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Trace-anomaly-induced effective action for 2D and 4D dilaton coupled scalars
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The spherically symmetric reduction of higher-dimensional Einstein-scalar theory leads to a lower-
dimensional dilatonic gravity with a dilaton coupled scalar@for example, from a four-dimensional~4D! to a 2D
system#. We calculate the trace anomaly and anomaly-induced effective action for 2D and 4D dilaton coupled
scalars. The large-N effective action for 2D quantum dilaton-scalar gravity is also found. These 2D results may
be applied to the analysis of 4D spherical collapse. The role of new, dilaton-dependent terms in the trace
anomaly for 2D black holes and Hawking radiation is investigated in some specific models of dilatonic gravity
which represent a modification of the Callan-Giddings-Harvey-Strominger model. The conformal sector for 4D
dilatonic gravity is constructed. The quantum back reaction of dilaton coupled matter is briefly discussed~it
may lead to an inflationary universe with a nontrivial dilaton!. @S0556-2821~98!02804-5#

PACS number~s!: 04.60.Kz, 04.70.Dy, 11.25.Hf
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I. INTRODUCTION

There are motivations to study two-dimensional~2D!
dilatonic gravity models. First of all, it is often easier
study 2D models than their 4D analogues. Especially, it m
happen on the quantum level. For example, for a renorm
izable classically solvable dilaton gravity coupled with min
mal scalar matter, the problem of Hawking radiation and
back reaction of matter to a 2D black hole may be w
understood in the 1/N expansion@1#. Modifications of the
Callan-Giddings-Harvey-Strominger~CGHS! model and
Hawking radiation have been investigated in Refs.@2–4# and
many other works~for a review, see@5#!. Second, some 2D
dilatonic gravities are string inspired ones. They may se
as a laboratory for better understanding string theory its
Third, if one starts from the 4D Einstein-scalar or 4
Einstein-Maxwell-scalar theory, then using a spherica
symmetric reduction anzatz@6# one obtains the action for on
of the 2D dilatonic gravity models with scalars. For examp
applying such an anzatz~13! to 4D Einstein-Maxwell-
minimal-scalar theory and integrating the angular mod
one gets

S52
1

16pGE d2xA2ge22f@R12~¹f!212e2f

22Q2e4f#1
1

2E d2xA2ge22f~¹x!2. ~1!

Hence, 4D spherically symmetric collapse may be und
stood in terms of 2D dilatonic gravity.
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Different from the CGHS model and its modifications, w
have the scalar field nonminimally coupled with a dilato
Then a generalization of the CGHS model and the study
Hawking radiation@7# in a generalized model in the large-N
approximation~then one has to considerN scalars in the
above model! requires the calculation of the trace anoma
for the dilaton coupled scalar.

Such a trace anomaly has been recently found for
above model in Ref.@8# and in the case of an arbitrar
dilaton-scalar coupling functionf (f) in @9#. The correspon-
dent trace-anomaly-induced effective action has also b
calculated@8,9#. ~Actually, the trace anomaly is proportiona
to theb2 coefficient of the Schwinger-De Witt expansion fo
which a general dilaton coupled scalar was found some t
ago, see Ref.@10#.!

The natural next step is to discuss the quantum gra
contributions to such an action and its applications to
black holes and Hawking radiation. The question of the
generalization is also of interest.

The present paper is devoted to the study of this circle
questions. In the next section we discuss the general m
of dilatonic gravity@11,12#. The trace anomaly and anomaly
induced effective action are calculated forN dilaton coupled
two-dimensional scalars in the general form and in the lar
N limit. ~The contribution of the quantum dilaton is als
included.! In the case when dilaton-scalar gravity is qua
tized, the one-loop divergent effective action is used to fi
the large-N nonlocal finite action. This action almost coin
cides with the anomaly-induced large-N action, as it should.

