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Attempt to determine the largest scale of primordial density perturbations in the universe
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The principle of causality requires that a pure power-law spectrum of cosmological density perturbations
possess a super-Hubble suppression scale. We search for evidence of such suppression by performing a three
parameter likelihood analysis of the COBE-DMR 4-year sky maps with respect to the amplitude, the spectral
index, and the suppression scale. It is found that all suppression scales largeftthare consistent with the
data, but that scales of ordetH are slightly preferred, at roughly the one-sigma level. Super-Hubble density
fluctuations on very large scales €/Hg) can only be explained in the context of present theory by a de Sitter
expansion phase, whereas those that are “smatft{H,) can also be explained within the standard hot
big-bang model. Density perturbations originating after any conceivable de Sitter expansion phase or during
non-isentropic de Sitter expansion have natural kinematic constraints which could explain a small super-
Hubble suppression scale. Standard inflationary cosmology, which is characterized by isentropic de Sitter
expansion, generically predicts that the particle horizon should be much larger than the present-day Hubble
radius,c/H,. For such scenarios, a small super-Hubble suppression scale would require the duration of the
inflation epoch to be fairly short. Suppression scales smaller ¢heg are strongly excluded by the COBE
data.[S0556-282(98)01106-0

PACS numbegps): 98.80.Es, 98.70.Vc, 98.80.Cq

I. INTRODUCTION
f(k)= :
Causality prohibits coherence between physical phenom- 1+ (Kmin/K)™
ena with superhorizon scale separation. For density perturba-
tions which are generated by local causal processes in @herekn;, is the wave number of the suppression scale, and
Robertson-Walker universe, the implications of causalitym is the suppression index. Causality places a strict con-
have been shown to imply a suppression of the power spegtraint on the suppression index=4—n. A suppression
trum which decreases faster thighfor scales larger than the factor like Eq.(2) also has been found in a model with cos-
horizon[1]. In non-inflationary cosmology the horizon and mic strings plus cold or hot dark mattg2].
Hubble radius are about the same size, so that no causal There is a second constraint &¢k) imposed by causal-
mechanism could produce super-Hubble scale perturbationgy, pertaining to the size ok.,;,, which may be useful in
Inflationary cosmology is characterized by a time period intesting inflationary cosmology. Models of primordial density
which the horizon grew exponentially fast while the Hubble perturbations can be generally classified as either inflationary
radius remained essentially constant. Thus inflation providesr non-inflationary, with the former type further classified as
the only currently known causal mechanism that generategentropic or non-isentropic. For all types of models, the long
density perturbations on super-Hubble scales, greategavelength suppression of the spectrum is a general charac-
than c/Ho~3000 Hh'Mpc, where H'=100H, teristic imposed by causality, although it is typically ignored
km sec* Mpc™*. in standard inflationary models. In non-inflationary models
The power spectrum of the primordial scalar density perthe causal horizon is about the same size as the present-day
turbations can be written as Hubble radius; thus causality implies the additional condition
that k,in~ 7Hg in these models. It should be noted that in
non-inflationary models, density perturbations can be gener-
P(k)=A(ky)"f(k), (1)  ated both prior to and after the epoch of last scattering,
whereas Eq(l) only strictly describes the former type. How-
ever, Eq.(1) may still apply to many types of perturbations
wherey=2c/H is the distance to the particle horizon in a generated after last scatterifig]. For both isentropic and
matter dominated universe, arigk) is a function that de- non-isentropic inflationary models,,;, is far less con-
scribes the long wavelength suppression imposed by causaltrained: In these models the largest density perturbations
ity. Using very general arguments about causalfifk) can  arose from the first fluctuations that crossed the Hubble ra-
be obtained to have the form dius during inflatio4]. The expansion factor for these per-

