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Attempt to determine the largest scale of primordial density perturbations in the universe
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The principle of causality requires that a pure power-law spectrum of cosmological density perturbations
possess a super-Hubble suppression scale. We search for evidence of such suppression by performing a three
parameter likelihood analysis of the COBE-DMR 4-year sky maps with respect to the amplitude, the spectral
index, and the suppression scale. It is found that all suppression scales larger thanc/H0 are consistent with the
data, but that scales of orderc/H0 are slightly preferred, at roughly the one-sigma level. Super-Hubble density
fluctuations on very large scales (@c/H0) can only be explained in the context of present theory by a de Sitter
expansion phase, whereas those that are ‘‘small’’ (;c/H0) can also be explained within the standard hot
big-bang model. Density perturbations originating after any conceivable de Sitter expansion phase or during
non-isentropic de Sitter expansion have natural kinematic constraints which could explain a small super-
Hubble suppression scale. Standard inflationary cosmology, which is characterized by isentropic de Sitter
expansion, generically predicts that the particle horizon should be much larger than the present-day Hubble
radius,c/H0. For such scenarios, a small super-Hubble suppression scale would require the duration of the
inflation epoch to be fairly short. Suppression scales smaller thanc/H0 are strongly excluded by the COBE
data.@S0556-2821~98!01106-0#

PACS number~s!: 98.80.Es, 98.70.Vc, 98.80.Cq
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I. INTRODUCTION

Causality prohibits coherence between physical phen
ena with superhorizon scale separation. For density pertu
tions which are generated by local causal processes
Robertson-Walker universe, the implications of causa
have been shown to imply a suppression of the power s
trum which decreases faster thank4 for scales larger than th
horizon @1#. In non-inflationary cosmology the horizon an
Hubble radius are about the same size, so that no ca
mechanism could produce super-Hubble scale perturbati
Inflationary cosmology is characterized by a time period
which the horizon grew exponentially fast while the Hubb
radius remained essentially constant. Thus inflation provi
the only currently known causal mechanism that gener
density perturbations on super-Hubble scales, gre
than c/H0'3000 h21 Mpc, where h215100/H0
km sec21 Mpc21.

The power spectrum of the primordial scalar density p
turbations can be written as

P~k!5A~ky!nf ~k!, ~1!

wherey52c/H0 is the distance to the particle horizon in
matter dominated universe, andf (k) is a function that de-
scribes the long wavelength suppression imposed by cau
ity. Using very general arguments about causality,f (k) can
be obtained to have the form
570556-2821/98/57~4!/2207~6!/$15.00
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11~kmin /k!m
, ~2!

wherekmin is the wave number of the suppression scale, a
m is the suppression index. Causality places a strict c
straint on the suppression index:m>42n. A suppression
factor like Eq.~2! also has been found in a model with co
mic strings plus cold or hot dark matter@2#.

There is a second constraint onf (k) imposed by causal-
ity, pertaining to the size ofkmin , which may be useful in
testing inflationary cosmology. Models of primordial dens
perturbations can be generally classified as either inflation
or non-inflationary, with the former type further classified
isentropic or non-isentropic. For all types of models, the lo
wavelength suppression of the spectrum is a general cha
teristic imposed by causality, although it is typically ignore
in standard inflationary models. In non-inflationary mode
the causal horizon is about the same size as the presen
Hubble radius; thus causality implies the additional condit
that kmin;pH0 in these models. It should be noted that
non-inflationary models, density perturbations can be gen
ated both prior to and after the epoch of last scatteri
whereas Eq.~1! only strictly describes the former type. How
ever, Eq.~1! may still apply to many types of perturbation
generated after last scattering@3#. For both isentropic and
non-isentropic inflationary models,kmin is far less con-
strained: In these models the largest density perturbat
arose from the first fluctuations that crossed the Hubble
dius during inflation@4#. The expansion factor for these pe
2207 © 1998 The American Physical Society
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turbations iseN, whereN is the number of e-folds of growth
in the cosmic scale factor. In order to solve the horizon pr
lem, a key purpose of inflation, the minimum required e
pansion places a lower limit ofN>50–70. Standard infla
tionary models offer no convincing reason forN to be near
its lower limit and generally predict it to be several orders
magnitude bigger. Hence the super-Hubble suppression s
in these models generally is expected to be large,kmin;0. In
the non-isentropic case, de Sitter expansion and radia
production are concurrent processes. In general, the inte
pendence of these two processes should place constrain
the overall expansion. In turn, restrictions onkmin are gener-
ally expected, but the specific form will depend on the deta
of the radiation production mechanism.

