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Recycling universe
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If the effective cosmological constant is nonzero, our observable universe may enter a stage of exponential
expansion. In such a case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and
inflation with a high expansion rate may resume in those regions. An “ideal” eternal observer would then
witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire
history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal
observer would visit each one of these minima with a frequency which depends on the shape of the potential.
We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this
“recycling” process is taken into accour{tS0556-282(98)02904-X

PACS numbsg(s): 98.80.Hw, 98.80.Bp, 98.80.Cq

I. INTRODUCTION (per unit spacetime volumeapproaches a constant. Even

with an exceedingly small rate, the probability for true

Inflationary models are designed to produce a universgacuum to survive at any comoving location is exponentially
which is sufficiently homogeneous on all observable scalegecreasing with time. Hencéalmos} all the comoving vol-

[1]. However, on much larger scales the universe is expectedme of thermalized regions will eventually be recycled back

to be extremely inhomogeneous. The evolution of the field© the inflationary phase. Each nucleated false vacuum region

¢, whose vacuum energy drives inflation, is influenced bywill serve as a seed for a new eternally inflating domain,

quantum fluctuations. These fluctuations can be pictured as'#hose internal structure will resemble that shown in Fig. 1.

random walk of¢ superimposed on its slow roll down the The thermalized regions formed in this domain wi!l in turn
slope of its potential. As a result, thermalization of theProduce new false vacuum seeesc We call this kind of

vacuum energy does not occur simultaneously everywhere iffodel a recycling universe. _ .
the universe, and at any time there are parts of the universe Quantum nucleation of regions with a higher energy den-
that are still inflating 2,3]. sity cannot occur from a fla_t-spacetlme vacuum characterized

On very large scales, the universe is expected to consist & @ vanishing cosmological constant: such processes are
isolated thermalized regions embedded in the inflating backiorbidden by energy conservation. However, upward fluctua-
ground. The boundaries of the thermalized regions expanfons of this kind can occur in an expanding cosmological
into this background, and new regions are constantly beingackground, and have been previously discussed by a num-
formed, but the high expansion rate of the intervening inflatPer of authord7,2,3,8—11 The most relevant for our pur-
ing domains prevents these regions from filling up the uniPoses here is the paper by Lee and Weinljédg who con-
verse. Thermalization inevitably occurs at any given comov-Sidered a model of a scalar field with a potentialV(¢)
ing location, and the comoving volume of the inflating
regions decreases exponentially with time. At the same time
the physical volume of these regions is exponentially grow-
ing. The geometry of the inflating regions is that of a self-
similar fractal of dimensiom<3 [4]. It is illustrated in Fig.

1 for the case of “open” inflation, where the false vacuum
decay occurs through bubble nucleatjérb]. For “new’” or
“chaotic” inflation the picture would be similar, except the
thermalized regions would have irregular shapes.

In the present paper we are going to argue that this picture
of the superlarge-scale structure of the universe can be sig
nificantly modified by quantum fluctuations that bring local-
ized parts of already thermalized regions, such as our obser
able universe, back to the inflating false-vacuum state. The A
modification is particularly important in models where the
post-thermalization true vacuum is characterized by a posi- FIG. 1. True vacuum bubblegwhite) nucleating in false
tive vacuum energycosmological constahtin this case the vacuum(black. The shaded rings represent slow roll regiges-
thermalized regions asymptotically approach de Sitter geomternal ring and matter or radiation dominated regiofisternal
etry, and the rate of fluctuations back to the false vacuunming).
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\' but we shall see later in this paper that some of the assump-
tions made in the proof do not apply in the case of a recy-
cling universe. The question of the necessity of the begin-
ning is therefore reopened.

Recycling may also be relevant to the question of making

Pp D predictions in an inflationary universe. Recently, there have
been a number of attemgt$8—23 to find probability distri-
P~ 1 butions for cosmological parameters such as the effective

¢ cosmological constant or the density parameté€d. These
“predictions” are based on the principle of mediocrity
[20,24-28, by which we are most likely to live in the most
abundant type of civilization that can result from the ther-
malization of a false vacuum. However, in the inflationary

shown in Fig. 2. Note that both false and true vacua havé,mlverse, there will be an infinite number of infinite thermal-

positive energy densitiep;>p;>0. It has been known for |_ze_q regions, and one fac‘?s t_he difficulty of compari_ng in-
some time that the high-,fenert'gy f.alse vacuumpat0 can finities [19,18,27. Regularization procedures were intro-
q . duced in[21,28 to deal with this problem, but these cannot
ecay by nucleation of true vacuum bubbles. The correy directly applied to a recycling universe
sponding instantol‘bounce”) has been found by Coleman X

: . L The paper is organized as follows. In the next section we
and De Luccig12]. The bubble nucleation rate is given by shall give some examples of inflationary models which allow

nucleation of false vacuum bubbles. The geometry of the

= —-S+ ; i
Fio=Aexd =S+ S, D nucleated bubbles will be analyzed in Sec. IlI. In Sec. IV we
shall discuss the implications of the recycling universe
model for the question of the beginning of the universe. The
superlarge-scale structure of a recycling universe will be
jectured that the same instanton also describes the inver udied in Sec. V using the methods of stochastic inflation.

process of true vacuum decay, where false vacuum bubble N issge of p_redictions will _be di_scussed in Sec. VI, and our
nucleate in a true vacuum background. The nucleation rat(éonclusmns will be summarized in Sec. VII.
suggested by Eq1) is

FIG. 2. Self interaction potential for the “tunneling” scalar
field. The energy densities in false and true vacua, denoted as
andp,, act as an effective cosmological constant.

whereS, is the bounce action ans= — 3/8p; is the action
of the Euclideanized false-vacuum de Sitter spége use
Planck units throughout the papekLee and Weinberg con-

II. MODELS

T r=Aexd = 5+3] 2) In all realistic inflationary models, the potential of the
inflaton field ¢ is required to have a sufficiently flat slow-roll

with S;= —3/8p;. Lee and Weinberg argued that the preex—region in which

ponential factors in Eqs(l) and (2) are the same. These
conjectures were later verified13] in the case of V()| <H2. )
(1+1)-dimensional universes, where bubble nucleation can
be identified with the production of particle-antiparticle Here, H is the expansion rate artd ™! is the horizon size
pairs. Note that the raté?) vanishes if the true vacuum has ¢qrresponding to the vacuum energye),
zero energy.
As it stands, the potential in Fig. 2 is not suitable for H2=8mV(¢)/3. (4)
inflationary cosmology. This potential has no slow-roll re-
gion, so most of the vacuum energy remains in domain wall©n the other hand, Coleman—de Luccia-type solutions for
and never gets thermalized. We shall see, however, that mogtacuum bubbles exist only when the potential is sufficiently
els incorporating both realistic inflation and true vacuum de-curved near the barrier separating true and false vi2eia
cay can be constructed by a trivial modification of “open”
inflationary models. Moreover, we shall argue that nucle- [V"(p)|=H?. 5)
ation of inflating regions is possible even with the simplest
slow-roll potentials, for which the Coleman—de Luccia in- The meaning of this condition is easy to understand. The
stanton does not exist. bubble wall thickness i$~|V"| =2 and if (5) is not satis-
The recycling nature of inflationary universe may havefied, then the wall is much thicker than the horizon. Such
important implications for the question of whether or not thewalls cannot exist as coherent structures and are spread by
universe had a beginning in time. As we already mentionedthe expansion of the universe. False vacuum bubbles of
inflation is generically eternal to the future, so it is natural toColeman—de Luccia type are, therefore, impossible if the
ask if the inflationary models can be continued into the infi-slow roll condition(3) is valid everywhere in the inflationary
nite past, resulting in a “steady-state” nonsingular cosmol-range of¢.
ogy. This possibility was discussed in the early 1980s, soon A similar problem arises in the “open” inflation scenario,
after the inflationary scenario was proposed, with the concluwhere false vacuum decay through bubble nucleation is fol-
sion that the idea could not be implemented in the simplesiowed by a period of slow roll in bubble interiof5,6]. One
model in which the inflating universe is described by anway to deal with this problem is to consider a two-field
exact de Sitter spadd4,2]. A more general proof of impos- model, with one field doing the tunneling and the other doing
sibility of steady state inflation was given in Refé5-17, the slow roll[6]. The potential can be chosen as
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\
Radiation and Matter
Slow Roll
¢
FIG. 3. The potential for the scalar field in the one field model

of open inflation. The sharp barrier followed by a flat plateau gives v
this potential a somewhat unnatural appearance.

