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Trace-anomaly-induced effective action for 2D and 4D dilaton coupled scalars
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The spherically symmetric reduction of higher-dimensional Einstein-scalar theory leads to a lower-
dimensional dilatonic gravity with a dilaton coupled scafar example, from a four-dimension&D) to a 2D
systenj. We calculate the trace anomaly and anomaly-induced effective action for 2D and 4D dilaton coupled
scalars. The larg8t effective action for 2D quantum dilaton-scalar gravity is also found. These 2D results may
be applied to the analysis of 4D spherical collapse. The role of new, dilaton-dependent terms in the trace
anomaly for 2D black holes and Hawking radiation is investigated in some specific models of dilatonic gravity
which represent a modification of the Callan-Giddings-Harvey-Strominger model. The conformal sector for 4D
dilatonic gravity is constructed. The quantum back reaction of dilaton coupled matter is briefly dis@iussed
may lead to an inflationary universe with a nontrivial dilatdi80556-282(198)02804-5

PACS numbgs): 04.60.Kz, 04.70.Dy, 11.25.Hf

[. INTRODUCTION Different from the CGHS model and its modifications, we
have the scalar field nonminimally coupled with a dilaton.
There are motivations to study two-dimension(@D) Then a generalization of the CGHS model and the study of
dilatonic gravity models. First of all, it is often easier to Hawking radiation{7] in a generalized model in the large-
study 2D models than their 4D analogues. Especially, it mayPpproximation(then one has to considéd scalars in the
izable classically solvable dilaton gravity coupled with mini- for the dilaton coupled scalar.
mal scalar matter, the problem of Hawking radiation and the _Such a trace anomaly has been recently found for the
back reaction of matter to a 2D black hole may be well@20ve model in Ref[8] and in the case of an arbitrary
understood in the N expansion[1]. Modifications of the dilaton-scalar COUpI".]g functiofi( 4) n [9]. '_I'he correspon-
Callan-Giddings-Harvey-Strominge(CGHS model and dent trace-anomaly-induced effective action has also been

\ e . \ g calculated 8,9]. (Actually, the trace anomaly is proportional
:?X;'g?hr;dﬁo“ﬁ(gfgﬁvf rté?,?en\,\;mé(:gég]’fl tg%égr? da?j;naeng[) to theb, coefficient of the Schwinger-De Witt expansion for

. ; L e > which a general dilaton coupled scalar was found some time
dilatonic gravities are string inspired ones. They may serv%go see Ref10].)
as a Iaboratory for better understandi_ng st_ring theory itself. T’he natural next step is to discuss the quantum gravity
Third, if one starts from the 4D Einstein-scalar or 4D contriputions to such an action and its applications to 2D
Einstein-Maxwell-scalar theory, then using a sphericallypjack holes and Hawking radiation. The question of the 4D
symmetric reduction anzaf8] one obtains the action for one generalization is also of interest.
of the 2D dilatonic gravity models with scalars. For example,  The present paper is devoted to the study of this circle of
applying such an anzatfl3) to 4D Einstein-Maxwell- questions. In the next section we discuss the general model
minimal-scalar theory and integrating the angular modesegf dilatonic gravity[11,17. The trace anomaly and anomaly-
one gets induced effective action are calculated fodilaton coupled
two-dimensional scalars in the general form and in the large-
N limit. (The contribution of the quantum dilaton is also
J d2x\—ge 2[R+ 2(V ¢)2+2e2¢ included) In the case when dilaton-scalar gravity is quan-
tized, the one-loop divergent effective action is used to find

1

ST 16qG

1 the largeN nonlocal finite action. This action almost coin-
—-2Q% "+ §J d>x\—ge 2/(Vy)2 (1) cides with the anomaly-induced largeaction, as it should.
Section Il is devoted to the investigation of 2D black
holes in the modified CGHS modélve consider dilaton
Hence, 4D spherically symmetric collapse may be undereoupled scalajs The new, dilaton-dependent terms in the
stood in terms of 2D dilatonic gravity. trace anomaly make the problem much more complicated
than for the minimal case. In particular, the theory is not
classically solvable anymore. A new black hole solution for

