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Azimuthal correlation in lepton-hadron scattering via charged weak-current processes
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We consider the azimuthal correlation of the final-state particles in charged weak-current processes. This
correlation provides a test of perturbative quantum chromodynai@IC®). The azimuthal asymmetry is large
in the semi-inclusive processes in which we identify a final-state hadron, say, a charged pion compared to that
in the inclusive processes in which we do not identify final-state particles and use only the calorimetric
information. In semi-inclusive processes the azimuthal asymmetry is more conspicuous when the incident
lepton is an antineutrino or a positron than when the incident lepton is a neutrino or an electron. We analyze
all the possible charged weak-current processes and study the quantitative aspects of each process. We also
compare this result to thep scattering with a photon exchand&0556-282(97)04223-9

PACS numbeps): 12.38.Bx, 13.10+q, 13.60.Hb

[. INTRODUCTION tive regime. Koppet al.[6] analyzed the azimuthal asymme-
try in neutrino-nucleon scattering. Mdezet al.[7] consid-

The QCD-improved parton model has shown a great sucered extensively the azimuthal correlation in leptopro-
cess in describing high-energy processes such as deeguction. In our paper we analyze the same processes but in
inelastic leptoproduction. In the parton model we can expreséifferent viewpoints and analyses. We especially direct our
the cross section as a convolution of three factors: the partof0cus on the experimental aspects since we can now verify
lepton hard-scattering cross section, the distribution functiodN€ theoretical results in experiments at HERA or CCFR.
describing the partons in the initial state, and the fragmenta- Chayet al.[8] considered the azimuthal asymmetryeip
tion functions describing the distribution of final-state had-SCattering with a photon exchange. Here we apply a similar

rons from the scattered parton. The hard-scattering cross se@falysis used in Ref8] to charged weak-current processes

tion at parton level can be calculated at any given order if! Iepton—.hadron scattering. The resultis striki_ng in the sense
perturbative QCD. The distribution functions and fragmenta-that the final-state particles have a strong azimuthal correla-

. . . tion to the incoming lepton. We will systematically analyze
tion functions themselves cannot be calculated perturbativel , o :

. . .~ the azimuthal asymmetry in this paper. In Sec. Il we briefly
but the evolution of these functions can be calculated usin

turbation th Yeview the kinematics used in lepton-proton scattering. In
perturbation theory. Sec. lll we define the quantititos¢) as a measure of the

The azimuthal correlations provide a clean test of pertur, imuthal correlation and calculate it to ordey using per-

bative QCD since these correlations occur at higher orders ifhrbative QCD. In Sec. IV we analyze numerically the azi-
perturbative QCD. Georgi and Politzgt] proposed the azi-  mthal correlation in various processes in which the incom-
muthal angular dependence of the hadrons in the seming |epton is an electron, a neutrino, a positron, or an
inclusive processes+p—/"+h+X, where/, /" are lep-  antineutrino. We also compare the results from the semi-
tons, h is a detected hadron. Cahf2] included the inclusive processes in which we identify a final-state hadron,
contribution to the azimuthal angular dependence from thgay, a charged pion with the results from the inclusive pro-
intrinsic transverse momentum of the partons bound insidgesses in which we use only the calorimetric information,
the proton. Bergef3] considered the final-state interaction that is, the energy and the momentum of each partiote

producing a pion and found that the azimuthal asymmetryeach jet In Sec. V we discuss the behavior of the azimuthal

due to this final-state interaction is opposite in sign to thaiorrelation in each process and the conclusion is given in
due to the effects studied by Cahn. The azimuthal asymmesec. VI.

tries discussed by Cahn and Berger are due to nonperturba-
tive effects. These effects were analyzed at low transverse
momentum 4,5].

In the kinematic regime attainable at the DE®Y col- Here we briefly review the kinematics in lepton-hadron
lider at HERA or in the CCFR experiments, we expect thatscattering with charged weak currents. ligt (k,) be the
perturbative QCD effects will dominate nonperturbative ef-initial (final) momentum of the incomingoutgoing lepton,
fects. This is the motivation for considering the azimuthalp, (P,) be the targetobserved final-state hadromomen-
correlation of final hadrons iep scattering at HERA and in  tum, andp, (p,) be the incidentscatterefi parton momen-
vp (vp) scattering in CCFR experiments. We consider alltum. At high energy, the hadrons will be produced with mo-
the possible charged weak-current processes in the perturb@enta almost parallel to the virtualV-boson direction,

g#=k{—k5 . We focus on interactions that produce nonzero

transverse momentufy, perpendicular to the spatial com-
*Electronic address: chay@kupt.korea.ac.kr ponent ofg*, which we will denote byg. We choose the
"Electronic address: kim@kupt2.korea.ac.kr direction of g to be the negative axis. We can write the

II. CROSS SECTIONS
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differential scattering cross section in terms of the following X Q2 Z4  P1P»

hadronic variables: X=—= , Z=—= . 2
& 2p1-q g P19 @

The azimuthal angle) of the outgoing hadron is measured
with respect tok,t, whose direction is chosen to be the
positivex axis. If we employ jets instead of hadrorsjs the

5 azimuthal angle of the jet defined by an appropriate jet algo-
Q _P.iq P1 Py 1) rithm [9] and all the hadronic variables are replaced by the

Q2:_q2' PT:PZTid)!

