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Primordial hypermagnetic fields and the triangle anomaly
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The high-temperature plasma above the electroweak sedl@0 GeV may have contained a primordial
hypercharge magnetic field whose anomalous coupling to the fermions induces a transformation of the hyper-
magnetic energy density into fermionic number. In order to describe this process, we generalize the ordinary
magnetohydrodynamical equations to the anomalous case. We show that a not completely homogeneous
hypermagnetic background induces fermion-number fluctuations, which can be expressed in terms of a generic
hypermagnetic field configuration. We argue that, depending upon the various particle physics parameters
involved in our estimatéelectron Yukawa coupling, strength of the electroweak phase transitimhupon the
hypermagnetic energy spectrum, sizable matter-antimatter fluctuations can be generated in the plasma. These
fluctuations may modify the predictions of the standard big bang nucleosyn(B&\8. We derive constraints
on the magnetic fields from the requirement that the homogeneous BBN is not changed. We analyze the
influence of primordial magnetic fields on the electroweak phase transition and show that some specific
configurations of the magnetic field may be converted into net baryon number at the electroweak scale.
[S0556-282(98)05704-X

PACS numbd(s): 98.80.Cq, 98.80.Ft

I. INTRODUCTION always filled by a magnetic field of a considerable amplitude,
with energy density of the order of the energy densityyof
There are no compelling reasons why magnetic fieldsjuanta. Of course, this consideration does not take into ac-
should not have been present in the early universe. Moresount different physical processes operating at the galactic
over, it can be argued that the existence of some magneticale, such as the dynamo mechaniigm] or the anisotropic
fields at high temperatures is a quite natural phenomenoigollapse mechanisitb], which change considerably the na-
Indeed, the presence of large-scale magnetic fields in ouve scaling Iaw|ﬁ|~T2. In any case, it is widely believed
observed universe is a well established experimental facthat some seed fields of primordial origin are necessary for
Since their first evidence in diffuse astrophysical plasmashe successful generation of the galactic magnetic figdls
beyond the solar cororid,2], magnetic fields have been de-  Looking at this problem from a more theoretical side,
tected in our galaxy and in our local group through Zeemarthere are several mechanisms that may successfully generate
splitting and through Faraday rotation measurements of lintarge enough magnetic seeds coherent on different scales.
early polarized radio waves. The Milky Way possesses &agnetic seeds can be produced either during a first-order
magnetic field whose strength is of the order of the micro-quark-hadron phase transitiof¥,8] or during the elec-
gauss corresponding to an energy density roughly comparoweak phase transitiofp—12. Recently it was also sug-
rable with the energy density today stored in the cosmigested that a primordial asymmetry encoded in the right-
microwave background radiatioqitMBR) energy spectrum electron number can be converted in a quite large
peaked around a frequency of 30 GHz. Faraday rotation medwypercharge seed during the symmetric phase of the elec-
surements of radio waves from extragalactic sources alstvoweak theonf13]. The seeds could also be the result of the
suggest that various spiral galaxies are endowed with magsarametric amplification of the quantum mechanical
netic fields whose intensities are of the same order as that ¢¢acuun) fluctuations of some primordial gauge field, in the
the Milky Way [3]. The existence of magnetic fields at evensame way as in general relativity the quantum mechanical
larger scalegintergalactic scale, present horizon scale,)etc. fluctuations of the tensor modes of the metric can be ampli-
cannot be excluded, but it is still quite debatable since, irfied, producing, ultimately, a stochastic gravity-wave back-
principle, dispersion measuremefighich estimate the elec- ground[14]. The essential ingredient of the large-scale mag-
tron density along the line of sightannot be applied in the netic field generation is the breaking of conformal invariance
intergalactic medium because of the absence of pulsar siga the coupling of the electromagnetic field to gravity
nals[3]. [15,16. Reasonable seeds could also be produced if the in-
If the existing galactic magnetic field is naively blue- flaton is coupled to the Maxwell term in a chaotic inflation-
shifted to earlier epochs, one then finds that the universe wasry scenarid17]. In the string theory low-energy effective
action, the dilaton field provides a unified value of the gravi-
tational and gauge coupling at the string scale and it natu-
*Electronic address: m.giovannini@damtp.cam.ac.uk rally breaks the scale invariance of the electromagnetic and
"Electronic address: mshaposh@nxth04.cern.ch gauge couplingsalso in four dimensionswithout providing
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a gravitational mass for the photon. Sizable seeds, coherehe generalized by taking into account anomaly effects. In the
over the galactic scale, can be generdts]19. new AMHD equations(anomalous MHD equatiohsthe

The possible existence of magnetic fields in the early unisnagnetic hypercharge fields turn out to be coupled to the
verse has a number of interesting cosmological implicationsfermionic number density. As a consequence, the evolution
For example, magnetic fields at small scales may influencequations of the anomalous charge densities acquire a mag-
the big bang nucleosynthesBBN) and change the primor- netic source term. In Sec. lll we describe an approximate
dial abundances of the light elemeii20] by changing the ~Solution of AMHD equations. We show that anomalous cou-
rate of the universe expansion at the corresponding time. THYING gives rise to instabilities, allowing the conversion of
success of the standard BBN scenario can provide an intef® €nergy sitting in the fermionic degrees of freedom into

esting set of bounds on the intensity of the magnetic fields dinagn_etic hypercharge fieIds an_d vice versa. This phenom-
that epoch 20]. enon is completely absent in ordinary MHD. The presence of

Long-range stochastic magnetic fields that possibly ex:[he fermionic number density produces a kind of “Ohmic”

isted at the decoupling epoch might have induced anisotrgcurrent, which is parallel to the magnetic hypercharge field.

pies in the microwave sky19]. The existence of a com- A|59 this phenomenpn is quite new if.compared W.ith. the
pletely homogeneous field coherent over the horizon at thgrdlnary MHD equationsthough something vaguely slmllar
present epoch can be interestingly constrained by the Cosmf@" happe_n In Fhe context of the dynamo mecharﬁfﬁrm a
Background ExplorefCOBE) observations21,27. Con- parity-noninvariant turbulent qu}dIn_Sec. IV we will gpply
versely, if the CMBR is linearly polarized, its polarization 4" results to the case of stochastic hypercharge_ﬁeld back-
plane could have been rotated by the presence of a suffgrounds’ whereas in Sep. V.We .fOCl.JS our attention on the
ciently energetic magnetic field coherent over the horizorpc?ss'bIe phenomgnologlcal |mpI|cat|on§ of our conS|d¢r—
size at the decoupling epo¢B3]. Faraday rotation measure- a_mons fpr BEN. Different bo_unds on primordial magnetic
ments applied to the galactisynchrotrof emission can also f|e_|ds will z_also be analyzed in the light of our r_esults. We
provide interesting constrainf24] on large-scale magnetic will also discuss the d_ependence o_f the m"?‘gn't“de .Of the
fields (even though these are coherent over scales Smal@aryon—numbgr fluctuations upon various pamcle physm;s_pa—
than the present horizan rameters, which can appear in the extensions of t.he minimal
In this paper we address the question of whether there cafjandard modelMSM). In Sec. VI we discuss the influence
be any cosmological consequences from the fact that mad the Primordial hypermagnetic fields on the dynamics of

netic fields existed prior to the electroweak phase transition,he electroyyeak p.hase.transition, and we Wi”. ShOW how
when the background temperature Was T~ 100 GeV. At some specific configurations of the hypermagnetic fields may

these temperatures the electroweak symmetry is restored afjffate a net nonzero amount of baryons. Section VII contains

the magnetic field is replaced by the hypermagnetic one. TheY concluding remarks.

hypercharge field, unlike the ordinary magnetic field, has an Som_e of the results of this paper have already been pre-
anomalous coupling to the fermions. This fact will play asentec{m a more compact foririn [26] (see also the closely

crucial role in our considerations. The origin of primordial related papef13] where transformation of a finite number

hypermagnetic fields is not essential for us and consequentgfensny of right electrons into hypermagnetic fields has been
0

we simply assume that they were generated by some mech nsideregl
nism before the electrowedkW) phase transition.

We will show that, depending on the particle physics Il. BASIC EQUATIONS
model and on the initial spectrum of the primordial magnetic
fields, quite large fluctuations of the baryon and lepton num-
bers may be generated. These fluctuations can survive until Let us start from some qualitative considerations. A
the onset of BBN and create unusual initial conditions for theunique property of “unbroken” 1) gauge interaction is the
calculation of the light element abundances. In particular, @bsence of mass of its corresponding vector particle. Static
natural outcome of our considerations is a nonuniform dis:‘magnetic” fields are never screeneh the absence of
tribution of baryon number, not necessarily positive definitemonopoleg and thus homogeneous fields can survive in the
Matter-antimatter domains are then possible. The requireplasma for infinitely long times. On the contrary, electric
ment that these fluctuations are small enough in order not thelds quickly decay because of the finite plasma conductiv-
conflict with the predictions of the standard homogeneousdty o within a time scale~1/o. Then long-ranged non-
BBN allows us to put quite a strong constraint on the specAbelian magnetic field§corresponding to, e.g., the color
trum of the primordial magnetic fields. Moreover, we will SU(3) or weak SW2) groupg cannot exist because at high
argue that the primordial magnetic field may change the natemperatures the non-Abelian interactions induce a “mag-
ture of the electroweak phase transition. Finally, the exisnetic” mass gap~g?T. Also the non-Abelian electric fields
tence of primordial fields with some specific topological decay because of the finite value of the conductivity as it
structure may result in the production of the net baryon numeccurs for Abelian electric fields. Therefore the only long
ber at the electroweak scale. scale field that can exist in the plasma for enough time must

The plan of the paper is the following. In Sec. Il we be associated with some Abeliartl) group. This statement,
derive our basic equations. For an ordinary electromagnetiealid to all orders in perturbation theory, has been confirmed
plasma, it is fairly well established that the evolution of thenonperturbatively for the electroweak theory by recent lattice
magnetic fields can be described using the magnetohydrodgtudies in27]. Under normal condition§.e., small tempera-
namical (MHD) equations[2,4,25. In the case of a high- tures and small densities of the different fermionic charges
temperature electroweak plasma the MHD equations have tine SU2)XU(1)y symmetry is “broken” down to Wl).n,,

A. Preliminaries
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the massless field corresponding t@lld,, is the ordinary

photon, and the only long-lived field in the plasma is the

ordinary magnetic one. At sufficiently high temperaturgs,
>T., the SU2)XU(1)y symmetry is “restored,” and non-
screened vector modes§, correspond to the U(1)hyper-
charge group. Hence, if primordial fields existedTat T,
they did correspond to hypercharge rather than tb)4J.
There are essential differences between the interactions
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V-J=0, J=0(E+vXH)

