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Recycling universe
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If the effective cosmological constant is nonzero, our observable universe may enter a stage of exponential
expansion. In such a case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and
inflation with a high expansion rate may resume in those regions. An ‘‘ideal’’ eternal observer would then
witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire
history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal
observer would visit each one of these minima with a frequency which depends on the shape of the potential.
We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this
‘‘recycling’’ process is taken into account.@S0556-2821~98!02904-X#

PACS number~s!: 98.80.Hw, 98.80.Bp, 98.80.Cq
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I. INTRODUCTION

Inflationary models are designed to produce a unive
which is sufficiently homogeneous on all observable sca
@1#. However, on much larger scales the universe is expe
to be extremely inhomogeneous. The evolution of the fi
f, whose vacuum energy drives inflation, is influenced
quantum fluctuations. These fluctuations can be pictured
random walk off superimposed on its slow roll down th
slope of its potential. As a result, thermalization of t
vacuum energy does not occur simultaneously everywher
the universe, and at any time there are parts of the univ
that are still inflating@2,3#.

On very large scales, the universe is expected to consi
isolated thermalized regions embedded in the inflating ba
ground. The boundaries of the thermalized regions exp
into this background, and new regions are constantly be
formed, but the high expansion rate of the intervening infl
ing domains prevents these regions from filling up the u
verse. Thermalization inevitably occurs at any given com
ing location, and the comoving volume of the inflatin
regions decreases exponentially with time. At the same ti
the physical volume of these regions is exponentially gro
ing. The geometry of the inflating regions is that of a se
similar fractal of dimensiond,3 @4#. It is illustrated in Fig.
1 for the case of ‘‘open’’ inflation, where the false vacuu
decay occurs through bubble nucleation@5,6#. For ‘‘new’’ or
‘‘chaotic’’ inflation the picture would be similar, except th
thermalized regions would have irregular shapes.

In the present paper we are going to argue that this pic
of the superlarge-scale structure of the universe can be
nificantly modified by quantum fluctuations that bring loca
ized parts of already thermalized regions, such as our obs
able universe, back to the inflating false-vacuum state.
modification is particularly important in models where t
post-thermalization true vacuum is characterized by a p
tive vacuum energy~cosmological constant!. In this case the
thermalized regions asymptotically approach de Sitter ge
etry, and the rate of fluctuations back to the false vacu
570556-2821/98/57~4!/2230~15!/$15.00
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~per unit spacetime volume! approaches a constant. Eve
with an exceedingly small rate, the probability for tru
vacuum to survive at any comoving location is exponentia
decreasing with time. Hence,~almost! all the comoving vol-
ume of thermalized regions will eventually be recycled ba
to the inflationary phase. Each nucleated false vacuum re
will serve as a seed for a new eternally inflating doma
whose internal structure will resemble that shown in Fig.
The thermalized regions formed in this domain will in tu
produce new false vacuum seeds,etc. We call this kind of
model a recycling universe.

Quantum nucleation of regions with a higher energy d
sity cannot occur from a flat-spacetime vacuum character
by a vanishing cosmological constant: such processes
forbidden by energy conservation. However, upward fluct
tions of this kind can occur in an expanding cosmologi
background, and have been previously discussed by a n
ber of authors@7,2,3,8–11#. The most relevant for our pur
poses here is the paper by Lee and Weinberg@11# who con-
sidered a model of a scalar fieldf with a potentialV(f)

FIG. 1. True vacuum bubbles~white! nucleating in false
vacuum~black!. The shaded rings represent slow roll regions~ex-
ternal ring! and matter or radiation dominated regions~internal
ring!.
2230 © 1998 The American Physical Society
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57 2231RECYCLING UNIVERSE
shown in Fig. 2. Note that both false and true vacua h
positive energy densities,r f.r t.0. It has been known for
some time that the high-energy false vacuum atf50 can
decay by nucleation of true vacuum bubbles. The co
sponding instanton~‘‘bounce’’! has been found by Colema
and De Luccia@12#. The bubble nucleation rate is given b

G f→t5Aexp@2Sb1Sf #, ~1!

whereSb is the bounce action andSf523/8r f is the action
of the Euclideanized false-vacuum de Sitter space~we use
Planck units throughout the paper!. Lee and Weinberg con
jectured that the same instanton also describes the inv
process of true vacuum decay, where false vacuum bub
nucleate in a true vacuum background. The nucleation
suggested by Eq.~1! is

G t→ f5Aexp@2Sb1St# ~2!

with St523/8r t . Lee and Weinberg argued that the pree
ponential factors in Eqs.~1! and ~2! are the same. Thes
conjectures were later verified@13# in the case of
(111)-dimensional universes, where bubble nucleation
be identified with the production of particle-antipartic
pairs. Note that the rate~2! vanishes if the true vacuum ha
zero energy.

As it stands, the potential in Fig. 2 is not suitable f
inflationary cosmology. This potential has no slow-roll r
gion, so most of the vacuum energy remains in domain w
and never gets thermalized. We shall see, however, that m
els incorporating both realistic inflation and true vacuum
cay can be constructed by a trivial modification of ‘‘open
inflationary models. Moreover, we shall argue that nuc
ation of inflating regions is possible even with the simpl
slow-roll potentials, for which the Coleman–de Luccia i
stanton does not exist.

The recycling nature of inflationary universe may ha
important implications for the question of whether or not t
universe had a beginning in time. As we already mention
inflation is generically eternal to the future, so it is natural
ask if the inflationary models can be continued into the in
nite past, resulting in a ‘‘steady-state’’ nonsingular cosm
ogy. This possibility was discussed in the early 1980s, s
after the inflationary scenario was proposed, with the con
sion that the idea could not be implemented in the simp
model in which the inflating universe is described by
exact de Sitter space@14,2#. A more general proof of impos
sibility of steady state inflation was given in Refs.@15–17#,

FIG. 2. Self interaction potential for the ‘‘tunneling’’ scala
field. The energy densities in false and true vacua, denoted ar f

andr t , act as an effective cosmological constant.
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but we shall see later in this paper that some of the assu
tions made in the proof do not apply in the case of a re
cling universe. The question of the necessity of the beg
ning is therefore reopened.

Recycling may also be relevant to the question of mak
predictions in an inflationary universe. Recently, there ha
been a number of attempts@18–23# to find probability distri-
butions for cosmological parameters such as the effec
cosmological constantL or the density parameterV. These
‘‘predictions’’ are based on the principle of mediocrit
@20,24–26#, by which we are most likely to live in the mos
abundant type of civilization that can result from the the
malization of a false vacuum. However, in the inflationa
universe, there will be an infinite number of infinite therma
ized regions, and one faces the difficulty of comparing
finities @19,18,27#. Regularization procedures were intro
duced in@21,28# to deal with this problem, but these cann
be directly applied to a recycling universe.

The paper is organized as follows. In the next section
shall give some examples of inflationary models which all
nucleation of false vacuum bubbles. The geometry of
nucleated bubbles will be analyzed in Sec. III. In Sec. IV w
shall discuss the implications of the recycling univer
model for the question of the beginning of the universe. T
superlarge-scale structure of a recycling universe will
studied in Sec. V using the methods of stochastic inflati
The issue of predictions will be discussed in Sec. VI, and
conclusions will be summarized in Sec. VII.

II. MODELS

In all realistic inflationary models, the potential of th
inflaton fieldf is required to have a sufficiently flat slow-ro
region in which

uV9~f!u!H2. ~3!

Here, H is the expansion rate andH21 is the horizon size
corresponding to the vacuum energyV(f),

H258pV~f!/3. ~4!

On the other hand, Coleman–de Luccia-type solutions
vacuum bubbles exist only when the potential is sufficien
curved near the barrier separating true and false vacua@29#,

uV9~f!u*H2. ~5!

The meaning of this condition is easy to understand. T
bubble wall thickness isd;uV9u21/2, and if ~5! is not satis-
fied, then the wall is much thicker than the horizon. Su
walls cannot exist as coherent structures and are sprea
the expansion of the universe. False vacuum bubbles
Coleman–de Luccia type are, therefore, impossible if
slow roll condition~3! is valid everywhere in the inflationary
range off.

A similar problem arises in the ‘‘open’’ inflation scenario
where false vacuum decay through bubble nucleation is
lowed by a period of slow roll in bubble interiors@5,6#. One
way to deal with this problem is to consider a two-fie
model, with one field doing the tunneling and the other do
the slow roll @6#. The potential can be chosen as
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2232 57JAUME GARRIGA AND ALEXANDER VILENKIN
U~x,f!5V1~x!1x2V2~f!. ~6!

Here,x is the tunneling field and the potentialV1(x) has the
form as in Fig. 2 with a metastable minimum atx50 and a
true minimum atx5hx . The full potentialU(x,f) is inde-
pendent off ~has a flat direction! at x50, and as a result the
expansion rate in the false vacuum is also independent of.
The potentialV2(f) is assumed to have a slow-roll rang
and a minimum atf5hf with V2(hf)50, at which ther-
malization eventually occurs. In a variant of this model@6#,
the two fields can be taken to represent the radial and ang
parts of a single complex field,F5xeif.

