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Spherical curvature inhomogeneities in string cosmology
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We study the evolution of nonlinear spherically symmetric inhomogeneities in string cosmology. Friedmann
solutions of different spatial curvature are matched to produce solutions which describe the evolution of
nonlinear density and curvature inhomogeneities. The evolution of bound and unbound inhomogeneities are
studied. The problem of primordial black hole formation is discussed in the string cosmological context and the
pattern of evolution is determined in the pre- and post-big-bang phases of evdl60(&%6-282(198)01606-3

PACS numbg(s): 98.80.Hw, 04.50th, 11.25.Mj

[. INTRODUCTION ities are just homogeneously propagated. However, the exact
solutions also provide information about the evolution of di-
Considerable attention has been devoted to exploring thiaton, axion, and gravitational wave inhomogeneities after
range of behaviors displayed by the equations of string coshey enter the horizon, where they attenuate by nonlinear
mology. These are supplied by the variation of the low-oscillations because of the pressure forces exerted by the
energy effective action of the bosonic sector of string theonyilaton and axion fields. These solutions do not contain
[1]. Investigations have been made into the evolution of isotrapped surfaces and so they cannot be used to follow the
tropic cosmologie§2], simple homogeneous anisotropic cos- collapse of inhomogeneities to black holes, although it would
mologies of Bianchi typ¢3], and Kantowski-Sachs tydd],  be possible to study this problem by using the clos8?) (
by various authors, and the present authors have providedsslutions studied by Feinstegt al. in [7].
systematic classification of spatially homogeneous string The exact solutions given in Reff6] and [7] possess
cosmologies in terms of their relative generality when con-cylindrical symmetry and all physical quantities depend on at
sidered as constrained systems of nonlinear ordinary differmost one space coordinate and the time. The case of cylin-
ential equation$5]. drical symmetry is natural because of the mathematical sim-
As in the case of general-relativistic cosmologies, the in{plicity of the field equations whenever there exists a direc-
troduction of inhomogeneities into the string cosmologicaltion in which the pressure equals the energy density.
equations produces a considerable increase in mathematiddbwever, it is also important to consider the case where the
difficulty: nonlinear partial differential equations must now inhomogeneities possess spherical symmetry. Not only does
be solved. In practice, this means that we must proceed eithéhis seem more natural, in that there need exist no preferred
by means of approximations which render the nonlinearitieslirection in which the inhomogeneity dominates, but it al-
tractable, or we must introduce particular symmetries intdows the problem of bound inhomogeneities to be addressed
the metric of space-time in order to reduce the number ofnore directly without the complication of gravitational wave
degrees of freedom which the inhomogeneities can exploiinhomogeneities.
Accordingly, inhomogeneous string cosmologies have been The choice of spherically symmetric inhomogeneity does
investigated in the approximation of small perturbations ofnot permit exact solutions of Einstein’s equations except
the isotropic Friedmann-Robertson-WalkgiRW) models, where fluids have vanishing pressure. However, a clear
in the “velocity-dominated” approximation, and by studies physical picture of the behavior of spherically symmetric
of exact inhomogeneous solutions with cylindrical symme-inhomogeneities with nonzero pressure can be obtained by
try. Barrow and Kunzg6] found a wide class of exact cy- the device of matching together homogeneous solutions of
lindrically symmetric flat and open inhomogeneous uni-different curvature and density. The resulting patched solu-
verses. Closed cylindrical solutions were then found bytion describes the evolution of spherical overdensities
Feinsteinet al. [7]. These solutions provide exact “velocity- underdensitiesn a smooth background universe. In the limit
dominated” solutions of general relativity and are expectedhat the inhomogeneities become small, they will evolve in
to form a leading-order approximation to part of the generalccord with the results of small perturbation theory. When
solution of string cosmology in the neighborhood of the sin-the inhomogeneities are not small, we obtain a description of
gularity (if we ignore higher-order string corrections to the nonlinear processes like void formation, the condensation of
action. Veneziand 8] and Buonannet al. [9] have studied gravitationally bound lumps, or the creation of primordial
the behavior of string cosmologies at early times in theblack holes. This technique was first introduced into general
velocity-dominated approximatiorithat is, neglecting spa- relativity to study the evolution of inhomogeneities by Le-
tial derivatives, relativistic motions, and 3-curvature inhomo-maitre [11] and was subsequently applied to the study of
geneities with respect to time-derivatives in the field equaprotogalaxies by Harrisofl2]. Here, we shall apply it to the
tions [10]). The asymptotic forms obtained at early timesequations of string cosmology to further our understanding
also approximate the behavior displayed by the exact solusf the evolution of the pre- and post-big-bang phases in the
tions of Barrow and Kunze on scales larger than the horizopresence of spherical inhomogeneities.
where the inhomogeneities evolve slowly: the inhomogene- The string cosmological models considered here are de-
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rived from the bosonic sector of heterotic string theory re-verse of non-zero curvature in a flat background FRW uni-
duced to(3+1) dimensions of spacetime. They are assumedrerse. In Sec. Il we describe the self-modelling of spherical
to have vanishing cosmological constant and vanishing Maxinhomogeneities in general relativistic universes containing
well field. Their field content consists of an antisymmetric fluids with pressure equal to density. In Sec. Ill the connec-
tensor field, a dilaton, and the space-time metric tensottion with string theory is displayed. In Secs. IV and V the
However, in the low-energy limit only the antisymmetric post and pre-big-bang solutions are given and, finally, the
tensor field strength is important in the equations of motionresults are discussed in Sec. VI.

