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Kerr spinning particle, strings, and superparticle models

A. Burinskii*
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A combined model of the Kerr spinning particle and superparticle is considered. The structure of Kerr
geometry is presented in a complex form as being created by a complex source. A natural supergeneralization
of this construction is obtained corresponding to a complex ‘‘supersource.’’ Performing a supershift to the Kerr
and Kerr-Sen solutions we obtain metrics of supergravity black holes with a nonlinear realization of broken
supersymmetry.@S0556-2821~98!00204-5#

PACS number~s!: 04.70.Bw, 04.65.1e, 11.25.2w, 11.30.Pb
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I. INTRODUCTION

It was mentioned about 30 years ago that Kerr geom
displays some remarkable features suggesting certain
tionships with the spinning elementary particles. In partic
lar, the gyromagnetic ratio of the Kerr-Newman solution
the same as that of the Dirac electron. This fact stimula
treatment of the models of spinning particles based on K
Newman geometry@1–6#. Some stringlike structures wer
obtained in Kerr geometry. The first one is connected wit
singular ring of the Kerr solution@6,7#. Two others are
linked with a complex representation of Kerr geometry~ini-
tiated by Lind and Newman@8#! in which the Kerr-Newman
solution is considered as a retarded-time field generated
mysterious complex source propagating along a comp
world line. It was mentioned@9# that the complex world line
is really a world sheet or a special type of string. The strin
boundary conditions for this complex world line are co
nected with a third stringy structure of Kerr geometry—
orbifold @9#.

A new and a very important period was started by Witt
@10# who pointed out the role of black holes in string theo
and also especially with the paper by Sen@11# who gave a
generalization of the Kerr solution to low energy strin
theory.

It was shown@7# that near the Kerr singular ring the Ker
Sen solution acquires a metric similar to the field aroun
heterotic string. Recently, much attention has also been
to multidimensional Kerr solutions and to a treatment
black holes as fundamental string states@11,12#, leading to a
conclusion, suggested from different points of view, th
some black holes should be treated as elementary part
@13#.

On the other hand, after obtaining supersymmetry, g
attention has been paid to the models of spinning parti
based on the Grassmann anticommuting parameters~Volkov
and Akulov @14#, Casalbuoni@15#, Brink and Schwarz@16#,
and others@17,18#, which has also found an important app
cation in superstring theory.

In this paper we consider one very natural way to co
bine the Kerr spinning particle and superparticle models
such a manner that the superparticle plays the role o
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‘‘source’’ of the supergeneralized Kerr geometry. Our tre
ment is based on the formalism by Debney, Kerr, and Sc
@2# adopted to the above-mentioned complex representa
of Kerr geometry.

The main idea of this work is extremely simple: to repla
the mysterious complex source of Kerr geometry by a co
plex supersource which can be obtained by an extra su
shift.

Tugai and Zheltukhin@18# have recently shown that th
application of the supershift to Coulomb solution in a fl
space gives rise to a Maxwell supermultiplet of fields. On
other hand it was shown by Appel as early as in 1887@19#
that a complex shift yields a ringlike singularity and speci
Kerr’s twofoldedness of space. Therefore, on the basis
these examples one can mention that the methods of a c
plex shift and supershift have much in common mathem
cally, though they lead to very different physical cons
quences. In this paper examples of the simultane
application of both above transformations to the Kerr and
the Kerr-Sen solutions are given.1 As a result we derive the
metrics of rotating super black holes with broken fou
dimensional supersymmetry generated by a superpar
source.

II. COMPLEX STRUCTURE OF THE KERR SOLUTION

Starting from the Kerr-Schild form of metricgik5h ik
12hkikk ; where h ik5diag~21,1,1,1! is the auxiliary
Minkowski metric in Cartesian coordinates (t,x,y,z), one
can see that the main peculiarities of the Kerr solution
connected with a form of the harmonic scalar functionh and
vector fieldk of principal null directions~PN congruence!.
The functionh is the Appel potential

h5mRe~1/ r̃ !, ~1!

