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Effective theories of coupled classical and quantum variables from decoherent histories:
A new approach to the back reaction problem

J. J. Halliwelf
Theory Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 13 May 1997; published 30 January 1998

We use the decoherent histories approach to quantum theory to derive the form of an effective theory
describing the coupling of classical and quantum variables. The derivation is carried out for a system consisting
of a large particle coupled to a small particle with the important additional feature that the large particle is also
coupled to a thermal environment producing the decoherence necessary for classicality. The effective theory is
obtained by tracing out both the environment and the small particle variables. It consists of a formula for the
probabilities of a set of histories of the large particle, and depends on the dynamics and initial quantum state
of the small particle. It has the form of an almost classical particle coupled to a stochastic variable whose
probabilities are determined by a formula very similar to that given by quantum measurement theory for
continuous measurements of the small particle’s position. The effective theory gives intuitively sensible an-
swers when the small particle is in a superposition of localized stateie the simple mean field approach
of coupling to the expectation values of the small systerhe derived effective theory suggests a form of the
semiclassical theory even when the quantum theory of the large system is not known, as is the case, for
example, when a classical gravitational field is coupled to a quantized matter field, thus offering a new
approach to the back reaction problgi80556-282(197)04822-4

PACS numbd(s): 04.60.Ds, 03.65.Bz

[. INTRODUCTION even when the quantum theory of the variables treated clas-
sically is not known. Of course, a number of previous au-
What happens when a classical system interacts with thors have attempted either to derive or postulate the form of
guantum system in a nontrivial superposition state? Quantunheories of coupled classical and quantum varialjigls
field theory in curved spacetime is an example of a numbeywhat is perhaps missing from most of these earlier ap-
of situations where one would like to know the answer thisproaches is an adequate characterization of what it means for
question. There, the effect of the quantized matter field one of the subsystems to be effectively classical. Here, we
the classical gravitational field is often assessed using thgi| work in the context of the decoherent histories approach
semiclassical Einstein equatiofts 2] to quantum theory9—12], where a thorough characterization
of what it means to be classical has been undertaken. This
Gy =87G(T,,). 1D issue is an involved one, but simply, the system must be
described by a decoherent set of histories consisting of the

The left-hand side is the Einstein tensor of the classical met:

ric field g,,,,, and the right-hand side is the expectation value>@me type of variables at each moment of time whose prob-

of the energy-momentum tensor of a quantum field. e}bilities are strongly peaked about classical equations of mo-
Although we do not yet have a complete, workable theoryHO"- _

of quantum gravity required to derive an equation such as It should be stressed that we do not expect to derive a

Eq. (1.1), on general grounds it is clear that it is unlikely to consistent theory describing the coupling fahdamentally

be valid unless the fluctuations i, are small[3-5]. In- classical variables to quantum variables. Rather, we are look-

deed, Eq(1.1) fails to give intuitively sensible results when ing for the form of an effective theory in which variables

the matter field is in a superposition of localized stafg).  which are the classical descendents gparhaps unknown

It is by no means obvious, however, that we have to resort tquantum theory couple to quantum variables. In contrast to

guantum gravity to accommodate nontrivial matter statesfundamentally classical variables, classical descendents of

This leads one to ask whether there exists a semiclassicguantum variables always suffer a certain amount of impre-

theory with a much wider range of validity than Ed..1), cision, partly due to their quantum fluctuations, but largely as

which gives intuitively reasonable results for nontrivial su-a result of the coarse graining required for decoherence and,

perposition states for the matter field. hence, to render them effectively classical. This imprecision
The object of the present paper is to derive the form of arfeeds into the quantum variables they couple to and, as we

effective theory of coupled classical and quantum variablesshall see, confers some useful features.

in some simple models where the quantum theory of the In this paper, we will concentrate on some simple models

entire system is known. From there, we can then make @& nonrelativistic quantum theory. To motivate the discus-

reasonable postulate as to the form such a theory might takson, consider the following system. Suppose we have a large

(“to be classical’) particle with coordinatesX linearly
coupled to a small particle with coordinatesLet the action
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1 . ) 1 1 - classical source, and then the probability distribution on the
SZJ dt(i MX"+ 5 m¢ — 5 Mo™X“=AXx|. (1.2 trajectoriesX(t) is that implied by the probability1.6).
The formula(1.6) contains an arbitrary parameteg rep-

Hence the equations of motion are resenting the imprecision in the continuous measurement. A
reasonable estimate as to its value can be made by appealing
MX+Ax=0, (1.3)  tothe fact that, as stated abovejs not fundamentally clas-
sical, but a classical descendent of a quantum variable. It
MX+ Maw2x+\X=0. (1.4  therefore has intrinsic imprecision, which limits the precision