@

0556-2821/98/5(#)/22076)/$15.00 57 2207 © 1998 The American Physical Society



2208 ARJUN BERERA, LI-ZHI FANG, AND GARY HINSHAW 57

turbations ie™, whereN is the number of e-folds of growth
in the cosmic scale factor. In order to solve the horizon prob- © r : '

lem, a key purpose of inflation, the minimum required ex- 1l 1.2
pansion places a lower limit di=50-70. Standard infla- C
tionary models offer no convincing reason fdrto be near °© 1.0¢
its lower limit and generally predict it to be several orders of 5 i
magnitude bigger. Hence the super-Hubble suppression sca N 0.8 :
in these models generally is expected to be lakgg,~0. In g 0.6
the non-isentropic case, de Sitter expansion and radiatio 5

production are concurrent processes. In general, the interdt £ 4 4
pendence of these two processes should place constraints ..~

Thin lines correspond to minimal cutoff spectra with:

k .y =(2n/6)j j =08

the overall expansion. In turn, restrictions lap;,, are gener- i 02F a

ally expected, but the specific form will depend on the details hn I

of the radiation production mechanism. =~ 0.0LC : ‘ TN
The power spectrum given by E¢l) contains four pa- ™ 0 5 10 15 20

rameters: the amplitudd, the power-law spectral index, (a) l

the super-Hubble suppression scale wave nurkper, and

the suppression indem. Previous analyses of the Cosmic =) r .
Background Explore(COBE) Differential Microwave Radi- Wwo1.2f -
ometer(DMR) maps have tacitly assumed that the suppres : r
sion parametek,,;, was zero. In this paper we perfforma © 1.0
likelihood analysis of the DMR 4-year sky maps with respect 3 I
to the first three parameters in Ed). We fix the suppres- N 0.8 ]
sion indexm at selected values and determine the most likely g i
values of the amplitudé\, the spectral index, and the 5 O'Gf ]
super-Hubble suppression scdg;,. From the results of ¢ 0.4L /| thin s correspond 1o sharp cutoft spectra with:_]
this analysis, we place limits on the allowable rang&gf, . = o k. = (2n/8), 1 = 0

—~ 0.2 1

Il. RADIATION SPECTRUM N 4%
Toot ¥ ...
In this analysis we consider the standard case of a fla = 0 5 10 15 20

universe with zero cosmological constafilyg=1 and A ) ]

=0. The cosmic microwave background radiati@®@MB)

temperature fluctuation in the directionis [5] FIG. 1. C, spectra fom=1 and a range ok,.y for (@ the

~ ~ minimal cutoff model andb) the sharp cutoff model. The thin solid
6T(n) = Tn)—-T __ Hg E (k) e-ik-y 3) lines correspond to the values kf,;.y indicated in the panels. The
T T 2c2vYV2E k2 ' thick solid line corresponds to the best Kit;,y; the thick dashed
line corresponds to the 99% C.L. upper boundkgg,y. All spectra
where 6(k) is the Fourier amplitude of the density contrast have been normalized to 1 bt 10.

5(r), y is a vector parallel tm with lengthy = 2¢/H,, andV . ] . ] .
is a large volumegwhich cancels out in the final statistics Wherej (x) is the spherical Bessel function of ordetUsing

The power spectrum is defined as Egs.(1) and(2), Eq. (6) becomes
P(K) S =(8(k) 8(Kk"))=([8(K)|?) Sigc 4)  AHG fwdk (ky)"[j (ky)|2 -
|_ - _.
where the angular brackets denote ensemble avePdi® is 27c*Jo k2 1+ (Kpin/K)™

assumed to have the form given in E¢b). and (2).
Cosmic microwave backgroun@€MB) temperature fluc- With the above conventions, the quadrupole anisotropy is
tuations may be expanded in spherical harmonics given by Q;ms-ps= V5C, /47T where T=2.728 K is the
mean CMB temperaturfg]. Plots of theC, spectra withn
ST(n) . =1 for selected values d,;,y are shown in Fig. 1. Note
T % imYim(N), ®)  thatthe generic effect of a super-Hubble cutoff is to suppress
the low order multipole moments.