The stage for open inflation is set by inflating fal
vacuum with energy densityr f5V1(0). Nucleating bubbles
expand into this background, but because of the high exp
sion rate of the intervening false vacuum regions, bub
collisions are rare. The interior geometry of each bubble
that of an open Robertson-Walker universe. The bubb
have different initial values off, and if this value falls in the
slow-roll range of the potential, then there is a period
inflation inside the corresponding bubble. Inflation is fo
lowed by thermalization and standard cosmological evo
tion, but since we assumed a nonzero cosmological cons
the bubble interiors are eventually dominated by the t
vacuum energy,r t5V1(hx). False vacuum bubbles wil
now be formed in the true vacuum background, resulting
the endless succession of stages of the recycling univer

It should be noted that tunneling back to the false vacu
can occur not only from the true vacuum (x,f)5(hx ,hf),
but also from the slow-roll, as well as radiation and matt
dominated periods. In fact, the rate of false vacuum bub
nucleation is expected to be the highest during the slow-
inflation @due to the higher energy density at that time, s
Eq. ~2!#. However, since all these periods last only for
finite time, and the rate of false vacuum bubble formation
extremely low, only a tiny fraction of the comoving volum
will be affected by such processes. On the other hand,
true-vacuum-dominated stage persists indefinitely, and p
tically all the comoving volume will be recycled by bubble
nucleating in the true vacuum.

An alternative to the two-field model~6! is a model of a
single scalar fieldf with a potential of the form shown in
Fig. 3 @5#. The false vacuum atf50 is separated from the
slow-roll region by a sharp barrier.~The coexistence of fla
and highly curved regions in the same potential is a so
what unnatural feature of this model.! The field f tunnels
through the barrier and after a period of slow roll, ends up
the true vacuum, which we assume to have a nonzero en

FIG. 3. The potential for the scalar field in the one field mod
of open inflation. The sharp barrier followed by a flat plateau giv
this potential a somewhat unnatural appearance.
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density,r t.0. An important difference of this model from
that of Eq.~6! is that now, in order to tunnel from true t
false vacuum, the fieldf has to go across the whole slow
roll region. False vacuum bubbles will therefore consist o
false vacuum core surrounded by a domain wall, which is
turn surrounded by layers of slow roll, radiation, and matt
dominated regions~see Fig. 4!.

Intuitively, we would expect that the nucleation of such
complicated structure should be extremely unlikely, and th
the nucleation rate of false vacuum bubbles in this one-fi
model should be strongly suppressed compared to the
field model ~6!. In the model corresponding to Fig. 3, th
Coleman–de Luccia instanton crosses the barrier but not
plateau. This is required in open models to ensure a sec
period of slow roll inflation solving the flatness problem.
the spirit of Lee and Weinberg@11#, we could naively rein-
terpret this instanton as describing tunneling from tr
vacuum to false. But since the instanton does not really
terpolate between both minima, the interpretation see
somewhat unjustified. Incidentally, in curved space the
stantons never exactly interpolate between both minima,
for a potential of the type represented in Fig. 3 the situat
is clearly more extreme. Therefore, an estimate of the t
neling rate a la Lee-Weinberg seems questionable in
case. It should be remembered also that the use of Euclid
methods in de Sitter space has never been justified from
principles, and therefore the results obtained using th
methods should be taken with caution@8–10#. This issue
needs further investigation, but we will not attempt to a
dress it in the present paper. The specific value of fa
vacuum bubble nucleation rate will not be important for o
conclusions, as long as this rate is nonzero.

If the barrier in the inflaton potential is too wide to satis
the condition ~5!, then the Coleman–de Luccia instanto
does not exist. However, there is always a homogene
Hawking-Moss instanton@7# in which f takes the valuefb
corresponding to the top of the barrier. This instanton is u
ally interpreted as describing quantum tunneling from fa
vacuum to the top of the barrier in a horizon-size regio
~Coleman–de Luccia instanton reduces to that of Hawk
and Moss as the barrier width is increased.! Again, in the
spirit of Lee and Weinberg@11#, we can interpret the sam
instanton as describing tunneling from true vacuum to
top of the barrier. The corresponding nucleation rate is

l
s

FIG. 4. A false vacuum bubble~black! nucleating in true
vacuum~white!. Regions of slow roll and of matter and radiatio
domination surrounding the bubble are indicated.
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57 2233RECYCLING UNIVERSE
G}exp@2SHM1St#, ~7!

whereSHM523/8rb andrb5V(fb).
In models of ‘‘new’’ inflation, the generic potential i

illustrated in Fig. 5. There is no barrier in this case, but s
there is a Hawking-Moss instanton withfb corresponding to
the maximum of the potential. There are also approxim
homogeneous instanton solutions withf sufficiently close to
the maximum. Such approximate instantons also exis
models of ‘‘chaotic’’ inflation where the potential may hav
no maxima. A constant fieldf is a good approximation a
long as the evolution off is slow on the Hubble scaleH21,
that is, in the slow roll range. The Euclidean expression
the tunneling rate from true vacuum tof in this range is
given by Eq.~7! with SHM523/8V(f).

Even in flat space, there are instantons which desc
tunneling without barriers@30#. Jensen and Steinhardt hav
argued that when gravity is included, these instantons
subdominant with respect to either the Hawking-Moss or
Coleman–de Luccia modes@31#.

Once again, we find the formula~7! somewhat suspicious
and emphasize the need for a derivation of the nuclea
rate without relying on Euclidean methods. Linde@10# has
given an estimate of the probability of tunneling to fal
vacuum on rather general grounds. In de Sitter space, a
f fluctuates on scales bigger or comparable to the Hub
radius around a local minimumf t of the potential with am-
plitude given by@32#

s25^~f2f t!
2&'

3H4

8p2m2 .

Strictly speaking, the result is only true for a free field a
for small fluctuations, so that the massm and the expansion
rate H are well defined. Extrapolating to the case of an
teracting field and ignoring the gravitational backreaction
the fluctuations on the expansion rate, the probability tha
region of size;H21 will tunnel from f t to a different value
f sufficiently close to the maximum ofV(f) can be esti-
mated as

P}exp@2~f2f t!
2/2s2#.

For the case of a quadratic potential withm2!H2 and
V(f)2V(f t)!V(f t), the exponent in the previous expre
sion reproduces the exponent@2SHM1St# which appears in
Eq. ~7!, with SHM523/8V(f) @10#.

FIG. 5. The inflaton potential for the case of new inflation.
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In any case, we expect the rate to be nonzero in the g
eral case. The reason is simply that the nucleation is
forbidden by any conservation laws, and thus should hav
nonzero probability.

III. FALSE VACUUM BUBBLES

To study the geometry of false vacuum bubbles, we sh
first assume that the bubble wall thickness is much sma
than all other relevant dimensions of the problem. The w
can then be treated as infinitely thin, and the spacetime
gions on the two sides of the wall are de Sitter spaces
different vacuum energy. We now briefly review some pro
erties of de Sitter space.

It is well known that de Sitter space can be pictured a
hyperboloid embedded in a flat 5-dimensional spacetime

z21w22t25H22. ~8!

wherez5(z1,z2,z3) is a 3-vector. A section of the hyperbo
loid by thewt-plane is shown in Fig. 6. The Euclideanize
de Sitter space, which is used for constructing instantons
obtained by analytic continuationt5 i tE ,

z21w21tE
25H22. ~9!

Geometrically, this is a 4-sphere of radiusH21.
It will be convenient to use the Robertson-Walker fl

coordinates in which the de Sitter metric takes its most
miliar form,

ds25dt22e2Htdx2. ~10!

These coordinates are related to the hyperboloid coordin
by

t5H21sinh~Ht !1
1

2
Hx2eHt, ~11!

FIG. 6. De Sitter space can be viewed as a hyperboloid emb
ded in a 5-dimensional Minkowski space. Here we represent a
tion of this hyperboloid, along the planet,w in the embedding
space. The regionw1t.0 of the hyperboloid can be covered wit
flat FRW coordinatesx,t. A sectionw1t5const corresponds tot
5const.
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2234 57JAUME GARRIGA AND ALEXANDER VILENKIN
w5H21cosh~Ht !2
1

2
Hx2eHt, ~12!

z5xeHt, ~13!

which can be inverted to give

t5H21ln@H~w1t!#, x5
H21z

w1t
. ~14!

Constant-t surfaces are obtained as intersections of the
perboloid with null hyperplanesw1t5const ~see Fig. 6!.
The surfacet52` corresponds tow1t50, and thus the
coordinate system~10! covers only half of de Sitter space.

