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The low energy effective actions which arise from string theory orM -theory are considered in the cosmo-
logical context, where the graviton, dilaton and antisymmetric tensor field strengths depend only on time. We
show that previous results can be extended to include cosmological solutions that are related to theEN Toda
equations. The solutions of the Wheeler-DeWitt equation in minisuperspace are obtained for some of the
simpler cosmological models by introducing intertwining operators that generate canonical transformations
which map the theories into free theories. We study the cosmological properties of these solutions, and also
briefly discuss generalized Brans-Dicke models in our framework. The cosmological models are closely related
to p-brane solitons, which we discuss in the context of theEN Toda equations. We give the explicit solutions
for extremal multi-charge (D23)-branes in the truncated system described by theD45O(4,4) Toda equa-
tions. @S0556-2821~98!01806-2#

PACS number~s!: 98.80.Hw, 11.25.Mj, 11.27.1d
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I. INTRODUCTION

There has been considerable attention given to the in
tigation of the cosmological consequences of string theor
is hoped that string theory will provide answers to de
questions in quantum gravity and therefore, it is natural t
the problem of the evolution of the Universe at early epo
be addressed in the string theory framework@1–4#. One of
the important and intriguing problems for cosmology is
explain the mechanism of inflation. When one tries to und
stand inflation from the perspective of string theory, it
hoped that it should arise naturally from the theory itself
has been recognized that the dilaton field might play an
portant rôle in the explanation of inflation. However, th
dilaton also determines the coupling constant in str
theory, and therefore it must decouple at late times so
the well-known results of late-time cosmology are not
fected by dilaton interactions, in view of the fact that it c
affect masses and coupling constants and other paramet
late times. This has motivated a search for mechanisms
can account for the dilaton decoupling.

A mechanism has been proposed in the pre-big-bang
nario @5# which exploits symmetries that are particular
string theory. The starting point is the tree level string effe
tive action for the dilaton and graviton. There exist solutio
that describe an expanding Universe with decceleration. T
solution can be related, by means of stringy symmetr
scale factor duality and a time reversal transformation, t
solution which describes a Universe that is expanding
accelerating. An attractive scenario emerges from these
symmetry-related solutions in which the Universe beg
with rapid expansion, i.e. there is a pole driven inflatio
with a deccelarating expansion at later times, eventually c
necting smoothly to a Friedmann-Robertson-Walker~FRW!
Universe.

Recently, some attention has been focused on the inv
570556-2821/98/57~4!/2219~11!/$15.00
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gation of the cosmological aspects of thep-branes that arise
as classical solutions of string effective actions or those
supergravity theories@6–14#. It is found that these solution
can be classified into two broad catagories, depending
whether the solution is supported by field strengths carry
electric charges or magnetic charges. In some cases, dua
can relate the two kinds of solution. Although the field equ
tions appear to be quite complicated, even in the cosmol
cal context where the fields depend only on time, nevert
less wide classes of exact classical solutions can be obta
In fact the equations of motion can be cast into the form
one-dimensional Liouville or Toda equations@9–11#. In par-
ticular, in certain cases one encounters theSL(N11,R) Toda
equations@7,11#. Later, we shall show that this can be e
tended to theEN Toda equations.

Since one would like to understand the evolution of t
Universe at very early times, it is natural to consider stri
cosmology in a quantum framework. One approach is
solve the Wheeler-DeWitt~WDW! equation in a minisuper-
space, and to examine the properties of the solutions@15–
17#. One of the interesting applications of quantum stri
cosmology is to provide a resolution for the graceful e
problem, since no-go theorems have established that it
not be resolved in classical string cosmology in the pre-b
bang scenario@18#.

The purpose of this article is to explore further the co
mological solutions of string effective actions in the presen
of generalized gauge potentials, and to examine their pr
erties. First we review the classical solutions and then
study them at the quantum level. We shall show that form
solutions to the WDW equation can derived in an eleg
manner in the minisuperspace model. We shall present
plicit solutions in some simple cases as illustrative examp

In perturbative string theory, there are global symmetri
including the extensively-studiedO(d,d) T-duality symme-
try. This symmetry makes it possible to solve the WD
2219 © 1998 The American Physical Society
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equation in many cases, allowing the wave function to
completely classified by theO(d,d) quantum numbers@19#.
We shall analyze the WDW equation for a wide class
cosmological models that arise in the low-energy effect
string theory. The organizing symmetry that naturally a
pears in these cases isSL(N11,R) or EN ; theO(d,d) sym-
metry is not manifest here since we use Poincare dualit
write down different form fields that appear in the models.
what follows, we shall discuss how theSL(N11,R) symme-
try helps us to solve the WDW equation in minisuperspa

The paper is organized as follows. In Sec. II, we disc
the different cosmological models that arise naturally
string theories or M-theory in their low energy limit. In pa
ticular, in Secs. II A, II B, and II C we review the single
charge, multi-charge andSL(3,R) Toda models that have
been analyzed in detail in@11#. In Sec. II D, we present a
new class ofEN Toda models. In Sec. II, we also introduc
the notion of canonical transformations which map sets
interacting classical equations into sets of free equatio
This, in turn, allows one to solve the equations of motion
a very simple manner. The quantum version of this canon
transformation is introduced in Sec. III with the help of a
intertwining operator closely following the work of@20#.
This operator maps an interacting quantum theory to a
theory through a set ofnon-unitary transformations. This
property of the operator is then exploited to solve the WD
equations of some of the models introduced in Sec. II.
conclude the paper with a discussion of Brans-Dicke the
extended to include form fields. In particular, we show th
solutions of the classical equations of motion and also
solutions of the WDW equation can be obtained from
models discussed in Secs. II and III by simple rescalings
redefinitions of fields. In the Appendix, we consider clas
of p-brane solutions that are closely related to the cosm
logical EN Toda models. In particular, we show how to sol
theEN Toda equations for extremal (D23)-branes, taking a
simplifying truncation to theD45O(4,4) Toda system as a
explicit example that has not previously been presented
the literature.