To simplify the analysis, we have not considered tempera-
ure fluctuations produced by tenggravitational perturba-
ions. Most theoretical models predict the CMB anisotropy to
be dominated by scalar perturbations. Tensor perturbation
will be subject to a long wavelength suppression like &,

HA o P(K) but the power spectrgm indarxwi_ll generally be different.
c=—2 f dk 11 (ky)|?, (6) To check for possible confusion from secondary sources
2mwctJo k? of anisotropy, such as the integrated Sachs-Wa&&V) ef-

whereY|m(ﬁ) is a spherical harmonic function, and thg, ¢
are the expansion coefficients. Defining rotationally invariantt
coefficients C,=1/(21 + 1)2 n(|aim|?), and using Eq.(3),
one finds
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fect, we have generated fully processed power spectra wit
the codecMBFAST [7] for a range of the cosmological pa-
rameters(),,. andH, for which a significant ISW effect is
possible. We find that the ISW effect generically increase:
the power in low-order multipoles and can thus “fill in”
some of the suppression generated by causality. Howeve
this requires values d}, .. in excess of~0.5 to be signifi-
cant, and in no case can the ISW effedimic the effects of
a small suppression scale. Thus we do not further conside
the ISW effect in this paper since it canndécreasethe
significance of any possible detection of a cutoff scale. An-
other possible source of confusion is due to Galactic emis
sion: For example the quadrupole due to the Galaxy coult
partially cancel the quadrupole due to the CMB and suppres
the overall quadrupole power. However, the studies per
formed to date suggest that this is not a significant effélct
The cutoff models, Eq(7), have a mathematical similar-
ity to the T3-topology power spectrum moddl8—12]. One
can compare the spectra in Fig. 1 with Fig. 1[@l]. This
similarity is only a formal coincidence. These cutoff models

in Eq. (7) are required in any causal theory and have no

association with nontrivial topology.

. METHOD

Relative likelihood

1.5~

0.5

0.0

=)
——

2209

<——Sharp cutoff: m=o

Scale of Hubble diameter

Solid: n unconstrained; dashed: n=1

Minimal cutoff: m=4-n

0 2 4 6 8 10 12 14

FIG. 2. Relative likelihood for the suppression scale wave num-
ber,Kmin, projected oven andQ,s.ps With y=2c/H,.

the effects of beam smoothing and finite pixel siZgjs the
power spectrum given in Eq7), Pi(n;-n;) is the Legendre
polynomial of ordet, n; is the unit vector towards the center
of pixel i, ando; is the rms noise expected in pixellf the

We use a pixel-based likelihood method to fit the paramqjxe| temperatures are Gaussian distributed, the covariance
eters of our model power spectra. The method was pioneerggatrix fully specifies the statistics of the map.

in [13] and further used in DMR studies ii14,15. This

We have evaluated the above likelihood function using

method is predated by Gaussian likelihood fits to the 2-pointhe model power spectra in E¢7) for two cases: a sharp
angular correlation function. The primary disadvantage ofyytoff, m=, and a minimal cutoffm=4—n. The results
this approach is that the 2-point correlation function is notenorted below use the COBE “correlation technique” map
Gaussian distributed, and so a least squares fit is not necegnich has an estimate of the high-latitude galaxy subtracted

sarily a maximum likelihood fit.

off [8]. We have also tested a case with a map that has no

In the pixel-based method we compute a likelihood func-esjqual galaxy subtracted and find the results are not quali-

tion as follows. The probability of observing a map with

pixel temperaturef, given a modelC,(p), wherep denotes
a set of parameters, is

e(~12TT-M 1 (p)]-T
VdeM[C(p)]

whereJ is the number of pixels in the map, aM is the
pixel-pixel covariance of the mafsee below. Assuming a

P(T|C/(p))dT=

(2 77_)\]/2 (8)

uniform prior distribution of model parameters, the probabil-

ity (likelihood) of finding a givenC,, given a mapf, is then

—(WT M eI T

vdeM[C,(p)]

For convenience we will denote the likelihood function sim-
ply asL(p).

