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Azimuthal correlation in lepton-hadron scattering via charged weak-current processes

Junegone Chay* and Sun Myong Kim†

Department of Physics, Korea University, Seoul 136-701, Korea
~Received 12 May 1997; published 3 December 1997!

We consider the azimuthal correlation of the final-state particles in charged weak-current processes. This
correlation provides a test of perturbative quantum chromodynamics~QCD!. The azimuthal asymmetry is large
in the semi-inclusive processes in which we identify a final-state hadron, say, a charged pion compared to that
in the inclusive processes in which we do not identify final-state particles and use only the calorimetric
information. In semi-inclusive processes the azimuthal asymmetry is more conspicuous when the incident
lepton is an antineutrino or a positron than when the incident lepton is a neutrino or an electron. We analyze
all the possible charged weak-current processes and study the quantitative aspects of each process. We also
compare this result to theep scattering with a photon exchange.@S0556-2821~97!04223-9#

PACS number~s!: 12.38.Bx, 13.10.1q, 13.60.Hb
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I. INTRODUCTION

The QCD-improved parton model has shown a great s
cess in describing high-energy processes such as d
inelastic leptoproduction. In the parton model we can expr
the cross section as a convolution of three factors: the par
lepton hard-scattering cross section, the distribution func
describing the partons in the initial state, and the fragme
tion functions describing the distribution of final-state ha
rons from the scattered parton. The hard-scattering cross
tion at parton level can be calculated at any given orde
perturbative QCD. The distribution functions and fragmen
tion functions themselves cannot be calculated perturbati
but the evolution of these functions can be calculated us
perturbation theory.

The azimuthal correlations provide a clean test of per
bative QCD since these correlations occur at higher order
perturbative QCD. Georgi and Politzer@1# proposed the azi-
muthal angular dependence of the hadrons in the se
inclusive processesl 1p→l 81h1X, wherel , l 8 are lep-
tons, h is a detected hadron. Cahn@2# included the
contribution to the azimuthal angular dependence from
intrinsic transverse momentum of the partons bound ins
the proton. Berger@3# considered the final-state interactio
producing a pion and found that the azimuthal asymme
due to this final-state interaction is opposite in sign to t
due to the effects studied by Cahn. The azimuthal asym
tries discussed by Cahn and Berger are due to nonpertu
tive effects. These effects were analyzed at low transve
momentum@4,5#.

In the kinematic regime attainable at the DESYep col-
lider at HERA or in the CCFR experiments, we expect th
perturbative QCD effects will dominate nonperturbative
fects. This is the motivation for considering the azimuth
correlation of final hadrons inep scattering at HERA and in
np ( n̄ p) scattering in CCFR experiments. We consider
the possible charged weak-current processes in the pertu
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tive regime. Koppet al. @6# analyzed the azimuthal asymme
try in neutrino-nucleon scattering. Me´ndezet al. @7# consid-
ered extensively the azimuthal correlation in leptop
duction. In our paper we analyze the same processes b
different viewpoints and analyses. We especially direct
focus on the experimental aspects since we can now ve
the theoretical results in experiments at HERA or CCFR.

Chayet al. @8# considered the azimuthal asymmetry inep
scattering with a photon exchange. Here we apply a sim
analysis used in Ref.@8# to charged weak-current process
in lepton-hadron scattering. The result is striking in the se
that the final-state particles have a strong azimuthal corr
tion to the incoming lepton. We will systematically analyz
the azimuthal asymmetry in this paper. In Sec. II we brie
review the kinematics used in lepton-proton scattering.
Sec. III we define the quantitŷcosf& as a measure of the
azimuthal correlation and calculate it to orderas using per-
turbative QCD. In Sec. IV we analyze numerically the a
muthal correlation in various processes in which the inco
ing lepton is an electron, a neutrino, a positron, or
antineutrino. We also compare the results from the se
inclusive processes in which we identify a final-state hadr
say, a charged pion with the results from the inclusive p
cesses in which we use only the calorimetric informatio
that is, the energy and the momentum of each particle~or
each jet!. In Sec. V we discuss the behavior of the azimuth
correlation in each process and the conclusion is given
Sec. VI.

II. CROSS SECTIONS

Here we briefly review the kinematics in lepton-hadr
scattering with charged weak currents. Letk1 (k2) be the
initial ~final! momentum of the incoming~outgoing! lepton,
P1 (P2) be the target~observed final-state hadron! momen-
tum, andp1 (p2) be the incident~scattered! parton momen-
tum. At high energy, the hadrons will be produced with m
menta almost parallel to the virtualW-boson direction,
qm5k1

m2k2
m . We focus on interactions that produce nonze

transverse momentumP2T , perpendicular to the spatial com
ponent ofqm, which we will denote byq. We choose the
direction of q to be the negativez axis. We can write the
224 © 1997 The American Physical Society
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57 225AZIMUTHAL CORRELATION IN LEPTON-HADRON . . .
differential scattering cross section in terms of the followi
hadronic variables:

Q252q2, PT5P2T ,f,

xH5
Q2

2P1•q
, y5

P1•q

P1•k1
, zH5

P1•P2

P1•q
, ~1!

and the partonic variables
ic
o-

io

t
. A
ng
x5
xH

j
5

Q2

2p1•q
, z5

zH

j8
5

p1•p2

p1•q
. ~2!

The azimuthal anglef of the outgoing hadron is measure
with respect tok1T , whose direction is chosen to be th
positivex axis. If we employ jets instead of hadrons,f is the
azimuthal angle of the jet defined by an appropriate jet al
rithm @9# and all the hadronic variables are replaced by
jet variables.

