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Effective theories of coupled classical and quantum variables from decoherent histories:
A new approach to the back reaction problem

J. J. Halliwell*
Theory Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 13 May 1997; published 30 January 1998!

We use the decoherent histories approach to quantum theory to derive the form of an effective theory
describing the coupling of classical and quantum variables. The derivation is carried out for a system consisting
of a large particle coupled to a small particle with the important additional feature that the large particle is also
coupled to a thermal environment producing the decoherence necessary for classicality. The effective theory is
obtained by tracing out both the environment and the small particle variables. It consists of a formula for the
probabilities of a set of histories of the large particle, and depends on the dynamics and initial quantum state
of the small particle. It has the form of an almost classical particle coupled to a stochastic variable whose
probabilities are determined by a formula very similar to that given by quantum measurement theory for
continuous measurements of the small particle’s position. The effective theory gives intuitively sensible an-
swers when the small particle is in a superposition of localized states~unlike the simple mean field approach
of coupling to the expectation values of the small system!. The derived effective theory suggests a form of the
semiclassical theory even when the quantum theory of the large system is not known, as is the case, for
example, when a classical gravitational field is coupled to a quantized matter field, thus offering a new
approach to the back reaction problem.@S0556-2821~97!04822-4#

PACS number~s!: 04.60.Ds, 03.65.Bz
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I. INTRODUCTION

What happens when a classical system interacts wi
quantum system in a nontrivial superposition state? Quan
field theory in curved spacetime is an example of a num
of situations where one would like to know the answer t
question. There, the effect of the quantized matter field
the classical gravitational field is often assessed using
semiclassical Einstein equations@1,2#

Gmn58pG^Tmn&. ~1.1!

The left-hand side is the Einstein tensor of the classical m
ric field gmn , and the right-hand side is the expectation va
of the energy-momentum tensor of a quantum field.

Although we do not yet have a complete, workable the
of quantum gravity required to derive an equation such
Eq. ~1.1!, on general grounds it is clear that it is unlikely
be valid unless the fluctuations inTmn are small@3–5#. In-
deed, Eq.~1.1! fails to give intuitively sensible results whe
the matter field is in a superposition of localized states@6,7#.
It is by no means obvious, however, that we have to reso
quantum gravity to accommodate nontrivial matter sta
This leads one to ask whether there exists a semiclas
theory with a much wider range of validity than Eq.~1.1!,
which gives intuitively reasonable results for nontrivial s
perposition states for the matter field.

The object of the present paper is to derive the form of
effective theory of coupled classical and quantum variab
in some simple models where the quantum theory of
entire system is known. From there, we can then mak
reasonable postulate as to the form such a theory might
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even when the quantum theory of the variables treated c
sically is not known. Of course, a number of previous a
thors have attempted either to derive or postulate the form
theories of coupled classical and quantum variables@8#.
What is perhaps missing from most of these earlier
proaches is an adequate characterization of what it mean
one of the subsystems to be effectively classical. Here,
will work in the context of the decoherent histories approa
to quantum theory@9–12#, where a thorough characterizatio
of what it means to be classical has been undertaken.
issue is an involved one, but simply, the system must
described by a decoherent set of histories consisting of
same type of variables at each moment of time whose p
abilities are strongly peaked about classical equations of
tion.

It should be stressed that we do not expect to deriv
consistent theory describing the coupling offundamentally
classical variables to quantum variables. Rather, we are lo
ing for the form of an effective theory in which variable
which are the classical descendents of a~perhaps unknown!
quantum theory couple to quantum variables. In contras
fundamentally classical variables, classical descendent
quantum variables always suffer a certain amount of imp
cision, partly due to their quantum fluctuations, but largely
a result of the coarse graining required for decoherence
hence, to render them effectively classical. This imprecis
feeds into the quantum variables they couple to and, as
shall see, confers some useful features.

In this paper, we will concentrate on some simple mod
in nonrelativistic quantum theory. To motivate the discu
sion, consider the following system. Suppose we have a la
~‘‘to be classical’’! particle with coordinatesX linearly
coupled to a small particle with coordinatesx. Let the action
be
2337 © 1998 The American Physical Society
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S5E dtS 1

2
MẊ21

1

2
mẋ22

1

2
mv2x22lXxD . ~1.2!

Hence the equations of motion are

MẌ1lx50, ~1.3!

mẍ1mv2x1lX50. ~1.4!

A naive semiclassical approach~the mean field approach!,
on which Eq.~1.1! is based, involves considering the equ
tion

MẌ1l^x&50 ~1.5!

together with the Schro¨dinger equation for the state of th
small system withX(t) as an external classical source. Ho
ever, as stated above, we do not expect Eq.~1.5! to have a
very wide range of validity.

Physically, when a large, classical particle interacts wit
small quantum system, the large particle in some se
‘‘measures’’ the position of the small system at each mom
of time and then evolves according to the measured va
The probability for the large particle to measure a particu
value of x will be determined by the quantum state of t
small system and there will generally be nonzero probab
ties for a wide range of different values ofx. There is no
reason why the average value^x& is the one that will almost
always be measured, unless the coupling is very weak or
distribution of x is strongly peaked about̂x&. Therefore,
what we expect in general is an ensemble of trajectories
the large particle, with a probability for each trajectory d
termined by the quantum state of the small particle. In t
paper, we will derive a scheme of this type, using the de
herent histories approach, in a class of simple models.

