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Black hole boundary conditions and coordinate conditions
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This paper treats boundary conditions on black hole horizons for the(3uill)D Einstein equations.
Following a number of authors, the apparent horizon is employed as the inner boundary on a space slice. It is
emphasized that a further condition is necessary for the system to be well posed; the “prescribed curvature
conditions” are therefore proposed to complete the coordinate conditions at the black hole. These conditions
lead to a system of two 2D elliptic differential equations on the inner boundary surface, which coexist nicely
to the 3D equation for maximal slicin@r related slicing conditionsThe overall 2D-3D system is argued to
be well posed and globally well behaved. The importance of “boundary conditions without boundary values”
is emphasized. This paper is the first of a seli8€556-282(98)01402-7

PACS numbd(s): 04.25.Dm, 04.20.Ex

I. INTRODUCTION ary conditions at the hofe(I am grateful to Greg Cook for
pointing this out).

Relativists have long hoped to pose numerical boundary Section II briefly describes the ways in which apparent
conditions at the horizon of a black hole, and use the horizoforizons can become wild, and therefore unsuitable as
as the inner boundary of the numerical grid. Recentlyboundary surface. Section Ill introduces the “prescribed
progress has been achieved in spherical symmetry by Scheépnvergence” conditions, a set of boundary conditions on a
Shapiro and Teukolsky[1,2], and by Anninos, Daues, 2-surface designed to curb this wildness. The conditions are

Masso Seidel, and Suef8] (see alsg4]). These two groups first discussed in some generality, and then specialized to
carried out important demonstrations of the feasibility ofapparent horizons bounding maximal slices. Section IV sum-
such horizon boundary conditions by evolving sphericalIytmh""r'zesblthe O]tmOOk' F:cqally,_gﬁpper_ldlx Abmfo(rjmally treatfsl
symmetric black holegin Brans-Dicke theory and Einstein € problem ot a soap fiim with an inner boundary, a usetu

theory, respectively The basic idea is to make the inner analogy to th? black hole case.
. Further topics that require treatment are beyond the scope
boundary an apparent horizon.

. X . of this paper, and will be treated in future papers of this
It would be highly desirable to extend such honzonseries. pap hap
boundary conditions to more complex situations involving .- boundary conditions for stationary black holes,
distorted or rotating black holes, and black hole binaries. Theg|avant to the late stages of numerical calculations.
main purpose of this paper is to work out the underlying  The connection between spatial coordinate conditions,
theory of these coordinate conditions in 3D generality, as e, choice of shift, and horizon boundary conditions; this is
step of such an extension. In particular the 2D dlfferentlalespecia”y important for rotating black holes.
equations governing such inner boundary surfaces will be Boundary conditions for the constraint equations of gen-
studied with a view toward making them well posed, wheneral relativity on horizons; again a key issue is “boundary
connected to the 3D equation for maximal slicing in relativ- conditions without boundary values.”
ity, or to various other slicing conditionf.e., choice of
lapse such as generalizations of maximal slicifig]. The Il. MOST APPARENT HORIZONS ARE WILD
basic idea of using an apparent horizon will turn out to work,

but several difficult issues crop up along the way, and must Hawking [6] defined trapped surfaces and apparent hori-

be dealt with. We need boundary conditions at the horizonZ0" s follows.

but we do not know how to supply boundary values there: Definition 1.A trapped surfac& is an achronal 2-surface
how to resolve this issue of “boundary conditions without " SPacetime for which the outward null convergence obeys
boundary values” is explained along the way.

The development in this paper will not make specific as-
sumptions about the conditions f8+1)D slicing and 3D A marginally trapped surfacs is one for which the outward
spatial coordinates, though we will often assume that thesg, convergence obeys
conditions are implemented by some kind of 3D elliptic or
parabolic equations, which will require boundary conditions p=0. )
at the hole. Hyperbolic operatofse.g, arising in harmonic
slicing or harmonic coordinatg$orm quite a different case, The basic property of these surfaces is
and probably a simpler one, since they do not require bound-

p=>0. D

10n the other hand, it is not clear whether harmonic slicing avoids
*Electronic address: doug@itp.ucsb.edu coordinate singularities.
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Proposition 2.(Hawking & Ellis [6]). Given a trapped or choose a slice that contains an apparent horignrand
marginally trapped surfac® No pointp onScan lie outside choose a poinjp on S. Also choose any poingj on the
the event horizon. intersection of the slice with event horizon. In the usual pic-