1In spite of a quite long story of supersymmetry the number
known nontrivial supersolutions in electrodynamics and superg
ity is very small. Nontrivial supergravity solutions cannot be o
tained by a supergauge transformation from the correspon
known solutions of Einstein’s gravity. The only nontrivial supe
black-hole~BH! solution known to us is a supergeneralization
the Reissner-Nordstro¨m solution given by Aichelburg and Gu¨ven
@20#.
2392 © 1998 The American Physical Society
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57 2393KERR SPINNING PARTICLE, STRINGS, AND . . .
which may be expressed in oblate spheroidal coordinatesr ,u
as

r̃ 5r 1 iacosu. ~2!

It has a ringlike singularityr 5cosu50 which is a branch line
of Kerr geometry. The space is covered by two sheets co
sponding to the positive and negative values ofr . The func-
tion r̃ may also be represented as a complex radial dista

r̃ 5A~xa2x0a!~xa2x0
a!, a51,2,3, ~3!

from the complex pointx05(0,0,ia). It involves a complex
interpretation of the Kerr solution, initiated by Lind an
Newman @8#, in which Kerr geometry is represented as
retarded-time field generated by a ‘‘complex point sourc
which propagates in complex Minkowski spaceCM4 along a
complex ‘‘world line’’ x0

i (t) ( i 50,1,2,3), parametrized by
complex time parametert5t1 is5x0

0(t). This interpreta-
tion is also suggested by the analysis of the field of princi
null directionsk which is geodesic and shear free.

An important role in this construction is played by com
plex light cones, whose apexes lie on the complex ‘‘wo
line’’ x0(t). The complex light cone

K5$x:x5x0
i ~t!1cR

asaȧ
i

c̄L
ȧ% ~4!

may be split into two families of null planes: ‘‘right’’
(cR5const; c̄L variable! and ‘‘left’’ ( c̄L5const; cR vari-
able!. The rays of the PN congruencek(x) of Kerr geometry
are the tracks of these complex null planes~right or left! on
the real slice of Minkowski space@6,9,21#. PN congruence
propagates from a ‘‘negative’’ sheet of three-space o
‘‘positive’’ one crossing the disk spanned by the Kerr sing
lar ring. In the null coordinatesu5(z1t)/A2, v5(z2t)/
A2, j5(x1 iy)/A2, j̄ 5(x2 iy)/A2 we have

k5kidxi5P21~du1 Ȳdj1Ydj̄ 2Y Ȳdv !, ~5!

whereY(x) is a complex projective spinor fieldY5 c̄ 2̇, c̄ 1̇

51.2

The condition for a complex light cone to have a real sl
is

@x2x0~t!#250, ~6!

wherex is a real point. In the rest frame and with gaugex0
0

5t this equation may be split as a complex retarded-ti
equation

t2t5 r̃ 52~xi2x0i !ẋ0
i . ~7!

It fixes the relation Imt5s5acos(u) between the imaginary
part of the complex time and a family of the null rays wi
polar directionu,f.

2Here we use the spinor notation of Ref.@22#.
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The Kerr theorem@2,6,21# allows one to describe the geo
desic and shear-free PN congruences in twistor terms via
function Y(x) which is a solution of the equation3

F(Y,l1 ,l2)50, F being an analytical function. The com
plex radial distancer̃ may be expressed asr̃ 52dF/dY.
Singular regions are defined as caustics of the congrue
satisfying the system of equationsF50, dF/dY50.

For the Kerr congruence the functionF can be expressed
via parameters of the complex world linex0(t) @6,9,21#

F[~l12l1
0!Kl2

02~l22l2
0!Kl1

0 , ~8!

whereK5@]tx0
i (t)#] i , andl1

0 ,l2
0 are values of the twistor

coordinates on the world linex0(t). The resulting functionF
is quadratic inY and the solutionY(x) may be given in
explicit form.

Therefore, the Kerr solution may be represented a
retarded-time field created by a mysterious ‘‘complex po
source’’ propagating in the auxiliary complex Minkows
spaceCM4.

III. GEOMETRY GENERATED
BY THE SUPER WORLD LINE.

Now we would like to generalize this complex retarde
time construction to the case of at complex ‘‘supersourc
propagating along a super world line

X0
i ~t!5x0

i ~t!2 ius i z̄ 1 i zs i ū , za~t!, z̄ ȧ~t !. ~9!