In the parton model, if we consider the inclusive pr
cessesl 1p→l 81X, in which l , l 8 are different leptons,
the differential cross section is given by
d we
n is

the
ds

dxHdydzHd2PT

5(
i
E dxdzdjd2pTd~xH2jx!d~zH2z!d~2!~PT2pT!Fi~j,Q2!

dŝ i

dxdydzd2pT

5(
i
E

xH

1 dx

x E d2pTd~2!~PT2pT!Fi S xH

x
,Q2D dŝ i

dxdydzd2pT

, ~3!

with d2PT5PTdPTdf. The sumi runs over all types of partons~quarks, antiquarks, and gluons! inside the proton anddŝ i is
the partonic differential cross section.Fi(x,Q2) is the parton distribution function of finding thei -type parton inside the proton
with the momentum fractionx. In Eq. ~3! we neglect the intrinsic momentum due to the nonperturbative effects an
identify the momentum of the final-state hadron~or a jet! with the momentum of the scattered parton. This approximatio
valid if we choose final-state particles with large transverse momenta.

If we consider the semi-inclusive processl 1p→l 81h1X where h is a detected hadron, say, a charged pion,
differential cross section is given by

ds

dxHdydzHd2PT

5(
i j

E dxdzdjdj8d2pTd~xH2jx!d~zH2j8z!d~2!~PT2j8pT!Fi~j,Q2!
dŝ i j

dxdydzd2pT

D j~j8,Q2!

5(
i j

E
xH

1 dx

x E
zH

1 dz

z E d2pTd~2!S PT2
zH

z
pTDFi S xH

x
,Q2D dŝ i j

dxdydzd2pT

D j S zH

z
,Q2D . ~4!
a

o,

.

he

pro-
The sumi , j runs over all types of partons. The parton
cross setiondŝ i j describes the partonic semi-inclusive pr
cess

l ~k1!1partoni ~p1!→l 8~k2!1partonj ~p2!1X. ~5!

Here the exchanged gauge boson is a chargedW particle.
Fi(x,Q2) is thei -type parton distribution function,D j (z,Q2)
is the fragmentation function of thej -type parton to had-
ronize into the observed hadronh with the momentum frac-
tion z. These two types of functions depend on factorizat
scales and for simplicity we put the scale to beQ, a typical
scale in lepton-hadron scattering.

In order to obtain hadronic cross sections, we have
calculate partonic cross sections using perturbative QCD
zeroth order inas , the parton cross section for the scatteri
n1q→e1q8 is given by

dŝq

dxdydzd2pT

5
GF

2mW
4 uVq8qu2

p

Q2

~Q21mW
2 !2
n

o
t

3
1

y
d~12x!d~12z!d2~pT!, ~6!

where Vq8q is the relevant Cabibbo-Kobayashi-Maskaw
~CKM! matrix element for the processW11q→q8. GF is
the Fermi constant andmW is the mass of theW gauge bo-
son. For the scattering of an antiquark with a neutrin
n1 q̄→e1 q̄8, the parton cross section is given by

dŝ q̄

dxdydzd2pT

5
GF

2mW
4 uVqq8u

2

p

Q2

~Q21mW
2 !2

3
~12y!2

y
d~12x!d~12z!d2~pT!. ~7!

The only difference between these cross sections in Eqs~6!
and~7! is the appearance of the factor (12y)2. This is due to
the helicity conservation. In short, when particles with t
opposite handedness scatter, we have the factor of (12y)2 in
front, while it is independent ofy when particles with the
same handedness scatter. The cross sections for other
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226 57JUNEGONE CHAY AND SUN MYONG KIM
cesses likee1q( q̄ )→n1q8(q8), n̄ 1q( q̄ )→e11q8( q̄8),
and e11q( q̄ )→n1q8(q8) can be obtained using crossin
symmetries. However since the transverse momentum is
at this order, there is no azimuthal correlation at the B
level.

To first order inas , the parton scattering processes d
velop nonzeropT and nontrivial dependence on the az
muthal anglef. The relevant processes are

q~p1!1W6* ~q!→q8~p2!1g~p3!, ~8!

q~p1!1W6* ~q!→q8~p3!1g~p2!, ~9!

q̄~p1!1W6* ~q!→ q̄8~p2!1g~p3!, ~10!

q̄~p1!1W6* ~q!→ q̄8~p3!1g~p2!, ~11!

g~p1!1W6* ~q!→q~p2!1 q̄8~p3!, ~12!

g~p1!1W6* ~q!→q~p3!1 q̄8~p2!, ~13!

whereg is a gluon,W6* is the virtualW boson, andq, q8
are quarks. The Feynman diagrams for these processe
shown in Fig. 1. Figure 1~a! corresponds to Eq.~8! @Eq. ~10!#
with a quark line~an antiquark line! and similarly Fig. 1~b!
corresponds to Eq.~9! and Eq.~11!. Figures 1~c! and 1~d!
correspond to Eq.~12! and Eq.~13!, respectively.

Using the Sudakov parametrization we can expressp2 in
terms ofx, y, andz as

p2
m5@~12x!~12z!1xz#p1

m1zqm1 p̃T
m , ~14!

FIG. 1. Feynman diagrams for charged weak-current proce
at orderas .
ro
n

-

are

where p̃T5(0,pT ,0) is the transverse momentum wit
p1• p̃T5q• p̃T50. For massless partons we have

pT
25up2Tu25

z

x
~12x!~12z!Q2. ~15!

Similarly we can write

k1
m5

x

y
~22y!p1

m1
1

y
qm1 k̃ T

m , ~16!

with kT
25(12y)Q2/y2, wherek̃ T is defined in the same wa

as p̃T . Therefore we have

k1•p25
Q2

2xy
@~12x!~12z!1xz~12y!#2kT•pT , ~17!

and

k2•p25
Q2

2xy
@~12x!~12y!~12z!1xz#2kT•pT . ~18!