The pixel-pixel covariance between pixélandj is given
by

L(C(p)|T)= (9)

ST, 6T;\ 1 ..
<—' —J>=EZ (21+1)WZC,Py(n;- ) + o726, ,
|

T T
(10

where 6T, is the temperature fluctuation in pixelof the
map,W,2 is the experimental window function that includes

tatively different.

IV. RESULTS

The results of the analysis are presented in terms of pro-
jected likelihood functions: Given a set of parameters
=(p1,p,), the projected likelihood-(p;;p,) is defined as
L(p) for fixed p; evaluated at the most likelp,. In the
following we defineQ=Q,,s.ps for simplicity. A plot of the
one-dimensional projected likelihodd k,i,;n,Q) is shown
in Fig. 2. Contour plots of the two-dimensional projected
likelihood L (knin,n; Q) at 1, 2, and 3 sigma are shown in
Figs. 3a) and 3b) for the minimal and sharp cutoff models
respectively. Table | gives the most likely values of the three
parameters obtained from the full likelihood. The uncertain-
ties quoted in Table | are 68% confidence le(€IL.) and
were obtained as follows. Fd¢,;, andn we projected the
likelihood function to one dimensiofL(k;,;n,Q) and
L(n;kmin,Q) respectively and integrated each function to
obtain 68% confidence limits. F& we sliced the likelihood
at the most likely value of K,;,,n) and integrated. The
former procedure gives the uncertainty in a parameter with
the other parameters unconstrained. The latter procedure
gives the uncertainty in the normalization fofigedspectral
shape. Table Il gives the most likely valuesiqgf;,, and Q
with the spectral index fixed to 1. The uncertainties were
obtained in the same manner as described above. Table 1lI
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FIG. 3. Contour plots ot (kni,,n;Q) at 1, 2 and 3 sigma for
(a) the minimal cutoff model an¢b) the sharp cutoff model.

gives the 99% confidence upper limits kg;, for n uncon-

strained and fon=1. Our results reproduce those given in

[15,16 in the limit k,;,=0.
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TABLE II. Maximum likelihood parameter estimates with
=1.

Super-Hubble Kminy Qrms-ps
cutoff (n=1) (uK)

Minimal (m=4—n) 3.2°2% 12.8+0.9
Sharp (=) 3598 10.8+0.7

dashed line corresponds to the 99% C.L. upper bound on
Kminy (7.2 and 4.9 respectivelyNote that a suppression of
the low order multipole moments is a generic feature of
power spectra that have a finite super-Hubble suppression
scale.

It is instructive to compare the most likely spectra plotted
in Fig. 1 with Fig. 3 of[17]. In that work the best fit power
spectrumC,; was obtained from the 4-year DMR data by
evaluating the likelihood with th€, themselves as the free
parameters. Ideally this is a model independent fit, although
there were practical limitations to such an approach as dis-
cussed in the paper. The value of the quadrup®lg,found
in [17] is similar to the value we find in the most likely
cutoff power-law spectra. Similarly, our results f@ are
consistent with those found [15,16 where the quadrupole,
C,, was fit independent of the rest of the spectrum. This
suggests that the shape of the likelihood in our current analy-
sis is being driven primarily by the low quadrupole, and that
the most likely spectra are such that the mean quadrupole in
each case is comparable to the actual quadrupole in our sky.
Note also that the most likely spectral indexs lower when
Kmin is simultaneously fit because the low quadrupole can be
better fit with a non-zerd,,;, than with a steep spectrum,
n>1.

The relative preference between the sharp and minimal
forms of the cutoff can be measured by normalizing the like-

Table 11l supports a detection of a coherence length largelihood atk,;,=0, where both model spectra are common.
than the Hubble radius/H,, for both cutoff models. Tables By this measure the sharp cutoff is slightly preferred to the
| and Il show that all values of the suppression scale largeminimal cutoff—the ratio of the maxima of the two likeli-

than the Hubble diamete(,,pne~2C/Hp) are consistent
with the data, although scales of ordet/X,;,~4c/H, are
slightly preferred. If the spectral index is fixed at=1
(Table 11), there is a one sigma exclusion kgf;,=0. How-
ever, withn left unconstrainedTable ), only the sharp cut-
off model is found to excludé,,;,=0 at 68% confidence
(Fig. 2. In no case was a two sigma exclusionkgf;,=0
found.

