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Black hole boundary conditions and coordinate conditions

Douglas M. Eardley*
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

~Received 30 May 1997; published 21 January 1998!

This paper treats boundary conditions on black hole horizons for the full~311!D Einstein equations.
Following a number of authors, the apparent horizon is employed as the inner boundary on a space slice. It is
emphasized that a further condition is necessary for the system to be well posed; the ‘‘prescribed curvature
conditions’’ are therefore proposed to complete the coordinate conditions at the black hole. These conditions
lead to a system of two 2D elliptic differential equations on the inner boundary surface, which coexist nicely
to the 3D equation for maximal slicing~or related slicing conditions!. The overall 2D-3D system is argued to
be well posed and globally well behaved. The importance of ‘‘boundary conditions without boundary values’’
is emphasized. This paper is the first of a series.@S0556-2821~98!01402-7#

PACS number~s!: 04.25.Dm, 04.20.Ex
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I. INTRODUCTION

Relativists have long hoped to pose numerical bound
conditions at the horizon of a black hole, and use the hori
as the inner boundary of the numerical grid. Recen
progress has been achieved in spherical symmetry by Sc
Shapiro and Teukolsky@1,2#, and by Anninos, Daues
Massó, Seidel, and Suen@3# ~see also@4#!. These two groups
carried out important demonstrations of the feasibility
such horizon boundary conditions by evolving spherica
symmetric black holes~in Brans-Dicke theory and Einstei
theory, respectively!. The basic idea is to make the inn
boundary an apparent horizon.

It would be highly desirable to extend such horiz
boundary conditions to more complex situations involvi
distorted or rotating black holes, and black hole binaries. T
main purpose of this paper is to work out the underlyi
theory of these coordinate conditions in 3D generality, a
step of such an extension. In particular the 2D differen
equations governing such inner boundary surfaces will
studied with a view toward making them well posed, wh
connected to the 3D equation for maximal slicing in relat
ity, or to various other slicing conditions~i.e., choice of
lapse! such as generalizations of maximal slicing@5#. The
basic idea of using an apparent horizon will turn out to wo
but several difficult issues crop up along the way, and m
be dealt with. We need boundary conditions at the horiz
but we do not know how to supply boundary values the
how to resolve this issue of ‘‘boundary conditions witho
boundary values’’ is explained along the way.

The development in this paper will not make specific
sumptions about the conditions for~311!D slicing and 3D
spatial coordinates, though we will often assume that th
conditions are implemented by some kind of 3D elliptic
parabolic equations, which will require boundary conditio
at the hole. Hyperbolic operators~e.g., arising in harmonic
slicing or harmonic coordinates! form quite a different case
and probably a simpler one, since they do not require bou
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ary conditions at the hole.1 ~I am grateful to Greg Cook for
pointing this out.!

Section II briefly describes the ways in which appare
horizons can become wild, and therefore unsuitable
boundary surface. Section III introduces the ‘‘prescrib
convergence’’ conditions, a set of boundary conditions o
2-surface designed to curb this wildness. The conditions
first discussed in some generality, and then specialized
apparent horizons bounding maximal slices. Section IV su
marizes the outlook. Finally, Appendix A informally trea
the problem of a soap film with an inner boundary, a use
analogy to the black hole case.

Further topics that require treatment are beyond the sc
of this paper, and will be treated in future papers of th
series:

Horizon boundary conditions for stationary black hole
relevant to the late stages of numerical calculations.

The connection between spatial coordinate conditio
i.e., choice of shift, and horizon boundary conditions; this
especially important for rotating black holes.

Boundary conditions for the constraint equations of ge
eral relativity on horizons; again a key issue is ‘‘bounda
conditions without boundary values.’’

II. MOST APPARENT HORIZONS ARE WILD

Hawking @6# defined trapped surfaces and apparent h
zon as follows.

Definition 1.A trapped surfaceS is an achronal 2-surface
in spacetime for which the outward null convergence obe

r.0. ~1!

