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Hamiltonian spacetime dynamics with a spherical null-dust shell
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We consider the Hamiltonian dynamics of spherically symmetric Einstein gravity with a thin null-dust shell,
under boundary conditions that fix the evolution of the spatial hypersurfaces at the two asymptotically flat
infinities of a Kruskal-like manifold. The constraints are eliminated via a Kucharˇ-type canonical transformation

and Hamiltonian reduction. The reduced phase spaceG̃ consists of two disconnected copies ofR4, each
associated with one direction of the shell motion. The right-moving and left-moving test shell limits can be

attached to the respective components ofG̃ as smooth boundaries with topologyR3. Choosing the right-hand-
side and left-hand-side masses as configuration variables provides a global canonical chart on each component

of G̃, and renders the Hamiltonian simple, but encodes the shell dynamics in the momenta in a convoluted
way. Choosing the shell curvature radius and the ‘‘interior’’ mass as configuration variables renders the shell
dynamics transparent in an arbitrarily specifiable stationary gauge ‘‘exterior’’ to the shell, but the resulting

local canonical charts do not cover the three-dimensional subset ofG̃ that corresponds to a horizon-straddling
shell. When the evolution at the infinities is freed by introducing parametrization clocks, we find on the
unreduced phase space a global canonical chart that completely decouples the physical degrees of freedom
from the pure gauge degrees of freedom. Replacing one infinity by a flat interior leads to analogous results, but
with the reduced phase spaceR2øR2. The utility of the results for quantization is discussed.
@S0556-2821~98!03504-8#

PACS number~s!: 04.20.Fy, 04.40.Nr, 04.60.Kz, 04.70.Dy
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I. INTRODUCTION

Spherically symmetric geometries have a long and us
history as a physically interesting and technically vastly s
plified arena for gravitational physics. In vacuum, Einstei
theory with spherical symmetry has no local degrees of fr
dom, and the reduced phase space in the Hamiltonian for
lation is finite dimensional. Including an idealized, infinites
mally thin matter shell brings in an additional finite numb
of degrees of freedom. Including a continuous matter dis
bution generically yields a (111)-dimensional field theory
with the exception of fields whose gauge symmetries excl
spherically symmetric local degrees of freedom. A famil
example of a field with such a gauge symmetry is the e
tromagnetic field.

In this paper we consider spherically symmetric Einst
gravity coupled to an infinitesimally thin null-dust she
From the spacetime point of view, the solutions to this s
tem are well known~see, for example, Refs.@1–4#!, and they
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can be easily obtained from a junction condition formalis
that is general enough to encompass null shells~see Ref.@5#
and the references therein!. Our purpose is to explore th
Hamiltonian structure of this system, treating both the geo
etry and the shell as dynamical. Among the extensive pre
ous work on Hamiltonian approaches to spherically symm
ric geometries~for a selection in a variety of contexts, se
Refs.@6–41#!, we follow most closely the canonical transfo
mation techniques of Kucharˇ @10#. Our main results can be
concisely described as generalizing the spherically symm
ric vacuum Hamiltonian analysis of Ref.@10# to accommo-
date a null-dust shell.

Finding a suitable action principle requires care. The sh
stress-energy tensor is a delta-distribution with support
the shell history, which is a hypersurface of codimens
one. Einstein’s equations for the system therefore adm
consistent distributional interpretation@42#, and the content
of these equations is captured by the junction condition f
malism of Barrabes and Israel@5#. We recover these equa
tions from a variational principle. We take the shell action
be that of a spherically symmetric thin cloud of radiall
moving massless relativistic point particles, and we vary
total action independently with respect to the gravitatio
variables and the shell variables. We shall see that this va
tional principle can be made distributionally consistent a
that the variational equations do reproduce the correct
namics. Achieving this requires, however, a judicious cho
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2280 57LOUKO, WHITING, AND FRIEDMAN
of the regularity properties of the metric.
We begin, in Sec. II, by setting up the Hamiltonian fo

mulation of the system in the Arnowitt-Deser-Misner~ADM !
gravitational variables. The spacetime is taken to h
Kruskal-like topology, with two asymptotically flat infinities
and the spatial hypersurfaces are taken to be asymptot
hypersurfaces of constant Killing time at each spacelike
finity. The Killing time evolution of the hypersurfaces is pr
scribed independently at each infinity. We specify the re
larity properties of the gravitational variables, an
demonstrate that the variational principle is consistent
leads to the correct equations of motion.

In Sec. III we perform a canonical transformation to
new chart in which the constraints become exceedin
simple. Two of our new variables are Hawking’s quasiloc
massM (r ) and the two-sphere curvature radiusR(r ), just as
in the vacuum analysis of Ref.@10#. However, to maintain a
consistent distributional interpretation of the variables in
new chart, we are led to relate the momentum conjugat
M (r ) to the Eddington-Finkelstein time whose consta
value hypersurface coincides with the classical shell histo
and not to the Killing time as in Ref.@10#. The momentum
conjugate toR(r ) needs to be modified accordingly. R
markably, the canonical transformation can then be chose
leave the shell canonical pair invariant. The transformatio
mildly singular for geometries in which the shell straddles
horizon, but it can be extended to this special case in a s
able limiting sense.

In Sec. IV we eliminate the constraints by Hamiltonia

reduction. The reduced phase spaceG̃ turns out to have di-
mension four. As the vacuum theory under our bound
conditions has a two-dimensional reduced phase space@10#,
and as a test shell in a fixed spherically symmetric ba
ground has a two-dimensional phase space, this is exa
what one would have anticipated. We first obtain canon
coordinates (m1 ,m2 ,p1 ,p2) in which the configuration
variablesm6 are the Schwarzschild masses on the two si
of the shell. The momentap6 can be interpreted as th
Eddington-Finkelstein time differences between the shell
the infinities, after introducing an appropriate correspo
dence between our spatial hypersurfaces and hypersur
that are asymptotically null. The configuration variablesm6

are constants of motion, while the shell motion is indirec
encoded in the dynamics ofp6 . These coordinates becom
singular for horizon-straddling shells, but a global chart co
ering also this special case can be obtained by introdu

suitable new momenta. We find thatG̃ consists of two dis-
connected copies ofR4, each associated with one directio
of the shell motion. The right-moving and left-moving te
shell limits, in which the shell stress-energy tensor vanish

can be attached to the respective components ofG̃ as smooth
boundaries with topologyR3.

In Sec. V we introduce onG̃ a local canonical chart in
which the shell motion becomes more transparent. Assum
that the shell does not a straddle a horizon, the shell his
divides the spacetime into the ‘‘interior,’’ which contains
Killing horizon bifurcation two-sphere, and the ‘‘exterior,
which does not. We choose the configuration variables in
new chart to be the curvature radius of the shell two-sph
and the interior mass, in an arbitrarily specifiable station
e
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exterior coordinate system. One can argue that this yield
Hamiltonian description of interest for an observer who sc
tinizes the shell motion from the exterior asymptotic regio
especially if the observer’s ignorance of the interi
asymptotic region is incorporated by setting the interior co
tribution to the Hamiltonian to zero. We give three examp
of stationary exterior coordinate systems in which the Ham
tonian can be found in closed form. Also, choosing the s
tially flat exterior gauge@43–45#, and performing a partia
reduction by setting the interior mass equal to a prescri
constant, we reproduce the spatially flat shell Hamilton
previously derived in Refs.@30, 37# by different methods.

In Sec. VI we free the evolution of the spatial hypersu
faces at the spacelike infinities by introducing parametri
tion clocks. We find on the unreduced phase space a can
cal chart in which the physical degrees of freedom and p
gauge degrees of freedom are completely decoupled, in
analogy with the vacuum analysis of Ref.@10#. The pure
gauge chart can be chosen so that the configuration varia
are the curvature radius of the two-sphere and the Edding
Finkelstein time, with the latter one appropriately inte
preted across the horizons.

In Sec. VII we replace the Kruskal spatial topologyS23R
by the spatial topologyR3. The spacetime has then just on
asymptotic region, and when the equations of motion ho
the spacetime interior to the shell is flat. As in the Krusk
case, we take the asymptotic region to be asymptotically
and we prescribe the evolution of the spatial hypersurface
the spacelike infinity. We then carry out the canonical tra
formation and Hamiltonian reduction. Expectedly, the
duced phase space turns out to consist of two disconne
copies ofR2, with only the counterpart of the pair (m1 ,p1)
of the Kruskal theory surviving.

We conclude in Sec. VIII with a summary and a bri
discussion, including remarks on the potential utility of t
results in view of quantization. Some of the technical de
of the ADM dynamical analysis is postponed to the app
dices.

We work in Planck units,\5c5G51. Lowercase Latin
tensor indicesa,b, . . . are abstract spacetime indices
Dirac’s delta-function is denoted byd, while d denotes a
variation. The curvature coordinates (T,R) for the Schwarzs-
child metric are coordinates in which the metric reads

ds252~122M /R!dT21~122M /R!21dR21R2dV2,
~1.1!

wheredV2 is the metric on the unit two-sphere andM is the
Schwarzschild mass.T and R are called respectively the
Killing time and the curvature radius.

II. METRIC FORMULATION

In this section we set up the Hamiltonian formulation f
spherically symmetric Einstein gravity coupled to a null-du
shell. We pay special attention to the regularity of the gra
tational variables and the global boundary conditions.

A. Bulk action

Our spacetime geometry is given by the general sph
cally symmetric Arnowitt-Deser-Misner~ADM ! metric
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57 2281HAMILTONIAN SPACETIME DYNAMICS WITH A . . .
ds252N2dt21L2~dr1Nrdt!21R2dV2, ~2.1!

wheredV2 is the metric on the unit two-sphere, andN, Nr ,
L, andR are functions of the coordinatest and r only. Par-
tial derivatives with respect tot and r are denoted respec

tively by overdot and prime,̇ 5]/]t and 85]/]r . We take
the spacetime metric to be nondegenerate, andN, L, andR
to be positive.

The matter consists of an infinitesimally thin shell of du
with a fixed total rest massm, which we initially take to be
positive. Denoting the shell history byr 5r(t), the Lagrang-
ian matter action is

SL
s52mE dtAN̂22L̂2~ ṙ1Nr̂ !2, ~2.2!

where a hat is used to denote the value of a variable at
shell. The shell can be envisaged as a thin spherically s
metric cloud of radially-moving massive relativistic poi
particles.

The Lagrangian gravitational action is obtained by p
forming integration over the angles in the Einstein-Hilb
action, (16p)21*d4xA2gR. Discarding a boundary term
the result is@6,7,10,27,30,39#

SL
g5E dtE dr@2N21$R@L̇2~LNr !8#~Ṙ2R8Nr !1 1

2 L~Ṙ

2R8Nr !2%1N~L22RR8L82L21RR92 1
2 L21R82

1 1
2 L!#. ~2.3!

The Lagrangian action of the coupled system is

SL5SL
g1SL

s1 boundary terms. ~2.4!

We shall consider the regularity properties of the variab
the boundary conditions, and boundary terms after passin
the Hamiltonian formulation.

The momenta conjugate to the configuration variabler,
L, andR are

p5
mL̂2~ ṙ1Nr̂ !

