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Hamiltonian spacetime dynamics with a spherical null-dust shell
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We consider the Hamiltonian dynamics of spherically symmetric Einstein gravity with a thin null-dust shell,
under boundary conditions that fix the evolution of the spatial hypersurfaces at the two asymptotically flat
infinities of a Kruskal-like manifold. The constraints are eliminated via a Kutyy@e canonical transformation
and Hamiltonian reduction. The reduced phase sﬁéc:mnsists of two disconnected copies ®f, each
associated with one direction of the shell motion. The right-moving and left-moving test shell limits can be
attached to the respective componentfcafs smooth boundaries with topolo§y. Choosing the right-hand-
side and left-hand-side masses as configuration variables provides a global canonical chart on each component
of f, and renders the Hamiltonian simple, but encodes the shell dynamics in the momenta in a convoluted
way. Choosing the shell curvature radius and the “interior” mass as configuration variables renders the shell
dynamics transparent in an arbitrarily specifiable stationary gauge “exterior” to the shell, but the resulting
local canonical charts do not cover the three-dimensional subdethait corresponds to a horizon-straddling
shell. When the evolution at the infinities is freed by introducing parametrization clocks, we find on the
unreduced phase space a global canonical chart that completely decouples the physical degrees of freedom
from the pure gauge degrees of freedom. Replacing one infinity by a flat interior leads to analogous results, but
with the reduced phase spadB?URZ?. The utility of the results for quantization is discussed.
[S0556-282(98)03504-9

PACS numbe(s): 04.20.Fy, 04.40.Nr, 04.60.Kz, 04.70.Dy

[. INTRODUCTION can be easily obtained from a junction condition formalism
that is general enough to encompass null shsle Ref[5]
Spherically symmetric geometries have a long and usefuhnd the references thergirOur purpose is to explore the
history as a physically interesting and technically vastly sim-Hamiltonian structure of this system, treating both the geom-
plified arena for gravitational physics. In vacuum, Einstein’setry and the shell as dynamical. Among the extensive previ-
theory with spherical symmetry has no local degrees of freeeus work on Hamiltonian approaches to spherically symmet-
dom, and the reduced phase space in the Hamiltonian formuic geometriegfor a selection in a variety of contexts, see
lation is finite dimensional. Including an idealized, infinitesi- Refs.[6—41]), we follow most closely the canonical transfor-
mally thin matter shell brings in an additional finite number mation techniques of Kuchdd0]. Our main results can be
of degrees of freedom. Including a continuous matter distri-concisely described as generalizing the spherically symmet-
bution generically yields a (£ 1)-dimensional field theory, ric vacuum Hamiltonian analysis of R€fL0O] to accommo-
with the exception of fields whose gauge symmetries excludéate a null-dust shell.
spherically symmetric local degrees of freedom. A familiar Finding a suitable action principle requires care. The shell
example of a field with such a gauge symmetry is the elecstress-energy tensor is a delta-distribution with support on
tromagnetic field. the shell history, which is a hypersurface of codimension
In this paper we consider spherically symmetric Einsteinone. Einstein’s equations for the system therefore admit a
gravity coupled to an infinitesimally thin null-dust shell. consistent distributional interpretatigd2], and the content
From the spacetime point of view, the solutions to this sysof these equations is captured by the junction condition for-
tem are well knowr{see, for example, Refsl—4]), and they  malism of Barrabes and Israf$]. We recover these equa-
tions from a variational principle. We take the shell action to
be that of a spherically symmetric thin cloud of radially-
*On leave of absence from Department of Physics, University ofnoving massless relativistic point particles, and we vary the
Helsinki. Present address: Max-Planck-Institit f@ravitations-  total action independently with respect to the gravitational
physik, Schlaatzweg 1, D-14473 Potsdam, Germany. Electronic adsariables and the shell variables. We shall see that this varia-

dress: louko@aei-potsdam.mpg.de tional principle can be made distributionally consistent and
"Electronic address: bernard@bunyip.phys.ufl.edu that the variational equations do reproduce the correct dy-
*Electronic address: friedman@thales.phys.uwm.edu namics. Achieving this requires, however, a judicious choice
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of the regularity properties of the metric. exterior coordinate system. One can argue that this yields a

We begin, in Sec. Il, by setting up the Hamiltonian for- Hamiltonian description of interest for an observer who scru-
mulation of the system in the Arnowitt-Deser-Misii&DM)  tinizes the shell motion from the exterior asymptotic region,
gravitational variables. The spacetime is taken to havespecially if the observer's ignorance of the interior
Kruskal-like topology, with two asymptotically flat infinities, asymptotic region is incorporated by setting the interior con-
and the spatial hypersurfaces are taken to be asymptotic tgbution to the Hamiltonian to zero. We give three examples
hypersurfaces of constant K||||ng time at each space"ke in.Of Stationary exterior coordinate systems in which the Hamil-
finity. The Killing time evolution of the hypersurfaces is pre- tonian can be found in closed form. Also, choosing the spa-
scribed independently at each infinity. We specify the regutially flat exterior gaugg43-45, and performing a partial
larity properties of the gravitational variables, and reduction by setting the interior mass equal to a prescribed
demonstrate that the variational principle is consistent angonstant, we reproduce the spatially flat shell Hamiltonian
leads to the correct equations of motion. previously derived in Refs[SO, 3ﬂ by different methods.

In Sec. Il we perform a canonical transformation to a In Sec. VI we free the evolution of the spatial hypersur-
new chart in which the constraints become exceedingNaCeS at the spacelike infinities by introducing parametriza—
simple. Two of our new variables are Hawking’s quasilocaltion clocks. We find on the unreduced phase space a canoni-
massM (r) and the two-sphere curvature radR), justas ~ cal chart in which the physical degrees of freedom and pure
in the vacuum analysis of Ref10]. However, to maintain a 9auge degrees of freedom are completely decoupled, in full
consistent distributional interpretation of the variables in theanalogy with the vacuum analysis of R¢L0]. The pure
new chart, we are led to relate the momentum conjugate tgauge chart can be chosen so that the configuration variables
M(r) to the Eddington-Finkelstein time whose constantare the curvature radius of the two-sphere and the Eddington-
value hypersurface coincides with the classical shell historyf-inkelstein time, with the latter one appropriately inter-
and not to the Killing time as in Ref10]. The momentum Preted across the horizons.
conjugate toR(r) needs to be modified accordingly. Re-  In Sec. VIl we replace the Kruskal spatial topoldgx R
markably, the canonical transformation can then be chosen # the spatial topologj®. The spacetime has then just one
leave the shell canonical pair invariant. The transformation i&symptotic region, and when the equations of motion hold,
m||d|y singu|ar for geometries in which the shell straddles athe spacetime interior to the shell is flat. As in the Kruskal
horizon, but it can be extended to this special case in a sui€ase, we take the asymptotic region to be asymptotically flat,
able limiting sense. and we prescribe the evolution of the spatial hypersurfaces at

In Sec. IV we eliminate the constraints by Hamiltonian the spacelike infinity. We then carry out the canonical trans-
reduction. The reduced phase spicairns out to have di- formation and Hamiltonian reduction. Expectedly, the re-

mension four. As the vacuum theory under our boundar)guced phase space turns out to consist of two disconnected
conditions has a two-dimensional reduced phase siddije copies ofR?, with only the counterpart of the pair, ,p.)

and as a test shell in a fixed spherically symmetric backpf :,T;Z ig’ﬁgagg]eﬁré:gr\o\ﬂ?g‘.th 2 summary and a brief
ground has a two-dimensional phase space, this is exactly. uae 1 ' Wi u y !

what one would have anticipated. We first obtain canonica |scussjon,_ including re.mafks on the potential utiI_ity of thg
coordinates if1, ,m_,p, ,p.) in which the configuration results in view of quantization. Some of the technical detail
+ =M+ M-

variablesm.. are the Schwarzschild masses on the two side f the ADM dynamical analysis is postponed to the appen-

of the shell. The momentp. can be interpreted as the 'C\?VS' K in Planck unitsf=c=G=1. L Lati
Eddington-Finkelstein time differences between the shell an?ensoer V\g‘;;iclgsaatl)nc un;éi ;t();s;rac_t s ;)(\:I;?irr?]aesﬁn dailclgs
the infinities, after introducing an appropriate correspon-—. =~ T P: '
dence between our spatial hypersurfaces and hypersurfacgérac.s deltha—funct|on IS deno_ted by, th"eh‘s deﬂotes a
that are asymptotically null. The configuration variabhes variation. The curvature coordmate;E,R) or the Schwarzs-
are constants of motion, while the shell motion is indirectlyChlld metric are coordinates in which the metric reads
encoded in the dynamics @f. . These coordinates become ds2= — (1— 2M/R)d T2+ (1— 2M/R) ~1dR2+ R2d()2
singular for horizon-straddling shells, but a global chart cov- (1'_1)
ering also this special case can be obtained by introducing

suitable new momenta. We find thBtconsists of two dis- wheredQ? is the metric on the unit two-sphere aktlis the
connected copies di*, each associated with one direction Schwarzschild massT and R are called respectively the
of the shell motion. The right-moving and left-moving test Killing time and the curvature radius.

shell limits, in which the shell stress-energy tensor vanishes,

can be attached to the respective componenféaﬁ smooth Il. METRIC FORMULATION

boundaries with topolog®. . ) - .
pologyt In this section we set up the Hamiltonian formulation for

In Sec. V we introduce o" a local canonical chart in - spherically symmetric Einstein gravity coupled to a null-dust

which the shell motion becomes more transparent. Assgminghe”_ We pay special attention to the regularity of the gravi-
that the shell does not a straddle a horizon, the shell histongtional variables and the global boundary conditions.

divides the spacetime into the “interior,” which contains a
Killing horizon bifurcation two-sphere, and the “exterior,”
which does not. We choose the configuration variables in the
new chart to be the curvature radius of the shell two-sphere Our spacetime geometry is given by the general spheri-
and the interior mass, in an arbitrarily specifiable stationancally symmetric Arnowitt-Deser-MisnglADM ) metric

A. Bulk action



HAMILTONIAN SPACETIME

ds?=—N2dt?+ A?(dr+N"dt)?>+ R?dQ?, (2.1
whered? is the metric on the unit two-sphere, aNg N',
A, andR are functions of the coordinatésandr only. Par-
tial derivatives with respect tb andr are denoted respec-

tively by overdot and prime, =d/dt and ' =4/ dr. We take
the spacetime metric to be nondegenerate, Mnd, andR
to be positive.