We mention in passing that it is possible to proceed d
ferently from this point and directly write down a phenom
enological scheme for the coupling of classical and quan
variables using continous quantum measurement theory@13–
17#. Such an approach was considered in Ref.@18#. The idea
is that, in Eq.~1.3!, X is treated as a classical variable andx
is replaced by a classical stochastic variablex̄(t), the prob-
ability for which is given by a standard construction of qua
tum measurement theory:

p@ x̄~ t !#5E Dx Dy r0
B~x0 ,y0!expS 2E dt

~x2 x̄!2

2s1
2

2E dt
~y2 x̄!2

2s1
2 D

3expF i

\ E dtS 1

2
mẋ22

1

2
mv2x22lxXD G

3expF2
i

\ E dtS 1

2
mẏ22

1

2
mv2y22lyXD G ,

~1.6!

where r0
B(x0 ,y0) is the initial density matrix of the smal

quantum system. Therefore, the scheme is to solve the e
tions of motion for the large particle withx̄(t) regarded as a
-

a
se
t

e.
r

i-

he

or
-
s
-

-

m

-

a-

classical source, and then the probability distribution on
trajectoriesX(t) is that implied by the probability~1.6!.

The formula~1.6! contains an arbitrary parameters1 rep-
resenting the imprecision in the continuous measuremen
reasonable estimate as to its value can be made by appe
to the fact that, as stated above,X is not fundamentally clas-
sical, but a classical descendent of a quantum variable
therefore has intrinsic imprecision, which limits the precisi
with which it can carry out ‘‘measurements’’ of the sma
particle. The parameters1 ought therefore to be approxi
mately determined given the size of the fluctuations inX and
the nature of the coupling betweenX andx @18#.

The scheme we derive in this paper turns out to be v
closely related to the phenomenological scheme presente
Ref. @18# ~although it is not exactly the same!. Furthermore,
it yields a definite value for the parameters1 .

We will use the decoherent histories approach to quan
theory @9–12,19#. In this approach, the primary focus is o
the probabilities for a set of histories of a closed system:

p~a!5Tr@Pan
~ tn!•••Pa2

~ t2!Pa1
~ t1!rPa1

~ t1!•••Pan
~ tn!#.

~1.7!

Here, thePa(t) are projection operators in the Heisenbe
picture:

Pa~ t !5eiHt /\Pae2 iHt /\. ~1.8!

They are exhaustive and exclusive, which means, res
tively,

(
a

Pa51, PaPb5dabPa . ~1.9!

The projection operators describe the possible properties
system may have at each moment of time. In this paper
are mainly interested in histories characterized by imp
cisely specified positions, in which case the projectors h
the form

Pa5E
a
dxux&^xu, ~1.10!

where the integral is over some interval on the real a
labeled bya. In practice, it is often more convenient to wor
with so-called Gaussian projectors

Px̄5
1

~2ps2!1/2 E
2`

`

dx expS 2
~x2 x̄!2

2s2 D , ~1.11!

which are only approximately exclusive.
Probabilities generally cannot be assigned to sets of

tories unless there is negligible interference between th
The measure of the interference between any pair of histo
is the decoherence functional:

D~a,a8!

5Tr@Pan
~ tn!•••Pa2

~ t2!Pa1
~ t1!rPa

18
~ t1!•••Pa

n8
~ tn!#.

~1.12!
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57 2339EFFECTIVE THEORIES OF COUPLED CLASSICAL AND . . .
When the condition of~approximate! decoherence is satis
fied,

D~a,a8!'0 for aÞa8, ~1.13!

the interference between histories is negligible and proba
ties obeying the probability sum rules may be assigned u
the formula ~1.7!. The decoherence condition is typical
only satisfied for histories that are coarse grained, i.e., hi
ries for which the projections ask only very limited que
tions.

A number of recent papers have used the decoherent
tories approach to discuss the emergence of classical be
ior in simple particle models@10,20–23#. The decoheren
histories approach is perhaps the most useful approach to
problem primarily for the following reason. When we say,
the context of quantum theory, that a particle exhibits alm
classical behavior, we mean that the probability that it
found at a sequence of imprecisely specified positions
sequence of times exists and, furthermore, that this proba
ity is peaked about classical equations of motion@24,10#.
Hence, to talk about classical properties of a point parti
we need to talk about the histories of imprecisely specifi
positions.

A commonly used coarse-graining procedure to ens
that histories of position are decoherent is to couple t
thermal environment. We therefore consider projections
each moment of time of the form

Pa5Pa
A

^ I E, ~1.14!

wherePa
A denotes imprecise position projections for the p

ticle and I E denotes the identity on the environment. Usi
this basic setup, a number of recent papers have shown
for a thermal environment of sufficiently high temperatu
there exist decoherent histories of imprecisely specified
sition @10,23#. Furthermore, the probabilities for histories a
then strongly peaked about classical equations of mo
with dissipation, with thermal fluctuations about the
@10,21#. If the particle is sufficiently massive, the effect
the thermal fluctuations is very small, and its behavior m
therefore be said to be effectively classical.

Given, therefore, this characterization of what it mea
for a particle to be effectively classical, we may now turn
the main question we are interested in, which is to determ
the form of the effective equations of motion when the cl
sical particle is coupled to a small quantum particle. It sho
be clear that it is very easy to set up this problem in
decoherent histories approach. We quite simply coupl
small particle in an arbitrary initial state to the case cons
ered above. The closed system we consider therefore con
of a large particle (A) coupled to a small particle (B). The
large particle is also coupled to a thermal environment~E!.
The projections at each moment of time are therefore of
form

Pa5Pa
A

^ I B
^ I E, ~1.15!
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whereI B denotes the identity for the small particle. We aga
expect decoherence of the histories. The main thing we
interested in is the probability distribution for the histories
the large particle: We expect it to be similar to the ca
above, but modified in a way depending on the dynamics
the small particle and also its initial state~which we leave
arbitrary!.

Note that, since we are only interested in the effect
equations of motion for the large particleA, we do not con-
sider projections onto the properties of the small particleB.
The histories of the small particle therefore do not need to
decoherent~indeed, the interesting case is that in which th
might exhibit quantum behavior!, and it is for this reason tha
we do not couple the small particle to the environment.

