
PHYSICAL REVIEW D 15 FEBRUARY 1998VOLUME 57, NUMBER 4
Spherical curvature inhomogeneities in string cosmology

John D. Barrow and Kerstin E. Kunze
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

~Received 30 September 1997; published 29 January 1998!

We study the evolution of nonlinear spherically symmetric inhomogeneities in string cosmology. Friedmann
solutions of different spatial curvature are matched to produce solutions which describe the evolution of
nonlinear density and curvature inhomogeneities. The evolution of bound and unbound inhomogeneities are
studied. The problem of primordial black hole formation is discussed in the string cosmological context and the
pattern of evolution is determined in the pre- and post-big-bang phases of evolution.@S0556-2821~98!01606-3#

PACS number~s!: 98.80.Hw, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

Considerable attention has been devoted to exploring
range of behaviors displayed by the equations of string c
mology. These are supplied by the variation of the lo
energy effective action of the bosonic sector of string the
@1#. Investigations have been made into the evolution of i
tropic cosmologies@2#, simple homogeneous anisotropic co
mologies of Bianchi type@3#, and Kantowski-Sachs type@4#,
by various authors, and the present authors have provid
systematic classification of spatially homogeneous str
cosmologies in terms of their relative generality when co
sidered as constrained systems of nonlinear ordinary dif
ential equations@5#.

As in the case of general-relativistic cosmologies, the
troduction of inhomogeneities into the string cosmologi
equations produces a considerable increase in mathema
difficulty: nonlinear partial differential equations must no
be solved. In practice, this means that we must proceed e
by means of approximations which render the nonlineari
tractable, or we must introduce particular symmetries i
the metric of space-time in order to reduce the number
degrees of freedom which the inhomogeneities can exp
Accordingly, inhomogeneous string cosmologies have b
investigated in the approximation of small perturbations
the isotropic Friedmann-Robertson-Walker~FRW! models,
in the ‘‘velocity-dominated’’ approximation, and by studie
of exact inhomogeneous solutions with cylindrical symm
try. Barrow and Kunze@6# found a wide class of exact cy
lindrically symmetric flat and open inhomogeneous u
verses. Closed cylindrical solutions were then found
Feinsteinet al. @7#. These solutions provide exact ‘‘velocity
dominated’’ solutions of general relativity and are expec
to form a leading-order approximation to part of the gene
solution of string cosmology in the neighborhood of the s
gularity ~if we ignore higher-order string corrections to th
action!. Veneziano@8# and Buonannoet al. @9# have studied
the behavior of string cosmologies at early times in
velocity-dominated approximation,~that is, neglecting spa
tial derivatives, relativistic motions, and 3-curvature inhom
geneities with respect to time-derivatives in the field eq
tions @10#!. The asymptotic forms obtained at early tim
also approximate the behavior displayed by the exact s
tions of Barrow and Kunze on scales larger than the hori
where the inhomogeneities evolve slowly: the inhomoge
570556-2821/98/57~4!/2255~9!/$15.00
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ities are just homogeneously propagated. However, the e
solutions also provide information about the evolution of
laton, axion, and gravitational wave inhomogeneities a
they enter the horizon, where they attenuate by nonlin
oscillations because of the pressure forces exerted by
dilaton and axion fields. These solutions do not cont
trapped surfaces and so they cannot be used to follow
collapse of inhomogeneities to black holes, although it wo
be possible to study this problem by using the closed (S3)
solutions studied by Feinsteinet al. in @7#.

The exact solutions given in Refs.@6# and @7# possess
cylindrical symmetry and all physical quantities depend on
most one space coordinate and the time. The case of c
drical symmetry is natural because of the mathematical s
plicity of the field equations whenever there exists a dir
tion in which the pressure equals the energy dens
However, it is also important to consider the case where
inhomogeneities possess spherical symmetry. Not only d
this seem more natural, in that there need exist no prefe
direction in which the inhomogeneity dominates, but it a
lows the problem of bound inhomogeneities to be addres
more directly without the complication of gravitational wav
inhomogeneities.