The power spectrum given by Eq.~1! contains four pa-
rameters: the amplitudeA, the power-law spectral indexn,
the super-Hubble suppression scale wave numberkmin , and
the suppression indexm. Previous analyses of the Cosm
Background Explorer~COBE! Differential Microwave Radi-
ometer~DMR! maps have tacitly assumed that the suppr
sion parameterkmin was zero. In this paper we perform
likelihood analysis of the DMR 4-year sky maps with resp
to the first three parameters in Eq.~1!. We fix the suppres-
sion indexm at selected values and determine the most lik
values of the amplitudeA, the spectral indexn, and the
super-Hubble suppression scalekmin . From the results of
this analysis, we place limits on the allowable range ofkmin .

II. RADIATION SPECTRUM

In this analysis we consider the standard case of a
universe with zero cosmological constant,V051 and L
50. The cosmic microwave background radiation~CMB!

temperature fluctuation in the directionn̂ is @5#

dT~ n̂!

T
[

T~ n̂!2T

T
52

H0
2

2c2V1/2(k

d~k!

k2
e2 ik•y, ~3!

whered(k) is the Fourier amplitude of the density contra
d(r ), y is a vector parallel ton̂ with lengthy52c/H0, andV
is a large volume~which cancels out in the final statistics!.
The power spectrum is defined as

P~k!dkk8[^d~k!d~k8!&5^ud~k!u2&dkk8, ~4!

where the angular brackets denote ensemble average.P(k) is
assumed to have the form given in Eqs.~1! and ~2!.

Cosmic microwave background~CMB! temperature fluc-
tuations may be expanded in spherical harmonics

dT~ n̂!

T
5(

lm
almYlm~ n̂!, ~5!

whereYlm(n̂) is a spherical harmonic function, and thealm
are the expansion coefficients. Defining rotationally invari
coefficients Cl[1/(2l 11)(m^ualmu2&, and using Eq.~3!,
one finds

Cl5
H0

4

2pc4E0

`

dk
P~k!

k2
u j l~ky!u2, ~6!
-
-

f
ale

on
e-
on

s

-

t

y

at

t

t

wherej l(x) is the spherical Bessel function of orderl . Using
Eqs.~1! and ~2!, Eq. ~6! becomes

Cl5
AH0

4

2pc4E0

`dk

k2

~ky!nu j l~ky!u2

11~kmin /k!m
. ~7!

With the above conventions, the quadrupole anisotropy
given by Qrms -PS5A5C2 /4pT where T52.728 K is the
mean CMB temperature@6#. Plots of theCl spectra withn
51 for selected values ofkminy are shown in Fig. 1. Note
that the generic effect of a super-Hubble cutoff is to suppr
the low order multipole moments.

To simplify the analysis, we have not considered tempe
ture fluctuations produced by tensor~gravitational! perturba-
tions. Most theoretical models predict the CMB anisotropy
be dominated by scalar perturbations. Tensor perturba
will be subject to a long wavelength suppression like Eq.~2!,
but the power spectrum indexn will generally be different.