Section III is devoted to the investigation of 2D blac
holes in the modified CGHS model~we consider dilaton
coupled scalars!. The new, dilaton-dependent terms in th
trace anomaly make the problem much more complica
than for the minimal case. In particular, the theory is n
classically solvable anymore. A new black hole solution
purely induced theory is found. For some known black h
cases, Hawking radiation and black hole entropy are brie
discussed.
2363 © 1998 The American Physical Society
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In Sec. IV we calculate the trace anomaly and the indu
effective action for the dilaton coupled 4D scalar. The mo
vation to do so is similar to the 2D case. Let us start fro
higher-dimensional Einstein-scalar theory. After a sphe
cally symmetric reduction anzatz one is left with lowe
dimensional ~say 4D! dilatonic gravity with a dilaton
coupled scalar.

Section V is devoted to the formulation of the conform
sector for 4D dilatonic gravity. The classical solutions
such a theory describe quantum cosmology~with the back
reaction of matter!. One of the solutions for purely induce
theory may correspond to the inflationary Universe. In
Conclusion we give a summary and a list of the problems
future research.

II. ONE-LOOP EFFECTIVE ACTION IN THE LARGE- N
APPROXIMATION

We will start with dilaton gravity of the most genera
form @11,12# interacting with scalar matter:

S52E d2xA2gH 1

2
Z~f!gmn]mf]nf1C~f!R1V~f,x!

2
1

2
f ~f!gmn(

i 51

N

]mx i]nx iJ . ~2!

It includes a dilaton fieldf, N real dilaton coupled scalar
x i , and dilaton-dependent couplingsZ, C, f . The potentialV
is a function off andx i .

First of all we will be interested in the study of the on
loop divergent effective action for the above theory. We co
sider two different cases. Let in the theory~2! the dilatonf
and scalarsx i are the quantum fields, while the gravitation
field is the external field. Then one can apply the backgro
field method@13# and calculate the one-loop effective actio
@10# „see Eq.~41! of Ref. @10#…:

Gdiv52
1

2eE d2xA2gH S C9

Z
2

N11

6 D R1
V9

Z
2

N

f

]2V

]x2

1S f 82

2 f Z
2

f 9

2ZD ~¹lx i !~¹lx i !1S N f9

2 f
2

N f82

4 f 2
2

Z82

4Z2D
3~¹lf!~¹lf!1S N f8

2 f
2

Z8

2ZD DfJ , ~3!

wheree52p(n22) and we use dimensional regularizatio
The remarkable fact about the system~2! with C5V50

and the gravitational field being the classical one is that
system is a conformally invariant system. Then on the qu
tum level the conformal~or trace! anomalyT is given by

Gdiv5
1

n22E d2xA2gb2 , T5b2 . ~4!

From here one gets~see also@9#!
d
-

i-

l
f

e
r

-

l
d

.

e
n-

T5
1

24p H ~N11!R23S f 82

2 f Z
2

f 9

2ZD ~¹lx i !~¹lx i !

23S N f9

f
2

N f82

2 f 2
2

Z82

2Z2D ~¹lf!~¹lf!

23S N f8

f
2

Z8

Z D DfJ , ~5!

while for a purely scalar field~dilaton is classical! all terms
with Z in Eq. ~5! disappear@9#. For the special caseN51,
f (f)5e22f and no quantum dilaton,

T5
1

24p
$R26~¹lf!~¹lf!16Df%. ~6!

This trace anomaly was recently calculated in Ref.@8# using
the zeta-regularization method. The coefficient of the th
term in Eq. ~6! disagrees with the results of Ref.@8#. The
reasons for this disagreement were discussed in Ref.@9# ~we
are not using zeta regularization, but dimensional regular
tion!.

Making the conformal transformation of metricgmn

→e2sgmn in the trace anomaly, using relation

T5
1

Ag

d

ds
W@s#, ~7!

one can find anomaly-induced effective actionW@s#. In the
covariant, nonlocal form it may be represented as the follo
ing @9#:

W52
1

2E d2xA2gF c

2
R

1

D
R1F1~f!~¹lx i !~¹lx i !

1

D
R

1S F2~f!2
]F3~f!

