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The low energy effective actions which arise from string theoryletheory are considered in the cosmo-
logical context, where the graviton, dilaton and antisymmetric tensor field strengths depend only on time. We
show that previous results can be extended to include cosmological solutions that are relatdf\td tiua
equations. The solutions of the Wheeler-DeWitt equation in minisuperspace are obtained for some of the
simpler cosmological models by introducing intertwining operators that generate canonical transformations
which map the theories into free theories. We study the cosmological properties of these solutions, and also
briefly discuss generalized Brans-Dicke models in our framework. The cosmological models are closely related
to p-brane solitons, which we discuss in the context of jeToda equations. We give the explicit solutions
for extremal multi-charge —3)-branes in the truncated system described bylihe O(4,4) Toda equa-
tions.[S0556-282(98)01806-3

PACS numbes): 98.80.Hw, 11.25.Mj, 11.2%d

[. INTRODUCTION gation of the cosmological aspects of fibdranes that arise
as classical solutions of string effective actions or those of
There has been considerable attention given to the invesupergravity theorief6—14]. It is found that these solutions
tigation of the cosmological consequences of string theory. Itan be classified into two broad catagories, depending on
is hoped that string theory will provide answers to deepwhether the solution is supported by field strengths carrying
guestions in quantum gravity and therefore, it is natural thaelectric charges or magnetic charges. In some cases, dualities
the problem of the evolution of the Universe at early epochsan relate the two kinds of solution. Although the field equa-
be addressed in the string theory framewfitk4]. One of tions appear to be quite complicated, even in the cosmologi-
the important and intriguing problems for cosmology is tocal context where the fields depend only on time, neverthe-
explain the mechanism of inflation. When one tries to underless wide classes of exact classical solutions can be obtained.
stand inflation from the perspective of string theory, it isIn fact the equations of motion can be cast into the form of
hoped that it should arise naturally from the theory itself. Itone-dimensional Liouville or Toda equatiof®-11]. In par-
has been recognized that the dilaton field might play an imticular, in certain cases one encounters$thg¢N+ 1,R) Toda
portant rde in the explanation of inflation. However, the equations7,11]. Later, we shall show that this can be ex-
dilaton also determines the coupling constant in stringended to theéey Toda equations.
theory, and therefore it must decouple at late times so that Since one would like to understand the evolution of the
the well-known results of late-time cosmology are not af-Universe at very early times, it is natural to consider string
fected by dilaton interactions, in view of the fact that it cancosmology in a quantum framework. One approach is to
affect masses and coupling constants and other parameterssalve the Wheeler-DeWifWDW) equation in a minisuper-
late times. This has motivated a search for mechanisms thapace, and to examine the properties of the solutjdbs-
can account for the dilaton decoupling. 17]. One of the interesting applications of quantum string
A mechanism has been proposed in the pre-big-bang sceosmology is to provide a resolution for the graceful exit
nario [5] which exploits symmetries that are particular to problem, since no-go theorems have established that it can-
string theory. The starting point is the tree level string effec-not be resolved in classical string cosmology in the pre-big-
tive action for the dilaton and graviton. There exist solutionsbang scenari§18].
that describe an expanding Universe with decceleration. This The purpose of this article is to explore further the cos-
solution can be related, by means of stringy symmetriesmnological solutions of string effective actions in the presence
scale factor duality and a time reversal transformation, to ®f generalized gauge potentials, and to examine their prop-
solution which describes a Universe that is expanding aneérties. First we review the classical solutions and then we
accelerating. An attractive scenario emerges from these twstudy them at the quantum level. We shall show that formal
symmetry-related solutions in which the Universe beginssolutions to the WDW equation can derived in an elegant
with rapid expansion, i.e. there is a pole driven inflation,manner in the minisuperspace model. We shall present ex-
with a deccelarating expansion at later times, eventually conplicit solutions in some simple cases as illustrative examples.
necting smoothly to a Friedmann-Robertson-WalleRW) In perturbative string theory, there are global symmetries,
Universe. including the extensively-studie@(d,d) T-duality symme-
Recently, some attention has been focused on the investiry. This symmetry makes it possible to solve the WDW
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equation in many cases, allowing the wave function to be

completely classified by th®(d,d) quantum numbergl9]. S=j d°x\/—g|
We shall analyze the WDW equation for a wide class of

cosmological models that arise in the low-energy effective,nere the constarg can be parametrized §27]

string theory. The organizing symmetry that naturally ap-

pears in these cases34(N+ 1,R) or Ey; theO(d,d) sym- 2(n—1)(D—n—1)

metry is not manifest here since we use Poincare duality to a?=A- D_2 . 2
write down different form fields that appear in the models. In

what follows, we shall discuss how t.(N+1,R) symme-  \yg will assume that all the fields depend only on time. The

try helps us to solve the WDW equation in minisuperspacey,cyground metric is assumed to have the form
The paper is organized as follows. In Sec. Il, we discuss

the different cosmological models that arise naturally in dsz=—ezudt2+eZAd?+eZdemdym 3)
string theories or M-theory in their low energy limit. In par- ’