Let H f
21 and Ht

21 be de Sitter horizons correspondin
respectively to the false and true vacuum energy densitiesr f

and r t . Clearly, r t,r f and H f
21,Ht

21 . The thin wall ap-
proximation requires that the wall thickness be much sma
thanH f

21 . In this case, the Coleman–de Luccia instanton
bubble nucleation can be obtained by matching two
spheres of radiiH f

21 andHt
21 ~see Fig. 7!. The two spheres

are joint at a 3-sphere which represents the Euclidean
worldsheet of the domain wall. Its radiusR0 is determined
by r f , r t , and the wall tensions @33#. The 5-dimensional
coordinates can always be chosen so that this worldshee
in a plane of constantw. In the figure it isw52Dt , where

Dt5~Ht
222R0

2!1/2. ~15!

The Lorentzian evolution of the bubble is given by two h
perboloids similarly matched along a constant-w plane~Fig.
8!. Descriptions of both true and false vacuum bubbles
be obtained with an appropriate slicing of this spacetime
equal-time surfaces.

In the case of false vacuum bubbles, equal-time surfa
can be chosen to be the surfacesw1t5 const~Fig. 8!. Then,
each constant-t slice consists of a spherical region of fal
vacuum embedded in an infinite, spatially-flat region of tr
vacuum. Since the spatial geometry of these slices is flat b

FIG. 7. The Coleman–de Luccia instanton for bubble nuclea
can be obtained by matching two 4-spheres of radiiH f

21 andHt
21 .

The two spheres join at a 3-sphere which represents the Euclid
ized worldsheet of the domain wall.
-
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inside and outside the bubble, the volume that is remo
from true vacuum by the appearance of the bubble is equa
the volume of false vacuum which replaces it~this would not
be the case if we used closed spatial sections, for instan!.
We can use the coordinates~10! with H5Ht to describe the
exterior true-vacuum region. The wall worldsheet is atw5
2Dt , and from Eq.~12! the radius of the bubble at timet is

Rf
2~ t !5Ht

22~e2Htt12DtHte
Htt11!, ~16!

where R(t)5ux(t)ueHtt. We see that the radius approach
the horizon sizeHt

21 at t→2`. The bubble wall accelerate
in the direction of the false vacuum, so that its comovi
radius ux(t)u is contracting, but the physical radius grow
exponentially due to the expansion of the universe. A c
formal diagram for the bubble spacetime is shown in Fig.

n

n-

FIG. 8. The spacetime representing a false vacuum bubbl
true vacuum.

FIG. 9. Conformal diagram of the false vacuum bubble spa
time, for the Lee and Weinberg model.
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57 2235RECYCLING UNIVERSE
SinceR(t) is a monotonically growing function of time
there is no ‘‘bounce’’ moment at which one can say that
nucleation occurs. The situation here is similar to that
nucleation of topological defects in de Sitter space@29#, and
as in the latter case, we shall regard the bubble~16! as
‘‘formed’’ at t;0, when its radius begins to grow expone
tially.

For the trajectory given in Eq.~16!, the region of true
vacuum which has been removed and replaced by
vacuum was centered at the point (t50, x50) ~see Figs. 6
and 8!. We shall refer to this point as the center of symme
of the bubble trajectory.~Notice that this point may not be
long to the actual classical spacetime, because it is prec
in the region where bubble nucleation takes place, but it d
belong to the five-dimensional embedding space.! Perform-
ing Lorentz transformations in the embedding space, we
obtain bubbles whose center of symmetry is at any timt
5t0 and at any location. This gives

Rf
2~ t !5Ht

22@e2Ht~ t2t0!12DtHte
Ht~ t2t0!11#. ~17!

We can think of these as bubbles ‘‘formed’’ att;t0. The
asymptotic behavior of the bubble radius at large times i

Rf~ t !'Ht
21eHt~ t2t0!, t2t0@Ht

21 . ~18!

To describe a true vacuum bubble in a false vacuum ba
ground, we choose equal-time surfaces to bew2t5const.
Using the coordinates~10! with H5H f to describe the exte
rior of the bubble, we find that the bubble radius at timet is
given by

Rt
2~ t !5H f

22~e2H f t22D fH fe
H f t11!, ~19!

where

D f5~H f
222R0

2!1/2. ~20!

In contrast to the false-vacuum bubble case, the radius~19!
has a minimum,Rmin5R0, at tn5H f

21ln(DfHf), and we can
regard this time as the moment of bubble nucleation. Eq
tion ~19! can then be rewritten as

Rt
2~ t !5D f

2@e2H f ~ t2tn!22eH f ~ t2tn!#1H f
22 , ~21!

with the late-time behavior

Rt~ t !'D fe
H f ~ t2tn!, t2tn@H f

21 . ~22!

Note, however that

Rt~ t !'H f
21eH f ~ t2t0!, t2t0@H f

21 , ~23!

where we denote byt0 the location of the center of symmetr
of the bubble wall as seen from the outside@see the discus
sion around Eq.~17!#.

Our main interest in this paper is in models withr t
!r f . In such models, the radius of false vacuum bubble
R(t).Ht

21@H f
21 , and thus the thin wall approximation ca

be used to describe the bubble evolution even when the
thickness isd;H f

21 . ~Note however that in this case the th
wall approximation breaks down for the instanton itself a
for the early evolution of true vacuum bubbles.!
e
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In a single-field model of open inflation, with a potenti
as in Fig. 3, the conformal diagram for a false vacuu
bubble is shown in Fig. 10.

So far in this section we assumed that the true vacuum
a positive energy density. If the vacuum energy is in fa
zero, then the horizon radius in thermalized regions ke
growing with time, and false vacuum bubbles eventua
come within the horizon. The bubbles are then seen as b
holes from the outside. The bubble nucleation in this cas
similar to the quantum creation of baby universes, as d
cussed in Refs.@35,34,10#. Black holes eventually evaporat
and baby universes pinch off.

IV. DID THE UNIVERSE HAVE A BEGINNING?

Assuming that some rather general conditions are me
was shown in Ref.@15# that inflationary models cannot b
geodesically complete to the past, that is, they require so
sort of a beginning. The assumptions that lead to this re
are the following.

~A! The universe is causally simple@38,39#.
~B! The universe is open.
~C! The null convergence condition@40#.
~D! The finite past-volume difference condition.
The first two of these assumptions do not appear to

crucial for the proof, and extensions of the theorem ha
been obtained to some closed universes@16# and to some
universes with a more complicated causal structure@17#.

The null convergence condition is closely related to t
weak energy condition, which requires that the energy d
sity is non-negative when measured by any observer. Cla
cally, this is satisfied by all known forms of matter, includin
a relativistic scalar field, but violations of the null conve
gence condition are possible as a result of quantum fluc
tions. Such violations tend to occur in the inflating regions
spacetime whenever quantum fluctuations result in a lo
increase of the expansion rate,dH/dt.0 @36#. They are suf-
ficient to invalidate the theorem in models characterized b
substantial variation ofV(f) in the range off where quan-
tum fluctuations are non-negligible. This includes all mod
of ‘‘chaotic’’ inflation, but not some open and ‘‘new’’ infla-
tionary models.

Turning now to the effects of recycling, we shall argu

FIG. 10. Same as in Fig. 9 but for the case of a one field mo
of open inflation.
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that they invalidate both assumptions~C! and~D!, so that the
theorem as it stands does not apply to any inflationary mo
In the case of assumption~C!, the reason is the same a
before: quantum fluctuations from thermalized regions b
to the inflating phase increase the expansion rate in the
fected regions of space, and the null convergence cond
is violated.

The finite past-volume difference condition~D! can be
formulated as follows. Given a pointP in the inflating region
and a pointQ to the past ofP, consider the difference o
their pasts. This is a spacetime region including all points
the past ofP, but not ofQ. The condition~D! requires that
the spacetime volume of this region should be finite. T
original motivation for this condition was based on the p
ture of eternally inflating universe without recycling, as
lustrated in Fig. 1. It can be shown that thermalization s
faces, which separate inflating and thermalized regions
spacetime, are spacelike surfaces@15#. Therefore, ifQ is a
point in an inflating region, then, disregarding recycling,
points in its past must also lie in the inflating region. F
inflation to persist fromQ to P, no thermalized regions
should be formed in the difference of the pasts of the t
points. Now, it seems plausible that there is a zero proba
ity for no thermalized regions to form in an infinite spac
time volume. Then it follows that condition~D! is necessary
for inflation to persist in the future time direction. This co
dition is difficult to satisfy, since the spacetime region re
resenting the difference of the pasts of the two points ha
infinite extent along the past-directed null geodesics.

In a recycling universe, this logic does not apply, sin
points in inflating regions can have thermalized regions
their past. In this case, the spacetime region relevant for
sistence of inflation between a pair of points is not the en
difference of their pasts, but only the part of this differen
which lies in the same inflating region as the two points.
other words, it is the part of the difference of the pasts wh
is to the future of the ‘‘nucleation surface’’~see Fig. 9!. The
volume of this region is obviously finite. Hence, assumpt
~D! is not suitable for a recycling universe.