*Email address: nojiri@cc.nda.ac.jp purely induced theory is found. For some known black hole
"Email address: odintsov@quantum.univalle.edu.co, cases, Hawking radiation and black hole entropy are briefly
odintsov@kakuri2-pc.phys.sci.hiroshima-u.ac.jp discussed.
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In Sec. IV we calculate the trace anomaly and the induced 1 g2 g
effective action for the dilaton coupled 4D scalar. The moti- T= —I (N+ 1)R—3( = —) (VM) (Vaxi)
vation to do so is similar to the 2D case. Let us start from 24 212 27
higher-dimensional Einstein-scalar theory. After a spheri- " '2 ,2
cally symmetric reduction anzatz one is left with lower- -3 ﬁ_&_z_ (V2$)(V, )
dimensional (say 4D dilatonic gravity with a dilaton f 22 272 »

coupled scalar.
Section V is devoted to the formulation of the conformal Nf' Z'
sector for 4D dilatonic gravity. The classical solutions of _3<T_f)A } ®
such a theory describe quantum cosmoldgyth the back
reaction of matter One of the solutions for purely induced while for a purely scalar fielddilaton is classicalall terms

theory may correspond to the inflationary Universe. In thewith Z in Eq. (5) disappeaf9]. For the special casi=1,
Conclusion we give a summary and a list of the problems for () =e~2¢ and no quantum dilaton,

future research.

1
T=5-(R-6(V'$)(Vyd)+60¢}. (6
Il. ONE-LOOP EFFECTIVE ACTION IN THE LARGE- N ™

APPROXIMATION This trace anomaly was recently calculated in R&f.using

We will start with dilaton gravity of the most general the zeta-regularization method. The coefficient of the third
form [11,17 interacting with scalar matter: term in Eq.(6) disagrees with the results of R¢B]. The
reasons for this disagreement were discussed in[REfwe

1 are not using zeta regularization, but dimensional regulariza-

S=- f d2x\/—g[ SZ($)g* 9, b0, b+ C(HR+V(,x) 0N

Making the conformal transformation of metrig,,,

N ] —>e2"gw in the trace anomaly, using relation

1
—5 1@ 2 duxiduxi vl

T Wo], (7)

19
= \/_6 o
It includes a dilaton fieldp, N real dilaton coupled scalars _ _ _
xi» and dilaton-dependent couplingsC, f. The potentiaV one can find anomaly-induced effective actfio]. In the
is a function of¢ and x; . covariant, nonlocal form it may be represented as the follow-
First of all we will be interested in the study of the one- ing [9]:
loop divergent effective action for the above theory. We con- 1 c 1 1
sider two different cases. Let in the thedB) the dilaton¢ W= — _j d2x/—al {—R—R+F VM (Vs v ) —R
and scalarg; are the quantum fields, while the gravitational 2 927k VX )‘X')A
field is the external field. Then one can apply the background

field method[13] and calculate the one-loop effective action +| Fo(¢p)— &F3(¢))VA¢VA¢ER+ Rf F3(¢)d¢},
[10] (see Eq(41) of Ref.[10)): ¢ A
()
1 C” N+1 V" N &V
= | d2x = - - - where
Faw 2de g|<z 6 |RT"Z Tap
N+1 1 (f2
frZ fr V)\ v Nf” NfrZ Z/Z _m, Fl((ﬁ)_—% E—Z s
317 727 | (VXD (Vi + 2T a2z
F(0) 1 [Nf" Nf'2 2z'2
A Ntz 2T w27 2z2)
X(VA ) (Vi) +| 5 — o5 A¢}, 3
. 1 (Nf" 7 g
wheree=2m(n—2) and we use dimensional regularization. ()= 8r\ f Z ©

The remarkable fact about the syst¢) with C=V=0 72 _ _
and the gravitational field being the classical one is that thdlote that for f=e 2%, Z=0 [i.e., one has to omit all
system is a conformally invariant system. Then on the quanZ-dependent terms in Eq9)] the effective action(8) was

tum level the conformalor tracé anomalyT is given by calculated in Ref[8]. Note also that actually it is very easy
to get the largeN limit of the effective action(8). To do so

1 one only has to omiZ-dependent terms ifr,(¢), F3(¢)
rdiv:_f dzx\/—_gbz, T=b,. (4) and the second term im In addition, if the dilaton is purely
n-2 classical one should pit;=0.
Let us consider now the theory with the acti¢?) as
From here one getsee alsd9)) quantum dilaton-matter gravity where all fields, , ¢, and
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xi are quantized ones. Using the background field methoéxpressior(14) which coincideqat least, in the gravitational