As we shall see, it is easy to set up the expression for
probability for histories of the large particle. The main iss
is to express the result in a useful and recognizable form.
shall show that the effective equations of motion have
form of the classical equations of motion couplingX to x,
but with the small particle variablesx replaced by a stochas
tic c numberx̄(t). Moreover, the probability distribution fo
x̄(t) is given by a formula bearing a close resemblance to
probability for a continuous position measurement in co
tinuous quantum measurement theory.

The majority of our results are described in Sec. II, whe
we consider the simple linear model described above,
early coupled to a thermal environment. We compute
probabilities for histories of the large particle. It has the fo
of a stochastic theory in which a classical variableX is
coupled to a stochastic variablex̄(t) with a probability dis-
tribution for x̄(t). The distribution ofx̄(t), in this simple
linear model, essentially reduces to a Wigner function on
initial phase space data of the small particle~although
smeared over a large region of phase space, so that
positive!. We discuss some properties of the scheme
show that the naive semiclassical approximation is recove
in the limit of very weak coupling. We also show that if th
small particle is initially in a superposition of localize
states, the large particle ‘‘sees’’ one or other of the localiz
states, and not the mean position of the entire state.

In Sec. III we demonstrate the connection with quantu
theory of continuous measurements. We show that the p
ability distribution for x̄(t) is closely related to the formula
for continuous quantum measurements, Eq.~1.6!, and dis-
cuss the connection with the phenomenological scheme
Ref. @18#.

The generalization to nonlinear systems with nontriv
couplings is straightforward and is considered in Sec.
Couplings involving the energy of the small particle are co
sidered in Sec. V. We summarize and conclude in Sec.

II. A SIMPLE LINEAR MODEL

We now compute the decoherence functional for a sim
linear model. The model consists of a large free particle
early coupled to a small harmonic oscillator@with action
~1.2!#, but the large particle is also coupled to a thermal ba
The large particle could start out in an arbitrary state, but
are assuming it is almost classical, and so it is most usefu
start it out in a state with almost definite position and m
mentum. The near-classical behavior of the large particl
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assured by its coupling to the environment. The small p
ticle starts out in an arbitrary initial state. We would like
know how the large classical particle responds to the p
ence of the small quantum particle in an arbitrary quant
state. More precisely, what is the effective description of
large particle, in terms of the quantum state of the sm
particle? In the decoherent histories approach we can q
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e
ll
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simply calculate directly the probability that the large pa
ticle will take a particular trajectory.

A. Probabilities for histories

After tracing out the thermal bath modes, the decohere
functional for the model is
D@X̄,Ȳ#5E DX DY Dx Dy r0
A~X0 ,Y0!r0

B~x0 ,y0!expS 2E dt
~X2X̄!2

2s2 2E dt
~Y2Ȳ!2

2s2 D
3F i

\ E dtS 1

2
MẊ22

1

2
MẎ2D2DE dt~X2Y!2GexpF i

\ E dtS 1

2
mẋ22

1

2
mv2x22lXxD G

3expF2
i

\ E dtS 1

2
mẏ22

1

2
mv2y22lYyD G . ~2.1!
re
sis-

s

i-
This formula is an elementary generalization of similar on
used in Refs.@10, 25, 21#. The integration is over pathsX(t),
Y(t), x(t), andy(t) which fold into the initial density ma-
tricesrA(X0 ,Y0) andrB(x0 ,y0) at the initial time and at the
final timeX5Y andx5y are integrated over. We have use
Gaussian projections of widths to specify the trajectories o
the large particle~although we did not need to do this—exa
projections may have been used, but this is a bit more a
ward @10#!. The influence functional formalism of Feynma
and Vernon has been used to handle the thermal
@26,27#. The only remnant of this environment is the ter
proportional to (X2Y)2, and the constantD is given byD
52MgkT/\2. For simplicity, we are working in the limit of
high temperature and negligible dissipation, but these res
tions are easily relaxed.

For macroscopic values ofM , T, andg, D is exceedingly
large, thereby very effectively suppressing contributio
s

k-

th

c-

s

from widely different values ofX and Y. The coarse-
graining scale ofX and Y is set by the parameters, and
hence the condition for approximate decoherence isD.1/s2

@23,25#. We are generally interested in histories which a
maximally refined, that is, as fine grained as possible con
tent with a given standard of approximate decoherence@10#.
This means, in this case, thats is taken to be as small a
possible, which means that it is of orderD21/2.

The probabilities for historiesX̄(t), which may now be
assigned, are given by the diagonal elements of Eq.~2.1!.
Introducing

Q5 1
2 ~X1Y!, j15X2Y, ~2.2!

the integration overj1 may be carried out, and the probabil
ties are
erm
r

p@X̄~ t !#5E DQ Dx Dy W0
A~MQ̇0 ,Q0!rB~x0 ,y0!expF2E dt

~Q2X̄!2

s2
2

1

4\2D̃
E dtS MQ̈1

1

2
l~x1y!D 2G

3expF i

\
E dtS 1

2
mẋ22

1

2
mv2x22lQxD GexpF2

i

\
E dtS 1

2
mẏ22

1

2
mv2y22lQyD G , ~2.3!

where D̃5D11/(4s2). An integration by parts was performed, in the exponent, which picks up a boundary t
(2 i /\)MQ̇(0)j1(0) ~recall thatj150 at the final time!. The integration overj1(0) then effectively produces the Wigne
transformW0

A of the initial density matrixr0
A @10,28#.

