2"4(1+YY). (25)

obtain a superfieltY (x) which on the B slice takes the usual ) )
form since all the nilpotent terms disappear. From the KerA\S a result we obtain the metric of a super black hov
theorem one obtains the general expression for superdistancee’ "€’ “+e’“e’” with broken four-dimensional supersym-

out of a B slice, metry. For parameters of spinning particles it corresponds to
a specific state of a “black hole” without horizons and very
R=—dF/dY="—i[x—x\(n]{(Do, far from extreme. o
This derivation of a super Kerr metric is similar to the
i) +iZ(7)a' 0100 —L0i6), first derivation of the Kerr-Newman solution by complex

shift from the Reissner-Nordstm metric given by Newman

which may be useful when applying tk@ntichiral differen- and collaborator$24]. The first use of a complex shift in
tial operatorsD D. [18,22. scalar electrodynamics is traced back to Appel who discov-
e ered the potentiaéRe(1f) characterized by a typical Kerr
singularity and twofoldedness of space. The first use of a
supershift in electrodynamics was considered in the recent
One can note that the Kerr solution is a particular solutiorwork by Tugai and Zheltukhifil8]. As a result a supermul-
of supergravity with vanishing spin-3/2 field, and that in thetiplet of Maxwell fields was generated from the Coulomb
stationary cas,=(1,0,0,0),theZ=0 solution with a super- Solution. _
source(9) can be obtained from the Kerr solution by a su- Therefore, at the moment there are several known appli-

IV. SUPERSHIFT OF THE KERR SOLUTION

pershift cations of the method in consideration. For example, the sim-
plest interesting new solutions can be obtained by simulta-
X=X +i0c ¢ —itc' 0, =0+, 60 =0+, neously performing the complex shift and supershift to the

(17) Coulomb solution in flat space. Similarly, a supergeneraliza-
tion of the Kerr-Newman solution leading to a supermultiplet
which is a “trivial” supergauge transformation in supergrav- 0f Maxwell fields on the Kerr background may be obtained,
ity. However, the subsequent impositiof @ B slice con- as Well as a supergeneralization of the Kerr-Sen solution.
straint is a nonlinear operation breaking four-dimensional su-
persymmetry14,23,23. As a result the arising spin-3/2 field V. SUPERSHIFT OF THE KERR-SEN SOLUTION
cannot be gauged away. TO DILATON-AXION GRAVITY

The Kerr-Sen solution, a generalization of the Kerr solu-
. L tion to low energy string theorf11], may be written in the
“The coordinate®*, 6%, and ¢! are independent too. form [7]
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A2, — 262~ PoIgTg2 4 288, (26 dY=R"*(Pe'~Pye?), 39
where _
~ o A=iN2(617), Ci=ied({a o), (40
el=(P2)"'dY, e?=(Pz)"tdY, (27) | '
e3=p~ted, (28) Hgi=e*®"®IMReR YP3; P=(1+YY)/\2. (41
et=dr+iaP~3(YdY-YdY)+(Hg —1/2)€3, (29
e 2" %=1+ (Q¥M)ReR 1. (42
and
o ‘ e 2AP—Dg) (77— 1
Hai=Mr/Zg, Zqi=e (Zz)~% (30 VI. CONCLUSION
e AP=Po =14 (Q%2M)(Z+2Z), Z =T. (31 As we pointed out in the Introduction, Kerr geometry con-

_ tains stringlike structures and one of them is the Kerr singu-
The field of principal null directions i®3. Following Eq. lar ring. The gravitational field near this ring is similat] to
(6.2) of Ref.[2] this tetrad is related to the Kerr-Schild tetrad the field around a heterotic striig1]. In super Kerr geom-

(18),(19),(20) as follows: etry we find some extra suggestions of this relationship. In
_ _ the presented super-black-hole metrics the four-dimensional
el=el—PIpye?, e?=e?—P 1P.€?, (32)  supersymmetry is broken because of the nonlinear realization

of supersymmetry caused by B-slice constraints. However,
‘e3=plgd (33 there survives2,00 supersymmetry based on the complex
time parameter and anticommuting superpartneés and
e‘=Pel,+ Pyelt+ Pye’— PyPyP 1ed. (34 6. Itis known from the analysis of the Kerr theord21]

that only an analytic dependence in the even funckigir)
Therefore the Kerr-Sen metri@6) may be reexpressed in a is admissible. On the other hand, during the above consider-
form containing the Kerr-Schild tetrad?®, dilaton factor ation we did not meet the demands for the Grassmann pa-
e 2(®*=®0) and a deformed function rameter{(7) to be analytic in7. It means that the arising
H. = he2(®-Pg) (35 (2,00 superfields can depend anand 7, leading to both
dil ' right and left modes in the fermionic sector that must induce

instead of the functioh in the tetrad vectoe® given by Eq.  raveling waves along the Kerr singular ring.
(20). It has also to be noted that for the known parameters of

It was shown in Ref[7] that the field of principal null SPiNning particles the angular momentum is very high, re-
directionse® survives in the Kerr-Sen solution and retains 927ding the mass parameter, and the corresponding black

the property of being geodesic and shear free. It means thiP!eS are to be in a specific state. .. which is neither
the Kerr theorem is applicable to this solution too, as well as2lack” and nor ‘hole...™ [25]. In this case the ringlike
the above geometrical construction if the tetrad is expresseg"gularity is naked, and space is branched on two sheets,
in Cartesians coordinatesy,z,t. The corresponding “su- >0 andr <0, respectively. There appears a problem of the
. L S e~ real source of the Kerr solution in addition to the mysterious
pershifted” solution is obtained by the substitutiBa-r in " uton | . ysterou

- . ) complex supersource considered above.
the expression for the dilaton factor and by using the “su- P P

. . X To avoid this twofoldedness the “negative” sheet of
Fs)i(;r;:(lgtg)d(%K)e(g;f)Schlld tetrad22),(23),(24) in the expres- space is truncated and a matter source is placed on the disk

S = find that metric is ai b r=0 spanned by the Kerr singular ring. Such disklike or
ummarizing, we fin at metric 1S given by membranelike sources of the Kerr solution were considered

e 0a—2P-Dg) a2 13414 _a—2(P-®g) in Einstein’s gravity[3,5,26,27, as well as in low energy
dsﬁ" 2e vereth2eegit21e "l string theory{7,12]. However, the analysis show8,5] that
X (Pye't+Pye’2—P,PyP te'3)e’ 3P, (36)  very exotic properties of material are necessary to provide a
continuity of metric by crossing the disk. It was obtained that
where the Kerr disk has to be in a rigid relativistic rotation and built

. _ of material having a pseudovacuum character, zero energy
e'l=el'+(A-CohdY, e'?=e?+AdY, (37  density in a corotating coordinate systémihere is no clas-
sical matter possessing this property, and some attention was

e'3=e3—C3p1dY, eji=dv+Hge'3 (38)  also paid to a possible role of quantum effel@6].
Since supersymmetry takes an intermediate position be-
and wheree? are given by Eqs(18),(19),(20), and also tween the classical and quantum regions, one could expect

5The definition ofHg; in Ref. [7] is different and contains an  5A more complete list of references to the problem of the Kerr
extra factor of two. source can be found in Re®].
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that in some cases it could provide the necessary pseudo- ACKNOWLEDGMENTS
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