ticular, in Secs. Il A, 1l B, and II C we review the single- \yhered's? represents thp-dimensional metric on the spatial
charge, multi-charge an8L(3,R) Toda models that have gaction of ad-dimensional spacetime, witd=p+1. We

been analyzed in detail ifL1]. In Sec. IID, we present & gnq|| consider spatial metrics of the maximally symmetric
new class ofEy Toda models. In Sec. Il, we also introduce fgrm

the notion of canonical transformations which map sets of

interacting classical equations into sets of free equations. — dr? 5 12

This, in turn, allows one to solve the equations of motion in ds“= 1—Kkr2 +r°dQs, 4

a very simple manner. The quantum version of this canonical

transformation is introduced in Sec. Il with the help of anwhered()? is the metric on a unitf—1)-sphere. Without
intertwining operator closely following the work dR0].  |oss of generality, the constakimay be taken to be equal to
This operator maps an interacting quantum theory to a freg,l or —1, in which case the metrids? describes flat,
theory through a set ofion-unitary transformations. This  gpnerical, or hyperboloidal spatial sections respectively. In

property of the operator is then exploited to solve the WDWEq. (3), m runs overq dimensions so thad =1+ p+q.
equations of some of the models introduced in Sec. Il. We In tr’le gaugel = pA+qB, the action(1) reduces to

conclude the paper with a discussion of Brans-Dicke theory

1 1
R— E(z‘?d))z— mea¢Fﬁ ) 1

extended to include form fields. In particular, we show that : 2q(D—2)a® . 2pA .

solutions of the classical equations of motion and also the S:f dt| (P)>+ o1 e o1 X?—AN%e?
solutions of the WDW equation can be obtained from the

models discussed in Secs. Il and Il by simple rescalings and ox

redefinitions of fields. In the Appendix, we consider classes +2kpA(p—1)e™|. ®)

of p-brane solutions that are closely related to the cosmo-

logical Ey, Toda models. In particular, we show how to solve In writing down this action, one can use either of two dnsa
the Ey Toda equations for extremabD(— 3)-branes, taking a for the field strengthF, that are compatible with the symme-
simplifying truncation to théd,= O(4,4) Toda system as an tries of the metric(3), giving rise to electric or magnetic
explicit example that has not previously been presented igosmological solutions. In the electric solutions, the ansatz
the literature. for the antisymmetric tensor is given in terms of its potential,

and in a coordinate frame takes the form
II. COSMOLOGICAL MODELS WITH NEVEU-

SCHWARZ —~NEVEU-SCHWARZ (NS)-(NS) Amm, ...m,= femm, .. mgs (6)
OR RAMOND-RAMOND (R-R) FORM FIELDS

: - . and hence
The effective low-energy limits of string theory or M-

theory compactified on the tori give rise to maximal super-
gravities in lower dimensions. 11,12, many cosmologi-

cal solutions were obtained and analyzed. These includeg, . .« ¢ depends ort only. For the electric solutions, we
single-charge, multi-charge ar®lL(N+ 1,R) Toda models. havep=D - n,q=n~— 1. For the magnetic cosmologica’\l so-

It \évas l:jound that tfhf claﬁlsmal _?qélat'ons c_)f moflog COUlﬂ gqutions, the ansatz for the tangent-space components for the
reduced to a set of Liouville or Toda equations. In Secs. antisymmetric tensor is

II B, and Il C we review these models and also, in Sec. Il D

we introduce a new class of models which &g Toda F =)\e PA¢ (8)
. . . alaz...ap aja, ...ap:

cosmological models. We also introduce a set of canonical

transformations which, at the classical level, maps the Liouyhere) is a constant. Thus we haye=n,q=D—n—1. In

ville or Toda theories to theories governed by free Hamiltothe action(5), X,Y and ® are related toA,B and ¢ in the
nians. following way:

:fémlmz...mr (7)

l:Omlmz ...m q

q

A. Single-charge cosmological models X=qB+(p—1)A,

The simplest cosmological model iB dimension in-
volves the metric, a dilaton and amrank field strength~, Y=B+ p—1 b
[11]. The action is given by ea(D—-2) "’
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d=-eagp+2qgB. (9 1
HY=§P$, (16)

Here e=1 is for electric case and=—1 for the magnetic
case. Note that in the electric case, the constaatises as  \yhereP,, P,,, andPy correspond to momenta conjugate to

the integration constant for the functidnin Eq. (7). X, @, andY coordinates. Notice that the solutions 6y ®,
The equations of motion fax, ®, andY are andY can be cast in a different form in terms of their phase-
. » ox space variables. For example, when 1, the solution forX
X+k(p—1)%e*"=0, can be written as
. 1 > o “x p— 1 -
©+5AN%e?=0, (10) e *=—— coshX,
Px
The variation of the actiofil) with respect to the lapse func- - = ) _
tion \/goo provides the canonical constraint: where_X= Pyt. In fact,_ these equations can be _V|evx_/ed as a
canonical transformation from the interacting Liouville sys-
- - 2q(D-2)a? . ) tem, with phase-space coordinaté§Ry), to a free system
De+ANTET+ b1 Y with phase-space coordinaté§Py with the Hamiltonian
- Hy=3PZ, by re-writing (17) as
_P2 X2+ 2kpA(p—1)e?*. (12) o
p—1 Py=(p—1)€* sinh X,