Similarly to the above ‘‘real slice’’ we introduce a ‘‘B slice’
as a ‘‘body’’ of superspace@20#, where the nilpotent part o
xi is equal to zero. The ‘‘real slice’’ is a real subset of the ‘‘
slice.’’ The real slice condition~6! takes now the forms2

5@xi2X0i(t)#@xi2X0
i (t)#50. Selecting the nilpotent part

of this equation we obtain the above real slice condition~6!
and the B-slice conditions

@xi2x0
i ~t!#~us i z̄ 2zs i ū !50, ~10!

~us z̄ 2zs ū !250. ~11!

Equation~10! may be rewritten using Eq.~4! in the form

~uas iaȧ z̄ ȧ2zas iaȧ ū ȧ!cbsbḃ
i

c̄ ḃ50, ~12!

which yields

c̄ ū 50, c̄ z̄ 50, ~13!

which in turn is a condition of proportionality of the com
muting spinorsc̄ (x) and anticommuting spinorsū and z̄ ,
providing the left null superplanes to reach the B slice. Ta
ing into account thatc̄ 2̇5Y(x), c̄ 1̇51 we obtain

ū 2̇5Y~x! ū 1̇, ū ȧ5 ū 1̇c̄ ȧ, z̄ 2̇5Y~x! z̄ 1̇, z̄ ȧ5 z̄ 1̇c̄ ȧ.
~14!

3The three parametersY, l15u1Y j̄ , l25j2Yv are projective
twistor coordinates.
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2394 57A. BURINSKII
It also gives thatū ū 5 z̄ z̄ 50, and Eq.~11! is satisfied
automatically.

Therefore, the B-slice condition fixes a corresponde
between the coordinatesū , z̄ and twistor null planes form-
ing the Kerr congruence, and consequently the coordinatz̄
of the super world line must be engaged partially to prov
a B slice and parametrize the ‘‘left’’ complex planes and t
null rays of the Kerr congruence. The conjugate sector a
gives ua5 Ȳ(x)u1; however, the coordinate of the sup
world line z remains independent, and can be left as an
bitrary function of time.4 Therefore, the roles of the chira
and antichiral Grassmann coordinates of the super world
are to be divided.

The retarded time equation~7! takes the formt2T5R̃

5 r̃ 1h, where R̃52(xi2X0i)Ẋ0
i is a superdistance. Th

‘‘body part’’ of this equation satisfies the above relation~7!;
T5t2h is a supertime containing the nilpotent term

h5 ius0 z̄ 2 i z~t!s0 ū . ~15!

In the stationary caseẋ0
i 5(1,0,0,0),ż50 we have, on the B

slice,

R̃5r 1 iacosu1 ius0 z̄ 2 i z~t!s0 ū . ~16!

The corresponding supergeneralization of the Kerr theo
may be achieved by substitution of the super world l
X0(t) instead ofx0(t) in the functionF. As a result one can
obtain a superfieldY(x) which on the B slice takes the usu
form since all the nilpotent terms disappear. From the K
theorem one obtains the general expression for superdist
out of a B slice,

R̃52dF̂/dY5 r̃ 2 i @xi2x0
i ~t!#ż~t!s i ū

2 i @ ẋ0
i ~t!1 i ż~t !s i ū #~us i z̄ 2zs i ū !,

which may be useful when applying the~anti!chiral differen-
tial operatorsDa ,D̄ ȧ @18,22#.

IV. SUPERSHIFT OF THE KERR SOLUTION

One can note that the Kerr solution is a particular solut
of supergravity with vanishing spin-3/2 field, and that in t
stationary caseẊ05(1,0,0,0),theż50 solution with a super-
source~9! can be obtained from the Kerr solution by a s
pershift

x8 i5xi1 ius i z̄ 2 i zs i ū , u85u1z, ū 85 ū 1 z̄ ,
~17!

which is a ‘‘trivial’’ supergauge transformation in supergra
ity. However, the subsequent imposition of a B slice con-
straint is a nonlinear operation breaking four-dimensional
persymmetry@14,23,22#. As a result the arising spin-3/2 fiel
cannot be gauged away.