]f D¹lf¹lf
1

D
R1RE F3~f!df G ,

~8!

where

c5
N11

24p
, F1~f!52

1

8p S f 82

f Z
2

f 9

Z D ,

F2~f!52
1

8p S N f9

f
2

N f82

2 f 2
2

Z82

2Z2D ,

F3~f!52
1

8p S N f8

f
2

Z8

Z D . ~9!

Note that for f 5e22f, Z50 @i.e., one has to omit all
Z-dependent terms in Eq.~9!# the effective action~8! was
calculated in Ref.@8#. Note also that actually it is very eas
to get the large-N limit of the effective action~8!. To do so
one only has to omitZ-dependent terms inF2(f), F3(f)
and the second term inc. In addition, if the dilaton is purely
classical one should putF150.

Let us consider now the theory with the action~2! as
quantum dilaton-matter gravity where all fieldsgmn , f, and
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57 2365TRACE-ANOMALY-INDUCED EFFECTIVE ACTION FOR . . .
x i are quantized ones. Using the background field met
@13#, gmn→gmn1hmn , f→f1w, wherehmn , w are quan-
tum fields, and the minimal gauge@11#

Sgf52
1

2E Cmnxmxn, ~10!

where xm52¹n h̄mn1(C8/C) ¹mw, Cmn52CAggmn ,

h̄mn5hmn2 1
2 gmnh, the one-loop effective action mayb

found. For pure dilaton gravity it was obtained in Ref.@11#
and later in Refs.@10,14#.

For dilaton-matter gravity with the classical action~2! the
complete result was obtained in Ref.@10# @~see Eqs.~31!,
~32!#:

Gdiv52
1

2eE d2xA2gH 242N

6
R1

2

C
V1

2

C8
V82

V,i i

f

1S C9

C
2

3C82

C2
2

C9Z

C82
1

N f9

2 f
2

N f82

4 f 2 D ~¹lf!~¹lf!

1S C8

C
2

Z

C8
1

N f8

2 f D DfJ . ~11!

Using Eq.~11! one can find the one-loop effective action f
any specific model.

For example, let us take

Z~f!54e22f, C~f!5e22f,

V~f,x!52, f ~f!5e22f ~12!

in the action~2!. Then the theory~2! with dilatonic couplings
~12! can be obtained~for N51) by using the spherically
symmetric reduction anzatz@6#

ds25gmndxmdxn1e22fdV2 ~13!

from 4D Einstein-scalar or 4D Einstein-Maxwell-scal
theory ~in the last case,V5222Q2e2f). Hence, in such a
case the action~2! with dilatonic couplings~12! may de-
scribe the radial modes of the extremal dilatonic black ho
in four dimensions@15#. In other words, 2D dilatonic black
holes may also describe 4D spherically symmetric collap

Using general expression~11! we may write the one-loop
effective action for the theory~12! ~keepingN an arbitrary
integer!

Gdiv52
1

2eE d2xA2gH 242N

6
R14e2f

1~N212!~¹lf!~¹lf!2NDfJ . ~14!

This theory is the one-loop renormalizable one. Note t
recently a very interesting attempt to calculate the one-l
effective action ~including the local and nonlocal finite
terms! for the model~12! was done in Ref.@16#. Unfortu-
nately, the result@16# includes a number of mistakes. In pa
ticular, the divergent part of the one-loop effective action
the same minimal gauge~10! of Ref. @11# disagrees with the
d

s

.

t
p

expression~14! which coincides~at least, in the gravitationa
sector! with the independent results of Refs.@11,10,14# in all
cases where such a comparison may be done. Hence
result of Ref.@16# contradicts those of Refs.@11,10,14# and
does not have the correct on-shell limit@17#. One of the
causes of this mistake is that for the calculation of the eff
tive action in the model~12! another dilatonic gravity clas
sically equivalent to Eq.~12! ~after conformal transformation
and dilaton rescaling! is used. However, it was proved i
Ref. @17# ~with an explicit example! that classically equiva-
lent 2D dilatonic gravities~in the sense of conformal trans
formation! are not quantum equivalent off shell. They lead
different divergent one-loop effective actions which coinci
only on shell.