In 10-dimensional superstring theory, gravitational
anomalies occur which signal the breakdown of energy- Il. SPHERICAL INHOMOGENEITIES
momentum conservation. However, by redefining the anti- IN GENERAL RELATIVITY
symmetric tensor field strength, these anomalies can be can-

celled. The redefined antisymmetric tensor field strength, ~ Spherically symmetric density inhomogeneities can be
is given by[13] modelled by matching a section of a cloged openn FRW

universe to a background universe described by a flat FRW

H=dB+ w, universe in such a way that the metric and its derivatives are
' continuous at the boundary. First, consider this matching in

general relativity for the simple case of a universe containing

where B is the gntisymmetric tensor f‘?'d and, is the a perfect fluid, with pressurp and energy density,which
Lorentz-Chern-SimongLCS) form involving the Lorentz are related by a stiff equation of stafe= p

spin connection. The antisymmetric tensor field strength is a The flat background FRW universe has an expansion

3—f9rr|nf. In four d|mens;ons It 'r?. dhua(In tf;)e sinse of dltl)‘fer-h scale factorR(t) and its dynamics are determined by the
ential formg to a one-form which can be shown to be t € Friedmann equation

gradient of a scalar field, the axion. FRW spaces are maxi-
mally symmetric and so a theorem proved[i¥] implies drR\2 8#G
that all contributions from the LCS terms vanish. Hence, the (a) =3 R? 1)
energy-momentum tensor for the axion and the dilaton in the

Einstein frame cons',is'gs of tW.O coupled stiff 'perfect fIUidS_' wheret is proper time. Note that Einstein’s equations are
The low-energy limit of string theory provides a new pic- . variant under time-reversal, i.&(t)=R(—1)

ture for the evolution of the early universe. Once a stage o Energy-momentum conservation for tipe=p fluid im-
low coupling and small curvature is reached, the universepIies that

enters the “pre-big-bang” er@l5] . During this stage the

universe undergoes superinflatiGtcelerated expansipm pxRS, )

the string frame driven by the kinetic energy of the dilaton.

By contrast, in the Einstein frame this corresponds to amnd soR(t)«t3,

accelerated contraction. The pre-big-bang era ends when the The dynamics of the perturbed region of nonzero curva-
string coupling becomes strong enough for the low-energyure are described by another Friedmann equation, with a
limit to be no longer valid. However, exactly how this scale-factorS(7):

“graceful exit” can be effected is not yet fully understood

[16]. In the transition era, complicated nonperturbative ef- ds\? 8#G 5

fects will become important and it is not clear if a curvature (E) ZT(P+ 5p)S° =k, )
singularity can always be prevented by higher-order contri-

butions. Eventually, the universe must enter thiassical ~ where 7 is the proper time within the density perturbation,
post-big-bang era. Therefore, the pre-big-bang phase can b, and the constank, measures its spatial curvature.