with which it can carry out “measurements” of the small
A naive semiclassical approa¢ihe mean field approagh particle. The parametes; ought therefore to be approxi-
on which Eq.(1.1) is based, involves considering the equa-mately determined given the size of the fluctuationX iand
tion the nature of the coupling betwedhandx [18].
. The scheme we derive in this paper turns out to be very
MX+N(x)=0 (1.5 closely related to the phenomenological scheme presented in
) Ref.[18] (although it is not exactly the samd-urthermore,
together with the Schobinger equation for the state of the it yields a definite value for the parameiey .
small system witiX(t) as an external classical source. How- e will use the decoherent histories approach to quantum
ever, as stated above, we do not expect @) to have a  theory[9-12,19. In this approach, the primary focus is on
very wide range of validity. the probabilities for a set of histories of a closed system:
Physically, when a large, classical particle interacts with a
small quantum system, the large particle in some sens@(a)=TI[ P, (t,) - P,.(t,)P, (t;)pP, (t) - P, (t,)].
“measures” the position of the small system at each momentep( : [ ot o(12)Pey()PPe, (1) o )
of time and then evolves according to the measured value. 1.7
The probability for the large particle to measure a particulaHere, theP(t) are projection operators in the Heisenberg
value ofx will be determined by the quantum state of the picture:
small system and there will generally be nonzero probabili-
ties for a wide range of different values ®&f There is no P (t)=eMVip e iHUA (1.8
reason why the average val(e) is the one that will almost
always be measured, unless the coupling is very weak or thEhey are exhaustive and exclusive, which means, respec-
distribution of x is strongly peaked aboutx). Therefore, tively,
what we expect in general is an ensemble of trajectories for
the large particle, with a probability for each trajectory de-
termined by the quantum state of the small particle. In this ; Po=1, PaPpg=03,5P,. 1.9
paper, we will derive a scheme of this type, using the deco-

herent histories approach, in a class of simple models.  The projection operators describe the possible properties the
We mention in passing that it is possible to proceed dif-gystem may have at each moment of time. In this paper we
ferently from this point and directly write down a phenom- 5re mainly interested in histories characterized by impre-

enological scheme for the coupling of classical and quantungjsely specified positions, in which case the projectors have
variables using continous quantum measurement tHd&y  the form

17]. Such an approach was considered in RE8]. The idea

is that, in Eq.(1.3), X is treated as a classical variable and

is replaced by a classical stochastic variak(g), the prob- P“:f dx|x)(x|, (1.10
ability for which is given by a standard construction of quan- @

tum measurement theory: . . . .
y where the integral is over some interval on the real axis

- (X—X)2 labeled bya. In practice, it is often more convenient to work
p[x(t)]:f Dx Dy pg‘(xo,yo)ex% —f dt Ty with so-called Gaussian projectors
1
V)2
(y—X)? __ 1 Jx 3 (X—=x)
_f dt Zai Px —2—,7(2770 T _mdx ex g2 |’ (1.11

which are only approximately exclusive.
Probabilities generally cannot be assigned to sets of his-
tories unless there is negligible interference between them.
i 1 .1 i i istori
% exp{ - j dt(i my?— 5 mwzyz—)\yx) } The measure of the interference between any pair of histories

i 1 1
_ myl— — 22
Xex;{h J'dt(2 m2 5 Mo’ )\XX)

is the decoherence functional:

where pg(Xg,Yo) is the initial density matrix of the small =TI[P, (t,) - P,.(t,)P, (t;)pP(ty) Py (ty)].
quantum system. Therefore, the scheme is to solve the equa- " 2 ! 1 "
tions of motion for the large particle witk(t) regarded as a (1.12
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When the condition ofapproximatg decoherence is satis- wherel ® denotes the identity for the small particle. We again
fied, expect decoherence of the histories. The main thing we are
interested in is the probability distribution for the histories of
the large particle: We expect it to be similar to the case
D(a,a’')~0 for a#a’, (1.13  above, but modified in a way depending on the dynamics of
the small particle and also its initial statehich we leave
arbitrary).
the interference between histories is negligible and probabili- Note that, since we are only interested in the effective
ties obeying the probability sum rules may be assigned usingquations of motion for the large particde we do not con-
the formula(1.7). The decoherence condition is typically sider projections onto the properties of the small partile
only satisfied for histories that are coarse grained, i.e., histoFhe histories of the small particle therefore do not need to be
ries for which the projections ask only very limited ques-decoherentindeed, the interesting case is that in which they
tions. might exhibit quantum behaviprand it is for this reason that

A number of recent papers have used the decoherent higte do not couple the small particle to the environment.
tories approach to discuss the emergence of classical behav- As we shall see, it is easy to set up the expression for the
ior in simple particle model$10,20—-23. The decoherent probability for histories of the large particle. The main issue
histories approach is perhaps the most useful approach to thisto express the result in a useful and recognizable form. We
problem primarily for the following reason. When we say, in shall show that the effective equations of motion have the
the context of quantum theory, that a particle exhibits almostorm of the classical equations of motion coupliXgto x,
classical behavior, we mean that the probability that it isbut with the small particle variablesreplaced by a stochas-
found at a sequence of imprecisely specified positions at fic c numberx(t). Moreover, the probability distribution for
sequence of times exists and, furthermore, that this probabil(t) is given by a formula bearing a close resemblance to the
ity is peaked about classical equations of mot[@4,10.  probability for a continuous position measurement in con-
Hence, to talk about classical properties of a point particletinuous quantum measurement theory.
we need to talk about the histories of imprecisely specified The majority of our results are described in Sec. Il, where
positions. we consider the simple linear model described above, lin-