The matter consists of an infinitesimally thin shell of dust
with a fixed total rest mass, which we initially take to be
positive. Denoting the shell history by=¢(t), the Lagrang-
ian matter action is

sf=—mJ dtVNZ— A%(c+ N2, (2.2
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AP? P,Pr RR RRA' R'2
2R’ R A AT Toa
—%+%p5(r—t), (2.79
H,=PgrR’ —P4\A—pd(r—r), (2.79

wheren: =sign(p). From now on, we shall work exclusively
in this zero rest mass limit, with the bulk acti¢2.6) and the
constraints(2.7). As will be verified below, the shell then
consists of null dust.

The Hamiltonian constrain2.73 is not differentiable in
p atp=0. As we shall verify below, an initial data set with
nonzerop cannot evolve into a set with=0 [1-5]. We

where a hat is used to denote the value of a variable at thgssyme from now on thatis nonzero: this breaks the phase
shell. The shell can be envisaged as a thin spherically SYMspace into the two disconnected sectgrs + 1. The limits

metric cloud of radially-moving massive relativistic point p—0. within each sector will be addressed in subsection
particles. vV C.

The Lagrangian gravitational action is obtained by per-
forming integration over the angles in the Einstein-Hilbert
action, (167) 'fd*xy/—gR. Discarding a boundary term,
the result i96,7,10,27,30,3P

B. Local equations of motion

In the presence of a smooth matter distribution, one can
assume the spacetime metric to be smo@f)( In the ide-
alized case of an infinitesimally thin shell, the metric can be
chosen continuous but not differentiable at the shell
[5,42,46,47. The issue for us is to find smoothness assump-
tions that give a consistent variational principle. We wish to

sﬁ=f dtf dr[—N"YR[A—(AN")']J(R-R'N")+1A(R

—R'N)Z}+N(A?RRA'—AT'RR'—3A1R'?

+2 A)]. (2.3  make both the actiof2.6) and its local variations well de-
fined and such that the resulting variational equations are
The Lagrangian action of the coupled system is equivalent to Einstein’s equations with a null-dust shell.
We follow the massive dust shell treatment of R&7].
S =S{+S+ boundary terms. (24 |n contrast to the case of a massive dust shell, we shall find

We shall consider the regularity properties of the variablesthat the smoothne;s condl_tlons introduced n ReT] make
%ur null-dust variational principle fully consistent.

the boundary conditions, and boundary terms after passing t As in Ref.[37], we assume that the gravitational variables

the Hamiltonian formulation. i ) ) , i
The momenta conjugate to the configuration variables arle sn?ooth functions of, with the_ exception th"’m. ; (N') N
A', R, P,, andPg may have finite discontinuities at iso-

A, andR are lated values of , and that the coordinate loci of the discon-
m/AXZ('tJrN\r) tinuitigs may _be smoot_h functions of All th.e ter_ms und_er
p= , (2.5  ther-integral in the actior(2.6) are well defined in the dis-
\ /Nz_]\z('t_l_ﬁ‘r)z tn_bt_JtlonaI sense. The m_ost_smgL_JIar contrlbutlo_ns are the ex-
plicit matter delta-contributions in the constraints, and the
R . implicit delta-functions inR” and P} . All these delta-
Py=— N(R_ N'R"), (2.5b  functions are multiplied by continuous functions rof The
remaining terms are at worst discontinuous inThe action
A R . is therefc_)re well defined._ _ . .
Pr=-— N(R— N'R’)— N[A—(Nf/\)’]_ (2.50 Local independent variations of the action with respect to

the gravitational and matter variables give the constraint

A Legendre transformation gives the Hamiltonian bulk ac_equatlons

tion [27,3Q

H=0, (2.89
Szzfdt pt+fdr(PAA+PRR—NH—NrHr) , H,=0, (2.8b
(2.6
I . and the dynamical equations
where the super-Hamiltonian constrakhtand the radial su-
permomentum constraird, contain both gravitational and AP. P
matter contributions. In the limim—O0, these constraints A A R TAY
' = —— |+ .
take the form A N( R? R) (N'A), (2.93
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. NP,
R=—T+NrR', (2.9p
5 N[ P} (R 2+1+27;p8 N'RR’
R ITROIR Az Y| T
+N"P}, (2.90
. APY P,Pr [(R'\'] [N'R}’
PN R R ‘(x) ‘(T HNPR,
(2.90
R FIG. 1. The Penrose diagram for a spacetime in which the shell
- nN =~ does not straddle a horizon. The shell history is the dashed line
v=——N, (2.9¢9 passing through pointp; and p,. The shell has been taken left-

moving, which meang;= —1, and to lie in the future of the left-
) ' going horizon, which means that the right-hand-side Schwarzschild
P:ﬁ{(Nr_ T) } . (2.99 massm, is greater than the left-hand-side Schwarzschild mass
m_ . The diagrams fom=1 and/orm,<m_ are obtained through

As will be discussed in detail in Appendix A, our smooth- inversions of space or time or both. The spacetime is uniquely
ness conditions imply that equatiof2.8) and all save the determined by the values @i, , m_, and 5. A hypersurface of
last one of equation$2.9) have an unambiguous distribu- constant extends from the left-hand-sid& to the right-hand-side
tional interpretation. Equatiof2.9f), on the other hand, is i° and the points andB indicate the ends of the asymptotically
ambiguous: the right-hand side is a combination of spatiahull hypersurface introduced in Sec. IV. The dotted lines are hyper-
derivatives evaluated at the shell, but these derivatives magurfaces of constant null time ending respectivelpj andB. Point
be discontinuous. We need to examine the dynamical contemt is here shown as being in the future of the shell history, but in
of the well-defined equations, and the possibilities of inter-general it could be anywhere on the right-hand-side
preting equatior(2.91).

A first observation from equatiof®2.9€ is that the shell
history is tangent to the null vectof® whose components

shell is by assumption nonvanishing, the bifurcation two-
spheres on the two sides do not coincide. The spacetime is
either that shown in Fig. 2 or its time inverse.

are Now, away from the shell, equatiori2.8) and (2.9) are
=1, (2.10a  well known to be equivalent to Einstein’'s equations. We

. shall investigate equatior(2.8) and(2.9) at the shell in de-
/= an\-l_ NF. (2.10h tail in the appendices. The result is that, when combined with

_ . the fact that the geometry is locally Schwarzschild on each
For »=1 (y=—1), /% is the future null vector that points side of the shell, the well-defined equation®.8) and
towards relatively largefsmallej values ofr. From the defi- (2.99—(2.96, are equivalent to the correct null-dust junction

nition of the shell stress-energy tensor, conditions at the shell. They further imply that the right-hand
8,Ssher= 3 [ = 9d*xT2&g,y), e find side of (2.9f) is unambiguous, and th&2.91) is satisfied as
an identity. Our variational principle is therefore consistent,
ab np ab and it correctly reproduces the motion of a null-dust shell.
= Neazge” /o= (2.1 A check on the consistency of our formalism is that the

Poisson brackets of our constraints can be shown to obey the
The shell is therefore null, with positive surface energy butradial hypersurface deformation algelj#8], as in the ab-
vanishing surface pressufg]. This confirms that the shell
consists of null dust.

All solutions to the spherically symmetric Einstein equa-
tions with a null-dust shell can be found from a sufficiently
general junction condition formalisfii—5]. On each side of
the shell, the spacetime is locally part of the extended
Schwarzschild geometry. If the global structure of the space-
time is Kruskal-like, with two asymptotically flat infinities,
there are only two qualitatively different cases. First, if the
shell is not static, the junction is completely determined by
continuity of the two-sphere radius at the shell. The motion
is clearly geodesic in each of the two geometries, and the £ 2 The Penrose diagram for a spacetime in which the shell
radius of the two-sphere serves as an affine parameter Gaddles a horizon. The shell history is the line passing through
either geometry. The spacetime is either that shown in Fig. Iysintsp, andp,. The spacetimes on the two sides share a common

or its time and/or space inverse. Second, if the shell is statiGschwarzschild massn. The shell has been taken left-moving,
the junction is along a common horizon, and the masses mughich meansy=—1. The diagram corresponding tp=1 is ob-

agree. The soldering is affine, meaning that the affine paramained through timeor, equivalently, spagenversion. The space-
eters along the horizon with respect to the two geometries anéme is uniquely determined by the valuesnefand . The pointsA
affinely related; however, as the stress-energy tensor of thendB and the dotted null lines ending at them are as in Fig. 1.
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sence of the shell, and as with a massive dust $8&]l We A. Shell not on a horizon
therefore have a Hamiltonian system with first class con-

; In the vacuum theory, Kuch#t0] found a transformation
straints[49].

from the canonical chartA,R,P, ,Pgr) to the new canonical
chart M,R,Py, ,Pg) defined by

C. Falloff
=1R(1—

What remains are the global boundary conditions. We M:=2R(1-F), (3.19
take the coordinate to have the range-{«,»), and asr R R 31h
— *+ oo we assume the falloff10,50 =R, (3.1b

At,r)=1+M.|r| 1+ 0(Jr| 7179, (2.123 Pu:=RIFIAP,, (3.19
R(t,r)=r[+0*(|r| ™), (2.120 Pr:=Pgr— 3R !AP,—iRF AP,
P (t,r)=0"(|r| 79, (2.129 —RTATPFTI(AP,) (RR)—(APy)(RR)],
(3.1d
Pr(t,r)=07(|r|7*79), (2.12d
where
N(t,r)=N-+0*(|r| ™), (2.12¢
R’ 2 PA 2
N"(t,r)=0%(|r| "), (2.12f FZZ(X) —<3) : 3.2

whereM.. andN.. are functions ot, ande is a parameter

! - When the equations of motion hold) is independent of
that can be chosen freely in the range. &<1. Here,O

bothr andt, and its value is just the Schwarzschild mass.

stands for a term that falls off as—* as its argument, gjmijarly, when the equations of motion hold, we have
and whose derivatives with respectrtandt fall off accord- Py=—T', whereT is the Killing time. The vacuum con-

ingly. These conditions imply that the asymptotic regionsgiraints can be written as a linear combination\f and

associated with — * o are asymptotically flat, with the con- p_ “and the dynamical content of the theory becomes trans-
stantt hypersurfaces asymptotic to hypersurfaces of ConSta’Barent.