II. COSMOLOGICAL MODELS WITH NEVEU-
SCHWARZ –NEVEU-SCHWARZ „NS…-„NS…

OR RAMOND-RAMOND „R-R… FORM FIELDS

The effective low-energy limits of string theory or M
theory compactified on the tori give rise to maximal sup
gravities in lower dimensions. In@11,12#, many cosmologi-
cal solutions were obtained and analyzed. These inclu
single-charge, multi-charge andSL(N11,R) Toda models.
It was found that the classical equations of motion could
reduced to a set of Liouville or Toda equations. In Secs. II
II B, and II C we review these models and also, in Sec. I
we introduce a new class of models which areEN Toda
cosmological models. We also introduce a set of canon
transformations which, at the classical level, maps the Li
ville or Toda theories to theories governed by free Hamil
nians.

A. Single-charge cosmological models

The simplest cosmological model inD dimension in-
volves the metric, a dilaton and ann-rank field strengthFn
@11#. The action is given by
e
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S5E dDxA2gFR2
1

2
~]f!22

1

2n!
eafFn

2G , ~1!

where the constanta can be parametrized as@27#

a25D2
2~n21!~D2n21!

D22
. ~2!

We will assume that all the fields depend only on time. T
background metric is assumed to have the form

ds252e2Udt21e2Ad s̄ 21e2Bdymdym, ~3!

whered s̄ 2 represents thep-dimensional metric on the spati
section of ad-dimensional spacetime, withd5p11. We
shall consider spatial metrics of the maximally symmet
form

d s̄ 25
dr2

12kr2 1r 2dV2, ~4!

wheredV2 is the metric on a unit (p21)-sphere. Without
loss of generality, the constantk may be taken to be equal t
0,1 or 21, in which case the metricd s̄ 2 describes flat,
spherical, or hyperboloidal spatial sections respectively.
Eq. ~3!, m runs overq dimensions so thatD511p1q.

In the gaugeU5pA1qB, the action~1! reduces to

S5E dtF ~Ḟ !21
2q~D22!a2

p21
Ẏ22

2pD

p21
Ẋ22Dl2eF

12kpD~p21!e2XG . ~5!

In writing down this action, one can use either of two ansa¨tze
for the field strengthFn that are compatible with the symme
tries of the metric~3!, giving rise to electric or magnetic
cosmological solutions. In the electric solutions, the ans
for the antisymmetric tensor is given in terms of its potenti
and in a coordinate frame takes the form

Am1m2 . . . mq
5 f em1m2 . . . mq

, ~6!

and hence

F0m1m2 . . . mq
5 ḟ em1m2 . . . mq

, ~7!

where f depends ont only. For the electric solutions, we
havep5D2n,q5n21. For the magnetic cosmological so
lutions, the ansatz for the tangent-space components for
antisymmetric tensor is

Fa1a2 . . . ap
5le2pAea1a2 . . . ap

, ~8!

wherel is a constant. Thus we havep5n,q5D2n21. In
the action~5!, X,Y and F are related toA,B and f in the
following way:

X[qB1~p21!A,

Y[B1
p21

ea~D22!
f,
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F[2eaf12qB. ~9!

Here e51 is for electric case ande521 for the magnetic
case. Note that in the electric case, the constantl arises as
the integration constant for the functionf in Eq. ~7!.

The equations of motion forX, F, andY are

Ẍ1k~p21!2e2X50,

F̈1
1

2
Dl2eF50, ~10!

Ÿ50.

The variation of the action~1! with respect to the lapse func
tion Ag00 provides the canonical constraint:

Ḟ21Dl2eF1
2q~D22!a2

p21
Ẏ2

5
2pD

p21
Ẋ212kpD~p21!e2X. ~11!

SinceX andF both satisfy Liouville equations, it is straigh
forward to solve these equations directly:

e2X55
p21

P̃X

cosh~ P̃Xt ! if k51;

p21

P̃X

sinh~ P̃Xt ! if k521;

X52 P̃Xt, if k50, ~12!

whereP̃X is an arbitrary constant. Similarly the solution fo
F is

e2~1/2!F5
lAD

2P̃F

cosh~ P̃Ft !, ~13!

whereP̃F is again constant. The solution forY may be taken
to be simply

Y52 P̃Yt. ~14!

The constraint~11! therefore implies that

P̃F
25

pD P̃X
22q~D22!a2P̃Y

2

2~p21!
. ~15!

The Hamiltonians for the fieldsX, F, andY are given by

HX5
1

2
PX

21
1

2
k~p21!2e2X,

HF5
1

2
PF

2 1
1

2
Dl2eF,
HY5
1

2
PY

2 , ~16!

wherePX , PF , andPY correspond to momenta conjugate
X, F, andY coordinates. Notice that the solutions forX, F,
andY can be cast in a different form in terms of their phas
space variables. For example, whenk51, the solution forX
can be written as

e2X5
p21

P̃X

coshX̃,

PX52 P̃X tanh X̃, ~17!

whereX̃5 P̃Xt. In fact, these equations can be viewed a
canonical transformation from the interacting Liouville sy
tem, with phase-space coordinates (X,PX), to a free system
with phase-space coordinatesX̃,P̃X with the Hamiltonian

H̃X5 1
2P̃X

2 , by re-writing ~17! as

PX5~p21!eX sinh X̃,

P̃X5~p21!eX coshX̃. ~18!