(2.2

(H=a%H, E=a%¢; A=ad; J=a3%]; o=0.a; H=VXU;
E=—olotA; H, € A, J, o are the flat-space quantities

whereasH, E, A, J, o are the curved-space onesjs the
bulk velocity of the plasma We assumed that the plasma is

fpcally electrically neutral ‘{7-I§:O) over length scales

magnetic fields and those of hypermagnetic fields with matlarger than the Debye radius. We notice that the spatial gra-
ter. The ordinary electromagnetic field has a vectorlike coudients used in Eq(2.2) are defined according to the metric
pling to the fermions, while the coupling of the hypercharge(z-l)-

fields is chiral. Thus, if hyperelectric?(() and hypermag-
netic (ﬁy) fields are present simultaneously, they cause

There are several approximations in which the above
equations can be studied. One is the so-called if@mabu-

$erconductiny approximation and the other is the reak

variation of the fermionic number according to the anomalyresistive case[25,30.

equation, aﬂjﬂ~(g’2/4w2)ﬁy~fy (here g’ is the hyper-
charge gauge coupling constarifiow, the presence afon-
homogeneousypermagnetic fields in the EW plasma with
(hypenconductivity o always implies the existence of a re-
lated electric field &y~ (1/o)V X Hy. Since for a general

stochastic magnetic backgroundHy -V X Hy)?)#0, the

nonuniform hypermagnetic field may absorb or release fer
mions and produce, ultimately, baryon and lepton densityfr

perturbations because of the anomaly equation.
The behavior ofcold fermionic matter with nonzero
anomalous Abelian charges was consideref28] where it

In the ideal caser =0 and, from Ohm’s law we can
immediately deduce that the electric field is orthogonal to the
magnetic one and it is also orthogonal to the bulk velocity of
the plasma:

E=~—uXxH. (2.3
Two important theorems of the ideal MHD, which follow
om Eq. (2.3, are the conservation of the magnetic flux:

<I>=f2|:|~d§ (2.4

was pointed out that the anomalous fermionic matter is un-

stable against the creation of Abelian gauge field with nonynq of the magnetic helicitgChern-Simons numbgf2,30];
zero Chern-Simons number, which eats up fermions because

of the anomaly. It was suggested 3] that the right-

electron number density may be converted to the hyper-

2
o N e
NCS=$ fvd3xH~A, om=7 (2.5)

charge field because of a similar effect. The main aim of this

paper is the study of the opposite situation, namely, we wa
to understand how hypercharge fields may be converted intl?]

fermions in ahot environment.

B. MHD equations for ordinary plasmas

r‘U\/here d> is a closed surface in the plasma; the volume

tegral is performed over a magnetic flux tube.

If, on the contrary, the effect of the finite value of the
conductivity is taken into account{ 1<1) and the resistive
Ohm law is employed, then the induced electric field is not

During the symmetric phase of the electroweak theory thexactly orthogonal to the magnetic one and the conservation
evolution of the background geometry is dominated by radaws of the ideal MHD are correctedn the resistive ap-
diation. The first assumption we will make is that prior to proximation by an expansion in powers of the resistivity,
T.=100 GeV the geometry may be described by a conforwhich can be explicitly computed and which we report at the

mally flat metric of the Friedmann-Robertson-WalkERW)
type, whose line element is

ds?=g,gdx‘dxf=a(n)2(dr?—dx?), a(r)~r7
2.0

[7 is the conformal time coordinate related to the cosmic

time coordinatd asdt=a(7)d7]. We will also assume that

lowest order inoc~1:

o= [ $x(FxA).a3

e X(VXH)-d%,

d o N
—Neg= — —= | d®H-VxH. (2.6)
dT \Vj

the radiation-dominated stage started much before the elegwccording to Eqs(2.6) the magnetic flux lines evolve glued

troweak epoch at temperatur&€s-T, .

to the hypercharged plasma element; also the sum of the link

~ The Weyl invariance of the ordinary Maxwell equations and twist number of the magnetic flux tubes is always the
in a conformally flat FRW background geometry implies thatsame all along the time evolution, only provided that®

the MHD equations in the metri@.1) can be writterf29] as

+J=VXH,

T

=0.

The same dynamical information encoded in the magnetic
flux conservation is also contained in the magnetic diffusiv-
ity equation, which can be derived according to E2j2):

>

oH - . - 1 ..
—=VX(vXH)+—=V?H. 2.7
T o
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The ratio of the two terms on the right-hand side defines théL; is the lepton number of théth generation,B is the

magnetic Reynolds number baryon number, and; is the number of fermionic genera-
tions). One should also introduce a chemical potential
0'|V_>< JXﬁl corresponding to weak hypercharge, but its value is fixed
=——=plo. (2.8)  from the requirement of the hypercharge neutrality of the
|V2H] plasma,Y)=0.

We want to study this plasma slightly out of thermal equi-
If R<1 (for a given length scal¢) the flux lines of the |iprium; in particular, we want to see what happens with a
magnetic field will diffuse through the plasma.R&1 the  nonuniform distribution of the hypermagnetic field. Because
flux lines of the magnetic field will be frozen into the plasma of the anomaly, and thanks to the arguments illustrated in
element. From the magnetic diffusivity equati@n6) it is  Sec. |1 A, this field is coupled to the fermionic number den-
possible to derive the typical structure of the dynamo ternxities. In principle, different chemical potentials can be as-
by carefully averaging over the velocity field according to signed to all the fermionic degrees of freedom of the elec-
the procedure outlined if2,4]. By assuming that the motion {roweak theory(45 if n;=3) and the coupled system of
of the fluid is random and has zero mean velocity, it is posBoltzmann-type equations for these chemical potentials and
sible to average over the ensemble of the possible velocitye hypercharge fields may be written. Since we are inter-
fields. In more physical terms this averaging procedure Obsted in the slow processes in the plasma, this is not neces-
Eq. (2.7) is equivalent to averaging over scales and timessary. I the coupling, corresponding to some slow process, is
exceeding the characteristic correlation scale and timef  switched off, then the electroweak theory acquires an extra
the velocity field. This procedure assumes that the correlaconserved charge and a further chemical potential should be
tion scale of the magnetic field is much larger than the corgdded to the system given in EQ.11).
relation scale of the velocity field. In this approximation the  aAp interesting observatiofwhich turns out to be quite
magnetic diffusivity equation can be written as important in our contexthas been made if81], where it
was noticed that perturbative reactions with right-handed
electron chirality flip are out of thermal equilibrium at tem-
peratures higher than some temperdtdrg. Thus the num-
ber of right electrons is perturbatively conserved at tempera-

[a=—(70/3)(v-VXv) is the so-called dynamo term, which turesT>Tg and the chemical potentialr can be introduced
vanishes in the absence of vorticity; in this equaiﬁalis the for it. On the other hand, this charge is not conserved be-

magnetic field averaged over times larger thgn which is cause of the Abelian anomaly,

-

IH S R
—=a(VXH)+—=V?H (2.9
aT o

the typical correlation time of the velocity figldWe can 1202
clearly see that the crucial requirement for the all averaging 9 ik=— 9 Yr v 21

. . . . ,LLJR 2 y/u/y ’ ( . 2)
procedure we described is that the turbulent velocity field has 64

to be “globally” non-mirror-symmetric. It is interesting to . o
point out[2] that the dynamo term in E¢2.9) has a simple ~and itis therefore coupled to the hypermagnetic field. Bere
electrodynamical meaning, namely, it can be interpreted asand ) are, respectively, the 1) hypercharge field

mean Ohmic current directed along the magnetic field: strengths and their dualg,’ is the associated gauge cou-
pling, andyg=—2 is the hypercharge of the right electron.
J=—aH. (2.10 Now we are ready to derive the anomalous MHD equa-

tions [13,26. The effective Lagrangian density describing
This equation tells us that an ensemble of screwlike vorticethe dynamics of the gauge fields at finite fermionic density is
with zero mean helicity is able to generate loops in the magf32]
netic flux tubes in a plane orthogonal to the one of the origi-
nal field. This observation will be of some related interest for 1 B N N
the physical interpretation of the results we are going to EY'eR__Z \/__gYaBY —V=gd.Y ey Ys
present in the following paragraph. We finally notice that if
the velocity fieldis parity invariant(i.e., no vorticity for g'2
scales comparable with the correlation length of the mag- K= g2 MR (2.13
netic field, then the dynamics of the infrared modes is de- m
coupled from the velocity field since, over those scales,

~0 (g is the determinant of the metric defined in EH&.D);

Y.5=ViaYpg i Ve is the covariant derivative with respect to
the metric (2.1) [notice that in the metrid2.1) V.Y
=d;,Yp ;9" is the Abelian coupling constgnfThe first and

The electroweak plasma itompletethermal equilibrium  the last terms in Eq2.13 are nothing but the curved-space
at a temperatur@ can be characterized by chemical po- generalization of the flat-space effective Lagrangian for the
tentials u;, i=1,...n; corresponding to the exactly con- hypercharge fields at finite fermion dens[ty2], J, is the
served global charges

C. AMHD equations for electroweak plasmas

N,=L;,— E (2.12) 1This temperature depends on the particle physics model, see also
N¢ the discussion reported in Sec. V. In the MIM=80 TeV[31].
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Ohmic current. The equations of motion for the hyperelectric  With the use of relation§2.16), Eq. (2.15 can be rewrit-

and hypermagnetic fields are then ten completely in terms of the right-electron chemical poten-
tial:
MHy  ~ . aEY g2 . . .
7 = VXBy, ot Iv="zprayt VxHy, loued) 97783 1 . o
a ar  an? 8 aor2 v Hy T Tked).
ﬁ'l'_iy:o, €~Ey=O, (217)
.. . ... At finite hyperconductivity(in what we would call, in a
V-3y=0, Jy=c(EytvXHy), o=oa(r) MHD context, “resistive” approximation we have that

(2.149  from Eq.(2.14 the induced hyperelectric field is not exactly

. .. . oL L . orthogonal to the hypermagnetic one and, moreover, an extra
[Ey=a%Ey, Hy=a’Hy, Hy=V XY, &=—(dlat)Y]. For  “fermionic” current comes into the game thanks to the fact
the EW theory the conductivity of plasma és=70T [33].  that we are working at finite chemical potential. Therefore in

To the equations of motion of the hypercharge fi€kdl4) our context the resistive Ohm law can be written as
we have to add the evolution equation of the right-electron

chemical potential, which accounts for the anomalous and R jY . . 1 /4a’ ..
perturbative nonconservation of the right-electron number EY:;_UXHng 7MR3HY+VXHY
density fg):
. . 912
an 2 —vXHy, a'=-—. (2.18
(9—tR=—%€Y-HY—F(nR—n§C‘), (215) 4

In the parentheses appearing in E}18 we can identify
where T" is the perturbative chirality-changing ratd;  two different contributions. One is associated with the curl of
=T(Tr/My), ng'is the equilibrium value of the right- the magnetic field. We will call this the MHD contribution,
electron number density, and the term proportionalsince it appears in the same way in ordinary plasmas. The
to EY. ﬁY is the right-electron anomaly contribution. other contribution contains the chemical potential and it is