Minkowski time. N.. are the rates at which the asymptotic ' |y the presence of our null shell, the variables
Minkowski times evolve with respect to the coordinate time(M R,Py,Pr) become singular at the shell. To see this

t. When the equations of motion hold/l. are time- ¢onsider a classical solution in which the shell history does
independent and equal to the Schwarzschild masses. . . L . -
not lie on a horizon. AdM is discontinuous at the shel

In.the variational principle, we takhl.. to be_ prescribed contains at the shell a delta-functionfin As Py, is discon-
functions oft, but leaveM .. free. The appropriate total ac-

tion then read$10] tinuous at the shell, the produét,M is ambiguous. One
therefore does not expect the chawt,R,Py,,Pr) to be vi-
S=5:+S;5, (2.133  able in the presence of the shell.
To overcome this difficulty, we keeld andR but replace
where the boundary action is the momenta by ones that are smoother across the shell. We
define first[10]
Sﬁ§=—jdt(N+M++N,M,). (2.13bh ,
R" P,
Fi = X iﬁ (33)
The global structure of the spacetime is Kruskal-like, with
two asymptotically flat asymptotic regions. The classical so- 4
lutions under these boundary conditions are precisely those
described above and shown in Figs. 1 and 2. R’ Pi
Fi,]2=xi77?. (3.9

11l. CANONICAL TRANSFORMATION

In this section we find a new canonical chart in which the/Note thatF=F . F_=F,F_,. When the equations of mo-

constraints become exceedingly simple. Away from theion hold, F. vanishes on the leftgoing branes of the
shell, our treatment closely follows that given by Kuciar ~Norizon andr _ vanishes on the rightgoing brar{ely of the

the vacuum casgL0]. The new elements arise mainly from horizon. It follows thatF_, is nonvanishing on the horizon

patching the two vacuum regions together at the shell.  that the shell crosses. Now let
Our canonical transformation turns out to be mildly sin- L 1y 1
gular when the masses on the two sides of the shell agree and [y :=Py+7F "R'=7nAF_, (3.53

the shell straddles a common horizon. We first perform the
transformation, in subsection Il A, assuming that this spe-
cial case has been excluded. We then argue, in subsection
[l B, that the transformation can be extended to the special 1
case in a suitable limiting sense. —F_3). (3.50

—1na’ ’ 7]A
Mg:=Pg—7F *M'=Pg+nR(NF_) + = (F_,
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When the equations of motion hold, equati5a shows on whichF_, vanishes andly, diverges, all the terms in
that (3.9) are therefore distributionally well defined: the terms on
the left-hand side are at most discontinuous jrwhile the
My=—(T—nr*)’, (3.60  terms on the right-hand side may contain at worst delta-
functions arising from §R)’. The status at the horizon on
which F_,, vanishes will be discussed below.
To obtain the difference in the prospective Liouville
forms, we need to integrate the relatit®8) overr. In an

where r* is the tortoise coordinatd47]. For n»=+1
(p=—1), T—yr* is the retardedadvanceyl Eddington-
Finkelstein time coordinate. WhilB,, was associated with
the Kiliing tlme[lp], our prospective new momentuty, is integral over a finite interval i, the only subtlety arises
té](;e(;gfore a_ssomat('ad .W'th the retarded or advance om the horizon on which=_, vanishes. On a classical
ington-Finkelstein time. . . solution with masdM, it can be shown from the embedding
Away from the shell, a calculation of the Poisson braCKEtsanalysis of Appendix C that
shows that the setM,R,I1,,,IlR) is a candidate for a new
gravitational canonical chart. We need to find shell variables
that complete this set into a full canonical chart. __n
For the rest of this subsection, we assume that the shell ~74AM
history does not lie on a horizon. The special case where the
shell straddles a horizon will be discussed in subsectionvhere the subscrigt indicates the values of the quantities at
I B. the horizon on whichF_, vanishes. Equation$3.9) and
As a preliminary, suppose that the constraif@$) hold, (3.59 therefore show that, on the classical solution, the in-
and consider the regularity of the variables. Away from thetegral of(3.8) across the horizon is well defined in the prin-
shell, the constraint®.8) imply thatR’ andP, are continu- cipal value sense, just as in the corresponding analysis of
ous, andF. are thus both continuous. In the notation of Ref.[10]. To extend this argument off the classical solutions,
appendix A, the distributional conte(A2) of the constraints we note that when the constraints hdid(r) is constant irr

(r=rp)+O((r—rp)?), (3.9

at the shell can be written as across this horizon. As our action contains the constraints
with their associated Lagrange multiplies, we argue that
0=AF_,, (3.78  M(r) can be assumed smooth at the horizon in the relation
(3.8. We can then again empla.9) and (3.59, and it is
0=p+A(AP,). (3.7b seen as above that the integral(8f8) across this horizon is

. : well defined in the principal value sense.
From(3.73 we see thaF _, is continuous at the shell. Equa- What needs more attention is the falloff {8.8) at the

tion (3.59 then implies thaily, is continuous, with the ex- . .. ..
ception that it diverges on the horizon that is parallel to themfm't'es' From(2.12, (3.1, and(3.5, we have

shell history. The first equality sign i{8.5b), and the obser-

vation that the vacuum constraints are linear combinations of M(t,r)=M-()+0"([r|"9), (3.103
M’ and Pg [10], imply that Il is vanishing everywhere

except possibly at the shell. The rightmost expression in R(t,r)=|r[+O*(|r| ), (3.100
(3.5b shows thafllz cannot contain a delta-function at the

shell, andIly is therefore everywhere vanishing. From now Oy(t,r)==n1+2M.|r|"H+0%(|r| 7179,

on, we can therefore proceed assuming thaf, andIl are (3.100
continuous, and that their-derivatives have at most finite

discontinuities at isolated values of By (3.59, the same R(t,1)=0%(|r| 179). (3.109

will then hold for IT,,, with the exception of the horizon

wherelly diverges. This tightens the neighborhood of theThis means that the integrals of the third term on the left-

classical solutions in which the fields can take values, but ihand side and the total variation term on the right-hand side
will not affect the critical points of the action. The reason fordiverge asr—+. The geometrical reason for this diver-

this assumption is that it will make the ternibyM and  gence is, as seen fro(8.6), thatIl,, is associated with aull

ITxR in our new action distributionally well defined. time, rather than an asymptotically Minkowski time.
We can now proceed to the Liouville forms. A direct The cure is to introduce convergence functions that pro-
computation yields vide the necessary translation between asymptotically space-
like hypersurfaces and asymptotically null hypersurfaces. To
PAOA+PrOR+M Il —1Ig6R this end, letg(M . ,M_;r) be a function that is smooth in
7RA and depends on our variables only throdgh andM _ as
=—(7R&R In| |:777|)'+ o — (Fj}]— F_,) indicated. Letg have the falloff

g(M; ,M_;)==MZ[r|"1+0*(|r| 7179, (3.1

+7RR In|F_,]||. (3.9

—l

Adding — &g on both sides 0€3.8) yields now an equation
The variationé affects the smoothness of the gravitationalwhose both sides can be integrated ifrom — o to «. The
variables in the same way as the time derivative in subsecsubstitution terms arising from the first term on the right-
tion Il B. Away from the horizon parallel to the shell history, hand side vanish, and we obtain
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f_m(PA&H— PRﬁR)drzj_w(HRﬁR—MSHM+ 78g)dr am—— 24P (3.16
Iy
TR e
+o .2 (F_5=F-) When(3.73 holds, (3.7b is thus equivalent to
Iy

(3.12

All the terms in(3.12 are well defined, provided the integral Including in - the — action  the  constraint  term
across the horizon on whid_,, vanishes is interpreted in —[dtfZ . drN[M’ —pII,*5(r —t)], with N an independent
the principal value sense. We therefore see that the sé@grange multiplier, therefore yields both the constraint
(M,R,t,IT ,IIg,p) provides a new canonical chart on the M’ =0 away from the shell and the delta-constrdBb) at
phase space. Note that this canonical transformation leavége shell.

the shell variablegr,p) entirely invariant. The geometrical These considerations have led us to the action

meaning of the convergence functignwill be discussed in

pr+ f dr(IIgR—MIIy + 79)

Sec. IV.
What remains is to write the constraint terms in the action S:f dt
in terms of the new variables. Consider first the constraints

away from the shell. A straightforward rearrangement yields o ~ 1
—f dtf dr{NRIIg+N[M' —pIT, 8(r —v)]}

NH+N"H,=NRIIg+NM’, (3.13
where —f dt(N,M,+N_M_). (3.18
N- — r_ -1
N:=(7AN N)F*’i’ (3.143 Both the action and its variations are well defined. The Pois-
k [ f th i learly cl . Not
NR:=N'R’—NR"P, . (3.14b son bracket algebra of t e constraints clearly closes. Note

that the convergence termg in no way contributes to the

Note thatNR is the same as in Ref10]. Both terms on the local variations of the action.

right-hand side of(3.13 are distributionally well defined. The Liouville term —MII,, can be brought to a form in
Away from the shell, we can therefore include the constraintsvhich the time derivative is oM, at the cost of introducing
in the action in the form shown on the right-hand side ofanother convergence term. L&{(r) be a smooth function of
(3.13, with N andNR as independent Lagrange multipliers. r only, with the falloff

This constraint redefinition is mildly singular on the horizon

parallel to the shell history, owing to the divergencdky ; G(r)==x1+0"(|r|7179). (3.19
however, one can argue as in REIQ] that the redefined

constraints are equivqlem to'the old ones by continuity. Thgye then have

falloff of the new multipliers is

< I L .. d
N=FN.+0%(|r|9), (3.153 ng—MIly=(IIy—7G)M - 7g+ o (7GM+2ng

NR=0"(|r| ). (3.15b —MIIy). (3.20

To recover the delta-constraif®.7a, we observe from ) ] )
(3.5 that (3.78 is equivalent tollr not having a delta- AII the terms in(3.20 are well deflneq, and each S|_de can be
contribution at the shell. We therefore argue that including inntegrated inr from —oo to . We arrive at the action
the action the constraint term fdtf” _drNRIIg, with NR
an independent Lagrange multiplier, yields both the con- S:f dt
straintIIg=0 away from the shell and the delta-constraint
(3.73 at the shelt