The generating functionF(X,X̃) has the following form:

F~X,X̃!5~p21!eX sinh X̃, ~19!

such that

PX5
]F

]X
, P̃X5

]F

]X̃
. ~20!

These are the same equations as in Eq.~18!. Obviously, since
HF has also the same structure, a similar set of canon
transformations will also bring it to a free Hamiltonian form
Thus by solving a set of free systems and using the canon
mapping~17!, we can generate the solutions of the intera
ing theory given by the action~1!. As we shall discuss in
Sec. III, these transformations can be implemented in
quantum version of the model. This, in turn, will allow us
solve the corresponding WDW equations in a straightf
ward manner.

B. Multi-charge cosmological models

Multi-charge solutions inD-dimensional maximal super
gravity can be described by the truncated action

S5E dDxA2gFR2
1

2
~]fW !22

1

2n! (
a51

N

ecWa•fW Fa
2 G ,

~21!

when the dilaton vectors for the set ofN field strengthsFa of
rank n>2 satisfy the dot products@27#

Mab5cWa•cWb54dab2
2~n21!~D2n21!

D22
. ~22!
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The maximum valueNmax for N depends on the rank of th
field strengths, and on the dimensionD. For example for
two-form field strengths,Nmax52 for 6<D<9; Nmax53 in
D55; andNmax54 in 3<D<4 @27#. As before, we define
fields

X[qB1~p21!A,

Y[B1
p21

ea~D22! (
a,b

~M 21!abwb ,

Fa[2ewa12qB, ~23!

wherewa5cWa•fW . The solutions of the equations of motio
that follows from the action~21! in terms of these fields ar
~see@11# for details!

e2X55
p21

P̃X

cosh~ P̃Xt !, if k51;

p21

P̃X

sinh~ P̃Xt !, if k521;

X52 P̃Xt, if k50,

e21/2Fa5
laAD

2P̃Fa

cosh~ P̃Fa
t !,

Y52 P̃Yt, ~24!

wherela is the charge associated with the form fieldFa and
P̃X , P̃Fa

, P̃Y are constants satisfying the following co
straint:

(
a

P̃Fa

2 5
2pD P̃X

222q~D22!a2P̃Y
2

D~p21!
. ~25!

Here D54/N and a2 is given in Eq.~2!. The Hamiltonian
that follows from Eq.~21! is given by

H5(
a

HFa
1

8q~D22!a2

~p21!D
HY2

8p

p21
HX , ~26!

where

HFa
5

1

2
PFa

2 12la
2eFa. ~27!

As in the previous subsection the Hamiltonian~26! can be
brought to a free Hamiltonian, by means of a set ofN11
canonical transformations which act on the phase space
ables (Fa ,PFa

) and (X,PX).

C. SL„3,R… Toda cosmological models

As discussed in@11#, when the space-time dimension
D52n, the n-rank field strength can carry both electric~7!
and magnetic~8! charges. In this case,p5n and q5n21.
ri-

Making the same gauge choice as before, the equation
motion that follow from the action~1! reduce to

Ẍ1k~n21!2e2X50,

q̈152eaq11~12a!q2,

q̈252e~12a!q11aq2, ~28!

where

X5~n21!~A1B!,

B5
1

4~n21!
@q21q122 log„~n21!l1l2…#, ~29!

f5
a

2~n21!
~q22q1!1

1

a
log

l1

l2
,

and the constanta is given by

a5
1

2
1

a2

2~n21!
5

D

2~n21!
. ~30!

The first-order constraint in this case reduces to

1
2 a~ q̇1

21q̇2
2!1~12a!q̇1q̇21eaq11~12a!q21eaq21~12a!q1

52n@Ẋ21k~n21!2e2X#. ~31!

In Eq. ~28!, l1 and l2 correspond to electric and magnet
charges. In particular, the choicel15l2 will correspond to a
self-dual cosmological model. Although for a generic val
of a the equations seem not to be integrable, whena52 Eq.
~28! reduces to theSL(3,R) Toda equations, which can b
exactly solved. This value ofa can arise for a two-form field
strength in D54, with D54. The Hamiltonian of the
(q1 ,q2) system can be written as

H ~q1 ,q2!5
1

3
~P1

21P2
21P1P2!1e2q12q21e2q22q1,

~32!

whereP1 ,P2 are the momenta given by

P152q̇12q̇2 , P252q̇22q1 . ~33!

As in the Liouville case, there exists a set of canonical tra
formations which maps the above Toda Hamiltonian to a f
Hamiltonian. The mapping is given in@20#:

e2q15
eq̃1

P̃1~ P̃12 P̃2!
1

eq̃2

P̃2~ P̃12 P̃2!
1

e~2 q̃12 q̃2!

P̃1P̃2

,

e2q25
e2 q̃1

P̃1~ P̃12 P̃2!
1

e2 q̃2

P̃2~ P̃12 P̃2!
1

e~2 q̃12 q̃2!