Let us turn again to the general model~2!. In the large-N
limit from Eq. ~11! we get

Gdiv52
1

2eE d2xA2gH 2
N

6
R2

N

f

]2V

]x]x

1S N f9

2 f
2

N f82

4 f 2 D ~¹lf!~¹lf!1
N f8

2 f
DfJ .

~15!

Actually, the expression~15! is given by matter, matter-
graviton, and matter-dilaton loops. It may be considered
the source for the effective trace anomaly, as in Eq.~5!.
Integrating such a trace anomaly overs in the same way as
in Eq. ~7!, we get

W52
N

2pE d2xA2gF 1

48
R

1

D
R2

1

8
ln f R2

1

16p

f 82

f 2
~¹lf!

3~¹lf!
1

D
R1

1

2N f (i 51

N
]2V

]x i]x i
e~1/D!RG . ~16!

The expression~16! gives the large-N limit of the effective
action in quantum dilatonic gravity~2!. Note the appearanc
of a new nonlocal term related with the scalar potentialV ~if
it is present in the theory!. Notice thatV breaks the confor-
mal invariance of the scalar field. That is why it should n
be included to the system~2! when only scalars are quan
tized. Then a few more terms of the same structure as the
one in Eq.~16! may be expected in the strict calculation
the one-loop finite effective action in dilaton-scalar gravit

The action~8! should be used to take into account t
back reaction of the quantum dilaton-matter system to c
sical dilatonic gravity. On the same time the action~16!
should be added to the classical dilatonic matter-gravity
tion if one would like to take into account the back reacti
of quantum dilaton-matter gravity~in the large-N limit !. The
nonlocal actions~8!,~16! open the way to new generaliza
tions of models such as the CGHS model@1#, where one can
find new black hole solutions and~or! new terms in the
Hawking radiation. In the next section, we are going to d
cuss some simple properties of the above effective action
connection with 2D black holes.
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III. 2D BLACK HOLES AND HAWKING RADIATION

We start with a system where the dilaton gravity of sp
cial form @1# couples with the dilaton coupled scalar field

S05
1

2pE d2xA2gH e22f@R14gmn]mf]nf14l2#

2
1

2
f ~f!(

i 51

N

gmn]mx i]nx iJ . ~17!

We would like to consider the modifications of the CGH
model due to the back reaction of dilaton coupled scal
Hence, we calculate the effective action~8! for dilaton
coupled scalars in the large-N approximation~the gravita-
tional field is the classical field!:

W52
1

2E d2xA2gF N

48p
R

1

D
R2

1

8p S f 82

f
2 f 9D ~¹lx i !

3~¹lx i !
1

D
R2

N

16p

f 82

f 2
¹lf¹lf

1

D
R2

N

8p
ln f RG .

~18!

Hence the complete action of our theory is given by

S5S01W. ~19!

We treat this theory as a classical system. The backgro
scalar field is considered to be zero so we omit all sca
terms in the above expression.

In the conformal gauge

g6752
1

2
e2r, g6650, ~20!

the equations of motion are obtained by the variation o
g66, g67, andf:

05T665e22f@4]6r]6f22~]6f!2#

1
N

12
~]6

2 r2]6r]6r!

1
N

8 H ~]6f̃]6f̃ !r1
1

2

]6

]7
~]6f̃]7f̃ !J

1
N

8
$22]6r]6f̃1]6

2 f̃%1t6~x6!, ~21!

05T675e22f~2]1]2f24]1f]2f2l2e2r!

2
N

12
]1]2r2

N

8
]1f̃]2f̃2

N

4
]1]2f̃,

~22!

05e22f~24]1]2f14]1f]2f12]1]2r

1l2e2r!2
N f8

f H 1

16
]1~r]2f̃ !

1
1

16
]2~r]1f̃ !2

1

8
]1]2rJ . ~23!
-

s.

nd
r

r

Here

f̃5 ln f ~24!

andt(x6) is a function which is determined by the bounda
condition.