U(x, ) :V1(X)+X2V2(¢)- (6) FIG. 4. A false vacuum bubblégblack nucleating in true

vacuum(white). Regions of slow roll and of matter and radiation

Here, x is the tunneling field and the potenti} () has the domination surrounding the bubble are indicated.

form as in Fig. 2 with a metastable minimum a0 and a

true minimum aty= 7, . The full potentialU(x, ¢) is inde-  density, p,>0. An important difference of this model from
pendent of (has a flat directionat y=0, and as a result the that of Eq.(6) is that now, in order to tunnel from true to
expansion rate in the false vacuum is also independedit of false vacuum, the fielg has to go across the whole slow-
The potentialV,(¢) is assumed to have a slow-roll range roll region. False vacuum bubbles will therefore consist of a
and a minimum aip= 7, with V,(»,)=0, at which ther-  false vacuum core surrounded by a domain wall, which is in
malization eventually occurs. In a variant of this mof@l,  turn surrounded by layers of slow roll, radiation, and matter-
the two fields can be taken to represent the radial and angula@iominated regiongsee Fig. 4.

parts of a single complex fieldh = ye'?. Intuitively, we would expect that the nucleation of such a

The stage for open inflation is set by inflating false complicated structure should be extremely unlikely, and thus
vacuum with energy density;=V,(0). Nucleating bubbles the nucleation rate of false vacuum bubbles in this one-field
expand into this background, but because of the high expammodel should be strongly suppressed compared to the two-
sion rate of the intervening false vacuum regions, bubbldield model(6). In the model corresponding to Fig. 3, the
collisions are rare. The interior geometry of each bubble ioleman—de Luccia instanton crosses the barrier but not the
that of an open Robertson-Walker universe. The bubbleplateau. This is required in open models to ensure a second
have different initial values o$, and if this value falls in the period of slow roll inflation solving the flatness problem. In
slow-roll range of the potential, then there is a period ofthe spirit of Lee and Weinberdl1], we could naively rein-
inflation inside the corresponding bubble. Inflation is fol- terpret this instanton as describing tunneling from true
lowed by thermalization and standard cosmological evoluvacuum to false. But since the instanton does not really in-
tion, but since we assumed a nonzero cosmological constarierpolate between both minima, the interpretation seems
the bubble interiors are eventually dominated by the truesomewhat unjustified. Incidentally, in curved space the in-
vacuum energyp=Vy(7,). False vacuum bubbles will stantons never exactly interpolate between both minima, but
now be formed in the true vacuum background, resulting irfor a potential of the type represented in Fig. 3 the situation
the endless succession of stages of the recycling universe.is clearly more extreme. Therefore, an estimate of the tun-

It should be noted that tunneling back to the false vacuummeling rate a la Lee-Weinberg seems questionable in this
can occur not only from the true vacuung,@)=(7,,74),  case. It should be remembered also that the use of Euclidean
but also from the slow-roll, as well as radiation and matter-methods in de Sitter space has never been justified from first
dominated periods. In fact, the rate of false vacuum bubblgrinciples, and therefore the results obtained using these
nucleation is expected to be the highest during the slow-rolmethods should be taken with cautip@—10]. This issue
inflation [due to the higher energy density at that time, seeneeds further investigation, but we will not attempt to ad-
Eqg. (2)]. However, since all these periods last only for adress it in the present paper. The specific value of false
finite time, and the rate of false vacuum bubble formation isvacuum bubble nucleation rate will not be important for our
extremely low, only a tiny fraction of the comoving volume conclusions, as long as this rate is nonzero.
will be affected by such processes. On the other hand, the If the barrier in the inflaton potential is too wide to satisfy
true-vacuum-dominated stage persists indefinitely, and pradche condition(5), then the Coleman—de Luccia instanton
tically all the comoving volume will be recycled by bubbles does not exist. However, there is always a homogeneous
nucleating in the true vacuum. Hawking-Moss instantofi7] in which ¢ takes the valuep,,

An alternative to the two-field modé€6) is a model of a corresponding to the top of the barrier. This instanton is usu-
single scalar fieldp with a potential of the form shown in ally interpreted as describing quantum tunneling from false
Fig. 3[5]. The false vacuum ap=0 is separated from the vacuum to the top of the barrier in a horizon-size region.
slow-roll region by a sharp barrieThe coexistence of flat (Coleman—de Luccia instanton reduces to that of Hawking
and highly curved regions in the same potential is a someand Moss as the barrier width is increagefigain, in the
what unnatural feature of this modelThe field ¢ tunnels  spirit of Lee and Weinber§l1], we can interpret the same
through the barrier and after a period of slow roll, ends up innstanton as describing tunneling from true vacuum to the
the true vacuum, which we assume to have a nonzero enerdgp of the barrier. The corresponding nucleation rate is
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FIG. 5. The inflaton potential for the case of new inflation.

IFecexd —Sym+ S, (7)

whereS, = —3/8p, and p,=V(¢p).

In models of “new” inflation, the generic potential is
illustrated in Fig. 5. There is no barrier in this case, but still
there is a Hawking-Moss instanton with), corresponding to FIG. 6. De Sitter space can be viewed as a hyperboloid embed-
the maximum of the potential. There are also approximateled in a 5-dimensional Minkowski space. Here we represent a sec-
homogeneous instanton solutions withsufficiently close to  tion of this hyperboloid, along the plangw in the embedding
the maximum. Such approximate instantons also exist irspace. The regiow+ 7>0 of the hyperboloid can be covered with
models of “chaotic” inflation where the potential may have flat FRW coordinates,t. A sectionw+ 7= const corresponds to
no maxima. A constant fiele is a good approximation as =const.
long as the evolution of is slow on the Hubble scald 1, .
that is, in the slow roll range. The Euclidean expression for N any case, we expect the rate to be nonzero in the gen-
the tunneling rate from true vacuum t in this range is eral_case. The reason is s_lmply that the nucleation is not
given by Eq.(7) with Sy = — 3/8V(¢). forbidden by any conservation laws, and thus should have a

Even in flat space, there are instantons which describBONzero probability.
tunneling without barrier$30]. Jensen and Steinhardt have
argued that when gravity is included, these instantons are Ill. FALSE VACUUM BUBBLES
subdominant with respect to either the Hawking-Moss or the
Coleman—de Luccia modé81].