AN̂22L̂2~ ṙ1Nr̂ !2
, ~2.5a!

PL52
R

N
~Ṙ2NrR8!, ~2.5b!

PR52
L

N
~Ṙ2NrR8!2

R

N
@L̇2~NrL!8#. ~2.5c!

A Legendre transformation gives the Hamiltonian bulk a
tion @27,30#

SS5E dtFpṙ1E dr~PLL̇1PRṘ2NH2NrHr !G ,
~2.6!

where the super-Hamiltonian constraintH and the radial su-
permomentum constraintHr contain both gravitational and
matter contributions. In the limitm→0, these constraints
take the form
t

he
-

-
t

s,
to

-

H5
LPL

2

2R2 2
PLPR

R
1

RR9

L
2

RR8L8

L2 1
R82

2L

2
L

2
1

hp

L
d~r 2r!, ~2.7a!

Hr5PRR82PL8 L2pd~r 2r!, ~2.7b!

whereh:5sign(p). From now on, we shall work exclusivel
in this zero rest mass limit, with the bulk action~2.6! and the
constraints~2.7!. As will be verified below, the shell then
consists of null dust.

The Hamiltonian constraint~2.7a! is not differentiable in
p at p50. As we shall verify below, an initial data set wit
nonzerop cannot evolve into a set withp50 @1–5#. We
assume from now on thatp is nonzero: this breaks the phas
space into the two disconnected sectorsh561. The limits
p→06 within each sector will be addressed in subsect
IV C.

B. Local equations of motion

In the presence of a smooth matter distribution, one
assume the spacetime metric to be smooth (C`). In the ide-
alized case of an infinitesimally thin shell, the metric can
chosen continuous but not differentiable at the sh
@5,42,46,47#. The issue for us is to find smoothness assum
tions that give a consistent variational principle. We wish
make both the action~2.6! and its local variations well de
fined and such that the resulting variational equations
equivalent to Einstein’s equations with a null-dust shell.

We follow the massive dust shell treatment of Ref.@37#.
In contrast to the case of a massive dust shell, we shall
that the smoothness conditions introduced in Ref.@37# make
our null-dust variational principle fully consistent.

As in Ref.@37#, we assume that the gravitational variabl
are smooth functions ofr , with the exception thatN8, (Nr)8,
L8, R8, PL , andPR may have finite discontinuities at iso
lated values ofr , and that the coordinate loci of the disco
tinuities may be smooth functions oft. All the terms under
the r -integral in the action~2.6! are well defined in the dis-
tributional sense. The most singular contributions are the
plicit matter delta-contributions in the constraints, and t
implicit delta-functions in R9 and PL8 . All these delta-
functions are multiplied by continuous functions ofr . The
remaining terms are at worst discontinuous inr . The action
is therefore well defined.

Local independent variations of the action with respect
the gravitational and matter variables give the constra
equations

H50, ~2.8a!

Hr50, ~2.8b!

and the dynamical equations

L̇5NS LPL

R2 2
PR

R D1~NrL!8, ~2.9a!
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2282 57LOUKO, WHITING, AND FRIEDMAN
Ṙ52
NPL

R
1NrR8, ~2.9b!

ṖL5
N

2 F2
PL

2

R22S R8

L D 2

111
2hp

L2 d~r 2r!G2
N8RR8

L2

1Nr PL8 , ~2.9c!

ṖR5NFLPL
2

R3 2
PLPR

R2 2S R8

L D 8G2S N8R

L D 8
1~Nr PR!8,

~2.9d!

ṙ5
hN̂

L̂
2Nr̂ , ~2.9e!

ṗ5pF S Nr2
hN

L D 8G ˆ

. ~2.9f!

As will be discussed in detail in Appendix A, our smoot
ness conditions imply that equations~2.8! and all save the
last one of equations~2.9! have an unambiguous distribu
tional interpretation. Equation~2.9f!, on the other hand, is
ambiguous: the right-hand side is a combination of spa
derivatives evaluated at the shell, but these derivatives
be discontinuous. We need to examine the dynamical con
of the well-defined equations, and the possibilities of int
preting equation~2.9f!.

A first observation from equation~2.9e! is that the shell
history is tangent to the null vectorl a whose components
are

l t51, ~2.10a!

l r5hN̂L̂212Nr̂ . ~2.10b!

For h51 (h521), l a is the future null vector that point
towards relatively larger~smaller! values ofr . From the defi-
nition of the shell stress-energy tenso

dgSshell5
1
2 *A2gd4xTabd(gab), we find

Tab5
hp

4pN2L2R2 l al bd~r 2r!. ~2.11!

The shell is therefore null, with positive surface energy b
vanishing surface pressure@5#. This confirms that the shel
consists of null dust.

All solutions to the spherically symmetric Einstein equ
tions with a null-dust shell can be found from a sufficien
general junction condition formalism@1–5#. On each side of
the shell, the spacetime is locally part of the extend
Schwarzschild geometry. If the global structure of the spa
time is Kruskal-like, with two asymptotically flat infinities
there are only two qualitatively different cases. First, if t
shell is not static, the junction is completely determined
continuity of the two-sphere radius at the shell. The mot
is clearly geodesic in each of the two geometries, and
radius of the two-sphere serves as an affine paramete
either geometry. The spacetime is either that shown in Fig
or its time and/or space inverse. Second, if the shell is sta
the junction is along a common horizon, and the masses m
agree. The soldering is affine, meaning that the affine par
eters along the horizon with respect to the two geometries
affinely related; however, as the stress-energy tensor of
l
ay
nt
-

t

-

d
e-

y
n
e
in

1,
ic,
st
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re
he

shell is by assumption nonvanishing, the bifurcation tw
spheres on the two sides do not coincide. The spacetim
either that shown in Fig. 2 or its time inverse.

Now, away from the shell, equations~2.8! and ~2.9! are
well known to be equivalent to Einstein’s equations. W
shall investigate equations~2.8! and ~2.9! at the shell in de-
tail in the appendices. The result is that, when combined w
the fact that the geometry is locally Schwarzschild on ea
side of the shell, the well-defined equations,~2.8! and
~2.9a!–~2.9e!, are equivalent to the correct null-dust junctio
conditions at the shell. They further imply that the right-ha
side of ~2.9f! is unambiguous, and that~2.9f! is satisfied as
an identity. Our variational principle is therefore consiste
and it correctly reproduces the motion of a null-dust shel

A check on the consistency of our formalism is that t
Poisson brackets of our constraints can be shown to obey
radial hypersurface deformation algebra@48#, as in the ab-

FIG. 1. The Penrose diagram for a spacetime in which the s
does not straddle a horizon. The shell history is the dashed
passing through pointsp1 and p2 . The shell has been taken lef
moving, which meansh521, and to lie in the future of the left-
going horizon, which means that the right-hand-side Schwarzsc
massm1 is greater than the left-hand-side Schwarzschild m
m2 . The diagrams forh51 and/orm1,m2 are obtained through
inversions of space or time or both. The spacetime is uniqu
determined by the values ofm1 , m2 , andh. A hypersurface of
constantt extends from the left-hand-sidei 0 to the right-hand-side
i 0, and the pointsA andB indicate the ends of the asymptotical
null hypersurface introduced in Sec. IV. The dotted lines are hyp
surfaces of constant null time ending respectively atA andB. Point
B is here shown as being in the future of the shell history, bu
general it could be anywhere on the right-hand-sideI2.

FIG. 2. The Penrose diagram for a spacetime in which the s
straddles a horizon. The shell history is the line passing thro
pointsp1 andp2 . The spacetimes on the two sides share a comm
Schwarzschild massm. The shell has been taken left-movin
which meansh521. The diagram corresponding toh51 is ob-
tained through time~or, equivalently, space! inversion. The space-
time is uniquely determined by the values ofm andh. The pointsA
andB and the dotted null lines ending at them are as in Fig. 1.
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57 2283HAMILTONIAN SPACETIME DYNAMICS WITH A . . .
sence of the shell, and as with a massive dust shell@37#. We
therefore have a Hamiltonian system with first class c
straints@49#.

C. Falloff

What remains are the global boundary conditions. W
take the coordinater to have the range (2`,`), and asr
→6` we assume the falloff@10,50#

L~ t,r !511M 6ur u211O`~ ur u212e!, ~2.12a!

R~ t,r !5ur u1O`~ ur u2e!, ~2.12b!

PL~ t,r !5O`~ ur u2e!, ~2.12c!

PR~ t,r !5O`~ ur u212e!, ~2.12d!

N~ t,r !5N61O`~ ur u2e!, ~2.12e!

Nr~ t,r !5O`~ ur u2e!, ~2.12f!

whereM 6 andN6 are functions oft, ande is a parameter
that can be chosen freely in the range 0,e<1. Here,O`

stands for a term that falls off asr→6` as its argument,
and whose derivatives with respect tor andt fall off accord-
ingly. These conditions imply that the asymptotic regio
associated withr→6` are asymptotically flat, with the con
stantt hypersurfaces asymptotic to hypersurfaces of cons
Minkowski time. N6 are the rates at which the asympto
Minkowski times evolve with respect to the coordinate tim
t. When the equations of motion hold,M 6 are time-
independent and equal to the Schwarzschild masses.

In the variational principle, we takeN6 to be prescribed
functions oft, but leaveM 6 free. The appropriate total ac
tion then reads@10#

S5SS1S]S , ~2.13a!

where the boundary action is

S]S52E dt~N1M 11N2M 2!. ~2.13b!

The global structure of the spacetime is Kruskal-like, w
two asymptotically flat asymptotic regions. The classical
lutions under these boundary conditions are precisely th
described above and shown in Figs. 1 and 2.

III. CANONICAL TRANSFORMATION

In this section we find a new canonical chart in which t
constraints become exceedingly simple. Away from
shell, our treatment closely follows that given by Kucharˇ in
the vacuum case@10#. The new elements arise mainly from
patching the two vacuum regions together at the shell.

Our canonical transformation turns out to be mildly s
gular when the masses on the two sides of the shell agree
the shell straddles a common horizon. We first perform
transformation, in subsection III A, assuming that this s
cial case has been excluded. We then argue, in subse
III B, that the transformation can be extended to the spe
case in a suitable limiting sense.
-

e

s

nt

-
se

e

nd
e
-
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al

A. Shell not on a horizon

In the vacuum theory, Kucharˇ @10# found a transformation
from the canonical chart (L,R,PL ,PR) to the new canonica
chart (M ,R,PM ,PR) defined by

M :5 1
2 R~12F !, ~3.1a!

R:5R, ~3.1b!

PM :5R21F21LPL , ~3.1c!

PR :5PR2 1
2 R21LPL2 1

2 R21F21LPL

2R21L22F21@~LPL!8~RR8!2~LPL!~RR8!8#,

~3.1d!

where

F:5S R8

L D 2

2S PL

R D 2

. ~3.2!

When the equations of motion hold,M is independent of
both r and t, and its value is just the Schwarzschild ma
Similarly, when the equations of motion hold, we ha
PM52T8, whereT is the Killing time. The vacuum con-
straints can be written as a linear combination ofM 8 and
PR , and the dynamical content of the theory becomes tra
parent.