P̃1P̃2

, ~34!

and
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~2P11P2!e2q152
~2P̃12 P̃2!eq̃1

P̃1~ P̃12 P̃2!
2

~2P̃22 P̃1!eq̃2

P̃2~ P̃12 P̃2!

1
~ P̃11 P̃2!e~2 q̃12 q̃2!

P̃1P̃2

,

~2P21P1!e2q25
~2P̃12 P̃2!e2 q̃1

P̃1~ P̃12 P̃2!
1

~2P̃22 P̃1!e2 q̃2

P̃2~ P̃12 P̃2!

2
~ P̃11 P̃2!e~ q̃11 q̃2!

P̃1P̃2

. ~35!

With this transformation, in terms of the new variables, t
Toda Hamiltonian reduces to a free Hamiltonian of the fo

H ~ q̃1 , q̃2!5
1

3
~ P̃1

21 P̃2
22 P̃1P̃2!. ~36!

D. EN Toda cosmological models

Maximal supergravities inD dimensions coming from the
toroidal compactification of 11-dimensional supergrav
haveE112D global symmetries. It is natural therefore to e
pect that there might existp-brane or cosmological solution
that arise as solutions of theEN Toda equations. It has bee
observed that the dilaton vectors for all the axions are p
cisely in one-to-one correspondence with the positive ro
of the E112D algebra. In particular, the simple roots can
taken to bebW i ,i 11 andaW 123 @21#. Thus in all dimensions we
may summarize the information about the dot products of
dilaton vectors for the full sets of axions by the Dynk
diagram~see Table I!.

In each dimensionD, the diagram is truncated to the pa
that survives when only the simple roots with indic
i<112D are retained.

It is straightforward to verify that when the axions ta
the standard electric or magnetic ansa¨tze, the full Lagrangian
can be consistently truncated to one of the form~21! with the
N field strengthsFa5(F0

(123),F0
(12),F0

(23),...), andassoci-

ated dilaton vectors given bycWa5(aW 123,bW 12,bW 23,...). Now
the dilaton dot produtsMab are no longer given by Eq.~22!;
insteadMab is precisely the Cartan matrix forEN . We shall
now show that this has the consequence that the equatio
motion of the system can be cast into the form of the o
dimensionalEN Toda equations. To do this, we first cons
tently truncate the Lagrangian further to

TABLE I. The dilaton vectorsbW i ,i 11 and aW 123 generate theEn

Dynkin diagram.

bW 12 bW 23 bW 34 bW 45 bW 56 bW 67 bW 78

o — o — o — o — o — o — o
u
o

aW 123
-
ts

e

of
-

e21L5R2
1

2 (
a,b51

N

~M 21!ab]Mwa]Mwb

2
1

2 (
a51

N

ewa~]xa!2, ~37!

wherewa5cWa•fW . We shall discuss the electric solutions
detail, for whichp5D21 andq50. ~The discussion for the
magnetic solutions is analogous.! The metricAnsatzin this
case is thus given by

ds252e2Udt21e2Ad s̄ 2, ~38!

whered s̄ 2 is again the metric on the spatial sections, ty
cally taking the form~4!. It is convenient to make the gaug
choice U5(D21)A, which implies that the equations o
motion can be written as

Ä1k~D22!e2~D22!A50, ~39!

F̈a52la
2 expS 1

2 (
b

MabFbD , ~40!

where Fa522(b(M 21)abwb , together with a first-order
equation

1

4 (
ab

MabḞaḞb1(
a

la
2 expS 1

2 (
b

MabFbD
52~D22!~D21!~Ȧ21ke2~D22!A!. ~41!

Defining Fa5qa24(b(M 21)ab log(lb) to remove the
charges, the equations forFa then become

q̈152e2q12q4, q̈252e2q22q3,

q̈352e2q212q32q4, q̈452e2q12q312q42q5,

q̈552e2q412q52q6, q̈652e2q512q62q7,

q̈752e2q612q72q8, q̈852e2q712q8. ~42!

These are precisely theE8 Toda equations. Here we prese
only theE8 case, since the lower cases forEN with N<7 are
obtained by straightforward truncation.~In fact an alternative
truncation can instead be made that reduces theE8 Toda
equations to theSL(N11,R) equations that were discusse
previously@7#.! The left-hand side of the first-order equatio
~41! is the Hamiltonian for the Toda equations~42!, given by

H5
1

4 (
ab

Mabq̇aq̇b1(
a

expS 1

2 (
b

MabqbD . ~43!

The right-hand side of the equation~41! is a constant, given
by 2(D21)PX

2/(D22), since the function A, satisfying Eq
~39!, is given by Eq.~12! with X52(D22)A. Thus the
first-order equation~41! means no more than that the Ham
tonian is a conserved quantity, given by
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H5
2~D21!PX

2

D22
. ~44!

III. THE WHEELER-DEWITT EQUATION

Recently, there have been attempts to solve the WD
equation in string cosmology and study its implications. L
us now construct the WDW equations for the string cosm
logical models that we are considering in this paper. W
recall that the classical equations of motion, which cor
spond to interacting Liouville or Toda systems, can be
duced to free field equations after implementing the cano
cal transformations discussed in the previous section. In
it has been shown that these classical transformations ca
extended to the quantum level. This is achieved by introd
ing intertwining operators, which implement the canonic
transformations on the quantum mechanical operators
wave functions@20#. In what follows, we explicitly construc
the intertwining operators for the cosmological models t
have been discussed in Secs. II A and II B, and we use th
to obtain solutions of the corresponding WDW equatio
We end this section with the analysis of some of the so
tions of the WDW equations, by imposing proper bounda
conditions on the wave functions.