SinceX and® both satisfy Liouville equations, it is straight-

= —~
forward to solve these equations directly: Px=(p—1)e” coshX. (18)

The generating functioff (X,X) has the following form:

p -
—— CosliPxt) if k=1,

x Px F(X,X)=(p—1)eX sinhX, (19
e =
-1 ~
pN—sinr(PXt) if k=—1: such that
Px
P By (20
X=—Pyt, if k=0, (12) xR gk

wherePy is an arbitrary constant. Similarly the solution for These are the same equations as in(E§).. Obviously, since

dis Hg has also the same structure, a similar set of canonical
transformations will also bring it to a free Hamiltonian form.
Thus by solving a set of free systems and using the canonical

e—<1’2>‘1’=¥ coshPgt), (13  mapping(17), we can generate the solutions of the interact-
2Py ing theory given by the actiofl). As we shall discuss in
Sec. lll, these transformations can be implemented in the
Whereﬁcp is again constant. The solution férmay be taken ~quantum version of the model. This, in turn, will allow us to
to be simply solve the corresponding WDW equations in a straightfor-

ward manner.
B. Multi-charge cosmological models

The constrain(11) therefore implies that Multi-charge solutions irD-dimensional maximal super-

0AB,2— (D —2)a?P,? gravity can be described by the truncated action

Pyl= 2p=1) (15) N )
D _ - C o PE2
. | . 5= | o {R 0D 2, F«}
The Hamiltonians for the fieldX, ®, andY are given by (21)
H 23 p2 lk —1)2e2X when the dilaton vectors for the setidffield strengthg-, of
X X+ (p ) e, .
2 2 rank n=2 satisfy the dot producf7]

2(n—=1)(D—n-1)
D-2

Ho=2P2+ ANZe® M p=Cqo-Cp=48,5— (22)
[} 2 [} ’ ap a'“p ap

2
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The maximum valuéN,,, for N depends on the rank of the Making the same gauge choice as before, the equations of
field strengths, and on the dimensi@n For example for motion that follow from the actiotil) reduce to

two-form field strengthsN,,,,=2 for 6<D=<9; N,5,,=3 in .

D=5; andN,=4 in 3<D=<4 [27]. As before, we define X+k(n—1)%>=0,

fields

d]_: _ eaql+(l—a)q2’
X=gB+(p—1)A,

=B+ 13 (MY e “
-~ ea(D-2) &% ap¥p: where
®,=-€p,+20B, (23 X=(n—1)(A+B),

whereg,=C,- ¢. The solutions of the equations of motion 1
that follows from the actiori21) in terms of these fields are B= m[Qﬁ q;—2log((n—1)NN5)], (29
(see[11] for detailg

p—1 . a 1I N1
—— costPyt), if k=1; $=5n=1) (G~ G+ 51093,

~ Px
e X= p—1 and the constant is given by
— sinh(Pyt), if k=—1°
,._P_,x r( X ) |f k 1, - 1 . a2 - A 30
T2 2(—1)  2(n-1)° (30
X=—Pyt, if k=0, _ o
The first-order constraint in this case reduces to
Ao VA — . .. ~ -
e V20, 2 COSf(Pq)at), %a(q%-l— q%)"‘(l_a’)qqu"‘ et (1-a)dz 4 gadx+(1-a)qy
2P¢ .
“ =2n[X?+k(n—1)%e?X]. (31
Y=-Put, (24)

In Eq. (28), A, and\, correspond to electric and magnetic

where\ , is the charge associated with the form fi€lgd and charges. In particulgr, the choiag = wil corresponq toa

~ = — oo . self-dual cosmological model. Although for a generic value

Px, Po,, Py are constants satisfying the following con- o , the equations seem not to be integrable, when2 Eq.

straint: (28) reduces to thesL(3,R) Toda equations, which can be

~5 . exactly solved. This value af can arise for a two-form field

S B2 _2pAPx—2q(D-2)a"Py (25 strength in D=4, with A=4. The Hamiltonian of the

~ D, A(p—1) ' (d1,9,) system can be written as

Here A=4/N anda? is given in Eq.(2). The Hamiltonian

1
—_(p2 2 201—q 20,—q
that follows from Eq.(21) is given by Hiq, 00 3(P1+P2+P1P2)+e Poeres A,

2 (32
_E 8q(D—-2)a 8p
H= ” He + (p—1)A Hy— p—1 Hx. (26) whereP,,P, are the momenta given by
where P,=20;— 02, P,=20,—0. (33
H. — E P2 | 2)2a®. 27) As in the Liouville case, there exists a set of canonical trans-
LR ar formations which maps the above Toda Hamiltonian to a free

Hamiltonian. The mapping is given {120]:
As in the previous subsection the Hamiltoni&Z6) can be

brought to a free Hamiltonian, by means of a set\of 1 el gl2 e(~d1-d2)
canonical transformations which act on the phase space vari- e %41= ————++ —-——— + ——«—,
ables @a,qua) and (X,Py). P1(P1—=P3) Pa(P1—Py) P.P>
. e*al e*az eHdrEz)
C. SL(3,R) Toda cosmological models el —— 4~ "~ 7 T (3
As discussed if11], when the space-time dimension is Pi(P1—Py) Py (P;—P5) P.P,