In the presence of our null shell, the variabl
(M ,R,PM ,PR) become singular at the shell. To see th
consider a classical solution in which the shell history do

not lie on a horizon. AsM is discontinuous at the shell,Ṁ
contains at the shell a delta-function inr . As PM is discon-

tinuous at the shell, the productPMṀ is ambiguous. One
therefore does not expect the chart (M ,R,PM ,PR) to be vi-
able in the presence of the shell.

To overcome this difficulty, we keepM andR but replace
the momenta by ones that are smoother across the shell
define first@10#

F6 :5
R8

L
6

PL

R
~3.3!

and

F6h :5
R8

L
6h

PL

R
. ~3.4!

Note thatF5F1F25FhF2h . When the equations of mo
tion hold, F1 vanishes on the leftgoing branch~es! of the
horizon andF2 vanishes on the rightgoing branch~es! of the
horizon. It follows thatF2h is nonvanishing on the horizon
that the shell crosses. Now let

PM :5PM1hF21R85hLF2h
21 , ~3.5a!

PR :5PR2hF21M 85PR1hR~ lnuF2hu!81
hL

2
~F2h

2F2h
21 !. ~3.5b!
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2284 57LOUKO, WHITING, AND FRIEDMAN
When the equations of motion hold, equation~3.5a! shows
that

PM52~T2hr * !8, ~3.6!

where r * is the tortoise coordinate@47#. For h511
(h521), T2hr * is the retarded~advanced! Eddington-
Finkelstein time coordinate. WhilePM was associated with
the Killing time @10#, our prospective new momentumPM is
therefore associated with the retarded or advan
Eddington-Finkelstein time.

Away from the shell, a calculation of the Poisson brack
shows that the set (M ,R,PM ,PR) is a candidate for a new
gravitational canonical chart. We need to find shell variab
that complete this set into a full canonical chart.

For the rest of this subsection, we assume that the s
history does not lie on a horizon. The special case where
shell straddles a horizon will be discussed in subsec
III B.

As a preliminary, suppose that the constraints~2.8! hold,
and consider the regularity of the variables. Away from t
shell, the constraints~2.8! imply thatR8 andPL are continu-
ous, andF6 are thus both continuous. In the notation
appendix A, the distributional content~A2! of the constraints
at the shell can be written as

05DF2h , ~3.7a!

05p1D~LPL!. ~3.7b!

From~3.7a! we see thatF2h is continuous at the shell. Equa
tion ~3.5a! then implies thatPM is continuous, with the ex-
ception that it diverges on the horizon that is parallel to
shell history. The first equality sign in~3.5b!, and the obser-
vation that the vacuum constraints are linear combination
M 8 and PR @10#, imply that PR is vanishing everywhere
except possibly at the shell. The rightmost expression
~3.5b! shows thatPR cannot contain a delta-function at th
shell, andPR is therefore everywhere vanishing. From no
on, we can therefore proceed assuming thatF2h andPR are
continuous, and that theirr -derivatives have at most finit
discontinuities at isolated values ofr . By ~3.5a!, the same
will then hold for PM , with the exception of the horizon
wherePM diverges. This tightens the neighborhood of t
classical solutions in which the fields can take values, bu
will not affect the critical points of the action. The reason f

this assumption is that it will make the termsPMṀ and

PRṘ in our new action distributionally well defined.
We can now proceed to the Liouville forms. A dire

computation yields

PLd L1PRd R1Md PM2PRd R

52~hRd R lnuF2hu!81d FhRL

2
~F2h

212F2h!

1hRR8 lnuF2huG . ~3.8!

The variationd affects the smoothness of the gravitation
variables in the same way as the time derivative in subs
tion II B. Away from the horizon parallel to the shell histor
d
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on which F2h vanishes andPM diverges, all the terms in
~3.8! are therefore distributionally well defined: the terms
the left-hand side are at most discontinuous inr , while the
terms on the right-hand side may contain at worst de
functions arising from (d R)8. The status at the horizon o
which F2h vanishes will be discussed below.

To obtain the difference in the prospective Liouvil
forms, we need to integrate the relation~3.8! over r . In an
integral over a finite interval inr , the only subtlety arises
from the horizon on whichF2h vanishes. On a classica
solution with massM , it can be shown from the embeddin
analysis of Appendix C that

F2h5
Lh

4M
~r 2r h!1O~~r 2r h!2!, ~3.9!

where the subscripth indicates the values of the quantities
the horizon on whichF2h vanishes. Equations~3.9! and
~3.5a! therefore show that, on the classical solution, the
tegral of~3.8! across the horizon is well defined in the pri
cipal value sense, just as in the corresponding analysi
Ref. @10#. To extend this argument off the classical solution
we note that when the constraints hold,M (r ) is constant inr
across this horizon. As our action contains the constra
with their associated Lagrange multiplies, we argue t
M (r ) can be assumed smooth at the horizon in the rela
~3.8!. We can then again employ~3.9! and ~3.5a!, and it is
seen as above that the integral of~3.8! across this horizon is
well defined in the principal value sense.

What needs more attention is the falloff in~3.8! at the
infinities. From~2.12!, ~3.1!, and~3.5!, we have

M ~ t,r !5M 6~ t !1O`~ ur u2e!, ~3.10a!

R~ t,r !5ur u1O`~ ur u2e!, ~3.10b!

PM~ t,r !56h~112M 6ur u21!1O`~ ur u212e!,
~3.10c!

PR~ t,r !5O`~ ur u212e!. ~3.10d!

This means that the integrals of the third term on the le
hand side and the total variation term on the right-hand s
diverge asr→6`. The geometrical reason for this dive
gence is, as seen from~3.6!, thatPM is associated with anull
time, rather than an asymptotically Minkowski time.

The cure is to introduce convergence functions that p
vide the necessary translation between asymptotically sp
like hypersurfaces and asymptotically null hypersurfaces.
this end, letg(M 1 ,M 2 ;r ) be a function that is smooth inr
and depends on our variables only throughM 1 and M 2 as
indicated. Letg have the falloff

g~M 1 ,M 2 ;r !56M 6
2 ur u211O`~ ur u212e!. ~3.11!

Adding 2hd g on both sides of~3.8! yields now an equation
whose both sides can be integrated inr from 2` to `. The
substitution terms arising from the first term on the righ
hand side vanish, and we obtain
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E
2`

`

~PLdL1PRd R!dr5E
2`

`

~PRd R2Md PM1hd g!dr

1d H E
2`

` FhRL

2
~F2h

212F2h!

1hRR8 lnuF2hu2hgGdrJ .

~3.12!

All the terms in~3.12! are well defined, provided the integra
across the horizon on whichF2h vanishes is interpreted in
the principal value sense. We therefore see that the
(M ,R,r,PM ,PR ,p) provides a new canonical chart on th
phase space. Note that this canonical transformation le
the shell variables~r,p! entirely invariant. The geometrica
meaning of the convergence functiong will be discussed in
Sec. IV.

What remains is to write the constraint terms in the act
in terms of the new variables. Consider first the constra
away from the shell. A straightforward rearrangement yie

NH1NrHr5NRPR1ÑM 8, ~3.13!

where

Ñ:5~hLNr2N!F2h
21 , ~3.14a!

NR:5NrR82NR21PL . ~3.14b!

Note thatNR is the same as in Ref.@10#. Both terms on the
right-hand side of~3.13! are distributionally well defined
Away from the shell, we can therefore include the constra
in the action in the form shown on the right-hand side

~3.13!, with Ñ andNR as independent Lagrange multiplier
This constraint redefinition is mildly singular on the horizo
parallel to the shell history, owing to the divergence ofPM ;
however, one can argue as in Ref.@10# that the redefined
constraints are equivalent to the old ones by continuity. T
falloff of the new multipliers is

Ñ57N61O`~ ur u2e!, ~3.15a!

NR5O`~ ur u2e!. ~3.15b!

To recover the delta-constraint~3.7a!, we observe from
~3.5b! that ~3.7a! is equivalent toPR not having a delta-
contribution at the shell. We therefore argue that including
the action the constraint term2*dt*2`

` drNRPR , with NR

an independent Lagrange multiplier, yields both the c
straint PR50 away from the shell and the delta-constra
~3.7a! at the shell.1

Finally, consider the delta-constraint~3.7b!. Using ~3.5a!
and ~3.7a!, equation~3.1a! implies

1A subtlety in this argument is thatNR need not be continuous a
the shell, not even on the classical solutions. The productNRPR

would therefore not be distributionally well defined in the event t
PR did contain a delta-contribution at the shell.
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DM52
D~LPL!

P M̂

. ~3.16!

When ~3.7a! holds,~3.7b! is thus equivalent to

DM5
p

P M̂

. ~3.17!

Including in the action the constraint term

2*dt*2`
` drÑ @M 82pPM

21d(r 2r)#, with Ñ an independent
Lagrange multiplier, therefore yields both the constra
M 850 away from the shell and the delta-constraint~3.7b! at
the shell.

These considerations have led us to the action

S5E dtFpṙ1E
2`

`

dr~PRṘ2MṖM1hġ!G
2E dtE

2`

`

dr$NRPR1Ñ@M 82pPM
21d~r 2r!#%

2E dt~N1M 11N2M 2!. ~3.18!

Both the action and its variations are well defined. The Po
son bracket algebra of the constraints clearly closes. N

that the convergence termhġ in no way contributes to the
local variations of the action.

The Liouville term2MṖM can be brought to a form in
which the time derivative is onM , at the cost of introducing
another convergence term. LetG(r ) be a smooth function of
r only, with the falloff

G~r !5611O`~ ur u212e!. ~3.19!

We then have

hġ2MṖM5~PM2hG!Ṁ2hġ1
d

dt
~hGM12hg

2MPM !. ~3.20!

All the terms in~3.20! are well defined, and each side can
integrated inr from 2` to `. We arrive at the action

S5E dtH pṙ1E
2`

`

dr@PRṘ1~PM2hG!Ṁ2hġ#J
2E dtE

2`

`

dr$NRPR1Ñ@M 82pPM
21d~r 2r!#%

2E dt~N1M 11N2M 2!. ~3.21!

The geometrical meaning of the convergence terms will
come explicit in Sec. IV.

t



er
p

iv
o

nd

-
th

o

e
co
on
gu

in
.
a

e
in
to

l.

ing

th
e

re

r
on
i

nd
o

ite

oes

int,

hen

ach

o
s

e

d

2286 57LOUKO, WHITING, AND FRIEDMAN
B. Shell on a horizon

In subsection III A we excluded the special case wh
the shell straddles a horizon. We now discuss how this s
cial case can be included.

When the shell straddles a horizon, the zero ofF2h oc-
curs at the shell. The delta-constraints at the shell are g
by ~3.7!. When the equations of motion hold, the masses
the two sides agree, and the embedding analysis of Appe

C shows that equation~3.9! holds, now withLh5L̂ and
r h5r. From ~3.5b! we see thatPR cannot contain a delta
function at the shell. We can therefore again assume
F2h andPR are continuous, and that theirr -derivatives have
at most finite discontinuities at isolated values ofr .