Definition 3.In a given space slic¥, an apparent horizon ture,q is considerably outside the apparent horizon, so it is
is the outward boundary of trapped surfaces that li¥/in unclear how any trapped surface can pass clogp)tblow-

Notice that the given slic¥ is an essential ingredient of €ver, by Proposition 4, we can now extend a 1-parameter
the definition. To say that “We are going to choose a slicefamily of marginally trapped surfacei(€), so thatp(e) re-
that meets an apparent honizo. . ” is a circular definiion ~ mains in the slicev [though most ofS(€) does no} and so
This issue is not just a nicety; to ignore it can lead to serioughat p(e) —q at some parameter valug. What happens is
trouble, as we will soon see. One way to see the problem ithat all of S(e) approaches the event horizon és> €, but
to observe thatiny slice passing far enough into the black that most ofS(e) moves far to the future. Therefore the
hole — over a wide range — will meet an apparent horizontrapped surface$ which pass close tq look as follows.
and therefore will obey the boundary condition. A condition Most of S lies far to the future, very close to the event hori-
that excludes nothing is not a useful condition. zon of the settled-down black hole. Only a thin tendrilSf

To de-circularize the definitions, we must drop the slice,extends back neaqg, in a thin tubular neighborhood of a
and refer not to an apparent horizon, but to a marginallygenerator of the event horizon. Though this tendril is nearly
trapped surface. So now we can sensibly say “We are goingull, it is still part of a spacelike surface.
to choose a slice that meets a marginally trapped surface.” Let us see what this means for numerical relativity. Each
And we can proceed to build @+1)D code that uses mar- marginally trapped surfac&(e) can serve as the inner
ginally trapped surfaceS as the inner boundary of the slices. boundary of a slic&/(€), say a maximal slice, extending to
However,this code may not work; it is vulnerable to crash- spatial infinity. Moreover we can arrange ferto be proper
ing after a short timeThe pitfall is that “most” marginally  time at infinity, so that the slicing “goes wild” at finite time.
trapped surfaces are wild surfaces; this is very unlike théhis is the serious trouble that such a code can run into.
familiar situation with maximal slices, which are automati- Details will be published elsewhere.
cally smooth(technically, thanks to elliptic regularityThe
wildness of marginally trapped surfaces is intrinsically a
non-spherically symmetric phenomenon, and does not show!!l: THE PRESCRIBED CONVERGENCE CONDITIONS
up at all in spherically symmetric setting — consistent with FOR 2-SURFACES
the success of Anninos, Daues, MasSeidel, and Suen.

A related property of a generic marginally trapped sur-
face, is that it can always be deformed spatially outwarcg
from any point on it:

Proposition 4.Given any smooth marginally trapped sur-
faceS, such that eitheo or T ,,1#l” does not vanish identi-
cally on S. Given any pointp on S, and given a spacelike
outward-pointing vectou at p. ThenS can be locally per-
turbed into a 1-parameter family of marginally trapped sur-
facesS(e) so thatp moves in theu direction. A. The two mean extrinsic curvatures of a 2-surface in

(Hereo is the outward null sheaf,,,,|“l” is the outward spacetime
null component of the stresys energy tensor, l_':md we will as- consider a spatial 2-surfac® immersed in spacetime.
sume throughout that,,|“1" obeys the dominant energy (throyghout,S will be topologically a 2-sphere unless oth-
condition. Actually Proposition 4 is true for any, but is  gpyise noted. All over S, we can choose an orthonormal
most interesting il is spacelike outward pointing. frame of reference;, so that the time axisy and one of the

This leads to a puzzle. Start with an apparent hori8on  gpaiia| axes; are normal toS, while the other two spatial
and some poinp on it. What is to keep us from continually axeses, e; are tangent t&®. ThenS has defined on it two

perturbing it, extending the 1-parameter fam8ye), until . . e

p(e) passes outside the event horizon, contradicting Propomef_in ext[|n§|c CL.JrvatureafamelyHO in the O-direction, and
sition 22 The only thing that can go wrong is tfatmust ~ Hi in the I-direction. If Vh is the element of area d® then
“go wild” — i.e., cease being smooth — first. in suitable local coordinates we can take as the definitions