Finally, consider the delta-constraif®.7b. Using (3.53
and (3.73, equation(3.13 implies

pr+ f dr[IIgR+ (ITy— G)M — 9]

—f dtﬁc dr{NRIIg+N[M' —pII,28(r— )]}

—fdt(N+M++N,M,). (3.2)

IA subtlety in this argument is tha{R need not be continuous at

the shell, not even on the classical solutions. The prodifdi

would therefore not be distributionally well defined in the event thatThe geometrical meaning of the convergence terms will be-
[T did contain a delta-contribution at the shell. come explicit in Sec. IV.
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B. Shell on a horizon A. Shell not on a horizon

In subsection Il A we excluded the special case where In this subsection we assume that the shell history does
the shell straddles a horizon. We now discuss how this spaiot lie on a horizon.
cial case can be included. Solving the constrainflg=0 implies thatR andIlz sim-
When the shell straddles a horizon, the zerd=af, oc-  ply drop out of the action. To solve the remaining constraint,
curs at the shell. The delta-constraints at the shell are given
by (3.7). When the equations of motion hold, the masses on IIyM’=pd(r—1)=0, 4.2
the two sides agree, and the embedding analysis of Appendix

we write

C shows that equatiof3.9) holds, now withA,=A and
ro=t. From (3.5b we see thallg cannot contain a delta- M=m_0(r—t)+m_0(x—r), 4.3
function at the shell. We can therefore again assume that . _
F_, andIl are continuous, and that theiderivatives have wherem_.(t) are regarded as independent variables. We then
at most finite discontinuities at isolated valuesr of have

The new feature in equatid.8) is that the singularity of
F:f7 andIIy, now occurs at the shell. When the equations of
motion hold, we see froni3.53 and (3.9 that integrating
each side of3.8) in r across the shell is well defined in the anq the constraint.2 implies
principal value sense, and we argue as above that this con-
clusion can be extended away from the classical solutions p=(m+—m,)ﬁ\M. (4.5)
provided the constraints are understood to hold. We argue
similarly that the left-hand side df3.8) contains no delta- Note that as the shell history does not lie on a horizon, each
contributions at the shell, and it is therefore justified to in-of the two factors on the right-hand side @5) is nonvan-
terpret the integral of3.8) overr as the principal value. ishing.
Convergence at the infinities is accomplished as above, and Using (4.1b), (4.4), and(4.5), we find
the substitution terms from the totalderivative on the right-
hand side 0f3.8) vanish. We therefore again arrive(8t12).
Equations(3.16 and (3.17) remain valid, with the under-

standing {I,,) "'=0, and the delta-constraints can be taken

in the action as before. To justify the manipulations leading L2
to the action(3.21), we again appeal to the constraints to dt
argue thatVl can be regarded as smoothriat the shell, and

thatM then does not contain a delta-function at the shell. % ftGdr}, (4.6)
We therefore see that the actiaf@s18 and(3.21) remain 0

valid in a suitable limiting sense also for a horizon-straddling

shell. where

M(r)=m,o(r—c)+m_6(t—r)+(m_—m_,)ts(r—rt),
(4.4)

pet | il =9GN~ n3l=p i, +p

n(m,—m_)

IV. REDUCTION P :=J dr[IT,0(r—t)—nGo(r)—2ym.g,],

In this section we eliminate the constraints and find the (4.79
dynamics in the reduced phase space. We shall continue to
treat the caseg= +1 separately, and we denote the corre- N

) — p_:= dr[ITy0(t—r)—nGo(—r)—27ym_g_].
sponding two components of the reduced phase spatg by —o
We first assume, in subsection IV A, that the shell history (4.7b

does not lie on a horizon, and we then include the horizon- ) . . .
straddling shell as a limiting case in subsection IV B. Fi- 1€ Singularity ofily(r) occurs in precisely one of the two

nally, in subsection IV C, we attach the right-moving andintegrals in(4.7), and the integral over this singularity is

left-moving test shell limits to the respective components Oﬂnterpreted in the pr?ncipal .value SENSE. Substi_tuuiggi)
the reduced phase space as regular boundaries. into (3.21), and dropping the integral of a total derivative, we

It will be useful in the reduction to assume a more definite®Pt@in the reduced action
form for the convergence functiam From now on, we take _ _
S=f dt(p.mi+p_-m_—N,m,—N_m_). (4.9

g(M. M_;r=Mig.(r)+M2g_(r), (413 _ _
This shows that the setr(, ,m_,p, ,p_) provides local ca-

nonical coordinates oh, . The equations of motion derived

h - th functi aof only, with the falloff .
whereg. (r) are smooth functions af only, with the fallo from the action(4.8) read

gu(n)==[r[710(xr)+0"(Ir["*79),  (4.1b m. =0, (4.99

where 6 denotes the step function. p.=—N. (4.9n
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The emergence ofn. as two coordinates ofi,, is not The inverse transformation is
surprising: on a classical solutiom_. are the two Schwarzs-

child masses, and these masses together witompletely m.=mxm, (4.113
determine the four-dimensional spacetime. To understand the _
geometrical meaning gf.., we recall from(3.6) that with- p-=3(p=p). (4.11b

out the convergence terms proportional@and g.-, the o

integrals in(4.7) would give the Eddington-Finkelstein time From (4.7), (4.109, and(4.10d, we see thap contains the
differences between the shell and the infinities on the coninformation about the asymptotic ends of the constamy-
stantt hypersurface. As the constanhypersurface extends persurface, whereas the information about the location of the
to the spacelike infinities, such null-time differences wouldghe| with respect to the infinities is encodedn We can

be infinite. The role of the convergence termg4n?) is to S~ .
absorb the infinities: one can think of the convergence termlshere‘(()re Iooselly regard the paim(p) as describing the

as associating to the constanhypersurface a hypersurface Yacuum spacetime dynamics, and the pair[f) as describ-
that is asymptoticallywull asr — . For p=—1, this as- N9 the shell. While not literal, this view will be helpful for
sociated hypersurface extends from the left-hand-§iddo  understanding the global structureldf in subsections IV B
the right-hand-sid€ ~ (pointsA andB in Fig. 1); for =1, and IV C.

the situation is the reverse. Thup, is the Eddington- As defined by the transformatio@.10, the coordinates

Finkelstein time difference between the shell and the right(nT,fﬁ,ﬁ) provide two disjoint local canonical charts that
hand-side infinity of the associated asymptotically null hy'cover onT. the same two disconnected sets as the coordi-
n

persurface, and—p_ is the Eddington-Finkelstein time ; :
difference between the shell and the left-hand-side infinity Opates My.m-,p;.p-). The ranges_of the variables in

the associated asymptotically null hypersurface. The equdl€se two charts are respectively th<<m and 0< —m<m,
tions of motion(4.9b show that the time evolution gf. each with unrestrictep andp. The coordinatesry,m,p,p)
only arises from the evolution of the constartypersurfaces cannot, however, be extended mo=0. While p_remains
at the infinities. Thus, in this local canonical chartlop, the  finite for a horizon-straddling shell, it is seen frd7) that
information about the shell motion is encoded in equationg must diverge.
(4.9b.

It sht_)uld be _emphasized that the degrees of freedom B. Shell on a horizon
present inp.. are invariant under the isometries of the space- _
time. Killing time translations on the spacetime move both We now wish to find ofl",, coordinates that extend to the
the shell history and the constanhypersurface: in particu- horizon-straddling shell. We shall first rely on the spacetime
lar, they move the two asymptotic ends of the constant picture to identify the geometrical information that the coor-

hypersurface, and hence the asymptotic ends of the assoginates must carry in this limit. We then construct Bp a
ated asymptotically null hypersurface. However, theglobal canonical chart that contains this information.
Eddington-Finkelstein timedifferencesthat constitute the Consider the spacetime of Fig. 1. The shell is left-moving,
momenta are invariant under Killing time translations. corresponding top=—1, and the shell history lies in the
As we have assumed that the shell history does not lie ofytyre of the left-going horizon, correspondingrto, >m_ .
a horizon, the coordinatesn( ,m_,p, ,p-) do not form &  The pointsA andB indicate the ends of the asymptotically
global chart onl",,. Instead, these coordinates provide twonull hypersurface that is associated to the hypersurface of
disjoint local canonical charts, covering two disconnectedconstant. p, is the difference in the Eddington-Finkelstein

sets inT,: one for 0<m_<m, and the other for fime between pointp, andq,, andp._ is the difference in
0<m,<m_, with unrestricted values gi. in each chart. the Eddington-Finkelstein time between poigisandp, .
These coordinates cannot be extendeshto=m_ . The rea- In this spacetime, ley, be the radial null geodesic con-
son is that whemn, =m_, the shell history lies on a hori- Nectingp, to gy, let y, the radial null geodesic connecting
zon, the singularity i1y, is atr =+, and the first term under 92 t0 P2, and lety; be the radial null geodesic connectipg
each integral in4.7) makes bottp,. andp_ divergent. We 0 P2- Let \; (i=1,2,3) be the affine parameters on these

shall address the special case =m_ and the global struc- 9eodesics, each normalized to have the refgé. A, and
T i b ion IV B N3 increase toward the futuri, increases toward the future
ture of I',, in subsection .

) _ - if g4 is in the future ofp, as shown in the figure, correspond-
It will be useful to introduce orl’, another set of local ingtop, <0, and it increases towards the past/fis in the

canonical coordinatesn?fﬁ,aﬁ), by the transformation past of p;, corresponding tgp, >0. In the special case
o p.=0, q; andp, coincide, andy; degenerates to a point.
m=%1(m,+m.), (4.108  We now define the quantitiel.. by
— :=(al o AloNg)d ., 4.12
m=3(m,—m._), (4.100 Q= (9 IN1)a 91 N3, (4.123
_ Q_ :=(a/a)\2)a(a/a)\3)a|p2. (4.12b
p=p++p_, (4.109

_ Similarly, consider a spacetime in whiej= —1 but the
p=p:—p-. (4.109  shell history lies in the past of the left-going horizon, corre-
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sponding tan, <m_ . In this spacetime, the counterparts of  We have thus shown that the sef,(rnﬁ,;,:r) provides a

points p, and p, are below the left-going horizon, but the 415 canonical chart ofi,. The domain of the variables is

three null geodesicy; (i=1,2,3) can be defined as above, ~ — . — ~
the only modification being that the potentially degeneratém|<f,n’ with 7 and 7 taking all real values. We therefore

one is nowy,. In this spacetime, we again defige, by  havel',=R* The Hamiltonian reads
(4.12.