The new feature in equation~3.8! is that the singularity of
F2h

21 andPM now occurs at the shell. When the equations
motion hold, we see from~3.5a! and ~3.9! that integrating
each side of~3.8! in r across the shell is well defined in th
principal value sense, and we argue as above that this
clusion can be extended away from the classical soluti
provided the constraints are understood to hold. We ar
similarly that the left-hand side of~3.8! contains no delta-
contributions at the shell, and it is therefore justified to
terpret the integral of~3.8! over r as the principal value
Convergence at the infinities is accomplished as above,
the substitution terms from the totalr -derivative on the right-
hand side of~3.8! vanish. We therefore again arrive at~3.12!.
Equations~3.16! and ~3.17! remain valid, with the under-

standing (P M̂)2150, and the delta-constraints can be tak
in the action as before. To justify the manipulations lead
to the action~3.21!, we again appeal to the constraints
argue thatM can be regarded as smooth inr at the shell, and

that Ṁ then does not contain a delta-function at the shel
We therefore see that the actions~3.18! and~3.21! remain

valid in a suitable limiting sense also for a horizon-straddl
shell.

IV. REDUCTION

In this section we eliminate the constraints and find
dynamics in the reduced phase space. We shall continu
treat the casesh561 separately, and we denote the cor

sponding two components of the reduced phase space byG̃h .
We first assume, in subsection IV A, that the shell histo
does not lie on a horizon, and we then include the horiz
straddling shell as a limiting case in subsection IV B. F
nally, in subsection IV C, we attach the right-moving a
left-moving test shell limits to the respective components
the reduced phase space as regular boundaries.

It will be useful in the reduction to assume a more defin
form for the convergence functiong. From now on, we take

g~M 1 ,M 2 ;r !5M 1
2 g1~r !1M 2

2 g2~r !, ~4.1a!

whereg6(r ) are smooth functions ofr only, with the falloff

g6~r !56ur u21u~6r !1O`~ ur u212e!, ~4.1b!

whereu denotes the step function.
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A. Shell not on a horizon

In this subsection we assume that the shell history d
not lie on a horizon.

Solving the constraintPR50 implies thatR andPR sim-
ply drop out of the action. To solve the remaining constra

PMM 82pd~r 2r!50, ~4.2!

we write

M5m1u~r 2r!1m2u~r2r !, ~4.3!

wherem6(t) are regarded as independent variables. We t
have

Ṁ ~r !5ṁ1u~r 2r!1ṁ2u~r2r !1~m22m1! ṙd~r 2r!,
~4.4!

and the constraint~4.2! implies

p5~m12m2!P M̂. ~4.5!

Note that as the shell history does not lie on a horizon, e
of the two factors on the right-hand side of~4.5! is nonvan-
ishing.

Using ~4.1b!, ~4.4!, and~4.5!, we find

pṙ1E
2`

`

dr@~PM2hG!Ṁ2hġ#5p1ṁ11p2ṁ2

1
d

dt Fh~m12m2!

3E
0

r

GdrG , ~4.6!

where

p1 :5E
2`

`

dr@PMu~r 2r!2hGu~r !22hm1g1#,

~4.7a!

p2 :5E
2`

`

dr@PMu~r2r !2hGu~2r !22hm2g2#.

~4.7b!

The singularity ofPM(r ) occurs in precisely one of the tw
integrals in ~4.7!, and the integral over this singularity i
interpreted in the principal value sense. Substituting~4.6!
into ~3.21!, and dropping the integral of a total derivative, w
obtain the reduced action

S5E dt~p1ṁ11p2ṁ22N1m12N2m2!. ~4.8!

This shows that the set (m1 ,m2 ,p1 ,p2) provides local ca-

nonical coordinates onG̃h . The equations of motion derive
from the action~4.8! read

ṁ650, ~4.9a!

ṗ652N6 ~4.9b!
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The emergence ofm6 as two coordinates onG̃h is not
surprising: on a classical solution,m6 are the two Schwarzs
child masses, and these masses together withh completely
determine the four-dimensional spacetime. To understand
geometrical meaning ofp6 , we recall from~3.6! that with-
out the convergence terms proportional toG and g6 , the
integrals in~4.7! would give the Eddington-Finkelstein tim
differences between the shell and the infinities on the c
stantt hypersurface. As the constantt hypersurface extend
to the spacelike infinities, such null-time differences wou
be infinite. The role of the convergence terms in~4.7! is to
absorb the infinities: one can think of the convergence te
as associating to the constantt hypersurface a hypersurfac
that is asymptoticallynull as r→6`. For h521, this as-
sociated hypersurface extends from the left-hand-sideI1 to
the right-hand-sideI2 ~pointsA andB in Fig. 1!; for h51,
the situation is the reverse. Thus,p1 is the Eddington-
Finkelstein time difference between the shell and the rig
hand-side infinity of the associated asymptotically null h
persurface, and2p2 is the Eddington-Finkelstein time
difference between the shell and the left-hand-side infinity
the associated asymptotically null hypersurface. The eq
tions of motion~4.9b! show that the time evolution ofp6

only arises from the evolution of the constantt hypersurfaces

at the infinities. Thus, in this local canonical chart onG̃h , the
information about the shell motion is encoded in equatio
~4.9b!.

It should be emphasized that the degrees of freed
present inp6 are invariant under the isometries of the spa
time. Killing time translations on the spacetime move bo
the shell history and the constantt hypersurface: in particu
lar, they move the two asymptotic ends of the constant
hypersurface, and hence the asymptotic ends of the as
ated asymptotically null hypersurface. However, t
Eddington-Finkelstein timedifferencesthat constitute the
momenta are invariant under Killing time translations.

As we have assumed that the shell history does not lie
a horizon, the coordinates (m1 ,m2 ,p1 ,p2) do not form a

global chart onG̃h . Instead, these coordinates provide tw
disjoint local canonical charts, covering two disconnec

sets in G̃h : one for 0,m2,m1 and the other for
0,m1,m2 , with unrestricted values ofp6 in each chart.
These coordinates cannot be extended tom15m2 . The rea-
son is that whenm15m2 , the shell history lies on a hori
zon, the singularity inPM is at r 5r, and the first term unde
each integral in~4.7! makes bothp1 andp2 divergent. We
shall address the special casem15m2 and the global struc-

ture of G̃h in subsection IV B.

It will be useful to introduce onG̃h another set of loca

canonical coordinates, (m̄,m̃,p̄,p̃), by the transformation

m̄5 1
2 ~m11m2!, ~4.10a!

m̃5 1
2 ~m12m2!, ~4.10b!

p̄5p11p2 , ~4.10c!

p̃5p12p2 . ~4.10d!
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The inverse transformation is

m65m̄6m̃, ~4.11a!

p65 1
2 ~ p̄6 p̃!. ~4.11b!

From ~4.7!, ~4.10c!, and~4.10d!, we see thatp̄ contains the
information about the asymptotic ends of the constantt hy-
persurface, whereas the information about the location of

shell with respect to the infinities is encoded inp̃. We can

therefore loosely regard the pair (m̄,p̄) as describing the

vacuum spacetime dynamics, and the pair (m̃,p̃) as describ-
ing the shell. While not literal, this view will be helpful fo

understanding the global structure ofG̃h in subsections IV B
and IV C.

As defined by the transformation~4.10!, the coordinates

(m̄,m̃,p̄,p̃) provide two disjoint local canonical charts th

cover onG̃h the same two disconnected sets as the coo
nates (m1 ,m2 ,p1 ,p2). The ranges of the variables i

these two charts are respectively 0,m̃,m̄ and 0,2m̃,m̄,

each with unrestrictedp̄ and p̃. The coordinates (m̄,m̃,p̄,p̃)

cannot, however, be extended tom̃50. While p̄ remains
finite for a horizon-straddling shell, it is seen from~4.7! that

p̃ must diverge.

B. Shell on a horizon

We now wish to find onG̃h coordinates that extend to th
horizon-straddling shell. We shall first rely on the spaceti
picture to identify the geometrical information that the coo

dinates must carry in this limit. We then construct onG̃h a
global canonical chart that contains this information.

Consider the spacetime of Fig. 1. The shell is left-movin
corresponding toh521, and the shell history lies in the
future of the left-going horizon, corresponding tom1.m2 .
The pointsA andB indicate the ends of the asymptotical
null hypersurface that is associated to the hypersurface
constantt. p1 is the difference in the Eddington-Finkelste
time between pointsp1 andq1 , andp2 is the difference in
the Eddington-Finkelstein time between pointsq2 andp2 .

In this spacetime, letg1 be the radial null geodesic con
nectingp1 to q1 , let g2 the radial null geodesic connectin
q2 to p2 , and letg3 be the radial null geodesic connectingp1
to p2 . Let l i ( i 51,2,3) be the affine parameters on the
geodesics, each normalized to have the range@0,1#. l2 and
l3 increase toward the future.l1 increases toward the futur
if q1 is in the future ofp1 as shown in the figure, correspond
ing to p1,0, and it increases towards the past ifq1 is in the
past of p1 , corresponding top1.0. In the special case
p150, q1 and p1 coincide, andg1 degenerates to a poin
We now define the quantitiesQ6 by

Q1 :5~]/]l1!a~]/]l3!aup1
, ~4.12a!

Q2 :5~]/]l2!a~]/]l3!aup2
. ~4.12b!

Similarly, consider a spacetime in whichh521 but the
shell history lies in the past of the left-going horizon, corr
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2288 57LOUKO, WHITING, AND FRIEDMAN
sponding tom1,m2 . In this spacetime, the counterparts
points p1 and p2 are below the left-going horizon, but th
three null geodesicsg i ( i 51,2,3) can be defined as abov
the only modification being that the potentially degener
one is nowg2 . In this spacetime, we again defineQ6 by
~4.12!.

A straightforward calculation yields

Q1528m1Fm22m11um12m2uexpS 2
p1

4m1
D G ,
~4.13a!

Q2528m2Fm12m21um12m2uexpS p2

4m2
D G ,
~4.13b!

valid both form1.m2 andm1,m2 . The canonical coor-
dinates (m1 ,m2 ,p1 ,p2) can therefore be replaced by th
noncanonical coordinates (m1 ,m2 ,Q1 ,Q2), with Q2,0
for m1.m2 andQ1,0 for m1,m2 .

The crucial observation is now thatQ6 , as defined in
~4.12!, remain well defined also for the spacetimes shown
Fig. 2, in which m15m2 and the shell history lies on
common horizon. In these spacetimes,Q6 can each take
arbitrary negative values. As the soldering along the hori
is affine,Q6 precisely encode the coordinate-invariant info
mation about the relative loci of the pointsp1 , p2 , A, andB
~or, equivalently, the pointsp1 , p2 , q1 , andq2!. This means
that the set (m1 ,m2 ,Q1 ,Q2) provides a global, nonca

nonical chart onG̃2 . The domain isQ2,0 for m1.m2 ,
Q1,0 for m1,m2 , andQ6,0 for m15m2 .

In the above construction we have takenh521. It is
clear that an entirely analogous discussion carries thro
for h51, with straightforward changes in formulas~4.13!,

and yielding a global, noncanonical chart on onG̃1 .