understood as a way to provide initial conditions for the The proper timez, inside the perturbation and that in the
classical post-big-bang era. An interesting aspect of this sc@yackground universe, can be related using the equation of

nario is provided by the duality symmetries present in stringrelativistic hydrostatic equilibriuni12,18:

theory. In spatially homogeneous cosmological models,
scale-factor duality relates solutions for the pre-big-bang ad9rav) aplar

phase(* + branch”) to those for the post-big bang phase a p+p 4
“— branch). Unless there is a self-dual solution there is the

problem of how to relate these two branches. This may reyhered(9"2) js the (Newtonian gravitational potential, and

quire an explicitly quantum cosmological transitiftv]. In ¢ js the radial distance, and so

the presence of inhomogeneities, especially those which al-

low some parts of the Universe to expand whilst other parts dr=exg &9 ]dt. 6)

collapse, the impact of duality invariance may prove more

unusual and motivates further detailed study of realistic in- The equation for hydrostatic equilibrium for a perfect

homogeneous string cosmologies. fluid is derived under the assumptions that the configuration
Here, we extend our understanding of inhomogeneousts static (that is, only spatial derivatives are nonvanishing

string cosmologies by investigating the simple model of non-and that the gravitational field is weak, so that the Newtonian

linear spherically symmetric inhomogeneities outlinedgravitational potential®(973) completely determines the

above, in which a spherical curvature perturbation is selfmetric. In this case equatiof#) follows directly from the

modelled by a Friedmann-Robertson-WalkgiRW) uni-  conservation of energy-momentum for a perfect fluid. In this
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particular matching problem of two Friedmann universes, We see that the spherical fluctuation has vanishing scale-
staticity means that there should be no radial flow of mattefactorS, i.e. zero radius, foR=0 and also aR— o, where
in or out of the perturbation. SxR™1. This means that the perturbation does not collapse
Equations(4) and (5) imply to a black hole in finite proper time, singe<t'%. Physically,
this situation arises because the p fluid possesses a Jeans
d_T 2 length equal to the horizon size and the fluid pressure is able
dt (R to resist gravitational collapse as soon as the fluctuation en-
ters the horizon. This situation is distinctive compared to the
where we have introduced the consta@htthe density con- evolution of overdensities whem<p. In thep<p case sig-
trast parameter, defined by nificant overdensities collapse to form black holes if they
turn around when they are intermediate in scale between the
particle horizon and the Jeans sci6]. In practice, even in
the p=p case some black-hole formation might be possible
in finite time because of small fluctuations in the sound
For the case of an overdensity we hawe0. speed and the horizon size but, realistically, we would expect
Assume that at some initial timi the perturbation ap- shock formation to play a role in damping nonlinear inhomo-
pears and the following matching conditions hold betweemeneities in thep<p cases(see also the discussions of the
the metric scale factors inside and outside the perturbatiogcaling properties of black hole formation found by Choptuik

3
[1+6]7 %2 (6)

1]
E—p, |6]<1.
p

[19]: and otherg21] in this connection
Our description of the evolution of the spherical overden-
Sy=R d_S _ d_R . @) sity is completed by deriving the ratio of the density in the
0 d 0 dt 0 perturbation to that in the background universe. This is given
by
Then, we have
, = p(pert) R\ 6
dR)"_S (8) (back =(1+5o)(§) :
dt R*’ P
4s\?2 & Using Eq.(12), this can also be expressed as
—| == (B—-ES", 9
(dT) S4(B ) © plper 6 413
= (1+6))| = |1+| o (13
where we have defined three new constants by p'Pack V2s., Ry
~ 87G 6 6o If we take the limit of small time(or smallR) then we
G= 3 poRo,  B=1+36,, E= Q- recover the usual description of the growth of small pertur-
0 bati(_)ns in t_irr_1e _in an appropriate gauge. _ _
Furthermore, this implies tha is given in terms of the Finally, it is interesting to note a simple duality scaling

property that appears in the above analysis. To see it in con-

background scale-factoR, b ; e
¢ R. by text, we can generalize the analysis given above to the case

ds s of inhomogeneities in a general perfect fluid model with
arR- ﬁ(l—FSA')”Z. (100 equation of stategg=(y—1)p. Equation(10) then general-
izes to
where we have defined a further constant by
ds 2 S 3y—4 S 3y—2
: (-3 el
F=——. (11 " (14)
Ro(1+ &)

Equation(9) implies that the maximum of the scale-factor ~ \We see that only in the case of a stiff perfect fluid, that is
of the fluctuation isS, =F 4 and hence the integral of =2, does(14) admit both a scaling symmetryS(-asS,