In models with a vanishing true vacuum energy, only
small fraction of thermalized volume gets recycled. Ho
ever, there still appears to be a possibility that the unive
has a nested structure, with all inflating regions originat
as quantum fluctuations inside thermalized regions.

We thus conclude that the theorems of Refs.@15–17# no
longer apply when the recycling nature of the universe
taken into account. This may open the door for construct
nonsingular, steady-state inflationary models. We emphas
however, that our analysis does not imply that such mod
do in fact exist. It has been argued in Refs.@37,36# that
inflation, when continued to the past, is necessarily prece
by a period of contraction, as in the exact de Sitter spa
During this period, the thermalized regions would merge,
density perturbations would grow very fast, and the unive
would rapidly reach a grossly inhomogeneous state fr
which it is not likely to recover. The arguments in@37,36# do
not rely on weak energy or finite past-volume difference c
ditions, and may possibly be extended to the case of a r
cling universe. These arguments, although suggestive,
short of a proof, and the problem requires further investi
tion.
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V. STOCHASTIC FORMALISM

A quantitative description of the recycling universe can
given using the formalism of stochastic inflation develop
in Refs.@2,8,19#. A straightforward extension of this formal
ism will be required, and to introduce the necessary mod
cations, we shall first consider the Lee-Weinberg model@11#
with a potential as in Fig. 2.

A. Lee-Weinberg model

Consider an ensemble of comoving observers wh
world lines are orthogonal to some spacelike hypersurfaceS.
Let pf(t) andpt(t) be the fractions of observers in false an
true vacuum, respectively,

pf~t!1pt~t!51, ~24!

wheret is the proper time along the observer’s world lin
measured from their intersection withS. The time evolution
of pf andpt is described by the system of equations

dpf /dt52k f pf1k tpt , ~25!

dpt /dt52k tpt1k f pf . ~26!

Here,k f (k t) is the probability, per unit time, for an observe
who is presently in the false~true! vacuum to find himself
within a true~false! vacuum bubble.

From Eq.~21!, we see that a false-vacuum observer w
be affected only by bubbles nucleating within a sphere
radiusD f centered on that observer. The bubbles take ti
;H f

21 to traverse this distance, but in the stochastic inflat
formalism we shall be interested in quantities smeared ov
spacetime scale;H21, so we shall disregard this time dela
and write

k f'G f
~n!

4p

3
D f

3 , ~27!

whereG f
(n) is the rate of bubble nucleation per unit spacetim

volume.
In an expanding universe, however, the rate of nuclea

per unit spacetime volume has to be defined with some c
This is because this rate depends on what we choose a
nucleation time, which is not always sharply defined~espe-
cially when the size of bubbles becomes comparable to
Hubble radius!. For instance, we can change our definition
nucleation time fromtn to t0, wheretn is defined by Eq.~21!
as the time at which the physical radius of the bubble reac
its minimum valueR0, and t0 is defined as the center o
symmetry of the bubble wall trajectory as seen from the o
side ~as explained in Sec. III!. In changing the definition of
nucleation time, we must simultaneously change the defi
tion of nucleation rate per unit volume, because the phys
volume has increased by the amount exp@3Hf(t02tn)# in the
intervening time. Distinguishing by their superindex the ra
associated with both choices of nucleation time, we have

G f
~n!5G f

~0!exp@3H f~ t02tn!#.

Hence, Eq.~27! can be rewritten as
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k f'G f
~0!

4p

3
H f

23 . ~28!

In the case of false vacuum bubbles the physical rad
grows monotonically with time, so the analogue oftn does
not exist. We shall adopt the convention identifying t
nucleation time witht0 in Eq. ~17!. Then the comoving re-
gion affected by the bubble is a sphere of radiusHt

21 , and
we can write

k t'G t
~0!

4p

3
Ht

23 , ~29!

whereG t
(0) is the corresponding nucleation rate. We note t

the radius of the affected region and the rate would both
modified with a different choice of nucleation time, whilek t
would remain unchanged.

The solution of Eqs.~25!,~26! is

pf~t!5pf
~0!1Ae2bt, ~30!

pt~t!5pt
~0!2Ae2bt, ~31!

where the constantA is determined by the initial conditions
b5k f1k t , andpf

(0) , pt
(0) is a stationary distribution define

by

pf
~0!

pt
~0!

5
k t

k f
5

H f
3

Ht
3

G t
~0!

G f
~0!

, ~32!

pf
~0!1pt

~0!51. ~33!

We see that, regardless of the initial conditions, the proba
ity distribution rapidly approaches the stationary distributi
~32!.

Let us compare the distribution~32! with that discussed
by Lee and Weinberg@11#. The distributions agree provide
that the nucleation rates which appear in their express
are taken asG t/ f

(0) . Lee and Weiberg also argue that the ra
~32! can be given to one loop order as

k t

k f
5

H f
3

Ht
3 exp@2~3/8!~r t

212r f
21!#. ~34!

The absence of determinantal prefactors in this expressio
justified by the fact that the bounce solution for true and fa
vacuum decay are the same, hence the primed determin
corresponding to fluctuations around the bounce cancel
in the ratio of rates. The effect of determinants correspond
to fluctuations around the true and false vacuum backgro
instantons is just to renormalize the values of the correspo
ing effective cosmological constants. Hence, in~34!, the
vacuum densitiesr t/ f should be understood as their ‘‘on
loop corrected’’ values.

In Ref. @13# the nucleation rates for true and false vacuu
bubbles were studied in the case when the gravitational b
reaction of the bubble is ignored, so that the backgrou
geometry was taken to be an exact de Sitter space with
same Hubble constantH inside and outside the bubbles.
was found that the number distribution of true or false (t/ f )
vacuum bubbles centered around the point (t0 ,x) could be
s
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e
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ns
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e
nts
ut
g
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k-
d
he

written as dNt/ f5ul t/ f uexp(3Ht0)d
3xdt0. Here l t/ f

5Aexp(2Bt/f), whereA is a primed determinant which is th
same for true and false vacuum bubbles, andBt/ f5SB2St/ f
is the difference between the bounce action and the ba
ground Euclidean action. The expression fordN is propor-
tional to the physical volume element at timet0, given by
exp(3Ht0)d

3x, so we can identifyul t/ f u with the ratesG t/ f
(0)

defined above. Therefore, we have (G t
(0)/G f

(0))5exp@St2Sf#,
in agreement with Eqs.~32!,~34!.

We introducedpf andpt as fractions of comoving observ
ers in false and true vacuum, respectively. When the stat
ary distribution~32! is reached, an alternative interpretatio
will also be useful. The world line of each observer w
repeatedly cross between true and false vacuum regions
the quantitypf

(0) (pt
(0)) gives the fraction of proper time th

observer spends in false~true! vacuum.
Instead of the proper timet, one can use some other tim

variable, t, along the observer’s worldlines. A possib
choice is

dt5Ha~t!dt, ~35!

with a50 corresponding to the proper time anda51 to the
‘‘scale factor time.’’ For an arbitrarya, the evolution equa-
tions still have the form~25!,~26!, with t replaced byt and

k f5G f
~0!

4p

3
H f

2a23 , ~36!

k t5G t
~0!

4p

3
Ht

2a23 . ~37!

The stationary solution now is

pf
~a!

pt
~a! 5S H f

Ht
D a pf

~0!

pt
~0! . ~38!

The a-dependence of~38! can be easily understood:pf (pt)
is proportional to the amount of time spent by a comovi
observer in false~true! vacuum, and if the time variable i
changed as in~35!, the ratiopf /pt is modified by a factor
(H f /Ht)

a.

B. A more realistic model

Let us now consider a two-field model of the type~6!,
except we shall assume that the false vacuum atx50 corre-
sponds to a single point, rather than a flat direction, in
field space. This is the case, for example, in models wherx
andf represent the radial and angular parts of a single co
plex field,F5xeif. We shall assume further that the effe
tive potential for the fieldf is of the ‘‘new’’ inflation type
and has a slow roll regionf

*
(1),f,f

*
(2) . Finally, to sim-

plify the discussion, we shall disregard the evolution b
tween the end of slow roll and true vacuum domination. T
is, we shall assume that when the fieldf rolls down tof

*
( j ) ,

it gets directly to the true minimum of the potential wit
energy densityr t

( j ) , where j 51,2. We shall refer tof
*
( j ) as

‘‘thermalization points’’ and to the corresponding minima
the potential as the first and the second true vacua,TV(1)



andTV(2). ~If r t
(1)5r t

(2) , then of course only one of these
vacua is a truly true vacuum.! The false vacuum will be
abbreviated asFV.