[13], 9,,—9,,t Dy, ¢— ¢+, whereh,,, ¢ are quan-  sectoy with the independent results of Ref41,10,14 in all

tum fields, and the minimal gaugé1] cases where such a comparison may be done. Hence, the
result of Ref.[16] contradicts those of Ref§11,10,14 and

1 wv does not have the correct on-shell linfit7]. One of the
Sgr= 2 CrnX X" (10 causes of this mistake is that for the calculation of the effec-
tive action in the mode(12) another dilatonic gravity clas-
where y*=-— VVWV+ (C'IC)V*, C,,=-C @gw, sically equivalent to Eq(12) (after conformal transformation

and dilaton rescalingis used. However, it was proved in
Ref.[17] (with an explicit examplethat classically equiva-
lent 2D dilatonic gravitiegin the sense of conformal trans-
For dilaton-matter gravity with the classical actit®) the formation are not quantum equivalent off shell. They lead to

complete result was obtained in RELO] [(see Eqs(31), different divergent one-loop effective actions which coincide
(321 only on shell.

Let us turn again to the general mod&]. In the largeN
N Vi limit from Eq. (11) we get

1 24— 2 2
Fdin‘zfdzxf‘g[ s RreVroV T

h_wzhw— %gw,h, the one-loop effective action maybe
found. For pure dilaton gravity it was obtained in REf1]
and later in Refs[10,14.

N N 52V

1
Fdiv:_zf dzxv—g| —gR~

C// 3C/2 C//Z Nf// Nf/2

z ey \ T axox
C C2 C'Z + 2f 4f2 (V ¢)(V)\¢)
s Nf&)(vw(v )+ Seae
c z Nf oF A oF '
S |Ad). (11 2t ar? 2t
Cc C
(15
Using Eqg.(11) one can find the one-loop effective action for
any specific model. Actually, the expressior(15) is given by matter, matter-
For example, let us take graviton, and matter-dilaton loops. It may be considered as
24 24 the source for the effective trace anomaly, as in E).
Z(p)=4e 7%, C(g)=e 7, Integrating such a trace anomaly oveilin the same way as
N in Eq. (7), we get
V(g.x)=2, f(¢)=e"2* (12
in the action(2). Then the theory?2) with dilatonic couplings 12
(12) can be obtainedfor N=1) by using the spherically W———f d?x\—g 48R R——In fR———( )
symmetric reduction anza{s]
N
_ tdx? + e~ 24402 1
ds’=g,, dx*dx"+e 2¢dQ) (13 X(V,8) SR+ 5 E - (l/A)Rl. (16)
=1 IXidXi

from 4D Einstein-scalar or 4D Einstein-Maxwell-scalar

theory (in the last casey=2-2Q?%e??%). Hence, in such a

case the actionf2) with dilatonic couplings(12) may de- The expressiori16) gives the largeN limit of the effective

scribe the radial modes of the extremal dilatonic black hole@ction in quantum dilatonic gravit?). Note the appearance

in four dimensiong15]. In other words, 2D dilatonic black ©0f @ new nonlocal term related with the scalar potentialf

holes may also describe 4D spherically symmetric collapseit is present in the theojy Notice thatV breaks the confor-
Using genera| expressic(ﬂ_]_) we may write the one-|oop mal invariance of the scalar field. That is Why it should not

effective action for the theory12) (keepingN an arbitrary ~ be included to the systert2) when only scalars are quan-
integed tized. Then a few more terms of the same structure as the last

one in Eq.(16) may be expected in the strict calculation of
26 the one-loop finite effective action in dilaton-scalar gravity.
R+4e The action(8) should be used to take into account the
back reaction of the quantum dilaton-matter system to clas-
N sical dilatonic gravity. On the same time the acti(i6)
+(N=12(V2¢)(V\¢)—NA . (14) should be added to the classical dilatonic matter-gravity ac-
tion if one would like to take into account the back reaction
This theory is the one-loop renormalizable one. Note thabf quantum dilaton-matter gravityn the largeN limit). The
recently a very interesting attempt to calculate the one-loomonlocal actiong8),(16) open the way to new generaliza-
effective action (including the local and nonlocal finite tions of models such as the CGHS mofH| where one can
termg for the model(12) was done in Ref[16]. Unfortu-  find new black hole solutions an¢br) new terms in the
nately, the resulf16] includes a number of mistakes. In par- Hawking radiation. In the next section, we are going to dis-
ticular, the divergent part of the one-loop effective action incuss some simple properties of the above effective actions in
the same minimal gaugé0) of Ref.[11] disagrees with the connection with 2D black holes.