4The coordinatesu1, ū 1̇, and z̄ 1̇ are independent too.
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Starting from tetrad form of the Kerr solutionds2

52e1e212e3e4, where

e15dj2Ydv5] Ȳcs i c̄dxi /A2, e25d j̄ 2 Ȳdv

5]Ycs i c̄dxi /A2, ~18!

e35du1 Ȳdj1Ydj̄ 2Y Ȳdv5cs i c̄dxi /A2, ~19!

e452] Ȳ]Ye32he3, ~20!

and using the expressions

dx8 i5dxi1 i ~u1 z̄ 1̇!~] Ȳcs i z̄ !dȲ1 i ~u1 z̄ 1̇!~cs i]Yc̄ !dY

1 i ū 1̇~zs i]Yc̄ !dY, ~21!

obtained from the coordinate transformations~17! under con-
straints ~14!, and also substitutionR̃→ r̃ , one obtains the
following tetrad:

e815e11~A2C1 ū 1̇!dY, e825e21AdȲ, ~22!

e835e32C3 ū 1̇dY, e845dv1 h̃e83, ~23!

wheredY5R̃21(Pe12PȲe3), and

A5 iA2~u1 z̄ 1̇!, Ca5 iei
a~zs i]Yc̄ !, ~24!

h̃5m~ReR̃21!/P3, P5A221~11Y Ȳ!. ~25!

As a result we obtain the metric of a super black holeds2

5e81e821e83e84 with broken four-dimensional supersym
metry. For parameters of spinning particles it correspond
a specific state of a ‘‘black hole’’ without horizons and ve
far from extreme.

This derivation of a super Kerr metric is similar to th
first derivation of the Kerr-Newman solution by comple
shift from the Reissner-Nordstro¨m metric given by Newman
and collaborators@24#. The first use of a complex shift in
scalar electrodynamics is traced back to Appel who disc
ered the potentialeRe(1/r̃ ) characterized by a typical Ker
singularity and twofoldedness of space. The first use o
supershift in electrodynamics was considered in the rec
work by Tugai and Zheltukhin@18#. As a result a supermul
tiplet of Maxwell fields was generated from the Coulom
solution.

Therefore, at the moment there are several known ap
cations of the method in consideration. For example, the s
plest interesting new solutions can be obtained by simu
neously performing the complex shift and supershift to
Coulomb solution in flat space. Similarly, a supergenerali
tion of the Kerr-Newman solution leading to a supermultip
of Maxwell fields on the Kerr background may be obtaine
as well as a supergeneralization of the Kerr-Sen solution

V. SUPERSHIFT OF THE KERR-SEN SOLUTION
TO DILATON-AXION GRAVITY

The Kerr-Sen solution, a generalization of the Kerr so
tion to low energy string theory@11#, may be written in the
form @7#
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dsdil
2 52e22~F2F0! ẽ1 ẽ212 ẽ3 ẽ4, ~26!

where

ẽ15~PZ!21dY, ẽ25~PZ̄!21dȲ, ~27!

ẽ35P21e3, ~28!

ẽ45dr1 iaP22~ ȲdY2YdȲ!1~Hdil21/2!e3, ~29!

and5

Hdil5Mr /Sdil , Sdil5e22~F2F0!~ZZ̄!21, ~30!

e22~F2F0!511~Q2/2M !~Z1 Z̄ !, Z21[ r̃ . ~31!

The field of principal null directions isẽ3. Following Eq.
~6.1! of Ref. @2# this tetrad is related to the Kerr-Schild tetra
~18!,~19!,~20! as follows:

ẽ15e12P21PȲe3, ẽ25e22P21PYe3, ~32!

ẽ35P21e3, ~33!

ẽ45Pedil
4 1PYe11PȲe22PYPȲP21e3. ~34!

Therefore the Kerr-Sen metric~26! may be reexpressed in
form containing the Kerr-Schild tetradea, dilaton factor
e22(F2F0), and a deformed function

Hdil5he2~F2F0!, ~35!

instead of the functionh in the tetrad vectore4 given by Eq.
~20!.