Once again, we find the formu(&@) somewhat suspicious,

To study the geometry of false vacuum bubbles, we shall
first assume that the bubble wall thickness is much smaller
- Hwan all other relevant dimensions of the problem. The wall
can then be treated as infinitely thin, and the spacetime re-
gions on the two sides of the wall are de Sitter spaces of
ijferent vacuum energy. We now briefly review some prop-
grties of de Sitter space.
It is well known that de Sitter space can be pictured as a

rate without relying on Euclidean methods. LinfED] has
given an estimate of the probability of tunneling to false
vacuum on rather general grounds. In de Sitter space, a fie
¢ fluctuates on scales bigger or comparable to the Hubbl
radius around a local minimur, of the potential with am-

plitude given by[32] hyperboloid embedded in a flat 5-dimensional spacetime,
FH+w?—7?=H"2 ®
3 4
o?=((¢— ¢t)2>~8ﬂ_2m2- whereZ=(¢%,¢2,¢%) is a 3-vector. A section of the hyperbo-

loid by thewr-plane is shown in Fig. 6. The Euclideanized
de Sitter space, which is used for constructing instantons, is
Strictly speaking, the result is only true for a free field andobtained by analytic continuation=irg,
for small fluctuations, so that the massand the expansion
rate H are well defined. Extrapolating to the case of an in- Z+wi+ TE:H_Z. 9)
teracting field and ignoring the gravitational backreaction of
the fluctuations on the expansion rate, the probability that &eometrically, this is a 4-sphere of radids *.

region of size~H ™~ will tunnel from ¢, to a different value It will be convenient to use the Robertson-Walker flat
¢ sufficiently close to the maximum of(¢) can be esti- coordinates in which the de Sitter metric takes its most fa-
mated as miliar form,

ds®=dt?—e?Hidx>. (10)

Peexy — (¢ ¢y)?/20°].
These coordinates are related to the hyperboloid coordinates
For the case of a quadratic potential with’<H? and by
V(o) — V(o) <V(¢y), the exponent in the previous expres-

sion reproduces the expongnt Sy, + S;] which appears in

4. 1
Eq. (7), with Sy =—3/8V(¢) [10]. r=H7sint(Ht)+ S Hx’e™, (1)
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T ~ t=const. T

7

FIG. 7. The Coleman—de Luccia instanton for bubble nucleation
can be obtained by matching two 4-spheres of regit andH, *.
The two spheres join at a 3-sphere which represents the Euclidean-

ized worldsheet of the domain wall. /
/ ’ //

1
w=HlcostHt)— Eszth’ (12 True Vacuum Wall False Vacuum

FIG. 8. The spacetime representing a false vacuum bubble in

— uaHt
{=xe’, 13 true vacuum.

which can be inverted to give o ) )
inside and outside the bubble, the volume that is removed

H- ¢ from true vacuum by the appearance of the bubble is equal to
(14 the volume of false vacuum which replacestlitis would not
be the case if we used closed spatial sections, for instance
Constantt surfaces are obtained as intersections of the hyWe can use the coordinatés)) with H=H, to describe the
perboloid with null hyperplanesy+ 7= const (see Fig. 6. exterior true-vacuum region. The wall worldsheet isiat
The surface= — Corresponds tav+ 7=0, and thus the — D:, and from Eq.(lZ) the radius of the bubble at tintds
coordinate systen(il0) covers only half of de Sitter space.
Let H; ' and H, ! be de Sitter horizons corresponding R(t)=H, *(e’"'+2DHe"'+1), (16)
respectively to the false and true vacuum energy densitjes,
andp,. Clearly, p,<p; andH; *<H;!. The thin wall ap- WwhereR(t)=|x(t)|e". We see that the radius approaches
proximation requires that the wall thickness be much smallethe horizon sized; * att— —o. The bubble wall accelerates
thanH{ . In this case, the Coleman—de Luccia instanton forin the direction of the false vacuum, so that its comoving
bubble nucleation can be obtained by matching two 4+adius|x(t)| is contracting, but the physical radius grows
spheres of radin‘l and Ht_l (see Fig. 7. The two spheres exponentially due to the expansion of the universe. A con-
are joint at a 3-sphere which represents the Euclideanizel@mal diagram for the bubble spacetime is shown in Fig. 9.
worldsheet of the domain wall. Its radil, is determined
by p¢, p;, and the wall tensior [33]. The 5-dimensional Wall
coordinates can always be chosen so that this worldsheet lies
in a plane of constank. In the figure it isw=—D;, where
FV /
Di=(H; *—R5)™ (15 o 3 )\_'_F\ 10

(Nucleation)

-1 _
t=H Hn[HW+ 7], x=—".

The Lorentzian evolution of the bubble is given by two hy- y 7
perboloids similarly matched along a constanplane(Fig. s |
8). Descriptions of both true and false vacuum bubbles can
be obtained with an appropriate slicing of this spacetime by s /
equal-time surfaces. s .

In the case of false vacuum bubbles, equal-time surfaces | y Y
can be chosen to be the surfaves 7= const(Fig. 8. Then, 7/ i
each constant-slice consists of a spherical region of false
vacuum embedded in an infinite, spatially-flat region of true  FIG. 9. Conformal diagram of the false vacuum bubble space-
vacuum. Since the spatial geometry of these slices is flat bottime, for the Lee and Weinberg model.
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SinceR(t) is a monotonically growing function of time, Slow Roll -
there is no “bounce” moment at which one can say that the Ta‘:;‘:f“
nucleation occurs. The situation here is similar to that for /7

nucleation of topological defects in de Sitter spf2@|, and
as in the latter case, we shall regard the bubldl® as
“formed” at t~0, when its radius begins to grow exponen-
tially.

For the trajectory given in Eq(16), the region of true
vacuum which has been removed and replaced by true
vacuum was centered at the point=(0, x=0) (see Figs. 6
and 8. We shall refer to this point as the center of symmetry
of the bubble trajectory(Notice that this point may not be-
long to the actual classical spacetime, because it is precisely
in the region where bubble nucleation takes place, but it does /
belong to the five-dimensional embedding spp&=rform-
ing Lorentz transformations in the embedding space, we can g 10. Same as in Fig. 9 but for the case of a one field model
obtain bubbles whose center of symmetry is at any ttme of open inflation.
=1, and at any location. This gives

— TV

—~

t=0

In a single-field model of open inflation, with a potential
as in Fig. 3, the conformal diagram for a false vacuum
bubble is shown in Fig. 10.

So far in this section we assumed that the true vacuum has
a positive energy density. If the vacuum energy is in fact

Ri(t)~H; et~ t—to>H L. (18)  zero, then the horizon radius in thermalized regions keeps
growing with time, and false vacuum bubbles eventually

To describe a true vacuum bubble in a false vacuum backeome within the horizon. The bubbles are then seen as black
ground, we choose equal-time surfaces towbe r=const. holes from the outside. The bubble nucleation in this case is
Using the coordinate€l0) with H=H; to describe the exte- similar to the quantum creation of baby universes, as dis-
rior of the bubble, we find that the bubble radius at tinie ~ cussed in Refd.35,34,1Q. Black holes eventually evaporate

R(t)=H, [e(t" 4+ 2D H M0+ 1] (17)

We can think of these as bubbles “formed” &tt,. The
asymptotic behavior of the bubble radius at large times is

given by and baby universes pinch off.
2 g2 2Hst Hit
Ri(t)=H¢ “(e™""—2DH "+ 1), (19) IV. DID THE UNIVERSE HAVE A BEGINNING?
where Assuming that some rather general conditions are met, it
—2 212 was shown in Ref[15] that inflationary models cannot be
Di=(H¢ "—Rp)™ (20) geodesically complete to the past, that is, they require some

. f inning. Th i hat | hi I
In contrast to the false-vacuum bubble case, the radifs 2?erttﬁeio?|%%\ll?nnéng € assumptions that lead to this result

has a minimumRp,in=Ro, att,=H; 'In(D;Hy), and we can (A) The universe is causally simpl88,39.
r_egard this time as the mqment of bubble nucleation. Equa- (B) The universe is open.
tion (19) can then be rewritten as (C) The null convergence conditidd0].