The semi-inclusive parton scattering cross section fo
charged weak current is given by

dŝ i j

dxdydzd2pT

5
asGF

2mW
4 uVq8qu2

2p3

yQ2

~Q21mW
2 !2

LmnMi j
mn

3dS pT
22

z

x
~12x!~12z!Q2D , ~19!

where Lmn is the average squared of the leptonic charg
current andMi j

mn is the partonic tensor for the incoming pa
ton i and the outgoing partonj . Vq8q are the CKM matrix
elements. The productsLmnMi j

mn for the processes in Eqs

~8!–~13!, i.e., i j 5qq, qg, q̄ q̄ , q̄g, gq, andg q̄ depend on
the types of incoming leptons. For the proce
n1parton i→e1parton j 1X, they are written as

LmnMqq
mn5

4

3

~k1•p1!21~k2•p2!2

p1•p3 p2•p3
, ~20!

LmnMqg
mn5

4

3

~k1•p1!21~k2•p3!2

p1•p2 p2•p3
, ~21!

LmnM q̄ q̄
mn

5
4

3

~k1•p2!21~k2•p1!2

p1•p3 p2•p3
, ~22!

LmnM q̄g
mn

5
4

3

~k1•p3!21~k2•p1!2

p1•p2 p2•p3
, ~23!

LmnMgq
mn5

1

2

~k1•p3!21~k2•p2!2

p1•p2 p1•p3
, ~24!

LmnMg q̄
mn

5
1

2

~k1•p2!21~k2•p3!2

p1•p2 p1•p3
. ~25!

es



-

s
.

d

ec

r t

c-

a
-

toff,

rder

rn
to
en-

tur-
re-

se
s
vel

ons
nta
o-

lu-
e

57 227AZIMUTHAL CORRELATION IN LEPTON-HADRON . . .
Equations~20! and ~21! correspond to the Feynman dia
grams with quarks in Figs. 1~a! and 1~b!, respectively, with
quarks, Eqs.~22! and ~23! correspond to the same diagram
with antiquarks. Equations~24! and~25! correspond to Figs
1~c! and 1~d!, respectively. Note that Eqs.~21!, ~23!, and
~25! are obtained from Eqs.~20!, ~22!, and~24!, respectively,
by switching p2 and p3. And Eq. ~22! is obtained from
Eq. ~20! by switching p1 and p2. For the process
e1parton i→n1parton j 1X, the matrix elements square
are the same as Eqs.~20!–~25! except an extra factor of 1/2
taking into account the spin average of the incoming el
tron.

With Eqs. ~20!–~25!, we can also obtainLmnMi j
mn for

other charged weak-current processes. For example, fo
processesn̄ 1parton i→e11parton j 1X, LmnMi j

mn are ob-
tained by switchingk1 and k2 in Eqs. ~20!–~25!. They are
written as

LmnMqq
mn5

4

3

~k2•p1!21~k1•p2!2

p1•p3 p2•p3
, ~26!

LmnMqg
mn5

4

3

~k2•p1!21~k1•p3!2

p1•p2 p2•p3
, ~27!

LmnM q̄ q̄
mn

5
4

3

~k2•p2!21~k1•p1!2

p1•p3 p2•p3
, ~28!

LmnM q̄g
mn

5
4

3

~k2•p3!21~k1•p1!2

p1•p2 p2•p3
, ~29!

LmnMgq
mn5

1

2

~k2•p3!21~k1•p2!2

p1•p2p1•p3
, ~30!

LmnMg q̄
mn

5
1

2

~k2•p2!21~k1•p3!2

p1•p2p1•p3
. ~31!

By the same argumentLmnMi j
mn for the process

e11parton i→ n̄ 1parton j 1X are the same except a fa
tor of 1/2.

III. AZIMUTHAL ASYMMETRY

The azimuthal asymmetry can be characterized by the
erage value of cosf, which measures the front-back asym
-

he

v-

metry of P2T along thek1T direction. It is defined by

^cosf&5

E ~ds~0!1ds~1!!cosf

E ~ds~0!1ds~1!!

, ~32!

whereds (0) (ds (1)) is the lowest-order~first-order inas)
hadronic scattering cross section defined in Eqs.~3! or ~4!
and the integration overPT , f, xH , y, and zH is implied.
When we impose a nonzero transverse momentum cu
Eq. ~32! receives contributions only fromds (1) both in the
numerator and in the denominator. Note that the zeroth-o
cross section is proportional tod(PT). Therefore with the
nonzero transverse momentum cutoff at orderas in pertur-
bation theory, the quantitŷcosf& is independent ofas .

In fact the azimuthal asymmetry can occur at the Bo
level if we include the intrinsic transverse momentum due
the confinement of partons inside a proton and the fragm
tation process for partons into hadrons@2,3,8#. However the
size of the intrinsic transverse momentum due to nonper
bative effects is of the order of a few hundred MeV. The
fore if we make the transverse momentum cutoffpc large
enough (>2 GeV! and choose hadrons with the transver
momenta larger thanpc , we expect that the contribution
from the intrinsic transverse momentum from the Born le
processes are negligible compared to those froms (1). In
other words the intrinsic transverse momenta of the part
simply cannot produce hadrons with transverse mome
larger thanpc and the effects from intrinsic transverse m
menta are suppressed. Therefore, forpc larger than 2 GeV,
^cosf& is given by, to a good approximation,

^cosf&.
E ds~1!cosf

E ds~1!