Finally, the relationship between the right-electron num-directly proportional to the magnetic field and to the chemi-
ber density and the chemical potential must be specifiedtal potential. This is a typical finite density effect. In fact the
This relation depends upon the particle content of the theoryextra Ohmic current simply describes the possibility that the
e.g., upon the number of fermionic generations, the numbegnergy sitting in real fermionic degrees of freedom can be
of Higgs doublets, etc. We will write it for the case of the transferred to the hypermagnetic field. It may be of some
MSM [34]: the specific coefficients change only slightly for interest to notice the analogy between the first term of Eq.
other theories and do not have a significant impact on thé2.18 and the typical form of the Ohmic current discussed in
results. For generality, we assume that the universe is asynid. (2.10 appearing in the context of the dynamo mecha-
metric not only with respect to the number of right electrons nism. In the latter case the presence of a curignbpor-
but also with respect to corresponding conserved charges d#éonal to the vorticity through ther dynamo termwas indi-
fined in Eq.(2.11) and compute all the relevant chemical cating that large length scale magnetic fields could grow by
potentials: eating up fluid vortices. By insertinEY obtained from the

generalized Ohm lay2.18 in the evolution equation®.14)

2N 783 15 S48 of the hypercharge fields, we obtain the generalized form of
eff 22( 21 63) | T the magnetic diffusivity equatio(2.7):
2 201, 1227 3 oHy  4aa’ S ufior s S (oxi s Loz
Ner| — T 420 017 1100 %21 99 | T Tr = e VX keH) VXX H) TV Y
(2.19
2 15 14 124 . ) o
Neﬁ< 2 110 5552+ 5 53>T, In order to be consistent with our resistive approach we ne-
glected terms containing time derivatives of the electric field,
which are subleading provided the conductivity is finite. In
2N ( 15 145 + 1245 )T our considerations we will also make a further simplification,
effl 298" 170917 55%2" 55 namely, we will assume that the EW plasma(ggobally)
parity invariant and that, therefore, no global vorticity is
5 27 present. Therefore, since the length scale of variation of the
Hy= 4577 Nett 85R+ 440 110( 6o+ 03) | T bulk velocity field is much shorter than the correlation dis-

(2.16  tance of the hypermagnetic field, the infrared modes of the
hypercharge will be practically unaffected by the velocity of
where §; is the asymmetry ofith conserved chargedy  the plasma, which will be neglected when the large-scale part
=ng/s (s is the entropy densilyis the right-electron asym- of the hypercharge is concerned. This corresponds to the
metry, andN4=106.75 is the effective number of relativis- usual MHD treatment of a mirror-symmetric plasifsee,
tic degrees of freedom in the symmetric phase of the MSMe.g., Eq.(2.9), whena=0].
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Equations(2.19 and (2.17) form a set of AMHD equa- Ill. FERMIONS FROM THE HYPERCHARGE FIELD

tions for the hypercharge magnetic field and right-electron A Ts>T

chemical potential in the expanding universe. ' ¢
An important property of Egs(2.14) and (2.19 is that In this section we are going to compute the relationship

they arenot conformally invariant. The conformal invariance between hypermagnetic fields and induced fermionic chemi-

of the ordinary Maxwell equations implies that the equationscal potential, at temperatures larger than the critical tempera-

for the rescaled fields in curved space keep the same forfitire of the electroweak phase transitiog.

also in flat space in terms of the nonrescaled fields provided There is an important consequence of the resistive ap-

the conformal time coordinate is employed in curved spacégroximation. By using the Ohm law given by E@.21) we

and the cosmic time coordinate is employed in flat space. wean eliminate the hyperelectric field from the kinetic equa-

can easily see that this is not the case of @dL4) by writing  tion of the right electrons and obtain

our evolution equations in flat space:

J [uR) g2 783 . . . MR
- 22 . a(?)—‘w—wﬁﬁv'vwﬁ”m?
Y == Y | - T R,
- T VXE&, o TIv=_zurHy VX Hy, @D
where
V-Hy=0, V.&=0, 783 a'? |Hy|?
NT22 gn? T2 3.2
V.Jy=0, Jy=0ly. (2.20

We notice immediately that the source term appearing in the
. . right-hand side of Eq(3.1) (and coming from the anomaly
The lack of conformal invariance comes from the presences ingeed strongly reminiscent of what we would i a

of the scale factor in front of the right-electron chemical \yyp contex) magnetic helicity. From E¢3.1) one can see
potential in the evolution equatiof2.14 for Hy. Clearly,  that the right-electron number is not conservegen if I

the explicit breaking of conformal invariance is also reflected=0) because of the Abelian anomaly, provided a nonzero
in the Ohm law and in the hypermagnetic diffusivity equa- hypermagnetic field is preseftf. Ref.[35]). Equation(3.1)

tion which, passing from curved to flat space, become  can be solved in the adiabatic approximation at temperatures
T<Tgr, when perturbative right-electron chirality flip reac-

) j 1/a L tions are in thermal equilibrium. Neglecting the time deriva-
Ey= o — urHy+VXHy |, (2.2) tive of the chemical potential, we get
O. O\ T
UR a'  783Hy-VXHy a3
L L Y T med? 88 AT, @3
i X(MRHY)JFU—C Hy.

The solution(3.3) can be inserted into Eq2.22 for the
magnetic field, which will become a partiagtonlineay dif-

o ) ) ferential equation containing only the hypermagnetic field.
In flat space the kinetic equation of the right-electron chemirps an inhomogeneous hypermagnetic field can produce a

(2.22

cal potential becomes instead spatial variation in the chemical content of the plasma. In
fact, according to E¢2.16), spatial fluctuations in the right-

IR g'? 783. . electron chemical potential will determine fluctuations not

ot 4m’T §5Y'HY_FMR- (223 only in the right-electron number density but also in the

number densities associated with the other fermion asymme-
tries. Fluctuations in the number density of some species are
Tfrequently called isocurvature perturbations. There are actu-

q X it Al q ; bilEgl. | ally two regimes where Eq3.3) can be analyzed. The first
ynamo term, since it also produces an instabll§]. Its 0 s the regime wher€>T,,. In this case the rate of

physical.interpretation is actuglly quite simple. We qould de'right—electron dilution is essentially determined by the per-
fine, as in the case of the ordinary MH[.)’ a ge.nerahzed ReYsurbative processes, which can flip the chirality of the right
nolds number that measures the relative weight of the tW, . rons. In the opposite casE,(>T) the rate is mainly

terms on the right-hand side of E.19. If the diffusion due to the presence of the Abelian anomaly, and
term dominates, then the flux of magnetic hypercharge will '

diffuse through the plasma. If on the contrary we are in the

It is interesting to notice that the term containing the chemi
cal potential in Eq(2.19 plays a role similar to that of the

g [ = —
inertial range(where the diffusivity term is negligib)ehere NR=— 88m Hy- VX Hy o) L r,>T.
are two possibilities. If the chemical potential is exactly zero 783'? | Hy|? r,)’

then the hypermagnetic field will be frozen into the plasma (3.9

element as required by magnetic flux conservation. However,

if we are at finite fermion density the energy density sittingIln Eq. (3.4) the chirality-changing rate only comes in the
in fermionic degrees of freedom may be transformed in in<correction. Moreover, since the hypermagnetic field intensity
frared modes of the hypermagnetic field. appears with the same power in the numerator and in the
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denominator, the right-electron fluctuations are independent n¢

of the magnitude of the hypermagnetic field fluctuations and Na(te) =~ 5 ANcg(te). 3.7
fixed by their spatial distribution. It is interesting to notice
that in Eq. (3.4 the actual value of the conductivity com-

; : This equation is our main result. Once the hypermagnetic
pletely cancels and only appears in the correction.

background is specified, the time integration appearing in
Eq. (3.6 can be performed. If the typical scale of the con-

B. T<T, figuration is larger than the magnetic diffusivity distance
Now we are going to discuss what happens after the elec-
" . 1
troweak phase transition. BeloWw, the hypercharge mag P~ 107 9%L 3.9
netic fields are converted into ordinary magnetic fields. The 7 Kk, EW '

latter do not have anomalous coupling to fermions, and the

usual MHD equations are fully valid. Any source term thatwhere Lgy~3 cm is the size of the EW horizon &t
was inducing a nonvanishing chemical potential disappears-100 GeV, then all the modes of the hypermagnetic field
Thus the transformation of the magnetic fields into fermionswith momentumk smaller than

is no longer possible. It seems, therefore, that the matter

fluctuations after the phase transition will be given by the o. Mop,

fluctuations right before the phase transition. The last state- ~ K,~ \/17°T, Mo=———=~7.1X 10 Gev

ment is in fact wrong for two reasons. First, if the phase 0 1.66VNer

transition is weakly first order, so that sphaleron processes , ,

are in thermal equilibrium after it, then any fluctuations of Will remain frozen into the EW plasma element. Thus the
the fermionic charges will disappear. In this particular casd®@yon-number fluctuations can be written as

all anomalous effects that existed befdreare simply “for- ...

gotten,” since the system passes through an equilibrium pe- B - @' ng Hy-VXHy 'Mg

riod with respect to fermion-number nonconservation. Let us 5( ?) (X,te)= 270, s I+Ty Tg ’

admit that the electroweak phase transition is strongly first
order and a necessary condition for EW baryogen@&€kis 12 1 12
satisfied. Then, there is an important “storage” efféahd :7_%0‘_&
we come to the second pojntvhich amplifies the estimates 22 gom® Tg '
of Egs. (3.3 and (3.4) by many orders of magnitude. The

point is that the fermion number can sit not only in the fer-Notice that in Eq.(3.9) there is an enhancement by a factor
mions(and in their associated chemical potentialt also in ~ ~T'M/T? arising from the time integration of the anomaly
the hypermagnetic field itself. At the EW phase transition,term. We also point out that foF;,<T" the rate of right-
this fermion number must be released in the form of reaklectron chirality flip cancels out. This last expression can be
fermions, just because the ordinary magnetic field, whicteasily written in terms of the corresponding curved space
survives after transition, cannot carry fermion number. Toquantities and the only point to be kept in mind is that, in
compute the density of the Chern-Simons numfiggof the  curved-space, the chemical potential is multiplied by the
hypercharge field configuration before the EW phase transiscale factor(which breaks the conformal invariance of the

tion we just integratefy - Hy over the time: AMHD equations.

(3.9

2,12

YrY N
AnCS(tc): _ 6r ) gy'Hydt. (3.5 IV. STOCHASTIC HYPERMAGNETIC BACKGROUNDS

Two qualitatively different classes of hypermagnetic

In order to estimate this integral we have to solve thebackgrounds can be studied. The first class is characterized

coupled system given by Eq€2.22 and (3.1). The main Py @ nonvanishing magnetic helicitli.e., (Hy-VXHy)

contribution to this integral comes from the largest time # 0], which implies that the hypercharge field is topologi-
~t,, where reactions with right-electron chirality flip are in cally nontrivial and parity noninvariant. _Ther_efore, in this
thermal equilibrium. Thus we can use again the adiabati€lass of backgrounds not only fluctuations in the baryon

approximation(which implies thatyug/dt~0) and obtain ~ humber will be produced, but also the generation of the
baryon asymmetry is possible. We will discuss this possibil-

ity later in Sec. VI.