In fact, the following conjecture, at first a bit startling, can
be surmised as the o%vioujs general answer to the pgzzle. 7o\h=—Hah (33
Conjecture A.The outward boundary in spacetime of
marginally trapped gurfacgs is the event horizon. . t?i\/ﬁz —Hi\/ﬁ (3b)
| have proved this conjecture under some assumptions,
plausible but not rigorously established, about how space-
time settles down to a nonextremal black hole subsequent téhe minus sign in these equations is a matter of convention
gravitational collapse. The trapped surfagethat pass close In any coordinate system, these mean extrinsic curvatures
to the event horizon are wild. Let us give an example toform a 4-vectorH , orthogonal toS.
illustrate what happens. Alternatively we can follow null methodology7] and
Sometime during the dynamical phase of collapse, aftechoose two orthonormal null vectors, the outward and in-
the black hole has formed but before it has settled downward null normals tdS, respectively, as

This is not to say that apparent horizons are necessarily a
ad idea for inner boundary conditions, only that an ingredi-
nt is missing. We propose that the missing ingredient is the
simplest possible thing, the convergenee of the inward
null normal to a surfac8, and that the well-posed way to put
an inner boundary on a slice is to prescribe both the outward
null convergence and the inward null convergengsg.
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B. The 3+1 and 2+1 splits

€+ e
- \/5 (43) The spacetime metric is
ds?=—(a?— ;B dt*+23,dXdt+ y;;dXdx.  (8)
&€
n= \/5 (4b) The notation is now necessarily going to become a little

complicated, so the reader is asked to be patient. Starting

with 1 ,1#=0=n,n*, 1 ,n*=—1, and then the null conver- from the full spacetime geometry, we choose slices and carry

gences of andn are out the standard-81 split. The unit future-pointing timelike
normal to the slices is denotes}. Spacetime indices run
Hgo+Hj over u,v, ...=0,1,2,3, where 0 denotes tintgspatial in-
p= 2 (5@  dices run overi,j,...=1,2,3, and can be lowered and

raised with the spatial metrig;; and its inversey'l.
Each space slicé=const has an inner boundary on a

o' = Ho—Hi (5b) 2-surfaceS. For convenience in this paper, we will through-
J2 out choose spatial coordinatps} and shift vecto' so that
Notice, however, that we had to choose some frame of S always lies at =r,=const, wherer=x!; 9

reference onS to defineHz and H; (or p and p’). The . ) »
arbitrariness in choice of frame amounts to a boost in thed his means thag; is not freely specifiable &, but must be
1-direction(a GHP boost all overS [7]. Under such a boost chosen to match the motion &

these quantities transform like . .
B=p;e; fixedat S by the PC conditions  (10)

I-T=e’l (6a) _
heree'i is the unit outward spatial normal @& One would
n—n=e %n (6b) actually like more general spatial coordinates, to allow the
black hole to move through the spatial coordinate system —
p—p=e’p (60) to “fly through_ the grid.” The generalization to _such coor-
dinates is straightforward, but is not developed in this paper.
p 5 =e lp! (6d) The Riemannian 2-metric o8 will be denotedh,,; sur-
face indices run ovea,b, ... =2,3 and can be lowered and
where the boost rapidity is an arbitrary function . Only ~ raised withh,, and its mverse_hab: We use a 21 split atS,
one boost-invariant scalar can be formed from the mean ex@nd 2-tensors o will carry indicesa,b, ... Thespatial
trinsic curvatures, namel H#= — H§+ Hiz —2pp". extrinsic 2-curvature of with respect to the spatial normal

. . P
How then do we determine a 2-surfaBein spacetime? diréctione; is a 2-tensor

SinceS has two transverse degrees of freedom, we need two
conditions at each point d, that is, two equations in two
coordinates. It is tempting therefore to put conditions on th
two quantities{Hg,H3} or equivalently{p,p'}:

HabE - %Lihab (11)

Svhere denotes Lie derivative, and the spatial mean extrin-
sic 2-curvatureHj is its 2-trace,

p=(some fixed function onS) (7a) 1
Jh

(For instance, to use an apparent horizon we can just takghereh=det,,. The Gauss-Codazzi equations of the12
p=0 as one of the two conditionsThese equations will be  gp|it imply

called theequations of prescribed convergenoe, for short,

Hi=h*Hap=——=dih (12)

p' =(some other fixed function org). (7b)

the PC equationsHowever the PC equations are not enough 3R=20iHi— Hf— H, H2+ 2R (1339
by themselves, because of the boost arbitrariness,(@&q.
We are missing one condition, namely something ta/fias hab 3R, = 9;H; — HapH20+ 2R (13b)

a function of two coordinates o8.