A marginally trapped surfaceS is one for which the outward
null convergence obeys

r50. ~2!

The basic property of these surfaces is

1On the other hand, it is not clear whether harmonic slicing avo
coordinate singularities.
2299 © 1998 The American Physical Society
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2300 57DOUGLAS M. EARDLEY
Proposition 2.~Hawking & Ellis @6#!. Given a trapped or
marginally trapped surfaceS. No pointp on S can lie outside
the event horizon.

Definition 3.In a given space sliceV, an apparent horizon
is the outward boundary of trapped surfaces that lie inV.

Notice that the given sliceV is an essential ingredient o
the definition. To say that ‘‘We are going to choose a sl
that meets an apparent horizon . . . ’’ is a circular definition.
This issue is not just a nicety; to ignore it can lead to seri
trouble, as we will soon see. One way to see the problem
to observe thatany slice passing far enough into the blac
hole — over a wide range — will meet an apparent horiz
and therefore will obey the boundary condition. A conditi
that excludes nothing is not a useful condition.

To de-circularize the definitions, we must drop the sli
and refer not to an apparent horizon, but to a margina
trapped surface. So now we can sensibly say ‘‘We are go
to choose a slice that meets a marginally trapped surfac
And we can proceed to build a~311!D code that uses mar
ginally trapped surfacesS as the inner boundary of the slice
However,this code may not work; it is vulnerable to cras
ing after a short time.The pitfall is that ‘‘most’’ marginally
trapped surfaces are wild surfaces; this is very unlike
familiar situation with maximal slices, which are automa
cally smooth~technically, thanks to elliptic regularity!. The
wildness of marginally trapped surfaces is intrinsically
non-spherically symmetric phenomenon, and does not s
up at all in spherically symmetric setting — consistent w
the success of Anninos, Daues, Masso´, Seidel, and Suen.

A related property of a generic marginally trapped s
face, is that it can always be deformed spatially outw
from any point on it:

Proposition 4.Given any smooth marginally trapped su
faceS, such that eithers or Tmnl ml n does not vanish identi
cally on S. Given any pointp on S, and given a spacelike
outward-pointing vectoru at p. ThenS can be locally per-
turbed into a 1-parameter family of marginally trapped s
facesS(e) so thatp moves in theu direction.

~Heres is the outward null shear,Tmnl ml n is the outward
null component of the stress energy tensor, and we will
sume throughout thatTmnl ml n obeys the dominant energ
condition. Actually Proposition 4 is true for anyu, but is
most interesting ifu is spacelike outward pointing.!

This leads to a puzzle. Start with an apparent horizoS
and some pointp on it. What is to keep us from continuall
perturbing it, extending the 1-parameter familyS(e), until
p(e) passes outside the event horizon, contradicting Pro
sition 2? The only thing that can go wrong is thatS must
‘‘go wild’’ — i.e., cease being smooth — first.

In fact, the following conjecture, at first a bit startling, ca
be surmised as the obvious general answer to the puzzl

Conjecture A.The outward boundary in spacetime
marginally trapped surfaces is the event horizon.

I have proved this conjecture under some assumptio
plausible but not rigorously established, about how spa
time settles down to a nonextremal black hole subsequen
gravitational collapse. The trapped surfacesS that pass close
to the event horizon are wild. Let us give an example
illustrate what happens.

Sometime during the dynamical phase of collapse, a
the black hole has formed but before it has settled do
e
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choose a slice that contains an apparent horizonS, and
choose a pointp on S. Also choose any pointq on the
intersection of the slice with event horizon. In the usual p
ture, q is considerably outside the apparent horizon, so i
unclear how any trapped surface can pass close toq.! How-
ever, by Proposition 4, we can now extend a 1-param
family of marginally trapped surfacesS(e), so thatp(e) re-
mains in the sliceV @though most ofS(e) does not# and so
that p(e)→q at some parameter valuee0. What happens is
that all of S(e) approaches the event horizon ase→e0, but
that most ofS(e) moves far to the future. Therefore th
trapped surfacesS which pass close toq look as follows.
Most of S lies far to the future, very close to the event ho
zon of the settled-down black hole. Only a thin tendril ofS
extends back nearq, in a thin tubular neighborhood of a
generator of the event horizon. Though this tendril is nea
null, it is still part of a spacelike surface.