Ancg(ty) = — a JtC Ax.D) £ , The aim of this section is to relate the properties of sto-
2w Jo I'+ Ty o chastic background with zero average magnetic helicity to
the baryon-number fluctuations. For this type of magnetic

AX, D) =Ty VX Hy. 3.6 field (3(ng/s)(x,t))=0 but (&(ng/s)(x+r,tc)s(ng/

s)(i,tc)#o, so that only the inhomogeneities of baryonic
This Chern-Simons number will be released at the EWhumber are produced. We will be interested here in the for-
phase transition in the form of fermions, which will not be mal aspect of this relation, and we will focus our attention on
destroyed by the sphalerons if the phase transition is strongthe study of the phenomenological applications in Sec. V.
first order. The density of the baryonic numbms is just Consider a stochastic hypermagnetic field whsarity-
given by integrated anomaly: invariany two-point function is
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. R L. e 5 complicated convolutions would appgdaut directly in real
Gij(r):<Hi(X)Hj(X+r)>:j e 'Gjj(k)d*k, (4.)  space. A generic rotationally and parity-invariant Green
function can always be written in real space as

where, because of transversality of the magnetic field, . .
Gij(Ir)=F(r)&;+rir;Fa(r), [r]=r 4.7

2 kik;
Gy (k) =Kf(K)| 8= 7' (42 where
The average appearing in E@-.1) denotes an ensemble av- Fy(r)= i[rzh(rz)] Fo(r)=— i[h(rz)]
erage. As was previously stated, the average hypermagnetic ar? ' ar? '

helicity is (A(X,to))=(H-VXH)=0 in the case of the ;
transverse and parity-invariant two-point function given in rG(r)= r3h(r2 4.8
Egs.(4.1) and (4.2). G(r)= 52 lrh(rl, “9

The assumption of the stochasticity of the background _ ) ) _
implies that the higher-order correlation functions of the@nd&(r) is nothing but the trace of our two-point function,
magnetic hypercharge fields can be computed in terms of th@amely,
two-point function(4.1). For example, the four-point func- 4 K\ (o
tion can be completely expressed in terms of the two-pointg(r):Tr[Gij(r)]: _Wki(_v) f q(2+a)e—2q2 sinRqdq
function (4.1): R 7\ky) Jo

4.9

Hi (X" YH; (X)H (y ) Hn(y
(HOADH ORI HA()) (with g= k/k, andR=r/r,). Clearly, this representation is
transversdi.e., (9/dr')/ G;;(r)=0], and moreover the inte-

= [HH; N HIY I HR(y)) +(H(XDHI(y ") gral over the spectrum appearing in E4.9) can be exactly

X<Hj()z)Hn()7)>+<Hk()z/)Hn(§)><Hj()Z)HI(§,)>]- performed in terms of known special functions:
4.3 1 a3 R? R?
9R=GOF| —5=5.5, g |&R ~ 5|
We are now going to compute the level of the induced
fluctuations by the above-mentioned stochastic hypermag- K\ @ o
netic background. We parametrize the spectral properties of Q(O):47rkj‘, _) 23— al2rfo4 _ (4.10
our correlation function by assuming a power law behavior Ky 2

of its Fourier transform: [F(a,b,z) is the confluent hypergeometric function ank)

1 a 2 is the Euler gamma functiof87,38].
f(k)zE (k_> exp{—z(k—> } 4.9 Some physical considerations are now in order. In our
! v problem the relevant scales are those that are not erased by

This representation only depends upon two unknown paranf® Plasma conductivity, namely, from E¢8.8), all the
eters, namely, the sloge) and the amplitude, which can be scalesr>r . Therefore the physical limit of all our correla-
changed by changin,. The exponential damping appear- 4oN functions will always be the largg-limit. Moreover, a
ing in the mode function is not the result of any assumptionPhysically realistic situation does correspond, in our consid-
but it is a direct consequence of the fact that, according to th8rations, to the case where the Green functions are decaying
hyperdiffusivity equationg2.19 and (2.22, all the modes &t large length scales. If the Green functions decay at large
k>k, decay thanks to the finite value of the conductivity. distances we automatically exclude the possibility that the

The hypermagnetic energy density is obtained by tracing th&"€rgy spectrum of the hypermagnetic inhomogeneities will
Green function defined in Eq4.1) for F=0 have some peak at large wavelength. The large-sg¢ae
o ' R>1) limit of the normalized trace of our Green functions

K\ @ K\ 2 will then be given by
T1(x)12) = . = 3 — —_2l —
([H(X)[?)=TrG;;(0)] Zfd kk K, ex;:{ Z(kg) } 3

(45) g(R): F(E) 26+(3/2) aR,(a+4) g(R): g(R)

Because of the exponential damping, this integral is always I'—(1+a)/2) ' Gg(0) -
ultraviolet convergent and can be very simply performed: (4.12

|H(>Z)|2 a+4) [k \ata In k space the magnetic energy density per logarithmic in-

Ta | =AmE 2 (al2+2)T — ?") , terval of frequency is defined 446,18 p(k)=dpy/d Ink

(46 [where pu=3(|H(X)|?)]. Therefore in our casep(k)
~k*(k/k,)* which implies that “blue” (@=—4) or “vio-
whereé=k,/T. let” ( &> —4) logarithmic energy spectra correspond to the
We will often have to compute various four-point func- physically interesting case of two-point functions decaying at
tions, and it is sometimes of great help to evaluate thdarge scales whereas far<—4 we have “red” logarithmic
higher-order Green functions not in Fourier spduéhere  energy spectra which are connected with Green’s functions
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decreasing at small scales. The case of flat logarithmic en- 45n;a’  Te Mg €4 <C(e)

ergy spectra ¢=—4) may quite naturally appear in string A(r,te)= T, (Tofe [1+O(N)],

cosmological modelg18]. € ¢
It is important to point out that if the Green functions

7N eff( 7c) 0'_0

decay at large distances, thg(R) <1. This observation will e 32 €

be of some relevance when we will have to explicitly evalu- 2 2] [me(e+2)

ate our fluctuations, sinog(R) will turn out to be a useful C(e)= T(3=o2) EEPR

and natural expansion parameteee Appendix B for de-

tails).

We can also give the large-expression oh(r?) since it Ky I \2/r) 2

can easily be deduced according to E48): §=73. A~ )\ (4.1

" 3 Notice that this expression holds for large réte., I'>1";)
2 2(3/2) e+1 and for large scale.e.,g(R)<1, R>1].

h(R)=¢G(0) T(3—e)/2) 3—< R™¢ (412 The second regime in which one may wish to compute the
level of induced fluctuations is the one whdfesI',,. The
main mathematical problem will be to evaluate the correla-
where we definedv=—4+e. tion function of the hypermagnetic helicity divided by the
We are now ready to compute the level of baryon-numbehypermagnetic energy density. This is of course a strongly
fluctuations induced by our stochastic background of magnonlinear object which we cannot compute exactly. By
netic hypercharge fields, which is defined by the correlatiorworking at large scales and in the hypothesis that the Green
function functions are decaying at large distances, the bottom line of
this calculation(reported in Appendix Bis

n — n -
S e A
BJ?

(4.13 |§|2
There are two regimes where this calculation can be per- ((B-VXB)(X)(B-VXB)(X+r))
formed depending upon the relative weight of the two rates = N +O(9(R)).
appearing in Eq(3.2). If I'=I", the major technical problem (IBOO)
we have to face is to evaluate the correlation function of the (4.16

magnetic helicity at two different points; this involves, ulti-

mately, the calculation of a four-point function. The alge'Notice that to estimate the numerator appearing on the right-

braic details of this long but straightforward calculation are , .

. . . o . hand side of Eq(4.16), Eq. (4.14 can be used together with
given in Append_lx A The result is given in terms of the the considerations reported in Appendix A.
functions appearing in the real space parametrization of our

Green's functions given in Eq4.8):
V. PHENOMENOLOGICAL IMPLICATIONS

((H-VXH)(X)(H-VXH)(x+1)) Having set all the formalism for computing baryon-
) number fluctuations, we now come to the physical conse-
_ fF (1 dF5(r) —2F.(r) dF4(r) quences. As we argued in Sec. Il B, these fluctuations sur-
rot dr ! dr? vive after the electroweak phase transition only if it is

strongly first order; we will assume that this is the case. We

+4r2[|:2(r)]2+2r|:1(r)dFZ(r) will argue in Sec. VI A that strong enough magnetic fields
dr make an EW phase transition strongly first order even in the
dF,(r) dF(r)|2 case of.the minimal st_andard model. Otherwise, some exten-
_Grpz(r);JrG,:l(r)Fz(er 1 ) _ sion of it can be considered.
dr dr An essential quantity entering all expressions for baryon-

(4.14) number fluctuations is the ratio between the perturbative and
nonperturbative rate of the right-electron chirality flip. Fluc-
tuations are larger fdr>1I"4,. In Secs. V A and V B we will

In this and the following formulas we will often use the assume that this is indeed the case, and analyze this assump-
notationB(r.) = H(7.)/T2(7), which is convenient since in tion in detail in Sec. V C.

B the time dependence of the scale factors cancels and the AS & preliminary warmup let us estimate the amplitude of
only time dependence left is due to the evolution of the efbaryon-number fluctuations at the magnetic diffusivity scale
fective number of the relativistic degrees of freedom in thefor a flat spectrum of magnetic fieldg<1). If the energy
plasma,Ng¢(7). Inserting now Eq(4.12 into Eq. (4.8) we  Sitting in the background magnetic field is comparable with
obtain the energy density of the photong{2)~T%, then for the
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FIG. 1. We plot the level of fluctuations given in Eg@.15 for different values of amplitude&) and slopege) of the hypermagnetic
energy spectrum for scales slightly larger than the diffusivity scale, which'i€40gy, [Lgy is the EW horizon, see also E@®.8)]. These
scales will not be washed out by the finite value of the conductivity, and we can immediately see that for a sufficiently blue spectrum
(e<1) A~10°-10" as suggested by the estimate of E§.1). Looking at the plots from top to bottom, we see thatdecreases for
increasingly violet spectrae&z 1) and for fixed amplitudéf) of the hypermagnetic energy spectrum. We notice that the results illustrated in
this plot depend very weakly upon the value of the hyperconductivity. In particular, in the present plots, we asslilpedr0 as fiducial
value for the hyperconductivity at the EW scale.

smallest possible scaler~1/k,~10 % EW horizon ~ completeness we will compare the bounds arising from the

=3 cm) we get, from Eq(4.15), occurrence of matter-antimatter domains for scales of the
order of the neutron diffusion distance with the bounds for
a’ Mo magnetic fields that are at present coherent over much larger
A(rg,te) Ny Vo~ 10°. (5.)  scales.