MTop g YT Pk TPq° jet variables.
In the parton model, if we consider the inclusive pro-
cesses’+p—/"+X, in which/, /' are different leptons,
and the partonic variables the differential cross section is given by

do f
_ = dxdzdd?pr(xy— £X) 8(zy—2) 82 (P F;i _
dXdeddePTE ckd®pr8(xy— £x) 8(zy—2) 82 (Pr—pr) (gQ)dddzde
1dx X do;
- — | d%pr6@(Pr—pp)Fi| —,Q%|——rt—, 3
Z LHXJ pré“(Pr—pr)F; X Q dxdydzdp; ©)

with d2P;=P;dP;d¢. The sumi runs over all types of partorguarks, antiquarks, and gludrisside the proton anda; is
the partonic differential cross sectidf(x,Q?) is the parton distribution function of finding thetype parton inside the proton
with the momentum fractiorx. In Eq. (3) we neglect the intrinsic momentum due to the nonperturbative effects and we
identify the momentum of the final-state hadr@m a je) with the momentum of the scattered parton. This approximation is
valid if we choose final-state particles with large transverse momenta.

If we consider the semi-inclusive procegs+p—/"’'+h+X whereh is a detected hadron, say, a charged pion, the
differential cross section is given by

A Y | dxdzddé d?pro(xy— x) 8z — £'2) 8P (Pr— &' pr) Fi(€,Q? )—da D;(¢,Q%)
dxdydz,d2P; 4 ProtXn : TEP dxdydzdp;
ldx f1dz( 2)( 2y ) (XH 2) d&ij (Z_H 2)
f fd ré pT Fil 5@ dxdydz&pTDJ 29 @

The sumi, j runs over all types of partons. The partonic 5
cross setiorda;; describes the partonic semi-inclusive pro- ngs(l_x) 8(1-2)6%(pr),  (6)
cess
where V4 is the relevant Cabibbo-Kobayashi-Maskawa
/(ky)+parton(p;)— /" (k,)+partorj (p,) +X. (5)  (CKM) matrix element for the procesd* +q—q’. Gg is
the Fermi constant anchy, is the mass of th&/ gauge bo-

Here the exchanged gauge boson is a chakyedarticle. son. For t@ scattering of an antiquark with a neutrino,

Fi(x,Q?) is thei-type parton distribution functio;(z,Q?)  »*d—e€* q’, the parton cross section is given by
is the fragmentation function of thptype parton to had-

ronize into the observed hadrénwith the momentum frac- dog  GEmy|Vegl® Q2
tion z. These two types of functions depend on factorization  gxdydzdp; B T (Q%+m3)?
scales and for simplicity we put the scale to@ea typical

scale in lepton-hadron scattering. (1-y)?

2
In order to obtain hadronic cross sections, we have to 6(1-x)6(1-2)6(pr). (7)

calculate partonic cross sections using perturbative QCD. At
zeroth order inxg, the parton cross section for the scatteringThe only difference between these cross sections in @&js.

v+gq—e+q’ is given by and(7) is the appearance of the factor{¥)?2. This is due to
the helicity conservation. In short, when particles with the
d(}q G2mé |Vq q|2 Q? opposite handedness scatter, we have the factor-efjZ in

= CEREY front, while it is independent of when particles with the
dxdydzdpy ™ (Q°+mg) same handedness scatter. The cross sections for other pro-
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where pr=(0,p7,0) is the transverse momentum with

k1 p:-pt=4g-p7=0. For massless partons we have

p2=[parl?=2 (1-%)(1-2)Q2 s

pa
Similarly we can write

ky

X 1 —_
k’f=)—/(2—y)p’f+ ;q"+ kf, (16)

P2 with k2= (1—y)Q?/y?, wherekr is defined in the same way

aspr. Therefore we have

Q2
o ki-Po=5, o[(1=X)(1=2)+x21-y)]~kr-pr, (17)
ko ko y
k1 k1
. » and
Q2
” ” kz-p2=m[(1—x)(1—y)(l—z)+xz]—kT‘pT. (18
" 8 The semi-inclusive parton scattering cross section for a
(°) @ charged weak current is given by
FIG. 1. Feynman diagrams for charged weak-current processes ~ 2 4 2
at ordera. daj _ asGeMy| Vg 4 yQ? L M~
dxdydzdp 27 (Q%+ma)2 !

cesses likee+q(q)—v+q'(q), »+a(q)—e*+q'(q’),
ande™ +q(q)—v+qg’(q’) can be obtained using crossing X & pg_z(l_x)(l_z)Qz ' (19)
symmetries. However since the transverse momentum is zero X

at this order, there is no azimuthal correlation at the Born ) )
level. wherelL ,, is the average squared of the leptonic charged

