
PHYSICAL REVIEW D 15 FEBRUARY 1998VOLUME 57, NUMBER 4
Nonperturbative quantum dynamics of a new inflation model
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We consider anO(N) model coupled self-consistently to gravity in the semiclassical approximation, where
the field is subject to ‘‘new inflation’’ type initial conditions. We study the dynamics self-consistently and
non-perturbatively with non-equilibrium field theory methods in the largeN limit. We find that spinodal
instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary
growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton
zero mode assemble into a new effective field. This new field behaves classically and it is the object which
actually rolls down. We show how this reinterpretation saves the standard picture of how metric perturbations
are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of
the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the
spectrum of scalar density and tensor perturbations and argue that in all models of this type the spinodal
instabilities are responsible for a ‘‘red’’ spectrum of primordial scalar density perturbations. A criterion for the
validity of these models is provided and contact with the reconstruction program is established validating some
of the results within a non-perturbative framework. The decoherence aspects and the quantum to classical
transition through inflation are studied in detail by following the full evolution of the density matrix and
relating the classicality of cosmological perturbations to that of long-wavelength matter fluctuations.
@S0556-2821~98!03804-1#
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I. INTRODUCTION AND MOTIVATION

Inflationary cosmology has come of age. From its beg
nings as a solution to purely theoretical problems such as
horizon, flatness and monopole problems@1#, it has grown
into the main contender for the source of primordial fluctu
tions giving rise to large scale structure@2–4#. There is evi-
dence from the measurements of temperature anisotropi
the cosmic microwave background radiation~CMBR! that
the scale invariant power spectrum predicted by generic
flationary models is at least consistent with observations@5–
9# and we can expect further and more exacting tests of
inflationary power spectrum when the Microwave Aniso
ropy Probe~MAP! and PLANCK missions are flown. In par
ticular, if the fluctuations that are responsible for the te
perature anisotropies of the CMB truly originate fro
quantum fluctuations during inflation, determinations of t
spectrum of scalar and tensor perturbations will constr
inflationary models based on particle physics scenarios
probably will validate or rule out specific proposa
@6,7,10,11#. Already current bounds on the spectrum of sc
lar density perturbations seem to rule out some version
‘‘extended’’ inflation @10#.

The tasks for inflationary universe enthusiasts are t
two-fold. First, models of inflation must be constructed th
have a well-defined rationale in terms of coming from a r
sonable particle physics model. This is in contrast to
current situation where most, if not all acceptable inflatio
ary models aread hoc in nature, with fields and potential
put in for the sole purpose of generating an inflationary
och. Second, and equally important, we must be sure tha
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quantum dynamics of inflation is well understood. This
extremely important, especially in light of the fact that it
exactlythis quantum behavior that is supposed to give rise
the primordial metric perturbations which presumably ha
imprinted themselves in the CMBR. This latter problem
the focus of this paper.

The inflaton must be treated as anon-equilibriumquan-
tum field. The simplest way to see this comes from the
quirement of having small enough metric perturbation am
tudes which in turn requires that the quartic self-couplingl
of the inflaton be extremely small, typically of orde
;10212. Such a small coupling cannot establish local th
modynamic equilibrium~LTE! for all field modes; near a
phase transition the long wavelength modes will respond
slowly to be able to enter LTE. In fact, the superhoriz
sized modes will be out of the region of causal contact a
cannot thermalize. We see then that if we want to gain
deeper understanding of inflation, non-equilibrium too
must be developed. Such tools exist and have now been
veloped to the point that they can give quantitative answ
to these questions in cosmology@12–16#. These methods
permit us to follow thedynamicsof quantum fields in situa-
tions where the energy density is non-perturbatively la
(;1/l). That is, they allow the computation of the tim
evolution of non-stationary states and of non-thermal den
matrices.

Our approach is to apply non-equilibrium quantum fie
theory techniques to the situation of a scalar field coupled
semiclassicalgravity, where the source of the gravitation
field is the expectation value of the stress energy tenso
the relevant, dynamically changing, quantum state. In t
2166 © 1998 The American Physical Society
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57 2167NONPERTURBATIVE QUANTUM DYNAMICS OF A NEW . . .
way we can go beyond the standard analyses@17–20# which
treat the background as fixed.

We will mainly deal with ‘‘new inflation’’ scenarios,
where a scalar fieldf evolves under the action of a typica
symmetry breaking potential. The initial conditions will b
taken so that the initial value of the order parameter~the field
expectation value! is near the top of the potential~the disor-
dered state! with essentially zero time derivative.