This estimate is certainly quite large and it is unlikely to be
correct, since for such huge fluctuation the backreaction of
the created fermions on the magnetic fields and on the dy- The success of the homogeneous and isotropic nucleosyn-
namics of the electroweak phase transitiovhich we ig- thesis may impose strong constraints upon the baryon-
nored must be taken into account. Nevertheless, it show$iumber fluctuations possibly produced prior to the formation
that considerable inhomogeneities in the baryonic numbe®of the light nuclei. Broadly speaking, the predictions of ho-
are possible on small scales. The estin{&t#) considerably mogeneous BBN for the primordial abundances of the light
exceeds the measure of the baryon asymmetry of the unglements are compatible with the observations only if the
verse ng/s~10"1% thus small size matter-antimatter are baryon-to-photon ratio lies in a quite narrow range around
possible at the EW scale. At the same time, for even largeng/n,=3x10"*°—10"° [39].
scalegpossibly relevant for structure formatipnhe fluctua- Generally, ifA(r,t;)>ng/s for some length scale, we
tions of Eq.(4.15 are quite minutg(since their amplitude have to conclude that matter-antimatter domains will be
decreases with the distance as'1Ff) and may be safely formed. If, on the other hand\(r,t)<ng/s at all scales,
neglected. only positive-definite fluctuations in baryonic density are
The above estimate suggests that a quite natural outconpgoduced.
of the presence of stochastic background of the primordial Upper and lower limits on the scales over which a pertur-
hypercharge field may be a rather inhomogeneous distribubation in baryon number can affect nucleosynthesis through
tion of matter and antimatter domains for scales inside th@eutron-proton segregation are determined by the comoving
EW horizon. The fluctuations estimated in £4.15 are also  diffusion lengths of neutrons and protons at the beginning of
illustrated in Fig. 1 where the level of fluctuation is plotted nucleosynthesis. At high temperatures the diffusion lengths
for different slopes and amplitudes of the hypermagnetic enef neutrons and protons are almost the same, since neutron-
ergy spectrum. We clearly see that by tunéhg.e., by tun-  proton equilibrium is guaranteed by weak interactions. After
ing the amplitude of the hypermagnetic energy speciiine  weak interactions have fallen out of equilibrium, nucleons
level of induced matter-antimatter fluctuations can be agetain their identity as neutrons and protons, and diffusive
large as suggested by the estimate of Gqb). segregation can occur. Coulomb scattering between protons
We will now discuss the relevance of the generated flucand electronsor positron$ give a cross section roughly
tuations for the BBN. In fact sizable matter-antimatter fluc-equal to the Thompson cross section. Since neutrons have a
tuations can provide a new type of initial conditions for non-magnetic moment they scatter electrons with a cross section
homogeneous BBN. From a more conservative point obf 8x10 3! cn?. Neutrons scatter also nucleons and the
view, we can instead assume that the BBN was essentiallgcattering cross section in terms of the ftriplet and singlet
homogeneous; then our considerations provide a new bourgtattering lengths is roughly 231023 cn?. Once the cross
on primordial magnetic fields present at the EW epoch. Fosections of the processes involved are known, the diffusion

A. BBN and matter-antimatter fluctuations
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scale is simply given by (7y)~67yD(7y), whereD(7y) 18
is the diffusion coefficieni{usually related to the mobility
throughzthe Einstein coefficief0]) at any given timer T
At the onset of nucleosynthesi$ {=0.2m,, wherem, is 05f
the electron magshe comoving diffusion scale turns out to
be [41-44 3x10° cm. The neutron diffusion length blue-
shifted at the time of the electroweak phase transition is

log&

Ly(To)=0.3 cm forT.=100 GeV. (5.2 T

-1k

If A(Lgg,te)>ng/s matter-antimatter domains will not be

erased by the nucleosynthesis time and, at the same time¢ -15;
fluctuations occurring over scales smaller thag(t.) at the

electroweak epoch are likely to be dissipatéd,42. T T TRy e Ry Pl

Taking again the flat spectrum for magnetic fields and ' ' ' ' ' ' ' ' -

assuming that their energy isT*, we thus obtain for the

ryon-number fl ion h ng/s)~10°
baryon-number fluctuations at that scakng/s)~10 magnetic hypercharge field derived in E&.4) by requiring the

_10 . . . ._
=10 % If magnetic fields are large enouglwith suff homogeneity in the baryon-number fluctuations at the neutron dif-

ciently flat spectra domains of matter and antimatter may , . 2 2
exist at scales five orders of magnitude larger than the ne fusion length. We have chosdlghio,=0.01 andflohige1. We

Yotice that by changing, o in th 0.4hy0<1 th ti-
tron diffusion lengtt? To our best knowledge, there have o . o 2. anginagq I the range 100 © duant

. A . tative change in the bound is negligible. We also togKT.~ 70 as
been no studies of nonhomogeneous BBN with this type o iducial value. The variation o, in a plausible range does not

initial conditions. Of course, there were a lot of investiga- yjter the features of the present plot. The shaded region in the pa-
tions of non-homogeneous nucleosynthesis, motivated byameter space corresponds to matter-antimatter fluctuations that will
first-order quark-hadron phase transiti@gtb]. In particular,  pe erased by the nucleosynthesis time, whereas in order to have
baryon-number fluctuations with spectral amplitudes growsizable matter-antimatter domains at the onset of BBN we have to
ing in frequency(and then decaying at large length scales go above the line. In the dashed line we report the critical energy
were recently address¢d3], with the result that these fluc- density bound given in Eq$5.5) and (5.6).

tuations are allowed, provided they occur at scales smaller
than the neutron diffusion length. However, Rei41-44
essentially considered positive-definite baryon-number fluc-
tuations, rather than with matter-antimatter domains. These
results were also used in order to constrain the possible 2

baryon-number fluctuations arising in the context oﬁ‘) topo- +|0910[QBh100]) / (4—e). (5.9
logical defect models of baryogene§is). It would be very

X X ; X T
interesting to see whether matter-antimatter domains ma . : .
v gur approximations, we considered the case wler®.05

change BBN bounds on the baryon-to-photon ratio by chan tor e d | It =10° th .
ing the related predictions of the light element abundances'©" €=0.05 and scalekqi rogl the c:)rrectlolns aé)pear—
This possible analysis will not be attempted here. ing in Eq. (4.19 are not under contrpl We plotted our

We can instead adopt a more conservative attitude angounds in the case 0.8%=<1. There is a second constraint
require that no matter-antimatter domains larger than th&/hich one might want to impose on our background, namely,
nucleon diffusion scale exist at the onset of nucleosynthesidn€ ©né coming from the critical energy density:

This will give some constraints on the primordial hyper- 1 . .
charge magnetic fields. In order not to have matter-antimatter pu(te)<p,(to), pulte)= §(|H(x)|2>,
domains affecting BBN, we therefore demand

FIG. 2. We plot the constraint on the stochastic background of

logyp <

o 1
—6.262+l0g; T—° +5 10030 €+(14.88 €
C

his condition is reported in Fig. 2 where, for the validity of

2
py(tc): _Nefng (55)
ng 30

A(Ldiff ,tc)<?. (53) .
[where {|[H(x)|?) is given by Eq.(4.5)]. Using now Eq.
(4.6) we can convert Eq(5.5) into a further(but mildep

From Eq.(4.15, imposing the bound5.3), we can trans- constraint on our parameter space

late the constraints coming from homogeneity of BBN into

an exclusion plot in terms of the only two parameterand logyo <
¢) characterizing our stochastic hypermagnetic background:

TNer € o
l0g10 120 + 5 l0g10 2—109:¢ M,

/(4—6) (5.6
Note that the energy fluctuations of the electroweak horizon scale
are always sufficiently smali.e., 5p,/p,<1 for r~Lgy) so that ~ This bound is also reported in Fig.(@ashed ling Sizable
black-hole formation is not expected. matter-antimatter domains are produced when the spectrum

+ Ioglo €
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FIG. 3. We plot the expected level of fluctuations given in Egl5 for scales of the order dfand larger thanthe neutron diffusion
distance given in Eq5.2). In the plotr,=L g . In this case we always toak./T.~70. We can notice that for flat enough spectra a very
interesting level of fluctuations is allowed. For violet spectra the fluctuations are certainly suppressed. The same trend exists for even larger
scales.

is sufficiently flat. This feature can also be deduced from thanerical problem, but we will come back to it in Sec. VI.
level of fluctuations for scales of the order of the neutron
diffusion distance, which we plot in Fig. 3. We see that it is

quite possible to geA> 10" around the neutron diffusion B. Comparison with other bounds on primordial
distance. magnetic fields

We want to notice that an artificial way of relaxing our In this section we are going to compare the BBN bound
exclusion plot(5.4) could be(trivially) to enhance the level reported in Eq(5.4) with other possible bounds, which could
of the baryon asymmetry by enhanciﬁq;hfoo (up to values  be applied on primordial magnetic fields.
of the order of 0.1-11 This phenomenon turns out to be It is well known that there are direct bounds on primordial
similar to the one discussed [47], where it was argued that magnetic fields at the nucleosynthesis ep®fj. Moreover,
baryon-number fluctuations with blue frequency spectrauite recently, two constraints on magnetic field intensities
might offer an interesting mechanism for accounting forwere derived using, respectively, the anisotropies in the mi-
large amounts of baryonic dark matter. This is purely ancrowave sky[21] and the Faraday rotation correlatidi2s].
analogy, since the problem we are discussi@s we These last two bounds apply of course to the case of fields
stresseylis not the origin of the baryon asymmetry, but the that are, today, coherent over length scales much broader
possible bounds on the hypercharge fields. Therefore thghan the(present nucleosynthesis scale. In order to see how
value of Qgh3, is an external parameter for us, but not astringent our bound is, we should compare it with the ones
computable numbe(see also Sec. VI already available and coming from larger scales. In this sense