To first order inas, the parton scattering processes de-current andMfi” is the partonic tensor for the incoming par-
velop nonzerop; and nontrivial dependence on the azi- toni and the outgoing partop. V. are the CKM matrix

muthal angleg. The relevant processes are elements. The products, , M{” for the processes in Egs.
. . (8-(13), i.e.,ij=qq, 99, 99, 99, gg, andgq depend on
q(py) +W=* () —q'(p2) +9(Ps), 8  the types of incoming leptons. For the process
. , v+ parton i —e+ parton j+ X, they are written as
a(py) +W=*(q)—q’(p3) +9(p2), C)
_ _ L4 (kg pp)?+ (ko po)?
(P1)+W**(9)—q(p2) +9(pa), (10 LuMea=3 " prps Paps 20
q(p2)+W*(a)—q’(ps) +9(P2), (11) 4 (Ky-py)2+ (Ky- pa)?
g(P)+W** (@) —d(P2)+ ' (Pa), (12 Lre e
. — 4 (ky-pa)?+(ka-py)?
9(p1) + W= (d4)—a(ps)+a’(p2), (13 LuMig=2 22
' : 2 KYTA9 3 p1-ps P2-P3 @2
whereg is a gluon,W** is the virtualW boson, andj, g’
are quarks. The Feynman diagrams for these processes are uv 4 (Ki-pa)?+(Kp-pp)?
shown in Fig. 1. Figure (B) corresponds to Eq8) [Eq. (10)] LMVME;_§ P1-P2 P2-P3 (23
with a quark line(an antiquark lingand similarly Fig. 1b)
corresponds to Eq9) and Eq.(11). Figures 1c) and Xd) 1 (K+-02)24+ (Ko- D)2
correspond to Eq(12) and Eq.(13), respectively. LMVM§§=—( 1-P3)"+ (K- P2) (24)
Using the Sudakov parametrization we can expsi 2 P1P2 P1-P3

terms ofx, y, andz as ) )
_ L M#L:E (ky-p2)“+(Ka-p3) (25
ps=[(1-x)(1-2)+xz]pf+zd‘+ p¥, (14 KYTea 20 piepa PitPs
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Equations(20) and (21) correspond to the Feynman dia- metry of P, along thek, direction. It is defined by
grams with quarks in Figs.(d4 and 1b), respectively, with

quarks, Eqs(22) and(23) correspond to the same diagrams

with antiquarks. Equation@4) and(25) correspond to Figs. f (do@+doV)cos ¢

1(c) and 1d), respectively. Note that Eq$21), (23), and (cos ¢p)= , (32
(25) are obtained from Eq$20), (22), and(24), respectively, f (do'®+doD)

by switching p, and p;. And Eq. (22) is obtained from

Eq. (200 by switching p; and p,. For the process

e+ parton i — v+ parton j + X, the matrix elements squared wheredo® (do(®)) is the lowest-ordeffirst-order in a)

are the same as EqR0)—(25) except an extra factor of 1/2 hadronic scattering cross section defined in E@g.or (4)

taking into account the spin average of the incoming elecand the integration ovePt, ¢, Xy, Y, andzy is implied.

tron. When we impose a nonzero transverse momentum cutoff,
With Egs. (20—(25), we can also obtairk, , M{i” for  Eq. (32 receives contributions only frodc‘*) both in the

other charged weak-current processes. For example, for thumerator and in the denominator. Note that the zeroth-order

processes + parton i —e* + parton j + X, L,,M{" are ob- ~ Cross section is proportional té(Pr). Thereforg with the

tained by switchingk; andk, in Egs.(20)—(25). They are  nonzero transverse momentum cutoff at ordgrin pertur-

written as bation theory, the quantitycos¢) is independent ofy;.
In fact the azimuthal asymmetry can occur at the Born
4 (Ky-p1)%+(Ky-pa)? level if we include the intrinsic transverse momentum due to
L ng:§ ’ (26)  the confinement of partons inside a proton and the fragmen-
P1-P3 P2-P3 i !
tation process for partons into hadrdis3,8. However the
4 (Ky-pp)2+(ky-pg)? size of the intrinsic transverse momentum due to nonpertur-
LuMGg=3 : : , (27)  bative effects is of the order of a few hundred MeV. There-
P1-P2 P2-Ps fore if we make the transverse momentum cutofflarge
4 (Ky-py)2+ (K- py)2 enough &2 GeV) and choose hadrons with the transverse
L, MEE= , (28) momenta larger thap., we expect that the contributions
@3 P1-P3 P2 P3 from the intrinsic transverse momentum from the Born level
4 (Ky- pg)2+ (Ky- py)? processes are negligible compared to those figth. In
L, Mer=_ 2253 L (290  other words the intrinsic transverse momenta of the partons
K993 p1tP2 P2eP3 simply cannot produce hadrons with transverse momenta
K 24 (K ) larger thanp. and the effects from intrinsic transverse mo-
L MMV:E( 2:P3) +(Ky-po) (30) menta are suppressed. Therefore, ggrarger than 2 GeV,
2 p1p2p1-pPz (cos¢) is given by, to a good approximation,
w1 (Ko P2)?+ (Ky-p3)?
LiMgq=3 P1-P2P1-P3 (31 f Heos ¢
(cos )= ——— (33
By the same argumentL , M{i” for the process f doL
e’ + parton i — v + parton j+ X are the same except a fac-

tor of 1/2. ) ) ) )
In the following analysis we considécos¢) as a function

of the transverse momentum cutqff .
We first consider the azimuthal asymmetry in the inclu-
The azimuthal asymmetry can be characterized by the awsive process+ p— e+ X, whereX denotes any hadron. The
erage value of cog, which measures the front-back asym- numerator in Eq(33) can be written as

. AZIMUTHAL ASYMMETRY

do 8aGimy, Q2 1 (1dx
= f —(A,+B,+C,+D,+E,+F,),

doPcos =f d?P;cos =
f 7 ¢ T ¢dXdedq4d2PT 3m2  (Q2+m2)2Y

xpy X

(39

where

B [ (1-y)xz
A=— m[(l—y)(l—x)(l—z)ﬂz]