What we find is that the existence of spinodal instabiliti
i.e. the fact that eventually~in an expanding universe! all
modes will act as if they have anegativemass squared
drives the quantum fluctuations to grownon-perturbatively
large. We have the picture of an initial wave function
density matrix peaked near the unstable state and
spreading until it samples the stable vacua. Since these v
are non-perturbatively far from the initial state~typically
;m/Al, wherem is the mass scale of the field andl the
quartic self-coupling!, the spinodal instabilities will persis
until the quantum fluctuations, as encoded in the equal t
two-point function^F(xW ,t)2&, grow toO(m2/l).

This growth eventually shuts off the inflationary behav
of the scale factor as well as the growth of the quant
fluctuations~this last also happens in Minkowski spacetim
@12#!.

The scenario envisaged here is that of a quenched o
percooled phase transition where the order parameter is
or very small. Therefore one is led to ask the following:

~a! What is rolling down?
~b! Since the quantum fluctuations are non-perturbativ

large (;1/l), will not they modify drastically the
Friedmann-Robertson-Walker~FRW! dynamics?

~c! How can one extract~small?! metric perturbations
from non-perturbatively large field fluctuations?

We address the questions~a!–~c! as well as other issue
below.

II. NON-EQUILIBRIUM QUANTUM FIELD THEORY,
SEMICLASSICAL GRAVITY AND INFLATION

Our program consists of finding ways to incorporate
non-equilibrium behavior of the quantum fields involved
inflation into a framework that treats gravity sel
consistently, at least in some approximation. We do this
the use of semiclassical gravity@21# where we say that the
metric is classical, at least to a first approximation, who
source is the expectation value of the stress energy te
^Tmn& where this expectation value is taken in the dynam
cally determined state described by the density matrixr(t).
This dynamical problem can be described schematically
follows:

~1! The dynamics of the scale factora(t) is driven by the
semiclassical Einstein equations

1

8pGR
Gmn1

LR

8pGR
gmn1~higher curvature!52^Tmn&R .

~2.1!

HereGR ,LR are the renormalized values of Newton’s co
stant and the cosmological constant, respectively, andGmn is
the Einstein tensor. The higher curvature terms must be
cluded to absorb divergences.
,
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~2! On the other hand, the density matrixr(t) that deter-
mines^Tmn&R obeys the Liouville equation

i
]r~ t !

]t
5@H,r~ t !#, ~2.2!

whereH is the evolution Hamiltonian, which is depende
on the scale factor,a(t).

It is this set of equations we must try to solve; it is cle
that initial conditions must be appended to these equat
for us to be able to arrive at unique solutions to them. Let
discuss some aspects of the initial state of the field the
first.

As we mentioned above, the situation we consider is o
in which the theory admits a symmetry breaking poten
and in which the field expectation value starts its evolut
near the unstable point. There is an issue as to how the
got to have an expectation value near the unstable p
~typically atF50! as well as an issue concerning the initi
state of the non-zero momentum modes. The issue of in
conditions is present in any formulation of inflation but ch
otic.

Since our background is a FRW spacetime, it is spatia
homogeneous and we can choose our stater(t) to respect
this symmetry. Starting from the full quantum fieldF(xW ,t)
we can extract a part that has a natural interpretation as
zero momentum, c-number part of the field by writing

F~xW ,t !5f~ t !1C~xW ,t !,

f~ t !5Tr@r~ t !F~xW ,t !#[^F~xW ,t !&. ~2.3!

The quantity C(xW ,t) represents the quantum fluctuatio
about the zero modef(t) and clearly satisfieŝC(xW ,t)&50.

We need to choose a basis to represent the density ma
A natural choice consistent with the translational invarian
of our quantum state is that given by the Fourier modes
comoving momentum space, of the quantum fluctuatio
C(xW ,t):

C~xW ,t !5E d3k

~2p!3 exp~2 ikW•xW !ck~ t !. ~2.4!