Once again we introduce an ensemble of comoving ob
servers and definept1(t), pt2(t) andpf(t) to be the fractions
of the observers inTV(1), TV(2) andFV, respectively. We
also defineP(f,t)df as the fraction of observers who are, a
time t, located in slow roll regions with the inflaton field
betweenf andf1df. We can now combine the analysis in
the preceding subsection with the standard formalism of st
chastic inflation to obtain the system of equations describin
the evolution of our model:

]P
]t

52
]J

]f
2 k̃ f~f!P1k f~f!pf , ~39!

dpt1

dt
52k t1pt11k f 1pf2J1 , ~40!

dpt2

dt
52k t2pt21k f 2pf1J2 , ~41!

dpf

dt
52~k f 11k f 2!pf1k t1pt11k t2pt22pfE k f~f!df

1E k̃ f~f!Pdf. ~42!

Here,k f j corresponds to tunneling fromFV to TV( j ), k t j to
tunneling from TV( j ) to FV; they are given by Eqs.
~36!,~37! with an extra indexj added to the appropriate
quantities.k f(f)df corresponds to tunneling fromFV to a
valuef in the intervaldf in the slow roll region, andk̃ f(f)
to tunneling from a slow roll region with a given value off
to FV. By analogy with~36!,~37! we can write

k f~f!5G f
~0!~f!

4p

3
H f

2a23 , ~43!

k̃ f~f!5G̃ f
~0!~f!

4p

3
H2a23~f!. ~44!

To simplify the equations, we have disregarded tunnelin
betweenTV(1) andTV(2) and betweenTV( j ) and the slow
roll region. These effects can be easily included if necessar

The currentJ(f,t) in Eq. ~39! is given by

J~f,t !52D12b~f!
]

]f
@Db~f!P~f,t !#1v~f!P~f,t !,

~45!

where the first term on the right-hand side describes the ‘‘di
fusion’’ of the field f due to quantum fluctuations, with a
diffusion coefficient

D~f!5H32a~f!/8p2, ~46!

the second term describes the classical ‘‘drift’’ with velocity

v~f!52H2a~f!H8~f!/4p, ~47!
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H2~f!58pV~f!/3. ~48!

The integration in Eq.~42! is from f
*
(1) to f

*
(2) , and the

quantities Jj in Eqs. ~40!,~41! are defined asJj (t)
[J(f

*
( j ) ,t). The normalization condition

E Pdf1pf1pt11pt251 ~49!

is preserved by the evolution equations~39!–~42!.
The parameterb in Eq. ~45! for the current represents th

factor-ordering ambiguity in the diffusion equation with
position-dependent diffusion coefficient. The choicesb
51/2 andb51 are usually referred to as Stratonovich a
Ito factor ordering, respectively.

The boundary conditions for Eq.~39! are

]

]f
@Db~f!P~f,t !#f5f

*
~ j !50. ~50!

They ensure that, once the fieldf rolls down tof
*
( j ) , it does

not diffuse back to the slow-roll regime, but rather stays
the true vacuumTV( j ) until it tunnels toFV.

The system of equations~39!–~42! can be written sym-
bolically in the operator form

dP

dt
5MP, ~51!

where the ‘‘vector’’P(t) is P5$pf ,pt1 ,pt2 ,P(f)%. With an
appropriate discretization off, this can be rewritten in the
form of a ‘‘master equation’’:

dPi

dt
5(

j
~wi j Pj2wji Pi ![(

j
M i j Pj . ~52!

Each quantitywi j is positive and has the meaning of th
transition rate from statej to statei . The matrixMi j can be
represented as

Mi j 5wi j 2d i j (
k

wki ~53!

and has the properties

Mi j >0 ~ i 5” j !, ~54!

(
i

M i j 50. ~55!

The latter property ensures the conservation of probabi
( i Ṗi50. It also indicates that the matrixM has a left eigen-
vectorQ5$1,1,1, . . .% with zero eigenvalue,QM50. Since
M and its transpose have the same eigenvalues, it foll
that M should also have a right zero eigenvector,

MP050, ~56!

indicating that our system of equations has a stationary
lution.

The familiar method of solving Eq.~52! using a decom-
position in eigenvectors cannot, in general, be applied
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cause the matrixM is not generally symmetric. Howeve
some properties of its solutions can be derived using o
Eqs.~54!,~55!. We shall assume that the matrixM is irreduc-
ible ~otherwise, the master equation~51! describes severa
independent processes which can each be described
master equation with an irreducible matrixM ). Then it can
be shown@41# that ~i! the zero eigenvalue,g050, is nonde-
generate,~ii ! all components of the corresponding eigenve
tor P0 are non-negative,~iii ! all other eigenvalues ofM sat-
isfy Regn,0, and ~iv! the asymptotic behavior ofP(t) at
late times is

P~ t→`!5P0 . ~57!

In other words, the stationary solution is unique, and all
lutions approach this stationary solution att→`. Although
these results have been rigorously derived only for a fin
set of Pn , we shall assume that they are still valid in th
continuum limit.

If all eigenvalues ofM are nondegenerate, thenM can be
diagonalized, and the general solution of~51! can be written
as

P~ t !5 (
n50

`

Pnegnt, ~58!

wherePn are eigenvectors of the operatorM , andgn are the
corresponding eigenvalues,

MPn5gnPn . ~59!

Since M is real, its eigenvalues and eigenvectors come
complex conjugate pairs. In the case of degenerate eigen
ues, the solution is more complicated@42#.

In the absence of recycling,k t j5 k̃ f(f)50, and the sta-
tionary solution of the system~39!–~42! is trivial: pt j
5const, pf5P(f)50. The standard analysis of stochas
inflation @2,8,19# has been done for a slow-roll inflation with
out a metastable false vacuum. Then Eq.~39! reduces to a
Fokker-Planck equation forP(f,t),

]P
]t

52
]J

]f
[MP. ~60!

It can be shown@43# that, with an appropriate choice of
scalar product, the differential operatorM is Hermitian.
Hence, all its eigenvalues are real and the eigenvectors f
a complete orthonormal set. An eigenvector expansion of
form ~58! is then always possible, and the asymptotic beh
ior of P(t) is

P~f,t→`!5 f ~f!exp~gmt !. ~61!

Here,gm,0 is the largest eigenvalue ofM. In this standard
approach the distributionP(f,t) is not normalized: the ob
servers who left the slow roll range through the boundarie
f

*
( j ) , never return, and*Pdf decreases exponentially wit

time.
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C. The fractal dimension

In the case of ‘‘new’’ inflation without recycling, the in
flating part of the universe represents a self-similar fracta
dimension@4,21#

d531gmHm
a21 . ~62!

Here, as in Eq.~61!, gm is the largest eigenvalue of th
Fokker-Planck operatorM, andHm is the expansion rate a
the maximum ofV(f) @44#. For a comoving sphere of radiu
R centered on a point in the inflating region, the inflatin
volume within the sphere isV(R)}Rd, which is a fraction

f ~R!}Rd23 ~63!

of the total volume of the sphere. As the sphere expandsR
}exp(Hm

12at), this fraction decreases asf }exp(gmt), and van-
ishes att→`. Hence, the inflating region represents a set
measure zero in the limitt→`.

On the other hand, the inflating part of the volume in
recycling universe is constantly replenished by tunnel
from the true vacuum. As a result, the inflating region occ
pies a non-vanishing fraction of the total volume, so th
V(R)}R3 andd53.

We note, however, that a recycling universe does con
fractal regions of dimensiond,3. Take for example the
Lee-Weinberg model of Sec. V A and consider a comov
volume which is initially filled withFV. What remains of
this FV in the limit t→` is a fractal of dimension@37#

df532G f
~0!

4p

3
H f

24 . ~64!

All the remaining part of the volume is occupied by tru
vacuum bubbles, but what remains of theTV inside the
bubbles att→` is also a fractal of dimension

dt532G t
~0!

4p

3
Ht

24 . ~65!

The FV bubbles inside eachTV bubble have dimensiondf ,
and they are in turn filled byTV bubbles of dimensiondt .
The fractal structure of realistic models is of course mo
complicated.

D. Choosing the factor ordering

One of the problems with interpreting the results of t
stochastic inflation formalism is the dependence of these
sults on the choice of the time variablet and on the factor
ordering in the Fokker-Planck equation~39!,~45! @19,27#.
We have parametrized these choices by the parametersa and
b. Now we are going to argue that there is a preferred cho
of b which allows at least a partial resolution of these pro
lems.

As we discussed in Sec. IV A, the stationary distributi
P0 gives the fraction of time spent by a comoving observer
false and true vacua and in different parts of the slow-r
range. This distribution should of course depend on how
define the time variable, but the dependence should
trivial:
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P~f!}Ha~f!, pf}H f
a , pt j}Ht j

a . ~66!