[(1-y)x(1-2)
v (1-x)z

XH XH
|Vud|2Fd(? vQZ) + |Vcs|2Fs( ?:Q2> },

[(1-y)(1=x)z+x(1-2)]

Vol 3,07 +|vcs|2F( QZH
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B (1-y)xz

C=m Nt -2+ dyix)
(1-y)x(1-2)

D,= (1——x)z[(1_x)z+(1_y)X(l_Z)]

X
Vaol2Fof 20

2 X_H 2

+|VCS| FE( X !Q ):|1
XH

+|Vcs|2F€<7yQ2”,

XH
Vaol2F 2,07

3 (1-y)x(1=x) X
E,=g(1-2x) W[z—(l—y)(l—z)] (|Vud|2+|vcs|2)Fg(YHiQ2)}’
B 3 (1-y)x(1—x) Xy
Fo=—g(l=20\ =5 (1-2-(1-y)7] (Ivud|2+|vcs|2>Fg(;,QZH.

The denominator can be written as

4 2.4 2
f d0(1)=fd2PT do __2aSiw__Q 1fld—X(A,’,JrB’V+C’V+DL+EL+FL).
dxydydz,d?Pr 3w (Q%+m3)? Y J)xy X
where
,_< 1+ x%2? ) ) ) (XH 2) ) (XH 2)
A=l Tooa—g A YXzr A=Y (1-x(1=2) || Vud™Fal 55,Q% |+ IVed *Fel 57.Q°%) |,
1+x%(1-2)? [ X X
V= (1_—)()2+4(1—y>x(1—z>+(1—y>2(1—x>z)_Ivudled(;“,Q2 +|vcs|2Fs(7“,Q2”,
c’=((1— )2i+4(1— )xz+(1—x)(1—z))-|v |2F{x—H Q?|+|V |2|={X—H Q2)
v y (1—X)(1—Z) y i ud ul Ty cs ¢l x '
1+x3(1-2)? [ X X
D;:((1—y)2W+4(1—y)x(1—z)+(1—x)z)_|vud|2|:ﬁ7”,Q2 +|VCS|ZF47“,Q2”,

2+ 1— 2
[z2+<1—y)2<1—z>2]%+8<1—y>x<1—x>)<|vud|2+|vcs|2>Fg(X;”,QZ),

E’—S
3

3 X2+ (1—x)? X
F:;Zg([(1_2)2+(1_y)222]z(1—_2)+8(1_Y)X(1_X))(|Vud|2+|Vcs|2)Fg(YH:Q2>-

(39

(36)

(37

The above six terms in Eq$35) and (37) are obtained from the matrix elements in EGq&0)—(25), respectively. For the
inclusive procese+ p— v+ X, the corresponding quantities are the same except that the quark flavors are switeltednd
c«< s in the parton distributions functions. There should also be a factor 1/2 from the incoming electron spin average. However

it appears both in the numerator and in the denominator, hence it cancels out.

Now consider the inclusive proce@ p—e*+X. The numerator and the denominator in definfogs ¢) as in Eqs(34)

and (36) are given by

o (1-y)xz

A=— m[(1—x)(1—z)+(1—y)><Z]
__[a-yx(i-2)

B,= W[(l—x)ﬁ-(l—y)x(l—Z)]

L [ (1-y)xz

C=- m[(l—Y)(l—X)(l—ZHXZ]
_[(1=y)x(1-2)

D= u_—x)z[(l—Y)(l—X)ZJrX(l—Z)]

X
|Vud|2Fu<71Q2

XH
+ |Vcs|2Fc(?yQ2) :||

XH
X

XH

+ |Vcs|2Fc(7aQ2”.

+|vcs|2F4X7”,Q2”,

+|vcs|2F4X7“,Q2”,

|vud|2Fu( @

X

H
Vaol2Fe{ 2 07

x

H
Vaol2Fef 2 0
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3 X(1=x)(1—y) XH
E,=— §(1—2X) W[l_z_z(l_yn(lvudz*'|Vcs|2)Fg(7vQ2)'

3 (1-y)x(1-x) XH
Fu—g(l—zx) W[Z_(l_y)(l_z)](lvudlz_F|Vcs|2)Fg(?vQ2)y (38

and

N

1+
A’V)—<(1—y)2m+4(1—y)xz+(1—x)(1—z)

—_

Vool 5 0 vem .02

21 _ 52 -

B’r—((l— s +4(1—y>x(1—z>+<1—x>z) Vad?F ( @ +|vcs|2F( QZ) ,
) 1+x2z22 ) [ o [ Xu o (X )]

Cy)—(m+4(l—wxz+(l—)’) (1-x)(1-2) _|Vud| Fal Q% T IVed F5[ 7.Q |
. [1+X3(1-2)? [ X X |

= u_—x)z+4(1—y>x(1—z>+(1—y>2<1—x>z)»|vud|2Fa(7“,Q2 +|vcs|2F;(7”,Q2)_,

3 X%+ (1—x)? X
e 2ty a0 (VY .07

?+(1-x)?

g T8y x)) |vud|2+|vcs|2>Fg(X7“,Q2). (39)

([Z +(1-y)*(1- Z)z]

For the process™ + p— v+ X, the corresponding quantities are the same as in @85.and (39) except the switch of the
qguark flavorsu—d andc«s in the parton distribution functions.