. ~33!

In the following analysis we consider^cosf& as a function
of the transverse momentum cutoffpc .

We first consider the azimuthal asymmetry in the inc
sive processn1p→e1X, whereX denotes any hadron. Th
numerator in Eq.~33! can be written as
E ds~1!cosf5E d2PTcosf
ds

dxHdydzHd2PT

5
8asGF

2mW
4

3p2

Q2

~Q21mW
2 !2

1

yExH

1 dx

x
~An1Bn1Cn1Dn1En1Fn!,

~34!

where

An52A ~12y!xz

~12x!~12z!
@~12y!~12x!~12z!1xz#F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D G ,

Bn5A~12y!x~12z!

~12x!z
@~12y!~12x!z1x~12z!#F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D G ,
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Cn52A ~12y!xz

~12x!~12z!
@~12x!~12z!1~12y!xz#F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D G ,

Dn5A~12y!x~12z!

~12x!z
@~12x!z1~12y!x~12z!#F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D G ,

En5
3

8
~122x!A~12y!x~12x!

z~12z!
@z2~12y!~12z!#F ~ uVudu21uVcsu2!FgS xH

x
,Q2D G ,

Fn52
3

8
~122x!A~12y!x~12x!

z~12z!
@12z2~12y!z#F ~ uVudu21uVcsu2!FgS xH

x
,Q2D G . ~35!

The denominator can be written as

E ds~1!5E d2PT

ds

dxHdydzHd2PT

5
4asGF

2mW
4

3p2

Q2

~Q21mW
2 !2

1

yExH

1 dx

x
~An81Bn81Cn81Dn81En81Fn8!, ~36!

where

An85S 11x2z2

~12x!~12z!
14~12y!xz1~12y!2~12x!~12z! D F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D G ,

Bn85S 11x2~12z!2

~12x!z
14~12y!x~12z!1~12y!2~12x!zD F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D G ,

Cn85S ~12y!2
11x2z2

~12x!~12z!
14~12y!xz1~12x!~12z! D F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D G ,

Dn85S ~12y!2
11x2~12z!2

~12x!z
14~12y!x~12z!1~12x!zD F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D G ,

En85
3

8S @z21~12y!2~12z!2#
x21~12x!2

z~12z!
18~12y!x~12x! D ~ uVudu21uVcsu2!FgS xH

x
,Q2D ,

Fn85
3

8S @~12z!21~12y!2z2#
x21~12x!2

z~12z!
18~12y!x~12x! D ~ uVudu21uVcsu2!FgS xH

x
,Q2D . ~37!

The above six terms in Eqs.~35! and ~37! are obtained from the matrix elements in Eqs.~20!–~25!, respectively. For the
inclusive processe1p→n1X, the corresponding quantities are the same except that the quark flavors are switched,u↔d and
c↔s in the parton distributions functions. There should also be a factor 1/2 from the incoming electron spin average. H
it appears both in the numerator and in the denominator, hence it cancels out.

Now consider the inclusive processn̄ 1p→e11X. The numerator and the denominator in defining^cosf& as in Eqs.~34!
and ~36! are given by

A n̄ 52A ~12y!xz

~12x!~12z!
@~12x!~12z!1~12y!xz#F uVudu2FuS xH

x
,Q2D1uVcsu2FcS xH

x
,Q2D G ,

B n̄ 5A~12y!x~12z!

~12x!z
@~12x!z1~12y!x~12z!#F uVudu2FuS xH

x
,Q2D1uVcsu2FcS xH

x
,Q2D G ,

C n̄ 52A ~12y!xz

~12x!~12z!
@~12y!~12x!~12z!1xz#F uVudu2F d̄S xH

x
,Q2D1uVcsu2F s̄S xH

x
,Q2D G ,

D n̄ 5A~12y!x~12z!

~12x!z
@~12y!~12x!z1x~12z!#F uVudu2F d̄S xH

x
,Q2D1uVcsu2F s̄S xH

x
,Q2D G ,
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E n̄ 52
3

8
~122x!Ax~12x!~12y!

z~12z!
@12z2z~12y!#~ uVudu21uVcsu2!FgS xH

x
,Q2D ,

F n̄ 5
3

8
~122x!A~12y!x~12x!

z~12z!
@z2~12y!~12z!#~ uVudu21uVcsu2!FgS xH

x
,Q2D , ~38!

and

A n̄
8 5S ~12y!2

11x2z2

~12x!~12z!
14~12y!xz1~12x!~12z! D F uVudu2FuS xH

x
,Q2D1uVcsu2FcS xH

x
,Q2D G ,

B n̄
8 5S ~12y!2

11x2~12z!2

~12x!z
14~12y!x~12z!1~12x!zD F uVudu2FuS xH

x
,Q2D1uVcsu2FcS xH

x
,Q2D G ,

C n̄
8 5S 11x2z2

~12x!~12z!
14~12y!xz1~12y!2~12x!~12z! D F uVudu2F d̄S xH

x
,Q2D1uVcsu2F s̄S xH

x
,Q2D G ,

D n̄
8 5S 11x2~12z!2

~12x!z
14~12y!x~12z!1~12y!2~12x!zD F uVudu2F d̄S xH

x
,Q2D1uVcsu2F s̄S xH

x
,Q2D G ,

E n̄
8 5

3

8S @~12z!21~12y!2z2#
x21~12x!2

z~12z!
18~12y!x~12x! D ~ uVudu21uVcsu2!FgS xH

x
,Q2D ,

F n̄
8 5

3

8S @z21~12y!2~12z!2#
x21~12x!2

z~12z!
18~12y!x~12x! D ~ uVudu21uVcsu2!FgS xH

x
,Q2D . ~39!