(D) The finite past-volume difference condition.

The first two of these assumptions do not appear to be
crucial for the proof, and extensions of the theorem have
been obtained to some closed univerf&§] and to some

RZ(t)=Df[e?Hi(t~t—2eMi(t"t ] 42 (21)

with the late-time behavior

Ri(t)~De"f(t=t), t—tn>Hf_l- (22) universes with a more complicated causal strucfaid.
The null convergence condition is closely related to the
Note, however that weak energy condition, which requires that the energy den-
sity is non-negative when measured by any observer. Classi-
Ri(t)~ Hf’le”f“*‘o), t—ty> Hf’l, (23 cally, this is satisfied by all known forms of matter, including

a relativistic scalar field, but violations of the null conver-
where we denote bl the location of the center of symmetry gence condition are possible as a result of quantum fluctua-
of the bubble wall as seen from the outsjgee the discus- tions. Such violations tend to occur in the inflating regions of
sion around Eq(17)]. spacetime whenever quantum fluctuations result in a local

Our main interest in this paper is in models with increase of the expansion ratk{i/dt>0 [36]. They are suf-
<p¢. In such models, the radius of false vacuum bubbles isicient to invalidate the theorem in models characterized by a
R(t)>H, '>H !, and thus the thin wall approximation can substantial variation o¥(¢) in the range ok where quan-
be used to describe the bubble evolution even when the wallim fluctuations are non-negligible. This includes all models
thickness iss~H; . (Note however that in this case the thin of “chaotic” inflation, but not some open and “new” infla-
wall approximation breaks down for the instanton itself andtionary models.
for the early evolution of true vacuum bubbles. Turning now to the effects of recycling, we shall argue
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that they invalidate both assumptiof® and(D), so that the V. STOCHASTIC FORMALISM
theorem as it stands does not apply to any inflationary model.
In the case of assumptl_o(C), the reason S the Same as qiven using the formalism of stochastic inflation developed
before: quantum fluctuations from thermalized regions bac

i X ) . X Refs.[2,8,19. A straightforward extension of this formal-
to the inflating phase increase the expansion rate in the afsy will be required, and to introduce the necessary modifi-

fected regions of space, and the null convergence ConditiOEations, we shall first consider the Lee-Weinberg méti&]

is violated. with a potential as in Fig. 2.
The finite past-volume difference conditigd) can be

formulated as follows. Given a poiftin the inflating region

and a pointQ to the past ofP, consider the difference of

their pasts. This is a spacetime region including all points to Consider an ensemble of comoving observers whose

the past ofP, but not ofQ. The condition(D) requires that World lines are orthogonal to some spacelike hypersuface

the spacetime volume of this region should be finite. Thelet p¢(7) andp.(7) be the fractions of observers in false and

original motivation for this condition was based on the pic-true vacuum, respectively,

ture of eternally inflating universe without recycling, as il-

lustrated in Fig. 1. It can be shown that thermalization sur- p+(7)+pe(7)=1,

faces, which separate inflating and thermalized regions OJvhere is the proper time alona the observer's world lines
spacetime, are spacelike surfa¢és]. Therefore, ifQ is a 4 prop 9

point in an inflating region, then, disregarding recycling, a"cr:}eas:;%d fr%mdii'rriQgtgrseiﬂgnsws?;nn? gmueaﬁ(\)/ﬁlsutlon
points in its past must also lie in the inflating region. For Pr Pt y Y q

inflation to persist fromQ to P, no thermalized regions
should be formed in the difference of the pasts of the two
points. Now, it seems plausible that there is a zero probabil-
ity for no thermalized regions to form in an infinite space-
time volume. Then it follows that conditiofD) is necessary

for inflation to persist in the future time direction. This con- ! . i .
L . . ; . who is presently in the falsérue) vacuum to find himself
dition is difficult to satisfy, since the spacetime region rep- . .
within a true(false vacuum bubble.

resenting the difference of the pasts of the two points has an From Eq.(21), we see that a false-vacuum observer will

infinite extent along the past-directed null geodesics. be affected only by bubbles nucleating within a sphere of

In a recycling universe, this logic does not apply, since . :
points in inflating regions can have thermalized regions inradlust centered on that observer. The bubbles take time

their past. In this case, the spacetime region relevant for peT Hy .to traverse this fjlstance, b.Ut In the. §tochast|c inflation
sistence of inflation between a pair of points is not the entirdo'Malism we shall be interested in quantities smeared over a

. _1 . - .
difference of their pasts, but only the part of this differenceSPacetime scale-H ", so we shall disregard this time delay

A quantitative description of the recycling universe can be

A. Lee-Weinberg model

(24)

dps/dT=— kipPs+ KePy, (25
dp,/d7= — kPt + K¢Ps - (26)

Here,x; («;) is the probability, per unit time, for an observer

which lies in the same inflating region as the two points. In2nd write

other words, it is the part of the difference of the pasts which 4

is to the future of the “nucleation surfacesee Fig. 9. The KfmFﬁcn)—WD3, (27)
volume of this region is obviously finite. Hence, assumption 3

(D) is not suitable for a recycling universe.
In models with a vanishing true vacuum energy, only awherel'{" is the rate of bubble nucleation per unit spacetime
small fraction of thermalized volume gets recycled. How-Vvolume.
ever, there still appears to be a possibility that the universe In an expanding universe, however, the rate of nucleation
has a nested structure, with all inflating regions originatingPer unit spacetime volume has to be defined with some care.
as quantum fluctuations inside thermalized regions. This is because this rate depends on what we choose as the
We thus conclude that the theorems of R§16—-17 no  nucleation time, which is not always sharply definedpe-
longer apply when the recycling nature of the universe iscially when the size of bubbles becomes comparable to the
taken into account. This may open the door for constructinglubble radiug For instance, we can change our definition of
nonsingular, steady-state inflationary models. We emphasizeéucleation time front, to to, wheret,, is defined by Eq(21)
however, that our analysis does not imply that such modelgs the time at which the physical radius of the bubble reaches
do in fact exist. It has been argued in Ref87,3G that its minimum valueR,, andt, is defined as the center of
inflation, when continued to the past, is necessarily precedegymmetry of the bubble wall trajectory as seen from the out-
by a period of contraction, as in the exact de Sitter spaceside (as explained in Sec. )l In changing the definition of
During this period, the thermalized regions would merge, thehucleation time, we must simultaneously change the defini-
density perturbations would grow very fast, and the universdion of nucleation rate per unit volume, because the physical
would rapidly reach a grossly inhomogeneous state fronvolume has increased by the amount[@kh(t,—t,)] in the
which it is not likely to recover. The arguments[i87,36 do  intervening time. Distinguishing by their superindex the rates
not rely on weak energy or finite past-volume difference con-associated with both choices of nucleation time, we have
ditions, and may possibly be extended to the case of a recy-
cling universe. These arguments, although suggestive, fall W =T%exg 3H(to—t,)].
short of a proof, and the problem requires further investiga-
tion. Hence, Eq(27) can be rewritten as
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3

-3
f

(0)

Kfml—‘f (28)

In the case of false vacuum bubbles the physical radiu
grows monotonically with time, so the analoguetpfdoes
not exist. We shall adopt the convention identifying the
nucleation time withty in Eq. (17). Then the comoving re-

gion affected by the bubble is a sphere of rad'rwsl, and
we can write

4

0

He S, (29)

wherel"§°) is the corresponding nucleation rate. We note tha

the radius of the affected region and the rate would both b
modified with a different choice of nucleation time, whitg
would remain unchanged.