To ensure that this is indeed the case, we can require tha
the stationary version of Eq.~51!,

MP50, ~67!

all components of P appear only in combination
H2a(f)P(f), H f

2apf , Ht j
2apt j , and that there is no othe

dependence ona. This fixes

b51, ~68!

which corresponds to Ito factor ordering.
It should be noted that the family of factor orderin

choices parametrized byb in Eq. ~45! does not include all
possibilities. Although our requirement~66! is sufficient to
fix b uniquely, it does not determine a unique factor order
in the general case. For example, we could replace the
fusion term in~45! by

D12b~f!
]

]f
@Db~f!P~f,t !#

→h21~f!
]

]f
@h~f!D~f!P~f,t !#. ~69!

The condition ~66! is satisfied for an arbitrary
a-independent functionh(f).

E. Some solutions

The system of equations~39!–~42! looks rather intimidat-
ing, but stationary solutions of this system can actually
found in some special cases.

Let us first assume that tunneling from slow roll to fal
vacuum can be neglected, that is,k̃ f(f)50. This means tha
the evolution proceeds along the pathFV→ slow roll
→TV→FV→ . . . , possibly with occasional tunneling d
rectly from FV to TV. Then, withb51, the stationary ver-
sion of ~39! can be written as

]fJ~f!5k~f!pf , ~70!

where

J~f!52]f@D~f!P~f!#1v~f!P~f!. ~71!

This is easily integrated to give

P~f!52
8p2pf

H32a~f!
ep/H2~f!

3F E
f

*
~1!

f

df8e2p/H2~f8!E
f

*
~1!

f8
df9k f~f9!

1C1E
f

*
~1!

f

df8e2p/H2~f8!1C2G , ~72!

where we have used the expressions~46!,~47! for D(f) and
v(f).

The integration constantsC1, C2 can now be found from
the boundary conditions~50! ~with b51). Thus we obtain
in

g
if-

e

the distribution P(f) in terms of pf . Evaluating Jj

5J(f
*
( j )) and substituting in Eqs.~40!,~41!, we find pt j in

terms of pf . Finally, pf is found from the normalization
condition ~49!. @Note thatpf cannot be found from Eq.~42!
which is a linear combination of the preceding three eq
tions ~39!–~41!#. The resulting expressions are rather cu
bersome and we shall not reproduce them here.

As another example, we take a potentialV(f) of the form
considered in Ref.@21#, which consists of a flat portion
where H(f)5const, k f(f)5const, k̃ f(f)5const, sur-
rounded by two regions with a relatively large slope whe
the diffusion term is negligible. In the flat range off, the
Fokker-Planck equation is trivially solved. In the diffusion
less regions,

]f@v~f!P~f!#1 k̃ f~f!P~f!5k f~f!pf , ~73!

and a straightforward integration gives

P~f!524ppf

Ha~f!

H8~f!
e2g~f!

3F E
f

*
~1!

f

df8k f~f8!eg~f8!1C1G , ~74!

where

g~f!5E
f

*
~1!

f

df8
k̃ f~f8!

v~f8!
, ~75!

for the region bounded byf
*
(1) , and similarly for the second

region bounded byf
*
(2) . The integration constants and th

values of pf and pt j can be determined by matching th
solutions at the boundaries between the flat and diffusion
regions and by using Eqs.~40!,~41! and the normalization
condition ~49!.

In the general case, the solution~74! should still apply in
the range off sufficiently close to the thermalization point
where diffusion is negligible. If tunneling between this ran
and the false vacuum is unimportant, then the solution ta
a particularly simple form,

P~f!524pC1pf

Ha~f!

H8~f!
, ~76!

and similarly for the range off nearf
*
(2) . The constantsC1

andC2 can be determined only after solving the equation
the entire range off.

The distribution ~76! in the diffusionless range off
should be compared with the corresponding distribution
the absence of recyclings@21#,

P~f!5C
Ha~f!

H8~f!
expF24pgmE

f
*
~1!

f

df8
Ha~f8!

H8~f8! G .

~77!

This can be drastically different from~76! even if the tun-
neling probabilities are very small. Hence, there is no c
tinuous transition between recycling and no-recycling
gimes in the limit of vanishing tunneling probabilities.
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F. Physical volume distribution

The functionP(t) characterizes the distribution of como
ing volume between false and true vacua and different va
of f in the slow roll regime. One can introduce a simil
function for the physical volume distribution@45–47#:

P̃~ t !5$P̃~f,t !, p̃ f~ t !, p̃ t1~ t !, p̃ t2~ t !%. ~78!

It is defined so thatP̃(f,t)df is the physical volume occu
pied by slow roll regions withf in the rangedf at time t,
etc. The distributionP̃(t) satisfies a modified master equ
tion,

dP̃

dt
5MP̃13H12aP̃[M̃P̃, ~79!

where the operatorH12a is given by

H12a5diag$H12a~f!,H f
12a ,Ht1

12a ,Ht2
12a%. ~80!

In an infinite universe, the volume is of course infinite, b
the distributionP̃(t) can be defined on a fixed comoving pa
of the universe. The form of the distribution at larget is
independent of the choice of the comoving region.

In the discretized version of Eq.~79!, the matrixM̃ does
not have the property~55!, and the standard theorems for th
master equation do not apply. However, the following sta
ments can still be proved@48# using the Perron-Frobeniu
theorem about non-negative matrices:~i! M̃ has a real eigen
value g̃0 which is greater than the real parts of all oth
eigenvalues and which is bounded by

3Hmin
12a<g̃0<3Hmax

12a , ~81!

where Hmax and Hmin are respectively the largest and th
smallest values ofH; ~ii ! the corresponding eigenvectorP̃0

has non-negative components;~iii ! g̃0 is nondegenerate ifM̃
is irreducible. The late-time asymptotic behavior ofP̃(t) is

P̃~ t→`!5P̃0eg̃0t. ~82!

In contrast to the comoving distributionP(t), the physical
volume distributionP̃(t) has a sensitive dependence on t
choice of the time parametera, which does not reduce to th
trivial form ~66! @19,21,27#. The equation~79! for P̃(t) is
simplified if we choose the scale factor time,a51. In this
case,H12a51, and the solutions of~79! and~51! are related
by @19#:

P̃a51~ t !5e3tPa51~ t !. ~83!

G. Discussion

The main conclusion of our analysis in this section is t
the distribution of comoving observers in a recycling u
verse rapidly approaches a stationary form. This asympt
distribution can be obtained as the eigenvector of the ‘‘m
ter’’ operatorM with a zero eigenvalue,g050:

MP050. ~84!
es

t

-

t

ic
-

The formalism we developed here can be straightf
wardly extended to include radiation and matter domina
periods between thermalization and true vacuum dominat
One expects to find that the asymptotic distribution will s
be stationary, with fixed fractions of comoving volume o
cupied by radiation and matter-dominated regions.

The picture in which comoving ‘‘observers’’ move in a
endless cycle betweenFV, slow roll, matter domination, and
TV, may be oversimplified. It should be understood,
course, that no material observer is likely to survive the tr
sition betweenTV and FV. Even if we think of an ‘‘ob-
server’’ as an indestructible test particle, there seems to
no unique way to continue his world line into a nucleati
bubble, since the surface at which we glue the bottom of
false vacuum bubble onto the true vacuum can be chose
different ways. So we should probably think of our ‘‘obser
ers’’ as being smeared over a horizon-size volume.

Next, we note that density fluctuations produced dur
inflation ~or generated by topological defects! result in the
formation of bound objects during the matter-dominated e
Some of these objects collapse to black holes, and obser
in matter-dominated regions have a finite probability~per
unit time! to end their world lines at black hole singularitie
However, black holes eventually evaporate, giving back th
volume to the true vacuum. Hence this effect would not a
our conclusions. The same happens with black holes
may spontaneously nucleate in false or true vacuum@49#.
The rate of black hole pair production in true vacuum
proportional to exp@21/8r t#. This rate is considerably large
than that for nucleation of a false vacuum bubble, which
the caser t!r f is proportional exp@23/8r t#. It is also pos-
sible that nucleated black holes may act as seeds for f
vacuum bubble nucleation, as they do for true vacu
bubbles@50#.

Finally, the inflaton potentialV(f) can be of the ‘‘cha-
otic’’ inflation type, with the slow roll range off extending
to Planckian energy densities. Then there is a finite proba
ity for an observer to get into this Planckian domain, whe
the classical description of spacetime breaks down. In
stochastic inflation formalism, this is accounted for by intr
ducing a ‘‘Planck boundary’’ at somef5fp , such that
V(fp);1. The loss of observers through the Planck bou
ary will generally result ing0.0 andd,3.

The same phenomenon of loss of observers will also
cur if some of the minima of the potential have vanishing
negative cosmological constant. Once some comoving
ume falls into one of these vacua it has no chance of be
recycled.