Let us see what this means for numerical relativity. Ea
marginally trapped surfaceS(e) can serve as the inne
boundary of a sliceV(e), say a maximal slice, extending t
spatial infinity. Moreover we can arrange fore to be proper
time at infinity, so that the slicing ‘‘goes wild’’ at finite time
This is the serious trouble that such a code can run into.

Details will be published elsewhere.

III. THE PRESCRIBED CONVERGENCE CONDITIONS
FOR 2-SURFACES

This is not to say that apparent horizons are necessar
bad idea for inner boundary conditions, only that an ingre
ent is missing. We propose that the missing ingredient is
simplest possible thing, the convergencer8 of the inward
null normal to a surfaceS, and that the well-posed way to pu
an inner boundary on a slice is to prescribe both the outw
null convergencer and the inward null convergencer8.

A. The two mean extrinsic curvatures of a 2-surface in
spacetime

Consider a spatial 2-surfaceS immersed in spacetime
~Throughout,S will be topologically a 2-sphere unless oth
erwise noted.! All over S, we can choose an orthonorm
frame of referenceeâ so that the time axise0̂ and one of the
spatial axese1̂ are normal toS, while the other two spatia
axese2̂ , e3̂ are tangent toS. ThenS has defined on it two
mean extrinsic curvatures,namelyH0 in the 0̂-direction, and
H 1̂ in the 1̂-direction. IfAh is the element of area onS, then
in suitable local coordinates we can take as the definition

] 0̂Ah52H 0̂Ah ~3a!

] 1̂Ah52H 1̂Ah ~3b!

~the minus sign in these equations is a matter of conventi!.
In any coordinate system, these mean extrinsic curvatu
form a 4-vectorHm orthogonal toS.

Alternatively we can follow null methodology@7# and
choose two orthonormal null vectors, the outward and
ward null normals toS, respectively, as
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l5
e0̂1e1̂

A2
~4a!

n5
e0̂2e1̂

A2
~4b!

with l ml m505nmnm, l mnm521, and then the null conver
gences ofl andn are

r5
H 0̂1H 1̂

A2
~5a!

r85
H 0̂2H 1̂

A2
. ~5b!

Notice, however, that we had to choose some frame
reference onS to define H 0̂ and H 1̂ ~or r and r8). The
arbitrariness in choice of frame amounts to a boost in
1-direction~a GHP boost! all overS @7#. Under such a boos
these quantities transform like

l→ l̃ 5ecl ~6a!

n→ ñ5e2cn ~6b!

r→ r̃ 5ecr ~6c!

r8→ r̃ 85e2cr8 ~6d!

where the boost rapidityc is an arbitrary function onS. Only
one boost-invariant scalar can be formed from the mean
trinsic curvatures, namelyHmHm52H 0̂

2
1H 1̂

2
522rr8.

How then do we determine a 2-surfaceS in spacetime?
SinceS has two transverse degrees of freedom, we need
conditions at each point ofS, that is, two equations in two
coordinates. It is tempting therefore to put conditions on
two quantities$H 0̂ ,H 1̂% or equivalently$r,r8%:

r5~some fixed function onS! ~7a!

r85~some other fixed function onS!. ~7b!

~For instance, to use an apparent horizon we can just
r50 as one of the two conditions.! These equations will be
called theequations of prescribed convergence, or, for short,
the PC equations.However the PC equations are not enou
by themselves, because of the boost arbitrariness, Eq.~6!.
We are missing one condition, namely something to fixc as
a function of two coordinates onS.