T oiv= f dxy/— g(
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I1l. 2D BLACK HOLES AND HAWKING RADIATION Here
We start with a system where the dilaton gravity of spe- F=In f (24)
cial form [1] couples with the dilaton coupled scalar fields:
1 andt(x™) is a function which is determined by the boundary
- dZX [— e72¢> R4+ 40*Y9 a, _'_4)\2 condition.
S0 277] g[ [ 0" 0uddnd | First we consider the large- limit, where the classical
N part can be ignored. Then the field equations become more
1 wy simple:
—5 (@2 9 a,xduxi |- (17
N 1
We would like to consider the modifications of the CGHS 0= NTii
model due to the back reaction of dilaton coupled scalars.
Hence, we calculate the effective actiqB) for dilaton :i(az —9.pdp)
coupled scalars in the lardé-approximation(the gravita- 12\0=P T 0=pPO=P
tional field is the classical fie)d 1 14
1 N 1 1 [f'2 +§ (ﬂtaﬁtg)pﬂLEa—:(ﬁigﬂ:E)
__ - 2 — IR - P - P I 77/ Ny, -
W= zdeV 928, RaR 877(f 71 (Vixi) L
+ 5 {—20.pd- + IL P17 (X7), (25
X(V 1R N f’ZV"V 1R I\II fR °
(Vaxix 167 12 PVrpR=gINIR|. L L L _
(18) 0:NTrI:_1_2f9+(9—P_§’9+¢f97¢_Z’9+(9—¢a
. o (26)
Hence the complete action of our theory is given by
1 ~ 1 ~ 1
S=S5;+W. (19 0:E¢9+(P‘9—¢)+ Ea—(P¢9+¢)_§¢9+‘9—P-
We treat this theory as a classical system. The background (27)

scalar field is considered to be zero so we omit all scala
terms in the above expression.
In the conformal gauge

[I'he functiont™(x*) can be absorbed into the choice of the
coordinate and we can choose

1 t=(x*)=0. (28)
+;=——62’), ++:0, 20
9= 2 Gu 20 Combining Egs(25) and (26), we obtain
the equations of motion are obtained by the variation over 1 , 1 ~ _
gii' gi+! and¢ - §(aip) + Ep(ai(b) _aipai(bzoi (29)
0=T..=€ *[40.pd.¢—2(d-$)’] ie
N
+ (0% p—0+pdp) ~ 1+V1+(23)p
12 8:¢—ff9:9
N - - ld., - -
+§ (3:(75‘9:9{’)13"'52(‘9:4"9:9{7) or
N _ B 1-VJ1+ (2/3)p(9 30
tgl20p0. B AR ERE), @D P (0

0=T..=e 2429,0_b—4d. bd_d—N\2%%) This tells us that

—1p0+9-p= gdibd-b=79.9-8, P p '
(22 Substituting Eq(31) into Eq. (27), we obtain
=e 2%(—49,0_¢p+49, dd_d+29,9_ 312
0= 2%(~40,9_¢+4d. I _¢+2d.9 p M: 1+20] |0, @2

+>\2e29)—£(ia (pd_b)
f|16°+P7-

1 ~ 1 23 _3 +/ut —rv—\12/3
+ 157~ (PI+ @)= gdsd-p|. (23 p=51—1+lp (X +p  (x)1*. (33
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Here p= is an arbitrary function ofx*=t*+x. We can (1 a, -
straightforwardly confirm that the solution®1) and (33 - §|n 1+ N 7, 0<0y,
satisfy Eq.(26). The scalar curvature is given by p=1 (40)
—Eln 1+§e”(":"+*"§) o >0y,
R=8e 2°9,d_p L 2 A ’
8 e 3-L1+lp () +p”(x )17 (A _a
+7r + — — + —\o +
-3 [y p (XT)p(XT). -0 —sinle +—], o"<oy,
3 [p+(x+)_|_p (X )]4/3 _ 2 2 A
1 /a _
(34) | _ EIn(xe)\a’o_l_ e)\(o—+_g- )) 0_+>0.0'
Note that whenp* (x")+p~(x")=0, there is a curvature (41)

singularity. Especially if we choose we find that¢-dependent terms in the quantum part of the

energy momentum tensor vanish whert | — . This means
that the behavior in the asymptotic region, especially the
Hawking radiation, is identical with that of the CGHS model
[1].