A straightforward calculation yields

h=(N,+N_)m-+(N,—N_)m. (4.16
P+
Q.=-8m,m_—m,+|m,—m_|ex ~ , .
m+(4 133 The values ofn andm are constants of motion, whereas the
' equations of motion fosr and 7 show that the evolution of
p_ Q- only arises from the evolution of the constanhyper-
Q_=-8m_ m+—m+|m+—m|ex;< W) , surface at the two spacelike infinities. This means that the

(4.130 information about the shell dynamics is contained in the mo-

mentum equations of motion both for#0 (as was already
valid both form,>m_ andm, <m_. The canonical coor- seen in subsection IV as well as form=0.
dinates (n, ,m_,p, ,p_) can therefore be replaced by the
noncanonical coordinatesn(, ,m_,Q, ,Q_), with Q_<0
for m,>m_ andQ, <0 form,<m_. C. Test shell limit

The crucial observation is now th&.., as defined in e have so far assumed that the unreduced shell momen-
(4.12), remain well defined also for the spacetimes shown inym p is nonvanishing. We saw that this assumption is com-
Fig. 2, in whichm,=m_ and the shell history lies on a patible with the dynamics, and that it divides the reduced

;?t:ﬂ:g?n nf;or;ztic\)/r;. \,Igmtgss/isstﬂchgfgfﬁﬁ C;gneiﬂ; L%kriezo r[?hase space into the two disconnected secﬁgrslabeled by
y neg : 9 9 n=sign(p). As the unreduced bulk actid@.6) is not differ-

is affine,Q . precisely encode the coordinate-invariant infor- i o - -
mation about the relative loci of the poings, p,, A, andB  entiable inp atp=0, it is not clear whetheF, andI'_ are
(or, equivalently, the pointg;, p,, d;, andg,). This means Joinable to each other in any smooth sense. Our reduction

that the set ifi, ,m_,Q, ,Q_) provides a global, nonca- formalism is not well suited to examining this issue: the
. = o canonical transformation of Sec. Il was tailored to the null
nonical chart o’ _. The domain iQ_<0 form,>m_,

- hypersurfaces separately fgr=*+ 1.
Q. <0 form, <m_, anth<O form, =m._. . We can, however, address the limit>0 individually in

In the above construction we have takes —1. It is  ~ ~ )
clear that an entirely analogous discussion carries through+ @ndI'- . As the shell stress-energy ten$2rl]) vanishes
for »=1, with straightforward changes in formulé.13, for p—0, this is the limit of a test shell that traverses the

o : =~ spacetime without affecting it gravitationally. We shall now
and y|e.ld|ng a global, nonf:anonlcal Chiirt on ]bp.. show that one can attach the right-moving and left-moving
tra:l—:fof:rr:]dat?ongbbal cancnical chart onI’,, consider the test shell limits respectively tb, andI'_ as smooth bound-

aries with topologyRR®.

When the test shell history does not lie on a horizon, the
situation is straightforward. We can start with the coordi-
- S nates (n, ,m_,p, ,p_), separately for &m_<m, and

. =p-+8ym(Injm/m|+1). (4148 o<m,<m_, and simply take the limitn, =m_ with p.

. _ ) . remaining finite. From the geometrical interpretatiorpofit
Equations(4.14) clearly define a canonical transformation . . ~ . .

— —~ . . is seen that this attacheslfg those test shell configurations
from (m,m,p.p) to (mm, @, a) individually in the domains ., \yhich the test shell does not straddle a horizon. The locus
0<m<m and 0<—m<m. It is straightforward to verify of the test shell history is determined Ipy exactly as in
that the chart ifh,m, 77, 77) becomes global of', when ex- ~ subsection IV A.
tended tom=0 with unrestricted values of and 7. For Including a horizon-straddling test shell is more intricate.
n=—1, in particular(4.13 shows thafQ.. can be written as In the global chartify,m, 7, 7), the limit of a test shell on a

i _ . horizon is achieved by setting firsh=0 and then taking
Q. =—16m+m){ mexd — ri_T _ 7"_+7: —mb 7;;-3—00 while keeping finite. On the other hand, the
m+m/ 8(m+m)]| limit of a test shell off the horizon requires taking simulta-
(4.153  neouslym—0 andpz— — = so thatp andp remain finite.
What we need is a new canonical chart in which both of

7

. =p+8ym(In|m/m|—1), (4.143

— (= [ [m+m —7 | - these limits are brought to finite values of the coordinates.
Q_=-16(m-m)imexg —| =—= |+ —=—=-[+tm¢, To this end, let
| \m-m/ 8(m-m)]
(4.15bH -
. . ~ o ] X:=exp —], (4.17a
from which the regularity of then—0 limit is manifest. 8m
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o p( 7];) etry right of the shell a stationary coordinate system that
px:=—8npmm exp — —, (4.17  conforms to the falloff(2.12 with N, =1. AsR(r) is then
8m an increasing function, we can assuRg)=r without loss
—_ of generality. Letr stand for the shell curvature radius in
=7 ’TT (4.179 these coprdinateﬁ(t) :=R(x(t))=1t(t). We now seek a mo-
m mentump such that there is a canonical transformation from
As the pair fm, ,p.) to the pairf p). Writing the transforma-
tion asp, = p+(r m,) and p p(r m,), the canonicality
[ém+p,6x=mém+mém—&(am), (4.1  criterion reads
equations(4.17 define a canonical transformation from the 07[5(F,m+)] 5[p+(f m+)] 5.0
chart (m,m, a7, ) to the chart (n,x,II,p,). The new canoni- am, ar '

cal chart is global: the range im>0 andx>0, with unre-

strictedIT and p,.. The qualitative location of the shell his- Substitutingp.,. from (4.73 to the right-hand side of5.1)

ield
tory is governed by the sign qf,: p,>0 (px<0) yields a yields
shell in the futurg(pas} of the horizon that is parallel to the a[f)(F m.)]
shell history, whilep,=0 yields a shell history on the hori- —’*an(f,m+), (5.2)
zon. It is now easily seen that in this chart the test shell limit om.

is x— 0, with the other coordinates remaining at finite values. . . . .
A horizon-straddling test shell is recovered witi=0 wherell,(r,m,) is determined by the choice of the station-

whereas,>0 (p,<0) gives a test shell in the futureas) ary coordinate system. Note that the convergence functions

of the horizon that the test shell does not cross. CIearIy thg(r) andg..(r) have not enteres.2). Solving the differ-
test shell limit constitutes a smooth boundaryE),)‘ with ential equatior(s.2) for p(r m.) yields the desired canoni-

topology R®. cal transformation, and inverting this solution gl\m:;(r )
as a function in the new canonical chart. The action reads

V. HAMILTONIAN FOR THE SHELL RADIUS . . o
IN STATIONARY EXTERIOR COORDINATES S= f difp.m_+pr—m,(r,p)]. (5.3

While the charts orl’,, introduced m_Sec. IV are w_eII The shell stress-energy tensor in the new chart can be found
adapted to the geometry of the spacetime, they contain th&

inf i bout the shell motion i ; ¢ sing (2.10, (2.11) and (4.5).
information about the Shefl motion N a nontransparent man- - oq explicit examples, we now present the shell Hamilto-
ner. In this section we introduce o, a local canonical

niansm_ (r,p) in four different stationary coordinate sys-

chart that describes more directly the motion of the shell inaqs \Wwe arrived at the first three coordinate systems by
the spacetime geometry. A chart of this kind is of particular k'. imole f ional f ¢ ® 5\ The fourth
physical interest if one wishes to quantize the system as §eeking a simple functional form fon.(r,p). The fourt

model of black hole radiation with back reactif$0,31,34,  coordinate system is the spatially flat one used in Ref].
The physical situation we have in mind is a static observer
who scrutinizes the shell motion from an asymptotically flat A. Polynomial gauge
infinity. For definiteness, we take this infinity to be the right-  As a first example, we consider coordinates in which the
hand-side one. We sét, =1, so that the coordinate tinte  metric reads
coincides with the observer’s proper time. To incorporate the
observer’s ignorance of what is happening at the left-hand- R=r, (5.439
side infinity, we seiN_=0.
We further assume that the shell history reaches a future ~ A2=N"2=1+2m, /r+(2m, /r)?>+(2m, /)3,

or past null infinity on the right-hand side. The Penrose dia- (5.4b
gram for = —1 is therefore as in Fig. 1, and the Penrose . 5
diagram fory=1 is the time inverse. In particular, we have AN'=—n(2m, /)= (5.49

m_<m,, and we are in the region dT covered by the With r >0, these coordinates cover half of Kruskal manifold
chart (m..,m_,p,,p-) with O<m_ <m,’ in the appropriate manner, and the fall¢# 12 is satisfied

Consider thus the chart m(, ,m_.,p,,p-) With  \itn c—1 The relation to the curvature coordinates is
0<m_<m,. From Sec. IV we recall that the pair

(m, ,p.) only carries information about the geometry right R=r, (5.53
of the shell, and the paim§_,p_) only carries information
about the geometry left of the shell. To describe the motion T=t+2ym, Inj1—2m, /r|. (5.50

of the shell as seen from the right-hand-side infinity, we can
therefore leave the pain{_,p_) intact and seek a canonical We find
transformation that replacesn(, ,p,) by a new pair.
To specify the new pair, we choose in the Kruskal geom- My (r,my)=n(1+2m,/r). (5.6)
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Solving (5.2) with a convenient choice for the integration |n terms of the tortoise coordinate*:=r+2m.,In[r/

constant, we obtain (2m;)—1], we havet— pr=T—gr*.
o — There is a minor technical issue in that the coordinates
m,(r,p)=\7pr—sr. (5.7 (5.12 do not obey the falloff (2.12: we have

_ _ _  Py=—2ym,(1+2m, /r)” Y2 which violates(2.129. We

The equation of motion Ejerlved froIn the Hamiltonian iperefore take the coordinatés.12) to hold for r <Ry,
(5.7) can be integrated agt=r+2m, In(r/m.)+constant. whereR. is a large parameter, and smoothly deform them