If we have already decided on a slicing condition f
spacetime,e.g.,maximal slicing, or something related to i
then the slice itself provides the missing condition: We c
use the unit timelike normal to the slice to fix the 0ˆ -direction
at S. Then the PC equations, together with the maximal s
ing equation, are just enough. This is of course no guara
that the equations form awell-posedsystem, meaning thatV
andS can never ‘‘go wild.’’ However it is a reasonable con
jecture that this is so, and this paper will present a consid
able amount of evidence in favor of this conjecture.
f

e

x-

o

e

ke

n

-
ee

r-

B. The 311 and 211 splits

The spacetime metric is

ds252~a22b ib
i !dt212b idxidt1g i j dxidxj . ~8!

The notation is now necessarily going to become a li
complicated, so the reader is asked to be patient. Star
from the full spacetime geometry, we choose slices and c
out the standard 311 split. The unit future-pointing timelike
normal to the slices is denotede0̂ . Spacetime indices run
over m,n, . . . 50,1,2,3, where 0 denotes timet; spatial in-
dices run overi , j , . . . 51,2,3, and can be lowered an
raised with the spatial metricg i j and its inverseg i j .

Each space slicet5const has an inner boundary on
2-surfaceS. For convenience in this paper, we will throug
out choose spatial coordinates$xi% and shift vectorb i so that

S always lies atr 5r 05const, wherer[x1; ~9!

This means thatb i is not freely specifiable atS, but must be
chosen to match the motion ofS:

B[b ie1̂
i fixed at S by the PC conditions ~10!

heree1̂
i is the unit outward spatial normal toS. One would

actually like more general spatial coordinates, to allow
black hole to move through the spatial coordinate system
to ‘‘fly through the grid.’’ The generalization to such coo
dinates is straightforward, but is not developed in this pap

The Riemannian 2-metric onS will be denotedhab ; sur-
face indices run overa,b, . . . 52,3 and can be lowered an
raised withhab and its inversehab. We use a 211 split atS,
and 2-tensors onS will carry indicesa,b, . . . . Thespatial
extrinsic 2-curvature ofS with respect to the spatial norma
directione1̂

i is a 2-tensor

Hab[2 1
2L1̂hab ~11!

whereL denotes Lie derivative, and the spatial mean extr
sic 2-curvatureH 1̂ is its 2-trace,

H 1̂5habHab52
1

Ah
] 1̂Ah ~12!

whereh[dethab . The Gauss-Codazzi equations of the 211
split imply

3R52] 1̂H 1̂2H 1̂
2
2HabH

ab1 2R ~13a!

hab 3Rab5] 1̂H 1̂2HabH
ab1 2R ~13b!

2DaK 1̂
a
5] 1̂H 0̂2H 1̂H 0̂1H 1̂trK ~13c!

where 2Rab is the Ricci 2-tensor ofhab and 2R5habRab .
We also need the timelike extrinsic 2-curvature ofS with

respect to the timelike normal directione0̂ ; it is the 2-tensor
gotten by 211 projection ofKi j ,

Jab5'Kab ~14!

and the timelike mean extrinsic 2-curvatureH 0̂ is its 2-trace,
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2302 57DOUGLAS M. EARDLEY
H 0̂5habJab5habKab ; ~15!

here' denotes the projection of 3-tensors into 2-tensors aS.

C. Evolution of the mean extrinsic curvatures

We will present a system of equations which is fully c
variant under transformations of the spatial coordinatesxi

and shiftb i that preserve the inner-boundary constraints aS,
Eqs.~9! and~10!. That is, we shall derive a system of equ
tions which can be used with any choice of spatial gau
away from S. Some intermediate calculations, though, a
most easily done in a particular spatial coordinate syst
namely, Gaussian normal coordinates in space. Thus our
tial metric can be taken as

g i j dxidxj5dr21habdxadxb ~16!

wherer[x1. The inner boundary in spacetime is the hyp
surfacer 5r S5const, consisting of all theS for all t, which
we want to be a spacelike or null hypersurface lying with
or on the event horizon. Values atS will be denoted ‘‘uS . ’’
Thus by Eq.~10!,

b 1̂uS[B, ~17a!

and also we will denote the inner boundary value the laps
S as

auS[A. ~17b!

and its spatial normal derivative as

] 1̂auS[A1̂ . ~17c!