The choice of spherically symmetric inhomogeneity do
not permit exact solutions of Einstein’s equations exc
where fluids have vanishing pressure. However, a c
physical picture of the behavior of spherically symmet
inhomogeneities with nonzero pressure can be obtained
the device of matching together homogeneous solutions
different curvature and density. The resulting patched so
tion describes the evolution of spherical overdensities~or
underdensities! in a smooth background universe. In the lim
that the inhomogeneities become small, they will evolve
accord with the results of small perturbation theory. Wh
the inhomogeneities are not small, we obtain a description
nonlinear processes like void formation, the condensation
gravitationally bound lumps, or the creation of primordi
black holes. This technique was first introduced into gene
relativity to study the evolution of inhomogeneities by L
maître @11# and was subsequently applied to the study
protogalaxies by Harrison@12#. Here, we shall apply it to the
equations of string cosmology to further our understand
of the evolution of the pre- and post-big-bang phases in
presence of spherical inhomogeneities.

The string cosmological models considered here are
2255 © 1998 The American Physical Society
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2256 57JOHN D. BARROW AND KERSTIN E. KUNZE
rived from the bosonic sector of heterotic string theory
duced to~311! dimensions of spacetime. They are assum
to have vanishing cosmological constant and vanishing M
well field. Their field content consists of an antisymmet
tensor field, a dilaton, and the space-time metric ten
However, in the low-energy limit only the antisymmetr
tensor field strength is important in the equations of moti

In 10-dimensional superstring theory, gravitation
anomalies occur which signal the breakdown of ener
momentum conservation. However, by redefining the a
symmetric tensor field strength, these anomalies can be
celled. The redefined antisymmetric tensor field strength,H,
is given by@13#

H5dB1vL ,

where B is the antisymmetric tensor field andvL is the
Lorentz-Chern-Simons~LCS! form involving the Lorentz
spin connection. The antisymmetric tensor field strength
3-form. In four dimensions it is dual~in the sense of differ-
ential forms! to a one-form which can be shown to be t
gradient of a scalar field, the axion. FRW spaces are m
mally symmetric and so a theorem proved in@14# implies
that all contributions from the LCS terms vanish. Hence,
energy-momentum tensor for the axion and the dilaton in
Einstein frame consists of two coupled stiff perfect fluids

The low-energy limit of string theory provides a new pi
ture for the evolution of the early universe. Once a stage
low coupling and small curvature is reached, the unive
enters the ‘‘pre-big-bang’’ era@15# . During this stage the
universe undergoes superinflation~accelerated expansion! in
the string frame driven by the kinetic energy of the dilato
By contrast, in the Einstein frame this corresponds to
accelerated contraction. The pre-big-bang era ends when
string coupling becomes strong enough for the low-ene
limit to be no longer valid. However, exactly how th
‘‘graceful exit’’ can be effected is not yet fully understoo
@16#. In the transition era, complicated nonperturbative
fects will become important and it is not clear if a curvatu
singularity can always be prevented by higher-order con
butions. Eventually, the universe must enter the~classical!
post-big-bang era. Therefore, the pre-big-bang phase ca
understood as a way to provide initial conditions for t
classical post-big-bang era. An interesting aspect of this
nario is provided by the duality symmetries present in str
theory. In spatially homogeneous cosmological mod
scale-factor duality relates solutions for the pre-big-ba
phase~‘‘ 1 branch’’! to those for the post-big bang pha
~‘‘– branch’’!. Unless there is a self-dual solution there is t
problem of how to relate these two branches. This may
quire an explicitly quantum cosmological transition@17#. In
the presence of inhomogeneities, especially those which
low some parts of the Universe to expand whilst other pa
collapse, the impact of duality invariance may prove mo
unusual and motivates further detailed study of realistic
homogeneous string cosmologies.