We can expresécos¢) using Eq.(4) in the semi-inclusive processes in which we identify a final-state charged pion. For
the process+ p—e+ 7+ X, the numerator can be written as

8aGZmy, 1dx (1dz
f doMcos p= 5 f f — (@, +b,+c,+d,+e,+1,), (40)
37 (Q2+ ma,)? Y

and the denominator can be written as

L AaGEmy, 1dx (1dz
f doV= . - . f f a,+b/+c/+d +e,+f!). (41
37 (Q +mW) y

The quantities introduced in Eggl0) and (41) are given as follows:

o SEYXE e (1—2)+

aV_ (1_X)(1_Z)[( Y) X)( Z XZ]
[(1-y)x(1-2)

bV= (].——X)Z[(l_y)(l_X)Zer(l Z

lvudled( QZ)D"( 5@ +|vcs|2Fs(X7“,Q2)D:(Zg”,QZH,

|Vud|2Fd( QZ +|Vcs| F( QZHDQ(%—',QZ),
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(1-y)xz
C=~ Va1 012+ (1-y)xZ]

X Z X 7
(1-x)(1-2) IVudleﬂy”,Qz) D%(?H,QZ) +|VCS|2F47H,Q2> D§(7H’Q2”’

[(1=y)x(1—-2)
d,= W[(l—x)zﬂl—wx(l—z)]

3 (1-y)x(1—x)
ey—§(1—2x) W[z—(l—y)(l—z)]

+|vcs|2F{X7H,Q2”Dg(Z7“.Q2),

XH
Vaal2Fof 20

FIvedtog] 2 0t .02

T Z4
|Vud|2Du(7lQ2

f,=— g(l—ZX) AYXAT0 0, (1-y)7]

| ZH Xy
Z(l_z) +|VCS|2D§<?'Q2):|FQ<YIQ2)! (42)

x| ZH
VD3 207

whereD(z,/2,Q?) is the fragmentation function for thetype parton to fragment into a charged pion.
The quantities in the denominator are given by

. 1+ x%22 )
a,= m+4(1—y)xz+(l—y) (1—x)(1—z))
| Veol2Fo| .02 7] %02 +1ved2r | 4 F e 2
1+x%(1—2z)? N X z
V= W+4<1—y>x(1—z)+<1—y>2<1—x>z) lvudled(y“,Q2 +|vcs|2Fs(7H,Q2”Dg(7H,Q2),
2,2
c,= (1—y)2m+4(1—y)xz+(1—x)(1—z)>

X

|Vud| FU( X 1Q2> DH{ z 1Q2)+|VCS|2FE< X 1Q2> Dg( z !QZ):|1

, 1+x%(1—-2)? X X z
dv=((1—y>2(1_—x)z+4<1—y>x<1—z>+<1—x>z) |vud|2Fﬁ7”,Q2 +|vcs|2F{;“,Q2”Dg(;”,Q2),

3
8

2+ (1-x)?

[+ (1-yA1-2 g +|vcs|ZDz(Z7“.Q2”Fg<X7“,Q2),

Vadl207] % 0°

+8(1—y)x(1—x))

r_
e, =

3 X2+ (1—x)2 z X
flzg([(l—z)zﬂl—y)zzz]ﬁ+8(1—Y)X(1—X)) +|Vcs|2D§(?H,Q2”Fg<7H,Q2)-

(43

T Zy
Vel 5 2,02

For the processe+ p— v+ 7+ X, the corresponding quanti- trinsic transverse momentum inside a hadron is negligible. In
ties are the same as in Egg2) and (43) except that the our analysis we will show the numerical results for the final-
quark flavor dependence in the parton distribution functionsstate particles witlp.=2 GeV so that we neglect nonpertur-
and the fragmentation functions should be switched in eachative effects.
SU(2) weak doublet. We can also express the corresponding We show how(cos ¢) behaves as a function of the trans-
quantities in the processes+p—e"+x7+X ande*+p  verse momentum cutoff, in inclusive processes. The nu-
— v+ +X accordingly as in inclusive processes. merical results for the inclusive processes with different in-
coming leptons are listed in Table I. For comparison we list
the result from theep scattering in which a photon is ex-
V. NUMERICAL ANALYSIS changed. The plot fotcos¢) is shown in Fig. 2. The nu-
Let us consider howcos¢) behaves numerically when merical values are obtained by integrating over the ranges
the QCD effects at next-to-leading order are included. Noté).05<xy<0.3, 0.2<y=<0.8, and 0.%z4(=2)<1.0. We
that if we choose particles with nonzero transverse momenralso require thaQ=2 GeV in order for perturbative QCD to
tum, (cos¢) is independent oty to first order inag. Fur-  be valid. We use the Martin-Roberts-StirligIRS) (setE)
thermore, if we choose the momentum cutgff large parton distribution functiongl0].
enough, say, larger than 2 GeV, the contribution of the in- In Fig. 2 we see thatcos¢) approaches zero g% in-
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TABLE I. {cos¢) as a function of the transverse momentum cuggfffor inclusive processes. The last
column is from theep scattering with a photon exchange. The integrated regions are<®,050.3,
0.2<y<0.8, and 0.%z4(=2)<1.0 withQ=2 GeV.