A comment is now in order concerning the phenomeno-our aim is to show that our bounds are clearly more stringent
logical estimates we made in this subsection. The system dbr small-scale fields but cannot compdi@ even larger
Egs. (2.22 and (3.1) was solved in the approximation of scale$ with the ones coming from the CMBR anisotropies
local thermal equilibrium and the possible backreaction efand from the Faraday rotation measurements.
fects were ignored. Numerical solutions of this nonlinear Since the CMBR is isotropic to a very high degree of
system of partial differential equations are required if theaccuracy, its small anisotropies can constrain the intensity of
level of induced fluctuations gets too lar§iee., A~1). We  a constant magnetic fielgoherent over the present horizon
will not discuss here how to address this complicated nusize[21]), which could modify the evolution equations of the
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o5f ' ' ' ' ' ' ' 7 with the bound of Fig. 2. Since the region defined by Eq.
7 (5.4 is always below the curve of Ed5.7), we conclude
i el | that the bound imposed by the homogeneous BBN is more

constraining than the one reported [i21,22 for €>0.05.
Clearly, for some very small slopes, the COBE bound will
become better, but we cannot compute this critical value of
since our approximation breaks down before it.[24] the
polarized emission of a few hundred galaxies was reviewed
and another bound on the present intensity of large-scale
magnetic fields was reported. A large-scale field should pro-
duce an additional shift in the polarization plane of the in-
coming radiation according to the Faraday effect. In fact the
polarization plane of the synchrotron radiation gets shifted,
in the background of a magnetic field, by an amount that is
directly proportional to the integral of the magnetic field
times the electron density along the line of sight. By sub-
€ tracting, from the total angular shift, the one produced by

FIG. 4. We plot our boundlower curvé obtained in Eq(5.4) each 'galactic field, it is possible to constrain the intensity of
and the bound derived if21,27 (upper curvi from the CMBR  any field coherent over scales larger than the galactic one.
anisotropies in the case of a magnetic field coherent over the horil N€ only uncertainty with this procedure is that the measure-
zon size today. For values afand £ above the shaded region the Ments assume that the magnetic fields of the Milky Way and
level of fluctuations exceeds the boufd3). Again the variation of ~ Of the other galaxies are known to a very high degree of
Qgh?,, (possibly between 0.1 and 0)0dhanges the plot by only a accuracy, since they have to be subtracted from each esti-
few percent. In this plot we took;ge=0.6. mate of the Faraday rotation. The constraint obtained with
this method turns out to be|H(to)|<1X[(2.6

matter sources by introducing a slightly anisotropic pressurec 10-7 Cm73)/n_B]h100X 1079 G, for fields now coherent
[22]. The calculation of the CMBR anisotropies can be car-gyer scaled;(ty)=(10— 50)h; Mpc. Assuming that the
ried out also in the case of slightly skew stresses, Whosﬁwean (present  baryon  density s no~1.13
numerical weight depends upon the magnetic field intensity>< 10-5(Qgh? -3 the (blueshifted field int B't : d
By comparing the final result with the level of anisotropies’ eM1o0 cm =, .e( ueshifted .|e mensiy an
detected by COBE, it is possible to compute how big thelts coherence length will be, respectiveli;(tc)[<3.79
magnetic field intensity should be not to conflict with ob- X 10°(Qgh%o) "*h1go G and  Ly(tc)=6X10"h;gcm
served anisotropies in the microwave sky. At the presenwhere we tool o(to)=25 Mpc. By translating this bound in
time, the constraint i ﬁo(to)|<6.8x 1079(Qohio&1/2 g the(&e plane, we obtain the following relation:
over a length scalkg(ty)=9.25x 107’ hl’olO cm. The authors
of Refs.[21, 22 gave the bound in terms b, (the present log;p é<
uncertainty in the Hubble parameter in units of 50 km/Mpc
seq. For consistency with our notation and in order to make 1 €
the comparison with other bounds easier, use insteggl ~ 5 10910 h10o 6)/ (2— E)' (5.8
=hgy2 taking, as usual, 0<dh,yy<1. By blueshifting the
bound of [21] up to T, we get |Ho(t)|<1.12 This cqnstraint is illustrated in Fig. 5, wherg we see that our
X 107(0h%,) 2 G at a scalelo(t)=7.19x 10t 4 cm,  Curve is always below the curve reported in £8.8). Our
where we assumed that the magnetic field scalesa#¢4),  constraint is again more stringent than the one of G
as it is plausible to demand for length scales larger than thfr €>0.05. The bounds on ordinary magnetic fields at the
magnetic diffusivity scale. We also took into account thenucleosynthesis epoch also apply in our case. In order not to
evolution in the effective number of degrees of freedom inaffect the universe expansion at n_ucleosynthe3|s it should
the plasma, which iNgq(t)~106.75 andNe(tged ~ 3.90. hold (see, for instance, Kernagt ql. in Ref. [20]) 'thatpH.
The bound onHy(t) turns into a bound onB(t,) _<0.27py [wherepH_|s the magnetic energy de_nS|ty defined
= J(A%/T2 (recall that 1 G=1.95x10 2 Ge\A). in Eq. (5.9] andpv is the energy density contributed by. the
From Eq.(4.6) [taking r~L(t,), T~T] it actually re- standard three Ilght neutrinos far<1 MeV. Therefore in
sults that the parameter space of our model has to satisfy tHg'MS 0f¢é and e this bound reads:
following requirement:

0.05 0.1 0.15 02 0.25 03 0.35 04 0.45 05

1 1
—4.77+ 5 log;o €= 5 logig Qgh3y,+|13.09

(11.30- 3 logy 0¢/T,)e+10g;o €—0.2

logyo €< —
1 ) 1 4—¢€
In ¢<| —2.30+ > IN[Qoh%oe] + > In e+]14.13 (5.9
6 This bound is reported in Fig. 6 and is compared with our
-5 In hygo 6) / (2_ E)' (5.7  bound. We see that the bound coming from the absence of

matter-antimatter domains at the nucleosynthesis epoch is
more constraining fotby two orders of magnitude for loga-
For comparison this constraint is reported in Fig. 4, togetherithmic energy spectra witlk<1). Note also that, according
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FIG. 5. We compare the bounds of EdS.4) and(5.8). The FIG. 7. We plot the constraint derived on the basis of BBN
most constraining bound is the one given by the lower curve giverzonsideration$Eg. (5.4)] together with the requirement derived in
by Eq. (5.4). The upper curve derived in the context of FaradayEq. (5.10. The dashed line corresponds to a magnetic field of EW
rotation measurements is more constraining than the one obtainesligin strong enough to rotate the polarization plane of the CMBR
from the isotropy of the CMBR. The numerical value of the param-under the assumption that the CMBR is polarized. We can see that
eters for which this plot is obtained is the same as for Figs. 2 and 4f such a field has an electroweak origin, then also sizable matter-

antimatter fluctuations will be present for scales of the order of the
to [48], the bound5.9) may in fact be absent, because thereneutron diffusion distance.
are other mechanisms, besides magnetic diffusivity, that can
dilute the magnetic fields before the BBN. Then our boundthe scale of the electroweak phase transition the blueshifted
remains the only one that can be applied to the small-scalield and the corresponding correlation length read, respec-
magnetic fields. . ~ tively, |Ha(ty)|=1.36x10"G  and  La(t,)=1.447

Anothgr interesting numerical .vaIue of the magnetic flelq,x 10"4(Qh2,9 ~¥2 cm and this imposes for our parameters
which might be compared with our considerations isihe following requirement:

|H3(tged| =103 G coherent over a scalba(tged=1.690

X 107(Qoh3,9) ~¥2 cm, which is the size of the horizon at 1

the decoupling. If this field would be present at the decou- l0gyo £=| —3.22+ 5 1003 €+13.28&

pling time (when the temperature was roughly

T4=0.258 eV} it might also rotate the polarization plane of € ) €

the CMBR provided the CMBR is weakly polariz&23]. At 7 |0910[Qoh1oo]) (2— E) . (5.10

It is of some interest to notice from Fig. 7 that the region
defined by Eq.5.10 falls in the forbidden area of Fig. 2.
This means that the BBN bound of E.4) excludes the
possibility that a primordial magnetic field of EW origin is
strong enough to rotate the polarization plane of the CMBR.
On the other hand, if nonstandard initial conditions for the
inhomogeneous BBN scenari@.e., matter-antimatter do-
maing would be allowed, this conclusion might be relaxed
and the existence of such an intense field at the decoupling
epoch might be accommodated. It is anyway amusing that in
our present discussion the existence of a magnetic field at the
decoupling epoch might imply the presence of small-scale
antimatter domains at the onset of BBN.

log &

C. The rate of right-electron chirality flip

In Sec. Il we pointed out how important, in our context,

FIG. 6. We compare the direct bound on primordial magneticth€ interplay between the “perturbative” rate given by the
fields at the nucleosynthesis epoch derived in &9 with the  right-electron chirality flip processes and the “nonperturba-
bound derived in Eq(5.4), which applies to primordial magnetic tive” one coming from the anomaly is. For the MSM the
fields. We see that our requirement is again more constraining thaperturbative rate of chirality flip has been computed3d]
the one given in Ref§20] for blue spectra, whereas fe=1.4 the  and is determined by the right-electron Yukawa coupling. If
bound given by Eq(5.9 is better. MSM is a correct theory, thelr>I"y, only for extremely
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small  magnetic fields, HYT*<Z&(oq/a’)(Tr/Mg) VI. EW PHASE TRANSITION AND BARYOGENESIS
~10" 11 i~ i
=10""". So weak hypermagnetic fields do not produce any The aim of this section is the discussion of the influence

inter_estir!g ﬂuctl_Jation_s. For larger magnetic fields the APof the hypercharge magnetic field on the electroweak baryo-
proximation outlined in Eq(3.4) must be used. The ampli- genesis(for reviews, sed49]). First, we will consider the

fication factor that appears in E.9) can be extracted from gy phase transition in the presence of the hypermagnetic

[31] field. Then, we will show that the occurrence of some spe-
. cific hypermagnetic configurations in the EW plasma could
c I'Mq . .

f dil = — be responsible for the baryon asymmetry of the universe

0 Te (BAU).

100 Ge
=35 T [(=1.1+2.4xy)+1.0 A. EW phase transition
Cc

The hypercharge magnetic field, present at high tempera-
ture, can influence the dynamics of the phase transition. The
physical picture of this phenomenon is exactly the same as
the macroscopic description of superconductors in the pres-
where xy=limr_.. my(T)/T is the high-temperature limit ence of an external magnetic field. The normal-
of the Higgs boson thermal mass ahdis the top-quark  superconducting phase transition, being of second order in
Yukawa coupling. Taking=0.6 (for which the scattering the absence of magnetic fields, becomes of first order if a
contribution to the rate is always dominant with respect tomagnetic field is present. The reason for this is the Meissner
the decay contribution we find that the integrated rate is effect, i.e., the fact that the magnetic field cannot propagate
655x (100 GeVIT;). With the use of this number the analy- inside a superconducting cavity, and, therefore, creates an
sis of Sec. V can be redone with the result that no interestingxtra pressure acting on the normal-superconducting bound-
baryon-number fluctuations can be produced from stochastigry [50]. Our consideration below explores this simple pic-
hypermagnetic background. So, for MSM, one hardly ex-yre.
pects any cosmological consequences coming from the back- Consider the plain domain wall that separates broken and
ground of the typé4.4) (for other types of primordial hyper- symmetric phase at some temperatiirén the presence of a
magnetic fields, considered below in Sec. VIB, theuniform hypercharge magnetic fie) . Far from the domain
conclusion is different wall, in the symmetric phase, the non-Abelian (8Ufield