A commonly used coarse-graining procedure to ensurearly coupled to a thermal environment. We compute the
that histories of position are decoherent is to couple to @robabilities for histories of the large particle. It has the form
thermal environment. We therefore consider projections apf a stochastic theory in which a classical variableis
each moment of time of the form coupled to a stochastic variab€t) with a probability dis-

tribution for x(t). The distribution ofx(t), in this simple
linear model, essentially reduces to a Wigner function on the
P.,=PLol%, (1.14  jnitial phase space data of the small particthough
smeared over a large region of phase space, so that it is
positive. We discuss some properties of the scheme and
WherePﬁ denotes imprecise position projections for the par-show that the naive semiclassical approximation is recovered
ticle and1¢ denotes the identity on the environment. Usingin the limit of very weak coupling. We also show that if the
this basic setup, a number of recent papers have shown thsinall particle is initially in a superposition of localized
for a thermal environment of sufficiently high temperaturestates, the large particle “sees” one or other of the localized
there exist decoherent histories of imprecisely specified postates, and not the mean position of the entire state.
sition[10,23. Furthermore, the probabilities for histories are  In Sec. lll we demonstrate the connection with quantum
then strongly peaked about classical equations of motiotheory of continuous measurements. We show that the prob-
with dissipation, with thermal fluctuations about them ability distribution forx(t) is closely related to the formula
[10,21). If the particle is sufficiently massive, the effect of for continuous quantum measurements, Eg6), and dis-
the thermal fluctuations is very small, and its behavior maycuss the connection with the phenomenological scheme of
therefore be said to be effectively classical. Ref.[18].

Given, therefore, this characterization of what it means The generalization to nonlinear systems with nontrivial
for a particle to be effectively classical, we may now turn tocouplings is straightforward and is considered in Sec. IV.
the main question we are interested in, which is to determin€ouplings involving the energy of the small particle are con-
the form of the effective equations of motion when the classidered in Sec. V. We summarize and conclude in Sec. VI.
sical particle is coupled to a small quantum particle. It should
be clear that it is very easy to set up this problem in the
decoherent histories approach. We quite simply couple a

small particle in an arbitrary initial state to the case consid- \we now compute the decoherence functional for a simple
ered above. The closed system we consider therefore consisfigear model. The model consists of a large free particle lin-
of a large particle &) coupled to a small particleB). The  early coupled to a small harmonic oscillatbrith action
large particle is also coupled to a thermal environm@t  (1.2)], but the large particle is also coupled to a thermal bath.
The projections at each moment of time are therefore of thehe |arge particle could start out in an arbitrary state, but we
form are assuming it is almost classical, and so it is most useful to
A B g start it out in a state with almost definite position and mo-
P,=P,o1"®l%, (1.19  mentum. The near-classical behavior of the large particle is

Il. A SIMPLE LINEAR MODEL
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assured by its coupling to the environment. The small parsimply calculate directly the probability that the large par-
ticle starts out in an arbitrary initial state. We would like to ticle will take a particular trajectory.

know how the large classical particle responds to the pres-
ence of the small quantum particle in an arbitrary quantum
state. More precisely, what is the effective description of the
large particle, in terms of the quantum state of the small After tracing out the thermal bath modes, the decoherence
particle? In the decoherent histories approach we can quitieinctional for the model is

A. Probabilities for histories

2 w2
(X X)—fdt” Y))

D[x,Y]=f DX DY Dx Dy pé(xo,vo)p3<xo,yo>exrn( —f dt —— o

i 1 1
_ my2— — 22 _
exp{ﬁ fdt(zmxz 5 M’ )\Xx)

Xex;{—;i— j dt(%m'yz—%mwzyz—)\Yy”. (2.2

X

ijd 1MX2 1MY2 Dfd X—Y)?
p) Qg MXEm g MYE=D JdtX=y)

This formula is an elementary generalization of similar onedrom widely different values ofX and Y. The coarse-
used in Refs[10, 25, 2]. The integration is over path§(t), graining scale ofX andY is set by the parametar, and
Y(t), x(t), andy(t) which fold into the initial density ma- hence the condition for approximate decoherend®isl/o?
tricesp”(Xo,Yo) andpB(x,,yo) at the initial time and at the [23,25. We are generally interested in histories which are
final time X=Y andx=y are integrated over. We have used maximally refined, that is, as fine grained as possible consis-
Gaussian projections of widtt to specify the trajectories of tent with a given standard of approximate decoheréhog
the large particléalthough we did not need to do this—exact This means, in this case, thatis taken to be as small as
projections may have been used, but this is a bit more awkpossible, which means that it is of order 2.
ward [10]). The influence functional formalism of Feynman  The probabilities for historiex(t), which may now be
and Vernon has been used to handle the thermal batissigned, are given by the diagonal elements of (Bd).
[26,27]. The only remnant of this environment is the term |ntroducing
proportional to K—Y)?, and the constar is given byD
=2MykT/#2. For simplicity, we are working in the limit of
high temperature and negligible dissipation, but these restric-
tions are easily relaxed.

For macroscopic values &, T, andvy, D is exceedingly the integration oveg; may be carried out, and the probabili-
large, thereby very effectively suppressing contributiongties are

Q=3(X4Y), &=X-Y, (2.2

— . —-X 2 1
pIX (1= | DQ Dx Dy M(MQO,Q(J)pB(xO,yo)exr{— [a 0 [

o2 4ﬁ25
i 1 1 i 1 1
xexg— | dt| = m¥— = mw®>?—AQx]| |ex ——fdt — my?— = mw?y?—\
%hf 2 2 Q) % 7 p MY T MOy QY

|

: (2.3

Mé+%xu+w

where 5=.D+1/(40'2). An integration by parts was performed, in the exponent, which picks up a boundary term
(—i/A)MQ(0)¢&41(0) (recall thaté;=0 at the final timg¢ The integration oveg,(0) then effectively produces the Wigner
transformWj of the initial density matrixp§ [10,28.