At the inner boundary surfaceS, the two mean curvature
H 0̂uS andH 1̂uS are the quantities we wish to prescribe. Th
we wish to derive these inner boundary values for the la
a and shiftb i .

From these definitions and the Einstein equations foll
the evolution equations forH 0̂ andH 1̂ :

] t
~n!H 0̂5@ 1

2 ~H 0̂
2
2H 1̂

2
!1 1

2 ~HabH
ab1JabJ

ab!2Kr
aKa

r

18pT0̂0̂1 1
2

2R2 2D#A1@JabH
ab1H 0̂H 1̂2H 1̂trK

28pT 0̂r1~2DaKr
a!12Kr

a 2Da#B1~H 1̂!A1̂ ~18a!

] t
~n!H 1̂5@JabH

ab28pT 0̂r2~2DaKr
a!22Kr

a 2Da#A1@ 1
2 ~H 0̂

2

1H 1̂
2
!1 1

2 ~HabH
ab1JabJ

ab!1Kr
aKa

r 2H 0̂trK

18pT0̂0̂2 1
2

2R1 2D#B1~H 0̂!A1̂ ~18b!

where] t
(n) denotes the projection of the time evolution o

erator] t[]/]t normal toS,

] t
~n![Ae0̂

m ]

]xm 1Be1̂
m ]

]xm . ~19!

These equations are valid in any 311 coordinate system tha
obeys Eqs.~9! and ~10! at S.

If we now view H 0̂ and H 1̂ as prescribed functions o
(t,xa), Eqs. ~18! become a set of two 2nd-order couple
e
e

,
a-

-

at

e

partial differential equations in$xa% on S for three unknown
functionsA, B andA1̂ . Thus, the inner boundary condition
for the lapsea and the radial component of the shiftb 1̂ are
fixed. The tangential boundary value of the shift is still fre
and can be chosen separately to enforce, say, ‘‘slip’’ or ‘‘n
slip’’ conditions as desired.

D. The naturality of the inner boundary conditions

It may seem surprising that these equations involveA1̂ as
well asA andB; however, a little reflection shows this to b
natural and in fact desirable. To illustrate this, restrict
maximal slicing trK50 temporarily. The maximal slicing
equation

05~3D2Ki j K
i j 2matter!a ~20!

is a 2nd-order elliptic equation in (xi) for a, and therefore
admits at the inner boundaryS any of these well-posed
boundary conditions:

auS5A Dirichlet boundary conditions, or ~21a!

] 1̂auS

5A1̂ Neumann boundary conditions,or more generall

~21b!

FDauS1FN] 1̂auS50 homogeneous mixed

boundary conditions; ~21c!

FDauS1FN] 1̂auS5F inhomogeneous mixed

boundary conditions; ~21d!

whereA, A1̂ , FD , FN , and F are prescribed functions o
(t,xa).

Conditions~21c! and ~21d! simply say that there exists
prescribed linear relation betweena and a 1̂ on S, but that
neither is fixed individually; the distinction between the
conditions@~21c! and ~21d!# is the functionF on the right-
hand side, which may be either 0~homogeneous case! or a
given function~inhomogeneous case!.

Now, givenH 0̂ andH 1̂ , Eqs.~18! do give two prescribed
linear relations among the three functions (B2A), (B1A)
andA1̂ , albeit implicit ones. One can imagine using one
Eqs. ~18! to eliminateB, whereupon the other becomes
single linear relation, in the form of Eq.~21c!, betweenA
andA1̂ — albeit an implicit one, involving Green function
of the operatorsD andD8. Thus, Eqs.~18! do appear to give
well-posed boundary conditions for maximal slicing, E
~20!, and they also should do so for attractive generalizati
of maximal slicing@3#.