pc (GeV) v—e e—v v—et ety e—e(y)
2.0 -0.0192 —0.0235 —0.0284 —0.0192 —0.0351
3.0 —0.0100 —0.0157 —0.0160 —0.00584 —0.0224
4.0 —0.00465 —0.00979 —0.00852 0.000910 —0.0145
5.0 —0.00200 —0.00605 —0.00469 0.00325 —0.00973
6.0 —0.000687 —0.00364 —0.00247 0.00358 —0.00632
7.0 —0.00178 —0.00194 —0.00116 0.00277 —0.00401
8.0 6.51x 10 ° —0.000952 —0.000525 0.00168 —0.00239
9.0 8.53<10°5 —0.000355 —0.000200 0.000784 —0.00135
10.0 2.4%10°5 —0.000107 —6.98x10°5 0.000218 —0.000673

creases irrespective of the incoming leptons. If we chang®lote that the gluon fragmentation function is “softer” than
kinematic ranges, not only the numerical values but also théhe quark fragmentation functions, thatlx; (z) <Dj'(2) for
sign change. However the fact that the azimuthal asymmetry>0.21. This functional form for the gluon is obtained by
tends to be washed out for largg persists. Therefore the assuming that the gluon first breaks up into a quark-antiquark
test of perturbative QCD using the azimuthal correlation inpair, and then the quarks fragment into the observed hadrons.
inclusive processes is not feasible until we have better detegit large z, the hadrons mainly come from quark fragmenta-
tor resolution. However in semi-inclusive processes the sitution. For the sake of simplicity, we also nelgect the QCD-
ation is completely different. induced scale dependence of these fragmentation functions.
In the semi-inclusive processes in which we tag a final-The variation of the fragmentation function due to the scale
state charged pion, we use analytic fragmentation functiongependence largely cancels out in the ratio defificas ¢).
for simplicity. This is in contrast with studies using Monte  SinceQ?=2ME,xy, whereM is the proton mas<, is
Carlo simulation for the hadronization procddd]. In our  the energy of the incoming lepton in the proton rest frame,
numerical analysis we use Sehgal’s parametrizafit?.  when we integrate overy andy, the strong coupling con-
Sehgal's parametrization for the quark fragmentation funcstanta(Q?) should also be included in the integrands in the
tions to pions is given by definition of (cos¢). The running coupling constant, has
the Q dependence as

D (2)= %[0.05+ 1.051-2)?], (44) 1om

J
2)= 46
*Q) = 3 o In(QAD) 49

for j=u,d,u,d andD(z)=0 for other quarks. The gluon

fragmentation function to pions is given by wheren; is the number of quark flavors whose masses are

below Q. However the inclusion of,(Q?) in the integrand
is numerically negligible since it appears both in the numera-

2.2 . : ; .
Dg(z)=—0.1-2.1z+ ?+4.2Inz. (45  tor and in the denominator. Therefore in our analysis we do
0.00 T T T T T T T T T
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FIG. 3. {cos¢) vs p. in semi-inclusive processes. The leptons
FIG. 2. {cos¢) vs p in inclusive processes. The leptons listed listed are the incoming leptons for charged weak-current processes.
are the incoming leptons for charged weak-current processes. Thehe last one withy is from the ep scattering with a photon ex-
last one withy is from theep scattering with a photon exchange. change.
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TABLE Il. (cos¢) as a function of the transverse momentum giyes negative(cos¢) after boosting to the photon-proton
cutoff p. for the semi-inclusive processes with a final-state Charge(genter-of—mass frame assuming that we are in a kinematic
pion. The last column is from thep scattering with a photon ex- reaime where the : ;
X : . observed hadron is coming from th -
change. The kinematic range is 00%,<0.3, 0.2<y=<0.8, and 9 . 9 e frag
mentation of the quark.

0.3=z,<1.0 withQ=2 GeV. . . . . . .
A Q In the semi-inclusive processes in which we identify a

D, (GeV) e e—v et etny e—e(y) final-state hadron', for examplg, a charged pion, note that the
gluon fragmentation function is much softer than the quark
2.0 —0.0515 —0.0591 —0.115 —0.0817 —0.0832 fragmentation functions. That is, the gluon fragmentation
3.0 —0.0443 —0.0529 —0.128 —0.0854 -0.0805 functionD(z/2z) decreases rapidly @ /z—1 compared
4.0 —0.0399 —-0.0482 —-0.146 —0.0970 —-0.0783  to the quark fragmentation functions. This is clearly seen in
5.0 —0.0364 —0.0439 —0.166 —0.111 -0.0762 Sehgal's parametrization of the fragmentation functions.
6.0 —0.0341 -0.0405 -0.187 -0.127 -0.0740  Therefore for largey (z4=0.3 in our numerical resyltve
7.0 —0.0311 —-0.0366 —0.204 -0.141 -0.0720 effectively pick up the pions which are fragments of quarks.
8.0 —0.0289 —0.0332 —-0.219 -—0.156 -0.0698  This is exactly the situation where color coherence can ex-
9.0 —0.0256 —0.0292 —-0.224 -0.163 -0.0660 plain the asymmetry. Of course, final-state quarks can be
10.0 —0.0224 -0.0248 —0.226 —0.173 —0.0634  produced from the gluokV fusion. But in this cas€écos¢)