We now investigate the Bousso-Hawking chojéé

f(p)=e 2(¢=-2¢).

Then the quantum part of the energy-momentum tensor has
the following form:

- 35

pr(x")= ;—3 p(x)=-—

there are curvature singularities xatx~=r3 and a horizon
atx*=0 orx~ =0. The asymptotic flat regions are given by
XxT—+o0 (x“<0) orx~— —o (x*>0). Therefore we can
regardx™ as corresponding to the Kruskal coordinates in
four dimensions.

In order to discuss the Hawking radiatiéwhich is usu-
ally related with the trace anomal\L8)), it is necessary to
find the exact vacuum not only at the classical level but even
at the quantum level. In the following, we determine the

function é=Inf(¢) in Eq. (17) so that the linear dilaton

(42

T .

N 2
1—2(ﬁip—5¢pﬁip)

N 10+
+ E (d+pd~P)p+ E E(é'i(ﬁai(ﬁ)

vacuum
1 N o pa gt P B xE) 43)
p=¢=—5(In xT+In x~+In \?) (36) 4 PO =
) ) o ) N N N
is an exact solution. Substituting E6) into Eq. (22), we T _=- 1—20"+0'Lp— Eo’u Pd_¢Pp+ Emﬁ,(ﬁ. (49
find
) Substituting the classical shock wave solutidf), we find,
N N whenot <o
— 2 ” — y
Tow=1gl(¢)+ ¢} 5= =0. (37 2
NA 1
T = —,
This shows that 8 [1+(a/N)er ]
~ 2 a . _
$=2In(¢+c). B8 TI,=—"In[1+ =€\ |+tT(cT),
16 A
Substituting Eq(38) into Eq. (23) we find that the constant 2
; . A NA 1
of the integration should vanisk=0, i.e., T4 =— 1— _
48 [1+ (a/n)er 2
f(p)= 2 39 - .
($)=¢ 39 NAZIn[1+ (a/A)er” ] N aner” o
The solution(39) when substituted into E436) satisfies Eq. 16 [1+ (a/n)er 12 16[1+ (a/n)er |2

(21). If we divide the energy-momentum tensor into classical
and quantum parts, the Hawking radiation is given by sub-
stituting the classical solution into the quantum gére part  Thjs tells us that there is incoming energy from the past null
proportional toN). When we substitute the shock wave infinity (" — —o or o~ — — ). However, the explicit es-
solutiort timation is problematic. The problem is caused by the fact
that the dilaton vacuum is not the exact vacuum. Especially
the last term inT% _, which is linear with respect tor*,
The scalar fieldy; in Eq.(17) cannot make the shock wave. Here tells us that we cannot use the dilaton vacuum as a classical
we suppose that the dilaton gravity also couples with another, miniapproximation. The linear term also makes it impossible to
mal scalar field which appeared in the original CGHS madé! determinet (o) by the boundary condition at*— —co

+t (o). (45)
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although Hawking radiation is essentially given by(o ™) A= 58(r) (51)
as we will see in the following.
Wheno* >0, we find with the boundary condition, where
N\ 2 1 y—Inr, whenr—0. (52
T = =
T 12 [14 (a/n)eMe o He0]2 Here we choose the coordinate system where the metric of
the black hole is given by
N2 1
- P ! M
6 [1+ (a/mn)eM o] ds?=dr2+sini? \/;dtz (53)
2
T4, =— NA 1+ ! S— when Wick rotated to the Euclidean signature. Hence, at
48 [1+ (a/N)eMo o to0]? least on a qualitative level we see the appearence of new

. terms in quantum corrections to the black hole entropy.
NAZ In[1+ (a/n)eMo —o Foo]—1
- +t7(o7).