To find a globalcanonical chart on G̃h , consider the
transformation

p̄:5 p̄18hm̃~ lnum̃/m̄u21!, ~4.14a!

p̃:5 p̃18hm̄~ lnum̃/m̄u11!. ~4.14b!

Equations~4.14! clearly define a canonical transformatio

from (m̄,m̃,p̄,p̃) to (m̄,m̃,p̄,p̃) individually in the domains

0,m̃,m̄ and 0,2m̃,m̄. It is straightforward to verify

that the chart (m̄,m̃,p̄,p̃) becomes global onG̃h when ex-

tended tom̃50 with unrestricted values ofp̄ and p̃. For
h521, in particular,~4.13! shows thatQ6 can be written as

Q15216~m̄1m̃!H m̄ expF2S m̄2m̃

m̄1m̃
D 2

p̄1p̃

8~m̄1m̃!
G2m̃J ,

~4.15a!

Q25216~m̄2m̃!H m̄ expF2S m̄1m̃

m̄2m̃
D 1

p̄2p̃

8~m̄2m̃!
G1m̃J ,

~4.15b!

from which the regularity of them̃→0 limit is manifest.
e

n

n

h

We have thus shown that the set (m̄,m̃,p̄,p̃) provides a

global canonical chart onG̃h . The domain of the variables i

um̃u,m̄, with p̄ and p̃ taking all real values. We therefor

haveG̃h.R4. The Hamiltonian reads

h5~N11N2!m̄1~N12N2!m̃. ~4.16!

The values ofm̄ andm̃ are constants of motion, whereas th

equations of motion forp̄ andp̃ show that the evolution of
Q6 only arises from the evolution of the constantt hyper-
surface at the two spacelike infinities. This means that
information about the shell dynamics is contained in the m

mentum equations of motion both form̃Þ0 ~as was already

seen in subsection IV A! as well as form̃50.

C. Test shell limit

We have so far assumed that the unreduced shell mom
tum p is nonvanishing. We saw that this assumption is co
patible with the dynamics, and that it divides the reduc

phase space into the two disconnected sectorsG̃h , labeled by
h5sign(p). As the unreduced bulk action~2.6! is not differ-

entiable inp at p50, it is not clear whetherG̃1 and G̃2 are
joinable to each other in any smooth sense. Our reduc
formalism is not well suited to examining this issue: t
canonical transformation of Sec. III was tailored to the n
hypersurfaces separately forh561.

We can, however, address the limitp→0 individually in

G̃1 andG̃2 . As the shell stress-energy tensor~2.11! vanishes
for p→0, this is the limit of a test shell that traverses t
spacetime without affecting it gravitationally. We shall no
show that one can attach the right-moving and left-mov

test shell limits respectively toG̃1 andG̃2 as smooth bound-
aries with topologyR3.

When the test shell history does not lie on a horizon,
situation is straightforward. We can start with the coor
nates (m1 ,m2 ,p1 ,p2), separately for 0,m2,m1 and
0,m1,m2 , and simply take the limitm15m2 with p6

remaining finite. From the geometrical interpretation ofp6 it

is seen that this attaches toG̃h those test shell configuration
in which the test shell does not straddle a horizon. The lo
of the test shell history is determined byp6 exactly as in
subsection IV A.

Including a horizon-straddling test shell is more intrica

In the global chart (m̄,m̃,p̄,p̃), the limit of a test shell on a

horizon is achieved by setting firstm̃50 and then taking

hp̃→2` while keepingp̄ finite. On the other hand, the
limit of a test shell off the horizon requires taking simult

neouslym̃→0 andhp̃→2` so thatp̄ and p̃ remain finite.
What we need is a new canonical chart in which both
these limits are brought to finite values of the coordinate

To this end, let

x:5expS hp̃

8m̄
D , ~4.17a!
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px :528hm̃m̄ expS 2
hp̃

8m̄
D , ~4.17b!

P̄:5p̄2
p̃ m̃

m̄
. ~4.17c!

As

P̄d m̄1pxd x5p̄d m̄1p̃d m̃2d ~p̃ m̃!, ~4.18!

equations~4.17! define a canonical transformation from th

chart (m̄,m̃,p̄,p̃) to the chart (m̄,x,P̄,px). The new canoni-

cal chart is global: the range ism̄.0 andx.0, with unre-

strictedP̄ and px . The qualitative location of the shell his
tory is governed by the sign ofpx : px.0 (px,0) yields a
shell in the future~past! of the horizon that is parallel to th
shell history, whilepx50 yields a shell history on the hori
zon. It is now easily seen that in this chart the test shell li
is x→0, with the other coordinates remaining at finite valu
A horizon-straddling test shell is recovered withpx50,
whereaspx.0 (px,0) gives a test shell in the future~past!
of the horizon that the test shell does not cross. Clearly,

test shell limit constitutes a smooth boundary ofG̃h with
topologyR3.

V. HAMILTONIAN FOR THE SHELL RADIUS
IN STATIONARY EXTERIOR COORDINATES

While the charts onG̃h introduced in Sec. IV are wel
adapted to the geometry of the spacetime, they contain
information about the shell motion in a nontransparent m

ner. In this section we introduce onG̃h a local canonical
chart that describes more directly the motion of the shel
the spacetime geometry. A chart of this kind is of particu
physical interest if one wishes to quantize the system a
model of black hole radiation with back reaction@30,31,34#.

The physical situation we have in mind is a static obser
who scrutinizes the shell motion from an asymptotically fl
infinity. For definiteness, we take this infinity to be the righ
hand-side one. We setN151, so that the coordinate timet
coincides with the observer’s proper time. To incorporate
observer’s ignorance of what is happening at the left-ha
side infinity, we setN250.

We further assume that the shell history reaches a fu
or past null infinity on the right-hand side. The Penrose d
gram for h521 is therefore as in Fig. 1, and the Penro
diagram forh51 is the time inverse. In particular, we hav

m2,m1 , and we are in the region ofG̃h covered by the
chart (m1 ,m2 ,p1 ,p2) with 0,m2,m1 .

Consider thus the chart (m1 ,m2 ,p1 ,p2) with
0,m2,m1 . From Sec. IV we recall that the pa
(m1 ,p1) only carries information about the geometry rig
of the shell, and the pair (m2 ,p2) only carries information
about the geometry left of the shell. To describe the mot
of the shell as seen from the right-hand-side infinity, we c
therefore leave the pair (m2 ,p2) intact and seek a canonica
transformation that replaces (m1 ,p1) by a new pair.

To specify the new pair, we choose in the Kruskal geo
it
.

e

he
-

n
r
a

r
t

e
-

re
-

n
n

-

etry right of the shell a stationary coordinate system t
conforms to the falloff~2.12! with N151. As R(r ) is then
an increasing function, we can assumeR(r )5r without loss

of generality. Letr̂ stand for the shell curvature radius

these coordinates:r̂ (t):5R(r(t))5r(t). We now seek a mo-

mentump̂ such that there is a canonical transformation fro

the pair (m1 ,p1) to the pair (r̂ ,p̂). Writing the transforma-

tion as p15p1( r̂ ,m1) and p̂5 p̂( r̂ ,m1), the canonicality
criterion reads

]@ p̂~ r̂ ,m1!#

]m1
52

]@p1~ r̂ ,m1!#

] r̂
. ~5.1!

Substitutingp1 from ~4.7a! to the right-hand side of~5.1!
yields

]@ p̂~ r̂ ,m1!#

]m1
5PM~ r̂ ,m1!, ~5.2!

wherePM(r ,m1) is determined by the choice of the statio
ary coordinate system. Note that the convergence funct
G(r ) and g1(r ) have not entered~5.2!. Solving the differ-

ential equation~5.2! for p̂( r̂ ,m1) yields the desired canoni

cal transformation, and inverting this solution givesm1( r̂ ,p̂)
as a function in the new canonical chart. The action read

S5E dt@p2ṁ21 p̂r̂̇ 2m1~ r̂ ,p̂!#. ~5.3!

The shell stress-energy tensor in the new chart can be fo
using ~2.10!, ~2.11! and ~4.5!.

As explicit examples, we now present the shell Hamil

nians m1( r̂ ,p̂) in four different stationary coordinate sys
tems. We arrived at the first three coordinate systems

seeking a simple functional form form1( r̂ ,p̂). The fourth
coordinate system is the spatially flat one used in Ref.@30#.

A. Polynomial gauge

As a first example, we consider coordinates in which
metric reads

R5r , ~5.4a!

L25N225112m1 /r 1~2m1 /r !21~2m1 /r !3,
~5.4b!

L2Nr52h~2m1 /r !2. ~5.4c!

With r .0, these coordinates cover half of Kruskal manifo
in the appropriate manner, and the falloff~2.12! is satisfied
with e51. The relation to the curvature coordinates is

R5r , ~5.5a!

T5t12hm1 lnu122m1 /r u. ~5.5b!

We find

PM~r ,m1!5h~112m1 /r !. ~5.6!
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Solving ~5.2! with a convenient choice for the integratio
constant, we obtain

m1~ r̂ ,p̂!5Ah p̂r̂ 2 1
2 r̂ . ~5.7!

The equation of motion derived from the Hamiltonia

~5.7! can be integrated asht5 r̂ 12m1 ln(r̂/m1)1constant.
It is easily verified that this is the correct equation for a n
geodesic in the metric~5.4!.

B. Exponential gauge

Consider next coordinates in which the metric reads

R5r , ~5.8a!

L25N225exp~2m1 /r !@22~122m1 /r !exp~2m1 /r !#,
~5.8b!

L2Nr52h@12~122m1 /r !exp~2m1 /r !#. ~5.8c!

With r .0, these coordinates cover half of Kruskal manifo
in the appropriate manner, and the falloff~2.12! is satisfied
with e51. The relation to the curvature coordinates is

R5r , ~5.9a!

T5t1hE r

@~122m1 /r 8!212exp~2m1 /r 8!#dr8.

~5.9b!

We find

PM~r ,m1!5h exp~2m1 /r !. ~5.10!

Solving ~5.2! with a convenient choice for the integratio
constant, we obtain

m1~ r̂ ,p̂!5 1
2 r̂ ln~2h p̂/ r̂ !. ~5.11!

The equation of motion can be solved implicitly in terms
the exponential integral function.

C. Eddington-Finkelstein–type gauge

Consider next coordinates in which the metric reads

R5r , ~5.12a!

L25N225112m1 /r , ~5.12b!

L2Nr522hm1 /r . ~5.12c!

With r .0, these coordinates cover half of Kruskal manifo
in the appropriate manner. The relation to the curvature
ordinates is

R5r , ~5.13a!

T5t12hm1lnur /~2m1!21u. ~5.13b!

We recognize these coordinates as simply related to
Eddington-Finkelstein coordinates@47#: t2hr is the retarded
~advanced! Eddington-Finkelstein time forh51 (h521).
l

o-

e

In terms of the tortoise coordinater * :5r 12m1ln@r/
(2m1)21#, we havet2hr 5T2hr * .