can be either positive or negative, hence there is a partial
cancellation for wide ranges af; andzy .
not includeas(Q?) in the integrands. The numerical error in - |n inclusive processes, since there appear no fragmenta-
neglecting the variation aks with respect taQ is less than a  tion functions, both quarks and gluons contribute to the
few percent. N ] asymmetry. But their contributions tend to cancel each other
_ The numerical results for the semi-inclusive processes argince the final-state particles are emitted in the opposite di-
given in Table Il and the plot is shown in Fig. 3. The nu- yection. Note the opposite signs in the pairs of terms(
merical valugs are obtained _by integrating over the samg y (c,, D,), and €,, F,) in Eq. (35. However the
range as in the analysis of inclusive processesgsymmetry can arise depending on the kinematic range. For
0.05<x4=<0.3, 0.2<y=0.8, and 0.&2zy=<1.0 with Q=2 gyample, the valence quarks contribute dominantly for large
GeV. The. azimuthal correlatlon in semi-inclusive processes , /x because the valence quark distribution functions
shows a rich structure. As; increases,cos¢) decreases for i (x.. /x Q?) are larger than other distribution functions. If
the incoming antineutrino or the positron. On the other handye compare Figs. 2 and 3, the cancellation in inclusive pro-
for the incoming neutrino or the electron, it increases antesses s illustrated clearly. The magnitudes(@s¢) in
approaches zero. The result from tag scattering with a  jhclusive processe&ig. 2) are smaller by an order of mag-
photon exc_hange is located between these two cases. Thigde than those in semi-inclusive procestdg. 3.
behavior WI|| be analyze(_j |n.dgta|I in the next section and we  Now let us consider the detailed behavior 0bs ¢) asp,
compare it to the behavior in inclusive processes. varies. In evaluatingcos¢), there are different combina-
tions of parton distribution functiongand fragmentation
V. DISCUSSION functions in semi—inc!usive proces3éqr different incoming
leptons. However, since these functions appear both in the
The most interesting feature of our analysis is the behavedenominator and in the numerator, the main difference re-
ior of (cos¢) as a function of the transverse momentumsults from the matrix elements squared for each process. As
cutoff p.. Let us compare inclusive and semi-inclusive caseshe matrix elements squared for the incoming electron and
shown in Figs. 2 and 3, respectively. In inclusive processefor the incoming neutrino are proportional to each other, we
(cos¢) approaches zero gs, increases irrespective of the expect that the behavior gEos¢) from an incoming elec-
incoming leptons. On the other handcos¢) in semi- tron and from an incoming neutrino is similar though the
inclusive processes is numerically large compared to that imagnitudes may be different. This is true for the cases with
inclusive processes by an order of magnitude and it depend® incoming positron and an incoming antineutrino. This ex-
on the incoming leptons. Howevécos¢) remains consis- pectation is shown in Fig. 3 for semi-inclusive processes. It
tently negative in semi-inclusive processes. Negative valueis not clear in Fig. 2 for inclusive processes since the mag-
of (cos¢) mean that the final-state particles tend to be emithitudes of(cos¢) are numerically too small to draw any
ted to the direction of the incoming lepton. conclusion.
We can understand why there is such asymmetry at order One interesting feature in Fig. 3 is that when the incoming
ag in the context of color coherence at parton level as notegarticle is an antineutrino or a positrofgos¢) is more
in Ref. [8]. When a quark-antiquark pair is produced in anegative compared to the case of the incoming neutrino or
color-singlet state, soft gluons tend to be emitted inside thelectron.{cos¢) decreases gs, increases for incoming an-
cone defined by the quark-antiquark pair. In our case, wdileptons, while it increases and approaches zero for incom-
have an incoming quark and an outgoing quark. However wéng leptons. This behavior results from complicated func-
can regard the incoming quark as an outgoing antiquark antions depending orx, y, z, x4, and z,. Therefore it is
the pair as a color singlet. Therefore the configuration indifficult to explain the behavior in a simple way. However
which the outgoing quark is closer to the incoming leptonwe can explain why cos¢) is more negative for incoming
and a gluon is emitted between the incoming quark and thantileptons with large,. .
outgoing quark is more probable. It is this configuration that In semi-inclusive processes, since we select the hadron
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with transverse momentufy; larger than the transverse mo-  The behavior of(cos¢) in inclusive processes can be
mentum cutoffp., we have the relation explained by the same argument. In this case we identify the
transverse momentum of the final-state hadfona je) as
(1-x1-2) , the transverse momentum of the scattered parton. It corre-
XZ ZH=Pe- sponds to settingy=z. Therefore we select the final-state
(47)  particle with the momentum cutoff. satisfying

~(1=-x)(1-2)
B XZ

P2

T z,Q?=2ME xy

The second equality in Eq47) is obtained by the relation , 21-2)(1-x) Z(1-2)(1-x) _ ,
Q?=2xyyME; . For largep,, the phase space is confined to  Pt=——————Q"=2MEXyy——————>P¢.
the region with smalk, z and largexy, y, andz, . In this (48)
region the ratioz,/z, which appears in the fragmentation