Itis easily verified that this is the correct equation for a nullig 5 faster falloff forr > R,,. As equation5.2) is local inr,

geodesic in the metric5.4). the form of the canonical transformation fior R, is inde-
pendent of that for>R;. In the end, we can either leave
B. Exponential gauge the Hamiltonian unspecified far>R.,, or argue that one
Consider next coordinates in which the metric reads ~ ¢an take the limitR,—< in the sense of some suitable
renormalization in the parameters of the canonical transfor-
R=r, (5.839 mation.
, , Proceeding in this way, we find
A“=N""=exp2m, /r)[2—(1—2m /r)exp2m_,/r)],
ram. iz Hnewzm. (5).]8b) y(r,m;) =7, (5.14

AN'=—y[1—(1—2m, /r)exp2m. /r)]. (5.80 and, with a convenient choice of the integration constant,

With r>0, these coordinates cover half of Kruskal manifold m.,(r,p) = 7p. (5.19
in the appropriate manner, and the fall¢#.12) is satisfied L
with e=1. The relation to the curvature coordinates is The Hamllto_r1|an(5.13 clearly cqrrectly r_eproduces the fact
that the Eddington-Finkelstein timte- »r is constant on the
R=r, (5.99 shell history.

r 1 D. Spatially flat gauge
T=t+7n| [(1-2m /r") " "—exp2m, /r’)]dr’. ) ] . )
As the last example, we consider coordinates in which the

(5.9 metric reads
We find R=r, (5.16a
Hy(r,m,)=»nexp2m, /r). (5.10 A=N=1, (5.16h
Solving (5.2 with a convenient choice for the integration P
constant, we obtain N'==nvam./r. (5.169
aal gn - - With r >0, these coordinates cover half of Kruskal manifold
m,.(r,p)=zr In(2np/r). (51D in the appropriate manner. The relation to the curvature co-
. . o ordinates is
The equation of motion can be solved implicitly in terms of
the exponential integral function. R=r, (5.173
C. Eddington-Finkelstein—type gauge 1—V2m. /r
. . . . . T=t+29| \2m,r+m,In|————| |.
Consider next coordinates in which the metric reads 1+\2m, Ir
R=r, (5.12a (5.178
X 5 We recognize these coordinates as the spatially flat coordi-
A“=N""=1+2m,/r, (5.120  nates[43—45, recently employed in the study of Hawking
5 radiation with back reaction in Ref30].
AN'=—-29m_/r. (5.129 There is again a minor technical issue in that the coordi-

) ] _nates(5.16 do not obey the falloff(2.12. A Hamiltonian
With r>0, these coordinates cover half of Kruskal manifold fa)|off analysis compatible with these coordinates has been

ordinates is we shall simply argue in terms of a cutoff parameRgy; as

R=r. (5.133 above. We have

T=t+2ym,In|r/(2m,)—1]|. (5.13b

n

HM(rrm+) 1+\/m1 (51&
We recognize these coordinates as simply related to the
Eddington-Finkelstein coordinatg47]: t— yr is the retarded ~ and solving(5.2) with a suitable integration constant yields
(advanceg Eddington-Finkelstein time fop=1 (=-1). m, (r,p) implicitly as the solution to
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~ s~ a [ - We start from the actio(B8.21), with g given by(4.1), and
7p=N2m.r=rin(l+v2m, /r). (5.19 we make in the boundary term the replacemght). The
In order to make a connection to the work in R&0], we resulting action is a sum of two decoupled parts: a Hamil-
define tonian actionS consisting of the terms that contain the pair
(R,ITR), and the remainde®,. We only need to consider

. =p— /2m_F—F In(1+ /2m_ /11, (5.20 So- As in Sec. I_II, we assume firs_t that the shell history does
Pe:=p—l ( ) 3 not lie on a horizon, and relax this assumption at the end.

- = = Under the time integral i1%,, the terms homogeneous in
Pc:=p-—7lr—2v2m_r+4m_In(1+ Vr/(sz()%]z-()b the time derivatives are

Equations(5.20 define a canonical transformation from the ©:=pt—M 7, +M_7_+ f dr[(ITy— 7G)M — 5g].
chart ¢,m_,p,p_) to the new canonical chart 6.2
(r.m_,pc.pe). The Hamiltonianm. (r,m_,p.) in the new

chart is obtainedin implicit form) by eliminatingp from we pass from the noncanonical chart

(5.19 and(5.203. As the value ofm_ is a constant of mo- (t,_l\/l(r),p,l'[_,\,,(r);r+ ,7-) ) to the new chart
tion, the system can be partially reduced by regardingas (M- T'(r), p,p.1Ir(r)), defined by

a prescribed constant. The terfdtp,m_ then drops from L(r)y:=M'(r), (6.33
the action, and we obtain
. o) =347+ | dr () - 76(7)]
s-[ attpi-m G.m pa) 52 -

X[o(r'=r)=6(r—r")]—=nM.g.(r')
For »=—1, this is the action derived in Refs30, 37] by

different methods. Fop=1, it is not. The reason is that the +7M_g_(r")}, (6.3b
coordinates5.16) are the ingoing spatially flat coordinates —
for »=—1 and the outgoing spatially flat coordinates for m:=3z(M,+M_), (6.30

n=1, thus covering all of the spacetime right of the shell in .
each case, whereas RE30] was physically motivated touse  p:=7 — 7+ + J dr{[Iy(r)— 7G(r)]—25M g (r)
the ingoing spatially flat coordinates irrespectively the direc- —o
tion of the shell motion. It would be straightforward to repeat oM 6.3
the above analysis with the sign of in (5.16 reversed, M -g-(r}. (6.30
recovering the result of Ref§30, 37 for »=1. Note, how-  The falloff is
ever, that with the sign of; in (5.16 reversed, the coordi-
nates do not cover the part of the shell history that lies inside L(t,r)=0%(r|7179), (6.43
the horizon.

Hp(t,r)==27M.In[r/M.|+0%(|r|°). (6.4
VI. PARAMETRIZATION CLOCKS AT THE INFINITIES By techniques similar to those in Réﬂ_O], we find

In the previous sections we fixed the evolution of the L % _ d
spatial hypersurfaces at the spacelike infinities by taking O=pr+pm+ j drIlp(r)I(r)+ gt M7, +M_7_).
to be prescribed functions df In this section we free this ’°°

evolution by making the replacemeri0] 6.9
. The chart (m,t,I'(r),p,p,I1(r)) is therefore canonical.
No=*7. (6.9 Dropping the integral of a total derivative, the action reads
in the boundary term in the actior{2.13 and (3.21). The N .
variations of N become then unrestricted at-*+o0, but Sozf dt| pr+pm+ jxdrl'[rl“)
varying the action with respect to. yields the relations
(6.1) as equations of motion. The new variables are the © o1
proper times measured by static standard clocks at the re- _J dtwadrN[F_p(’?G_HF)
spective infinities, with the convention that increases to-
ward the future and_ increases toward the past. X &(r—r)]. (6.6)

In the absence of a shell, it was shown in Hdf] that o
the action containingr. as independent variables can be To express the constraint in the new chart, we have used

brought to a canonical form in which the unconstrained deduation(6.3a and the relatioly, = »G—Tlr., which fol-
grees of freedom and the pure gauge degrees of freedom df¥vs by differentiating(6.30. _

entirely decoupled. We now outline the analogous result in The action(6.6) is canonical, but the constraint couples
the presence of the null shell. For brevity, we shall refrainthe variables in a nontransparent way. To decouple the de-

from explicitly spelling out the smoothness properties of thed'ees  of freedom, ~we pass to the chart
various emerging phase space functions. (m,m,I'(r),p,p,IIF(r)), defined by
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T(r):=T(r)—p[nG(r)—TI}(r)]"*6(r—v), (6.79

Hg(r):=Hp(r), (6.7

m:=p(»G-1I7) 2, (6.70

E:=21{[\F—277Jter(r). (6.70
0

The falloff of T and 1§ is clearly the same as that bfand
I11, given in(6.4). Using the analogue of relatioq@4) for
II-, we find

pt—pm+ f dr(Il;I'-1IIFT") = gt

27;r~nJ'0ter(r)}
(6.8

The chart(ﬁﬁ,f(r),ﬁ,ﬁf(r)) is therefore canonical.

Dropping the integral of a total derivative, the action reads

o a

The

pm+5;m+f drH‘fF)—f dtj drNT.
(6.9
canonical

unconstrained degrees of
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NY=+N.+0%(|r| 9. (6.14

Dropping the integral of a total derivative, and includifg,
we finally obtain the action

szfdt(pm+'5"‘m)+fdtf dr(II,V+IIgR—NVII,

—NRIIR). (6.15
All the variables in the actiof6.15 have a transparent geo-
metrical meaning. Frorn6.33, (6.30, (6.7, and(6.70, we
see thatm andm are respectively equal to the variables
andm introduced in Sec. IV. Similarly, usin¢6.1), we see
that p and'f) can be interpreted as the time-independent
initial values of the variablep andB introduced in Sec. IV.
As for the pure gauge degrees of freeddris the curvature
radius, and equatiof6.10a9 shows thatv is the Eddington-
Finkelstein time. The actio(6.15 therefore provides a natu-
ral generalization of the vacuum action given in Etg9 of
Ref.[10].

We have here assumed that the shell history does not lie
on a horizon. This assumption can be relaxed, in a suitable

limiting sense, by performing on the coordinateT;ﬁ,EE)

freedomtransformations analogous to those given for the coordinates

(Rﬁmﬁ), have now become decoupled from the pure(rﬁrﬁ,aﬁ) in Sec. IV.

gauge degrees of freedom.

To put the action in a more transparent form, we write

V(r):=HgF(r)+ip— nfodr'e(r')

=7-++£c dr'[ITy(r")e(r' —r)—5nG(r")o(r")

—279M g, (r")], (6.109
IIy(r):=—T(r). (6.100
The falloff is
V(t,r)=—nlr|=27M.In[r/M .|+ 0*(|r|),
(6.113
Iy(t,r)=0"(|r|~17°). (6.11b

As

f dr(H"fF—HVV)z—%pf dev+a f drIIfT,
(6.12

the transformation to the chartr_l(ﬁ,V(r),EE,Hv(r)) is

VIl. R® SPATIAL TOPOLOGY

In this section we consider the canonical transformation
and Hamiltonian reduction for spatial topolod}y. For con-
creteness, we take the evolution of the spatial hypersurfaces
at the single spacelike infinity to be prescribed as in Sec. Il.
It will be seen that the reduced phase space consists of two
disconnected components, one for an expanding shell and the
other for a collapsing shell. Each component has the topol-
ogy R?.