The solution of Eqs(25),(26) is

pi(7)=pi¥+Ae P, (30)

(0) _

p(7)=pi” —Ae™"7, (31)

where the constarf is determined by the initial conditions,
b= «i+ k., andpi®, p{?) is a stationary distribution defined
by

S
pEO) - Ky - Ht3 1-‘2‘0)'
P2 +pi”=1. (33)
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written as  dAys=|Nyslexp(HHtg)dxdty.  Here Ny

= Aexp(—By;), whereA is a primed determinant which is the
same for true and false vacuum bubbles, Bpg= Sz— S5

& the difference between the bounce action and the back-
ground Euclidean action. The expression oY is propor-
tional to the physical volume element at tirg given by

exp(Htp)d, so we can identify|\| with the ratesl'{"

defined above. Therefore, we haw&{Q/T'{?) =exdS—S],
in agreement with Eq€32),(34).

We introducedy; andp; as fractions of comoving observ-
ers in false and true vacuum, respectively. When the station-
ary distribution(32) is reached, an alternative interpretation
will also be useful. The world line of each observer will
?epeatedly cross between true and false vacuum regions, and

e quantityp{®) (p{?)) gives the fraction of proper time the
observer spends in falggrue) vacuum.

Instead of the proper time, one can use some other time
variable, t, along the observer's worldlines. A possible
choice is

dt=H%(7)dr, (35
with =0 corresponding to the proper time ane-1 to the
“scale factor time.” For an arbitraryy, the evolution equa-
tions still have the form(25),(26), with 7 replaced byt and

(0)477

We see that, regardless of the initial conditions, the probabil- , , .
ity distribution rapidly approaches the stationary distribution € Stationary solution now is

(32.
Let us compare the distributiof82) with that discussed
by Lee and Weinber{l1]. The distributions agree provided

k=T ?H{""3, (36)
4

Kt=r§°>?H;“*3. (37)

pga) _ (i) aiO) (39)

P F B

that the nucleation rates which appear in their expressions

are taken a¥'\ . Lee and Weiberg also argue that the ratio

(32) can be given to one loop order as

3
ky Hi

o R (3o p ).

(34

The absence of determinantal prefactors in this expression

justified by the fact that the bounce solution for true and false
vacuum decay are the same, hence the primed determinants
corresponding to fluctuations around the bounce cancel oi§t*

in the ratio of rates. The effect of determinants correspondin

to fluctuations around the true and false vacuum backgroun - X
@nd ¢ represent the radial and angular parts of a single com-

instantons is just to renormalize the values of the correspon
ing effective cosmological constants. Hence, (B¥), the
vacuum densitiep,;; should be understood as their “one
loop corrected” values.

The a-dependence af38) can be easily understood; (p;)

is proportional to the amount of time spent by a comoving

observer in falsdtrue) vacuum, and if the time variable is

changed as ir{35), the ratiop;/p; is modified by a factor

(He/Hy)®.

is B. A more realistic model

Let us now consider a two-field model of the typ®,

cept we shall assume that the false vacuum=a0 corre-

ponds to a single point, rather than a flat direction, in the
Id space. This is the case, for example, in models were

plex field, ® = ye'?. We shall assume further that the effec-
tive potential for the fieldy is of the “new” inflation type
and has a slow roll regiogV< ¢< ¢{?). Finally, to sim-

In Ref.[13] the nucleation rates for true and false vacuumPlify the discussion, we shall disregard the evolution be-

bubbles were studied in the case when the gravitational bac

jfween the end of slow roll and true vacuum domination. That

reaction of the bubble is ignored, so that the backgrounds, we shall assume that when the fiedrolls down tofbg),'
geometry was taken to be an exact de Sitter space with thié gets directly to the true minimum of the potential with

same Hubble constam inside and outside the bubbles. It
was found that the number distribution of true or falséf
vacuum bubbles centered around the poigtX) could be

energy density{?, wherej=1,2. We shall refer tap\") as
“thermalization points” and to the corresponding minima of
the potential as the first and the second true vagig,1)
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andTV(2). (If pM=p{  then of course only one of these H2($)=8mV()/3. (48)
vacua is a truly true vacuuinThe false vacuum will be
abbreviated a§V. The integration in Eq(42) is from ¢{% to ¢{?), and the

Once again we introduce an ensemble of comoving obquantities J; in Egs. (40),(41) are defined asJj(t)
servers and defing,;(t), po(t) andpy(t) to be the fractions =J(¢{" ,t). The normalization condition
of the observers iTV(1), TV(2) andFV, respectively. We
also defineP(¢,t)d ¢ as the fraction of observers who are, at J' Dt Dos D=
time t, located in slow roll regions with the inflaton field PA¢+pitputPe=1 (49)
betweeng and ¢+ d¢. We can now combine the analysis in . . .
the preceding subsection with the standard formalism of sto'® preserved by th‘? evolution equatiof¥$)—(42).
chastic inflation to obtain the system of equations describin? The parameteg in Eq. (45) for the current represents the
actor-ordering ambiguity in the diffusion equation with a

the evolution of our model:
position-dependent diffusion coefficient. The choicgs

P )~ =1/2 andB=1 are usually referred to as Stratonovich and
i ki($)P+ ki(P)ps, (39 Ito factor ordering, respectively.
The boundary conditions for E¢39) are
dpu
L — J
gt uPut P 40 S DA PS04 g0 (50
dpe i 0
= KePot KioPs+Ja, (41  They ensure that, once the figfgirolls down to¢;”, it does

not diffuse back to the slow-roll regime, but rather stays in
d the true vacuunT V(j) until it tunnels toFV.

apr_ _ The system of equation89)—(42) can be written sym-
dt (k1 K1) PrF kPt KiPr pr xi($)de bolically in the operator form

+ f K1(p)Pdeb. (42) ~_—MP, (51)

Here, «f; corresponds to tunneling frofiV to TV(]), x;j 10 where the “vector’P(t) is P={ps P P2, P(¢)}. With an

tunneling from TV(j) to FV; they are given by EGS. appropriate discretization ap, this can be rewritten in the
(36),(37) with an extra indexj added to the appropriate form of a “master equation”:

quantities.x;(¢)d¢ corresponds to tunneling frofV to a

value ¢ in the intervald ¢ in the slow roll region, and(¢) d_P_ B _

to tunneling from a slow roll region with a given value ¢f dt — EJ: (Wi Py = wj; Pi)_; Mi;P;
to FV. By analogy with(36),(37) we can write

(52

4 Each quantityw;; is positive and has the meaning of the
O T a3 transition rate from statg to statei. The matrixM;; can be
k(@) =T (d) 5-H ™, “3) represented as
~ =0, AT a3 Mi=w; — & >, 53
ki(¢) =T (¢)5H " "%(4). (44) 1 = Wij — 8ij.2s Wi (53
To simplify the equations, we have disregarded tunnelingand has the properties
betweenT V(1) andTV(2) and betweei V(j) and the slow

roll region. These effects can be easily included if necessary. M;;=0  (i#]), (54)
The current)(¢,t) in Eq. (39) is given by