For the processe11p→ n̄ 1X, the corresponding quantities are the same as in Eqs.~38! and ~39! except the switch of the
quark flavorsu↔d andc↔s in the parton distribution functions.

We can expresŝcosf& using Eq.~4! in the semi-inclusive processes in which we identify a final-state charged pion
the processn1p→e1p1X, the numerator can be written as

E ds~1!cosf5
8asGF

2mW
4

3p2

Q2

~Q21mW
2 !2

1

yExH

1 dx

x E
zH

1 dz

z
~an1bn1cn1dn1en1 f n!, ~40!

and the denominator can be written as

E ds~1!5
4asGF

2mW
4

3p2

Q2

~Q21mW
2 !2

1

yExH

1 dx

x E
zH

1 dz

z
~an81bn81cn81dn81en81 f n8!. ~41!

The quantities introduced in Eqs.~40! and ~41! are given as follows:

an52A ~12y!xz

~12x!~12z!
@~12y!~12x!~12z!1xz#F uVudu2FdS xH

x
,Q2DDu

pS zH

z
,Q2D1uVcsu2FsS xH

x
,Q2DDc

pS zH

z
,Q2D G ,

bn5A~12y!x~12z!

~12x!z
@~12y!~12x!z1x~12z!#F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D GDg

pS zH

z
,Q2D ,
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cn52A ~12y!xz

~12x!~12z!
@~12x!~12z!1~12y!xz#F uVudu2F ūS xH

x
,Q2DD d̄

pS zH

z
,Q2D1uVcsu2F c̄ S xH

x
,Q2DD s̄

pS zH

z
,Q2D G ,

dn5A~12y!x~12z!

~12x!z
@~12x!z1~12y!x~12z!#F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D GDg

pS zH

z
,Q2D ,

en5
3

8
~122x!A~12y!x~12x!

z~12z!
@z2~12y!~12z!#F uVudu2Du

pS zH

z
,Q2D1uVcsu2Dc

pS zH

z
,Q2D GFgS xH

x
,Q2D ,

f n52
3

8
~122x!A~12y!x~12x!

z~12z!
@12z2~12y!z#F uVudu2D d̄

pS zH

z
,Q2D1uVcsu2D s̄

pS zH

z
,Q2D GFgS xH

x
,Q2D , ~42!

whereDi
p(zH /z,Q2) is the fragmentation function for thei -type parton to fragment into a charged pion.

The quantities in the denominator are given by

an85S 11x2z2

~12x!~12z!
14~12y!xz1~12y!2~12x!~12z! D

3F uVudu2FdS xH

x
,Q2DDu

pS zH

z
,Q2D1uVcsu2FsS xH

x
,Q2DDc

pS zH

z
,Q2D G ,

bn85S 11x2~12z!2

~12x!z
14~12y!x~12z!1~12y!2~12x!zD F uVudu2FdS xH

x
,Q2D1uVcsu2FsS xH

x
,Q2D GDg

pS zH

z
,Q2D ,

cn85S ~12y!2
11x2z2

~12x!~12z!
14~12y!xz1~12x!~12z! D

3F uVudu2F ūS xH

x
,Q2DD d̄

pS zH

z
,Q2D1uVcsu2F c̄ S xH

x
,Q2DD s̄

pS zH

z
,Q2D G ,

dn85S ~12y!2
11x2~12z!2

~12x!z
14~12y!x~12z!1~12x!zD F uVudu2F ūS xH

x
,Q2D1uVcsu2F c̄ S xH

x
,Q2D GDg

pS zH

z
,Q2D ,

en85
3

8S @z21~12y!2~12z!2#
x21~12x!2

z~12z!
18~12y!x~12x! D F uVudu2Du

pS zH

z
,Q2D1uVcsu2Dc

pS zH

z
,Q2D GFgS xH

x
,Q2D ,

f n85
3

8S @~12z!21~12y!2z2#
x21~12x!2

z~12z!
18~12y!x~12x! D F uVudu2D d̄

pS zH

z
,Q2D1uVcsu2D s̄

pS zH

z
,Q2D GFgS xH

x
,Q2D .

~43!
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For the processe1p→n1p1X, the corresponding quanti
ties are the same as in Eqs.~42! and ~43! except that the
quark flavor dependence in the parton distribution functio
and the fragmentation functions should be switched in e
SU~2! weak doublet. We can also express the correspond
quantities in the processesn̄ 1p→e11p1X and e11p

→ n̄ 1p1X accordingly as in inclusive processes.

IV. NUMERICAL ANALYSIS

Let us consider hoŵcosf& behaves numerically whe
the QCD effects at next-to-leading order are included. N
that if we choose particles with nonzero transverse mom
tum, ^cosf& is independent ofas to first order inas . Fur-
thermore, if we choose the momentum cutoffpc large
enough, say, larger than 2 GeV, the contribution of the
s
h
g

e
n-

-

trinsic transverse momentum inside a hadron is negligible
our analysis we will show the numerical results for the fin
state particles withpc>2 GeV so that we neglect nonpertu
bative effects.

We show hoŵ cosf& behaves as a function of the tran
verse momentum cutoffpc in inclusive processes. The nu
merical results for the inclusive processes with different
coming leptons are listed in Table I. For comparison we
the result from theep scattering in which a photon is ex
changed. The plot for̂cosf& is shown in Fig. 2. The nu-
merical values are obtained by integrating over the ran
0.05<xH<0.3, 0.2<y<0.8, and 0.3<zH(5z)<1.0. We
also require thatQ>2 GeV in order for perturbative QCD to
be valid. We use the Martin-Roberts-Stirling~MRS! ~setE)
parton distribution functions@10#.