I" can be naturally larger than in the MSM. For example, inmass gap generation. Inside the broken phase, the masive
the context of the minimal supersymmetric standard modet,mpination ofy: and W3
] ]

(MSSM) the right-electron Yukawa coupling is enhanced by

a factor 1/cog3 (tan 8 gives the ratio of the expectation val- Z;=cos awwf—sin O » (6.9

ues of the two doubletsso thatTg can be larger by a factor

10° for experimentally allowed values of t@~50. More- . —

over the right-electron number is now shared between eledUst be.equal to Zem’e)’th"e th.e massless com_b|nat|on, cor-

trons and selectrons, and it is necessary to consider also priESPONding o photor;™, SUVIVES. The matching of the

cesses that change the selectron number. fields on the boundary gives;™= ) coséy. Thus an extra
The question we now want to address is more phenompressure;|Hy|?sir? 6, acts on the domain wall from the

enological. Namely, we want to see how large the perturbasymmetric side. At the critical temperature it must be com-

tive chirality flip ratel” should be in order to produce sizable pensated by the vacuum pressure of the scalar field. If we

matter-antimatter fluctuations, which could influence theneglect loop corrections associated with the presence of mag-

BBN. For this purpose, we just require tHas-T',,, with';,  netic fields, then the condition that determines the critical

taken from Eqgs(3.9) and(4.6), and use the minimal ampli- temperature is

tude of the hypermagnetic field obtainable from the bound

(5.4), which can produce sizable matter-antimatter fluctua- 1 .

tions. This givesI'/T.>10"°, which corresponds to the §|Hy|2 sir? 0y=V(0,Te) —V(@min.Te), (6.2

right-electron perturbative freezing temperaturdg

=10° TeV. As we discussed above, these values of the tem-

perature are perfectly possible, say, in the MSSM. If thewhereV(¢,T) is the effective potential in the absence of

actual value of the freezing temperature is smaller thamémagnetic field,¢, is the location of the minimum of the

10° TeV, the stochastic hypercharge background of typepotential at temperature.

(4.4) produces baryon-number fluctuations too small to af- The above consideration was dealing with the uniform

fect BBN. It is then interesting that a quite energetic stochasmagnetic fields. Clearly, it remains valid when the typical

tic hypermagnetic background can be accommodated in theistance scale of inhomogeneities of magnetic field is larger

MSM without any(potentially dangeroysmplications. The than the typical bubble size. This is the case for bubbles

energy density stored in this background can then be able maller than the magnetic diffusion scale, and, in particular,

influence the dynamics of the EW phase transition withoutat the onset of the bubble nucleation. Thus the estimate of

conflicting with any bound derived from BBN. This will be the critical temperature coming from E@.2) is applicable.

one of the subjects of the following section. For bubbles larger than the diffusivity scale, the presence of

+h2(0.6-0.0%)], (5.11)
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may create the net baryon asymmetry. The following discus-
sion is similar to considerations of the baryogenesis from
Chern-Simons condensate[iB6].

B. Chern-Simons condensates and the BAU

log&

In Secs. IV and V we were concerned with the case of
stochastically distributed hypermagnetic fields. In this case,
the average baryon asymmetry vanishge., (S(ng/

s)(i,tc)>=0] in spite of the fact that the fluctuations of the
baryon number may be considerable. Thus we assumed that
the source of the baryon asymmetry has no relation to the
primordial hypermagnetic fields. For example, the BAU may
have been generated because of grand unified interactions or
at the EW phase transition.
27T o5 o8 : 12 Y In this subsection we are going to discuss hypermagnetic
3 backgrounds that may give rise to the BAU. We have no idea

) o , whether these types of background can or cannot be gener-

FIG. 8. We plot the requirement obtained in E6.2) in the case ated by some mechanism. Our aim is to point out the essen-

of a stochastic hypermagnetic background. The dashed line refers e
the case ofn,—80 GeV. whereas the dot-dashed line refers to the{PaI features of the hypermagnetic field that are necessary for

case ofmy, =160 GeV. With the full line is reported for comparison the|fptrr?guthloer]rnTanﬁLtli):r]}i/g|g Ez:so};lrgnzﬁtar'gi%n is tonologicall
the bound coming from BBN and discussed in E54). We can yp 9 9 polog y

clearly see(shaded regionthat for steep enough hypermagnetic nontrivial (i-e-,HY'VX.ﬁY.?t 0), thens(ng/s) #0. As a par-
energy spectrdi.e., e=0.4—0.6 it is possible to have a strongly ticular example we will discuss the case of a Chern-Simons

first-order EW phase transition consistent with the bo(fd). wave configuration
a stochastic magnetic field will considerably modify their Y=J(1)sinkoz,
evolution. In particular, the spherical form of the bubbles is
very likely to be spoiled. Yy=Mt)coskyz,
Relation(6.2) may be used to define a minimum magnetic
field, which can make a phase transition strong enough to Y,=0. (6.3

allow electroweak baryogenesis in the MSM. One can just

fix the Higgs boson mass, find the temperature at which th&he hypermagnetic field i#/=V XY and the magnetic he-
minimum of the effective potential satisfies the constraintiicity is simply

emin/T>1 [36], and read off the hypermagnetic field from

Eq. (6.2). With the use of the two-loop effective potential H-VXH=koHA(1),

computed in[51], we get, formy~80 GeV, (|Hy|?)/T4

=0.06, whereas ifny~160 GeV we will have(|Hy|2)/T with H(t) =ko)(t). Thus from Eq.(6.3) we obtain that

=0.3. For stochastic backgrounds these constraints are plot-

ted in Fig. 8 in terms of our variablegsand e, characterizing

the spectrum. We see that the region of parameter space

where a strongly first-order EW phase transition is possible, __ 9 oY= 9

without spoiling BBN with excessive matter-antimatter do- 27? 327%kg

mains, extends fronra=0.5 up toe>1. Therefore we come

to the conclusion that for violet hypermagnetic energy specWe notice that this configuration describes a magnetic knot

tra the level of induced fluctuations is quite tiny at the neu-with uniform energy and Chern-Simons density over the

tron diffusion distance, but the dynamics of the phase tranwhole observable universe. Similar configurations are used

sition can be strongly affected. The magnetic fields, whichn the MHD treatment of the dynamo instabilifg]. Insert-

can modify the nature of the phase transitions, do not appeang the configuratiori6.3) into the evolution equation®.22

to be subjected to any other constraints. and into Eq.(3.1), we get a system of nonlinear ordinary
The observation that the presence of primordial hyperdifferential equations

charge magnetic fields at the electroweak epoch may make
kO MR B T ko 28 B . H(t)
el T > (t)= A

Mo+ Hy+ Hy=HA(1),

12

H2(1).

an EW phase transition strongly first order removes a maindB _ 4o’ T

objection against the possibility of baryon asymmetry gen-dw = o

T/\'T o
eration in the MSM[36,49. We also note that the back- ¢
ground magnetic field breaks and CP symmetries, which d [ ur a'\? 783( kg , (T Ts\(ur
may considerably change the analysis of different processes d_w<7) =- (?) @(0—) —(? ?> (7)
near the domain wall, which are used in EW baryogenesis ¢
mechanisms. This study is beyond the scope of this paper. o 783 T
Instead, we will point out in the next subsection that some p=— = — BT (6.4)

specific configurations of the hypercharge magnetic field T 22 o
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(wherew=tT). Equations(6.4) are in fact known as a gen- Topologically nontrivial hypermagnetic configurations may
eralized Lotka-Volterra systefib2]. They can be solved nu- be responsible for the BAU.
merically for different types of initial conditions. As in the We left aside a number of questions that may be subjects
discussion of the stochastic backgrounds, we will consideof future studies. For example, in the study of AMHD equa-
our system in the adiabatic approximation and we will thentions, we focused our attention on the case where the corre-
use the general set of equatiof&s22 and(3.1), valid for  lation scale of the velocity field was much smaller than that
arbitrary backgrounds. of the magnetic field, and we also assumed that the velocity
As usual, the magnetic diffusivity. defines the diffusion field was (globally) invariant under parity transformations
scale and therefore a Chern-Simons wave configuration witki.e., in the absence of global vorticity over the EW horizon,
typical momentum K,) larger thank,~10 'T. will be  at the epoch of the phase transitio®wing to different phe-

washed out. For smalléq,, we get from Eq(3.9 nomena(e.g., bubble collisionturbulence may arise inside
the EW horizon, leading to a non-mirror-symmetric velocity

Ng| - a' [ng) Ko\ (Mg 2 field over some length scale typical of the mechanism re-

s (X,te)= 2moc\ s )\ T\ Te H(te) sponsible for the turbulence. If the turbulence produces a

X nonzero vorticity of the plasma, then the collective plasma
:1010<@) H_ for T=T motions may be transformed into fermion number via the
T\ To e amplified hypermagnetic field through a kind of EW dynamo
mechanism. We completely neglected the possible occur-
ng\ - 117 [ng rence of(global vorticity, and to relax this hypothesis may
( )(X,tc)2W<—) koI'Mg be interesting.
We do not know what the possible influence of matter-
Tr\ [ ko antimatter domains on the inhomogeneous BBN scenario is.
20-3(1-—) (T_) for I'=Iy,. (6.9  In particular, we have no idea if some spectral distribution of
e hypermagnetic fields could induce a spectrum of baryon-
Let us now assume that we work only in the framework ofhumber fluctuations, which can lead to a larger baryon-to-
the MSM. Then, in order to produce baryon asymmetry wePhoton ratio.
need a strong enough first-order phase transition, and, there-

S S

fore, a strong enough magnetic figlske preceding subsec- ACKNOWLEDGMENTS
tion). ThusI'y,=TI'. Using the fact that, in the MSMT ) .
=80 TeV we see thatng/s)=10"1° for ko/T,=10"*2 We wish to thank J. Cline, M. Joyce, H. Kurki-Suonio,

This value is well below the magnetic diffusivity scale and,and G. Veneziano for interesting comments and helpful dis-
therefore, this type of configuration, if ever created, will sur-CUSSIONns.
vive till the EW epoch.

In the extensions of the standard model one may have aappENDIX A: MAGNETIC HELICITY CORRELATIONS
strong enough electroweak phase transition without any (T>T})
magnetic field[53]. In addition, the perturbative electron
chirality rate may be considerably higher than in the MSM. The aim of this appendix is to compute explicitly the two-
Thus the hierarchy',<I" may be naturally realized. Then, point correlation function of the magnetic helicitzy(i):
for (ko/Tc)(H?/TE)=10"% the BAU calculated from the namely,
hypermagnetic field is of the right order of magnitude. For
example, if the typical momenturk, of the Chern-Simons (A)A(X+1))=((H-VXH)(X)(H-VXH)(X+T))
condensate is of the order of the EW horizomat T, (i.e., (A1)
ko~Lgw=10"%T,) then for small enough hypermagnetic
energy(i.e., H2210_4T§) the BAU is ~1071% Thus it is in terms of the two_poin’[ function
not excluded that the baryon asymmetry of the universe is a
consequence of the topologically nontrivial primordial hy- Gij(r)=F4(r)&;+rrFa(r). (A2)
percharge magnetic field.