Equation~2.3! may be written

p@X̄~ t !#5E Dq̄ DQ W0
A~MQ̇0 ,Q0!wQ@ q̄~ t !#expS 2E dt

~Q2X̄!2

s2
2

1

4\2D̃~12h!
E dt~MQ̈1lq̄!2D , ~2.4!



g
in

h
a

a
e
ol
g

he

to
he

je
th

s

.

il-

at
er

c-

-
n-

ns
of
ions
ws
e

the

ize
s

tem
.g.,
er-
r as
the
n
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where

wQ@ q̄~ t !#5E Dx Dy r0
B~x0 ,y0!

3expF2
l2

4\2D̃h
E dtS ~x1y!

2
2q̄D 2G

3expF i

\
E dtS 1

2
mẋ22

1

2
mv2x22lQxD G

3expF2
i

\
E dtS 1

2
mẏ22

1

2
mv2y22lQyD G .

~2.5!

To achieve the decomposition~2.5!, we have effectively de-
convolved the second part of the Gaussian in Eq.~2.4!, using
the functional integral generalization of the formula

exp@2~x2y!2#5E dz expS 2
~x2z!2

12h
2

~y2z!2

h D .

~2.6!

This deconvolution is, of course, not unique, andh is an
arbitrary constant parametrizing this nonuniqueness@al-
though clearly the total probability distribution~2.4! is inde-
pendent ofh#. This trick turns out to be useful for smearin
the Wigner functions of each particle, thereby render
them positive@29,28#.

Written in the form~2.4! the probability distribution now
has a reasonably natural interpretation. First of all recall t
we are assuming that the Wigner function of the large p
ticle is strongly peaked about particular values ofQ0 and
MQ̇0 . Hence, in the absence of the coupling to the sm
particle, Eq.~2.4! describes a probability distribution for th
large particle strongly peaked about a single classical s
tion with prescribed initial conditions. The width of peakin
about the classical solution is controlled by the factor\2D̃,
which is of orderMgkT, and this is typically very small for
macroscopic values ofM , g, andT.

With the small particle coupled in, however, there is t
integration overq̄(t) together with the weight function~2.5!.
In the next section, we will show that it is closely related
the probability distribution for continuously measuring t
positionq(t) of the small particle. Equation~2.4! is therefore
the sought-after result: It describes an ensemble of tra
tories for the large particle with a weight depending on
initial conditions and dynamics of the small particle.

B. Weight function

The weight function~2.5! may be further evaluated a
follows. Introduceq5 1

2 (x1y) and j25x2y. Then thej2
integration may be done with the result
g

at
r-

ll

u-

c-
e

wQ@ q̄~ t !#5E Dq W0
B~mq̇0 ,q0!expS 2

l2

4\2D̃h

3E dt~q2q̄!2D d@mq̈1mv2q1lQ#,

~2.7!

whereWO
B is the initial Wigner function of the small particle

Now let

q~ t !5q0cosvt1
q̇0

v
sinvt1lE dt8G~ t,t8!Q~ t8!1dq~ t !,

~2.8!

whereG(t,t8) is the Green function for the harmonic osc
lator anddq(0)505dq̇(0). Then thed functional in the
functional integration in Eq.~2.7! becomesd@mdq̈(t)#,
which implies, given the above initial conditions, th
dq(t)50. All that remain are two ordinary integrations ov
q0 andp05mq̇0 :

wQ@ q̄~ t !#5E dp0 dq0 W0
B~p0 ,q0!expF2

l2

4\2D̃h

3E dtS q0cosvt1
p0

mv
sinvt

1lE dt8G~ t,t8!Q~ t8!2q̄~ t !D 2G . ~2.9!

This shows that the weight function is in fact a Wigner fun
tion smeared over a region of phase space of sizeD, where

D;
\2D̃mv2

l2 ;
MgkT

l2 mv2. ~2.10!

The quantityMgkT/l2 ~divided by time! is a measure of the
thermal fluctuations (Dx)th

2 in the position of the small par
ticle induced by its coupling to the large particle. The qua
tity \/(mv) is representative of the quantum fluctuatio
(Dx)q

2 of the small particle. For a wide range of choices
the parameters of the model, the induced thermal fluctuat
are much larger than the quantum fluctuations, and it follo
thatD@\. ~This will always be the case, for example, if th
large particle is sufficiently massive.! This means, first of all,
that as long ash is not too small,wQ@ q̄(t)# is positive, even
though the Wigner function is not, since a smearing of
Wigner function over cells larger in size than about\ yields
a positive distribution function@29,28#.

More importantly, because the smearing is over a cell s
very much greater than\, an effect essentially the same a
decoherence of thesmall quantum systemis produced. To be
precise, suppose the initial state of the small quantum sys
consisted of a superposition of localized wavepackets, e
coherent states. Then, in the Wigner function, the interf
ence terms between these wavepackets would appea
terms which rapidly oscillate in phase space on a scale
size of\. It is well known that smearing the Wigner functio
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over a region much large in size than\ strongly suppresse
these terms~see Refs.@30, 31#, for example!. Therefore, for
all practical purposes we may replace the initial Wign
function with a generally mixed state Wigner function
which the interference terms between wavepackets has
thrown away.

Effectively what is happening here is that the small qu
tum system alternatives are approximately decoherent
cause they are approximately correlated with the decoh
large system alternatives. A similar phenomenon, in the c
text of quantum measurement theory, was noted by Har
ic
eir
ti
ed

n

-
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r

a
he
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r
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-
e-
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n-

@24,32#.
It could be the case, of course, that the interesting par

eters for the model in a particular application are such t
Eq. ~2.9! is not in fact positive. Then the weight function ca
no longer be interpreted as a probability distribution onq̄(t).
However, what one is ultimately interested in is the probab
ity distribution for histories of the large particle, Eq.~2.4!, is
this is positive by construction, for all choices of paramete

In this simple linear model, a further simplification ma
be obtained by inserting Eq.~2.9! into Eq.~2.5!, and carrying
out the integration overq̄(t), with the result
p@X̄~ t !#5E dp0dq0W0
B~p0 ,q0!E DQ W0

A~MQ̇0 ,Q0!expS 2E dt
~Q2X̄!2

s2 D
3expF2

1

4\2D̃
E dtS MQ̈1l2E dt8G~ t,t8!Q~ t8!1lFq0cosvt1

p0

mv
sinvtG D 2G . ~2.11!
ve
n
e

ure-
s is
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Loosely speaking, this equation tells us to solve the class
equations of motion for the small particle in terms of th
initial data p0 and q0 , and then regard these as stochas
variables with a probability distribution given by a smear
Wigner function.