Equation(2.3) may be written

_ B _ _ X2
pLX(t)]= f Dq DQ \Né‘(MQo,Qo>wQ[q<t>]exp(— f at X

-
. 4#5u_deKMQ+Am), (2.4
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where A2
wo[q(t =f Dg W(map,qo)exp — —=—
qla(t)] q Wo(mdp,do) % e
WQ[Wt)]:f DX Dy po(Xo.Yo) XJ dt(q—@z) S Mg+ mw?q+1Q],
[ )\2 X+ 2 2.
ex] — fdt(( y)_ﬂ 1 27
| 42°Dy 2 WhereW('?‘J is the initial Wigner function of the small particle.

Now let

><exp|— Jdt 1m'xz—lmwzxz—)\Qx) :
L7 2 2 q(t)=q0c05wt+%sinwt+)\f dt'G(t,t")Q(t")+ 8q(t),
X exp L f dt(lm'yz—lmwzyz—)\QyH. 28
L h 2 2 whereG(t,t") is the Green function for the harmonic oscil-
(2.5 lator and 8¢q(0)=0=59(0). Then the§ functional in the
functional integration in Eq.(2.7) becomess mésq(t)],
which implies, given the above initial conditions, that
To achieve the decompositid@.5), we have effectively de- §q(t) =0. All that remain are two ordinary integrations over
convolved the second part of the Gaussian in(d), using  do andpy=magy:
the functional integral generalization of the formula

_ A?

wolq(t =f dpo dgg WE(po.0o)exp — —=
qla(t)] Po ddo Wo(Po.do) F{ 417D,
(x=2)% (y—2)°
exr[—(x—y)2]=f dzexp - —7———— . 0
7 7 2.6 xj dt( goCOoSwt+ =2 sinwt
- Mo
2
This deconvolution is, of course, not unique, apds an +>\f dt'G(t,t')Q(t')—at)> . (29

arbitrary constant parametrizing this nonuniquen¢abk

though clearly the total probability distributid@.4) is inde- s shows that the weight function is in fact a Wigner func-

pendent ofy]. This trick turns out to be useful for smearing tion smeared over a region of phase space of Aiz@here
the Wigner functions of each particle, thereby rendering
them positive[29,28. o=
Written in the form(2.4) the probability distribution now Am ADMo” MykT 1
has a reasonably natural interpretation. First of all recall that \? A2 M (210

we are assuming that the Wigner function of the large par-

ticle is strongl){ peaked about particular va}lues@{ and The quantityM yk /A2 (divided by tim@ is a measure of the
MQ,. Hence, in the absence of the coupling to the small,ormg quctuationsAx)fh in the position of the small par-

particle, Eq.(2.4) describes a probability distribution for the ticle induced by its coupling to the large particle. The quan-

large particle strongly peaked about a single classical SOI'“‘ﬂty fl(me) is representative of the quantum fluctuations
tion with prescribed initial conditions. The width of peaking (Ax)2 of the small particle. For a wide range of choices of
q .

about the classical solution is controlled by the fadtéD, ;0 parameters of the model, the induced thermal fluctuations
which is of orderM ykT, and this is typically very small for 5.6 mych larger than the quantum fluctuations, and it follows
macroscopic values dfl, y, andT. that A>#. (This will always be the case, for example, if the

_ With the small particle coupled in, however, there is the|gge particle is sufficiently massiverhis means, first of all,
integration ovex(t) together with the weight functio®.5. 14t a5 long ag; is not too small,wq[at)] is positive, even

In the next section, we will show that it is closely related tothough the Wigner function is not, since a smearing of the
the probability distribution for continuously measuring the Wigner function over cells larger in size than abéuyields
positionq(t) of the small particle. Equatiof2.4) is therefore positive distribution functiofi29,28.
the sought-after result: It describes an ensemble of trajec- "\1ore importantly, because the smearing is over a cell size
tories for the large particle with a weight depending on theyery mych greater thah, an effect essentially the same as
initial conditions and dynamics of the small particle. decoherence of themall quantum systeis produced. To be
precise, suppose the initial state of the small quantum system
consisted of a superposition of localized wavepackets, e.g.,
coherent states. Then, in the Wigner function, the interfer-
The weight function(2.5 may be further evaluated as ence terms between these wavepackets would appear as
follows. Introduceq=3(x+y) and £&,=x—y. Then theé,  terms which rapidly oscillate in phase space on a scale the
integration may be done with the result size of#. It is well known that smearing the Wigner function

B. Weight function
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over a region much large in size thanstrongly suppresses [24,32.
these termgsee Refs[30, 31], for example. Therefore, for It could be the case, of course, that the interesting param-
all practical purposes we may replace the initial Wignereters for the model in a particular application are such that
function with a generally mixed state Wigner function in Eq.(2.9) is not in fact positive. Then the weight function can
which the interference terms between wavepackets has be@o longer be interpreted as a probability distributionogt).
thrown away. However, what one is ultimately interested in is the probabil-
Effectively what is happening here is that the small quan-ty distribution for histories of the large particle, EQ.4), is
tum system alternatives are approximately decoherent behis is positive by construction, for all choices of parameters.
cause they are approximately correlated with the decohered In this simple linear model, a further simplification may
large system alternatives. A similar phenomenon, in the conbe obtained by inserting E.9) into Eq.(2.5), and carrying
text of quantum measurement theory, was noted by Hartle out the integration oveq(t), with the result