In Fig. 2 we see that̂cosf& approaches zero aspc in-
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TABLE I. ^cosf& as a function of the transverse momentum cutoffpc for inclusive processes. The las
column is from theep scattering with a photon exchange. The integrated regions are 0.05<xH<0.3,
0.2<y<0.8, and 0.3<zH(5z)<1.0 with Q>2 GeV.

pc ~GeV! n→e e→n n̄→e1 e1→ n̄ e→e(g)

2.0 20.0192 20.0235 20.0284 20.0192 20.0351
3.0 20.0100 20.0157 20.0160 20.00584 20.0224
4.0 20.00465 20.00979 20.00852 0.000910 20.0145
5.0 20.00200 20.00605 20.00469 0.00325 20.00973
6.0 20.000687 20.00364 20.00247 0.00358 20.00632
7.0 20.00178 20.00194 20.00116 0.00277 20.00401
8.0 6.5131025 20.000952 20.000525 0.00168 20.00239
9.0 8.5331025 20.000355 20.000200 0.000784 20.00135
10.0 2.4231025 20.000107 26.9831025 0.000218 20.000673
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creases irrespective of the incoming leptons. If we cha
kinematic ranges, not only the numerical values but also
sign change. However the fact that the azimuthal asymm
tends to be washed out for largepc persists. Therefore the
test of perturbative QCD using the azimuthal correlation
inclusive processes is not feasible until we have better de
tor resolution. However in semi-inclusive processes the s
ation is completely different.

In the semi-inclusive processes in which we tag a fin
state charged pion, we use analytic fragmentation functi
for simplicity. This is in contrast with studies using Mon
Carlo simulation for the hadronization process@11#. In our
numerical analysis we use Sehgal’s parametrization@12#.
Sehgal’s parametrization for the quark fragmentation fu
tions to pions is given by

D j
p~z!5

1

z
@0.0511.05~12z!2#, ~44!

for j 5u,d, ū , d̄ and D j
p(z)50 for other quarks. The gluon

fragmentation function to pions is given by

Dg
p~z!520.122.1z1

2.2

z
14.2lnz. ~45!

FIG. 2. ^cosf& vs pc in inclusive processes. The leptons liste
are the incoming leptons for charged weak-current processes.
last one withg is from theep scattering with a photon exchange
e
e
ry

c-
-

l-
s

-

Note that the gluon fragmentation function is ‘‘softer’’ tha
the quark fragmentation functions, that is,Dg

p(z),D j
p(z) for

z.0.21. This functional form for the gluon is obtained b
assuming that the gluon first breaks up into a quark-antiqu
pair, and then the quarks fragment into the observed hadr
At large z, the hadrons mainly come from quark fragmen
tion. For the sake of simplicity, we also nelgect the QC
induced scale dependence of these fragmentation functi
The variation of the fragmentation function due to the sc
dependence largely cancels out in the ratio defining^cosf&.

SinceQ252MElxHy, whereM is the proton mass,El is
the energy of the incoming lepton in the proton rest fram
when we integrate overxH and y, the strong coupling con-
stantas(Q

2) should also be included in the integrands in t
definition of ^cosf&. The running coupling constantas has
the Q dependence as

as~Q2!5
12p

~3322nf !ln~Q2/L2!
, ~46!

wherenf is the number of quark flavors whose masses
below Q. However the inclusion ofas(Q

2) in the integrand
is numerically negligible since it appears both in the nume
tor and in the denominator. Therefore in our analysis we

FIG. 3. ^cosf& vs pc in semi-inclusive processes. The lepto
listed are the incoming leptons for charged weak-current proces
The last one withg is from theep scattering with a photon ex
change.
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not includeas(Q
2) in the integrands. The numerical error

neglecting the variation ofas with respect toQ is less than a
few percent.

The numerical results for the semi-inclusive processes
given in Table II and the plot is shown in Fig. 3. The n
merical values are obtained by integrating over the sa
range as in the analysis of inclusive process
0.05<xH<0.3, 0.2<y<0.8, and 0.3<zH<1.0 with Q>2
GeV. The azimuthal correlation in semi-inclusive proces
shows a rich structure. Aspc increases,̂cosf& decreases for
the incoming antineutrino or the positron. On the other ha
for the incoming neutrino or the electron, it increases a
approaches zero. The result from theep scattering with a
photon exchange is located between these two cases.
behavior will be analyzed in detail in the next section and
compare it to the behavior in inclusive processes.

V. DISCUSSION

The most interesting feature of our analysis is the beh
ior of ^cosf& as a function of the transverse momentu
cutoff pc . Let us compare inclusive and semi-inclusive ca
shown in Figs. 2 and 3, respectively. In inclusive proces
^cosf& approaches zero aspc increases irrespective of th
incoming leptons. On the other hand,^cosf& in semi-
inclusive processes is numerically large compared to tha
inclusive processes by an order of magnitude and it depe
on the incoming leptons. However^cosf& remains consis-
tently negative in semi-inclusive processes. Negative va
of ^cosf& mean that the final-state particles tend to be em
ted to the direction of the incoming lepton.