There is a minor technical issue in that the coordina
~5.12! do not obey the falloff ~2.12!: we have
PL522hm1(112m1 /r )21/2, which violates~2.12c!. We
therefore take the coordinates~5.12! to hold for r ,Rcut,
whereRcut is a large parameter, and smoothly deform the

to a faster falloff forr .Rcut. As equation~5.2! is local in r̂ ,
the form of the canonical transformation forr ,Rcut is inde-
pendent of that forr .Rcut. In the end, we can either leav
the Hamiltonian unspecified forr .Rcut, or argue that one
can take the limitRcut→` in the sense of some suitab
renormalization in the parameters of the canonical trans
mation.

Proceeding in this way, we find

PM~r ,m1!5h, ~5.14!

and, with a convenient choice of the integration constant

m1~ r̂ ,p̂!5h p̂. ~5.15!

The Hamiltonian~5.15! clearly correctly reproduces the fac
that the Eddington-Finkelstein timet2hr is constant on the
shell history.

D. Spatially flat gauge

As the last example, we consider coordinates in which
metric reads

R5r , ~5.16a!

L5N51, ~5.16b!

Nr52hA2m1 /r . ~5.16c!

With r .0, these coordinates cover half of Kruskal manifo
in the appropriate manner. The relation to the curvature
ordinates is

R5r , ~5.17a!

T5t12hS A2m1r 1m1lnU12A2m1 /r

11A2m1 /r
U D .

~5.17b!

We recognize these coordinates as the spatially flat coo
nates@43–45#, recently employed in the study of Hawkin
radiation with back reaction in Ref.@30#.

There is again a minor technical issue in that the coo
nates~5.16! do not obey the falloff~2.12!. A Hamiltonian
falloff analysis compatible with these coordinates has b
discussed in the metric variables in Ref.@37#. Here, however,
we shall simply argue in terms of a cutoff parameterRcut as
above. We have

PM~r ,m1!5
h

11A2m1 /r
, ~5.18!

and solving~5.2! with a suitable integration constant yield

m1( r̂ ,p̂) implicitly as the solution to
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h p̂5A2m1 r̂ 2 r̂ ln~11A2m1 / r̂ !. ~5.19!

In order to make a connection to the work in Ref.@30#, we
define

pc :5 p̂2h@A2m2 r̂ 2 r̂ ln~11A2m2 / r̂ !#, ~5.20a!

pc :5p22h@ r̂ 22A2m2 r̂ 14m2ln~11Ar̂ /~2m2!!#.
~5.20b!

Equations~5.20! define a canonical transformation from th

chart (r̂ ,m2 ,p̂,p2) to the new canonical char

( r̂ ,m2 ,pc ,pc). The Hamiltonianm1( r̂ ,m2 ,pc) in the new

chart is obtained~in implicit form! by eliminating p̂ from
~5.19! and ~5.20a!. As the value ofm2 is a constant of mo-
tion, the system can be partially reduced by regardingm2 as

a prescribed constant. The term*dtpcṁ2 then drops from
the action, and we obtain

S5E dt@pcr̂̇ 2m1~ r̂ ,m2 ,pc!#. ~5.21!

For h521, this is the action derived in Refs.@30, 37# by
different methods. Forh51, it is not. The reason is that th
coordinates~5.16! are the ingoing spatially flat coordinate
for h521 and the outgoing spatially flat coordinates f
h51, thus covering all of the spacetime right of the shell
each case, whereas Ref.@30# was physically motivated to us
the ingoing spatially flat coordinates irrespectively the dir
tion of the shell motion. It would be straightforward to repe
the above analysis with the sign ofh in ~5.16! reversed,
recovering the result of Refs.@30, 37# for h51. Note, how-
ever, that with the sign ofh in ~5.16! reversed, the coordi
nates do not cover the part of the shell history that lies ins
the horizon.

VI. PARAMETRIZATION CLOCKS AT THE INFINITIES

In the previous sections we fixed the evolution of t
spatial hypersurfaces at the spacelike infinities by takingN6

to be prescribed functions oft. In this section we free this
evolution by making the replacement@10#

N656 ṫ6 ~6.1!

in the boundary term in the actions~2.13! and ~3.21!. The
variations of N become then unrestricted atr→6`, but
varying the action with respect tot6 yields the relations
~6.1! as equations of motion. The new variablest6 are the
proper times measured by static standard clocks at the
spective infinities, with the convention thatt1 increases to-
ward the future andt2 increases toward the past.

In the absence of a shell, it was shown in Ref.@10# that
the action containingt6 as independent variables can
brought to a canonical form in which the unconstrained
grees of freedom and the pure gauge degrees of freedom
entirely decoupled. We now outline the analogous resul
the presence of the null shell. For brevity, we shall refr
from explicitly spelling out the smoothness properties of
various emerging phase space functions.
-
t

e

e-

-
are
n

e

We start from the action~3.21!, with g given by~4.1!, and
we make in the boundary term the replacement~6.1!. The
resulting action is a sum of two decoupled parts: a Ham
tonian actionSR consisting of the terms that contain the pa
(R,PR), and the remainderS0 . We only need to conside
S0 . As in Sec. III, we assume first that the shell history do
not lie on a horizon, and relax this assumption at the end

Under the time integral inS0 , the terms homogeneous i
the time derivatives are

Q:5pṙ2M 1ṫ11M 2ṫ21E
2`

`

dr@~PM2hG!Ṁ2hġ#.

~6.2!

We pass from the noncanonical cha
„r,M (r ),p,PM(r );t1 ,t2… to the new chart

„m̄,r,G(r ), p̄ ,p,PG(r )…, defined by

G~r !:5M 8~r !, ~6.3a!

PG~r !5 1
2 ~t11t2!1E

2`

`

dr8$ 1
2 @PM~r 8!2hG~r 8!#

3@u~r 82r !2u~r 2r 8!#2hM 1g1~r 8!

1hM 2g2~r 8!%, ~6.3b!

m̄:5 1
2 ~M 11M 2!, ~6.3c!

p̄ :5t12t21E
2`

`

dr$@PM~r !2hG~r !#22hM 1g1~r !

22hM 2g2~r !%. ~6.3d!

The falloff is

G~ t,r !5O`~ ur u212e!, ~6.4a!

PG~ t,r !522hM 6lnur /M 6u1O`~ ur u0!. ~6.4b!

By techniques similar to those in Ref.@10#, we find

Q5pṙ1 p̄ ṁ̄1E
2`

`

drPG~r !Ġ~r !1
d

dt
~M 1t11M 2t2!.

~6.5!

The chart „m̄,r,G(r ), p̄ ,p,PG(r )… is therefore canonical
Dropping the integral of a total derivative, the action read

S05E dtS pṙ1 p̄ ṁ̄1E
2`

`

drPGĠ D
2E dtE

2`

`

drÑ @G2p~hG2PG8 !21

3d~r 2r!#. ~6.6!

To express the constraint in the new chart, we have u
equation~6.3a! and the relationPM5hG2PG8 , which fol-
lows by differentiating~6.3b!.

The action~6.6! is canonical, but the constraint couple
the variables in a nontransparent way. To decouple the
grees of freedom, we pass to the cha

„m̄,m̃,G̃(r ), p̄ , p̃,PG̃ (r )…, defined by
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G̃~r !:5G~r !2p@hG~r !2PG8 ~r !#21d~r 2r!, ~6.7a!

PG̃~r !:5PG~r !, ~6.7b!

m̃:5 1
2 p~hĜ2PG8̂ !21, ~6.7c!

p̃:52PĜ22hE
0

r

drG~r !. ~6.7d!

The falloff of G̃ andPG̃ is clearly the same as that ofG and
PG , given in ~6.4!. Using the analogue of relation~A4! for
PG , we find

pṙ2 p̃ṁ̃1E
2`

`

dr~PGĠ2PG̃Ġ̃!5
d

dt F2hm̃E
0

r

drG~r !G .
~6.8!

The chart „m̄,m̃,G̃(r ), p̄ , p̃,PG̃ (r )… is therefore canonical
Dropping the integral of a total derivative, the action read

S05E dtS p̄ ṁ̄1 p̃ṁ̃1E
2`

`

drPG̃Ġ̃D 2E dtE
2`

`

drÑ G̃.

~6.9!

The unconstrained canonical degrees of freedo

(m̄,m̃, p̄ , p̃), have now become decoupled from the pu
gauge degrees of freedom.

To put the action in a more transparent form, we write

V~r !:5PG̃ ~r !1 1
2 p̄2hE

0

r

dr8G~r 8!

5t11E
2`

`

dr8@PM~r 8!u~r 82r !2hG~r 8!u~r 8!

22hM 1g1~r 8!#, ~6.10a!

PV~r !:52G̃~r !. ~6.10b!

The falloff is

V~ t,r !52hur u22hM 6lnur /M 6u1O`~ ur u0!,
~6.11a!

PV~ t,r !5O`~ ur u212e!. ~6.11b!

As

E
2`

`

dr~PG̃ Ġ̃2PVV̇!52 1
2 ṗ̄E

2`

`

drPV1
d

dt E2`

`

drPG̃G̃,

~6.12!

the transformation to the chart (m̄,m̃,V(r ), p̄ , p̃,PV(r )) is
not canonical as it stands. However, it becomes canon
after the first term on the right-hand side of~6.12! is ab-
sorbed into the constraint term by writing

NV:52Ñ1 1
2 ṗ̄ ~6.13!

and regardingNV as a new Lagrange multiplier. As the equ

tions of motion imply ṗ̄50, the falloff of NV is
,

al

NV56N61O`~ ur u2e!. ~6.14!

Dropping the integral of a total derivative, and includingSR ,
we finally obtain the action

S5E dt~ p̄ ṁ̄1 p̃ṁ̃!1E dtE
2`

`

dr~PVV̇1PRṘ2NVPV

2NRPR!. ~6.15!

All the variables in the action~6.15! have a transparent geo
metrical meaning. From~6.3a!, ~6.3c!, ~6.7a!, and~6.7c!, we

see thatm̄ and m̃ are respectively equal to the variablesm̄
and m̃ introduced in Sec. IV. Similarly, using~6.1!, we see

that p̄ and p̃ can be interpreted as the time-independ

initial values of the variablesp̄ and p̃ introduced in Sec. IV.
As for the pure gauge degrees of freedom,R is the curvature
radius, and equation~6.10a! shows thatV is the Eddington-
Finkelstein time. The action~6.15! therefore provides a natu
ral generalization of the vacuum action given in Eq.~149! of
Ref. @10#.

We have here assumed that the shell history does no
on a horizon. This assumption can be relaxed, in a suita

limiting sense, by performing on the coordinates (m̄,m̃, p̄ , p̃)
transformations analogous to those given for the coordin

(m̄,m̃,p̄,p̃) in Sec. IV.

VII. R3 SPATIAL TOPOLOGY

In this section we consider the canonical transformat
and Hamiltonian reduction for spatial topologyR3. For con-
creteness, we take the evolution of the spatial hypersurfa
at the single spacelike infinity to be prescribed as in Sec
It will be seen that the reduced phase space consists of
disconnected components, one for an expanding shell and
other for a collapsing shell. Each component has the top
ogy R2.