First we consider the large-N limit, where the classical
part can be ignored. Then the field equations become m
simple:

05
1

N
T66

5
1

12
~]6

2 r2]6r]6r!

1
1

8 H ~]6f̃]6f̃ !r1
1

2

]6

]7
~]6f̃]7f̃ !J

1
1

8
$22]6r]6f̃1]6

2 f̃%1t6~x6!, ~25!

05
1

N
T6752

1

12
]1]2r2

1

8
]1f̃]2f̃2

1

4
]1]2f̃,

~26!

05
1

16
]1~r]2f̃ !1

1

16
]2~r]1f̃ !2

1

8
]1]2r.

~27!

The functiont6(x6) can be absorbed into the choice of th
coordinate and we can choose

t6~x6!50. ~28!

Combining Eqs.~25! and ~26!, we obtain

2
1

3
~]6r!21

1

2
r~]6f̃ !22]6r]6f̃50, ~29!

i.e.,

]6f̃5
11A11 ~2/3! r

r
]6r

or

12A11 ~2/3! r

r
]6r. ~30!

This tells us that

f̃5E dr
16A11 ~2/3! r

r
. ~31!

Substituting Eq.~31! into Eq. ~27!, we obtain

]1]2H S 11
2

3
r D 3/2J 50, ~32!

i.e.,

r5
3

2$211@r1~x1!1r2~x2!#2/3% . ~33!
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Here r6 is an arbitrary function ofx65t6x. We can
straightforwardly confirm that the solutions~31! and ~33!
satisfy Eq.~26!. The scalar curvature is given by

R58e22r]1]2r

52
8

3

e23$211@r1~x1!1r2~x2!#2/3%

@r1~x1!1r2~x2!#4/3
r18~x1!r28~x2!.

~34!

Note that whenr1(x1)1r2(x2)50, there is a curvature
singularity. Especially if we choose

r1~x1!5
r 0

x1 , r2~x2!52
x2

r 0
, ~35!

there are curvature singularities atx1x25r 0
2 and a horizon

at x150 or x250. The asymptotic flat regions are given b
x1→1` (x2,0) or x2→2` (x1.0). Therefore we can
regardx6 as corresponding to the Kruskal coordinates
four dimensions.

In order to discuss the Hawking radiation~which is usu-
ally related with the trace anomaly@18#!, it is necessary to
find the exact vacuum not only at the classical level but e
at the quantum level. In the following, we determine t
function f̃5 lnf(f) in Eq. ~17! so that the linear dilaton
vacuum

r5f52
1

2
~ ln x11 ln x21 ln l2! ~36!

is an exact solution. Substituting Eq.~36! into Eq. ~22!, we
find

T665
N

16
@~f8!21f9#

l2

x1x2 50. ~37!

This shows that

f̃52 ln~f1c!. ~38!

Substituting Eq.~38! into Eq. ~23! we find that the constan
of the integration should vanish:c50, i.e.,

f ~f!5f2. ~39!

The solution~39! when substituted into Eq.~36! satisfies Eq.
~21!. If we divide the energy-momentum tensor into classi
and quantum parts, the Hawking radiation is given by s
stituting the classical solution into the quantum part~the part
proportional to N). When we substitute the shock wav
solution1

1The scalar fieldx i in Eq. ~17! cannot make the shock wave. He
we suppose that the dilaton gravity also couples with another, m
mal scalar field which appeared in the original CGHS model@1#.
n

l
-

r5H 2
1

2
lnS 11

a

l
els2D , s,s0 ,

2
1

2
lnS 11

a

l
el~s22s11s0

1
!D , s1.s0 ,

~40!

f5H 2
l

2
s12

1

2
lnS e2ls2

1
a

l D , s1,s0 ,

2
1

2
lnS a

l
els01el~s12s2!D s1.s0 ,

~41!

we find thatf-dependent terms in the quantum part of t
energy momentum tensor vanish whenus1u→`. This means
that the behavior in the asymptotic region, especially
Hawking radiation, is identical with that of the CGHS mod
@1#.

We now investigate the Bousso-Hawking choice@8#

f ~f!5e22f~f̃522f!. ~42!