We start from the action principle. In the bulk action
(2.6), we take O<r <co, with the falloff (2.12 asr—o=. As
r—0, we introduce the falloff

A(t,r)=Ay+0(r?), (7.1a
R(t,r)=Ryr+0(r3), (7.1b
PA(t,r) =Py r?+0(r%, (7.19
Pr(t,r)=Pg r+0(r?), (7.1d
N(t,r)=Ng+O(r?), (7.18
N'(t,r)=Njr+0(rd), (7.19

not canonical as it stands. However, it becomes canonical

after the first term on the right-hand side @.12 is ab-
sorbed into the constraint term by writing

NV:i=—N+ip (6.13

whereA >0, R;>0, Pa,» Pry» No>0, andN’ are functions

of t only. It is straightforward to verify that the falloff7.1)

is consistent with the constraints and preserved by the time
evolution. By (3.13 and(3.2), the falloff (7.1) implies that

the mass left of the shell must vanish when the equations of

. V . .
and regarding\” as a new Lagrange multiplier. As the equa- yotion hold:r=0 is then just the coordinate singularity at

tions of motion implyp =0, the falloff of NV is

the center of hyperspherical coordinates in flat space. The
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classical solutions therefore describe a shell with a flat inteunder Kruskal-like boundary conditions, prescribing the evo-
rior, and the spatial topology i&3. The action appropriate lution of the spatial hypersurfaces at the two spacelike infini-
for fixing N is ties. We adopted smoothness conditions that made the varia-
tional equations distributionally well defined, and equivalent
S:Sz—f dtN, M, , (7.2)  tothe Einstein equations for this system. 5
We then simplified the constraints by a Kuctigpe ca-
nonical transformation and performed the Hamiltonian re-
duction. It was seen that the reduced phase space consists of
two disconnected copies &, one for a right-moving shell
and the other for a left-moving shell. We found on each
component a global canonical chart in which the configura-
tion variables are the Schwarzschild masses on the two sides
of the shell, leaving the shell dynamics indirectly encoded in
the conjugate momenta. Excluding the special case of a shell
straddling a horizon, we found a local canonical chart in
which the configuration variables are the shell curvature ra-
dius and the interior mass, in an arbitrarily specifiable sta-
All the new fields remain regular as—0. In particular, tionary goordinatg system _exterior 'go.the shgll. Ir) particular,
M(r) tends to zero as—0. performing a partial reduction and fixing the interior mass to
The Hamiltonian reduction proceeds as in Sec. IV, Withbe a presqube'd constant, we reproduced a pre\_/lously known
the simplification that the interior mass vanishes. The re-She" Ham|lt0n|an_ in the spa_tlally flat gauge OUtS'.de th_e shell.
duced phase space consists again of two disconnected com- We also cast into canonical form the theory in which the
- _ evolution at the infinities is freed by introducing parametri-
ponents, denoted now iy, We takeg(M . ;r)tobeasin  zation clocks. We found on the unreduced phase space a
(4.1) with M_=0, and we solve the constraifd#.2) as in  global canonical chart in which the physical degrees of free-
(4.3 and (4.5 with m_=0. Note that adly has the same gom and the pure gauge degrees of freedom are completely

whereSs is given by(2.6) with 0<r <o,

The canonical transformation of Sec. Il goes through
with the obvious changes. The new action is ag3ri8,
except that the integral is from=0 tor=o and the term
N_M _ is missing.G(r) andg(M, ;r) are smooth irr and
have the same behavior Bs> + as in Sec. Ill. The falloff
of the new fields as—0 can be found fron{7.1); for ex-
ample, we have

N(t,r)=—NgAoR; 1+ 0O(r). (7.3

sign asp, equation(4.5) impliesm, >0. We find decoupled, and we identified the pure gauge configuration
. variables in this chart as the Eddington-Finkelstein time and

p't+f dr[(ILy— 7G)M — ng]=p.m, the curvature radius. Finally, we adapted the analysis to the
0 spatial topologyR®, which has just one infinity, and for

which the spacetime inside the shell is flat. Expectedly, the
¢ reduced phase space for this spatial topology turned out to
nm+fOGdr : consist of two disconnected copiesitf, one for an expand-
(7.4)  ing shell and the other for a collapsing shell.
In addition to the Kruskal spatial topolog¥x R and the
where Euclidean spatial topologf®, yet another spatial topology
of 3interest would be that of theRP® geon [51],
N EURVE RIP*\{a point at infinity. As the reduced phase space of the
P+ fo drilly 6(r=v)=»G=27m.g.]. (7.9 vacuum theory with thétP® geon topology has dimension
two [13], one expects that the reduced phase space with a
Substituting this in the action and dropping the integral of anull shell would have dimension four. Indeed, this is the

L d
dt

total derivative, we obtain the reduced action conclusion reached under a technically slightly different but
qualitatively similar falloff in Ref[37], by first performing a

S:j dt(p,m, —N,m,). (7.6 _Hamlltonlan reduction fqr a massive dust shell an_d then tak-

ing the zero rest mass limit. It does not seem straightforward

~ to adapt the canonical transformation of Sec. IIRiB* geon
Thus, the pair 1. ,p.) provides a canonical chart d>.  topology, however. AlRP3-geon-type spacetime with a null
As Il does not have singularities, the definition5) is  shell can be mapped to a Kruskal-type spacetime with two
always good: the chart is global, and the topo|ogf&fis null shells, but these two shells must be moving in opposite
R2. The test shell limit can be attached as a smooth bounda@irections; our canonical transformation, on the other hand,
with topology R atm, =0. was adapted to only one direction of the shell motion at a
The information about the shell motion is again encoded™me. . . . )
in the evolution ofp, . Charts that describe the shell motion A similar issue arises if one wishes to include more than

in the exterior geometry more transparently can be conone null-dust shell. One expects our canonical transforma-
structed as in Sec. V. tions to generalize readily to the case when all the shells are

moving in the same direction. Shells moving in different
directions would, however, seem to require new methods.
Several steps in our analysis relied crucially on the fact
In this paper we have analyzed the Hamiltonian structuréhat the shell is null. This issue appears first in the consis-
of spherically symmetric Einstein gravity coupled to an in-tency of the ADM equations of motion in Sec. Il. In a fixed
finitesimally thin null-dust shell. We formulated the theory background geometry, the equations obtained by varying the

VIlIl. SUMMARY AND DISCUSSION
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action (2.6) with respect to the shell variables must, by con- APPENDIX A: HAMILTONIAN EQUATIONS OF MOTION
struction, be equivalent to the geodesic equation for the shell. AT THE SHELL

In our dynamical equation$2.9), the pair consisting of In this a . . . . )
L S . ppendix we isolate the independent information
(2.99 and (2.91), if interpreted individually on each side of that the Hamiltonian equations of motiof2.8) and (2.9),

the shell, must therefore be equivalent to the null geodesigyniain at the shell. It will be shown in Appendices B and C
equation. The reason why the potentially ambiguous equanat when this information is combined to Einstein’s equa-
tion (2.9) turns out to be unambiguous is precisely that thejons away from the shell, we unambiguously recover the
junction is along a null hypersurface, and this hypersurface igorrect junction conditions for general relativity coupled to a
geodesic in the geometries on both sides of the junction. null-dust shell.

Next, the fact that the shell history is null led us to the To begin, we note that equatio(%8) and all save the last
Eddington-Finkelstein time as a spacetime function that isne of equationg2.9) have an unambiguous distributional
sufficiently smooth to provide an acceptable momentum coninterpretation. The constraint equatioi®s8) contain explicit
jugate toM(r). Finally, in Sec. V, the null character of the delta-functions irr from the matter contribution and implicit
shell history made it possible to leave the interior canonicabelta-functions irR” andP}, . The right-hand sides ¢2.93
pair (m_,p_) untouched in the canonical transformation and (2.9b contain at worst finite discontinuities, and the
from (m, ,p.) to (;,5)_ This is because the null history, right-hand sides 0f2.99 and(2.9d contain at worst delta-

when viewed from the exterior geometry, does not Contair{unctions; this is consistent with the left-hand sides of

information about the interior mass, beyond the statemen(tz'ga_(z'gc’)' recalling that the loci O_f nonsmoothnesszflr,!
thatm_<m, . R, P, andPg may evolve smoothly in. Wherever explicit

: : r implicit delta-functions appear, they are multiplied b
The_se special prop_erﬂes .Of a null She". suggest t_hat .Ougontin[ilous functions of Thepgnly poteztially troubllzsomey
analysis may not be immediately generalizable to t|meI|kee uation is thereforé2 9.f)- the riaht-hand side is a combi-
shells. For example, for a dust shell with a positive rest mas au . o 9

. ; aS%hation of spatial derivatives evaluated at the shell, but our
already the consistency of the ADM equations of motion

fai e . szsumptions allow these derivatives to be discontinuous.
ails under our smoothness assumptions: the variationa If f stands for any of our metric functions that may be
equations corresponding €8.8) and(2.9) only become con- discontinuous at the shell, we define

sistent if the right-hand side in the counterpar{®®f) is by

hand interpreted as its average over the two sides of the shell Af:= lim [f(r+e)—f(r—e)]. (A1)
[37]. However, new avenues may open if one relaxes the e—0,

assumption that the variations of the geometry and matter be

independent. Recent progress in this direction has been mad®e delta-contributions t6’ andf at the shell can then be
by Hgjicek and Kijowski[52-54. written respectively asXf )8(r —t) and —t(Af ) S(r —t).