In this language we can state our ansatz for the ini
condition of the quantum state as follows. We take the z
modef(t50)5f0 , ḟ(t50)50, wheref0 will typically be
very near the origin, while the initial conditions on the no
zero modesck(t50) will be chosen such that the initia
density matrixr(t50) describes a vacuum state~i.e. an ini-
tial state in local thermal equilibrium at a temperatu
Ti50!. There are some subtleties involved in this choi
First, as explained in@16#, in order for the density matrix to
commute with the initial Hamiltonian, we must choose t
modes to be initially in the conformal adiabatic vacuu
~these statements will be made more precise below!. This
choice has the added benefit of allowing for time indep
dent renormalization counterterms to be used in renorma
ing the theory.

We are making the assumption of an initial vacuum st
in order to be able to proceed with the calculation. It wou
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be interesting to understand what forms of the density ma
can be used for other, perhaps more reasonable, initial
ditions.

The assumptions of an initial equilibrium vacuum sta
are essentially the same used by Linde@17# and Vilenkin
@18#, as well as by Guth and Pi@20#, in their analyses of the
quantum mechanics of inflation in a fixed de Sitter ba
ground.

As discussed in the Introduction, if we start from such
initial state, spinodal instabilities will drive the growth o
non-perturbatively large quantum fluctuations. In order
deal with these, we need to be able to perform calculati
that take these large fluctuations into account. Although
quantitative features of the dynamics will depend on the
tial state, the qualitative features associated with spino
instabilities will be fairly robust for a wide choice of initia
states that describe a phase transition with a spinodal re
in field space.

III. MODEL AND EQUATIONS OF MOTION

Having recognized the non-perturbative dynamics of
long wavelength fluctuations, we need to study the dynam
within a non-perturbative framework, that is, a framewo
allowing calculations for non-perturbatively large ener
densities. We require that such a framework be~i! renormal-
izable,~ii ! covariant energy conserving, and~iii ! numerically
implementable. There are very few schemes that fulfill all
these criteria: the Hartree and the largeN approximation
@18,12,14#. Whereas the Hartree approximation is basicall
Gaussian variational approximation@22,23# that in general
cannot be consistently improved upon, the largeN approxi-
mation can be consistently implemented beyond leading
der @24,25# and in our case it has the added bonus of prov
ing many light fields~associated with Goldstone modes! that
will permit the study of the effects of other fields which a
lighter than the inflaton on the dynamics. Thus we will stu
the inflationary dynamics of a quenched phase transi
within the framework of the largeN limit of a scalar theory
in the vector representation ofO(N).

We assume that the universe is spatially flat with a me
given by

ds25dt22a2~ t !dxW2. ~3.1!

The matter action and Lagrangian density are given by

Sm5E d4xLm5E d4xa3~ t !F1

2
FẆ 2~x!2

1

2

@¹W FW ~x!#2

a2~ t !

2V„FW ~x!…G , ~3.2!

V~FW !5
l

8N S FW 22
2Nm2

l D 2

1
1

2
jRFW 2, ~3.3!

R~ t !56S ä~ t !

a~ t !
1

ȧ2~ t !

a2~ t !
D , ~3.4!
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where we have included the coupling ofF(x) to the scalar
curvatureR(t) since it will arise as a consequence of reno
malization@13#.

The gravitational sector includes the usual Einstein te
in addition to a higher order curvature term and a cosmolo
cal constant term which are necessary to renormalize
theory. The action for the gravitational sector is therefore

Sg5E d4xLg5E d4xa3~ t !F R~ t !

16pG
1

a

2
R2~ t !2K G ,

~3.5!

with K being the cosmological constant~we useK rather
than the conventionalL/8pG to distinguish the cosmologi
cal constant from the ultraviolet cutoffL we introduce to
regularize the theory; see Sec. IV!. In principle, we also need
to include the termsRmnRmn and RabmnRabmn as they are
also terms of fourth order in derivatives of the metric~fourth
adiabatic order!, but the variations resulting from these term
turn out not to be independent of that ofR2 in the flat FRW
cosmology we are considering.

The variation of the actionS5Sg1Sm with respect to the
metric gmn gives us Einstein’s equation

Gmn

8pG
1aHmn1Kgmn52^Tmn&, ~3.6!

whereGmn is the Einstein tensor given by the variation
A2gR, Hmn is the higher order curvature term given by th
variation of A2gR2, and Tmn is the contribution from the
matter Lagrangian. With the metric~3.1!, the various com-
ponents of the curvature tensors in terms of the scale fa
are

G0
0523~ ȧ/a!2, ~3.7!

Gm
m52R526S ä

a
1

ȧ2

a2D , ~3.8!