D=2n, the n-rank field strength can carry both elect(i®)
and magnetid8) charges. In this cas@=n andg=n—1. and
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TABLE I. The dilaton vectorsy; ;,; anda,,; generate thé,, 1 N
Dynkin diagram. e L= R—— 2 (M~ D,B&Mgoa(?Mch
aﬁ 1

l512 E;23 634 545 b56 k367 678 1

0o — 0 — o0 — o0 — 0 — 0 — o —= 2 e%a(dx,)? (37
| 2 a=1
0 - - . . . .

3 where¢,=c,- ¢. We shall discuss the electric solutions in

123

detail, for whichp=D —1 andq=0. (The discussion for the
magnetic solutions is analogoug.he metricAnsatzin this
case is thus given by

(2P, +Pye %= (Pa-Poet:_ (2PyPyet: £=—e?Vd?+e?Ads?
1 2 - T = —_ T = —_ = —
B,(P,—P,) B,(P,—P,) d e dtc+e“*ds*<, (38

N (Py+Py)el 992

whereds? is again the metric on the spatial sections, typi-
, cally taking the form(4). It is convenient to make the gauge
P,P, choice U=(D—1)A, which implies that the equations of
motion can be written as

B.—P.)e d B,—PB.)e d . _
(2P2+P1)e7q2= (2P1 Pz)e 1 " (2P2 Pl)e 2 A+ k(D_Z)e2(D 2)A:0’ (39)
Pi(P1=P)  Py(P1=Py .
o 2
(Pl )e(CI1+Q2) ®,=—A, eXF(E Eﬁ: Ma,Bq)ﬂ)a (40)
— = (35
P1P; where ® ,= —ZEB(M*)QBQDB, together with a first-order

. . . ) equation
With this transformation, in terms of the new variables, the

Toda Hamiltonian reduces to a free Hamiltonian of the form

1 . 1
S M P D+ D N2 > M,
4% af* a¥ B ; aex%zé aB .3)

1. - - =
- - _TB2.T2_ .
H@,3,= 3(P1tP2—PiPy). (36 —2(D—2)(D—1)(A%+ke2(P~2)A), (41)
_ Defining @a:qa—4Eﬁ(M*1)aB log(Ag) to remove the
D. Ey Toda cosmological models charges, the equations fdr, then become
Maximal supergravities il dimensions coming from the . .
toroidal compactification of 11-dimensional supergravity qy=—e?h%, o= —e?%2 %,

haveE;;_p global symmetries. It is natural therefore to ex-
pect that there might exigt-brane or cosmological solutions
that arise as solutions of tH&, Toda equations. It has been
observed that the dilaton vectors for all the axions are pre-
cisely in one-to-one correspondence with the positive roots
of the E;;_p algebra. In particular, the simple roots can be
taken to beb; ;,; anda,p; [21]. Thus in all dimensions we = —e 96+20770s (o= —e 477205, (42)
may summarize the information about the dot products of the
dilaton vectors for the full sets of axions by the Dynkin These are precisely tHe; Toda equations. Here we present
diagram(see Table)l only theEg case, since the lower cases Ey with N<7 are

In each dimensio, the diagram is truncated to the part obtained by straightforward truncatiofn fact an alternative
that survives when only the simple roots with indicestruncation can instead be made that reducesBjperoda
i<11-D are retained. equations to th&sL(N+1,R) equations that were discussed

It is straightforward to verify that when the axions take previously[7].) The left-hand side of the first-order equation
the standard electric or magnetic aizsathe full Lagrangian (41) is the Hamiltonian for the Toda equatiof#?), given by
can be consistently truncated to one of the f@@h) with the
N field strengthsF,=(F{?®, 72, 733, ...), andassoci-

ated dilaton vectors given by, = (a13,b12,03,...). Now
the dilaton dot produti! , 5 are no longer given by E¢22);
insteadM 4 is precisely the Cartan matrix féy . We shall ~ The right-hand side of the equati¢#l) is a constant, given
now show that this has the consequence that the equations loy 2(D — 1)Px/(D 2), since the function A, satisfying Eq.
motion of the system can be cast into the form of the one{39), is given by Eq.(12) with X=2(D—2)A. Thus the
dimensionalEy Toda equations. To do this, we first consis- first-order equatiort41) means no more than that the Hamil-
tently truncate the Lagrangian further to tonian is a conserved quantity, given by

o —Qy+203— o —(01—03+204—
gz=—¢€ Q2+ 203 Q4, gqs=—€ q1— 03120y Q5,

. a4 20— . et 20a—
gs=—¢€ qat+ 205 %, gg=—€ 5+ 20 Q7,

(43

1 - 1
H:ZQEﬁ MaﬁqanJr% exp{E% M 05| -
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2(D—1)P% Py cosh * X
=" Db-2 “4 Px> =1 —

Taking into account the commutation relatipy ,X]= —i,
IIl. THE WHEELER-DEWITT EQUATION it is immediate that the combined action of E47) is to map