_ _ =
p[x(t)]:f dequWg(po*qO)f DQ WS\(MQo,Qo)exp< —J dt—(QU2 )

2
X ex —i f dt q co&)t+&sinwt ) (2.11
442D ° ' '

Mw

Mc"gﬂzf dt’G(t,t")Q(t")+\

Loosely speaking, this equation tells us to solve the classical C. Recovery of the naive semiclassical approximation

equations of motion for the small particle in terms of their |1 is also of interest to examine E@.4 or (2.11) in the

initial datap, andqp, and then regard these as stochastiGim;t of very weak coupling, i.e., small. One readily finds
variables with a probability distribution given by a smearedinat 1o jowest order

Wigner function.
Another convenient way of writing the weight function

25i _ . —X)2
291 px(0)1= | PQ \Né(MQo,Qo>exp(—f dt%)
_ A2
Wq[q(t)]=fDq W[q,Q]exp(—mfdt(q—W), Xex;{—%fdt[MéJr)\(q(t))]z),
(2.12 (2.14

where
where

ix
WiaQl- | szexp( -2 dtqu)

1 (q(t))=(gg)ycoswt + % sinwt+)\f dt’ G(t,t")Q(t").
a3 52} (2.15

xexp{%—SB

i 1
_ESB[q_§§2DPS(XO'y0)’ (2.13 The probability distribution is peaked about the naive

semiclassical equatiofl.5), and here we see it emerging in
the limit of very weak coupling. This is not surprising, since

where, recallg=3(x+y) and é&,=x—y, andSg[x] is the  weak coupling corresponds to a very imprecise measure-

free action of the small particle. The quantity[q,Q] isthe  ment, and the first thing a very broad measurement sees is

Wigner functional, introduced by Gell-Mann and Haftl®],  the average value.

and is defined, in Eq2.13, by a functional Wigner trans- Although the naive semiclassical approach is very limited,

form of the fine-grained decoherence functional for the smalthe above considerations show how it might still be useful if

particle position histories. It is analogous to the ordinaryused with discretion for certain types of initial states. Note

Wigner function in relation to the density matri33].  first of all that the expressiof2.14), the naive semiclassical

Hence, in Eq.(2.12, we see that the weight function is a result, is not only valid for smalk. It will also be a valid

smeared Wigner functional. Like the Wigner function, theapproximation to Eq(2.11) for initial states whose Wigner

Wigner functional is not positive in general, but in this casefunction is strongly peaked about the mean valuep ahd

at least, the smeared Wigner functiofall? is. g, as is the case for a coherent state.
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Now consider the key case of an initial state that consists [ll. CONTINUOUS MEASUREMENT THEORY

of a superposition of two well-separated phase space local-

ized states, one localized aroupg andq,, the other local-

ized aroundp, andqs:

The weight functiorWQ[Wt)] turns out to be closely re-

lated to continuous measurement thep®yB—17. As we

have noted, the interaction of the large particle with the small

one constitutes a continuous but imprecise measurement of

the position of the small particle. In the quantum theory of

qu2 (216 continuous measurements, the probability for measuring a
trajectoryq(t) up to an imprecisionr, is given by the path
integral expression

W)= al|q’plq1>+ ay|V

Then the Wigner function for this initial state has the form

pla(t)]= f Dx Dy pg(Xo.Yo)

W= ay|?W, 4, +|@2|* W, q,+ interference terms,

P1dq
(2.1 X—0)2 =)
conf - [0 8 [T
207 207
where Wp.q, denotes the Wigner function for the state
v , and thus is concentrated aroup¢ and q,, and [ 1 1
l_ p_1q1> o pd 9 X ex fdt( mX— = maw?3x )\Qx)
similarly for p, andqg,. Now the point is that, as we have h 2

argued above, the interference terms in the initial Wigner

function become highly suppressed as a result of the smear- i

ing in Eq.(2.9). Therefore the probability distributiof2.11) Xex;{ J ( myz— - Mw?y?— )\Qy”
has the form

(3.9

— = , =
PIX(D]~|as"Pal X(O]+ |aal pAX(D], (218 As above, introduce the variablgs (x+y), é&=x—vy, and

hence
where pl[X_(t)] denotes the probability distributiof2.4), _ B 1 1
but with initial Wigner functionW, . (for the small systen p[q(t)]=J Da D¢ po| dot 5 £0:80~ 5 $o
and similarly forp,[ X(t)]. But these Wigner functions are
strongly peaked about their mean values, and hence the naive (q- q) &2
semiclassical expressiof2.14) is valid for p,[X(t)] and XeXF{ J dt ——— dt 4—2)
po[ X(t)] seperately. The effective description of the coupled
classical and quantum system is therefore that the classical )
system follows the equations of motion ! j - 2
X ex 7 dté(mg+meq+AQ)
MQ+X\{q(t));=0, (2.19 i
' — 7 My0)£(0) . (32
with probability | a4|?, and follows Comparing with the expression for the weight functi@rb),
we see that it is very similar, if;, which is so far arbitrary,
. is taken to be
MQ+X({q(t)).=0, (2.20