VI. PROBLEMS WITH PREDICTIONS

Different thermalized regions of the universe are gen
ally characterized by different values of the constants of N
ture and of the cosmological parameters~such as the density
parameterV). In the model that we used as an example
Sec. V, the universe can thermalize into two types of vac
TV1 andTV2, and thus we have two possible sets of co
stants of Nature. The number of possibilities can, in pr
ciple, be much larger, and in some models the ‘‘constan
can even take values in a continuous range~examples are the
effective gravitational constant in a Brans-Dicke-type theo
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@18# and the density parameter in some models of ‘‘ope
inflation @6#!. An intriguing question is whether or not w
can ‘‘predict’’ which set of the constants we are most like
to observe.

One can try to determine the probability distribution f
the constants with the aid of the ‘‘principle of mediocrity
which asserts that we are ‘‘typical’’ among the civilization
inhabiting the universe@20,24,25,18#. Here, the universe is
understood as the entire spacetime; our civilization is
sumed to be typical among all civilizations, including tho
that no longer exist and those that will appear in the futu
The probability for us to observe a given set of constant
then proportional to the total number of civilizations in th
corresponding type of thermalized regions. This number
be represented as the number of galaxies~which one can
hope to estimate! times the number of civilizations per ga
axy ~which is left undetermined until the evolution of lif
and consciousness are better understood!. Some of the con-
stants, such as the cosmological constant or the density
rameter, are not expected to affect the chances for a civil
tion to develop in a given galaxy, so one can hope
determine the probability distribution for such consta
without any biological input.

In the case of a closed universe and finite~noneternal!
inflation, this prescription for calculating probabilities is u
ambiguous. If the universe is spatially infinite, one can s
ply use the prescription for a fixed~sufficiently large! co-
moving volume. However, in an eternally inflating univer
the spacetime volume and the number of civilizations
infinite, even for a region of a finite comoving size. One c
deal with this problem by simply introducing a time cuto
and counting only the number of civilizationsNj (tc) that
appeared prior to some moment of timetc . Here, the indexj
refers to the type of thermalized region. The ratio of pro
abilities can then be defined as the limit

p1

p2
5 limtc→`

N1~ tc!

N2~ tc!
. ~85!

One finds, however, that the resulting probability distributi
is extremely sensitive to the choice of the time variablet
@51,19#. This gauge-dependence casts doubt on any con
sions reached using this approach.

An alternative procedure, suggested in@21#, is to intro-
duce a cutoff at the timetc

( j ) , when all but a small fractione
of the comoving volume destined to thermalize into regio
of type j has thermalized. The value ofe is taken to be the
same for all types of thermalized regions, but the cor
sponding cutoff timestc

( j ) are generally different. The limi
e→0 is taken after calculating the probability distributio
for the constants. It was shown in@21,27# that the resulting
probabilities are essentially insensitive to the choice of ti
parametrization. However, the same problem appears
different guise. Linde and Mezhlumian@28# have found a
family of gauge-invariant cutoff procedures parametrized
a dimensionless parameterq, with q50 corresponding to the
e-procedure described above. This indicates that the inv
ance requirement alone is not sufficient to define the pr
abilities uniquely. Some additional requirements that can
the parameterq have been discussed in@27#.
’
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Now, recycling introduces one more difficulty. In the a
sence of recycling, comoving regions could be uniqu
characterized by the type of thermalized region they w
evolve into. But in a recycling universe each comoving
gion goes through an endless succession of different type
thermalization. Hence, thee-procedure cannot be imple
mented in its present form@52#.

In the face of these difficulties, one could look for entire
different approaches to defining the probabilities. One po
bility is to abandon the requirement of gauge-invariance a
assert that there is a preferred choice of the time variablet. If
this approach is taken, then there is, arguably, a good rea
to take the scale-factor time,t5 lna, as the preferred choice
@8,53#. The only variables that can be used as clocks in
inflating universe are the inflaton fieldf and the scale facto
a. The main requirement for a clock is a predictable class
behavior. In the range off where quantum fluctuations ar
important,f is not suitable for this role, and the only re
maining variable to be used as a clock isa.

Another possibility is to abandon the principle of medio
rity and invoke the ideal observers that we used to define
distributionP(t), rather than physical observers, to calcula
probabilities. In a recycling universe, the worldline of a
ideal observer crosses an infinite number of inflating a
thermalized regions. The probabilities for different types
thermalized regions can then be defined as relative frequ
cies at which these regions are encountered along the wo
line. This definition is obviously gauge-invariant. In th
model of Sec. V B, it gives

p1 /p25uJ1 /J2u. ~86!

The gauge-invariance of~86! is easily verified from Eqs.
~45!,~47!,~50!,~66!. In this approach, the most probable the
malized regions may turn out to be unsuitable for life, b
this can be easily fixed by defining appropriate conditio
probabilities.

As mentioned at the end of Sec. III, recycling may not
complete in models where there is a ‘‘Planck boundary’’
the diffusion regime or where some of the minima of t
effective potential have vanishing or negative effective c
mological constant. In this case, the worldlines of all ide
observers~except a set of measure zero! have a finite length,
and a natural extension of Eq.~86! is

p1

p2
5

*0
`dtuJ1~ t !u

*0
`dtuJ2~ t !u

. ~87!

This defines the probabilities as being proportional to
total number of encounters for a given type of region, av
aged over all observers. The result depends on the in
distributionP(0) at t50. Assuming that in this type of mod
els the universe must have a beginning, and that it can
described by quantum cosmology, this initial distribution c
be determined from the wave function of the universe.

Although the definition of probabilities in this approach
gauge-invariant, it is not quite satisfactory. The ideal obse
ers have very little to do with real physical observers, an
is hard to justify why the likelihood of various observation
made by our civilization should be related to an ensemble
such ideal observers.
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57 2243RECYCLING UNIVERSE
We have to conclude that, despite some effort, none of
approaches suggested so far appears to be particularly
pelling. It may turn out that, after all, an eternally inflatin
universe does not admit a uniquely defined probability d
tribution for the constants of nature. If so, this does not n
essarily mean that all possible sets of constants consis
with our existence are equally likely. Although the rat
p1 /p2 may depend on the choice of cutoff procedure, it
conceivable that in some casesp1 /p2@1 for all reasonable
choices. We would then ‘‘predict’’ that 1 is much mor
likely than 2. It is possible that we will have to restrict ou
selves to such ‘‘stable’’ predictions, which are insensitive
the choice of cutoff@54#.

VII. CONCLUSIONS

We have shown that the picture of the superlarge-sc
structure of the inflationary universe is significantly modifi
by quantum fluctuations which bring parts of already th
malized regions back to the false vacuum, a process w
we call recycling.

In particular, the question of whether or not the Univer
had a beginning is reopened. Ignoring recycling, and un
certain rather general conditions, it has been shown in R
@37,15# that inflationary models require a beginning in tim
In the recycling picture, this conclusion does not apply b
cause it is only necessary that any false vacuum region h
beginning in time. One can therefore imagine a nested st
ture where all false vacuum regions are just bubbles wh
nucleated inside preexisting true vacuum bubbles, which
turn nucleated inside false vacuum bubbles and so
Whether or not this pattern can be continued to the infin
past is an interesting open question.

We have extended the standard formalism of stocha
inflation @2,8,19# to study the probability distribution o
phases in which comoving observers~or comoving volume!
find themselves in the recycling universe. Instead of
Fokker-Planck equation, one now has a more general ma
equation. We found that, in the case of complete recycli
all solutions of this equation rapidly approach a station
form. This is in contrast to the standard case, where the p
ability distribution decreases exponentially with time, due
the loss of comoving volume at thermalization.

In the absence of recycling, the fractal dimension of
in
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false vacuum comoving volume at large times is lower th
three. Including recycling, this dimension isd53 because
comoving volume in false vacuum is continually replenish
by nucleating false vacuum bubbles. The universe ends u
a highly convoluted state, where the fractal dimension of a
connected false or true vacuum region is lower than thre

Finally, we have considered the question of ‘‘making pr
dictions’’ for the constants of nature in the context of a r
cycling universe. The principle of mediocrity has been
voked in the past in order to obtain probability distributio
for the constants. For the case of finite inflation the pro
dure is unambiguous: the probability is proportional to t
number of civilizations that observed a given set of consta
in the entire history of the universe. In the case of eter
inflation, the principle is not so easy to implement, beca
the number of thermalized regions with given values of
constants is infinite~even in a finite comoving region!, and
one has to introduce a regulator. If one simply counts
civilizations below some cutoff time, then the result depen
strongly on the choice of time variable@19#. A gauge invari-
ant cutoff prescription~i.e., one which does not depend o
the time variable! was introduced in@21#, but this prescrip-
tion is not unique@28#. To make matters more complicate
the methods discussed so far cannot be directly applied
recycling universe. We have considered some genera
tions and alternative approaches, but none of them is part
larly compelling.

Therefore, it seems that while the principle of mediocr
may offer some valid guidance, it may not be sufficient
unambiguously determine the probability distribution for t
constants of nature. If this turns out to be the final answ
then ‘‘predictions’’ would only be possible in those cas
when all reasonable cutoff methods or implementations
the principle yield a similar answer.