4 > M;;=0. (55)
J(¢,t)=—Dl‘ﬁ(dﬂ@[Dﬁ(cﬁ)P(fﬁ.t)]Jrv(¢)79(¢.t), '

(450  The latter property ensures the conservation of probability,
3,P,=0. It also indicates that the matri has a left eigen-
vectorQ=1{1,1,1,.. } with zero eigenvalueQM = 0. Since
M and its transpose have the same eigenvalues, it follows
thatM should also have a right zero eigenvector,

where the first term on the right-hand side describes the “dif
fusion” of the field ¢ due to quantum fluctuations, with a
diffusion coefficient

D(¢)=H3"%(¢)/8n%, (46) MP,=0, (56)

the second term describes the classical “drift” with velocity . .. . . .
indicating that our system of equations has a stationary so-

v(¢)=—H *($)H'($)/4m, (47)  lution.
The familiar method of solving Eq52) using a decom-
and position in eigenvectors cannot, in general, be applied be-
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cause the matriM is not generally symmetric. However, C. The fractal dimension

some properties of its solutions can be derived using only |n the case of “new” inflation without recycling, the in-

Egs.(54),(55). We shall assume that the mathkis irreduc-  flating part of the universe represents a self-similar fractal of
ible (otherwise, the master equati¢hl) describes several dimension[4,21]

independent processes which can each be described by a
master equation with an irreducible mathk). Then it can d=3+y,H ﬁ,‘l. (62
be shown41] that (i) the zero eigenvaluey,=0, is nonde-
generate(ii) all components of the corresponding eigenvec-Here, as in Eq.(61), v, is the largest eigenvalue of the
tor Py are non-negative(jii) all other eigenvalues dfl sat-  Fokker-Planck operatoM, andH,, is the expansion rate at
isfy Rey,<0, and(iv) the asymptotic behavior dP(t) at  the maximum oiV(¢) [44]. For a comoving sphere of radius
late times is R centered on a point in the inflating region, the inflating
volume within the sphere i¥(R)«RY, which is a fraction
—00)=P,.

P(t—)=Pqy (57) f(Ry= RO 63
In other words, the stationary solution is unique, and all so-
lutions approach this stationary solutiontat . Although of the I?EI VOIl.Jme Of. the sphere. As the sphere expaRds,
these results have been rigorously derived only for a finite€<PHm “, this fraction decreases &s exp(y,f), and van-

set of P,,, we shall assume that they are still valid in the Shes at—c. Hence, the inflating region represents a set of
continuum limit. measure zero in the limit— .
If all eigenvalues oM are nondegenerate, théh can be

On the other hand, the inflating part of the volume in a
diagonalized, and the general solution(61) can be written recycling universe is constantly replenished by tunneling
as

from the true vacuum. As a result, the inflating region occu-
pies a non-vanishing fraction of the total volume, so that
. V(R)=R® andd=3.
_ We note, however, that a recycling universe does contain
P(t)= P.emt, 58 - . !
® nZO " 8 fractal regions of dimensionl<<3. Take for example the
Lee-Weinberg model of Sec. V A and consider a comoving

4
MP = Py (59 df=3—F§°)?Hf_4. (64

Since M s r_eal, Its el_genvalues and eigenvectors COME 1Ny)| the remaining part of the volume is occupied by true
complex conjugate pairs. In the case of degenerate eigenval- : .

97 . vacuum bubbles, but what remains of th&/ inside the
ues, the solution is more complicatpt?].

- ~ bubbles at— is also a fractal of dimension
In the absence of recycling;; = x(¢) =0, and the sta-
tionary solution of the systen{39)—(42) is trivial: py A
=const, p;="P(¢)=0. The standard analysis of stochastic dt=3—F§0)?H{4. (65
inflation[2,8,19 has been done for a slow-roll inflation with-
out a metastable false vacuum. Then E2p) reduces to a

Fokker-Planck equation foP(¢,t), The FV bubbles inside eachV bubble have dimensiod

and they are in turn filled byV bubbles of dimensioul; .
» 3 The fractal structure of realistic models is of course more
ap_ dJ complicated.
e &sb_MP' (60)
D. Choosing the factor ordering
It can be showr{43] that, with an appropriate choice of a

SHCear:E(ra gl?(ijtgcéyi ?ﬁvsgl;esri:garleglpaeﬁt?ﬁe Iesi Zﬁ\r/rg(l:ttlgrrg forstochastic inflation formalism is the dependence of these re-
' 9 9 Its on the choice of the time variadleand on the factor

a complete orthonormal set. An eigenvector expansion of thSrdering in the Fokker-Planck equatiqB9),(45) [19,27).

ifgrrrgf(?)?)t)lsi;hen always possible, and the asymptotic behaVWe have parametrized these choices by the parametensi

B. Now we are going to argue that there is a preferred choice
of B which allows at least a partial resolution of these prob-
P(p,t—)=f(d)exp ymt). (61 lems.
As we discussed in Sec. IV A, the stationary distribution
Here, y»,<<0 is the largest eigenvalue 9. In this standard P, gives the fraction of time spent by a comoving observer in
approach the distributio(¢,t) is not normalized: the ob- false and true vacua and in different parts of the slow-roll
servers who left the slow roll range through the boundaries atange. This distribution should of course depend on how we
EJ), never return, andPd¢ decreases exponentially with define the time variable, but the dependence should be
time. trivial:

One of the problems with interpreting the results of the
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P()=H (p), psxHY, picHy. (66)  the distribution P(¢) in terms of p;. Evaluating J;
o . =J(¢¥) and substituting in Eqs40),(41), we find p; in
To ensure that thIS'IS indeed the case, we can require that, {gyms of p;. Finally, p; is found from the normalization
the stationary version of E¢51), condition (49). [Note thatp; cannot be found from Eq42)
MP =0 67) which is a linear combination of the preceding three equa-
' tions (39)—(41)]. The resulting expressions are rather cum-
all components of P appear only in combinations Persome and we shall not reproduce them here.
H™%(¢)P(#), Hi “pr, Hi“py, and that there is no other As another example, we take a potentglp) of the form

dependence on. This fixes considered in Ref[21], which consists of a flat portion
where H(¢)=const, k;($)=const, k{(¢)=const, sur-
B=1, (68)  rounded by two regions with a relatively large slope where

the diffusion term is negligible. In the flat range &f the

which corresponds to Ito factor order.ing. . Fokker-Planck equation is trivially solved. In the diffusion-
It should be noted that the family of factor ordering |oqq regions

choices parametrized hg in Eq. (45) does not include all

possibilities. Although our requiremel®6) is sufficient to 9 P o D)= 73
fix B8 uniquely, it does not determine a unique factor ordering AV (AYP(P]T ki (HIP(S)=Ki(S)Pr 73
in the general case. For example, we could replace the difyng a straightforward integration gives

fusion term in(45) by

- _ Ha(¢_) -9(¢)
DX 4(¢) 5 5[DAH)P4.0)] P&)==4mbrigrig) @
¢ ’
9 X| | ,d¢'ki($")ed? ) +Cy, (74)
—>h’1(¢)ﬁ[h(cb)D(@P(st)]- (69) s
where
The condition (66) is satisfied for an arbitrary,
a-independent functioh(¢). p ,;f(d)')
o= Lf)dcﬁ s 79

E. Some solutions

The system of equation(89)—(42) looks rather intimidat-  for the region bounded bgbil), and similarly for the second
ing, but stationary solutions of this system can actually beegion bounded bys?). The integration constants and the
found in some special cases. values ofp; and p;; can be determined by matching the

Let us first assume that tunneling from slow roll to false solutions at the boundaries between the flat and diffusionless
vacuum can be neglected, thatis(¢$)=0. This means that regions and by using Eq$40),(41) and the normalization
the evolution proceeds along the paBV— slow roll  condition(49).