Plots of the spectral,(I+1)C,, for n=1 are given in

Figs. Xa) and Xb) for the minimal and sharp cutoff models,

hood functions is 1.24.

To check the results of our likelihood analysis, we simu-
lated 1000 pure power-law, scale-invariant sky maps,
(Kmin,n)=(0.0,1.0), to determine what fractions have likeli-
hood functions similar to the data. The results of the Monte
Carlo analysis are given in Table IV. For the upper limit on
Kmin, the Monte Carlo results confirm the 99% C.L. given in
Table 1l for both types of cutoff. For the lower limit on
Kmin, the Monte Carlo results indicate that a pure power-law,
scale invariant universe has a 2083% chance of spuri-

respectively. The thin solid lines show the spectra for a rang@usly imitating a universe with a super-Hubble suppression
of kminy, the thick solid line corresponds to the most likely scale of the size favored by the data given a sitarpimal)

value of k,;y (3.2 and 3.5 respectivelyand the thick

TABLE I. Maximum likelihood parameter estimates withun-
constrained.

cutoff. These results are consistent with the likelihood analy-
sis. In particular, they verify that the suggestion found in the

TABLE 1ll. 99% C.L. upper limits onk,iy.

Super-Hubble Kminy n QimsPs
cutoff (uK)
Minimal (m=4-n) 2935 10638  13.0:0.9
Sharp =x) 34797 107%% 10907

Super-Hubble cutoff KminY Kminl(n=1)
Minimal (m=4-—n) 10.5 7.2
Sharp (n=x) 5.0 4.9
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TABLE IV. In columns 1 and 2f is the fraction of simulated realization wilty,;, bigger than the most
likely value found in the datésy,, for the minimal and sharp cutoff models. In columnf3s the fraction
of Monte Carlo simulated realizations with likelihoodlat O less than that found in the data.

Super-Hubble f[k>Kgatal flk(n=1)>k(n=1)4atal f[L(k=0)<L(k=0)gatal
cutoff

Minimal (m=4-n) 334/1000 187/1000 314/1000
Sharp (n=) 219/1000 156/1000 227/1000

data for a finite suppression scaleuld be due to spurious further study supports this finding, it might be difficult to
fluctuations about a pure power-law spectrum. The Monteeconcile with the small quadrupole seen in the COBE data.
Carlo results also indicate that increasing the signal-to-noisBoth the super-Hubble suppression scale and the form of the
ratio with additional data could give perhaps 1-2 sigmacutoff should be noted in all theoretical models of primordial
greater discrimination oky,;,=0, but cosmic variance pro- density perturbations.
hibits much greater significance. In summary, a finite super- | the suggestion of a small super-Hubble suppression
Hubble suppression scale is, at best, suggested by the datgangth scale is later substantiated, there are at least three
Finally, two features of the power spectrum model should,gssiple explanations. One is that density perturbations pro-
be mentioned. First, for very large suppression scalegyced by non-inflationary models are the dominant source.
Kminy<1, the model spectra are virtually indistinguishable t,o second is that density perturbations are produced during
from a pure power-law spectrum. Hence this analysis is most isentropic de Sitter expansion phase, which is synony-

powerful at placing upper fimits on the suppression Scalqnous with standard inflation. The third is that perturbations
wave numberk.i,. Second, there is some degeneracy be-

. - are produced during a non-isentropic de Sitter expansion
tweenk,,;, and n, particularly for the minimal form of the .
! - ; . . phase. For either of these latter two cases, the number of
cutoff with m=4—n: Decreasing the suppression scale