442Dy M9ykT
B U

2_
g1=

(3.3
with probability |a,|?, where

although note that Eq$3.1) and(3.2) differ from Eq. (2.5

by the absence of the term
<q(t)>l:<\Pp1q1|q(t)|q’plql> (2.2

exp{ f dt —2) (3.9
and similarly for{(q(t)),. This is clearly the intuitively sen- 40}

sible result. Applied undiscerningly, the mean field equations

(1.5 would not give this result, although here we see thatjn Eq. (2.5. Hence Eq(2.5) is not exactlythe same as the
given the small amount of insight provided by decoherencecontinuous measurement formu(a.1). However, we will
the mean field equations can be used to good effect. see that they are very close.
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Carrying out thef integration we obtain measurements E¢3.1), has the form(¥4{¥y), for a wave
o function W3, whose path integral representation is given by
_ ) (q—q)? “half” of Eq. (3.1). From this one can define a normalized
p[q(t)]=f Dq V\/g(m%,qo)exr< —f dt p state|) whose time evolution is given by the nonlinear

) stochastic equation
g
—ﬁ—; f dt(m'q+mw2q+)\Q)2>. (3.5 d i 1
= - —H- (- 2
gt 10 =~ 5 o=z @@ )19)
With the above choice of,

1.
+G—l(q—<Q>)l¢>n(t)- (3.7
o3 MykT
w2 R (3.6 Here 7(t) is Gaussian white noise whose linear and qua-
dratic means are
For macroscopic values ®f, y, andT, and assuming? is (n(1))s=0, (n(t)y(t'))s=d(t—t"), 3.8

not unusually large, the factor & in the denominator en-
sures thatri/ﬁ2 is very large. The second exponential in Eq.
(3.5 is therefore very close to &function, and Eq(3.5) is
therefore very close in form to the alternative expression fo
the weight function(2.7). L
Note that the widthr, of the effective “measurement” of q=(ylaly)+zo1m(1). (3.9
g depends on two things. First of all, it depends on the cou-
pling A and is smaller the largex is, corresponding to the
notion that stronger interactions produce more precise medd is the Hamiltonian for the small systefin this case a
surements. Second, it depends on the combinaiork T, harmonic oscillator, withX(t) as an external sourte
which is a measure of the thermal fluctuations endured by Hence, to the extent that the semiclassical equations we
the large particle as a result of its interaction with the envi-have derived are equivalent to continuous quantum measure-
ronment and, hence, is a measure of the precision to withiment, the new equations that replace the mean field equa-
which the trajectory of the large particle is definee. in-  tions (1.5 are
creases with increasinyl ykT, which is to be expected,
since the precision with which the large particle can measure .
the small particle depends on the precision with which the MQ+N\(#|q|)+3No17(t)=0, (3.10
large particles’s properties are themselves defined.
Given the close resemblance to continuous quantum mea-
surement theory, the question remains, why did we not gewhere |) evolves according to the stochastic nonlinear
exactlythe formula for continuous quantum measurements&quation(3.7). Note that with the value of; is given by Eq.
After all, in the decoherent histories approach it is possible tq3.3), the noise termho;%(t) is independent of. and so
derive standard quantum measurement théogy, measure- remains as\ —0 and describes the thermal fluctuations of
ments represented by exact projection operators at discrethe large particle.
moments of timg under certain idealized conditiof24,32. The noise term describes fluctuations about the mean.
The answer to this is probably to be found in the nature ofThis sort of modification, in the context of E¢l.1), has
the simple model we are considering and, in particular, thédeen considered befof®,34]. More significant is the fact
couplings between the subsystems. For example, in thghe state evolves according to E8.7), and it is the proper-
model considered here, we coupbedo just a single degree ties of this equation that correspond to the separation of ini-
of freedomX (in turn coupled to the environmentCoupling  tial superposition states described in Sec. [118].
to a large number of degrees of freedom may lead to the The above scheme was put forward in Ré&8] as a phe-
missing factor, Eq(3.4), in the same way that the coupling nomenological model for the coupling of classical and quan-
of X to a large environment produces the factor involvingtum variables, and the value of, proposed there on general
Jdt(X—Y)? in Eq. (2.1). Hence it is quite possible that a physical grounds agrees with the one derived here.
closer connection between decoherent histories and continu-
ous quantum measurements might be found by exploring IV. NONLINEAR COUPLINGS
more general types of models couplings. This is tangential to
the main theme of this paper, and so will be explored else- Section Il concentrated entirely on the case of a free par-
where. ticle linearly coupled to a harmonic oscillator. Now we show
It is perhaps of interest to note that the above result ofow these considerations can be extended to more compli-
continuous measurement can be reexpressed in terms of eveated cases. First, we consider the case of a particle in a
lution equations, and this in fact casts our results in a fornpotential V(X) coupled to a harmonic oscillator via a cou-
very close to the original mean field equatiqast) [18]. For  pling of the formg(X)x. The decoherence function@.l) is
a pure initial state, the probability formula for continuous therefore replaced by

where( )s denotes stochastic averaging. Herés related to
'the measured variablg by
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vEv X—X)? Y-Y)2
D[x,Y]zf DX DY Dx Dy pé(xo,vo)pg(xo,yo)exp(—f dt( 202) fdt( 202) )

ex;{ fdt( x2—— Maw?X g(X)x)

(4.1)

xex;{%fdt( MX2— V(X)——MY2+V(Y)> fdt(x Y)?