I

The results illustrated here are quite relevant for a precise
VIl. CONCLUDING REMARKS estimate of the level of fluctuations induced by a stochastic

There are no compelling theoretical reasons against thga(_:rlzgrour:_d Of{ hy??r:magnetllc_flelc:s. (AL b
existence of long lived Abelian hypercharge fields at the . € estimate of In€ corre at|o_n unCt'.QA ) may be car- .
electroweak epoch. In the present paper we showed that, jfed out either in rgal space or In Fourier space. In Fourier
they did exist, they could have a number of cosmologicaﬁpace the calculation can be reduced to the estimate of a

consequences. The stochastic hypermagnetic backgroun&gnvomtion’ Where.as in regl space the ma}in e_llgebraic task is
induce baryon-number fluctuations because of the eled0 compute the various derivatives appearing in the ensemble

troweak anomaly. These fluctuations may produce sizabl8Verage. . L
matter-antimatter domains at the onset of BBN and affect its 1N Stochastic average appearing in EAfl) can be re-
predictions. Magnetic fields can change considerably the d)){vrltten as

namics of the electroweak phase transition in the MSM and

make it strongly first order even for large Higgs masses. ((ﬁ-ﬁxﬁ)(f)(ﬁﬁxﬁ)(;)}
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= €ijk€mn i lim lim
x =Xy =y

XH(y ) Hn(y)).

(3’X aym<Hk(X )H (X)

(A3)

This expression turns out to be quite useful, since it aIIowsAfter having performed the derivatives in EG\5) we can

contract the various Levi-Civitéensors with the Kronecker

us to perform the derivations with respectdoandy™ after
the average is taken.

If we now use the fact that the background of hypercharg

fields is stochastic, we can write that

(H (X YH;()H (Y ) HA())
=[(H (X IH; )N HI(Y Y HA(Y)) + (H (X H ("))

X(H;(X)HA(Y)) + (Hi(X Y HA (Y)Y (H (O H (Y )]
(A4)

Inserting in Eq.(A4) the representationiA2), we get the
following relation:

cinemn M SRR .5)
X' —=xy'—y
+B(X,X";y,y ) +COXx";y,y )], (A5)
where
AX'3Y,Y ) =[F (X =X Fa(ly” =YD (X=X (] = Xj)
X (Y] =YD (Y= Yn) +Fa(IX = X)) Fa(ly’
=YD 8 (¥] = Y) (V= Yn) + Fa(|X’
_)Z|)Fl(|§’_ﬂ)énl(xli_xk)(xj,_Xj)

+F1(|X = xDFa(ly’ = y]) 8;in]-
BOX,X";y,y ) =[Fa(|IX =y’ Falx=y) (X =y (X{ —y])
X (X = Yj) (Xn—Yn) + F1(|X" =y F5(|x
_)7|)5k|(xj
—yY'DF1(X=Y]) Snj (X =Y (X —¥])

+F1(]X" =y’ DF1([x=y]) 8 dinl,

— V) (Xn—Yn) +Fo(|x’

[Fa(|X" =YD Fa(|X=y' ) (%= Vi) (X — Vi)

X(x =y )=y )+ F1(|x" =y Fa(|x
—y']) k(X =Y (X —y{ )+ Fal|x
—y'DF2(X" = Y1) 8 (X = Vi) (X = ¥i)

+Fy (X —yDF1(|X=y' ) 6kndi].  (AB)

2203

Recall that, for a generic functioh(r) (wherer=|r], r2
=x2—y?®), the following trivial relation holds:

iym ipm 92
J )= 1&f(r) r'r™ of(r) L‘”(r)_

_+_ —
X’ &y My or r3 or r2  or?

symbols. By then taking the limits indicated in E¢&3) and

?AS) we obtain

<(H-€xﬁ)(>€)(ﬁﬁxﬁ)(i+?)>

:__Fl( ) 2( )_2F1( ) 2 )+4r2[F2(r)]2

+2rF (1) —— 2() 6rF2(r)dFdl:r)+6F1(r)F2(r)
2

+z(dFdlf”) . (A7)

In this form the four-point correlation function is completely
expressed in terms of the two-point function. Of course we
stress that this decomposition holds provided the fields are
stochastically distributed, namely, if and only if E&\4) is
satisfied.

APPENDIX B: MAGNETIC HELICITY CORRELATIONS
(I'<I'y)

If I'<I'y the correlation function appearing in the final
expression of the level of the fluctuations turns out to be the
stochastic average of a quantity that contains the magnetic
helicity in the numerator and the hypermagnetic energy den-
sity in the denominator. Even if this case turns out to be less
relevant for the phenomenological considerations presented
in the main discussion, we want to outline the main idea that
can be used in order to get a large-scale estimate of

(X2)>

The strategy we will use will be to express EB1) in terms

of an appropriate path integral whose functional derivatives
will reproduce the correlation function we want to compute.
From Eq.(B1) we have, formally

(B1)

H-VxH| . [H-VxH) .
H2 (X1) H2 (X2)
li li lim i i
= 1im m m im
a0 B0 eljkeabcax 07X2

X] Xy Xp—Xp

><( 1) 1) o 1) W[j]>
8J(X7) 83j(Xy) 83c(X5) 8Jp(Xz) o

(B2)

where
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=1 [ d% (d - [K=3(x.)1ij= = Gij(IX—y]) (B7)
= -] == 1Y) ij ij '
il | 5 | 5 | ot | o
We can integrate the part that is quadratic in the fields;
i i . i g
xod| — [ o[ EyRGIKGEI M) eI becomes
_ d®p [ d’q
o T 2] 4
+|f Ji(X)H;(x)d x+|pif H;(x) 6 (x—x})d®x P a
i _ -
- - . . - X ex ——fd?’xf d3yS(x)Gii(|x—y)Si(y)
+iqu H;(x) 8 (x—x5)d*— a pz—,B‘q 2). F{ 2 Y3 i =yDS(y
(B3) —alp_lz—ﬁlq_|2>, (B8)
In Eqg. (B3) we used the fact that formally holds the follow- . ) ) o
ing relation: Whgre W] is the usu_al Jacobian. Using the definition of
S(x) we obtain for'\[ J ]:
i:i lim j ds_peiﬁ'ls*amz V\/[j] d3 d3
|H|2 47 a0 p ' —=J —pf &9 caai piiapp
MWO] p q
By appropriately redefining the source term in the path inte- 1 R o R
gral, Eq.(B3) can also be written as Xexp[ -3 f d3xf d3y J(X)Gij (Ix—y))J;(y)

1 d*p [ dq <
W3- gz | | G o i [ xapanoo]. )

i . . s N .
XeXP{—E f d3xf d3yH (O[K(X,Y)TiH;(y) with
Li(X) = PrGrmi( X=X +AmGmi([X—X3])  (B10)
—al|p|2=Blq|2+i | S(X)H;(x){d3X, B4
Bl pld [ SOH|an @0
where, in the present case, 1 1
) A o o C(qiypi;qjvpj):_Einij(O)qj_EpiGij(o)pj
S(x)=Ji(x)+p; 8V (x—x7) + ;8P (x—x3). (B5)
—0iGj;(|x1—x5))p;— e|p|®— Blal?
(B11)
h‘(;):j d3y[K1/2()21)7)]ij H,—()?) [Gi;(0) comes because there are t@éunctions centered at

the same point for the terms quadraticirandp;]. Perform-
we obtain that the argument of the exponential can be exing the functional derivatives we obtaievaluating the gen-

By defining

pressed as erating function forJ=0)
i 3 v 3 K -L20e O ? 0 0 d d W[J]
-5 f o f dyS ()G, (K- y)S (). 86) ={[Gij( X1~ Xi)) Gen(|%o— Xg)) + G 1Ky~ Xg))

. X Gjp(|X1=Xa|) + Gyl |x1 = X2|) Gje(|X1=X3])]
Notice that the symbdlK(x,y)];; must have the follow- R R . R R
ing properties, which will be important also for the calcula- —Lp(X2)Le(X2) Gji([x1 = X)) = Li(Xp)Lj(X1)
tion of the functional integral: - - - - - -
X Gl [X2=X3]) = Le(X5) L(X1) Gpj(| X1 —Xa|)

f d®y[KY2(x,y) ;[ KYAy,2) 1j=[K(X,2) k., — Lp(X) L (X)) Gej (X1 = X5 ) — Lo(Xp)L(Xy)
X Gl |X1 = Xa|) = Lp(X2) Li(X1) Giel | X — X3])
+Li(XDL (X)) Lp(Xp) Le(X) M O] (B12)

Notice that the fifth and sixth terms of EGB12) vanish
when contracted with the tensors. In order to perform the

f dBy[KY2(x,y) ][ K~ YAy, 2) 1j= 8 8P (x—2),

| YK 1K D= KD i
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integration ovemp andq, we have to expand the expression
giving us the correlation function for

9(R)
g(0)

[see also Eq(4.11)]. This approximation holds for suffi-

g(r)= <1, (B13)
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Ay(r)= [<H2(x>>] g(r). (B15)

We can now integrate oveyandp. We notice that since the
integral is convergent also fo,3—0 the limits can be
taken before the integration. It is convenient to perform the

ciently large scales, provided the Green functions decay fointegration over andp separately; in this way, after angular
R>1. This requirement is automatically satisfied in our casejntegration, the apparently Gaussian integrals can be ex-
since we only consider the situation where the energy spegressed as ordinary exponential integrals of the type

trum is increasing in frequendy.e., blue or violet spectja

We now take the limits fox;—x,, and forx,—x, and Eq.
(B2) becomes

H-VXH| . [H-VxH| . .
<( a2 (x)( v (x+r)>
.1 dpdig )
—JJTO [I;TOWJ Tf T[Al(r)+q Au(r)
.. H2(x
—pzAs(r)+2A4(r)(q-p)]exp(—<T()>(q2+p2)

—a|5|2—,3|5|2+0(9(r))>, (B14)

where

-> - >

VXH)(X)(H-VXH)(X+T)),

Ay(r)=((H

1 >
Aa(r)=A~Aq(r)= E[(HZ(X))Pg(r),

I'(n+1)

a1 (B16)

f d\ \"e" =
0

After integration,A,(r) andAz(r) cancel whereas the con-
tribution of the term containing\,(r) vanishes because of
the angular integration. The final result obtained in the as-
sumption that the Green functions decay at large distances is
then

<<ﬁ VxH (H VxH >
(X) (X+T1)
H
((H-VXH)(X)(H-VXH)(X+T1))
= (H20)? +0(g(1)),
(B17)

which is exactly what we report in Sec. IV. The method used
in the present appendix can also be exploited in order to
compute further corrections, if needed.
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