H0
0526S ȧ

a
Ṙ1

ȧ2

a2 R2
1

12
R2D , ~3.9!

Hm
m526S R̈13

ȧ

a
ṘD . ~3.10!

Eventually, when we have fully renormalized the theory,
will set aR50 and keep as our only contribution toKR a
piece related to the matter fields which we shall incorpor
into Tmn .

To obtain the proper largeN limit, the vector field is
written as

FW ~xW ,t !5„s~xW ,t !,pW ~xW ,t !…,

with pW an (N21)-plet, and we write

s~xW ,t !5ANf~ t !1x~xW ,t !,

^s~xW ,t !&5ANf~ t !, ^x~xW ,t !&50. ~3.11!
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To implement the largeN limit in a consistent manner, on
may introduce an auxiliary field as in@25#. However, the
leading order contribution can be obtained equivalently
invoking the factorization@14,16#

x4→6^x2&x21const, ~3.12!

x3→3^x2&x, ~3.13!

~pW •pW !2→2^pW 2&pW 22^pW 2&21O~1/N!, ~3.14!

pW 2x2→^pW 2&x21pW 2^x2&, ~3.15!

pW 2x→^pW 2&x. ~3.16!

To obtain a large N limit, we define @14,16#

~3.17!

where the largeN limit is implemented by the requiremen
that

^c2&'O~1!,^x2&'O~1!,f'O~1!. ~3.18!

The leading contribution is obtained by neglecting t
O(1/N) terms in the formal limit. The resulting Lagrangia
density is quadratic, with linear terms inx andpW . The equa-
tions of motion are obtained by imposing the tadpole con
tions ^x(xW ,t)&50 and ^pW (xW ,t)&50 which in this case are
tantamount to requiring that the linear terms inx and pW in
the Lagrangian density vanish. Since the action is quadr
the quantum fields can be expanded in terms of creation
annihilation operators and mode functions that obey
Heisenberg equations of motion

pW ~xW ,t !5E d3k

~2p!3 @aW kf k~ t !eikW•xW1aW k
†f k* ~ t !e2 ikW•xW#.

~3.19!

The tadpole condition leads to the following equations
motion @14,16#:

f̈~ t !13H~ t !ḟ~ t !1M2~ t !f~ t !50, ~3.20!

with the mode functions

F d2

dt2
13H~ t !

d

dt
1

k2

a2~ t !
1M2~ t !G f k~ t !50, ~3.21!

where

M2~ t !52m21jR1
l

2
f2~ t !1

l

2
^c2~ t !&. ~3.22!

In this leading order in 1/N the theory becomes Gaussia
but with the self-consistency condition

^c2~ t !&5E d3k

~2p!3

u f k~ t !u2

2
. ~3.23!
y

i-

ic,
nd
e

f

The initial conditions on the modesf k(t) must now be
determined. At this stage it proves illuminating to pass
conformal time variables in terms of the conformally re
caled fields~see@16# and Sec. IX for a discussion! in which
the mode functions obey an equation which is very similar
that of harmonic oscillators with time dependent frequenc
in Minkowski space-time. It has been realized that differe
initial conditions on the mode functions lead to differe
renormalization counterterms@16#; in particular imposing
initial conditions in comoving time leads to counterterm
that depend on these initial conditions. Thus we chose
impose initial conditions in conformal time in terms of th
conformally rescaled mode functions leading to the follo
ing initial conditions in comoving time:

f k~ t0!5
1

AWk

, ḟ k~ t0!5F2
ȧ~ t0!

a~ t0!
2 iWkG f k~ t0!, ~3.24!

with

Wk
2[k21M2~ t0!2

R~ t0!

6
. ~3.25!

For convenience, we have seta(t0)51 in Eq.~3.25!. At this
point we recognize that whenM2(t0)2R(t0)/6,0 the
above initial condition must be modified to avoid imagina
frequencies, which are the signal of instabilities for lo
wavelength modes. Thus wedefine the initial frequencies
that determine the initial conditions~3.24! as

Wk
2[k21UM2~ t0!2

R~ t0!

6 U for k2,UM2~ t0!2
R~ t0!

6 U,
~3.26!

Wk
2[k21M2~ t0!2

R~ t0!

6
for k2>UM2~ t0!2

R~ t0!