ACKNOWLEDGMENTS

We are grateful to Julie Traugut for suggestive conver
tions, to Serge Winitzki for very helpful discussions and
Andrei Linde for his comments. This work was partially su
ported by NATO under grant CRG 951301. J.G. acknow
edges support from CICYT under contract AEN95-0882 a
from European Project CI1-CT94-0004. The work of A.V
was supported in part by the National Science Foundatio
.

om

-
.

@1# For reviews see, for example, S. K. Blau and A. H. Guth,
300 Years of Gravitation, edited by S. W. Hawking and W
Israel~Cambridge University Press, Cambridge, UK, 1978!; A.
D. Linde, Particle Physics and Inflationary Cosmology~Har-
wood Academic, Chur, Switzerland, 1990!; E. W. Kolb and M.
S. Turner,The Early Universe~Addison-Wesley, New York,
1990!.

@2# A. Vilenkin, Phys. Rev. D27, 2848~1983!.
@3# A. D. Linde, Phys. Lett. B175, 395 ~1986!.
@4# M. Aryal and A. Vilenkin, Phys. Lett. B199, 351 ~1987!.
@5# J. R. Gott, Nature~London! 295, 304 ~1982!; M. Sasaki, T.

Tanaka, K. Yamamoto, and J. Yokoyama, Phys. Lett. B317,
510 ~1993!; K. Yamamoto, M. Sasaki, and T. Tanaka, Astr
phys. J.455, 412 ~1995!; M. Bucher, A. Goldhaber, and N
Turok, in Trends in Astroparticle Physics, Proceedings of the
Workshop, Stockholm, Sweden, 1994, edited by L. Bergstr
et al. @Nucl. Phys. B~Proc. Suppl.! 43, 173 ~1995!#; Phys.
Rev. D52, 3314~1995!.

@6# A. Linde and A. Mezhlumian, Phys. Rev. D52, 6789~1995!.
@7# S. W. Hawking and I. Moss, Nucl. Phys.B224, 180 ~1983!.
@8# A. A. Starobinsky, inCurrent Topics in Field Theory, Quan

tum Gravity and Strings, edited by H. J. de Vega and N
Sanchez, Lecture Notes in Physics~Springer, Heidelberg,
1986!.

@9# A. S. Goncharov and A. D. Linde, Sov. J. Part. Nucl.17, 369
~1986!.



-

9
n-
os

-

al

e,

t.

usal
in-
See

that
ite.

nd

e

-

nts

n
of

in

ro-
ling

ax

2244 57JAUME GARRIGA AND ALEXANDER VILENKIN
@10# A. Linde, Nucl. Phys.B372, 421 ~1992!.
@11# K. Lee and E. J. Weinberg, Phys. Rev. D36, 1088~1987!.
@12# S. Coleman and F. De Luccia, Phys. Rev. D21, 3305~1980!.
@13# J. Garriga, Phys. Rev. D49, 6327~1994!; 49, 6343~1994!.
@14# A. Linde, in The Very Early Universe, edited by G. W. Gib-

bons and S. W. Hawking~Cambridge University Press, Cam
bridge, UK, 1983!.

@15# A. Borde and A. Vilenkin, Phys. Rev. Lett.72, 3305~1994!.
@16# A. Borde, Phys. Rev. D50, 3692~1994!.
@17# A. Borde and A. Vilenkin, Int. J. Mod. Phys. D5, 813~1996!.
@18# J. Garcia-Bellido and A. Linde, Phys. Rev. D51, 429 ~1995!;

J. Garcia-Bellido, A. Linde, and D. Linde,ibid. 50, 730
~1994!.

@19# A. Linde, D. Linde, and A. Mezhlumian, Phys. Rev. D49,
1783 ~1994!.

@20# A. Vilenkin, Phys. Rev. Lett.74, 846 ~1995!.
@21# A. Vilenkin, Phys. Rev. D52, 3365~1995!.
@22# A. Vilenkin and S. Winitzki, Phys. Rev. D55, 548 ~1997!.
@23# H. Martel, P. R. Shapiro, and S. Weinberg, astro-ph/97010
@24# The principle of mediocrity is a version of the anthropic pri

ciple. For a review of the latter, see e.g. B. Carter, Phil
Trans. R. Soc. LondonA310, 347~1983!; J. D. Barrow and F.
J. Tipler, The Antropic Cosmological Principle~Clarendon
Press, Oxford, 1986!. Ideas related to the principle of medioc
rity have also been discussed by Albrecht@25#, Garcia-Bellido
and Linde@18#, and Tegmark@26#.

@25# A. Albrecht, in The Birth of the Universe and Fundament
Forces, edited by F. Occhionero~Springer-Verlag, Berlin,
1995!.

@26# M. Tegmark, gr-qc/9704009~unpublished!.
@27# S. Winitzki and A. Vilenkin, Phys. Rev. D53, 4298~1996!.
@28# A. Linde and A. Mezhlumian, Phys. Rev. D53, 4267~1996!.
@29# R. Basu and A. Vilenkin, Phys. Rev. D46, 2345 ~1992!; 50,

7150 ~1994!.
@30# K. Lee and E. Weinberg, Nucl. Phys.B267, 181 ~1986!; M. J.

Duncan and L. G. Jensen, Phys. Lett. B291, 109 ~1992!; S.
Dimopoulos, G. Dvali, R. Rattazzi, and G. Giudic
hep-ph/9705307.

@31# L. Jensen and P. Steinhardt, Nucl. Phys.B317, 693 ~1989!.
@32# T. S. Bunch and P. C. W. Davies, Proc. R. Soc. LondonA360,

117 ~1978!; A. Vilenkin and L. Ford, Phys. Rev. D26, 1231
~1982!.

@33# V. A. Berezin, V. A. Kuzmin, and I. Tkachev, Phys. Let
120B, 91 ~1983!; S. Parke,ibid. 121B, 313 ~1983!.

@34# W. Fishler, D. Morgan, and J. Polchinski, Phys. Rev. D41,
2638 ~1990!.

@35# E. Farhi and A. H. Guth, Phys. Lett. B183, 149 ~1987!; S. K.
9.

.

Blau, E. I. Guendelman, and A. H. Guth, Phys. Rev. D35,
1747 ~1987!.

@36# A. Borde and A. Vilenkin, Phys. Rev. D56, 717 ~1997!.
@37# A. Vilenkin, Phys. Rev. D46, 2355~1992!.
@38# This is the requirement that the spacetime have a simple ca

structure. In particular, it excludes complicated topological
terconnections between different regions of spacetime.
@15,39# for a precise discussion and a diagram.

@39# A. Borde and A. Vilenkin, inRelativistic Astrophysics: The
Proceedings of the Eighth Yukawa Symposium, edited by M.
Sasaki~Universal Academy Press, Japan, 1995!.

@40# This requires that there exist certain pairs of points such
the spacetime volume of the difference of their pasts is fin
See@15,39#.

@41# N. G. van Kampen,Stochastic Processes in Physics a
Chemistry~North-Holland, Amsterdam, 1981!.

@42# F. R. Moulton, Differential Equations~Dover, New York,
1958!.

@43# H. Risken, The Fokker-Planck Equation~Springer-Verlag,
Berlin, 1989!.

@44# The fractal dimension in~62! appears to depend on the choic
of the parametera ~that is, on the time parametrization!. How-
ever, it has been shown in@27# that the productgmHm

a21 is
essentially independent ofa. The relative change in this prod
uct with variation ofa is O(Hm

2 )!1 and is comparable to its
change under variation of factor ordering. The latter represe
a genuine uncertainty of the stochastic approach.

@45# Goncharov, Linde, and Mukhanov, Int. J. Mod. Phys. A2, 561
~1987!.

@46# Y. Nambu and M. Sasaki, Phys. Lett. B219, 240 ~1989!.
@47# M. Mijic, Phys. Rev. D42, 2469~1990!.
@48# S. Winitzki ~unpublished!.
@49# P. Ginsparg and M. Perry, Nucl. Phys.B222, 245 ~1983!; R.

Bousso and S. W. Hawking, Phys. Rev. D54, 6312~1996!.
@50# D. A. Samuel and W. A. Hiscock, Phys. Rev. D44, 3052

~1991!.
@51# Linde et al. @19,18# compared the number of civilizations i

different types of thermalized regions at a given moment
time t, rather than at all times prior tot. The results of this
approach are also strongly gauge-dependent.

@52# One could choose a comoving volume which is initially is
the false vacuum and use thee-prescription to calculate the
probabilities, disregarding the recycling. However, such a p
cedure appears somewhat artificial in the case of a recyc
universe.

@53# D. S. Salopek and J. R. Bond, Phys. Rev. D43, 1005~1991!.
@54# A similar suggestion has been made independently by M

Tegmark~private communication!.