Then the quantum part of the energy-momentum tensor
the following form:

T66
q 5

N

12
~]6

2 r2]6r]6r!

1
N

2 H ~]6f]6f!r1
1

2

]6

]7
~]6f]7f!J

2
N

4
$22]6r]6f1]6

2 f%1t~x6! ~43!

T67
q 52

N

12
]1]2r2

N

2
]1f]2f1

N

2
]1]2f. ~44!

Substituting the classical shock wave solution~40!, we find,
whens1,s,

T12
q 5

Nl2

8

1

@11 ~a/l!els2
#
,

T11
q 5

Nl2

16
lnS 11

a

l
els2D1t1~s1!,

T22
q 52

Nl2

48 H 12
1

@11 ~a/l!els2
#2 J

2
Nl2

16

ln@11 ~a/l!els2
#

@11 ~a/l!els2
#2

1
N

16

alels2
s1

@11 ~a/l!els2
#2

1t2~s2!. ~45!

This tells us that there is incoming energy from the past n
infinity (s1→2` or s2→2`). However, the explicit es-
timation is problematic. The problem is caused by the f
that the dilaton vacuum is not the exact vacuum. Especi
the last term inT22

q , which is linear with respect tos1,
tells us that we cannot use the dilaton vacuum as a clas
approximation. The linear term also makes it impossible
determinet2(s2) by the boundary condition ats1→2`
i-
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2368 57SHIN’ICHI NOJIRI AND SERGEI D. ODINTSOV
although Hawking radiation is essentially given byt2(s2)
as we will see in the following.

Whens1.s0, we find

T12
q 5

Nl2

12

1

@11 ~a/l!el~s22s11s0!#2

2
Nl2

6

1

@11 ~a/l!el~s22s11s0!#
,

T66
q 52

Nl2

48 H 11
1

@11 ~a/l!el~s22s11s0!#2 J
2

Nl2

16

ln@11 ~a/l!el~s22s11s0!#21

@11 ~a/l!el~s22s11s0!#2
1t6~s6!.

~46!

Then whens1→1`, the energy momentum tensor behav
as

T12
q →2

Nl2

12
,

T66
q →

Nl2

48
1t6~s6!. ~47!

This expresses Hawking radiation but we cannot determ
the unknown functiont2(s2).

Hence, we found that there may be new contributions
Hawking radiation from the dilaton-dependent terms in
trace anomaly. However, in order to make their accurate
timation one has to construct new solvable models of
black holes with an arbitraryf and ~or! other choices for
dilatonic couplingsZ, C, and V in the general model o
dilatonic gravity.

Finally, we evaluate the contribution to the black ho
entropy fromW in Eq. ~18!. The contribution from the first
classical term may be investigated by standard methods@19#.
Following this procedure, the contribution from the dilato
dependent terms

2
1

2E d2xA2gF2
N

16p

f 82

f 2
~¹lf!~¹lf!

1

D
R2

N

8p
ln f RG

~48!

can be evaluated as follows:

2
N

16E d2xA2gS f 82

f 2
~¹lf!~¹lf!c D 2

N

4p
ln f ~f0!.

~49!

Heref0 is the value of the classical solution for the dilato
field at the horizon,

f052
1

2
lnS M

l D , ~50!

andc is defined by
s

e

o
e
s-

Dc5d~r ! ~51!

with the boundary condition, where

c→ ln r , whenr→0. ~52!

Here we choose the coordinate system where the metri
the black hole is given by

ds25dr21sinh2AM

l
dt2 ~53!

when Wick rotated to the Euclidean signature. Hence,
least on a qualitative level we see the appearence of
terms in quantum corrections to the black hole entropy.

IV. TRACE ANOMALY AND INDUCED EFFECTIVE
ACTION FOR 4D DILATON COUPLED SCALAR

It could be interesting to generalize the results of Sec
for the 4D case. The purpose of the present section will b
calculate the nonlocal effective action for the 4D dilat
coupled conformal scalar. Let us consider the theory with
following Lagrangian in curved spacetime~we work in
Minkowski signature!:

L5w f ~f!~h2jR!w, ~54!

where w is quantum scalar field,h5gmn¹m¹n , f is an
external field~dilaton!, and f (f) is an arbitrary function.