We can understand why there is such asymmetry at o
as in the context of color coherence at parton level as no
in Ref. @8#. When a quark-antiquark pair is produced in
color-singlet state, soft gluons tend to be emitted inside
cone defined by the quark-antiquark pair. In our case,
have an incoming quark and an outgoing quark. However
can regard the incoming quark as an outgoing antiquark
the pair as a color singlet. Therefore the configuration
which the outgoing quark is closer to the incoming lept
and a gluon is emitted between the incoming quark and
outgoing quark is more probable. It is this configuration th

TABLE II. ^cosf& as a function of the transverse momentu
cutoff pc for the semi-inclusive processes with a final-state char
pion. The last column is from theep scattering with a photon ex
change. The kinematic range is 0.05<xH<0.3, 0.2<y<0.8, and
0.3<zH<1.0 with Q>2 GeV.

pc ~GeV! n→e e→n n̄→e1 e1→ n̄ e→e(g)

2.0 20.0515 20.0591 20.115 20.0817 20.0832
3.0 20.0443 20.0529 20.128 20.0854 20.0805
4.0 20.0399 20.0482 20.146 20.0970 20.0783
5.0 20.0364 20.0439 20.166 20.111 20.0762
6.0 20.0341 20.0405 20.187 20.127 20.0740
7.0 20.0311 20.0366 20.204 20.141 20.0720
8.0 20.0289 20.0332 20.219 20.156 20.0698
9.0 20.0256 20.0292 20.224 20.163 20.0660
10.0 20.0224 20.0248 20.226 20.173 20.0634
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gives negativê cosf& after boosting to the photon-proto
center-of-mass frame assuming that we are in a kinem
regime where the observed hadron is coming from the fr
mentation of the quark.

In the semi-inclusive processes in which we identify
final-state hadron, for example, a charged pion, note that
gluon fragmentation function is much softer than the qu
fragmentation functions. That is, the gluon fragmentat
function Dg

p(zH /z) decreases rapidly aszH /z→1 compared
to the quark fragmentation functions. This is clearly seen
Sehgal’s parametrization of the fragmentation functio
Therefore for largezH (zH>0.3 in our numerical result! we
effectively pick up the pions which are fragments of quar
This is exactly the situation where color coherence can
plain the asymmetry. Of course, final-state quarks can
produced from the gluon-W fusion. But in this casêcosf&
can be either positive or negative, hence there is a pa
cancellation for wide ranges ofxH andzH .

In inclusive processes, since there appear no fragme
tion functions, both quarks and gluons contribute to t
asymmetry. But their contributions tend to cancel each ot
since the final-state particles are emitted in the opposite
rection. Note the opposite signs in the pairs of terms (An ,
Bn), (Cn , Dn), and (En , Fn) in Eq. ~35!. However the
asymmetry can arise depending on the kinematic range.
example, the valence quarks contribute dominantly for la
xH /x because the valence quark distribution functio
Fi(xH /x,Q2) are larger than other distribution functions.
we compare Figs. 2 and 3, the cancellation in inclusive p
cesses is illustrated clearly. The magnitudes of^cosf& in
inclusive processes~Fig. 2! are smaller by an order of mag
nitude than those in semi-inclusive processes~Fig. 3!.

Now let us consider the detailed behavior of^cosf& aspc
varies. In evaluatinĝ cosf&, there are different combina
tions of parton distribution functions~and fragmentation
functions in semi-inclusive processes! for different incoming
leptons. However, since these functions appear both in
denominator and in the numerator, the main difference
sults from the matrix elements squared for each process
the matrix elements squared for the incoming electron
for the incoming neutrino are proportional to each other,
expect that the behavior of^cosf& from an incoming elec-
tron and from an incoming neutrino is similar though t
magnitudes may be different. This is true for the cases w
an incoming positron and an incoming antineutrino. This e
pectation is shown in Fig. 3 for semi-inclusive processes
is not clear in Fig. 2 for inclusive processes since the m
nitudes of ^cosf& are numerically too small to draw an
conclusion.

One interesting feature in Fig. 3 is that when the incom
particle is an antineutrino or a positron,^cosf& is more
negative compared to the case of the incoming neutrino
electron.^cosf& decreases aspc increases for incoming an
tileptons, while it increases and approaches zero for inco
ing leptons. This behavior results from complicated fun
tions depending onx, y, z, xH, and zH . Therefore it is
difficult to explain the behavior in a simple way. Howev
we can explain whŷ cosf& is more negative for incoming
antileptons with largepc .

In semi-inclusive processes, since we select the had
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with transverse momentumPT larger than the transverse mo
mentum cutoffpc , we have the relation

PT
25

~12x!~12z!

xz
zH

2 Q252MElxHy
~12x!~12z!

xz
zH

2 >pc
2 .

~47!

The second equality in Eq.~47! is obtained by the relation
Q252xHyMEl . For largepc , the phase space is confined
the region with smallx, z and largexH , y, andzH . In this
region the ratiozH /z, which appears in the fragmentatio
functions, is large, hence the contribution of the gluon fra
mentation is negligible compared to that of the quark~anti-
quark! fragmentation. In other wordsbn , dn in Eq. ~42! and
bn8 , dn8 in Eq. ~43! are negligible compared to other contr
butions. Similarly largexH /x, which appears in the parto
distribution functions, is preferred hence the contribution
the distribution functions of sea quarks and gluons is sm
compared to that of the valence quark distribution functio
since the valence quark distribution functions are domin
for largexH /x. As a resultcn , en , f n terms in Eq.~42! and
cn8 , en8 , f n8 terms in Eq.~43! are negligible. Thereforean and
an8 dominate for largepc . It means that the main contribu
tion to ^cosf& comes from the scattering of an initial valen
quark into a final-state quark, fragmenting to the obser
pion.

Note that, since the parton distribution functions and
fragmentation functions appear both in the numerator an
the denominator,̂cosf& is mainly affected by the partoni
scattering cross sections, which are functions of parton v
ablesx, y, andz. For smallx, z and largey, only the first
term in an8 in the denominator and the first term inan in the
numerator are important. The partonic part of the integra
in the denominator behaves as (xz)21 and that in the nu-
merator behaves as2(xz)21/2(12y)3/2. Since the integrand
in the denominator grows faster than that of the numera
for small x, z and largey, ^cosf& in semi-inclusive pro-
cesses approaches zero for the incoming electron or neu
for largepc , but it remains negative.