Recently, there have been attempts to solve the WDV\?_t‘e Liguville Hamiltonian Hy to the free Hamiltonian
equation in string cosmology and study its implications. LetHx= 3P%. Similarly, the operato€y has the following ac-
us now construct the WDW equations for the string cosmotion on the wave functiofi20]:
logical models that we are considering in this paper. We
recall that the classical equations of motion, which corre- C;l: e‘kXHNkKik(eX), (48)
spond to interacting Liouville or Toda systems, can be re-
duced to free field equations after implementing the canoniwhereK;, is a modified Bessel function. Owing to the fact
cal transformations discussed in the previous section. In fagdhat the canonical transformation described ®y is non-
it has been shown that these classical transformations can lp@itary (as it must be, since the Liouville theory is not sim-
extended to the quantum level. This is achieved by introducply equivalent to the free theorythe normalization of the
ing intertwining operators, which implement the canonicaltransformed wave function is not just the same as the nor-
transformations on the quantum mechanical operators anghalization of the free wave function. It can be determined by
wave functiong20]. In what follows, we explicitly construct calculating the effect of the transformation on the Hilbert-
the intertwining operators for the cosmological models thatpace inner product, leading to the regam]
have been discussed in Secs. Il A and Il B, and we use these

to obtain solutions of the corresponding WDW equations. 1 i

We end this section with the analysis of some of the solu- N=— v2k sinf(7rk). (49
tions of the WDW equations, by imposing proper boundary

conditions on the wave functions. Now consider the WDW equation, which is simply
A. Intertwining operators and the solutions of WDW equation HY(X,®,Y)=0. (50

The canonical transformation between the classical LiouHere the total Hamiltonian of the system is given by
ville and free theories that have been discussed in the previ-
ous section can be implemented at the quantum level. This is
done by introducing intertwining operatof20] which gen- H=Hg+
erate canonical transformations on the quantum operators p—1
and on the wave functions. In order to construct such opera- o
tors we first focus on the simplest of all the models that havdt is clear now from the structure of the Hamiltonian that the
been analyzed in Sec. II, namely, the cosmological modeWvave function¥(X,®,Y) will have the following form:
with a single charge. Py

In order to proceed, let us first concentratetbpgiven in V(X,@,Y)=WyxW¥qe ", (52)
Eq. (16). It is known that there exists an operaft@®y which )
transforms the Liouville Hamiltonian to a free of20]. In  WhereW¥y and ¥, depend onX and @, respectively. Fol-
particular, lowing our previous discussion, there is an intertwining op-

erator which will convert the interacting Hamiltoni&hto a
CyxHxCy'=Hy. (45 sum of free Hamiltonians. It is given by

2q(D—2)a? 2pA
Y p_ 1

Hy. (51)

_ . -1 o 1
As a result, the wave functiongy and iy of the Liouville C=Pip-1)sinnxPx ZxPin xP @ sinn P ZoPin o (53

and free theories are related y=Cy *. The operatoCy
has been constructed j20], and takes the following form: |ts action on the Hamiltonian is

Cx=Po-11simmxPx “ZPin x » (46) ~  2q(D-2)a? 2pA
x= Pp-1)sinhxPx "L Fin x CHC 1=y + Q(p_l) — pgl . (54
where each of the constituent pieces has the following ac-
tion: It is now easy to read off the action @f on the wave func-
tions:
me: X—)ln X, Px—>xpx,
1 X D nikyY
Iy: X—=Pyx, Pyxy——X P(X,Y,0)= '_ZWNkXNkfI’Ki(p_DkX(e )Ki\;K)\kq)(e )e' vy,
(55

Pyl X—=PyXPy, Py—Py, (47)
whereNkX andeq) are momentum-dependent normalization
Po-1sinnx:  X—(p—1)sinh X, constants which can be determined from Ef).
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So far, we have been discussing the dasel. Following B. Analysis of WDW wave functions
similar arguments, we can also study the WDW wave func-
tion for an open universe, for whidb= — 1. In this case, the
analog of Eq(47) is

Here we analyze some of the solutions of the WDW equa-
tion discussed in the previous subsection, by imposing
proper boundary conditions on the wave functions.

In order to study the solutions of the WDW equation ob-

Pnx: X—=InX, Px—XPx, tained above, we first note that it is necassary to specify the
intial boundary conditions. When we look at the classical
Iy: X—Py, Py——X, cosmological solutions given in Sec. Il, we see from Eqs.
(12—(14), that one has to specify, Py, A, a, Py andPy .
P>z1:)(_> P;lxpx, Py— Py, Furthermore, we have to choose the vakse—1, 0, or 1.

We shall present two specific cases to illustrate how we can
obtain explicit solutions, and then discuss their properties.