(10) is given by R— aR,a constant and the duality invariance
s V2(RIR,) 12 R—R L (15)
O+
V1+(R/IR,)*

In Fig. 1 we show the evolution dR,R™%, and S with
where R, is the value ofR at S, . The fluctuation thus respect to the background proper tinte,The background
begins expanding with the background but is slowed withexpands as a flat FRW universB£t%), whilst the over-
respect to it because of its overdensity. Eventually, its expardensity expands less rapidly, reaches an expansion maxi-
sion is halted by its self-gravity and it begins to collapsemum, but then collapses more slowly, tending to zero size at
whilst the background continues to expand. an infinite future time.
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Hence, using31), we confirm that the ratio of the energy

S 77)=28§L2 (25)  density in the perturbation to that in the background is the
1+7 same in the Einstein and the string frames:
and the dilaton behaves as (S)p(Pert)  (pert
Y = . (33
etIJ: 7" \E, (26) (S)p(back) p(back)
sincen, =1.
In order to relate the conformal times inside and outside V. PRE-BIG-BANG SOLUTIONS
the fluctuation, one can make use of £&@), which gives In order to find solutions depending on one length scale

we begin again with Eq.10). Furthermore, since the analy-
—=y (27) sis does not depend on a maximal length scale, the solutions
Ty ' for underdense regiongnodelled by matching to an open

FRW universe, withk<<0), can be treated as well.

Furthermore, the evolution of the background scale-factor in

proper timet, in the Einstein frame is found, after integrating A. Underdense regions
dt=Rdr, to be

In this case the density parameteis negative and hence

the constanf, defined in(11), is also negative. Equation

(28)  (10) now becomes

1/3

R=R t
=R
As discussed above, the frame appropriate for physical S

interpretation is the string frame. In this frame, the back- dR R
ground scale factor is given by

(1+]|F|SHY2, (34)

This integrates to give

r\v201= V3)
OR=e®?R=R, (—) (29 R
Ty \/5[(1+ 50)7 1/2__ 1]1/2( R_O)
Expressed in proper time in the string frame, i.e. after inte- gz EN s ) - (39
i 9t=(9 OR(G1) is qi — -12_ _
gratingd®®t=ORdr, OR(1) is given by 1+, [(1+6) 1] (Ro>
S +1N3
& Hence, the ratio of the density in the fluctuation to that in
OR=R, | “ts (30)  the backgroundin the Einstein framgis given by
: : p'Per 1+ 68 | 3ol
Pre- and post-big-bang, respectively, refer to the back- =
ground universe. In the post-big-bang epoch the upper sign pPaK B[ (1+5y)~ V2-1]3[1+ o
in (30) is chosen. The matching conditiojd. (7)] provide a R 413
well-behaved metric in the Einstein frame. Since physics _ —12_q72|
- y=0 [(1+50) 1] : (36)
should not be frame dependent, it is expected that similar Ro

matching conditions should hold in the string frame. As one
can show, this implies that the sign chosen(2®) for the
evolution of the dilaton inside the perturbation should be the
same as that in the background universe; hence In this case both the density parametér,and the con-
stantF are positive. An integration of Eq10) yields

B. Overdense regions

exp(P(PacK) = exp(d(PeM), (32 .
— 1271/2
The energy densities in the Einstein frame and the string S V2[1-(1400) 7] (RO)
frame can be related by going back to the definition of the %Z o Z
energy-momentum tensor as a variational derivative of the m+[1—(1+ 80)~ 1’2]2(R—)
Lagrangianl [23]. In the Einstein frame, we have 0 0

. (37)

and the ratio of the densities in the Einstein frame is given by
0 - 1/2,,00 oL
p=9"To=(—-09)~ "4 :

5900 p(pert) 1+ 50 50
Using the conformal transformation given by E46), we pPacR  8[1—(1+8g)~ M22L1+
find that the energy density in the string frame is given by R4
+[1-(1+6 —1’22(—) } : 38
(Sp=g 29, (32) [1—( o) 7] Ry (38)
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In order to connect the conformal times inside and outside Since the dilaton solutions are involved in the transforma-
the perturbation, and hence the solutions for the pure dilatotion of the energy densities from the Einstein frame to the
model, we will use the original notation ¢2]. string frame, it is enough to relateand » (and not explicitly