i 1 1
— _ \2_ 2,2 _
xex;{ 7 f dt(2 my? 5> Mo’y g(Y)y

This case is actually handled quite simply using the fact that the integrationXoaed Y is strongly concentrated around
X=Y. As before, writeX=Q+ 3¢, andY=Q—3¢,. Then we have

V(X)=V(Y)=&V'(Q)+0(&),
g(X)x—g(Y)y=9(Q)(x—y)+ 39" (Q)(x+Yy)+O(£2). 4.2

The &, integration is readily done, and we obtain, for the probabilities,

— - (Q-X)? 1
pIX(H)]= f DQ Dx Dy VVS(MQOaQo)PB(Xo,YO)eXF{_ f ]
) 1 2 i 1 1
' TN _ —myl— — 22
xj dt{ MQ+V (Q)+2 g’ (Q)(x+y) ex;{ﬁ fdt(2 mx® 5 Mw?X g(Q)x)
i 1 1
__ T2 202
Xex;{ - J'dt(2 my? . Mw?y g(Q)yH. 4.3

This may be written

_ o QX
p[X(t)]—JDQ Dq Wo(MQO’QO)WQ[q(t)]eX[{ fdt o2 42D (1— 7)

Jdt[MQ+V'<Q>+g (Q)qT? )
(4.9

where

2

WQWt)]=fDx Dy pB‘(xO,yo)ex,{ Jdt[ Q)] (( +y) ﬁ 1
T e 2 e L moe

Xex;{h fdt(zmx2 5 Mo g(Q)x

Introducingg=3(x+y) and &,=x—y, the £, integral may be done with the result

L N e T
exr{ ﬁfdt(zmyz mey g(Q)y| |. (4.5

- . 1 .
WQ[q(t>]=f Dq V\/E‘(mqo,qo)exp<—m7 f dt[g’(Q)]z(q—W) Mg+ mw?q+g(Q)]. (4.6)

This is very similar to the continuous measurement form@B$) and (3.2) if we allow the imprecision parameter; to
depend on the external field.

The next more complicated case we consider is that in which the coupling between the particles is of thpEx<idr(x).
It is straightforward to show that the probability is then

— . _X_z 1
1= [ Q Dx Dy Wé‘(MQo,Qo)pB(xo,yo)exp< - [

o 4ﬁ25

2 i 1

xfdt )ex —fdt —
h 2

_I_ 1 \ _E 2.,2 __
xex;{ hfdt(zmyz mey g(Q)f(y)) .

. 1 .01
MQ+V'(Q)+ > g’ (QLf(x)+f(y)] mx*— > mwzxz—g(Q)f(X))

(4.7)
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Again, this may be cast in the form

o e — (Q-X)? 1 o —
p[X<t>]=jDQ Df WH(MQo,Qo)Wol f(t)]ex —fdt ; o= Jdt[(MQHV (Q+9"(QF?,
o 4#°D(1—7n)
(4.9
where
2
— 1 (f(x)+1(y))
wftszxD B(xo,Yo)EXH — ~fdt’ = f
ol f(D)] Y p6(Xo.Yo) p[ s, ) (@] ;
xexg+ [ at] > mie- mot-g(Q)foo o~ mi- mory? (Q)f()) 4.9
expg — — MX°— — Mw*X — X)||exg — — —my——m - . (4.
i 2 ;M i 2 p MY ORI
|
Again, it is similar to the continuous measurement formula, — A
but now the variable being measure is not positignbut p[X(t)]=; pEEJ DX DY pg(Xo,Yo)
f(x), as one would expect, since it is this that couples to the o o
large particle. It is not possible to evaluatg any further in (X—X)2 (Y—X)2
this case. X ex —jdt 552 —f 552

Overall, therefore, although the evaluation of the path in-
tegrals is less explicit in these more complicated cases, the i 1 . 1 .
general pattern is the same as in the linear case described in xex;{% f dt(z MX?— > MYZ)
Sec. II: The large particle follows near-deterministic equa-
tions of motion, but with a stochastic forcing term due the
small particle, whose probability distribution bears a close _Dj dt(X_Y)z}
resemblance to the formula of continuous quantum measure-
ment theory.

><exp( —ilfl f dt[g(X)—g(Y)]E). (5.9

V. COUPLING TO ENERGY _ o
. ) o The summation oveE andE’ is diagonal becausk com-
Another case of particular interest, especially in connecmytes with everything else so that the stas are pre-
tion with the semiclassical Einstein equatiofisl), is the  served under evolution by the total Hamiltonian, and the
case in which the large particle couples to the energy of thgace in the decoherence functional then contains the term
small particle. The considerations of the previous section E|E").

apply to this case very easily. In fact, this case turns out to be IntroducingQ and & as before, this becomes
somewhat simpler.