In the case of the incoming antineutrino,a n̄ anda n̄
8 terms

are dominant for largepc as in the case with the incomin
neutrino. But the behavior of these terms are differe
Though we do not present the forms ofa n̄ anda n̄

8 here, we

can see the dependence ofa n̄ and a n̄
8 on the partonic vari-

ablesx, y, andz in Eqs.~38! and~39! for inclusive processes
since the partonic cross sections are the same. For smalx, z
and largey, only the third term in the denominator survive
and it behaves as (xz)21. On the other hand, the integrand
the numerator behaves as2(xz)21/2(12y)1/2. Therefore the
magnitude of^cosf& is larger than that for the incomin
electron or neutrino by a factor of (12y)21 in the integrand
in the numerator, hencêcosf& is more negative than th
case of an incoming electron or neutrino. In addition, b
cause of this factor (12y)21, the difference of̂ cosf& be-
tween the incoming antineutrino and the incoming posit
is larger than that for the incoming electron and the incom
neutrino. It is also interesting to note that the azimut
asymmetry exhibited by a photon exchange in the se
inclusiveep scattering is intermediate between the two ca
in which there are leptons or antileptons.
-
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The behavior of^cosf& in inclusive processes can b
explained by the same argument. In this case we identify
transverse momentum of the final-state hadron~or a jet! as
the transverse momentum of the scattered parton. It co
sponds to settingzH5z. Therefore we select the final-sta
particle with the momentum cutoffpc satisfying

PT
25

z~12z!~12x!

x
Q252MElxHy

z~12z!~12x!

x
>pc

2 .

~48!

Therefore aspc gets large, the integrated phase space is c
fined to a region with smallx, largexH , y and intermediate
z between 0 and 1. Since the variablexH /x in the parton
distribution functions is large, the contribution from th
gluon distribution function is negligible. This means thatE
andF in Eqs.~35! and~38! andE8, F8 in Eqs.~37! and~39!
can be neglected. Therefore the remainingA, B, C, andD
terms and their primed quantities contribute to^cosf&.

As we can see in Eq.~36!, the integrands in the denom
nator behave asx21 whether the incoming particle is a neu
trino or an antineutrino. In the case of the neutrino, the in
grand in the numerator fromAn , Bn terms behaves a
x21/2(12y)3/2, while it behaves asx21/2(12y)1/2 from Cn ,
Dn terms. These terms are smaller than the integrands in
denominator. Furthermore there is a partial cancellation
tweenAn and Bn because they have opposite signs. This
also true forCn and Dn . Therefore^cosf& becomes very
small. The same argument applies to the case of the inc
ing antineutrino.

As pc gets large, the azimuthal asymmetry tends to
washed out in inclusive processes. This behavior of^cosf&
is expected considering the momentum conservation. In
case in which there are two outgoing particles in t
W-proton frame, the transverse momentum of one particl
balanced by another particle emitted in the opposite dir
tion. Therefore if we sum over all the contributions from a
the emitted particles, there should be no azimuthal asym
try. The small azimuthal asymmetry, as shown in Fig.
arises since we do not include all the emitted particles w
the given choice ofxH , y, andzH .

VI. CONCLUSION

We have extensively analyzed the azimuthal correlat
of final-state particles in charged weak-current processe
is a clean test of perturbative QCD if we make the transve
momentum cutoffpc larger than, say, 2 GeV. It turns out tha
the azimuthal asymmetry is appreciable in semi-inclus
processes compared to inclusive processes since the a
metry mainly comes from the contribution of a final-sta
quark due to the soft nature of the gluon fragmentation fu
tion for largezH . In inclusive processes we sum over all th
contributions from quarks~antiquarks! and gluons, and the
sum approaches zero as we include a wider range of v
ables due to the momentum conservation.

In addition the azimuthal asymmetry is more conspicuo
for semi-inclusive processes with an incoming antineutr
or a positron. Previously there was an attempt to analyze
azimuthal asymmetry at HERA inep scattering for electro-
production via a photon exchange. However sincee1p scat-
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tering has been performed at HERA, we expect that the
of the azimuthal asymmetry is more feasible because
magnitude of^cosf& is bigger in semi-inclusive processe
with an incoming positron. In CCFR experiments they co
sider only the inclusive cross section fornm ( n̄ m)1H
→m (m1)1X, where H is the target hadron. If they ar
able to identify a final-state hadron, they will also be able
observe the azimuthal correlations in various charged we
current processes.

The azimuthal asymmetry in lepton-hadron scattering
sults from a combination of main ideas in the QC
improved parton model. As mentioned above, the par
model states that the hadronic cross section can be sepa
into three parts: the parton distribution functions, the fra
mentation functions, and the partonic hard-scattering cr
section. Each element contributes to the azimuthal asym
try. If we make a transverse momentum cutoffpc large
enough in order for perturbative QCD to be valid, the sma
x ~large-xH /x) region mainly contributes, hence the cont
st
e

-

o
k-

-

n
ted
-
ss
e-

-

bution from valence quarks is dominant. At the same tim
largepc implies that the small-z ~large-zH /z) region mainly
contributes to the asymmetry. This means that quark or
tiquark fragmentation functions contribute dominantly. T
detailed behavior of̂cosf& depends on the hard-scatterin
cross section at parton level. Therefore the experime
analysis of the azimuthal asymmetry tests the very ba
ideas in the QCD-improved parton model.
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