To check for possible confusion from secondary sour
of anisotropy, such as the integrated Sachs-Wolfe~ISW! ef-

FIG. 1. Cl spectra forn51 and a range ofkminy for ~a! the
minimal cutoff model and~b! the sharp cutoff model. The thin solid
lines correspond to the values ofkminy indicated in the panels. The
thick solid line corresponds to the best fitkminy; the thick dashed
line corresponds to the 99% C.L. upper bound onkminy. All spectra
have been normalized to 1 atl 510.
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57 2209ATTEMPT TO DETERMINE THE LARGEST SCALE OF . . .
fect, we have generated fully processed power spectra
the codeCMBFAST @7# for a range of the cosmological pa
rametersVvac andH, for which a significant ISW effect is
possible. We find that the ISW effect generically increa
the power in low-order multipoles and can thus ‘‘fill in
some of the suppression generated by causality. Howe
this requires values ofVvac in excess of;0.5 to be signifi-
cant, and in no case can the ISW effectmimic the effects of
a small suppression scale. Thus we do not further cons
the ISW effect in this paper since it cannotdecreasethe
significance of any possible detection of a cutoff scale. A
other possible source of confusion is due to Galactic em
sion: For example the quadrupole due to the Galaxy co
partially cancel the quadrupole due to the CMB and supp
the overall quadrupole power. However, the studies p
formed to date suggest that this is not a significant effect@8#.

The cutoff models, Eq.~7!, have a mathematical similar
ity to the T3-topology power spectrum models@9–12#. One
can compare the spectra in Fig. 1 with Fig. 1 of@11#. This
similarity is only a formal coincidence. These cutoff mode
in Eq. ~7! are required in any causal theory and have
association with nontrivial topology.

III. METHOD

We use a pixel-based likelihood method to fit the para
eters of our model power spectra. The method was pione
in @13# and further used in DMR studies in@14,15#. This
method is predated by Gaussian likelihood fits to the 2-po
angular correlation function. The primary disadvantage
this approach is that the 2-point correlation function is n
Gaussian distributed, and so a least squares fit is not ne
sarily a maximum likelihood fit.

In the pixel-based method we compute a likelihood fun
tion as follows. The probability of observing a map wi
pixel temperaturesTW , given a modelCl(p), wherep denotes
a set of parameters, is

P„TW uCl~p!…dTW 5
dTW

~2p!J/2

e~21/2!TW T
•M21@Cl ~p!#•TW

AdetM @Cl~p!#
~8!

whereJ is the number of pixels in the map, andM is the
pixel-pixel covariance of the map~see below!. Assuming a
uniform prior distribution of model parameters, the probab
ity ~likelihood! of finding a givenCl , given a mapTW , is then

L„Cl~p!uTW …}
e2~1/2!TW T

•M21@Cl ~p!#•TW

AdetM @Cl~p!#
. ~9!

For convenience we will denote the likelihood function sim
ply asL(p).

The pixel-pixel covariance between pixelsi and j is given
by

Mi j [ K dTi

T

dTj

T L 5
1

4p(
l

~2l 11!Wl
2Cl Pl~ n̂i•n̂ j !1s i

2d i j ,

~10!

where dTi is the temperature fluctuation in pixeli of the
map,Wl

2 is the experimental window function that include
ith
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the effects of beam smoothing and finite pixel size,Cl is the
power spectrum given in Eq.~7!, Pl(n̂i•n̂ j ) is the Legendre
polynomial of orderl , n̂i is the unit vector towards the center
of pixel i , ands i is the rms noise expected in pixeli . If the
pixel temperatures are Gaussian distributed, the covarian
matrix fully specifies the statistics of the map.

We have evaluated the above likelihood function usin
the model power spectra in Eq.~7! for two cases: a sharp
cutoff, m5`, and a minimal cutoff,m542n. The results
reported below use the COBE ‘‘correlation technique’’ map
which has an estimate of the high-latitude galaxy subtracte
off @8#. We have also tested a case with a map that has
residual galaxy subtracted and find the results are not qua
tatively different.