Another convenient way of writing the weight functio
~2.5! is

wQ@ q̄~ t !#5E Dq W @q,Q#expS 2
l2

4\2D̃h
E dt~q2q̄!2D ,

~2.12!

where

W @q,Q#5E Dj2expS 2
il

\ E dtQj2D
3expS i

\
SBFq1

1

2
j2G

2
i

\
SBFq2

1

2
j2G D r0

B~x0 ,y0!, ~2.13!

where, recall,q5 1
2 (x1y) and j25x2y, and SB@x# is the

free action of the small particle. The quantityW @q,Q# is the
Wigner functional, introduced by Gell-Mann and Hartle@10#,
and is defined, in Eq.~2.13!, by a functional Wigner trans
form of the fine-grained decoherence functional for the sm
particle position histories. It is analogous to the ordina
Wigner function in relation to the density matrix@33#.
Hence, in Eq.~2.12!, we see that the weight function is
smeared Wigner functional. Like the Wigner function, t
Wigner functional is not positive in general, but in this ca
at least, the smeared Wigner functional~2.12! is.
al
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y

C. Recovery of the naive semiclassical approximation

It is also of interest to examine Eq.~2.4! or ~2.11! in the
limit of very weak coupling, i.e., smalll. One readily finds
that, to lowest order,

p@X̄~ t !#5E DQ W0
A~MQ̇0 ,Q0!expS 2E dt

~Q2X̄!2

s2 D
3expS 2

1

4\2D̃
E dt@MQ̈1l^q~ t !&#2D ,

~2.14!

where

^q~ t !&5^q0&cosvt1
^p0&
mv

sinvt1lE dt8G~ t,t8!Q~ t8!.

~2.15!

The probability distribution is peaked about the nai
semiclassical equation~1.5!, and here we see it emerging i
the limit of very weak coupling. This is not surprising, sinc
weak coupling corresponds to a very imprecise meas
ment, and the first thing a very broad measurement see
the average value.

Although the naive semiclassical approach is very limite
the above considerations show how it might still be usefu
used with discretion for certain types of initial states. No
first of all that the expression~2.14!, the naive semiclassica
result, is not only valid for smalll. It will also be a valid
approximation to Eq.~2.11! for initial states whose Wigne
function is strongly peaked about the mean values ofp and
q, as is the case for a coherent state.
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Now consider the key case of an initial state that cons
of a superposition of two well-separated phase space lo
ized states, one localized aroundp1 andq1 , the other local-
ized aroundp2 andq2 :

uC&5a1uCp1q1
&1a2uCp2q2

&. ~2.16!

Then the Wigner function for this initial state has the form

W5ua1u2Wp1q1
1ua2u2Wp2q2

1 interference terms,
~2.17!

where Wp1q1
denotes the Wigner function for the sta

uCp1q1
&, and thus is concentrated aroundp1 and q1 , and

similarly for p2 and q2 . Now the point is that, as we hav
argued above, the interference terms in the initial Wig
function become highly suppressed as a result of the sm
ing in Eq. ~2.9!. Therefore the probability distribution~2.11!
has the form

p@X̄~ t !#'ua1u2p1@X̄~ t !#1ua2u2p2@X̄~ t !#, ~2.18!

where p1@X̄(t)# denotes the probability distribution~2.4!,
but with initial Wigner functionWp1q1

~for the small system!

and similarly forp2@X̄(t)#. But these Wigner functions ar
strongly peaked about their mean values, and hence the n
semiclassical expression~2.14! is valid for p1@X̄(t)# and
p2@X̄(t)# seperately. The effective description of the coup
classical and quantum system is therefore that the clas
system follows the equations of motion

MQ̈1l^q~ t !&150, ~2.19!

with probability ua1u2, and follows

MQ̈1l^q~ t !&250, ~2.20!

with probability ua2u2, where

^q~ t !&15^Cp1q1
uq~ t !uCp1q1

& ~2.21!

and similarly for^q(t)&2 . This is clearly the intuitively sen-
sible result. Applied undiscerningly, the mean field equatio
~1.5! would not give this result, although here we see th
given the small amount of insight provided by decoheren
the mean field equations can be used to good effect.
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III. CONTINUOUS MEASUREMENT THEORY

The weight functionwQ@ q̄(t)# turns out to be closely re
lated to continuous measurement theory@13–17#. As we
have noted, the interaction of the large particle with the sm
one constitutes a continuous but imprecise measuremen
the position of the small particle. In the quantum theory
continuous measurements, the probability for measurin
trajectoryq̄(t) up to an imprecisions1 is given by the path
integral expression

p@ q̄~ t !#5E Dx Dy r0
B~x0 ,y0!

3expS 2E dt
~x2q̄!2

2s1
2 2E dt

~y2q̄!2

2s1
2 D

3expF i

\ E dtS 1

2
mẋ22

1

2
mv2x22lQxD G

3expF2
i

\ E dtS 1

2
mẏ22

1

2
mv2y22lQyD G .

~3.1!

As above, introduce the variablesq5 1
2 (x1y), j5x2y, and

hence

p@ q̄~ t !#5E Dq Dj r0
BS q01

1

2
j0 ,q02

1

2
j0D

3expS 2E dt
~q2q̄!2

s1
2 2E dt

j2

4s1
2D

3expS 2
i

\ E dtj~mq̈1mv2q1lQ!