If we have already decided on a slicing condition for
spacetimeg.g., maximal slicing, or something related to it,
then the slice itself provides the missing congition: We can, are 2R, is the Ricci 2-tensor oh,, and 2R=habR., .
use the unit timelike normal to the slice to fix thed@ection We also need the timelike extrinsic 2-curvatureSofvith
atS. Then the PC equations, together with the maximal slicyespect to the timelike normal directieg; it is the 2-tensor
ing equation, are just enough. This is of course no guarantegsiten by 2-1 projection ofK
that the equations formwaell-posedsystem, meaning that
andsS can never “go wild.” However it is a reasonable con- Jap=1LKap (14
jecture that this is so, and this paper will present a consider-
able amount of evidence in favor of this conjecture. and the timelike mean extrinsic 2-curvatilg is its 2-trace,

2D K= 9iHg—HiHp+ HitrK (130

ij
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Ho=h3bJ,,=h3"K (15) partial differential equations ifx?} on S for three unknown
functionsA, B andAj . Thus, the inner boundary conditions

herel denotes the projection of 3-tensors into 2-tenso& at oy the lapsea and the radial component of the shift are

_ o fixed. The tangential boundary value of the shift is still free,
C. Evolution of the mean extrinsic curvatures and can be chosen separately to enforce, say, “slip” or “no-

We will present a system of equations which is fully co- slip” conditions as desired.
variant under transformations of the spatial coordinates
and shiftg' that preserve the inner-boundary constraints, at D. The naturality of the inner boundary conditions
Egs.(9) and(10). That is, we shall derive a system of equa- |t may seem surprising that these equations invélyas
tions which can be used with any choice of spatial gauggye|| asA andB; however, a little reflection shows this to be
away fromS. Some intermediate calculations, though, areénatyral and in fact desirable. To illustrate this, restrict to

most easily done in a particular spatial coordinate systeMyayimal slicing tk =0 temporarily. The maximal slicing
namely, Gaussian normal coordinates in space. Thus our SPgguation

tial metric can be taken as

o ) 0=(3A—K;;K'! —mattej a (20)

yijdXdxI=dr?+h,pdx2dx (16) _
1 ) ) o is a 2nd-order elliptic equation inx{) for a, and therefore

wherer=x-. The inner boundary in spacetime is the hyper-qgmits at the inner boundar$ any of these well-posed

surfacer =rs=const, consisting of all th& for all t, which  oundary conditions:

we want to be a spacelike or null hypersurface lying within

or on the event horizon. Values Stwill be denoted ‘|g.” als=A Dirichlet boundary conditions, or (213

Thus by Eq.(10),

dials
Bils=B, (179 iy
=Aj; Neumann boundary conditions,or more generally,
and also we will denote the inner boundary value the lapse at 21b)
Sas
als=A. (17b Fpa|s+Fndials=0 homogeneous mixed

. . o boundary conditions; (210
and its spatial normal derivative as

dials=A; . (170 Fpa|stFydials=F inhomogeneous mixed

. boundary conditions; (21d
At the inner boundary surfac®, the two mean curvatures

Hpls andHj|s are the quantities we wish to prescribe. Thenwhere A, Aj, Fp, Fy, andF are prescribed functions of
we wish to derive these inner boundary values for the lapsgt x@).

a and shiftg'. Conditions(21¢ and(21d) simply say that there exists a
From these definitions and the Einstein equations followprescribed linear relation betweenand a; on S, but that
the evolution equations fdfy andHj7 : neither is fixed individually; the distinction between these

s conditions[(210¢ and(21d)] is the functionF on the right-
5£H)H6:[%(H6_Hi)+%(HabHab"_Jab\]ab)_K?Kg hand side, which may be either(Aomogeneous caser a

o i2m 2 abi Lotr. L1 given function(inhomogeneous case

+87Top+ 2" R— “AJA+[JapH™+ HoHi —HitrK Now, givenHg andHj, Egs.(18) do give two prescribed

— 87T 5+ (2D,K?) +2K? 2D, 1B+ (H)A; (188 linear relations_ among the three funct_iorB_{A), (_B+A)
andAj, albeit implicit ones. One can imagine using one of