IV. RESULTS

The results of the analysis are presented in terms of pr
jected likelihood functions: Given a set of parametersp
5(p1 ,p2), the projected likelihoodL(p1 ;p2) is defined as
L(p) for fixed p1 evaluated at the most likelyp2. In the
following we defineQ[Qrms -PS for simplicity. A plot of the
one-dimensional projected likelihoodL(kmin ;n,Q) is shown
in Fig. 2. Contour plots of the two-dimensional projected
likelihood L(kmin ,n;Q) at 1, 2, and 3 sigma are shown in
Figs. 3~a! and 3~b! for the minimal and sharp cutoff models
respectively. Table I gives the most likely values of the thre
parameters obtained from the full likelihood. The uncertain
ties quoted in Table I are 68% confidence level~C.L.! and
were obtained as follows. Forkmin and n we projected the
likelihood function to one dimension@L(kmin ;n,Q) and
L(n;kmin ,Q) respectively# and integrated each function to
obtain 68% confidence limits. ForQ we sliced the likelihood
at the most likely value of (kmin ,n) and integrated. The
former procedure gives the uncertainty in a parameter wi
the other parameters unconstrained. The latter procedu
gives the uncertainty in the normalization for afixedspectral
shape. Table II gives the most likely values ofkmin and Q
with the spectral indexn fixed to 1. The uncertainties were
obtained in the same manner as described above. Table

FIG. 2. Relative likelihood for the suppression scale wave num
ber,kmin , projected overn andQrms -PS with y52c/H0.
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gives the 99% confidence upper limits onkmin for n uncon-
strained and forn51. Our results reproduce those given
@15,16# in the limit kmin50.

Table III supports a detection of a coherence length lar
than the Hubble radius,c/H0, for both cutoff models. Tables
I and II show that all values of the suppression scale lar
than the Hubble diameter (lHubble;2c/H0) are consistent
with the data, although scales of order 2p/kmin'4c/H0 are
slightly preferred. If the spectral index is fixed atn51
~Table II!, there is a one sigma exclusion ofkmin50. How-
ever, withn left unconstrained~Table I!, only the sharp cut-
off model is found to excludekmin50 at 68% confidence
~Fig. 2!. In no case was a two sigma exclusion ofkmin50
found.

Plots of the spectra,l ( l 11)Cl , for n51 are given in
Figs. 1~a! and 1~b! for the minimal and sharp cutoff models
respectively. The thin solid lines show the spectra for a ra
of kminy, the thick solid line corresponds to the most like
value of kminy ~3.2 and 3.5 respectively! and the thick

FIG. 3. Contour plots ofL(kmin ,n;Q) at 1, 2 and 3 sigma for
~a! the minimal cutoff model and~b! the sharp cutoff model.

TABLE I. Maximum likelihood parameter estimates withn un-
constrained.

Super-Hubble kminy n Qrms-PS

cutoff (mK!

Minimal (m542n) 2.922.9
11.8 1.0620.67

10.48 13.060.9
Sharp (m5`) 3.422.2

10.7 1.0720.35
10.32 10.960.7
er

r

e

dashed line corresponds to the 99% C.L. upper bound
kminy ~7.2 and 4.9 respectively!. Note that a suppression o
the low order multipole moments is a generic feature
power spectra that have a finite super-Hubble suppres
scale.

It is instructive to compare the most likely spectra plott
in Fig. 1 with Fig. 3 of@17#. In that work the best fit power
spectrumCl was obtained from the 4-year DMR data b
evaluating the likelihood with theCl themselves as the fre
parameters. Ideally this is a model independent fit, altho
there were practical limitations to such an approach as
cussed in the paper. The value of the quadrupole,C2, found
in @17# is similar to the value we find in the most likel
cutoff power-law spectra. Similarly, our results forQ are
consistent with those found in@15,16# where the quadrupole
C2, was fit independent of the rest of the spectrum. T
suggests that the shape of the likelihood in our current an
sis is being driven primarily by the low quadrupole, and th
the most likely spectra are such that the mean quadrupo
each case is comparable to the actual quadrupole in our
Note also that the most likely spectral indexn is lower when
kmin is simultaneously fit because the low quadrupole can
better fit with a non-zerokmin than with a steep spectrum
n.1.