Here, we extend our understanding of inhomogene
string cosmologies by investigating the simple model of n
linear spherically symmetric inhomogeneities outlin
above, in which a spherical curvature perturbation is s
modelled by a Friedmann-Robertson-Walker~FRW! uni-
-
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verse of non-zero curvature in a flat background FRW u
verse. In Sec. II we describe the self-modelling of spheri
inhomogeneities in general relativistic universes contain
fluids with pressure equal to density. In Sec. III the conn
tion with string theory is displayed. In Secs. IV and V th
post and pre-big-bang solutions are given and, finally,
results are discussed in Sec. VI.

II. SPHERICAL INHOMOGENEITIES
IN GENERAL RELATIVITY

Spherically symmetric density inhomogeneities can
modelled by matching a section of a closed~or open! FRW
universe to a background universe described by a flat F
universe in such a way that the metric and its derivatives
continuous at the boundary. First, consider this matching
general relativity for the simple case of a universe contain
a perfect fluid, with pressurep and energy densityr,which
are related by a stiff equation of state,p5r.

The flat background FRW universe has an expans
scale factorR(t) and its dynamics are determined by th
Friedmann equation

S dR

dt D
2

5
8pG

3
rR2 ~1!

where t is proper time. Note that Einstein’s equations a
invariant under time-reversal, i.e.R(t)5R(2t).

Energy-momentum conservation for thep5r fluid im-
plies that

r}R26, ~2!

and soR(t)}t1/3.
The dynamics of the perturbed region of nonzero cur

ture are described by another Friedmann equation, wit
scale-factorS(t):

S dS

dt D 2

5
8pG

3
~r1dr!S22k, ~3!

wheret is the proper time within the density perturbatio
dr, and the constant,k, measures its spatial curvature.

The proper time,t, inside the perturbation and that in th
background universe,t, can be related using the equation
relativistic hydrostatic equilibrium@12,18#:

]F~grav !

]r
52

]p/]r

p1r
~4!

whereF (grav) is the~Newtonian! gravitational potential, and
r is the radial distance, and so

dt5exp@F~grav !#dt. ~5!

The equation for hydrostatic equilibrium for a perfe
fluid is derived under the assumptions that the configura
is static ~that is, only spatial derivatives are nonvanishin!
and that the gravitational field is weak, so that the Newton
gravitational potentialF (grav) completely determines the
metric. In this case equation~4! follows directly from the
conservation of energy-momentum for a perfect fluid. In t
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57 2257SPHERICAL CURVATURE INHOMOGENEITIES IN . . .
particular matching problem of two Friedmann univers
staticity means that there should be no radial flow of ma
in or out of the perturbation.

Equations~4! and ~5! imply

dt

dt
5S S

RD 3

@11d#2 1/2, ~6!

where we have introduced the constantd, the density con-
trast parameter, defined by

d[
dr

r
, udu,1.

For the case of an overdensity we haved.0.
Assume that at some initial timet0 the perturbation ap-

pears and the following matching conditions hold betwe
the metric scale factors inside and outside the perturba
@19#:

S05R0 , S dS

dt D
0

5S dR

dt D
0

. ~7!

Then, we have

S dR

dt D
2

5
G̃

R4
, ~8!

S dS

dt D 2

5
G̃

S4
~b2ES4!, ~9!

where we have defined three new constants by

G̃[
8pG

3
r0R0

6 , b511d0 , E[
d0

R0
4

.

Furthermore, this implies thatS is given in terms of the
background scale-factor,R, by

dS

dR
5

S

R
~12FS4!1/2, ~10!

where we have defined a further constant by

F[
d0

R0
4~11d0!

. ~11!

Equation~9! implies that the maximum of the scale-fact
of the fluctuation isS15F21/4, and hence the integral o
~10! is given by

S5S1

A2~R/R* !