It was shown in Ref.@7# that the field of principal null
directionse3 survives in the Kerr-Sen solution and retai
the property of being geodesic and shear free. It means
the Kerr theorem is applicable to this solution too, as well
the above geometrical construction if the tetrad is expres
in Cartesians coordinatesx,y,z,t. The corresponding ‘‘su-
pershifted’’ solution is obtained by the substitutionR̃→ r̃ in
the expression for the dilaton factor and by using the ‘‘s
pershifted’’ Kerr-Schild tetrad~22!,~23!,~24! in the expres-
sions~32!,~33!,~34!.

Summarizing, we find that metric is given by

dsdil
2 52e22~F2F0!e81e8212e83edil8412@12e22~F2F0!#

3~PYe811PȲe822PYPȲP21e83!e83/P, ~36!

where

e815e11~A2C1 ū 1̇!dY, e825e21AdȲ, ~37!

e835e32C3 ū 1̇dY, edil845dv1Hdile83, ~38!

and whereea are given by Eqs.~18!,~19!,~20!, and also

5The definition ofHdil in Ref. @7# is different and contains an
extra factor of two.
at
s
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dY5R̃21~Pe12PȲe3!, ~39!

A5 iA2~u1 z̄ 1̇!, Ca5 iei
a~zs i]Yc̄ !, ~40!

Hdil5e2~F2F0!MReR̃21/P3; P5~11Y Ȳ!/A2. ~41!

e22~F2F0!511~Q2/M !ReR̃21. ~42!

VI. CONCLUSION

As we pointed out in the Introduction, Kerr geometry co
tains stringlike structures and one of them is the Kerr sin
lar ring. The gravitational field near this ring is similar@7# to
the field around a heterotic string@11#. In super Kerr geom-
etry we find some extra suggestions of this relationship.
the presented super-black-hole metrics the four-dimensio
supersymmetry is broken because of the nonlinear realiza
of supersymmetry caused by B-slice constraints. Howe
there survives~2,0! supersymmetry based on the compl
time parametert and anticommuting superpartnersū 1̇ and
u1. It is known from the analysis of the Kerr theorem@9,21#
that only an analytic dependence in the even functionx0(t)
is admissible. On the other hand, during the above consi
ation we did not meet the demands for the Grassmann
rameterz(t) to be analytic int. It means that the arising
~2,0! superfields can depend ont and t̄ , leading to both
right and left modes in the fermionic sector that must indu
traveling waves along the Kerr singular ring.

It has also to be noted that for the known parameters
spinning particles the angular momentum is very high,
garding the mass parameter, and the corresponding b
holes are to be in a specific state ‘‘ . . . which is neither
‘black’ and nor ‘hole’ . . . ’’ @25#. In this case the ringlike
singularity is naked, and space is branched on two sheer
.0 andr ,0, respectively. There appears a problem of
real source of the Kerr solution in addition to the mysterio
complex supersource considered above.

To avoid this twofoldedness the ‘‘negative’’ sheet
space is truncated and a matter source is placed on the
r 50 spanned by the Kerr singular ring. Such disklike
membranelike sources of the Kerr solution were conside
in Einstein’s gravity@3,5,26,27#, as well as in low energy
string theory@7,12#. However, the analysis shows@3,5# that
very exotic properties of material are necessary to provid
continuity of metric by crossing the disk. It was obtained th
the Kerr disk has to be in a rigid relativistic rotation and bu
of material having a pseudovacuum character, zero ene
density in a corotating coordinate system.6 There is no clas-
sical matter possessing this property, and some attention
also paid to a possible role of quantum effects@26#.

Since supersymmetry takes an intermediate position
tween the classical and quantum regions, one could ex

6A more complete list of references to the problem of the K
source can be found in Ref.@9#.
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that in some cases it could provide the necessary pse
vacuum character of matter, especially taking into acco
the remarkable cancellation contributions of fermionic a
bosonic fields. It gives rise to a hope that the old problem
the source of the Kerr solution could find its resolution in
composite source built of a supermultiplet of matter fiel
Obtaining the corresponding real sources compatible w
Kerr supergeometry is a very important problem in futu
investigations.
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