In fact, not only is it admissible to have homogeneo
mixed boundary conditions for the lapsea at S, it is also
desirable. Imagine we instead used Dirichlet boundary c
ditions ~17a!. How big do we then make the inner bounda
valueA? — by which we mean, what fixes the overall sca
of A at the inner boundary? We would like to make it b
enough so that, over a long evolution, the inner bound
just ‘‘keeps up’’ with the outer boundary, neither shootin
way ahead, or falling way behind. How big is that? The fi
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57 2303BLACK HOLE BOUNDARY CONDITIONS AND . . .
guess isA51, but that cannot be right, because the inn
boundary is in the strong field region. The lapse equatio
not going to tell us how big to makeA, precisely because i
is happy with anyA. Thus a pure Dirichlet boundary cond
tion is not generally going to work well for long evolution

Thus, mixed homogeneous boundary conditions reso
this issue. They provide ‘‘boundary conditions witho
boundary values.’’

A homogeneous mixed boundary condition can work w
— it can be thought of as a ‘‘feedback mechanism.’’ If th
inner boundary falls behind the outer boundary, thenA1̂ will
become large and positive, and the mixed boundary co
tion then can ‘‘tell’’ A to become larger. If the inner bound
ary shoots ahead of the outer boundary, thenA1̂ will become
large and negative, and the mixed boundary condition t
can ‘‘tell’’ A to become smaller. A concrete example of th
‘‘mixed-boundary-condition feedback mechanism’’ will b
presented below. Since the boundary condition is homo
neous, no data need be given at the inner boundary to fix
overall scale ofA; this scale is self-adjusting.

E. The PC equations — inner boundary conditions for
prescribed r and r8

From Eqs.~5! and ~18! can be found the evolution equa
tions for the null convergencesr and r8. When we taker
andr8 as prescribed functions of (t,xa), these equations be
come theequations of prescribed convergence (PC) eq
tions:

] t
~n!r5

1

A2
S r~r812r2trK/A2!1

1

2
ED ~B1A!

1
1

A2
S r~2r81r2trK/A2!1

1

2
DD

3~B2A!1~r!A1̂ ~22a!

] t
~n!r852

1

A2
S r8~2r1r82trK/A2!1

1

2
D8D ~B1A!

2
1

A2
S r8~r12r82trK/A2!1

1

2
E8D ~B2A!

2~r8!A1̂ ~22b!

a set of two 2D elliptic equations relating three unknow
functionsA, B, A1̂ , where

D[hab~2Da1Ka
r !~2Db1Kb

r !2 1
2

2R ~23a!

D8[hab~2Da2Ka
r !~2Db2Kb

r !2 1
2

2R ~23b!

E[ 1
2 ~Jab2Hab!~Jab2Hab!22r218p~T0̂0̂2T 0̂r !

~23c!

E8[ 1
2 ~Jab1Hab!~Jab1Hab!22r8218p~T0̂0̂1T 0̂r !.

~23d!
r
is

e

ll

i-

n

e-
he

-

The latter quantities obey some useful relations. The t
differential operatorsD andD8 live on S; they are not gen-
erally self-adjoint, due to the terms inKa

r , but are the ad-
joints of each other:

D†5D8. ~24!

The two scalar functionsE andE8 are non-negative:

E>0 ~25a!

E8>0 ~25b!

as long as matter obeys the dominant energy condit
which we will assume throughout. These equations are v
in any 311 coordinate system that obeys Eqs.~9! and~10! at
S.

F. Special case: Maximal slices bounded by apparent horizons

As a special but important choice of coordinate conditio
— still general enough to study binary black hole coale
cences in~311!D — let us take

trK50 ~maximal slicing! ~26a!

r50 ~apparent-horizon inner boundary! ~26b!

r85F~xa! ~some prescribed function!. ~26c!

Then the PC equations reduce to

05E~B1A!1D~B2A! ~27a!

05~D812r82!~B1A!1~E814r82!~B2A!12A2r8A1̂ .
~27b!