The relative preference between the sharp and mini
forms of the cutoff can be measured by normalizing the lik
lihood at kmin50, where both model spectra are commo
By this measure the sharp cutoff is slightly preferred to
minimal cutoff—the ratio of the maxima of the two likeli
hood functions is 1.24.

To check the results of our likelihood analysis, we sim
lated 1000 pure power-law, scale-invariant sky ma
(kmin ,n)5(0.0,1.0), to determine what fractions have like
hood functions similar to the data. The results of the Mo
Carlo analysis are given in Table IV. For the upper limit o
kmin , the Monte Carlo results confirm the 99% C.L. given
Table III for both types of cutoff. For the lower limit on
kmin , the Monte Carlo results indicate that a pure power-la
scale invariant universe has a 20%~33%! chance of spuri-
ously imitating a universe with a super-Hubble suppress
scale of the size favored by the data given a sharp~minimal!
cutoff. These results are consistent with the likelihood ana
sis. In particular, they verify that the suggestion found in t

TABLE II. Maximum likelihood parameter estimates withn
51.

Super-Hubble kminy Qrms -PS

cutoff (n51) (mK!

Minimal (m542n) 3.222.0
11.5 12.860.9

Sharp (m5`) 3.521.8
10.8 10.860.7

TABLE III. 99% C.L. upper limits onkminy.

Super-Hubble cutoff kminy kminu(n51)

Minimal (m542n) 10.5 7.2

Sharp (m5`) 5.0 4.9
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TABLE IV. In columns 1 and 2,f is the fraction of simulated realization withkmin bigger than the most
likely value found in the data,kdata for the minimal and sharp cutoff models. In column 3,f is the fraction
of Monte Carlo simulated realizations with likelihood atk50 less than that found in the data.

Super-Hubble f @k.kdata# f @k(n51).k(n51)data# f @L(k50),L(k50)data#

cutoff

Minimal (m542n) 334/1000 187/1000 314/1000

Sharp (m5`) 219/1000 156/1000 227/1000
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data for a finite suppression scalecould be due to spurious
fluctuations about a pure power-law spectrum. The Mo
Carlo results also indicate that increasing the signal-to-n
ratio with additional data could give perhaps 1–2 sig
greater discrimination ofkmin50, but cosmic variance pro
hibits much greater significance. In summary, a finite sup
Hubble suppression scale is, at best, suggested by the d

Finally, two features of the power spectrum model sho
be mentioned. First, for very large suppression sca
kminy,1, the model spectra are virtually indistinguishab
from a pure power-law spectrum. Hence this analysis is m
powerful at placing upper limits on the suppression sc
wave numberkmin . Second, there is some degeneracy
tweenkmin and n, particularly for the minimal form of the
cutoff with m542n: Decreasing the suppression sca
2p/kmin partially mimics a steeper slope~larger n) in the
power spectrum at low spherical harmonic orderl . Addi-
tional large and medium scale anisotropy data, as expe
from the forthcoming satellites Microwave Anisotropy Pro
~MAP! and PLANCK, should allow us to place better limi
on n so as to partly constrain this degeneracy.