2
i

\
mq̇~0!j~0! D . ~3.2!

Comparing with the expression for the weight function~2.5!,
we see that it is very similar, ifs1 , which is so far arbitrary,
is taken to be

s1
25

4\2D̃h

l2 ;
MgkT

l2 , ~3.3!

although note that Eqs.~3.1! and ~3.2! differ from Eq. ~2.5!
by the absence of the term

expS 2E dt
j2

4s1
2D . ~3.4!

in Eq. ~2.5!. Hence Eq.~2.5! is not exactlythe same as the
continuous measurement formula~3.1!. However, we will
see that they are very close.
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Carrying out thej integration we obtain

p@ q̄~ t !#5E Dq W0
B~mq̇0 ,q0!expS 2E dt

~q2q̄!2

s1
2

2
s1

2

\2 E dt~mq̈1mv2q1lQ!2D . ~3.5!

With the above choice ofs1 ,

s1
2

\2 ;
MgkT

\2l2 . ~3.6!

For macroscopic values ofM , g, andT, and assumingl2 is
not unusually large, the factor of\2 in the denominator en
sures thats1

2/\2 is very large. The second exponential in E
~3.5! is therefore very close to ad function, and Eq.~3.5! is
therefore very close in form to the alternative expression
the weight function~2.7!.

Note that the widths1 of the effective ‘‘measurement’’ of
q depends on two things. First of all, it depends on the c
pling l and is smaller the largerl is, corresponding to the
notion that stronger interactions produce more precise m
surements. Second, it depends on the combinationMgkT,
which is a measure of the thermal fluctuations endured
the large particle as a result of its interaction with the en
ronment and, hence, is a measure of the precision to wi
which the trajectory of the large particle is defined.s1 in-
creases with increasingMgkT, which is to be expected
since the precision with which the large particle can meas
the small particle depends on the precision with which
large particles’s properties are themselves defined.

Given the close resemblance to continuous quantum m
surement theory, the question remains, why did we not
exactlythe formula for continuous quantum measuremen
After all, in the decoherent histories approach it is possible
derive standard quantum measurement theory~i.e., measure-
ments represented by exact projection operators at disc
moments of time!, under certain idealized conditions@24,32#.
The answer to this is probably to be found in the nature
the simple model we are considering and, in particular,
couplings between the subsystems. For example, in
model considered here, we coupledx to just a single degree
of freedomX ~in turn coupled to the environment!. Coupling
to a large number of degrees of freedom may lead to
missing factor, Eq.~3.4!, in the same way that the couplin
of X to a large environment produces the factor involvi
*dt(X2Y)2 in Eq. ~2.1!. Hence it is quite possible that
closer connection between decoherent histories and con
ous quantum measurements might be found by explo
more general types of models couplings. This is tangentia
the main theme of this paper, and so will be explored e
where.

It is perhaps of interest to note that the above result
continuous measurement can be reexpressed in terms of
lution equations, and this in fact casts our results in a fo
very close to the original mean field equations~1.5! @18#. For
a pure initial state, the probability formula for continuo
.
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measurements Eq.~3.1!, has the form̂ C q̄uC q̄&, for a wave
function C q̄ , whose path integral representation is given
‘‘half’’ of Eq. ~3.1!. From this one can define a normalize
state uc& whose time evolution is given by the nonline
stochastic equation

d

dt
uc&5S 2

i

\
H2

1

s1
2 ~ q̂2^q&!2D uc&

1
1

s1
~ q̂2^q&!uc&h~ t !. ~3.7!

Here h(t) is Gaussian white noise whose linear and qu
dratic means are

^h~ t !&S50, ^h~ t !h~ t8!&S5d~ t2t8!, ~3.8!

where^ &S denotes stochastic averaging. Hereh is related to
the measured variableq̄ by

q̄5^cuq̂uc&1 1
2 s1h~ t !. ~3.9!

H is the Hamiltonian for the small system@in this case a
harmonic oscillator, withX(t) as an external source#.

Hence, to the extent that the semiclassical equations
have derived are equivalent to continuous quantum meas
ment, the new equations that replace the mean field eq
tions ~1.5! are

MQ̈1l^cuquc&1 1
2 ls1h~ t !50, ~3.10!

where uc& evolves according to the stochastic nonline
equation~3.7!. Note that with the value ofs1 is given by Eq.
~3.3!, the noise termls1h(t) is independent ofl and so
remains asl→0 and describes the thermal fluctuations
the large particle.

The noise term describes fluctuations about the me
This sort of modification, in the context of Eq.~1.1!, has
been considered before@5,34#. More significant is the fact
the state evolves according to Eq.~3.7!, and it is the proper-
ties of this equation that correspond to the separation of
tial superposition states described in Sec. II C@18#.

The above scheme was put forward in Ref.@18# as a phe-
nomenological model for the coupling of classical and qu
tum variables, and the value ofs1 proposed there on genera
physical grounds agrees with the one derived here.

IV. NONLINEAR COUPLINGS

Section II concentrated entirely on the case of a free p
ticle linearly coupled to a harmonic oscillator. Now we sho
how these considerations can be extended to more com
cated cases. First, we consider the case of a particle
potentialV(X) coupled to a harmonic oscillator via a cou
pling of the formg(X)x. The decoherence functional~2.1! is
therefore replaced by
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D@X̄,Ȳ#5E DX DY Dx Dy r0
A~X0 ,Y0!r0

B~x0,y0!expS 2E dt
~X2X̄!2

2s2 2E dt
~Y2Ȳ!2

2s2 D
3expF i

\ E dtS 1

2
MẊ22V~X!2

1

2
MẎ21V~Y! D2DE dt~X2Y!2GexpF i

\ E dtS 1

2
mẋ22

1

2
mv2x22g~X!xD G

3expF2
i

\ E dtS 1

2
mẏ22

1

2
mv2y22g~Y!yD G . ~4.1!