G. Special case: Stationary black holes

Stationary black holes are relevant because calculation
binary coalescence will eventually settle down to a station
black hole, and coordinate conditions are desirable that
somehow ‘‘lock onto’’ the geometry of the stationary blac
hole and render it recognizable. For a stationary black h
we have

r50 ~28a!

E50 ~28b!

and then from Eq.~23a! we have immediately onS

B5A ~29!

so that the PC conditions reduce to one 2D elliptic equat
relating two unknown functionsA, A1̂ :

] t
~n!r852A2@r8~r82trK/A2!1 1

2D8#A2~r8!A1̂ .
~30a!

The operator onA is not obviously invertible; however, in a
later paper in this series, it will be proved that this operato
in fact invertible under fairly general conditions for a no
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2304 57DOUGLAS M. EARDLEY
maximal stationary black hole, and so the PC conditions
be expected to ‘‘lock onto’’ successfully the Kerr black ho
at late times.

IV. CONCLUSION

We have studied the apparent horizon boundary condi
r50 on a spacelike 2-surfaceS as an inner coordinate con
dition at a black hole. Since most apparent horizons are w
another condition is required to ensure a well-posed ev
tion. We propose thePrescribed Curvature Equations,or for
short thePC Equations

r5~some fixed function onS! ~31a!

r85~some other fixed function onS! ~31b!

as an effective condition at the black hole. These equat
have the following properties:

They give rise to a system of two linear 2D elliptic equ
tions onS for three unknown boundary values of the lap
and shift.

They therefore connect well with maximal slicing, an
with related slicing conditions that involve 3D elliptic o
parabolic equations.

They are well posed and solvable for stationary bla
holes.

They appear likely to be well posed and solvable un
very general conditions.

Some additional numerical work will be required to sol
the PC equations as part of a numerical relativity code. Ho
ever, solving these equations cannot be not much harder
finding apparent horizons in the first place,~see,e.g.,@8,9#!
and may well be easier because these equations are li
Therefore the extra work seems unlikely to be prohibitive

ACKNOWLEDGMENTS

This research was supported in part by the National S
ence Foundation under Grant Nos. PHY94-07194 a
PHY90-08502 at ITP and UCSB. I am grateful for the ho
. D

. D

s.

an

f

n

n

d,
-

ns

k

r

-
an

ar.

i-
d
-

pitality of the the Texas/Los Alamos Workshop~IGPP!, and
grateful to workshop participants for many helpful comme
on a version of this work. I am also grateful to Greg Coo
Sean Hayward, and Wai-Mo Suen for comments on
manuscript.

APPENDIX A: THE SOAP FILM ANALOGY

If we need to define a flat surface, an elastic membrane
such as a soap film — stretched over a fixed rigid ring d
a good job. The shape of the membrane is governed by
Laplace equation, with Dirichlet boundary conditions at
edge determined by the ring. What if, in addition, we ne
the membrane to have a hole somewhere near its cente
there is a small rigid ring available, we can simply drop
onto the membrane, and then cut out a hole in the membr
fixing the new, inner edge to the small ring, again with D
richlet boundary conditions. Overall, the small ring floa
according to forces from the membrane, but the ring de
mines the size and shape of the hole. What do we do if
suitable small rigid ring is available? Our metaphor, adm
tedly loose, of course pertains to the study of black holes
numerical relativity, where indeed there is no suitable rig
‘‘ring.’’

If we have closed loop of elastic string, it can serve as
inner boundary. The size and shape of the hole is not fix
but rather determined by force balance between the st
and the membrane. We may guess the equilibrium shap
the hole to be a circle. The curvature of the circle, and he
the size of the hole, will be determined by balance betwe
tension along the string and surface tension in the membr
The equilibrium will be described by some differential equ
tions: In the membrane, the 2D Laplace equation; and al
the string,two stationary wave equations — two, because
string has two transverse degrees of freedom in space.~The
real string also has a longitudinal degree of freedom; but
can be decoupled by attaching the membrane to the st
with a slip boundary — as with a soap film.! Boundary con-
ditions at the edge of the hole couple all of these equati
together.
n-
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