We start from the action principle. In the bulk actio
~2.6!, we take 0,r ,`, with the falloff ~2.12! asr→`. As
r→0, we introduce the falloff

L~ t,r !5L01O~r 2!, ~7.1a!

R~ t,r !5R1r 1O~r 3!, ~7.1b!

PL~ t,r !5PL2
r 21O~r 4!, ~7.1c!

PR~ t,r !5PR1
r 1O~r 3!, ~7.1d!

N~ t,r !5N01O~r 2!, ~7.1e!

Nr~ t,r !5N1
r r 1O~r 3!, ~7.1f!

whereL0.0, R1.0, PL2
, PR1

, N0.0, andN1
r are functions

of t only. It is straightforward to verify that the falloff~7.1!
is consistent with the constraints and preserved by the t
evolution. By ~3.1a! and ~3.2!, the falloff ~7.1! implies that
the mass left of the shell must vanish when the equation
motion hold: r 50 is then just the coordinate singularity
the center of hyperspherical coordinates in flat space.



te

gh

ith
re
co

f

a

e
n
on

ur
in-
ry

o-
ni-
aria-
nt

re-
ts of

ch
ra-
ides
in
hell
in
ra-
ta-

lar,
to

own
ell.
he
ri-
e a

ee-
tely

tion
nd
the

r
the
t to

he
n
th a
he
ut

ak-
ard

ll
two
ite
nd,
t a

an
a-

are
nt
.

act
sis-
d
the

57 2293HAMILTONIAN SPACETIME DYNAMICS WITH A . . .
classical solutions therefore describe a shell with a flat in
rior, and the spatial topology isR3. The action appropriate
for fixing N1 is

S5SS2E dtN1M 1 , ~7.2!

whereSS is given by~2.6! with 0,r ,`.
The canonical transformation of Sec. III goes throu

with the obvious changes. The new action is as in~3.18!,
except that the integral is fromr 50 to r 5` and the term
N2M 2 is missing.G(r ) andg(M 1 ;r ) are smooth inr and
have the same behavior asr→1` as in Sec. III. The falloff
of the new fields asr→0 can be found from~7.1!; for ex-
ample, we have

Ñ~ t,r !52N0L0R1
211O~r !. ~7.3!

All the new fields remain regular asr→0. In particular,
M (r ) tends to zero asr→0.

The Hamiltonian reduction proceeds as in Sec. IV, w
the simplification that the interior mass vanishes. The
duced phase space consists again of two disconnected

ponents, denoted now byG̃h
E . We takeg(M 1 ;r ) to be as in

~4.1! with M 250, and we solve the constraint~4.2! as in
~4.3! and ~4.5! with m250. Note that asPM has the same
sign asp, equation~4.5! implies m1.0. We find

pṙ1E
0

`

dr@~PM2hG!Ṁ2hġ#5p1ṁ1

1
d

dt S hm1E
0

r

GdrD ,

~7.4!

where

p1 :5E
0

`

dr@PMu~r 2r!2hG22hm1g1#. ~7.5!

Substituting this in the action and dropping the integral o
total derivative, we obtain the reduced action

S5E dt~p1ṁ12N1m1!. ~7.6!

Thus, the pair (m1 ,p1) provides a canonical chart onG̃h
E .

As PM does not have singularities, the definition~7.5! is

always good: the chart is global, and the topology ofG̃h
E is

R2. The test shell limit can be attached as a smooth bound
with topologyR at m150.

The information about the shell motion is again encod
in the evolution ofp1 . Charts that describe the shell motio
in the exterior geometry more transparently can be c
structed as in Sec. V.

VIII. SUMMARY AND DISCUSSION

In this paper we have analyzed the Hamiltonian struct
of spherically symmetric Einstein gravity coupled to an
finitesimally thin null-dust shell. We formulated the theo
-

-
m-

a

ry

d

-

e

under Kruskal-like boundary conditions, prescribing the ev
lution of the spatial hypersurfaces at the two spacelike infi
ties. We adopted smoothness conditions that made the v
tional equations distributionally well defined, and equivale
to the Einstein equations for this system.

We then simplified the constraints by a Kucharˇ-type ca-
nonical transformation and performed the Hamiltonian
duction. It was seen that the reduced phase space consis
two disconnected copies ofR4, one for a right-moving shell
and the other for a left-moving shell. We found on ea
component a global canonical chart in which the configu
tion variables are the Schwarzschild masses on the two s
of the shell, leaving the shell dynamics indirectly encoded
the conjugate momenta. Excluding the special case of a s
straddling a horizon, we found a local canonical chart
which the configuration variables are the shell curvature
dius and the interior mass, in an arbitrarily specifiable s
tionary coordinate system exterior to the shell. In particu
performing a partial reduction and fixing the interior mass
be a prescribed constant, we reproduced a previously kn
shell Hamiltonian in the spatially flat gauge outside the sh

We also cast into canonical form the theory in which t
evolution at the infinities is freed by introducing paramet
zation clocks. We found on the unreduced phase spac
global canonical chart in which the physical degrees of fr
dom and the pure gauge degrees of freedom are comple
decoupled, and we identified the pure gauge configura
variables in this chart as the Eddington-Finkelstein time a
the curvature radius. Finally, we adapted the analysis to
spatial topologyR3, which has just one infinity, and fo
which the spacetime inside the shell is flat. Expectedly,
reduced phase space for this spatial topology turned ou
consist of two disconnected copies ofR2, one for an expand-
ing shell and the other for a collapsing shell.

In addition to the Kruskal spatial topologyS23R and the
Euclidean spatial topologyR3, yet another spatial topology
of interest would be that of theRP3 geon @51#,
RP3\$a point at infinity%. As the reduced phase space of t
vacuum theory with theRP3 geon topology has dimensio
two @13#, one expects that the reduced phase space wi
null shell would have dimension four. Indeed, this is t
conclusion reached under a technically slightly different b
qualitatively similar falloff in Ref.@37#, by first performing a
Hamiltonian reduction for a massive dust shell and then t
ing the zero rest mass limit. It does not seem straightforw
to adapt the canonical transformation of Sec. III toRP3 geon
topology, however. AnRP3-geon-type spacetime with a nu
shell can be mapped to a Kruskal-type spacetime with
null shells, but these two shells must be moving in oppos
directions; our canonical transformation, on the other ha
was adapted to only one direction of the shell motion a
time.

A similar issue arises if one wishes to include more th
one null-dust shell. One expects our canonical transform
tions to generalize readily to the case when all the shells
moving in the same direction. Shells moving in differe
directions would, however, seem to require new methods

Several steps in our analysis relied crucially on the f
that the shell is null. This issue appears first in the con
tency of the ADM equations of motion in Sec. II. In a fixe
background geometry, the equations obtained by varying
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action~2.6! with respect to the shell variables must, by co
struction, be equivalent to the geodesic equation for the s
In our dynamical equations~2.9!, the pair consisting of
~2.9e! and ~2.9f!, if interpreted individually on each side o
the shell, must therefore be equivalent to the null geode
equation. The reason why the potentially ambiguous eq
tion ~2.9f! turns out to be unambiguous is precisely that
junction is along a null hypersurface, and this hypersurfac
geodesic in the geometries on both sides of the junction

Next, the fact that the shell history is null led us to t
Eddington-Finkelstein time as a spacetime function tha
sufficiently smooth to provide an acceptable momentum c
jugate toM (r ). Finally, in Sec. V, the null character of th
shell history made it possible to leave the interior canon
pair (m2 ,p2) untouched in the canonical transformatio

from (m1 ,p1) to (r̂ ,p̂). This is because the null history
when viewed from the exterior geometry, does not cont
information about the interior mass, beyond the statem
that m2,m1 .

These special properties of a null shell suggest that
analysis may not be immediately generalizable to timel
shells. For example, for a dust shell with a positive rest ma
already the consistency of the ADM equations of moti
fails under our smoothness assumptions: the variatio
equations corresponding to~2.8! and~2.9! only become con-
sistent if the right-hand side in the counterpart of~2.9f! is by
hand interpreted as its average over the two sides of the
@37#. However, new avenues may open if one relaxes
assumption that the variations of the geometry and matte
independent. Recent progress in this direction has been m
by Hájı́ček and Kijowski@52–54#.

The work in this paper has been purely classical. O
may, however, hope that our canonical charts on the redu
phase space will prove useful for quantizing the system
the spatially flat gauge outside the shell, the quantization
the shell variables with fixed interior mass was introduced
a model for Hawking radiation with back-reaction in Re
@30#, and the same approach was applied to related b
holes in Refs.@31, 34#. Our results provide the tools for
similar analysis in an arbitrarily specifiable stationary gau
outside the shell. Whether this freedom in the gauge cho
can be utilized to a physically interesting end remains to
seen. One may also wish to explore quantizations base
the global canonical charts in which the dynamics is simp
but the spacetime picture more hidden. This might shed l
on the analogous question of quantizing in a dynamica
simple but geometrically nontransparent canonical char
the context of a two-dimensional dilatonic gravity theo
coupled to scalar fields@55#. We leave these questions su
ject to future work.
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APPENDIX A: HAMILTONIAN EQUATIONS OF MOTION
AT THE SHELL

In this appendix we isolate the independent informat
that the Hamiltonian equations of motion,~2.8! and ~2.9!,
contain at the shell. It will be shown in Appendices B and
that when this information is combined to Einstein’s equ
tions away from the shell, we unambiguously recover
correct junction conditions for general relativity coupled to
null-dust shell.

To begin, we note that equations~2.8! and all save the las
one of equations~2.9! have an unambiguous distribution
interpretation. The constraint equations~2.8! contain explicit
delta-functions inr from the matter contribution and implici
delta-functions inR9 andPL8 . The right-hand sides of~2.9a!
and ~2.9b! contain at worst finite discontinuities, and th
right-hand sides of~2.9c! and ~2.9d! contain at worst delta-
functions; this is consistent with the left-hand sides
~2.9a!–~2.9d!, recalling that the loci of nonsmoothness inL,
R, PL andPR may evolve smoothly int. Wherever explicit
or implicit delta-functions appear, they are multiplied b
continuous functions ofr . The only potentially troublesome
equation is therefore~2.9f!: the right-hand side is a combi
nation of spatial derivatives evaluated at the shell, but
assumptions allow these derivatives to be discontinuous

If f stands for any of our metric functions that may
discontinuous at the shell, we define

D f :5 lim
e→01

@ f ~r1e!2 f ~r2e!#. ~A1!

The delta-contributions tof 8 and ḟ at the shell can then be

written respectively as (D f )d(r 2r) and 2 ṙ(D f )d(r 2r).
With this notation, the constraint equations~2.8! at the shell
read

DR852hp/R̂, ~A2a!

DPL52p/L̂, ~A2b!

and the delta-contributions in the dynamical equations~2.9c!
and ~2.9d! at the shell read

2 ṙDPL5
hpN̂

L̂2
1Nr̂DPL , ~A3a!

2 ṙDPR52
N̂DR81R̂DN8

L̂
1Nr̂DPR . ~A3b!