A11~R/R* !4
~12!

where R* is the value ofR at S1 . The fluctuation thus
begins expanding with the background but is slowed w
respect to it because of its overdensity. Eventually, its exp
sion is halted by its self-gravity and it begins to collap
whilst the background continues to expand.
,
r

n
n

h
n-

We see that the spherical fluctuation has vanishing sc
factorS, i.e. zero radius, forR50 and also asR→`, where
S}R21. This means that the perturbation does not colla
to a black hole in finite proper time, sinceR}t1/3. Physically,
this situation arises because thep5r fluid possesses a Jean
length equal to the horizon size and the fluid pressure is a
to resist gravitational collapse as soon as the fluctuation
ters the horizon. This situation is distinctive compared to
evolution of overdensities whenp,r. In thep,r case sig-
nificant overdensities collapse to form black holes if th
turn around when they are intermediate in scale between
particle horizon and the Jeans scale@20#. In practice, even in
the p5r case some black-hole formation might be possi
in finite time because of small fluctuations in the sou
speed and the horizon size but, realistically, we would exp
shock formation to play a role in damping nonlinear inhom
geneities in thep,r cases~see also the discussions of th
scaling properties of black hole formation found by Choptu
and others@21# in this connection!.

Our description of the evolution of the spherical overde
sity is completed by deriving the ratio of the density in t
perturbation to that in the background universe. This is giv
by

r~pert!

r~back!
5~11d0!S R

SD 6

.

Using Eq.~12!, this can also be expressed as

r~pert!

r~back!
5~11d0!S R*

A2S1
D 6F11S R

R*
D 4G 3

. ~13!

If we take the limit of small time~or small R) then we
recover the usual description of the growth of small pert
bations in time in an appropriate gauge.

Finally, it is interesting to note a simple duality scalin
property that appears in the above analysis. To see it in c
text, we can generalize the analysis given above to the c
of inhomogeneities in a general perfect fluid model w
equation of statep5(g21)r. Equation~10! then general-
izes to

S dS

dRD 2

5S S

RD 3g24

~11d0!~22g!/gF12S S

S1
D 3g22G .

~14!

We see that only in the case of a stiff perfect fluid, that
g52, does~14! admit both a scaling symmetry (S→aS,
R→aR,a constant! and the duality invariance

R→R21. ~15!

In Fig. 1 we show the evolution ofR,R21, and S with
respect to the background proper time,t. The background
expands as a flat FRW universe (R}t1/3), whilst the over-
density expands less rapidly, reaches an expansion m
mum, but then collapses more slowly, tending to zero siz
an infinite future time.
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57 2259SPHERICAL CURVATURE INHOMOGENEITIES IN . . .
S2~h!52S1
2 h

11h2
~25!

and the dilaton behaves as

eF5h6A3, ~26!

sinceh* 51.
In order to relate the conformal times inside and outs

the fluctuation, one can make use of Eq.~12!, which gives

t

t*
5h. ~27!

Furthermore, the evolution of the background scale-facto
proper timet, in the Einstein frame is found, after integratin
dt5Rdt, to be

R5R* S t

t*
D 1/3

. ~28!

As discussed above, the frame appropriate for phys
interpretation is the string frame. In this frame, the ba
ground scale factor is given by

~S!R5eF/2R5R* S t

t*
D 1/2~16A3!

. ~29!

Expressed in proper time in the string frame, i.e. after in
gratingd(S)t5 (S)Rdt, (S)R((S)t) is given by

~S!R5R*
S ~S!t

~S!t* D 61/A3

. ~30!

Pre- and post-big-bang, respectively, refer to the ba
ground universe. In the post-big-bang epoch the upper
in ~30! is chosen. The matching conditions@cf. ~7!# provide a
well-behaved metric in the Einstein frame. Since phys
should not be frame dependent, it is expected that sim
matching conditions should hold in the string frame. As o
can show, this implies that the sign chosen in~26! for the
evolution of the dilaton inside the perturbation should be
same as that in the background universe; hence

exp~F~back!!5exp~F~pert!!. ~31!