16 [1+ (a/n)eMo —o o0} IV. TRACE ANOMALY AND INDUCED EFFECTIVE
49 ACTION FOR 4D DILATON COUPLED SCALAR

It could be interesting to generalize the results of Sec. Il
Then whens " — +, the energy momentum tensor behavesfor the 4D case. The purpose of the present section will be to

as calculate the nonlocal effective action for the 4D dilaton
) coupled conformal scalar. Let us consider the theory with the
T N_)\ following Lagrangian in curved spacetim@ve work in
- 12" Minkowski signaturg
N2 L=ef(4) (- ER)e, (54)
Tiiﬁﬂ'i‘ti(O't). (47)

where ¢ is quantum scalar fieldJ=g#"V,V,, ¢ is an

. . L ._external field(dilaton), andf(¢) is an arbitrary function.
This expresses Hawking radiation but we cannot determine It is very easy to check that for the conformal transforma-

the unknown functiort™ (o). tion
Hence, we found that there may be new contributions to

Hawking radiation from the dilaton-dependent terms in the 9,,—€%g,,,

trace anomaly. However, in order to make their accurate es- m -

timation one has to construct new solvable models of 2D R—e 2[R—600c—6(V ,,0)(V¢0)] (55)
y23

black holes with an arbitrar§ and (or) other choices for
dilatonic couplingsZ, C, andV in the general model of the theory with Lagrangiatb4) is conformally invariant for
dilatonic gravity. g=1
Finally, we eyaluate the contrlbut_lon_to the black.hole Let us calculate the divergent part of the effective action
entropy fromW in Eq. (18). The contribution from the first for the theory(54):
classical term may be investigated by standard metht@ls '
Following this procedure, the contribution from the dilaton- Of(¢) [VH(¢)]
+ A%
2f(¢) f(¢) # }
f d*x\—ghy,, (56)

i
dependent terms Igiv=-— ETr In[ f(d))[ O—¢éR+

~Ten f—(VAdJ)(deJ) R— —In fR
(48)

——f d’xy—g

~ (=4

where b, is the b, coefficient of the Schwinger—De Witt
can be evaluated as follows: expansion. The methods of its calculation are well known
(see, for example, Sec. 3.6 of R¢fl3]). Applying these
methods, after some algebra we get

N f/2
_ 2y [ _
16Jd XvV—0 >

N
(V%b)(wb)z,b) =2 f(¢o).
1/1 \2_ 1(VH?/1
(49 (4w)2b4=§(——§> R2+——(6—§)R

6 4 f°
Here ¢, is the value of the classical solution for the dilaton 2
field at the horizon, i w } E_g 0
32 f 216
1 (M
so=— 3| 50 10D L
27\ A Y s 180(R vap— Ry TOR).

and ¢ is defined by (57
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Note that thef (¢) multiplier in Eq. (56) does not give the (VH)(VT)
contribution toby. tay——7 —[(Vo)(Va)]y. (63

For é=%, we get the trace anomaly

Here theo-independent term is dropped and the last terms
represent the contributions from the dilaton-dependent terms

Y the t v for the dilat led 4D | .in the trace anomaly. Similarly one can calculate the trace
.enceb € trace ahomaly for the diiaton couple scaiar Ianomaly and induced effective action for other theories such
given by as the dilaton coupled spinor or the dilaton coupled Weyl

1 1 [(VE(VH]2 1 (VE)(VF) gravity with Lagrangian
=an2|32 +ﬂ< 2 )

(T =b,. (59

L=F(¢)C,,.sC""**, (64)

1
+ rg()(Rivaﬁ_RierDR)]' (59) or dilaton coupled vectot = —%g(gb)FWF“”. Notice that

in the 2D case such a vector field is not a conformally in-
Here, the last term is the well-known conformal anomalyvariant one.

(for a review, se¢20]) for the conformally invariant scalar.
The first two terms in Eq(59) are the dilaton contributions
to the conformal anomaly.

Let us write Eq.(59) in a slightly different form:

V. CONFORMAL SECTOR OF DILATON GRAVITY
AND QUANTUM COSMOLOGY

Let us consider now the classical theory of dilatonic grav-

2 .
T=[b F+§DR +b’G+b"DR+a1—[(Vf)f(4Vf)] ity:
(VF)(VF) La=2($)9""0, b3, ¢+ C($)R+V(), (65)
a T)J (60)

whereZ, C, V are the arbitrary dilatonic functions. For a
specific choice of these functions the the®) represents
‘the low-energy string effective action or Brans-Dicke grav-
ity. So it may be considered as string-motivated classical

whereF is the square of the Weyl tensor in four dimensions
andG is Gauss-Bonnet invariant. For the scalar field, it fol-
lows from Eq.(59) that