fUnCtionS, is |arge, hence the contribution of the gluon frag'Therefore ap. gets |arge, the integrated phase space is con-
mentation is negllglble Compared to that of the unIktl- fined to a region with smalt, |argeXH, y and intermediate
quark fragmentation. In other words, , d, in Eq.(42) and 7 petween 0 and 1. Since the variablg/x in the parton
b,, d, in Eq. (43) are negligible compared to other contri- distribution functions is large, the contribution from the
butions. Similarly largex,; /x, which appears in the parton gluon distribution function is negligible. This means tliat
distribution functions, is preferred hence the contribution ofandF in Egs.(35) and(38) andE’, F’ in Egs.(37) and(39)
the distribution functions of sea quarks and gluons is smaltan be neglected. Therefore the remainigB, C, andD
compared to that of the valence quark distribution functiongerms and their primed quantities contribute( ts ¢).
since the valence quark distribution functions are dominant As we can see in Eq36), the integrands in the denomi-
for largexy /x. As a resultc,, e,, f, termsin Eq(42) and  nator behave as~* whether the incoming particle is a neu-
c,.e,, f, terms in Eq(43) are negligible. Therefora, and  trino or an antineutrino. In the case of the neutrino, the inte-
a, dominate for largep.. It means that the main contribu- grand in the numerator fronf\,, B, terms behaves as
tion to (cos¢) comes from the scattering of an initial valence x~¥4(1—y)®?, while it behaves ag~*3(1—y)*? from C,,
quark into a final-state quark, fragmenting to the observed , terms. These terms are smaller than the integrands in the
pion. denominator. Furthermore there is a partial cancellation be-
Note that, since the parton distribution functions and theweenA, and B, because they have opposite signs. This is
fragmentation functions appear both in the numerator and ialso true forC, andD,. Therefore(cos¢) becomes very
the denominator{cos¢) is mainly affected by the partonic small. The same argument applies to the case of the incom-
scattering cross sections, which are functions of parton variing antineutrino.
ablesx, y, andz. For smallx, z and largey, only the first As p. gets large, the azimuthal asymmetry tends to be
term ina, in the denominator and the first terman in the ~ washed out in inclusive processes. This behaviofoof ¢)
numerator are important. The partonic part of the integrands expected considering the momentum conservation. In our
in the denominator behaves aszf ! and that in the nu- case in which there are two outgoing particles in the
merator behaves as(xz) ~Y41—y)%2 Since the integrand W-proton frame, the transverse momentum of one particle is
in the denominator grows faster than that of the numeratobalanced by another particle emitted in the opposite direc-
for small x, z and largey, {cos¢) in semi-inclusive pro- tion. Therefore if we sum over all the contributions from alll
cesses approaches zero for the incoming electron or neutriribe emitted particles, there should be no azimuthal asymme-
for largep., but it remains negative. try. The small azimuthal asymmetry, as shown in Fig. 2,
In the case of the incoming antineutrirm,,—anda’;terms arises since we do not include all the emitted particles with

are dominant for larg®. as in the case with the incoming the given choice ok, y, andzy.
neutrino. But the behavior of these terms are different.

Though we do not present the formsa);randa'v—here, we VI. CONCLUSION

can see the dependenceaf anda’;-on the partonic vari- We have extensively analyzed the azimuthal correlation
ablesx, y, andz in Egs.(38) and(39) for inclusive processes of final-state particles in charged weak-current processes. It
since the partonic cross sections are the same. For gnmll is a clean test of perturbative QCD if we make the transverse
and largey, only the third term in the denominator survives momentum cutofp,. larger than, say, 2 GeV. It turns out that
and it behaves axg) ~1. On the other hand, the integrand in the azimuthal asymmetry is appreciable in semi-inclusive
the numerator behaves agxz) ~Y41—y)*2 Therefore the processes compared to inclusive processes since the asym-
magnitude of(cos¢) is larger than that for the incoming metry mainly comes from the contribution of a final-state
electron or neutrino by a factor of (ly) ! in the integrand  quark due to the soft nature of the gluon fragmentation func-
in the numerator, hencécos¢) is more negative than the tion for largez, . In inclusive processes we sum over all the
case of an incoming electron or neutrino. In addition, be-contributions from quarkantiquark$ and gluons, and the
cause of this factor (y) 1, the difference ofcos¢) be-  sum approaches zero as we include a wider range of vari-
tween the incoming antineutrino and the incoming positronables due to the momentum conservation.

is larger than that for the incoming electron and the incoming In addition the azimuthal asymmetry is more conspicuous
neutrino. It is also interesting to note that the azimuthalfor semi-inclusive processes with an incoming antineutrino
asymmetry exhibited by a photon exchange in the semier a positron. Previously there was an attempt to analyze the
inclusiveep scattering is intermediate between the two casesizimuthal asymmetry at HERA iap scattering for electro-

in which there are leptons or antileptons. production via a photon exchange. However siat@ scat-
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tering has been performed at HERA, we expect that the tediution from valence quarks is dominant. At the same time,
of the azimuthal asymmetry is more feasible because thiargep, implies that the smalt- (largezy/z) region mainly
magnitude of(cos¢) is bigger in semi-inclusive processes contributes to the asymmetry. This means that quark or an-
with an incoming positron. In CCFR experiments they con-tiquark fragmentation functions contribute dominantly. The
sider only the inclusive cross section for, (v,)+H detailed behavior ofcos¢) depends on the hard-scattering
—u (ut)+X, whereH is the target hadron. If they are cross section at parton level. Therefore the experimental
able to identify a final-state hadron, they will also be able toanalysis of the azimuthal asymmetry tests the very basic
observe the azimuthal correlations in various charged weakeeas in the QCD-improved parton model.
current processes.
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