Plo-1coshx:  X—(p—1)coshX, (56) Let us consider the string effective actionin=10, such
_ that p=3, q=6, a?=1 andA=4. Furthermore, we look at
Py sinh t X the magnetic sector of this NS-NS case, an&so-1; see
xX— p—1 : Egs. (1)—(9) for definitions of the parameters we specified
above. We shall takk=0 from now on. The solutions cor-
The operatolC is now respond to
_ ~ ~ A —
Cx= ,P(pfl)coshxpx 1I,Pln X (57 X=—=Pxt, Y=-—Put, e_2¢=~— cosh Pgpt+ v),
Po
whose action on the wave functions can be evaluated using (60)
similar methods to those decsribed[®0], which we used ) )
above in thek=1 case. where ¢ is the dilaton. Note that for the case at hand, the

We shall not discuss the=0 case in detail. Following COUPIing constant of the theory is identified to be=e’.
the above discussion. the structure of the wave function i¥Ve recall that the integration constants satisfy the constraint
also easily obtained in this case. ~> o~ ~,

Consider now the multi-charge cosmological models dis- Pp=3Px—12Py (61)
cussed in Sec. Il B. As we saw, by proper choice of variables ] o
the Hamiltonian can be brought to the form of a sum of@S is evident from Eq(15). Instead of examining the two-
N+ 1 Liouville equations, together with a free part, as givenParameter problemnote that we can se¢=0 without any
in Eq. (27). Thus, following the above discussion, one canl0ss of generality and keepas an arbitrary paramejdet us

immediately construct the quantum intertwining operator look at two cases separately with specific choices for the
for this case. Fok=1, it is value of the parameters.

CASE |:
» . Let us first consider the case whé&,=0 and Py<O0.
C="P(p-1)sinnxPx Imexl;[ P snho Po Lo P, Then it follows thatPy=— (1/3)P, and U=3A+6B,

(58) where
The action ofC on the wave function is again easily read e<8/3>A:L cosh{Pyt)ed X,
off: .P,(b
_1 Xy aikyY e M ~ /3
‘P(X,Y,q))—ENkXKi(p—l)kx(e )e e 8B=— coshPyt)e X, (62
Po
<11 Ny, Kivm, (€79, (599  Now, let us examine the behavior ef, e* ande®, for t
@ - - — o,
and the normalization constantt;,.(X and Nk% can be deter- eU_)e(3/8)5¢|t\+(ll\/§)t. (63)

mined from Eq.(49).

We shall not discuss thk=—1 andk=0 cases seper- We see that as— +o, e’—+o and ast——o, e’—0.
ately here, since the wave functions can be obtained easifVe can define a comoving time as followd:r=e"dt.
by following the previous discussion. We should like to Therefore, Bs7<c« since —<t<w. We can define two
mention here that for the case of tB&(3,R) Toda model, scale factors,R, and Rg, respectively, asRy=e* and
the intertwining operator can also be constructed, by geneRs=e®. Notice that for larger R— 7%,0<@<0. We also
alizing the transformation of Eq34) at the operator level note that forr—0 andr— c° this scale factor tends to. The
[20]. The corresponding wave function can also be com-other scale factoRg tends to zero in these two limits. Note
puted. thatR,=0 andR;=<0 in this case. Since™ ¢ is the coupling
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constant for this magnetically-charged case, we see that for W (X,Y,®)=NyNyNgye? (1W3) Py In2
=0 andr=0o0, we end up in the strong coupling phase.

Let us look at the wave function obtained from the solu- 2
tion of the WDW equation. The Bessel functions of our F(i—Pq))ez”‘P‘D 2,
choice are V3
W(X,Y,®)=NyNyNoe P Kyinp (e%),  (64) [(2iAPg)e? e, (70
where the normalization constants are determined from Eq. IV. GENERALIZED BRANS-DICKE MODEL
(49) as usual. We recall that fdr— *+, ®—0; and from ) ) .
the relation betweer and dilatone, we also know that the In the cosmological context, one of the extensively dis-
coupling constane™ * diverges in this limit. The wave func- Ccussed models is the Brans-DickBD) model [22]. Al-
tion though at late times it reduces to Einstein’s gravity, at early
times its behavior is very different. This is essentially be-
W(X,Y,®)=NyNyNg(2i\Pg)e? Po I 2gPxXg=2iAPy® cause of the presence of a scalar which couples to the metric

(65  In a non-trivial way. Here, we are interested in a similar
model, but extended to include different form fields. A sub-
is obtained in the limit when the scale factditends to large class of such models has previously been analyzed, for ex-

values andb tends to zero. ample in[23—25. The action for the theory is given by
CASE Il: L

Let us consider another interesting case wRenis non- f D c(,, 2
zero andP4=6Py. The constraint equation implies that d X\/—e R-w(9)*+ 2n! a (73)

Py=*4Py, for which we shall choose the plus sign. Note

that for this choice we have where the constanb is known as the BD parameter. _
We would like to show here that starting from the action
ef—e®Pvt gB e Pyt gU_,g(212t (66) (1), and then properly rescaling the metric and redefining
various fields, we end up with an action of the fofii).
ast—oo. In the limit of t— —o0, we have Thus the solutions of the classical equations of motion of the
generalized BD theories can simply be obtained from our
eh—ell2Pyt g8, el Pyt (67)  analysis in Sec. Il. Furthermore, the solutions of the WDW

equation in the mini-superspace will follow simply from
and it is easy to see th&, is positive andRj, is negative. those in Sec. lll, after making the necessary field redefini-
When we consider the wavefunction for this case, namelyions.
¥ (X,Y,¥), in the limit when®—0, it has the form We begin with the actior(1), which is written in the