This case is actually handled quite simply using the fact that the integration overX and Y is strongly concentrated aroun
X5Y. As before, writeX5Q1 1

2 j1 andY5Q2 1
2 j1 . Then we have

V~X!2V~Y!5j1V8~Q!1O~j1
3!,

g~X!x2g~Y!y5g~Q!~x2y!1 1
2 j1g8~Q!~x1y!1O~j1

2!. ~4.2!

The j1 integration is readily done, and we obtain, for the probabilities,

p@X̄~ t !#5E DQ Dx Dy W0
A~MQ̇0 ,Q0!rB~x0 ,y0!expF2E dt

~Q2X̄!2

s2
2

1

4\2D̃

3E dtS MQ̈1V8~Q!1
1

2
g8~Q!~x1y!D 2GexpF i

\
E dtS 1

2
mẋ22

1

2
mv2x22g~Q!xD G

3expF2
i

\
E dtS 1

2
mẏ22

1

2
mv2y22g~Q!yD G . ~4.3!

This may be written

p@X̄~ t !#5E DQ Dq̄ W0
A~MQ̇0 ,Q0!wQ@ q̄~ t !#expS 2E dt

~Q2X̄!2

s2
2

1

4\2D̃~12h!
E dt@MQ̈1V8~Q!1g8~Q!q̄#2D ,

~4.4!

where

wQ@ q̄~ t !#5E Dx Dy r0
B~x0 ,y0!expF2

1

4\2D̃h
E dt@g8~Q!#2S ~x1y!

2
2q̄D 2G

3expF i

\
E dtS 1

2
mẋ22

1

2
mv2x22g~Q!xD GexpF2

i

\
E dtS 1

2
mẏ22

1

2
mv2y22g~Q!yD G . ~4.5!

Introducingq5 1
2 (x1y) andj25x2y, the j2 integral may be done with the result

wQ@ q̄~ t !#5E Dq W0
B~mq̇0 ,q0!expS 2

1

4\2D̃h
E dt@g8~Q!#2~q2q̄!2D d@mq̈1mv2q1g~Q!#. ~4.6!

This is very similar to the continuous measurement formulas~3.1! and ~3.2! if we allow the imprecision parameters1 to
depend on the external field.

The next more complicated case we consider is that in which the coupling between the particles is of the formg(X) f (x).
It is straightforward to show that the probability is then

p@X̄~ t !#5E DQ Dx Dy W0
A~MQ̇0 ,Q0!rB~x0 ,y0!expS 2E dt

~Q2X̄!2

s2
2

1

4\2D̃

3E dtFMQ̈1V8~Q!1
1

2
g8~Q!@ f ~x!1 f ~y!#G 2D expF i

\
E dtS 1

2
mẋ22

1

2
mv2x22g~Q! f ~x!D G

3expF2
i

\
E dtS 1

2
mẏ22

1

2
mv2y22g~Q! f ~y!D G . ~4.7!
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Again, this may be cast in the form

p@X̄~ t !#5E DQ D f̄ W0
A~MQ̇0 ,Q0!wQ@ f̄ ~ t !#expS 2E dt

~Q2X̄!2

s2
2

1

4\2D̃~12h!
E dt@~MQ̈!1V8~Q!1g8~Q! f̄ #2D ,

~4.8!

where

wQ@ f̄ ~ t !#5E Dx Dy r0
B~x0 ,y0!expF2

1

4\2D̃h
E dt@g8~Q!#2S ~ f ~x!1 f ~y!!

2
2 f̄ D 2G

3expF i

\
E dtS 1

2
mẋ22

1

2
mv2x22g~Q! f ~x!D GexpF2

i

\
E dtS 1

2
mẏ22

1

2
mv2y22g~Q! f ~y!D G . ~4.9!
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Again, it is similar to the continuous measurement formu
but now the variable being measure is not positionx, but
f (x), as one would expect, since it is this that couples to
large particle. It is not possible to evaluatewQ any further in
this case.

Overall, therefore, although the evaluation of the path
tegrals is less explicit in these more complicated cases,
general pattern is the same as in the linear case describ
Sec. II: The large particle follows near-deterministic equ
tions of motion, but with a stochastic forcing term due t
small particle, whose probability distribution bears a clo
resemblance to the formula of continuous quantum meas
ment theory.

V. COUPLING TO ENERGY

Another case of particular interest, especially in conn
tion with the semiclassical Einstein equations~1.1!, is the
case in which the large particle couples to the energy of
small particle. The considerations of the previous secti
apply to this case very easily. In fact, this case turns out to
somewhat simpler.

Let the Hamiltonian of the total closed system, includi
large system (A), small system (B), and environment~E!, be

H5HA1HAB1HE1HAE , ~5.1!

where

HAB5lg~X!h ~5.2!

andh is a harmonic oscillator Hamiltonian. Hereg(X) is an
arbitrary function ofX, andHA , HE , andHAE are as before.
Let the initial state of the small system be written in terms
energy eigenfunctions,

rB5(
EE8

rEE8uE&^E8u, ~5.3!

wherehuE&5EuE&. Then, becauseh commutes with every-
thing, wheneverH operates onuE&, h is replaced by the
eigenfunctionE.

It is then straightforward to see that the probabilities
histories of the large particle are
,
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p@X̄~ t !#5(
E

rEEE DX DY r0
A~X0 ,Y0!

3expS 2E dt
~X2X̄!2

2s2 2E dt
~Y2X̄!2

2s2 D
3expF i

\ E dtS 1

2
MẊ22

1

2
MẎ2D

2DE dt~X2Y!2G
3expS 2

i

\ E dt@g~X!2g~Y!#ED . ~5.4!