2k partially mimics a steeper slopéargern) in the e—fqlds,N, wo.uld have to be closc_a to its lower bound. Such
power spectrum at low spherical harmonic orderAddi- an interpretation could also explain a nearly flat to open uni-

tional large and medium scale anisotropy data, as expecté’(frse [22]. In _standa_rd inflationary models a _sma)ll IS
from the forthcoming satellites Microwave Anisotropy Probe Viewed as a fine-tuning of the theory. The regime of non-
(MAP) and PLANCK, should allow us to place better limits S€ntropic de Sitter expansion may be further divided, de-
onn so as to partly constrain this degeneracy. pending on whether the radiation energy density decreases
monotonically or requires a sharp increase during the transi-
tion back to the radiation dominated era. The former possi-
bility was considered irf23], where it was shown in the
This analysis establishes a firm lower limit on the sup-context of standard Friedmann cosmology that a sidalan
pression length scale of density perturbations and slightlyse naturally realized by a symmetry breaking phase transi-
favors a finite super-Hubble suppression scale. The standatbn at finite temperature, during which the universe
assumption of a pure power-law primordial spectrum issmoothly goes from an inflation-like stage to a radiation
equivalent to assuming an infinite suppression length scalgyominated stage without an intermediate period of reheating.
Kmin=0. Almost any theoretical model of density perturba- The naturalness of a small found in [23] motivated the
tions has an implied suppression scale. Below we elucidatgearch in this paper for a finite super-Hubble suppression
the suppression scales expected in various models. The stagrale. The non-isentropic, inflation-like expansion regime in
dard inflationary models predi&t,i,~0, which is consistent  [23] avoids(a) localized fields on ultra flat potential surfaces
with, but not preferred by, the data. It is worth noting that theand (b) an impu|sive, |arge-sca|e energy release during a
super-Hubble suppression behavior in the basic new inflatiopeheating periodi4]. The latter event must be isotropic over
[18] and in chaotic inflatiori19] is closer to the sharp cutoff yastly disconnected causal regions. Both of these conun-
form. For a large class of non-inflationary models there is Nqjrums have been difficult to resolve in the standard inflation-
mechanism for the growth of super-Hubble scale perturbagry picture. The theory of density perturbations in this inter-
tions. In models with a “late time " cosmological phase mediate regime of radiation and vacuum endi2#] requires
transition[20], we expectky)y=4 [1,3]. In models with  fyrther study of warm inflation[25] and other possible

topological defects, in which the perturbations are produceghechanisms before direct comparison is possible with stan-
before last scattering, the super-Hubble suppression scale dgard inflationary models.

pends on the dynamics of the defects. For example, in mod-

els with cosmic strings plus hot or cold dark matter it was

found thatk,;,y~2.1-7.9 with a cutoff behavior closer to VI. CONCLUSION

the minimal form[2]. These two types of non-inflationary

models are potentially consistent with the COBE data, but The super-Hubble suppression scale added to the power
subhorizon evolution must be checked. For cosmic stringsspectrum in this paper is required on first principles by any
recent simulationg21] indicate that subhorizon evolution causal theory. It is more fundamental than the spectral index
induces greater power in the low-order multipol€s;. If and the amplitude and much less model dependent than other

V. DISCUSSION
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processes that can effect the large-scale anisotropy, such ast rule out k,;,=0. The best fit to the data is

the integrated Sachs-Wolfe effect. Moreover, the SUppressing,,i.y,n, Qums.ps) = (3.4"97,1.07° 332 10.9+ 0.7 1K), with

effect of causality on the power spectrum can produce a pog slight preference for a sharp form of the cutoff. Upper
tentially significant effect on large scales that is not readily|imits on k,,;,y have been firmly established for the two
confused with other processes that generically boost thgmiting forms of the cutoff. We conclude that the fundamen-

large-scale anisotropy power. _ _ tal parametek,,;, can be identified in COBE-DMR data.
In conclusion, we have modified the primordial power

spectrum of density perturbations from a pure power-law
form to a form that includes a super-Hubble suppression
scale,knin, SO as to properly respect causality constraints.
We fit this spectrum to the 4-year COBE-DMR sky maps Financial support was provided in part by the U.S. De-
and find that the data prefer a finite suppression scale, but dzartment of Energy and the NASA Office of Space Sciences.
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