It is very easy to check that for the conformal transform
tion

gmn→e2sgmn ,

R→e22s@R26hs26~¹ms!~¹ms!# ~55!

the theory with Lagrangian~54! is conformally invariant for

j5 1
6 .

Let us calculate the divergent part of the effective act
for the theory~54!:

Gdiv52
i

2
Tr lnH f ~f!Fh2jR1

h f ~f!

2 f ~f!
1

@¹m f ~f!#

f ~f!
¹mG J

5
1

~n24!
E d4xA2gb4 , ~56!

where b4 is the b4 coefficient of the Schwinger–De Wit
expansion. The methods of its calculation are well kno
~see, for example, Sec. 3.6 of Ref.@13#!. Applying these
methods, after some algebra we get

~4p!2b45
1

2 S 1

6
2j D 2

R21
1

4

~¹ f !2

f 2 S 1

6
2j DR

1
1

32

@~¹ f !~¹ f !#2

f 4 1
1

2 S 1

6
2j DhR

1
1

24
hS ~¹ f !~¹ f !

f 2 D1
1

180
~Rmnab

2 2Rmn
2 1hR!.

~57!
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Note that thef (f) multiplier in Eq. ~56! does not give the
contribution tob4.

For j5 1
6 , we get the trace anomaly

^Tm
m&5b4 . ~58!

Hence the trace anomaly for the dilaton coupled 4D scala
given by

T5
1

~4p!2 H 1

32

@~¹ f !~¹ f !#2

f 4 1
1

24
hS ~¹ f !~¹ f !

f 2 D
1

1

180
~Rmnab

2 2Rmn
2 1hR!J . ~59!

Here, the last term is the well-known conformal anoma
~for a review, see@20#! for the conformally invariant scalar
The first two terms in Eq.~59! are the dilaton contributions
to the conformal anomaly.

Let us write Eq.~59! in a slightly different form:

T5H bS F1
2

3
hRD1b8G1b9hR1a1

@~¹ f !~¹ f !#2

f 4

1a2hS ~¹ f !~¹ f !

f 2 D J , ~60!

whereF is the square of the Weyl tensor in four dimension
andG is Gauss-Bonnet invariant. For the scalar field, it f
lows from Eq.~59! that

b5
1

120~4p!2 , b852
1

360~4p!2 ,

a15
1

32~4p!2 , a25
1

24~4p!2 , ~61!

and in principleb9 is an arbitrary parameter~it may be
changed by the finite renormalization of the local count
term!.

The nonlocal effective action induced by the conform
anomaly~without the dilaton! was calculated some time ag
@21#. Using the equation

T5
1

A2g

d

ds
W~s! ~62!

and integrating it, one can restore the nonlocal effective
tion W induced by the conformal anomaly

W5bE d4xA2gFs1b8E d4xA2gH sF2h214Rmn¹m¹n

2
4

3
Rh1

2

3
~¹mR!¹mGs1S G2

2

3
hRDsJ 2

1

12S b9

1
2

3
~b1b8! D E d4xA2g@R26hs26~¹s!~¹s!#2

1E d4xA2gH a1

@~¹ f !~¹ f !#2

f 4 s1a2hS ~¹ f !~¹ f !

f 2 Ds
is

,

-

l

c-

1a2

~¹ f !~¹ f !

f 2 @~¹s!~¹s!#J . ~63!

Here thes-independent term is dropped and the last ter
represent the contributions from the dilaton-dependent te
in the trace anomaly. Similarly one can calculate the tra
anomaly and induced effective action for other theories s
as the dilaton coupled spinor or the dilaton coupled W
gravity with Lagrangian

L5F~f!CmnabCmnab, ~64!

or dilaton coupled vectorL52 1
4 g(f)FmnFmn. Notice that

in the 2D case such a vector field is not a conformally
variant one.