A. Intertwining operators and the solutions of WDW equation

The canonical transformation between the classical Li
ville and free theories that have been discussed in the pr
ous section can be implemented at the quantum level. Th
done by introducing intertwining operators@20# which gen-
erate canonical transformations on the quantum opera
and on the wave functions. In order to construct such op
tors we first focus on the simplest of all the models that h
been analyzed in Sec. II, namely, the cosmological mo
with a single charge.

In order to proceed, let us first concentrate onHX given in
Eq. ~16!. It is known that there exists an operatorCX which
transforms the Liouville Hamiltonian to a free one@20#. In
particular,

CXHXCX
215H̃X . ~45!

As a result, the wave functionscX and c̃X of the Liouville
and free theories are related byc5CX

21c̃ . The operatorCX

has been constructed in@20#, and takes the following form:

CX5P~p21!sinh XPX
21IPln X , ~46!

where each of the constituent pieces has the following
tion:

Pln X : X→ ln X, PX→XPX ,

IX : X→PX , PX→2X,

PX
21 : X→PX

21XPX , PX→PX , ~47!

P~p21!sinh X : X→~p21!sinh X,
t
-
e
-
-
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PX→
PX cosh21 X

p21
.

Taking into account the commutation relation@PX ,X#52 i ,
it is immediate that the combined action of Eq.~47! is to map
the Liouville Hamiltonian HX to the free Hamiltonian

H̃X5 1
2 P̃X

2 . Similarly, the operatorCX has the following ac-
tion on the wave function@20#:

CX
21 : eikX→NkKik~eX!, ~48!

whereKik is a modified Bessel function. Owing to the fa
that the canonical transformation described byCX is non-
unitary ~as it must be, since the Liouville theory is not sim
ply equivalent to the free theory!, the normalization of the
transformed wave function is not just the same as the n
malization of the free wave function. It can be determined
calculating the effect of the transformation on the Hilbe
space inner product, leading to the result@20#

Nk5
1

p
A2k sinh~pk!. ~49!

Now consider the WDW equation, which is simply

HC~X,F,Y!50. ~50!

Here the total Hamiltonian of the system is given by

H5HF1
2q~D22!a2

p21
HY2

2pD

p21
HX . ~51!

It is clear now from the structure of the Hamiltonian that t
wave functionC(X,F,Y) will have the following form:

C~X,F,Y!5CXCFeiPYY, ~52!

whereCX and CF depend onX and F, respectively. Fol-
lowing our previous discussion, there is an intertwining o
erator which will convert the interacting HamiltonianH to a
sum of free Hamiltonians. It is given by

C5P~p21!sinh XPX
21IXPln XPADl sinh FPF

21IFPln F .
~53!

Its action on the Hamiltonian is

CHC215H̃F1
2q~D22!a2

p21
HY2

2pD

p21
H̃X . ~54!

It is now easy to read off the action ofC on the wave func-
tions:

C~X,Y,F!5
1

A2p
NkX

NkF
Ki ~p21!kX

~eX!KiADlkF
~eF!eikYY,

~55!

whereNkX
andNkF

are momentum-dependent normalizati
constants which can be determined from Eq.~49!.
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So far, we have been discussing the casek51. Following
similar arguments, we can also study the WDW wave fu
tion for an open universe, for whichk521. In this case, the
analog of Eq.~47! is

Pln X : X→ ln X, PX→XPX ,

IX : X→PX , PX→2X,

PX
21 :X→PX

21XPX , PX→PX ,

P~p21!coshX : X→~p21!coshX, ~56!

PX→
PX sinh21 X

p21
.

The operatorC is now

CX5P~p21!coshXPX
21IPln X , ~57!

whose action on the wave functions can be evaluated u
similar methods to those decsribed in@20#, which we used
above in thek51 case.

We shall not discuss thek50 case in detail. Following
the above discussion, the structure of the wave functio
also easily obtained in this case.

Consider now the multi-charge cosmological models d
cussed in Sec. II B. As we saw, by proper choice of variab
the Hamiltonian can be brought to the form of a sum
N11 Liouville equations, together with a free part, as giv
in Eq. ~27!. Thus, following the above discussion, one c
immediately construct the quantum intertwining operatorC
for this case. Fork51, it is

C5P~p21!sinh XPX
21IXPln X)

a
PADl sinh Fa

PFa

21IFa
Pln Fa

.

~58!

The action ofC on the wave functionC is again easily read
off:

C~X,Y,F!5
1

A2p
NkX

Ki ~p21!kX
~eX!eikYY

3)
a

NkFa
KiADlkFa

~eFa!, ~59!

and the normalization constantsNkX
andNkFa

can be deter-

mined from Eq.~49!.
We shall not discuss thek521 and k50 cases seper

ately here, since the wave functions can be obtained ea
by following the previous discussion. We should like
mention here that for the case of theSL(3,R) Toda model,
the intertwining operator can also be constructed, by ge
alizing the transformation of Eq.~34! at the operator leve
@20#. The corresponding wave function can also be co
puted.
-

ng

is

-
s
f

ily

r-

-

B. Analysis of WDW wave functions

Here we analyze some of the solutions of the WDW eq
tion discussed in the previous subsection, by impos
proper boundary conditions on the wave functions.