(i) In the flat backgroundhe scale factor is given by2] the conformal times inside and outside the fluctugtiand

this can be done using Eq®5) and (37). First, note that

R? < (39 2
-7 R
: R
Ro 70
with K some constant anglthe conformal time in the back-
ground. The evolution of the dilaton is given by and
I =3 S\2 1+ Kkn?
e¢:(_) (40 (_) _ ¥k “8
Tt So/ po(1+kn?)

where 7; is an integration constant. For pre-big-bang solu- Observing that, is positive or negative, according to the
tions the — sign is chosen. In terms of proper time in the

Einstein frame these solutions read sign of k Egs. (35 and (37) can be reduced to a single
expression, namely

t\~ 213 2
e?= (t—) (41 2ul B
| el e
and Sy [ R )4— o
yt+a| =
R?= 3 K" 42 ;
“l2 5" 42 with
Recalling that time is negative in the pre-big-bang era, 1 (145, 2 _ o
one sees that in the Einstein frame the background universe = 0 AR So’
is contracting and the dilaton is described by a growing func-
tion. The scale factor in the string frame is given by The functionl(7/7,) is defined in accord with Eq47). So,
3 3 using Eq.(48), the functions can be expressed in terms of
<S)R2:e‘1’R2:(g> t?/\g(ﬁ) (28 -3) (43 the conformal timer in the background universe,
1—J1—4kES?
and hence the universe is expanding in the string frame. 7=k 2E,[ ' (50)
(ii) Inside the density fluctuatioe scale factor is given
by where
K 7
P (44) 70
2y’ Eqy=
V3 (1+k7?) = k2

with K some constant, and which can be expressed in termsgf using (45).

Therefore, in this more general case, the relationship be-
= ] tween the dilaton solutions inside and outside the fluctuation
tanf(7,), k=—1 underdensity is more complicated than that found earlier for the post-big-
wherer;, i_s the cor_lf_ormal time inside the fluctuation. Usi_ng bar';'%::oe{e(:ﬁE)%tfgi)griginates at some epaglwith a scale
the matching conditionsy), 7o and 7, can be related at this factor corresponding to a valtR, in the background uni-
epoch by verse. The big-bang occurs at 0, but one should not fol-
low the evolution all the way te=0 since at some point the
__ "o string coupling becomes too strong for the low-energy action
- (45 ! ; R
1—Kkxg to remain a valid approximation to the full theory. In the
pre-big-bang phase the proper time is restrictetkt®. Sup-
The solution for the dilaton is found to be pose that a perturbation originatestgtand the period of
_ interest is betweern, and some timetg (with |tg<<|to|),
n\ when the string coupling becomes strong, so we are inter-
E ' (46) ested in the regime<r;, R<R,. AssumingR<R,, the
scale factor of the perturbatio8 and the function of its
with »; an integration constant. conformal time#n(7) can be expanded as follows:

tan(7;y), k=-+1 overdensity
n

7o

e?=
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FIG. 4. Evolution of the scale factors of the perturbat®and

FIG. 2. The proportionality factof2(a/y)]¥? as a function of  the background universR as a function of proper time in the
8- Einstein frame;s,=—0.5,Ry=1, to= — 1.

So

S [(24\12R evolves independently from the background. Qualitatively,
:(—) r (51  the same behavior is found in the string frame. The evolution
0 of the dilaton depends on the respective conformal tifoes
5 functions of theny namelyr and . However, in the regime
T k)t (520  between the origin of the perturbation and the big bang these
Mo Y 7 are directly proportional to each other as can be seen from
(52). Hence, the evolution of the scale factors in the string
Thus, S/Sy~ R/IR,, 7/79~ 7/79. However, for 6,>0,  frame is very similar as well.
the proportionality factor ir51) is bigger then unity, and so  |n accord with the behavior in the general relativistic
the scale factor of the perturbation exceeds that of the baC'{hence post-big bangregime, no primordial black holes
ground universé¢see Fig. 2 _ ) should be formed in the pre-big-bang era in this model since
This might be interpreted as interchanging the role of thene perturbation does not evolve independently and so does
flat and the closed FRW modelise., there are inhomogene- not form trapped surfaces during the collapse of the scale
ities corresponding to flat space-time sections in a closeghctor of the background universe in the Einstein frame.
FRW background universg24]). Figures 3 and 4 show the  From this discussion it can be concluded that the intro-
behavior of the two scale factor® andS, with time, t, for  quction of a spherical perturbation modelled as a closed or
different choices of the initial density parame®y. In Fig.  open FRW model in a flat FRW model does not destroy the
3, the scale factor of the overdense region is Iarger than th@lobeﬂ isotropy of the flat background universe. Hence the
of the background universe within the period of interest be'pre-big-bang flat FRW solution is robust with respect to this
tweent, up to some timets. In Fig. 4, where there is an special type of curvature perturbation.
initial underdensity at,, the scale factor of the perturbation In heterotic string theory, any solutions containing only a
stays below that of the background universe. dilaton can be transformed into solutions containing a dilaton
It is clear that the evolution of the two scale factors iSand axion without Changing the background metric. S-dua"ty
very similar, from the origin of the perturbation up to the big reflects the fact that heterotic string theory is invariant under
bang. Thus, one cannot actually say that the perturbatiog|(2|R) transformations. Define a complex scalar
A=b+ie”?® then[25]