The energy densities in the Einstein frame and the st
frame can be related by going back to the definition of
energy-momentum tensor as a variational derivative of
LagrangianL @23#. In the Einstein frame, we have

r5g00T005~2g!2 1/2g00
dL

dg00
.

Using the conformal transformation given by Eq.~16!, we
find that the energy density in the string frame is given b

~S!r5e22Fr. ~32!
e

in

al
-

-

-
n

s
ar
e

e

g
e
e

Hence, using~31!, we confirm that the ratio of the energ
density in the perturbation to that in the background is
same in the Einstein and the string frames:

~S!r~pert!

~S!r~back!
5

r~pert!

r~back!
. ~33!

V. PRE-BIG-BANG SOLUTIONS

In order to find solutions depending on one length sc
we begin again with Eq.~10!. Furthermore, since the analy
sis does not depend on a maximal length scale, the solut
for underdense regions~modelled by matching to an ope
FRW universe, withk,0), can be treated as well.

A. Underdense regions

In this case the density parameterd is negative and hence
the constantF, defined in~11!, is also negative. Equation
~10! now becomes

dS

dR
5

S

R
~11uFuS4!1/2. ~34!

This integrates to give

S

S0
5

A2@~11d0!2 1/221#1/2S R

R0
D

F ud0u
11d0

2@~11d0!2 1/221#2S R

R0
D 4G1/2. ~35!

Hence, the ratio of the density in the fluctuation to that
the background~in the Einstein frame! is given by

r~pert!

r~back!
5

11d0

8@~11d0!2 1/221#3 F ud0u
11d0

2@~11d0!2 1/221#2S R

R0
D 4G3

. ~36!

B. Overdense regions

In this case both the density parameter,d, and the con-
stantF are positive. An integration of Eq.~10! yields

S

S0
5

A2@12~11d0!2 1/2#1/2S R

R0
D

F d0

11d0
1@12~11d0!2 1/2#2S R

R0
D 4G1/2, ~37!

and the ratio of the densities in the Einstein frame is given

r~pert!

r~back!
5

11d0

8@12~11d0!2 1/2#3 F d0

11d0

1@12~11d0!2 1/2#2S R

R0
D 4G3

. ~38!
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In order to connect the conformal times inside and outs
the perturbation, and hence the solutions for the pure dila
model, we will use the original notation of@2#.

~i! In the flat backgroundthe scale factor is given by@2#

R25
K

A3
t ~39!

with K some constant andt the conformal time in the back
ground. The evolution of the dilaton is given by

eF5S t

t f
D 6A3

~40!

wheret f is an integration constant. For pre-big-bang so
tions the – sign is chosen. In terms of proper time in
Einstein frame these solutions read

eF5S t

t f
D 2 2/A3

~41!

and

R25S 3

2

K

A3
t D 2/3

. ~42!

Recalling that time is negative in the pre-big-bang e
one sees that in the Einstein frame the background univ
is contracting and the dilaton is described by a growing fu
tion. The scale factor in the string frame is given by

~S!R25eFR25S 3

2D 2/3

t f
2/A3 S K

A3
D 2/3

t ~2/3! ~12A3!, ~43!

and hence the universe is expanding in the string frame.
~ii ! Inside the density fluctuationthe scale factor is given

by

S25
K̃

A3

h

~11kh2!
, ~44!

with K̃ some constant, and

h5H tan~t in!, k511 overdensity

tanh~t in!, k521 underdensity

wheret in is the conformal time inside the fluctuation. Usin
the matching conditions,~7!, t0 andh0 can be related at this
epoch by

t05
h0

12kh0
2

. ~45!