In order to study the solutions of the WDW equation o
tained above, we first note that it is necassary to specify
intial boundary conditions. When we look at the classic
cosmological solutions given in Sec. II, we see from E
~12!–~14!, that one has to specifyp, P̃X , D, a, P̃F andP̃Y .
Furthermore, we have to choose the valuek521, 0, or 1.
We shall present two specific cases to illustrate how we
obtain explicit solutions, and then discuss their propertie

Let us consider the string effective action inD510, such
that p53, q56, a251 andD54. Furthermore, we look a
the magnetic sector of this NS-NS case, and soe521; see
Eqs. ~1!–~9! for definitions of the parameters we specifie
above. We shall takek50 from now on. The solutions cor
respond to

X52 P̃Xt, Y52 P̃Yt, e22f5
l

P̃F

cosh~ P̃Ft1g!,

~60!

wheref is the dilaton. Note that for the case at hand, t
coupling constant of the theory is identified to begs5e2f.
We recall that the integration constants satisfy the constr

P̃F
2 53P̃X

2212P̃Y
2 ~61!

as is evident from Eq.~15!. Instead of examining the two
parameter problem,~note that we can setg50 without any
loss of generality and keepl as an arbitrary parameter! let us
look at two cases separately with specific choices for
value of the parameters.
CASE I:

Let us first consider the case whenP̃Y50 and P̃X,0.
Then it follows that P̃X52 (1/)) P̃F and U53A16B,
where

e~8/3! A5
l

P̃F

cosh~ P̃Ft !e~4/3! X,

e28B5
l

P̃F

cosh~ P̃Ft !e~4/3! X. ~62!

Now, let us examine the behavior ofeU, eA and eB, for t
→6`,

eU→e~3/8!P̃Futu1~1/) ! t. ~63!

We see that ast→1`, eU→1` and ast→2`, eU→0.
We can define a comoving time as follows:dt5eUdt.
Therefore, 0<t<` since 2`<t<`. We can define two
scale factors,RA and RB , respectively, asRA5eA and
RB5eB. Notice that for larget R→ta,0,a,0. We also
note that fort→0 andt→` this scale factor tends tò. The
other scale factorRB tends to zero in these two limits. Not
thatRA8>0 andRB8<0 in this case. Sincee2f is the coupling
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constant for this magnetically-charged case, we see tha
t50 andt5`, we end up in the strong coupling phase.

Let us look at the wave function obtained from the so
tion of the WDW equation. The Bessel functions of o
choice are

C~X,Y,F!5NXNYNFeiPXXK2ilPF
~eF!, ~64!

where the normalization constants are determined from
~49! as usual. We recall that fort→6`, F→0; and from
the relation betweenF and dilatonf, we also know that the
coupling constante2f diverges in this limit. The wave func
tion

C~X,Y,F!5NXNYNFG~2ilPF!e2ilPF ln 2ePXXe22ilPFF

~65!

is obtained in the limit when the scale factorA tends to large
values andF tends to zero.
CASE II:

Let us consider another interesting case whenPY is non-
zero andPF56PY . The constraint equation implies tha
PX564PY , for which we shall choose the plus sign. No
that for this choice we have

eA→e5PYt, eB→e2PYt, eU→e~21/2! t, ~66!

as t→`. In the limit of t→2`, we have

eA→e~1/2! PYt, eB→e~1/2! PYt, ~67!

and it is easy to see thatRA8 is positive andRA9 is negative.
When we consider the wavefunction for this case, nam
C(X,Y,C), in the limit whenF→0, it has the form

C~X,Y,F!5NXNYNFe4iPYXeiPYe12ilPY ln 2

3G~12ilPY!e212ilPYF. ~68!

CASE III:
Now we consider the situation when there is non-z

spatial curvature, corresponding tok521. For the sake of
simplicity, let us choosePY50 and therefore, from the con
straint equation, we havePX56(1/)) PF . We shall again
choose the plus sign. It follows from the solutions of t
equations of motion thateX has a singularily att50. If we
extract the two scale parameters:RA5eA and RB5eB we
find thatRA is singular att50 andRB is not. Furthermore,
F→constant ast→0. Now let us look at thet→` limit. We
find in this case thatRA→`, RB→0 and F→0. We can
extract the wave function in these two limits from the beha
ior of the Bessel functions.

When t→0, the wave function takes the form

C~X,Y,F!5NXNYNFA p

2Z
e2ZKi2lPF

~eF!, ~69!

whereZ5eX. Note that in this limit the argument of th
Bessel function takes a finite value. In the other limit, i.et
→0, we find thateX andF tend to zero, and so we must tak
limits in both of the Bessel functions. Thus the wave fun
tion is
or

-

q.

ly

o

-

-

C~X,Y,F!5NXNYNFe2i ~1/) ! PF ln 2,

GS i
2

)
PFD e2ilPF ln 2,

G~2ilPF!e2ilPFF. ~70!

IV. GENERALIZED BRANS-DICKE MODEL

In the cosmological context, one of the extensively d
cussed models is the Brans-Dicke~BD! model @22#. Al-
though at late times it reduces to Einstein’s gravity, at ea
times its behavior is very different. This is essentially b
cause of the presence of a scalar which couples to the m
in a non-trivial way. Here, we are interested in a simi
model, but extended to include different form fields. A su
class of such models has previously been analyzed, for
ample in@23–25#. The action for the theory is given by

S5E dDxAg̃e2f̃F R̃2v~]f̃!21
1

2n!
ecf̃F̃n

2G , ~71!

where the constantv is known as the BD parameter.
We would like to show here that starting from the acti

~1!, and then properly rescaling the metric and redefin
various fields, we end up with an action of the form~71!.
Thus the solutions of the classical equations of motion of
generalized BD theories can simply be obtained from
analysis in Sec. II. Furthermore, the solutions of the WD
equation in the mini-superspace will follow simply from
those in Sec. III, after making the necessary field redefi
tions.