V. DISCUSSION

This analysis establishes a firm lower limit on the su
pression length scale of density perturbations and slig
favors a finite super-Hubble suppression scale. The stan
assumption of a pure power-law primordial spectrum
equivalent to assuming an infinite suppression length sc
kmin50. Almost any theoretical model of density perturb
tions has an implied suppression scale. Below we elucid
the suppression scales expected in various models. The
dard inflationary models predictkmin;0, which is consistent
with, but not preferred by, the data. It is worth noting that t
super-Hubble suppression behavior in the basic new infla
@18# and in chaotic inflation@19# is closer to the sharp cutof
form. For a large class of non-inflationary models there is
mechanism for the growth of super-Hubble scale pertur
tions. In models with a ‘‘late time ’’ cosmological phas
transition @20#, we expectkminy>4 @1,3#. In models with
topological defects, in which the perturbations are produ
before last scattering, the super-Hubble suppression scal
pends on the dynamics of the defects. For example, in m
els with cosmic strings plus hot or cold dark matter it w
found thatkminy;2.1–7.9 with a cutoff behavior closer t
the minimal form@2#. These two types of non-inflationar
models are potentially consistent with the COBE data,
subhorizon evolution must be checked. For cosmic strin
recent simulations@21# indicate that subhorizon evolutio
induces greater power in the low-order multipoles,Cl . If
e
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further study supports this finding, it might be difficult t
reconcile with the small quadrupole seen in the COBE da
Both the super-Hubble suppression scale and the form of
cutoff should be noted in all theoretical models of primord
density perturbations.

If the suggestion of a small super-Hubble suppress
length scale is later substantiated, there are at least t
possible explanations. One is that density perturbations
duced by non-inflationary models are the dominant sou
The second is that density perturbations are produced du
an isentropic de Sitter expansion phase, which is syno
mous with standard inflation. The third is that perturbatio
are produced during a non-isentropic de Sitter expans
phase. For either of these latter two cases, the numbe
e-folds,N, would have to be close to its lower bound. Su
an interpretation could also explain a nearly flat to open u
verse @22#. In standard inflationary models a smallN is
viewed as a fine-tuning of the theory. The regime of no
isentropic de Sitter expansion may be further divided,
pending on whether the radiation energy density decrea
monotonically or requires a sharp increase during the tra
tion back to the radiation dominated era. The former pos
bility was considered in@23#, where it was shown in the
context of standard Friedmann cosmology that a smallN can
be naturally realized by a symmetry breaking phase tra
tion at finite temperature, during which the univer
smoothly goes from an inflation-like stage to a radiati
dominated stage without an intermediate period of reheat
The naturalness of a smallN found in @23# motivated the
search in this paper for a finite super-Hubble suppress
scale. The non-isentropic, inflation-like expansion regime
@23# avoids~a! localized fields on ultra flat potential surface
and ~b! an impulsive, large-scale energy release during
reheating period@4#. The latter event must be isotropic ove
vastly disconnected causal regions. Both of these con
drums have been difficult to resolve in the standard inflati
ary picture. The theory of density perturbations in this int
mediate regime of radiation and vacuum energy@24# requires
further study of warm inflation@25# and other possible
mechanisms before direct comparison is possible with s
dard inflationary models.

VI. CONCLUSION

The super-Hubble suppression scale added to the po
spectrum in this paper is required on first principles by a
causal theory. It is more fundamental than the spectral in
and the amplitude and much less model dependent than o
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processes that can effect the large-scale anisotropy, suc
the integrated Sachs-Wolfe effect. Moreover, the suppres
effect of causality on the power spectrum can produce a
tentially significant effect on large scales that is not read
confused with other processes that generically boost
large-scale anisotropy power.

In conclusion, we have modified the primordial pow
spectrum of density perturbations from a pure power-l
form to a form that includes a super-Hubble suppress
scale,kmin , so as to properly respect causality constrain
We fit this spectrum to the 4-year COBE-DMR sky ma
and find that the data prefer a finite suppression scale, bu
y,
as
ng
o-
y
e

n
.

do

not rule out kmin50. The best fit to the data is
(kminy,n,Qrms -PS)5(3.422.2

10.7,1.0720.35
10.32,10.960.7mK!, with

a slight preference for a sharp form of the cutoff. Upp
limits on kminy have been firmly established for the tw
limiting forms of the cutoff. We conclude that the fundame
tal parameterkmin can be identified in COBE-DMR data.
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