WOXY.D) = NyNy Ny 641PYXePrei2npy 2 Einstein frame. After rescaling the dilaton according to
Y, =NyxNy q)e Yre'"Ye Y

XT(12\Py)e” 123P¥e, (69 . 2(%+w 3 72
CASE Il
Now we consider the situation when there is non-zero"© get
spatial curvature, corresponding ke= — 1. For the sake of 1 1
simplicity, let us choos®,=0 and therefore, from the con- f dPx+/g —(—+w (9d)%+ eb‘f’Fz}
straint equation, we havey= = (1/V3) P4 . We shall again

choose the plus sign. It follows from the solutions of the (73

equations of motion tha¢* has a singularily at=0. If we
extract the two scale parameteR;=e” and Rg=e® we
find thatR, is singular at=0 andRg is not. Furthermore,
®— constant as— 0. Now let us look at thé—co limit. We a :ez’&/(o—z)g (74)
find in this case thaRy,—%=, Rg—0 and®—0. We can Y .

extract the wave function in these two limits from the behav-ye get Eq.(71), with c=b+ 2(n—1)/(D-2).

ior of the Bessel functions. _ As mentioned earlier, the actidi7l) has been analyzed
Whent—0, the wave function takes the form for D=4 andn=3 in[23-25, and its cosmological proper-
ties have been studied. However, following our previous dis-
_ [T ® cussion, it is immediate that cosmological solutions of Eq.
YOCY, 2)=NuNyNo 57 & Kizp, (€7), (69 (71) can be obtained by simply taking the solutions of Sec. Il
and scaling the fields as in Eq§.2) and(74). As the proce-
whereZ=eX. Note that in this limit the argument of the dure is straightforward, we will not carry it out here. How-
Bessel function takes a finite value. In the other limit, t.e. ever, we should like to make the following comments. In
—0, we find thae* and® tend to zero, and so we must take most of the solutions, the dilaton fielslbecomes singular at
limits in both of the Bessel functions. Thus the wave func-some value of the proper time. Moreover, since the field
tion is scalings in Eq.(74) involve the dilaton, the cosmological

Herew is a constant and=a\[(D—1)/(D—2)+ w]. Now,
after the further metric rescaling
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properties of the Brans-Dické@D) metric will be consider- magnetic D —3) branes, with the standard metric and field

ably different from those seen in Sec. Il. strengthAnsdze
V. CONCLUSIONS ds’= 5, dx“dx”+ 280 (dr+r?d6?),
In this paper, we have analyzed some of the cosmological Xo=40Q,6. (A1)

models arising as solutions of the low-energy effective ac-
tions of string theories or M-theory. These solutions involveThe extremal condition implies th&=—1/2> & ,, with
time-dependent metric tensor, dilaton, and antisymmetri@az—ZEB(Mfl)aﬁzpﬁ. The equations of motion can be
tensor fields. ThéAnsatzand conventions of Ref12] were  then written as
used in constructing general solutions. As is well known, the
maximal supergravities ilD dimensions, which arise from " 1
the toroidal compactification of 11-dimensional supergravity, q&:eXp(E azﬁ Maﬁqﬁ) ' (A2)
have E;;_p global symmetries. We showed that in certain
cases the equations of motion can be cast in the form of thgith extremality implying that its Hamiltonian
one-dimensionaky Toda equations. This was demonstrated
explicitly for the maximalEg case. B 1

We then studied some of the simpler cosmological models H:4a2ﬁ (M™)pPaPp— ; ex;{i % Maﬁqﬁ)
(which are related to the Liouville equatipat the quantum ' (A3)
level, by obtaining the solutions of the Wheeler-DeWitt
equation in a minisuperspace approximation. The WDW sovanishes. Here a prime denotes a derivative with respect to
lutions were obtained using the techniques describg¢@lh p=logr.
This involves constructing a quantum-mechanical canonical Note that the positive sign on the right-hand side of Eq.
transformation that maps the Liouville theory to a free(A2) is the opposite of that in the cosmological equations
theory. The Liouville wave functions are then obtained fromthat we discussed previously. Correspondingly, there is a mi-
the free wave functions by means of intertwining operatorsnus sign in the second term in the Hamilton{&3), whereas
We presented solutions of the WDW equations in severain the cosmological case, the Hamiltoniéd) is positive
cases, where we discussed the initial boundary conditiongefinite. This means that unlike in the cosmological case,
and studied the evolution of the wave functions. We showeghere we can find simple but non-trivial solutions for which
how the wave functions relate different domains of thethe Hamiltonian vanishe$7]. These are in fact extremal

theory, and we studied their asymptotic behavior at largey-branes, for which the functions % can be expanded in
times. We also briefly discussed generalized Brans-Dickgarms of polynomials imp:

theories including higher-degree field strengths, and showed

how they can be related to the our framework. Finally, in the Na

appendix, we studied theEy Toda equations for e e= D aymp™ (Ad)
(D —3)-brane solitions, which are closely related to e m=0
cosmological models, and showed how they may be solve
in the extremal limit. The case of thB,=0(4,4) Toda
equations was presented explicitly.