Y

aN+

A=A :'y)\+5’

g/LV_)gfLV’

a,B,y,6elR, adé—By=1
is a solution to the low-energy equations of motidfgs.
(17-(19].

T If we start with a pure dilaton solution

ro.2 )\:|e

and choose a=pB=y=-45=1/\2, then N\ =b"¥
-1z -1 0.8 ~0.6 ~0.4 0.2 ° _r_iexr-[_q)ne“q iS given by

new_
FIG. 3. Evolution of the scale factors of the perturbat®and b"*"=tanhb (53

the background universR as a function of proper timé in the new
Einstein frame;5,=0.5,Ry=1, t;=—1. e® "=coshb. (54
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Hence, the pure FRW dilaton solution has

7\ E3
- ’

7o

e?=

where 7 is a different function of the conformal timg for
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tive (prope) times, the solution is naturally divided by the
time t, when the perturbation originates. The physical solu-
tion is then given for times later thay, whereas the part
between the big bang ang is discarded. However, in the
pre-big-bang stage one is considering a time-reflection of the
general relativistic solution. Hence, the part of the solution

each of the FRW models which can be read of from thethat was discarded in the general relativistic cgsest-big-
solutions given above, and is related to a FRW dllaton—axmrbang becomes the physical solution in the pre-big-bang era.

solution with

1 3 -3
T T
e?== (— +|— } (55)
2 7'0 TO
Z-E
b=+ 0 ol (56)

which is given in[2].
However, near the big-banghat is, for smallr/ ), the

Thus, it is the physical solution of general relativity which is
considered unphysical in the pre-big-bang regime. Hence,
unlike in the general relativistic solution, a curvature pertur-
bation like that considered here does not lead to an inhomog-
enization of the universe in the pre-big-bang epoch.

The authors of Ref§8] and[9] discussed inhomogeneous
pre-big-bang models using standard approximation tech-
niques of general relativistic cosmology. They found that the
approximation of neglecting spatial gradients becomes better
as the big-bang singularity is approached. This conclusion is
confirmed by the simple quasihomogeneous model discussed
here. The evolution of a curvature perturbation modelled by
a section of a Friedmann universe is very similar to that of

dilaton solution goes over into that obtained for the purehe phackground Friedmann universe and indeed becomes
dilaton case and so the conclusions from the pure dilatofyore similar to it with time. Hence isotropy is conserved and

case are not likely to be changed fundamentally.

VI. CONCLUSIONS

A very simple inhomogeneous string cosmological mode
has been investigated in the pre- and post-big-bang eras.
the post-big-bang era the usual general relativistic behavior,
of a growing overdensity or underdensity are found. This,
leads to an increasingly inhomogeneous universe if the initi
inhomogeneities are significant, or they are not inflated’2cY

a

spatial gradients do not become important. We note also that
part of the general solution for general relativistic cosmo-
logical models containing p=p perfect fluid is a perturba-
Ition of a Kasnerlike solution whickunlike for case of per-

fﬁct fluids with equation of stae<<p) contains the isotropic
Xpansion as a particular case. Because of this, the general
ehavior of the equations of string cosmology at early times
is significantly simpler than that of general relativity in
um.

away. However, in the pre-big-bang phase the global isot-

ropy of the background FRW model is unaffected by the
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