—TV—FV— ..., possibly with occasional tunneling di- In the general case, the solutiéid) should still apply in

rectly fromFV to TV. Then, with3=1, the stationary ver- the range ofp sufficiently close to the thermalization points,

sion of (39) can be written as where diffusion is negligible. If tunneling between this range

and the false vacuum is unimportant, then the solution takes
dgd(P)=r(P)ps, (700 a particularly simple form,

where Ha( ¢)

77(¢)=—47TC1pfm, (76)
J(P)=—34[D()P(P)]+v(P)P(). (72)
This is easily integrated to give and similarly for the range op near¢i2). The constant€;

andC, can be determined only after solving the equation in

Pl = — 8m2py TIH2($) the entire range o#.
(¢)= H3 () © The distribution (76) in the diffusionless range ofp
should be compared with the corresponding distribution in
X{fi)dd,rewmaw ‘il)d¢”:<f(¢”) the absence of recycling21],
by by
H*(¢) F H(¢")
P(p)=C— exg —4 do' =——|.
+C ¢1 dg’e M4 C, |, (72 T p[ (AP YTy
o (77
where we have used the expressiofd),(47) for D(¢) and  This can be drastically different fror¥6) even if the tun-
v(g). neling probabilities are very small. Hence, there is no con-

The integration constants;, C, can now be found from tinuous transition between recycling and no-recycling re-
the boundary condition§s0) (with B=1). Thus we obtain gimes in the limit of vanishing tunneling probabilities.
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F. Physical volume distribution The formalism we developed here can be straightfor-
The functionP(t) characterizes the distribution of comov- wardly extended to include radiation and matter dominated

ing volume between false and true vacua and different Valuegeriods between thermalization and true vacuum domination.
of & in the slow roll regime. One can introduce a similar One expects to find that the asymptotic distribution will still

function for the physical volume distributidqd5—47: be §tationary,_w_ith fixed fractions Of comoving volume oc-
cupied by radiation and matter-dominated regions.

B(t)={P(#,1), ps(1), Pua(t), Pra()}. (79) The picture in which comoving “observers” move in an
endless cycle betwedrV, slow roll, matter domination, and

It is defined so thaD(¢,t)dé is the physical volume occu- TV may be oversimplified. It should be understood, of
pied by slow roll regions withp in the ranged¢ at timet, ~ €ourse, that no material observer is likely to survive the tran-

etc The distributionP(t) satisfies a modified master equa- sition ,t,)etween'_l'v and FV‘ Even if we think of an “ob-
tion server” as an indestructible test particle, there seems to be

no unique way to continue his world line into a nucleating
= bubble, since the surface at which we glue the bottom of the
dP ~ I .
— =MP+3H' *P=MP, (790  false vacuum bubble onto the true vacuum can be chosen in
dt different ways. So we should probably think of our “observ-
ers” as being smeared over a horizon-size volume.
Next, we note that density fluctuations produced during
H1-e=diag H1 %($) HI @ HL® Hi o 80 mflanqn (or generated_ by topo'loglcal defel:n:esult. in the
d (¢).Hi 1 @} (80 formation of bound objects during the matter-dominated era.
In an infinite universe, the volume is of course infinite, butSome of these objects collapse to black holes, and observers
in matter-dominated regions have a finite probabiliper
unit time) to end their world lines at black hole singularities.

where the operatdd~ ¢ is given by

the distributionP(t) can be defined on a fixed comoving part

of the universe. The form of the distribution at larges H black hol twall te. qiving back thei
independent of the choice of the comoving region. owever, black holes eventually evaporate, giving back their
i ) ) o~ volume to the true vacuum. Hence this effect would not alter
In the discretized version of E(79), the matrixM does  oyr conclusions. The same happens with black holes that
not have the propert{65), and the standard theorems for the may spontaneously nucleate in false or true vacydsj.
master equation do not apply. However, the following statéThe rate of black hole pair production in true vacuum is
ments can still be provef48] using the Perron-Frobenius pronortional to exp-1/8p,]. This rate is considerably larger
theorem about non-negative matricé$:M has a real eigen- than that for nucleation of a false vacuum bubble, which in
value 3?0 which is greater than the real parts of all otherthe casep,<p; is proportional exp—3/8p]. It is also pos-

eigenvalues and which is bounded by sible that nucleated black holes may act as seeds for false
_ vacuum bubble nucleation, as they do for true vacuum
3HL A<"yo<3HL_ ¢, (81)  bubbles[50].

. Finally, the inflaton potential/(¢) can be of the “cha-
where H,.x and Hy,, are respectively the largest and the otic” inflation type, with the slow roll range o extending
smallest values oH; (ii) the corresponding eigenvectBy  to Planckian energy densities. Then there is a finite probabil-
has non-negative componenti;) 70 is nondegenerate i ity for an observer to get into this Planckian domain, where

. . . . Lo the classical description of spacetime breaks down. In the
is irreducible. The late-time asymptotic behaviorRit) is stochastic inflation formalism, this is accounted for by intro-

ducing a “Planck boundary” at someé=¢,, such that
V(¢p)~1. The loss of observers through the Planck bound-

In contrast to the comoving distributid®(t), the physical ~ ary Wil generally result iny,>0 andd<3.

volume distributionP(t) has a sensitive dependence on the The same phenomenon of loss of observers will also oc-

: : . cur if some of the minima of the potential have vanishing or
choice of the time parameter, which does not reduce to the ; . !
negative cosmological constant. Once some comoving vol-

trivial form (66) [19,21,27. The equation(79) for P(t) is  yme falls into one of these vacua it has no chance of being
simplified if we choose the scale factor time=1. In this recycled.

caseH!' “=1, and the solutions df79) and(51) are related
by [19]:

B(t— ) =Pyeo, (82)

VI. PROBLEMS WITH PREDICTIONS

D — a3t
Pa=1() =€"Pa(D). (83 Different thermalized regions of the universe are gener-

_ _ ally characterized by different values of the constants of Na-
G. Discussion ture and of the cosmological parametésach as the density

The main conclusion of our analysis in this section is tha?@rametex}). In the model that we used as an example in
the distribution of comoving observers in a recycling uni- S€¢. V, the universe can thermalize into two types of vacua,
verse rapidly approaches a stationary form. This asymptoti¢ V1 andTV2, and thus we have two possible sets of con-

distribution can be obtained as the eigenvector of the “masstants of Nature. The number of possibilities can, in prin-
ter” operatorM with a zero eigenvaluey,=0: ciple, be much larger, and in some models the “constants”