Lilhe integrability of the Toda equations implies that the
above series have only finite degregs, which we shall
now determine. To do this, we first consider the following

simple Ansatzfor a particular, special solution:
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are all satisfied provided that the exponenjsin Eq. (A5)
are chosen to be

APPENDIX: EXTREMAL E\ TODA p-BRANES

. _ nN,=4> (M 1), A6
In Sec. Il, we showed that we can obtain cosmological * % ( Jup (A6)

solutions supported by one-form field strengths, whose equa-

tions of motion can be cast inthy Toda equations. One- and that the constants, are chosen appropriately. Thus in
form field strengths can also support electric instanton othis special case we see that the highest powgis p in the
magnetic D — 3)-branes. In this appendix, we shall discusspolynomials(A5) are given by Eq(A6). In fact this special
extremal Ey Toda instantons or[—3)-branes using the solution corresponds to choosing the char@gsto occur in
same set of field strengths discussed in Se¢Nibte that the a certain fixed ratio for which the solution reduces to a
non-extremalp-branes are equivalent to cosmological solu-single-scalar on¢26, 27.. More generally, if we relax this
tions that we discussed in Sec. Il, after certain Wick rotationdatter condition, we get solutions of the fortA4) for which

are performed12], and we shall not consider these hgre. the number of free parameters is equal to the number of
The Lagrangian is given by E¢37). We shall first consider chargeq7]. The degrees, of the polynomials continue to
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be given by Eq.(A6). The chargeQ, are related to the qy=e 9720779 qr=g 97" 2%,
valuesq,(0) of the variablegy, at p=0 (i.e. at spatial in-
finity) by [7]

From Eq.(A6), we find that the degrees, of the polynomi-

el =T] (4QB)4<M_l>aB. (A7) als for e % in this case wil Dbe

B n,={136,92,182,270,220,168,114}5&olving for the 1248
coefficientsa,, in terms of the eight independent parameters
associated with the eight charg€¥, is mechanical, but
somewhat involved. Instead, we shall just present the results
for a subclass of solutions, where we truncate the system to
the D,=0(4,4) subalgebra with simple roots

{@123,b23,034,0,45) (see Table)l This is a new solution that

lies outside theAy solutions obtained if7]. For theD,
Qe=e %2057 d ql=g 9572067, (A8) truncation, we find

In the case oEg, the Toda equationéA2) are given by

" __ A201— " _ A20,—
qi;=e di1 Q4, g,=e a2 CI3,

q’?:: e*Q2+2Q3*Q4, qZ: e d1~ds* 2014*‘15,

E 6_3&: 6 3 _3&:2 3 _E 4 2 3 1 4 1 1 6
C3 2C416C3C, aTC1pt| 3CCa— gC3|p "+ Cop™ 24C3P + 60‘33P 3607

e Y=c,c3—
1%3 8

1
e 9=c,c3—36c5+3c,05— gcg— 36C,C4+3C3C,+ (C1— 3C,C5+ 3¢5C,) p

1 1 1
C3| P2+ Cap+ 580"+ £5Cap + 350"

1
+|3Cc3Cs— 3

1
=c3—3c3c|p

e 95=c,c3— 6C,C3+ 5

3 6 3 2
§c3+ 36C,C4—3C3C4+ | C1—6CC5+

1s)s, 15 a4l 1 1 s
CotCam gC3| P+ 5,C3p + 55 CapP S+ 360° (A9)

—(Scc —§c4+3cc) 2—
2v37 g3 3Cg P

4= 2 3. 1 1 clo 4 3 7 2 4.2
e Y4=c{—6c,CoC3+ Zc103+402c3 32 +216czcgc4 45c,C5C,+ §c304+2160203c4—903c4
3 6 1 3 2
+ ZC2C3 4clc3+ 216(:2C4 36C,C5C,4+216c,C; | p

+

3 3
18c3c5— c1c3 Zczc§+ 32c3+180203c4 303c4+18c3c4)

1 4 1 4 2| 3
+ 1202c3 clc3 5CC3+ 5 03+12c203c4 2c;c4+12c3cy | p

2 24
1 1 3 4 1 3 2 1 5| 5
+ 3c2+304 clcg+4czcg+302c4 50304 p*+ 2001+ 200203+ mcg p
55AC p6+ —<AC p7+ —c2 P 8+ ! C pg—l— ! 10
T 720" " 180°3" T 280°3” T 2160°% ' 21600” °

wherec; (i=1,2,3,4) are arbitrary constants.

The relation between the four arbitrary constants in @®) and the four independent charges in g Toda extremal
p-brane solutions is given by E¢A7). The mass of the solution is expressible in terms of the chargea polynomial
equation whose degree is equal to the dimension of the Weyl group of the Lie algebra characterizing the Toda Efjuations
In the case of thé, example above, this means that there will be a polynomial of degree 192 relating the mass and the
charges. Obtaining the relation between the mass and the eight charges & Traa p-branes would require a more
challenging calculation, since the polynomial is of degree 696,729,600.
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