The full set of equations at the shell therefore consists
~2.9e!, ~2.9f!, ~A2!, and~A3!. Of these, all except~2.9f! are
manifestly well defined.

Two of the six equations are easily seen to be redund
First, insertingDPL from ~A2b! into ~A3a! yields an equa-

tion that is proportional to~2.9e! by the factorp/L̂. Equation
~A3a! can therefore be dropped. Second, by continuity of

metric, we observe thatR̂(t)5R(t,r(t)) is well defined for
all t, and so is its total time derivative, given by
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Ṙ̂5@Ṙ1 ṙR8# ˆ . ~A4!

The individual terms on the right-hand side of~A4! are not
continuous at the shell, but the left-hand side shows that
sum must be, and we obtain

DṘ52 ṙDR8. ~A5!

An entirely similar reasoning leads to counterparts of~A5!
with R replaced by any metric function that is continuous
r . Using ~A5! and ~2.9e!, equation ~2.5b! gives

DPL5hR̂(DR8)/L̂. This shows that the two equations
~A2! are equivalent, and we can drop~A2b!.

To simplify ~A3b!, we evaluateDPR from ~2.5b! and

eliminate Ṙ and L̇ using ~A5! and its counterpart forL.
Using ~2.9e!, the result can be arranged to read

05D@~vava!8#, ~A6!

where the vector fieldva is defined by

v t51, ~A7a!

v r5 ṙ, ~A7b!

both at the shell and away from the shell. At the shell,va

coincides with the shell history tangent vectorl a ~2.10!, by
virtue of the equation of motion~2.9e!. Through standard
manipulations,~A6! can be brought to the form

05D@vbva¹a~] r !
b#, ~A8!

where¹a is the spacetime covariant derivative.
The information in the Hamiltonian equations of motio

at the shell is therefore captured by the set consisting
~2.9e!, ~2.9f!, ~A2a!, and~A8!.

In Appendices B and C we combine these four equati
to the fact that away from the shell, equations~2.8! and~2.9!
are equivalent to Einstein’s equations and thus make the
ometry locally Schwarzschild. As noted in subsection II
equation ~2.9e! implies that the shell history is null. We
therefore only need to examine two qualitatively differe
cases, according to whether or not the shell history lies o
horizon. The results, derived respectively in Appendices
and C, are summarized here in the following two paragrap

When the shell history does not lie on a horizon, the c
tinuity of R across the shell completely determines the
ometry. Equation~A8! reduces to an identity, and the com
bination of derivatives on the right-hand side of~2.9f! is
continuous at the shell. Equation~2.9f! becomes then wel
defined. Withp given by~A2a!, equation~2.9f! reduces to an
identity.

When the shell history lies on a horizon, the masses
the two sides must agree. Equation~A8! now implies that the
soldering along the junction is affine. The combination
derivatives on the right-hand side of~2.9f! is then continuous
at the shell, and equation~2.9f! becomes well defined. With
p given by ~A2a!, equation~2.9f! reduces to an identity.
e

of

s

e-
,

t
a

B
s:
-
-

n

f

APPENDIX B: EQUATIONS OF MOTION
FOR A NONSTATIC SHELL

In this appendix we verify the claims in the penultima
paragraph of Appendix A. For concreteness, and without l
of generality, we may assume that the shell history lies ri
of the horizon that the shell does not cross. The geometr
then as in Fig. 1 forh521, and its time inverse forh51.

On each side of the shell, we introduce the Eddingto
Finkelstein coordinates,

ds252FdV222hdVdR1R2dV2, ~B1a!

F5122M /R, ~B1b!

whereM is the Schwarzschild mass. To avoid cluttering t
notation, we suppress indices that would distinguish the
ordinate patches on the two sides of the shell. Where
ambiguous quantities are encountered@such as in equations
~B4! below#, the equations are understood to hold individ
ally on each side of the shell.

The coordinates (t,r ) of Sec. II can be embedded in th
metric ~B1! asV5V(t,r ) andR5R(t,r ), independently on
each side of the shell. We obtain

gtt52FV̇222hV̇Ṙ, ~B2a!

grr 52FV8222hV8R8, ~B2b!

gtr52FV̇V82h~V̇R81V8Ṙ!. ~B2c!

As the surfaces of constantt are spacelike,hV8,0 every-
where. Expressing the ADM variables in terms of the met
components and using~B2!, we find

hN

L
2Nr52

V̇

V8
. ~B3!

As in Sec. II, the shell history is written asr 5r(t), and

we write R̂(t):5R(t,r(t)). We also write, independently o

each side of the shell,V̂(t):5V(t,r(t)), and similarly forR̂̇,

R8̂, V̂̇, V8̂, and so on. We then have, independently on e
side of the shell,

Ṙ̂5 R̂̇1 ṙR8̂, ~B4a!

V̇̂5 V̂̇1 ṙV8̂. ~B4b!

With these preliminaries, we turn to the shell equations
motion. First, equation~2.9e! implies, with the help of~B3!

and~B4b!, that V̇̂50. The shell history is therefore a hype
surface of constantV, independently on each side. The

equations also imply thatV̂̇/V8̂ is unambiguous and

ṙ52 V̂̇/V8̂. ~B5!

Equations~B2b! and ~B2c! yield, after eliminatingV̂̇ and R̂̇
with the help of~B4a! and ~B5!, the relation

hV8̂Ṙ̂52 ṙgrr̂ 2gtr̂ . ~B6!
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As the right-hand side of~B6! is unambiguous, and asṘ̂

Þ0, ~B6! implies thatV8̂ is unambiguous. Thus, bothV8̂ and

V̂̇ are unambiguous.

Consider next the constraint~A2a!. As V8̂ and grr̂ are

unambiguous, equation~B2b! implies DR852 1
2 hV8̂DF.

Using ~B1b!, the constraint~A2a! becomes

p52V8̂DM . ~B7!

Consider then equation~2.9f!. Using~B5! and the relation

V8̂
˙

5V̇8̂1 ṙV9̂, a straightforward calculation yields

F S V̇

V8
D 8G ˆ

5
V8̂
˙

V8̂
. ~B8!

As the right-hand side of~B8! is unambiguous, equation
~B3! and ~B8! show that the right-hand side of~2.9f! is un-
ambiguous. Further, when~B7! holds, it is seen that~2.9f! is
identically satisfied.

What remains is equation~A8!. In the coordinates~B1!
we have, again independently on the two sides of the sh

v â5(0,v R̂,0,0), and

@vbva¹a~] r !
b# ˆ 52h@~vR!2~] r !

V,R# ˆ . ~B9!

As v R̂5 Ṙ̂, v R̂ is unambiguous. As (] r)
V̂5V8̂(] r)

r̂5V8̂,

we see that (] r) V̂ is unambiguous. As the vector field de
noted on each side by]/]R is continuous at the shell an

tangent to the shell history,@(] r)
V,R# ˆ is unambiguous.

Therefore, the right-hand side of~B9! is unambiguous, and
equation~A8! is identically satisfied.

APPENDIX C: EQUATIONS OF MOTION
FOR A STATIC SHELL

In this appendix we verify the claims in the last paragra
of Appendix A. For concreteness, and without loss of gen
ality, we may takeh521, so that the shell is moving to th
left, and the geometry is as in Fig. 2.

On each side of the shell, we introduce the Kruskal n
coordinates,

ds252Gdudv1R2dV2, ~C1a!

G5~32M3/R!exp~2R/2M !, ~C1b!

2uv5S R

2M
21Dexp~R/2M !, ~C1c!

whereM is the common value of the Schwarzschild ma
When there is a need to distinguish the two coordin
patches, we write the coordinates as (u6 ,v6), with the up-
per ~lower! sign referring to the patch on the right~left!. The
ranges of the coordinates arev1.0 and v2,0, with
ll,

h
r-

ll

.
e

2`,u6,`, and the shell history lies at the common ho
zon atv650. When the index is suppressed, equations c
taining ambiguous terms are understood to hold individua
on each side of the shell.

Embedding the coordinates (t,r ) in the metric ~C1! as
u5u(t,r ) andv5v(t,r ), independently on each side of th
shell, we obtain

gtt52Gu̇v̇, ~C2a!

grr 52Gu8v8, ~C2b!

gtr52 1
2 G~ u̇v81u8v̇ !. ~C2c!

As the surfaces of constantt are spacelike,v8.0 every-
where. Expressing the ADM variables in terms of the met
components and using~C2!, we find

N

L
1Nr5

v̇
v8

. ~C3!

As above, we introduce the quantitiesû, û̇, u8̂, and so on,
and similarly forv. The counterparts of equations~B4! read

u̇̂5 û̇1 ṙu8̂, ~C4a!

v̇̂5 v̂̇1 ṙv 8̂. ~C4b!

Equation ~2.9e! then implies, with the help of~C3! and

~C4b!, that v̇̂50, v̂̇/v 8̂ is unambiguous, and

ṙ52 v̂̇/v 8̂. ~C5!

Consider next equation~A8!. In the coordinates~C1! we
have, independently on the two sides of the sh

v â5(v û,0,0,0), and

@vbva¹a~] r !
b# ˆ5@~vu!2~] r !u,u# ˆ . ~C6!

Equation~A8! therefore reads

~vu1!2~] r !u1 ,u1
5~vu2!2~] r !u2 ,u2

, ~C7!

at the junction v650. Writing vu25(du2 /du1)vu1,
(] r)u2

5(du1 /du2)(] r)u1
, and ]u2

5(du1 /du2)]u1
, we

obtaind2u2 /du1
2 50. This means that at the junctionv650

we have

u15au21b, ~C8!

wherea andb are constants anda.0. As the Kruskal co-
ordinates are affine parameters along the horizons,
means that the soldering of the two geometries along
common horizon is affine.

Consider next the constraint~A2a!. From ~C1c! we have

R8̂522Mûv 8̂. The constraint~A2a! therefore reads

p524M2D~uv8!. ~C9!

Equations~C2b! and ~C2c! yield, after eliminatingv̂̇ and û̇
with the help of~C4a! and ~C5!, the relation
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8M2v 8̂ u̇̂52 ṙgrr̂ 2gtr̂ . ~C10!

As the right-hand side of~C10! is unambiguous,v 8̂ u̇̂ is un-

ambiguous. The affine relation~C8! implies u1̂

˙
5au2̂

˙
, and

hence

v18̂ 5a21v28̂ . ~C11!

HenceD(uv8)5bv18̂ , and equation~C9! takes the form

p524M2bv18̂ . ~C12!

As p,0 by assumption andv18̂ .0, we haveb.0. This
,

ys

:
-

,
k,
means that the right-hand-side bifurcation two-sphere occ
earlier on the history than the left-hand-side bifurcation tw
sphere, as shown in Fig. 2.

Consider finally equation~2.9f!. Using ~C5! and proceed-
ing as with~B8!, we find

F S v̇
v8

D 8G ˆ

5
v 8̂
˙

v 8̂
. ~C13!

By ~C11!, the right-hand side of~C13! is unambiguous.
Equations~C3! and~C13! then show that the right-hand sid
of ~2.9f! is unambiguous. When~C12! holds, it is seen that
~2.9f! is identically satisfied.
D
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