The solution for the dilaton is found to be

eF5S h

h f
D 2A3

, ~46!

with h f an integration constant.
e
n

-
e

,
se
-

Since the dilaton solutions are involved in the transform
tion of the energy densities from the Einstein frame to
string frame, it is enough to relatet andh ~and not explicitly
the conformal times inside and outside the fluctuation! and
this can be done using Eqs.~35! and ~37!. First, note that

S R

R0
D 2

5
t

t0
~47!

and

S S

S0
D 2

5
h~11kh0

2!

h0~11kh2!
. ~48!

Observing thatd0 is positive or negative, according to th
sign of k, Eqs. ~35! and ~37! can be reduced to a singl
expression, namely

S S

S0
D 2

5

2aS R

R0
D 2

g1a2S R

R0
D 4 [GS t

t0
D ~49!

with

a[12~11d0!2 1/2, g[
d0

11d0
.

The functionG(t/t0) is defined in accord with Eq.~47!. So,
using Eq.~48!, the functionh can be expressed in terms o
the conformal timet in the background universe,

h5k
12A124kE0

2G2

2E0G
, ~50!

where

E0[
h0

11kh0
2

which can be expressed in terms oft0 using ~45!.
Therefore, in this more general case, the relationship

tween the dilaton solutions inside and outside the fluctua
is more complicated than that found earlier for the post-b
bang era@cf. Eq. ~31!#.

The perturbation originates at some epocht0 with a scale
factor corresponding to a valueR0 in the background uni-
verse. The big-bang occurs att50, but one should not fol-
low the evolution all the way tot50 since at some point the
string coupling becomes too strong for the low-energy act
to remain a valid approximation to the full theory. In th
pre-big-bang phase the proper time is restricted tot,0. Sup-
pose that a perturbation originates att0 and the period of
interest is betweent0 and some timets ~with utsu,ut0u),
when the string coupling becomes strong, so we are in
ested in the regimet,t0, R,R0. AssumingR!R0 , the
scale factor of the perturbationS and the function of its
conformal timeh(t) can be expanded as follows:
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S

S0
.S 2a

g D 1/2 R

R0
~51!

h

h0
.

2a

g
~11kh0

2!21
t

t0
. ~52!

Thus, S/S0; R/R0, h/h0; t/t0. However, for d0.0,
the proportionality factor in~51! is bigger then unity, and so
the scale factor of the perturbation exceeds that of the b
ground universe~see Fig. 2!.

This might be interpreted as interchanging the role of
flat and the closed FRW models~i.e., there are inhomogene
ities corresponding to flat space-time sections in a clo
FRW background universe@24#!. Figures 3 and 4 show th
behavior of the two scale factors,R andS, with time, t, for
different choices of the initial density parameterd0. In Fig.
3, the scale factor of the overdense region is larger than
of the background universe within the period of interest
tween t0 up to some time,ts . In Fig. 4, where there is an
initial underdensity att0 , the scale factor of the perturbatio
stays below that of the background universe.

It is clear that the evolution of the two scale factors
very similar, from the origin of the perturbation up to the b
bang. Thus, one cannot actually say that the perturba

FIG. 2. The proportionality factor@2(a/g)#1/2 as a function of
d0.

FIG. 3. Evolution of the scale factors of the perturbationS and
the background universeR as a function of proper timet in the
Einstein frame;d050.5, R051, t0521.
k-

e

d

at
-

n

evolves independently from the background. Qualitative
the same behavior is found in the string frame. The evolut
of the dilaton depends on the respective conformal times~or
functions of them!, namelyt andh. However, in the regime
between the origin of the perturbation and the big bang th
are directly proportional to each other as can be seen f
~52!. Hence, the evolution of the scale factors in the str
frame is very similar as well.

In accord with the behavior in the general relativis
~hence post-big bang! regime, no primordial black holes
should be formed in the pre-big-bang era in this model si
the perturbation does not evolve independently and so d
not form trapped surfaces during the collapse of the sc
factor of the background universe in the Einstein frame.