6 U.
~3.27!

As an alternative we have also used initial conditions wh
smoothly interpolate from positive frequencies for the u
stable modes to the adiabatic vacuum initial conditions
fined by~3.24!, ~3.25! for the highk modes. While the alter-
native choices of initial conditions result in sma
quantitative differences in the results~a few percent in quan-
tities which depend strongly on these low-k modes!, all of
the qualitative features we will examine are independen
this choice.

In the largeN limit we find the energy density and pres
sure density to be given by@14,16#

«

N
5

1

2
ḟ21

1

2
m2f21

l

8
f41

m4

2l
2jG0

0f216j
ȧ

a
f ḟ

1
1

2
^ċ2&1

1

2a2 ^~¹c!2&1
1

2
m2^c2&1

l

8
@2f2^c2&

1^c2&2#2jG0
0^c2&16j

ȧ

a
^cċ&, ~3.28!
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«23p

N
52ḟ212m2f21

l

2
f41

2m4

l
2jGm

mf2

16jS ff̈1ḟ213
ȧ

a
fḟ D ^ċ2&1

1

a2 ^~¹c!2&

12m2^c2&2jGm
m^c2&1

l

2
@2f2^c2&1^c2&2#

16jS ^c c̈&1^ċ2&13
ȧ

a
^cċ& D , ~3.29!

where^c2& is given by Eq.~3.23! and we have defined th
following integrals:

^~¹c!2&5E d3k

2~2p!3 k2 u f k~ t !u2, ~3.30!

^ċ2&5E d3k

2~2p!3 u ḟ k~ t !u2. ~3.31!

The composite operatorŝcċ& and ^cc̈& are symmetrized
by removing a normal ordering constant to yield

1

2
~^cċ&1^ċc&!5

1

4 E d3k

~2p!3

du f k~ t !u2

dt
, ~3.32!

1

2
~^cc̈&1^c̈c&!5

1

4 E d3k

~2p!3 @ f k~ t ! f̈ k* ~ t !1 f̈ k~ t ! f k* ~ t !#.

~3.33!

The last of these integrals, Eq.~3.33!, may be rewritten using
the equation of motion~3.21!

^cc̈&523
ȧ

a
^cċ&2

^~¹c!2&
a2 2M2^c2&. ~3.34!

It is straightforward to show that the bare energy is cova
antly conserved by using the equations of motion for the z
mode and the mode functions.

IV. RENORMALIZATION

Renormalization is a very subtle but important issue
gravitational backgrounds@21#. The fluctuation contribution

^c2(xW ,t)&, the energy, and the pressure all need to be re
malized. The renormalization aspects in curved space ti
have been discussed at length in the literature@21# and have
been extended to the largeN self-consistent approximation
for the non-equilibrium back reaction problem in@25,16,26#.
More recently a consistent and covariant regularizat
scheme that can be implemented numerically has been
vided @27#.

In terms of the effective mass term for the largeN limit
given by Eq.~3.22! and defining the quantity

B~ t ![a2~ t !~M2~ t !2R/6!, ~4.1!

M2~ t !52mB
21jBR~ t !1

lB

2
f2~ t !1

lB

2
^c2~ t !&B ,

~4.2!
i-
o

r-
es

n
ro-

where the subscriptB stands for bare quantities, we find th
following largek behavior for the case of anarbitrary scale
factor a(t) @with a(0)51]:

u f k~ t !u25
1

ka2~ t !
2

1

2k3a2~ t !
B~ t !1

1

8k5a2~ t !

3H 3B~ t !21a~ t !
d

dt
@a~ t !Ḃ~ t !#J 1O~1/k7!

5S~2!1O~1/k5!, ~4.3!

u ḟ k~ t !u25
k

a4~ t !
1

1

2ka4~ t !
@B~ t !12ȧ2#

1
1

8k3a4~ t !
$2B~ t !22a~ t !2B̈~ t !13a~ t !ȧ~ t !Ḃ~ t !

24ȧ2~ t !B~ t !%1O~1/k5!

5S~1!1O~1/k5!, ~4.4!

1

2
@ f k~ t ! ḟ k* ~ t !1 ḟ k~ t ! f k* ~ t !#

52
1

ka2~ t !

ȧ~ t !

a~ t !
2

1

4k3a2~ t !
F Ḃ~ t !22

ȧ~ t !

a~ t !
B~ t !G

1O~1/k5!. ~4.5!