Egs. (18 to eliminate B, whereupon the other becomes a

(M- = ab__ ~ (2 ay_opa?z 1,142
9 HI=[JapH™ =87 T o~ ("DaKp) = 2K "DalA+[2(Hg single linear relation, in the form of Eq21c), betweenA

NI ab ab aper . andA; — albeit an implicit one, involving Green functions
+H) + 3 (HapH+ J,,0%°) + K2K ! — Hatrk 1 :

D) F2(Hap apd™) + K Ka—Hs of the operator® andD’. Thus, Eqs(18) do appear to give
+87Tg— 5 2R+ 2A1B+(Hp)A; (18p  Wwell-posed boundary conditions for maximal slicing, Eg.

(20), and they also should do so for attractive generalizations

where " denotes the projection of the time evolution op- of maximal slicing[3].
eratord,=dl gt normal toS, In fact, not only is it admissible to have homogeneous
mixed boundary conditions for the lapseat S, it is also
desirable. Imagine we instead used Dirichlet boundary con-
ditions (179. How big do we then make the inner boundary
value A? — by which we mean, what fixes the overall scale
These equations are valid in any- 3 coordinate system that of A at the inner boundary? We would like to make it big
obeys Egs(9) and(10) at S. enough so that, over a long evolution, the inner boundary

If we now view Hy and Hj as prescribed functions of just “keeps up” with the outer boundary, neither shooting
(t,x?), Egs. (18 become a set of two 2nd-order coupled way ahead, or falling way behind. How big is that? The first

J Jd
(M= At p_
" _AegaxMJrBellLaxﬂ" (19
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guess isA=1, but that cannot be right, because the innerThe latter quantities obey some useful relations. The two
boundary is in the strong field region. The lapse equation iglifferential operator®D andD’ live on S; they are not gen-
not going to tell us how big to maka, precisely because it erally self-adjoint, due to the terms ik}, but are the ad-

is happy with anyA. Thus a pure Dirichlet boundary condi- joints of each other:

tion is not generally going to work well for long evolutions.

Thus, mixed homogeneous boundary conditions resolve D'=D". (24
this issue. They provide “boundary conditions without
boundary values.” The two scalar function§ and&’ are non-negative:

A homogeneous mixed boundary condition can work well
— it can be thought of as a “feedback mechanism.” If the =0 (253
inner boundary falls behind the outer boundary, tAgrwill
become large and positive, and the mixed boundary condi- &'=0 (25b

tion then can “tell” A to become larger. If the inner bound- . .
ary shoots ahead of the outer boundary, themill become ~ @S 1ong as matter obeys the dominant energy condition,

large and negative, and the mixed boundary condition they]vhich we will assume throughout. These equations are valid
can “tell” A to become smaller. A concrete example of this!M @y 3+1 coordinate system that obeys E(5.and(10) at

“mixed-boundary-condition feedback mechanism” will be
presented below. Since the boundary condition is homoge-
neous, no data need be given at the inner boundary to fix thE. Special case: Maximal slices bounded by apparent horizons

overall scale ofA; this scale is self-adjusting. As a special but important choice of coordinate conditions
— still general enough to study binary black hole coales-
E. The PC equations — inner boundary conditions for cences in3+1)D — let us take
ibed dp’
prescribed p and p trK=0 (maximal slicing (263
From Egs.(5) and (18) can be found the evolution equa-
tions for the null convergencegs and p’. When we takep p=0 (apparent-horizon inner boundary (26b)
andp’ as prescribed functions of,&?), these equations be-
come theequations of prescribed convergence (PC) equa- p’=F(x?) (some prescribed function (260
tions:

Then the PC equations reduce to

- 1 , 1

1( 3 1 0=(D' +2p'2)(B+A)+ (& +4p'2)(B—A)+2\2p'A;.
+—| p(—=p'+p—trK/\2)+ =D
A p(=p'+p 5 (27b)
X(B—A)+(p)A;j (229 G. Special case: Stationary black holes
Stationary black holes are relevant because calculations of
. 1 1 binary coalescence will eventually settle down to a stationary
dVp' =~ E(P'(—PJFP' —trK/+2)+ ED’ (B+A) black hole, and coordinate conditions are desirable that will
somehow “lock onto” the geometry of the stationary black
1 1 hole and render it recognizable. For a stationary black hole,
——| p'(p+2p'—1trK/+2 +—€’) B—-A we have
\E(p (p+2p V2) € |( )
p=0 (283
—(p")AL (22b
E=0 (28b)
a set of two 2D elliptic equations relating three unknown
functionsA, B, A;, where and then from Eq(239 we have immediately o%
B=A (29