We begin with the action~1!, which is written in the
Einstein frame. After rescaling the dilaton according to

f5A2S D21

D22
1v D f̃, ~72!

we get

S5E dDxAgFR2S D21

D22
1v D ~]f̃ !21

1

2n!
ebf̃Fn

2G .
~73!

Herev is a constant andb5aA@(D21)/(D22)1v#. Now,
after the further metric rescaling

g̃mn5e2f̃/~D22!gmn , ~74!

we get Eq.~71!, with c5b1 2(n21)/(D22).
As mentioned earlier, the action~71! has been analyzed

for D54 andn53 in @23–25#, and its cosmological proper
ties have been studied. However, following our previous d
cussion, it is immediate that cosmological solutions of E
~71! can be obtained by simply taking the solutions of Sec
and scaling the fields as in Eqs.~72! and~74!. As the proce-
dure is straightforward, we will not carry it out here. How
ever, we should like to make the following comments.
most of the solutions, the dilaton fieldf becomes singular a
some value of the proper time. Moreover, since the fi
scalings in Eq.~74! involve the dilaton, the cosmologica
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properties of the Brans-Dicke~BD! metric will be consider-
ably different from those seen in Sec. II.

V. CONCLUSIONS

In this paper, we have analyzed some of the cosmolog
models arising as solutions of the low-energy effective
tions of string theories or M-theory. These solutions invo
time-dependent metric tensor, dilaton, and antisymme
tensor fields. TheAnsatzand conventions of Ref.@12# were
used in constructing general solutions. As is well known,
maximal supergravities inD dimensions, which arise from
the toroidal compactification of 11-dimensional supergrav
haveE112D global symmetries. We showed that in certa
cases the equations of motion can be cast in the form of
one-dimensionalEN Toda equations. This was demonstrat
explicitly for the maximalE8 case.

We then studied some of the simpler cosmological mod
~which are related to the Liouville equation! at the quantum
level, by obtaining the solutions of the Wheeler-DeW
equation in a minisuperspace approximation. The WDW
lutions were obtained using the techniques described in@20#.
This involves constructing a quantum-mechanical canon
transformation that maps the Liouville theory to a fr
theory. The Liouville wave functions are then obtained fro
the free wave functions by means of intertwining operato
We presented solutions of the WDW equations in seve
cases, where we discussed the initial boundary condit
and studied the evolution of the wave functions. We show
how the wave functions relate different domains of t
theory, and we studied their asymptotic behavior at la
times. We also briefly discussed generalized Brans-Di
theories including higher-degree field strengths, and sho
how they can be related to the our framework. Finally, in
appendix, we studied theEN Toda equations for
(D23)-brane solitions, which are closely related to theEN
cosmological models, and showed how they may be sol
in the extremal limit. The case of theD45O(4,4) Toda
equations was presented explicitly.
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APPENDIX: EXTREMAL EN TODA p-BRANES

In Sec. II, we showed that we can obtain cosmologi
solutions supported by one-form field strengths, whose eq
tions of motion can be cast intoEN Toda equations. One
form field strengths can also support electric instanton
magnetic (D23)-branes. In this appendix, we shall discu
extremal EN Toda instantons or (D23)-branes using the
same set of field strengths discussed in Sec. II.~Note that the
non-extremalp-branes are equivalent to cosmological so
tions that we discussed in Sec. II, after certain Wick rotatio
are performed@12#, and we shall not consider these her!
The Lagrangian is given by Eq.~37!. We shall first consider
al
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magnetic (D23) branes, with the standard metric and fie
strengthAnsätze

ds25hmndxmdxn12B~r !~dr21r 2du2!,

xa54Qau. ~A1!

The extremal condition implies thatB521/2(aFa , with
Fa522(b(M 21)abwb . The equations of motion can b
then written as

qa95expS 1

2 (
a,b

MabqbD , ~A2!

with extremality implying that its Hamiltonian

H54(
a,b

~M 21!abpapb2(
a

expS 1

2 (
b

MabqbD
~A3!

vanishes. Here a prime denotes a derivative with respec
r5 log r.

Note that the positive sign on the right-hand side of E
~A2! is the opposite of that in the cosmological equatio
that we discussed previously. Correspondingly, there is a
nus sign in the second term in the Hamiltonian~A3!, whereas
in the cosmological case, the Hamiltonian~43! is positive
definite. This means that unlike in the cosmological ca
here we can find simple but non-trivial solutions for whic
the Hamiltonian vanishes@7#. These are in fact extrema
p-branes, for which the functionse2qa can be expanded in
terms of polynomials inr:

e2qa5 (
m50

na

aamrm. ~A4!