From this discussion it can be concluded that the int
duction of a spherical perturbation modelled as a closed
open FRW model in a flat FRW model does not destroy
global isotropy of the flat background universe. Hence
pre-big-bang flat FRW solution is robust with respect to t
special type of curvature perturbation.

In heterotic string theory, any solutions containing only
dilaton can be transformed into solutions containing a dila
and axion without changing the background metric. S-dua
reflects the fact that heterotic string theory is invariant un
SL(2,IR) transformations. Define a complex scal
l5b1 ie2F then @25#

l→l85
al1b

gl1d
, gmn→gmn ,

a,b,g,dPIR, ad2bg51

is a solution to the low-energy equations of motion@Eqs.
~17!–~19!#.

If we start with a pure dilaton solution

l5 ie2F

and choose a5b5g52d51/A2, then l85bnew

1iexp@2Fnew# is given by

bnew5tanhF ~53!

eFnew
5coshF. ~54!

FIG. 4. Evolution of the scale factors of the perturbationS and
the background universeR as a function of proper timet in the
Einstein frame;d0520.5, R051, t0521.
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Hence, the pure FRW dilaton solution has

eF5S t

t0
D 6A3

,

wheret is a different function of the conformal timeh for
each of the FRW models which can be read of from
solutions given above, and is related to a FRW dilaton-ax
solution with

eF5
1

2 F S t

t0
D A3

1S t

t0
D 2A3G , ~55!

b56

S t

t0
D A3

2S t

t0
D 2A3

S t

t0
D A3

1S t

t0
D 2A3

, ~56!

which is given in@2#.
However, near the big-bang~that is, for smallt/t0), the

dilaton solution goes over into that obtained for the pu
dilaton case and so the conclusions from the pure dila
case are not likely to be changed fundamentally.

VI. CONCLUSIONS

A very simple inhomogeneous string cosmological mo
has been investigated in the pre- and post-big-bang era
the post-big-bang era the usual general relativistic behav
of a growing overdensity or underdensity are found. T
leads to an increasingly inhomogeneous universe if the in
inhomogeneities are significant, or they are not infla
away. However, in the pre-big-bang phase the global is
ropy of the background FRW model is unaffected by t
introduction of a spherically symmetric curvature perturb
tion. This rather different behavior of the model in the pr
and post-big-bang stages is a manifestation of the fact
these two regimes pick out different parts of the general r
tivistic solution. In general relativity, considering only pos
in

.

o

e
n

e
n

l
In
rs
s
al
d
t-

-
-
at
-

tive ~proper! times, the solution is naturally divided by th
time t0 when the perturbation originates. The physical so
tion is then given for times later thant0, whereas the par
between the big bang andt0 is discarded. However, in the
pre-big-bang stage one is considering a time-reflection of
general relativistic solution. Hence, the part of the solut
that was discarded in the general relativistic case~post-big-
bang! becomes the physical solution in the pre-big-bang e
Thus, it is the physical solution of general relativity which
considered unphysical in the pre-big-bang regime. Hen
unlike in the general relativistic solution, a curvature pert
bation like that considered here does not lead to an inhom
enization of the universe in the pre-big-bang epoch.

The authors of Refs.@8# and@9# discussed inhomogeneou
pre-big-bang models using standard approximation te
niques of general relativistic cosmology. They found that
approximation of neglecting spatial gradients becomes be
as the big-bang singularity is approached. This conclusio
confirmed by the simple quasihomogeneous model discu
here. The evolution of a curvature perturbation modelled
a section of a Friedmann universe is very similar to that
the background Friedmann universe and indeed beco
more similar to it with time. Hence isotropy is conserved a
spatial gradients do not become important. We note also
part of the general solution for general relativistic cosm
logical models containing ap5r perfect fluid is a perturba-
tion of a Kasnerlike solution which~unlike for case of per-
fect fluids with equation of statep,r) contains the isotropic
expansion as a particular case. Because of this, the ge
behavior of the equations of string cosmology at early tim
is significantly simpler than that of general relativity
vacuum.
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