The summation overE and E8 is diagonal becauseh com-
mutes with everything else so that the statesuE& are pre-
served under evolution by the total Hamiltonian, and t
trace in the decoherence functional then contains the t
^EuE8&.

IntroducingQ andj as before, this becomes

p@X̄~ t !#5(
E

rEEE DQ W0
A~MQ̇0 ,Q0!

3expS 2E dt
~Q2X̄!2

s2
2

1

4\2D̃

3E dt@MQ̈1g8~Q!E#2D . ~5.5!

It is straightforward to then rewrite this in terms of contin
ous imprecise measurement of energy. For simplicity, t
g(Q)5lQ; then,

p@X̄~ t !#5E dĒE DQ W0
A~MQ̇0 ,Q0!w~Ē!

3expS 2E dt
~Q2X̄!2

s2
2

1

4\2D̃~12h!

3E dt~MQ̈1lĒ!2D , ~5.6!
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where

w~Ē!5(
E

rEE expS 2
l2t

4\2D̃h
~E2Ē!D , ~5.7!

wheret is the time duration of the histories. Equation~5.7! is
the formula for the continuous imprecise measuremen
energy, using Gaussian projectors, to a width of or
\2D̃/(l2t). Here the connection with continuous measu
ments is precise, although this is clearly due to the simplic
of this particular case.

Of perhaps greater interest is the situation in which
energy of the small particle couples in a nontrivial way to t
large particle, for example, through a small particle Ham
tonian of the form

H5 f ~X!p21g~X!x2. ~5.8!

This is a more realistic model of the way in which matt
couples to gravity~for example, in cosmology, a single mod
of a scalar field coupled to the scale factor!. This is much
more complicated to deal with and will be treated elsewhe

VI. DISCUSSION

We have derived the form of the effective equations
motion for some simple systems consisting of a large part
coupled to a small particle and coupled also to a ther
environment in order to produce the decoherence neces
for classicality of the large particle. The resultant effecti
theory has the form of a classical variable coupled to a
chastic variablex̄(t), where the probability distribution fo
the stochastic variable is given by a certain weight funct
@most generally, Eq.~4.9!#. This weight function is closely
related~although not exactly the same! as the probability for
continuous imprecise measurements of the position of
small particle. In the case of coupling to energy, it is exac
the same as the continuous measurement theory result.

The weight function has the property that it suppresses
interference between localized wave packets for the sm
particle. Hence one of the more unsatisfactory features of
naive semiclassical approximation is avoided, and the in
itively sensible result that localized wavepacket initial sta
may be treated separately is restored.

The derived semiclassical theory suggests the form o
possible semiclassical theory even when the quantum th
of the variables that are taken to be classical is not known
is the following: In the equations of motion for the classic
system, which involves a coupling to the quantum syste
replace the quantum variables with stochastic variab
whose probabilities are given by a weight function of t
form ~2.5! ~or its generalizations!. The classical variableQ is
regarded as an external classical source in Eq.~2.5! and the
path integral is well defined, even if the quantum theory ofQ
is not known.

The only aspect of Eq.~2.5! that was inherited from the
f
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quantum theory of the classical variables is the width of
Gaussian,\2D̃2/l2. However, we can see from Eq.~2.4!
that, physically, the factor\2D̃ is a measure of the precisio
to within which the trajectories of classical variables are d
fined, and we can imagine that this number could be de
mined ~or at least bounded! by experiment.

A very similar semiclassical scheme~using the continu-
ous measurement formula! was described in Ref.@18#, and
the results of this paper give partial substantiations of t
scheme.

We have used the decoherent histories approach to de
effective field equations, for reasons stated in Sec. I. It
however, quite possible that other approaches to emer
classicality may be used, such as the density matrix appro
@35,31#, the quantum state diffusion picture@36,37,22#, or the
hybrid representation of composite quantum systems@38–
40#. A system similar to that considered in this paper h
been analyzed in the quantum state diffusion picture by Z
pas@41# and a simple spin system by Yu and Zoupas@42#.

Note added in proof

Some of the qualitative features of the approach descri
here have previously been discussed by A. Anderson, inPro-
ceedings of the Fourth Drexel Symposium on Quantum N
integrability, edited by D. H. Feng~International Press
1996!. ~See also A. Anderson in Ref.@8#.! In particular, he
noted the importance of coupling quantum variables to v
ables rendered quasiclassical by decoherence~rather than
fundamentally classical variables!, and the desirability of
having a stochastic equation predicting that the quasiclass
system ‘‘sees’’ distinct elements of a superposition w
some probability.

E. Calzetta and B. L. Hu@Phys. Rev. D49, 6636~1994!#,
in the context of system-environment models~such as quan-
tum Brownian motion!, have written down stochastic equa
tions describing the stochastic effect of a thermal envir
ment on the system. E. Calzetta and B. L. Hu@e-print hep-
th/9501040, IASSNS-HEP/95/2~1995!# have also discusse
the decoherence of ‘‘correlation histories’’ in field theorie
and have shown that histories specified by values of the
ergy momentum tensor are approximately decoherent,
thus, may be assigned probabilities. This leads to the po
bility that the right-hand side of Eq.~1.1! may be taken to be
a stochasticc-number,T̄mn, whose probabilities are given b
the expression derived by Calzetta and Hu, thereby gene
izing the results discussed here to the full Einstein equatio
Some other related works are E. Calzetta and B. Hu, P
Rev. D52, 6770~1995!, and E. Calzetta, A. Campos, and
Verdaguer,ibid. 56, 2163~1997!.
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@17# L. Diósi, Phys. Lett. A129, 419 ~1988!.
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@39# L. Diósi, Quantum Semiclassic. Opt.8, 309 ~1996!.
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