The work in this paper has begn purely classical. Ongpjith this notation, the constraint equatiof&s8) at the shell
may, however, hope that our canonical charts on the reducggdyg

phase space will prove useful for quantizing the system. In

the spatially.flat gauge gutSiQe the shell, the qgantization of AR = — np/lfi, (A2a)
the shell variables with fixed interior mass was introduced as

a model for Hawking radiation with back-reaction in Ref.
[30], and the same approach was applied to related black
holes in Refs[31, 34]. Our results provide the tools for a I . . .
similar analysis in an arbitrarily specifiable stationary gaugegﬂg gg%ge;tatﬁg?ﬁg??gg; in the dynamical equati@nsg
outside the shell. Whether this freedom in the gauge choice '
can be utilized to a physically interesting end remains to be N

seen. One may glso wish to explore quantizat[on§ ba}sed on A PAszJrKI\rAPA, (A3a)
the global canonical charts in which the dynamics is simpler A2

but the spacetime picture more hidden. This might shed light
on the analogous question of quantizing in a dynamically
simple but geometrically nontransparent canonical chart in
the context of a two-dimensional dilatonic gravity theory
coupled to scalar fieldgb5]. We leave these questions sub-

ject to future work.

AP, =—plA, (A2b)

NAR'+RAN’
A

—tAPR=— +N'APg.  (A3b)

The full set of equations at the shell therefore consists of
(2.99, (2.91), (A2), and(A3). Of these, all excepf2.9f) are
manifestly well defined.
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APPENDIX B: EQUATIONS OF MOTION

R=[R+tR'] . (A4) FOR A NONSTATIC SHELL
The individual terms on the right-hand side @4) are not In this appendix we verify the claims in the penultimate
continuous at the shell, but the left-hand side shows that thBaragraph of Appendix A. For concreteness, and without loss
sum must be, and we obtain of generality, we may assume that the shell history lies right

of the horizon that the shell does not cross. The geometry is
then as in Fig. 1 fop=—1, and its time inverse fop=1.

On each side of the shell, we introduce the Eddington-
Finkelstein coordinates,

AR=—tAR’. (A5)

An entirely similar reasoning leads to counterpartsA5)

with R replaced by any metric function that is continuous in ds’=—FdV?—27dVdR+ R?dQ?, (Bla)
r. Using (A5) and (2.9, equation (2.5bH gives
AP, =7R(AR’)/A. This shows that the two equations in F=1-2M/R, (B1b)

(A2) are equivalent, and we can drof2b). wh . . . .
s ereM is the Schwarzschild mass. To avoid cluttering the
_T9 S|m_pI|fy (A.3b)’ _We evaluateA.PR from (2.5 and notation, we suppress indices that would distinguish the co-
eliminate R and A using (A5) and its counterpart fo.  ordinate patches on the two sides of the shell. Wherever

Using (2.9e, the result can be arranged to read ambiguous quantities are encountefedch as in equations
(B4) below], the equations are understood to hold individu-
0=A[(vv®'], (A6)  ally on each side of the shell.
The coordinatest(r) of Sec. Il can be embedded in the
where the vector field? is defined by metric (B1) asV=V(t,r) andR=R(t,r), independently on
each side of the shell. We obtain
v'=1, (A7a) > ..
Ou=—FV°—29VR, (B2a)
v =r, (A7b) g,=—-FV'2-29V'R, (B2b)
both at the shell and away from the shell. At the shefl, gy=—FVV'—(VR'+V'R). (B2¢)

coincides with the shell history tangent vect6t (2.10, by .
virtue of the equation of motiori2.99. Through standard As the surfaces of constahtare spacelikepV’'<0 every-
manipulations(A6) can be brought to the form where. Expressing the ADM variables in terms of the metric
components and usin@?2), we find
0=A[vp?Va(d)"], (A8)
A N'=——. (B3)
whereV, is the spacetime covariant derivative. v
The information in the Hamiltonian equations of motion ; ; ; ;
at the shell is therefore captured by the set consisting of As '|n §ec. Il, the shell history is erttgn as=x(t), and
(2.9, (2.99, (A2a), and(A8). we write R(t): =R(t,t(t)). We also write, independently on

In Appendices B and C we combine these four equationgach side of the sheﬁ((t):=V(t,t(t)), and similarly forR,
to the fact that away from the shell, equatid@s8) and(2.9) = 7

are equivalent to Einstein’s equations and thus make the g@.d’ V’f\t/h’ ar;]d ”SO on. We then have, independently on each
ometry locally Schwarzschild. As noted in subsection I B,SI € of the shedl,
equation (2.9 implies that the shell history is null. We 5

therefore only need to examine two qualitatively different R=R+tR’, (B4a)
cases, according to whether or not the shell history lies on a Lo
horizon. The results, derived respectively in Appendices B V=V+rtrV'. (B4b)

and C, are summarized here in the following two paragraphs: o .

tinuity of R across the shell completely determines the ge/hotion. First, equatiori2.9¢ implies, with the help ofB3)

ometry. Equation/A8) reduces to an identity, and the com- and(B4b), thatV=0. The shell history is therefore a hyper-

bination of derivatives on the right-hand side @9 is  surface of constanv, independently on each side. These
continuous at the shell. Equatigg.9f) becomes then well B

defined. Withp given by(A2a), equation(2.9f) reduces to an duations also imply thaf/V" is unambiguous and
identity. : P

When the shell history lies on a horizon, the masses on t=—V/IV'. (BS)
the two sides must agree. Equati@®8) now implies that the - -
soldering along the junction is affine. The combination ofEquations(B2b) and(B2c) yield, after eliminatingy andR
derivatives on the right-hand side @.9f) is then continuous With the help of(B4a and(B5), the relation
at the shell, and equatid2.9f) becomes well defined. With . N
p given by (A2a), equation(2.9f) reduces to an identity. 7V'R=—1Q; — Qy- (B6)
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—oo<u,.<o, and the shell history lies at the common hori-

- - zon atv . =0. When the index is suppressed, equations con-
#0, (B6) implies thatV” is unambiguous. Thus, bo and taining ambiguous terms are understood to hold individually
V are unambiguous. on each side of the shell.

Consider next the constraitid2a). As V' andg,, are Embedding the coordinateg,() in the metric(C1) as
. . . , Loy u=u(t,r) andv=uv(t,r), independently on each side of the
unambiguous, equatioB2b) implies AR'=—37nV'AF.

c - shell, we obtain
Using (B1b), the constraintA2a) becomes

As the right-hand S|de ofB6) is unambiguous, and aa

—~ =—Gu, C2
p=—V'AM. (B7) Ju (C29
Consider then equatiof2.9f). Using(B5) and the relation Orr=—Gu'v’, (C2n
V'=V +1V", a straightforward calculation yields Gur=—3G(uv'+u'v). (C29

As the surfaces of constamtare spacelikep’>0 every-

v ' v’ where. Expressing the ADM variables in terms of the metric
— =— (B8  components and using2), we find
A\ 2
N ;U
As the right-hand side ofB8) is unambiguous, equations AN = (C3

(B3) and (B8) show that the right-hand side ¢2.9f) is un-
ambiguous. Further, whei7) holds, it is seen tha®.9f) is
identically satisfied.

What remains is equatiofA8). In the coordinategB1)
we have, again independently on the two sides of the shell,

v3=(0, ®,0,0), and

As above, we introduce the quantitiesu, u’, and so on,
and similarly forv. The counterparts of equatio(B®4) read

U=u+tl, (C43

[050°Va(3)°] == (P23l (BY v=v+w’, (C4b)
Equation (2 9 then implies, with the help ofC3) and

As v R v R v o Ris unambiguous. As@’:\?(/aJ’:\//\’,
(C4b), thato =0, v/v is unambiguous, and

we see thaf d,)V d,)V is unambiguous. As the vector field de-
noted on each side by/JR is continuous at the shell and : o~

, -~ . =-vlv’'. C5
tangent to the shell histony,(d,)V,x] is unambiguous. e €9

Therefore, the right-hand side @B9) is unambiguous, and  Consider next equatiofA8). In the coordinate$¢C1) we
equation(A8) is identically satisfied. have, independently on the two sides of the shell,

= (vY,0,0,0), and
APPENDIX C: EQUATIONS OF MOTION ) )
FOR A STATIC SHELL [0V ()P =[(0")2(F;)u.u] - (C6)

In this appendix we verify the claims in the last paragraphgquation(A8) therefore reads
of Appendix A. For concreteness, and without loss of gener-
ality, we may takep= — 1, so that the shell is moving to the (v“+)2(a,)u+ ,u+=(v“*)2(ar)u7 U (C?
left, and the geometry is as in Fig. 2.

On each side of the shell, we introduce the Kruskal nullat the junction v.=0. Writing v"-=(du_/du,)v"+,

coordinates, (dr)y_=(du,/du_)(d)y,, andd, =(du,/du_)s, , we
obtaind?u_ /du? =0. This means that at the junction. =0
d&= — Gdud + R2dQ?, (c1g e have
u,=au_+p, (C8
G=(32M3/R)exp(—R/2M), (Clb  wherea and B are constants and>0. As the Kruskal co-

ordinates are affine parameters along the horizons, this
means that the soldering of the two geometries along the
R common horizon is affine.
—uy= (m—l)exp( R/2M), (C1l9 Consider next the constraitf2a). From (C1¢) we have

—~

R’'=—2Muv’. The constraintA2a) therefore reads
whereM is the common value of the Schwarzschild mass.

When there is a need to distinguish the two coordinate p=—4M?A(up"). (C9
patches, we write the coordinates as. (v .), with the up- R R
per (lower) sign referring to the patch on the righeft). The  Equations(C2b) and (C20¢) yield, after eliminatingy andu
ranges of the coordinates ame, >0 and v_<0, with  with the help of(C48 and(C5), the relation



8M2' U= — 1, — Gy (C10
As the right-hand side ofC10) is unambiguous;\’ﬁ is un-

ambiguous. The affine relatiof€C8) implies G:= aﬂt, and
hence

(C1y
HenceA(uv’)z,Bﬂ, and equatiorfC9) takes the form
p=—4M2B0". (€12

As p<0 by assumption anqﬁ>0, we haveB>0. This
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means that the right-hand-side bifurcation two-sphere occurs
earlier on the history than the left-hand-side bifurcation two-
sphere, as shown in Fig. 2.

Consider finally equatiof2.9f). Using (C5) and proceed-
ing as with(B8), we find

(]2

By (C11), the right-hand side ofC13 is unambiguous.
EquationgC3) and(C13) then show that the right-hand side
of (2.9f) is unambiguous. WhefC12) holds, it is seen that
(2.9 is identically satisfied.
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