can even take values in a continuous ra(@eamples are the
MP,=0. (84 effective gravitational constant in a Brans-Dicke-type theory
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[18] and the density parameter in some models of “open” Now, recycling introduces one more difficulty. In the ab-
inflation [6]). An intriguing question is whether or not we sence of recycling, comoving regions could be uniquely
can “predict” which set of the constants we are most likely characterized by the type of thermalized region they will
to observe. evolve into. But in a recycling universe each comoving re-
One can try to determine the probability distribution for gion goes through an endless succession of different types of
the constants with the aid of the “principle of mediocrity” thermalization. Hence, the-procedure cannot be imple-
which asserts that we are “typical” among the civilizations mented in its present forfb2].
inhabiting the univers¢20,24,25,18 Here, the universe is In the face of these difficulties, one could look for entirely
understood as the entire spacetime; our civilization is asdifferent approaches to defining the probabilities. One possi-
sumed to be typical among all civilizations, including thosebility is to abandon the requirement of gauge-invariance and
that no longer exist and those that will appear in the futureassert that there is a preferred choice of the time varialife
The probability for us to observe a given set of constants ishis approach is taken, then there is, arguably, a good reason
then proportional to the total number of civilizations in the to take the scale-factor timé=Ina, as the preferred choice
corresponding type of thermalized regions. This number caf8,53]. The only variables that can be used as clocks in an
be represented as the number of galaXighich one can inflating universe are the inflaton fielgl and the scale factor
hope to estimafetimes the number of civilizations per gal- a. The main requirement for a clock is a predictable classical
axy (which is left undetermined until the evolution of life behavior. In the range o where quantum fluctuations are
and consciousness are better understo8dme of the con- important, ¢ is not suitable for this role, and the only re-
stants, such as the cosmological constant or the density pgraining variable to be used as a clockais
rameter, are not expected to affect the chances for a civiliza- Another possibility is to abandon the principle of medioc-
tion to develop in a given galaxy, so one can hope tority and invoke the ideal observers that we used to define the
determine the probability distribution for such constantsdistributionP(t), rather than physical observers, to calculate
without any biological input. probabilities. In a recycling universe, the worldline of an
In the case of a closed universe and finit®neternal  ideal observer crosses an infinite number of inflating and
inflation, this prescription for calculating probabilities is un- thermalized regions. The probabilities for different types of
ambiguous. If the universe is spatially infinite, one can sim-thermalized regions can then be defined as relative frequen-
ply use the prescription for a fixe@ufficiently large co-  cies at which these regions are encountered along the world-
moving volume. However, in an eternally inflating universeline. This definition is obviously gauge-invariant. In the
the spacetime volume and the number of civilizations argnodel of Sec. V B, it gives
infinite, even for a region of a finite comoving size. One can
deal with this problem by simply introducing a time cutoff P1/p2=3113,. (86)
and counting only the number of civilizatior$;(t;) that
appeared prior to some moment of tilge Here, the index The gauge-invariance dB6) is easily verified from Egs.
refers to the type of thermalized region. The ratio of prob-(45),(47),(50),(66). In this approach, the most probable ther-

abilities can then be defined as the limit malized regions may turn out to be unsuitable for life, but
this can be easily fixed by defining appropriate conditional
Py N, (to) probabilities.
—=lim; o, —. (85) As mentioned at the end of Sec. Ill, recycling may not be
P2 =7 Na(te) complete in models where there is a “Planck boundary” in

the diffusion regime or where some of the minima of the
One finds, however, that the resulting probability distributioneffective potential have vanishing or negative effective cos-
is extremely sensitive to the choice of the time variable mological constant. In this case, the worldlines of all ideal
[51,19. This gauge-dependence casts doubt on any conclibservergexcept a set of measure zgtave a finite length,

sions reached using this approach. and a natural extension of E(6) is

An alternative procedure, suggested[#1], is to intro-
duce a cutoff at the timé/, when all but a small fractios pr_ [odt|dy(t)] g
of the comoving volume destined to thermalize into regions P2 [2dtd,(D)] (&7)

of type j has thermalized. The value efis taken to be the

same for all types of thermalized regions, but the correThis defines the probabilities as being proportional to the
sponding cutoff times(cl) are generally different. The limit total number of encounters for a given type of region, aver-
e—0 is taken after calculating the probability distribution aged over all observers. The result depends on the initial
for the constants. It was shown 81,27 that the resulting distributionP(0) att=0. Assuming that in this type of mod-
probabilities are essentially insensitive to the choice of timesls the universe must have a beginning, and that it can be
parametrization. However, the same problem appears in @described by quantum cosmology, this initial distribution can
different guise. Linde and Mezhlumidr28] have found a be determined from the wave function of the universe.
family of gauge-invariant cutoff procedures parametrized by Although the definition of probabilities in this approach is
a dimensionless parametgrwith g=0 corresponding to the gauge-invariant, it is not quite satisfactory. The ideal observ-
e-procedure described above. This indicates that the invariers have very little to do with real physical observers, and it
ance requirement alone is not sufficient to define the probis hard to justify why the likelihood of various observations
abilities uniquely. Some additional requirements that can fixnade by our civilization should be related to an ensemble of
the parameteq have been discussed [i&7]. such ideal observers.
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We have to conclude that, despite some effort, none of théalse vacuum comoving volume at large times is lower than
approaches suggested so far appears to be particularly cotitree. Including recycling, this dimension és=3 because
pelling. It may turn out that, after all, an eternally inflating comoving volume in false vacuum is continually replenished
universe does not admit a uniquely defined probability dis-by nucleating false vacuum bubbles. The universe ends up in
tribution for the constants of nature. If so, this does not neca highly convoluted state, where the fractal dimension of any
essarily mean that all possible sets of constants consistenbnnected false or true vacuum region is lower than three.
with our existence are equally likely. Although the ratio  Finally, we have considered the question of “making pre-
p./p, may depend on the choice of cutoff procedure, it isdictions” for the constants of nature in the context of a re-
conceivable that in some casps/p,>1 for all reasonable cycling universe. The principle of mediocrity has been in-
choices. We would then “predict” that 1 is much more voked in the past in order to obtain probability distributions
likely than 2. It is possible that we will have to restrict our- for the constants. For the case of finite inflation the proce-
selves to such “stable” predictions, which are insensitive todure is unambiguous: the probability is proportional to the

the choice of cutoff54]. number of civilizations that observed a given set of constants
in the entire history of the universe. In the case of eternal
VII. CONCLUSIONS inflation, the principle is not so easy to implement, because

the number of thermalized regions with given values of the

We have shown that the picture of the superlarge-scalgonstants is infinitéeven in a finite comoving regionand
structure of the inflationary universe is significantly modified gne has to introduce a regulator. If one simply counts all
by quantum fluctuations which bring parts of already ther-cjyjlizations below some cutoff time, then the result depends
ma”zed I’egiO!’lS baCk to the false vacuum, a process Whicgtrong|y on the choice of time Variamég]_ A gauge invari-
we call recycling. ant cutoff prescriptior(i.e., one which does not depend on

In particular, the question of whether or not the Universethe time variablgwas introduced if21], but this prescrip-
had a beginning is reopened. Ignoring recycling, and undefion is not unique28]. To make matters more complicated,
certain rather general conditions, it has been shown in Ref$he methods discussed so far cannot be directly applied to a
[37,19 that inflationary models require a beginning in time. recycling universe. We have considered some generaliza-
In the recycling picture, this conclusion does not apply be+tjons and alternative approaches, but none of them is particu-
cause it is only necessary that any false vacuum region ha5|§r|y compelling.
beginning in time. One can therefore imagine a nested struc- Therefore, it seems that while the principle of mediocrity
ture where all false vacuum I’egions are jUSt bubbles Wh|Crh1ay offer some valid guidanCE, it may not be sufficient to
nucleated inside preexisting true vacuum bubbles, which ilynambiguously determine the probability distribution for the
turn nucleated inside false vacuum bubbles and so orgonstants of nature. If this turns out to be the final answer,
Whether or not this pattern can be continued to the infinitghen “predictions” would only be possible in those cases

past is an interesting open question. _ when all reasonable cutoff methods or implementations of
We have extended the standard formalism of StOChaStlfhe princip'e y|e|d a similar answer.

inflation [2,8,19 to study the probability distribution of
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