gravity.
1 1 Adding the induced action to the acti@gd5) (where part
b=—Frr—, b= 7—, of the linearo terms are droppedwe get in the case of
120(4) 360(4m) conformally flat fiducial metrig,,=€*"7,,,,
_ 1 _ 1 61
M 3am? 22T 24am)? (62) s:w+sd:f d4x[2b’(Da)2—[3b”+2(b+b’)]
and in principleb” is an arbitrary parameteiit may be [(VE)(VF)]2
changed by the finite renormalization of the local counter- X[Da+(<9“0')2]2+ a; i
term).
The nonlocal effective action induced by the conformal (VF)(VF)
anomaly(without the dilatom was calculated some time ago +a,] f—Z) o
[21]. Using the equation
(VH)(VT)
1 ) +a2_f2_g,uv(vlu,0-)(vvo-)
g +629Z($)gh"d b, b+ €27C( ) — 60
and integrating it, one can restore the nonlocal effective ac-
tion W induced by the conformal anomaly —6(&MU)(&”U)]+G4"V(¢)]. (66)

2DZ+4RWVMVV The action(66) describes the conformal sector of 4D dila-
tonic gravity. It is a direct generalization of the conformal

" sector of 4D gravity which was introduced and studied in

| P Refs.[22].
A very interesting problem for future research is to study
the quantum structure of the theory with the act{66), its

fd“'X\/—_g[R—GDU_G(V‘T)(V")]2 properties, the existence of fixed points, etc. In particular,
5 one can expect, as it happened with its analogue for

+J’ d'xy—gl a [(VE)(V)] ot 2l (VH(VT) ,  ¢$=const[22], that it may provide the solution of the cos-
92 f4 2 f2 mological constant problem. The gravitational dressing of

W=bj d4x\/—gFa+b’f d4X\/—g[a'

o+

R0+ 2 (veR)Y 6 20R
3V RV, 3 7

3

2bb’
+3(b+b")
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matter 8 functions in such a theory may lead to the interest- VI. SUMMARY
L?gscfcz)g]sequences for standard model and grand unified theo- In summary, the trace anomaly and induced action for the

. . i dilaton coupled scalar in 2D and 4D were found. The large-
The classical solutions of .the theo(§6) should defme effective action for quantum dilaton-scalar gravity was
the cosmology of an early universe with a back reaction ot eyaluated. The appearence of new, dilaton-dependent
the conformal d|Ia'F0n coupled matter. However, it is not eas\terms in the effective action was shown. Some preliminary
to search for solutions of the theo(§6). [Of course, one can  regyits on the role of these terms for 2D black holes and
work again in the largéN expansion which justifies the ne- Hawking radiation were reported. The conformal sector of
glect of the classical term in E¢66).] So we will start using 4D dilatonic gravity was constructed and quantum cosmol-

dilaton coupled Weyl gravity as the classical gravity. Addingogy was discussed.

to the action of such a theory the induced effective action we Our results bring attention to a number of problems. Let
omit the linears terms.(That may be justified by adding to us mention some of them.

the theory of the dilaton- and gravity-dependent sources for (1) The construction of classically solvable dilaton gravi-
o.) Working on a conformally flat metricngez"nw ties with dilaton coupled scalars, the search for new black
[where classical actiof64) is equal to zerf we may find the  holes in such models, and the calculation of new corrections

following classical solutions: to Hawking radiation and black hole entropy.
(2) The trace anomaly for the 4D dilaton coupled vector,
o=alnH;n, f=pgInH;7, (67)  spinor, and graviton, and the study of quantum cosmology

hereH. H d tants. Thei licit with a back reaction of such fields.
WNErer,, My, @, an B are some constants. Their explict (3) The study of one-loop renormalizability of the theory
values are defined by the complicated algebraic system % 4
two equations (4) The investigation of quantum structure for the confor-
SW SW mal sector of <_:ii|at_onic gravity. _
5—=0, F:O' (68 (5) Generalizations of th€ theorem with an account of
e dilaton-dependent terms.
We hope to return to the study of some of these problems

Note that for the sama;, a, coefficients inW (63) one can .
in the near future.

change the coefficients, b’, andb” by adding the confor-
mal maitter m|n|mally interacting with the dl!aton. Hence the ACKNOWLEDGMENTS
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