D=h3"(?D,+K})(?Dp+K[)—3 2R (23a
so that the PC conditions reduce to one 2D elliptic equation
D'=h3*(?D,—K})(?Dp,—K})—3 °R (23  relating two unknown function, Aj :

2

(n) r— _ ’ r_ +l ' _ ’ ~
EE%(Jab_Hab)(‘]ab_Hab)_2P2+87T(T6f)_T br) &t P \/E[p (p trK/\/E) ZD ]A (P )Al'

(230 (303
The operator o is not obviously invertible; however, in a
E'=2JaptHap) (I +H) =292+ 87 (T + T o). later paper in this series, it will be proved that this operator is

(23d  in fact invertible under fairly general conditions for a non-
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maximal stationary black hole, and so the PC conditions capitality of the the Texas/Los Alamos Worksh@GPP), and
be expected to “lock onto” successfully the Kerr black hole grateful to workshop participants for many helpful comments

at late times. on a version of this work. | am also grateful to Greg Cook,
Sean Hayward, and Wai-Mo Suen for comments on the
IV. CONCLUSION manuscript.

We have studied the apparent horizon boundary condition )
p=0 on a spacelike 2-surfac®as an inner coordinate con- APPENDIX A: THE SOAP FILM ANALOGY
dition at a black hole. Since most apparent horizons are wild, |f we need to define a flat surface, an elastic membrane —
another condition is required to ensure a well-posed evolusych as a soap film — stretched over a fixed rigid ring does
tion. We propose therescribed Curvature Equationsy for 3 good job. The shape of the membrane is governed by the
short thePC Equations Laplace equation, with Dirichlet boundary conditions at its
edge determined by the ring. What if, in addition, we need
the membrane to have a hole somewhere near its center? If
(31D there is a small rigid ring available, we can simply drop it

onto the membrane, and then cut out a hole in the membrane,

as an effective condition at the black hole. These equation@Xing the new, inner edge to the small ring, again with Di-
have the following properties: richlet boundary conditions. Overall, the small ring floats

They give rise to a system of two linear 2D elliptic equa-according to forces from the membrane, but the ring deter-
tions onS for three unknown boundary values of the lapseMines the size and shape of the hole. What do we do if no
and shift. suitable small rigid ring is available? Our metaphor, admit-

They therefore connect well with maximal slicing, and tedly loose, of course pertains to the study of black holes by
with related slicing conditions that involve 3D elliptic or Tgme,f'cal relativity, where indeed there is no suitable rigid
parabolic equations. rng. .

They are well posed and solvable for stationary black If we have closed Io_op of elastic string, it can serve as the
holes. inner boundary. The size and shape of the hole is not fixed,

They appear likely to be well posed and solvable undefut rather determined by force balance bet_vyegn the string
very general conditions. and the membrar]e. We may guess the eqU|]|br|um shape of

Some additional numerical work will be required to solve the hple to be a circle. _The curvature of the circle, and hence
the PC equations as part of a numerical relativity code. Howthe size of the hole, will be determined by balance between
ever, solving these equations cannot be not much harder thdgnsion along the string and surface tension in the membrane.
finding apparent horizons in the first placege,e.g.,[8,9]) The equilibrium will be described by some dlﬁgrent|al equa-
and may well be easier because these equations are line§Pns: In the membrane, the 2D Laplace equation; and along

Therefore the extra work seems unlikely to be prohibitive. the stringfwo stationary wave equations — two, because the
string has two transverse degrees of freedom in spdte

real string also has a longitudinal degree of freedom; but this
ACKNOWLEDGMENTS can be decoupled by attaching the membrane to the string
This research was supported in part by the National Sciwith a slip boundary — as with a soap filnBoundary con-
ence Foundation under Grant Nos. PHY94-07194 andlitions at the edge of the hole couple all of these equations
PHY90-08502 at ITP and UCSB. | am grateful for the hos-together.

p=(some fixed function onS) (31a

p' =(some other fixed function org)
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