Let the Hamiltonian of the total closed system, including _ )
large systemA), small systemB), and environment£), be D[X(t)]Zé pEEf DQ Wo(MQq,Qo)
H=Ha+HagtHet Hpe, (5.1 f O-%2 1
xXexp — | dt ————=
where a? 472D
Mas=ho00N 52 < | dt[Mé+g'<Q>E]2). 55

andh is a harmonic oscillator Hamiltonian. Hegg€X) is an
arbitrary function ofX, andH,, H¢, andH ¢ are as before. It is straightforward to then rewrite this in terms of continu-
Let the initial state of the small system be written in terms ofous imprecise measurement of energy. For simplicity, take

energy eigenfunctions, g(Q)=\Q; then,
p2=3 peelENE'] 53 pX(vI- [ dE] DO WAMQo.QoW(E)
EE’
whereh|E)=E|E). Then, becausk commutes with every- (Q—X)2 1
thing, wheneverH operates orfE), h is replaced by the xXexpg — | dt o2 422D (1- 1)

eigenfunctionE.
It is then straightforward to see that the probabilities for R
histories of the large particle are xf dt(MQ+X\E)?|, (5.6)
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where quantum theory of the classical variables is the width of the
Gaussian/?D?/\2. However, we can see from E@.4)

that, physically, the factat?D is a measure of the precision
(E—E_)> 5.7 to within which the trajectories of classical variables are de-
' fined, and we can imagine that this number could be deter-
mined (or at least boundgdy experiment.

whereris the time duration of the histories. Equatid?) is A very similar semiclassical schemasing the continu-

the formula for the continuous imprecise measurement ofus measureme_nt forml)las{as deS(_:rlbed n Re_t.1_8], and
energy, using Gaussian projectors, to a width of orderthe results of this paper give partial substantiations of that

#2D/(\?7). Here the connection with continuous measure—scr:f/mﬁ' d the decoherent histori hto deri
ments is precise, although this is clearly due to the simplicity - ? a}{elgse t('e ec? erent nis orltest zzpprogc ? Iterwe
of this particular case. effective field equations, for reasons stated in Sec. I. It is,

Of perhaps greater interest is the situation in which thd’0WeVer, quite possible that other approaches to emergent
energy of the small particle couples in a nontrivial way to theclassicality may be used, such as the density matrix approach

large particle, for example, through a small particle Hamil-[35.31, the quantum state diffusion pictuir@6,37,23, or the
tonian of the form hybrid representation of composite quantum syst¢&ss-

40]. A system similar to that considered in this paper has
been analyzed in the quantum state diffusion picture by Zou-

H=1f(X)p2+g(X)x2. (5.8  Ppas[41] and a simple spin system by Yu and Zoup4z].

2

W(E_): ; PEE eXD(

- 4712577

This is a more realistic model of the way in which matter
couples to gravityfor example, in cosmology, a single mode
of a scalar field coupled to the scale fag¢toFhis is much .
more complicated to deal with and will be treated elsewhere. Note added in proof
Some of the qualitative features of the approach described
here have previously been discussed by A. AndersoRraA
ceedings of the Fourth Drexel Symposium on Quantum Non-
VI. DISCUSSION integrability, edited by D. H. Feng(International Press,
. . _ 1996. (See also A. Anderson in R€fi8].) In particular, he
We have derived the form of the effective equations ofnoted the importance of coupling quantum variables to vari-
motion for some simple systems consisting of a large particlgples rendered quasiclassical by decoherdnather than
coupled to a small particle and coupled also to a thermajyndamentally classical variablesand the desirability of
environment in order to produce the decoherence necessafdving a stochastic equation predicting that the quasiclassical
for classicality of the large particle. The resultant effectivesystem “sees” distinct elements of a superposition with
theory has the form of a classical variable coupled to a stoggme probability.
chastic variablex(t), where the probability distribution for E. Calzetta and B. L. H{Phys. Rev. D49, 6636(1994],
the stochastic variable is given by a certain Welght fUnCtiOﬂn the context of System-environment modegch as quan-
[most generally, Eq(4.9)]. This weight function is closely tum Brownian motiol, have written down stochastic equa-
related(although not exactly the samas the probability for tjons describing the stochastic effect of a thermal environ-
continuous imprecise measurements of the position of thenent on the system. E. Calzetta and B. L. Féuprint hep-
small particle. In the case of coupling to energy, it is exactlyth/9501040, IASSNS-HEP/95/2995] have also discussed
the same as the continuous measurement theory result.  the decoherence of “correlation histories” in field theories,
The weight function has the property that it suppresses thgnd have shown that histories specified by values of the en-
interference between localized wave packets for the Sma&rgy momentum tensor are approximate|y decoherent, and
particle. Hence one of the more unsatisfactory features of thgyus, may be assigned probabilities. This leads to the possi-
naive semiclassical approximation is avoided, and the intupjjity that the right-hand side of Eq1.1) may be taken to be

itively sensible result that localized wavepacket initial states, stgcnastic-numberT ... whose probabilities are given by
. s
may be treated separately is restored. the expression derived by Calzetta and Hu, thereby general-
The derived semiclassical theory suggests the form of &ing the results discussed here to the full Einstein equations.
possible semiclassical theory even when the quantum theoyyme other related works are E. Calzetta and B. Hu Phys.

of the variables that are taken to be classical is not known. lgay, p52 6770(1995, and E. Calzetta, A. Campos, and E.
is the following: In the equations of motion for the classical Verdague’rjbid. 56 21’63(1997). ’ ’

system, which involves a coupling to the quantum system,
replace the quantum variables with stochastic variables
whose probabilities are given by a weight function of the
form (2.5 (or its generalizations The classical variabl® is
regarded as an external classical source in(Edy) and the
path integral is well defined, even if the quantum theor@of
is not known. | am very grateful to Lajos Disi and Jason Twamley for
The only aspect of E¢2.5) that was inherited from the useful conversations.
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