The integrability of the Toda equations implies that t
above series have only finite degreesna , which we shall
now determine. To do this, we first consider the followin
simpleAnsatzfor a particular, special solution:

e2qa5caHna, ~A5!

where theca are constants andH511cr is a single ‘‘har-
monic’’ function. Thus we haveqa95nac2H22, and so by
substituting into the Toda equations~A2!, we find that they
are all satisfied provided that the exponentsna in Eq. ~A5!
are chosen to be

na54(
b

~M 21!ab , ~A6!

and that the constantsca are chosen appropriately. Thus
this special case we see that the highest powersna of r in the
polynomials~A5! are given by Eq.~A6!. In fact this special
solution corresponds to choosing the chargesQa to occur in
a certain fixed ratio for which the solution reduces to
single-scalar one@26, 27#. More generally, if we relax this
latter condition, we get solutions of the form~A4! for which
the number of free parameters is equal to the numbe
charges@7#. The degreesna of the polynomials continue to
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be given by Eq.~A6!. The chargesQa are related to the
valuesqa(0) of the variablesqa at r50 ~i.e. at spatial in-
finity! by @7#

eqa~0!5)
b

~4Qb!4~M21!ab. ~A7!

In the case ofE8 , the Toda equations~A2! are given by

q195e2q12q4, q295e2q22q3,

q395e2q212q32q4, q495e2q12q312q42q5,

q595e2q412q52q6, q695e2q512q62q7, ~A8!
q795e2q612q72q8, q895e2q712q8.

From Eq.~A6!, we find that the degreesna of the polynomi-
als for e2qa in this case will be
na5$136,92,182,270,220,168,114,58%. Solving for the 1248
coefficientsaam in terms of the eight independent paramete
associated with the eight chargesQa is mechanical, but
somewhat involved. Instead, we shall just present the res
for a subclass of solutions, where we truncate the system
the D45O(4,4) subalgebra with simple root

$aW 123,bW 23,bW 34,bW 45% ~see Table I!. This is a new solution tha
lies outside theAN solutions obtained in@7#. For the D4

truncation, we find
tions
nd the

e

e2q15c1c32
1

8
c3

6236c2c416c3
3c4236c4

21c1r1S 3c2c32
1

8
c3

4D r21c2r31
1

24
c3

2r41
1

60
c3r51

1

360
r6,

e2q35c1c3236c2
213c2c3

32
1

8
c3

6236c2c413c3
3c41~c123c2c3

213c3
2c4!r

1S 3c3c42
1

8
c3

4D r21c4r31
1

24
c3

2r41
1

60
c3r51

1

360
r6,

e2q55c1c326c2c3
31

3

8
c3

6136c2c423c3
3c41S c126c2c3

21
1

2
c3

523c3
2c4D r

2S 3c2c32
3

8
c3

413c3c4D r22S c21c42
1

6
c3

3D r31
1

24
c3

2r41
1

60
c3r51

1

360
r6, ~A9!

e2q45c1
226c1c2c3

31
1

4
c1c3

51
3

4
c2c3

72
1

32
c3

101216c2
2c3c4245c2c3

4c41
3

2
c3

7c41216c2c3c4
229c3

4c4
2

1S 3

4
c2c3

62
1

4
c1c3

41216c2
2c4236c2c3

3c41216c2c4
2D r

1S 18c2
2c3

22
1

2
c1c3

32
3

2
c2c3

51
3

32
c3

8118c2c3
2c423c3

5c4118c3
2c4

2D r2

1S 12c2
2c32

1

2
c1c3

22
1

2
c2c3

41
1

24
c3

7112c2c3c422c3
4c4112c3c4

2D r3

1S 3c2
213c4

22
1

4
c1c31

1

4
c2c3

313c2c42
1

2
c3

3c4D r41S 2
1

20
c11

3

20
c2c3

21
1

240
c3

5D r5

1
7

720
c3

4r61
1

180
c3

3r71
1

480
c3

2r81
1

2160
c3r91

1

21600
r10,

whereci ( i 51,2,3,4) are arbitrary constants.
The relation between the four arbitrary constants in Eq.~A9! and the four independent charges in theD4 Toda extremal

p-brane solutions is given by Eq.~A7!. The mass of the solution is expressible in terms of the chargesvia a polynomial
equation whose degree is equal to the dimension of the Weyl group of the Lie algebra characterizing the Toda equa@7#.
In the case of theD4 example above, this means that there will be a polynomial of degree 192 relating the mass a
charges. Obtaining the relation between the mass and the eight charges of theE8 Toda p-branes would require a mor
challenging calculation, since the polynomial is of degree 696,729,600.
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@12# H. Lü, S. Mukherji, and C. N Pope, hep-th/9612224.
@13# R. Poppe and S. Schwager, Phys. Lett. B393, 51 ~1997!.
@14# F. Larsen and F. Wilczek, Phys. Rev. D55, 4591~1997!.
@15# A. Lyons and S. W. Hawking, Phys. Rev. D44, 3802~1991!.
@16# M. Gasperini, J. Maharana, and G. Veneziano, Nucl. Ph

B427, 349 ~1996!.
@17# J. Maharana, S. Mukherji, and S. Panda, Mod. Phys. Lett

12, 447 ~1997!.
@18# R. Brustein and G. Veneziano, Phys. Lett.B329, 429 ~1994!.
@19# A. A. Kehagias and A. Lukas, Nucl. Phys.B477, 549 ~1996!.
@20# A. Anderson, B. E. W. Nilsson, C. N. Pope, and K. S. Stel

Nucl. Phys.B430, 107 ~1994!.
@21# E. Cremmer, B. Julia, H. Lu¨, and C. N. Pope, hep-th/9710119
@22# J. Barrow and P. Parsons, Phys. Rev. D55, 1906~1997!, and

references therein.
@23# S. Mukherji, Mod. Phys. Lett. A12, 639 ~1997!.
@24# J. E. Lidsey, gr-qc/9609063.
@25# E. Copeland, J. Lidsey, and D. Wands, Nucl. Phys.B506, 407

~1997!.
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