V. CONFORMAL SECTOR OF DILATON GRAVITY
AND QUANTUM COSMOLOGY

Let us consider now the classical theory of dilatonic gra
ity:

Lcl5Z~f!gmn]mf]nf1C~f!R1V~f!, ~65!

where Z, C, V are the arbitrary dilatonic functions. For
specific choice of these functions the theory~65! represents
the low-energy string effective action or Brans-Dicke gra
ity. So it may be considered as string-motivated class
gravity.

Adding the induced action to the action~65! ~where part
of the linears terms are dropped!, we get in the case o
conformally flat fiducial metricgmn5e2shmn ,

S5W1Scl5E d4xH 2b8~hs!22@3b912~b1b8!#

3@hs1~]ms!2#21a1

@~¹ f !~¹ f !#2

f 4 s

1a2hS ~¹ f !~¹ f !

f 2 Ds

1a2

~¹ f !~¹ f !

f 2 gmn~¹ms!~¹ns!

1e2sZ~f!gmn]mf]nf1e2sC~f!@26hs

26~]ms!~]ms!#1e4sV~f!J . ~66!

The action~66! describes the conformal sector of 4D dil
tonic gravity. It is a direct generalization of the conform
sector of 4D gravity which was introduced and studied
Refs.@22#.

A very interesting problem for future research is to stu
the quantum structure of the theory with the action~66!, its
properties, the existence of fixed points, etc. In particu
one can expect, as it happened with its analogue
f5const @22#, that it may provide the solution of the cos
mological constant problem. The gravitational dressing
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matterb functions in such a theory may lead to the intere
ing consequences for standard model and grand unified t
ries @23#.

The classical solutions of the theory~66! should define
the cosmology of an early universe with a back reaction
the conformal dilaton coupled matter. However, it is not ea
to search for solutions of the theory~66!. @Of course, one can
work again in the large-N expansion which justifies the ne
glect of the classical term in Eq.~66!.# So we will start using
dilaton coupled Weyl gravity as the classical gravity. Addi
to the action of such a theory the induced effective action
omit the linears terms.~That may be justified by adding t
the theory of the dilaton- and gravity-dependent sources
s.) Working on a conformally flat metricgmn5e2shmn

@where classical action~64! is equal to zero#, we may find the
following classical solutions:

s5a lnH1h, f 5b lnH2h, ~67!

whereH1, H2, a, andb are some constants. Their explic
values are defined by the complicated algebraic system
two equations

dW

ds
50,

dW

d f
50. ~68!

Note that for the samea1, a2 coefficients inW ~63! one can
change the coefficientsb, b8, andb9 by adding the confor-
mal matter minimally interacting with the dilaton. Hence t
solutions~67! define the whole class of metrics. In particula
for a521, we get the solution which corresponds to t
inflationary universe of Starobinsky type@24#, however, now
with a nontrivial dilaton. One can investigate other types
solutions for induced effective actions, for example, bla
hole type solutions.
er
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VI. SUMMARY

In summary, the trace anomaly and induced action for
dilaton coupled scalar in 2D and 4D were found. The larg
N effective action for quantum dilaton-scalar gravity w
also evaluated. The appearence of new, dilaton-depen
terms in the effective action was shown. Some prelimin
results on the role of these terms for 2D black holes a
Hawking radiation were reported. The conformal sector
4D dilatonic gravity was constructed and quantum cosm
ogy was discussed.

Our results bring attention to a number of problems. L
us mention some of them.

~1! The construction of classically solvable dilaton grav
ties with dilaton coupled scalars, the search for new bla
holes in such models, and the calculation of new correcti
to Hawking radiation and black hole entropy.

~2! The trace anomaly for the 4D dilaton coupled vect
spinor, and graviton, and the study of quantum cosmolo
with a back reaction of such fields.

~3! The study of one-loop renormalizability of the theo
~64!.

~4! The investigation of quantum structure for the confo
mal sector of dilatonic gravity.

~5! Generalizations of theC theorem with an account o
dilaton-dependent terms.

We hope to return to the study of some of these proble
in the near future.
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