Although the divergences can be dealt with by dime
sional regularization, this procedure is not well suited to n
merical analysis~see however Ref.@27#!. We will make our
subtractions using an ultraviolet cutoff,La(t), constant in
physical coordinates. This guarantees that the counterterm
will be time independent. The renormalization then proce
much in the same manner as in Ref.@13#; the quadratic di-
vergences renormalize the mass and the logarithmic te
renormalize the quartic coupling and the coupling to t
Ricci scalar. In addition, there is a quartic divergence wh
renormalizes the cosmological constant while the lead
renormalizations of Newton’s constant and the higher or
curvature coupling are quadratic and logarithmic resp
tively. The renormalization conditions on the mass, coupl
to the Ricci scalar and coupling constant are obtained fr
the requirement that the frequencies that appear in the m
equations be finite@13#, i.e.

2mB
21jBR~ t !1

lB

2
f2~ t !1

lB

2
^c2~ t !&B

52mR
21jRR~ t !1

lR

2
f2~ t !1

lR

2
^c2~ t !&R , ~4.6!

while the renormalizations of Newton’s constant, the high
order curvature coupling, and the cosmological constant
given by the condition of the finiteness of the semi-classi
Einstein-Friedmann equation
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G0
0

8pGB
1aBH0

01KBg0
01^T0

0&B

5
G0

0

8pGR
1aRH0

01KRg0
01^T0

0&R . ~4.7!

Finally we arrive at the following set of renormalization
@16#:

1

8pNGR
5

1

8pNGB
22S jR2

1

6D L2

16p2

12S jR2
1

6DmR
2 ln~L/k!

16p2 , ~4.8!

aR

N
5

aB

N
2S jR2

1

6D 2 ln~L/k!

16p2 , ~4.9!

KR

N
5

KB

N
2

L4

16p2 1mR
2 L2

16p2 1
mR

4

2

ln~L/k!

16p2 ,

~4.10!

2mR
252mB

21lR

L2

16p2 1lRmR
2 ln~L/k!

16p2 ,

~4.11!

jR5jB2lRS jR2
1

6D ln~L/k!

16p2 , ~4.12!

lR5lB2lR

ln~L/k!

16p2 , ~4.13!

^c2~ t !&R5E d3k

2~2p!3 H U f k~ t !U22F 1

ka2~ t !

2
Q~k2k!

2k3 SM2~ t !2
R~ t !

6 D G J . ~4.14!

Here,k is the renormalization point. As expected, the log
rithmic terms are consistent with the renormalizations fou
using dimensional regularization@27,26#. Again, we set
aR50 and choose the renormalized cosmological cons
such that the vacuum energy is zero in the true vacuum.
emphasize that while the regulator we have chosen does
respect the covariance of the theory, the renormalized en
momentum tensor defined in this way nevertheless ret
the property of covariant conservation in the limit when t
cutoff is taken to infinity.

The logarithmic subtractions can be neglected becaus
the couplingl<10212. Using the Planck scale as the cuto
and the inflaton massmR as a renormalization point, thes
terms are of orderl ln@Mpl /mR#<10210, for m>109 GeV.
An equivalent statement is that for these values of the c
pling and inflaton masses, the Landau pole is well beyo
the physical cutoffM Pl . Our relative error in the numerica
analysis is of order 1028, and therefore our numerical stud
is insensitive to the logarithmic corrections. Though the
corrections are fundamentally important, numerically th
can be neglected. Therefore, in the numerical computat
that follow, we will neglect logarithmic renormalization an
-
d

nt
e
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gy
ns

of

u-
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y
ns

subtract only quartic and quadratic divergences in the ene
and pressure, and quadratic divergences in the fluctua
contribution.

V. RENORMALIZED EQUATIONS OF MOTION
FOR DYNAMICAL EVOLUTION

It is convenient to introduce the following dimensionle
quantities and definitions:

t5mRt, h5
H

mR
, q5

k

mR
, vq5

Wk

mR
, g5

lR

8p2 ,

~5.1!

h2~t!5
lR

2mR
2 f2~ t !, gS~t!5

l

2mR
2 ^c2~ t !&R ,

f q~t![AmRf k~ t !. ~5.2!

ChoosingjR50 ~minimal coupling! and the renormaliza-
tion point k5umRu and settinga(0)51, the equations of
motion become

F d2

dt2 13h
d

dt
211h2~t!1gS~t!Gh~t!50, ~5.3!

F d2

dt2 13h
d

dt
1

q2

a2~t!
211h21gS~t!G f q~t!50,

f q~0!5
1

Avq

, ḟ q~0!5@2h~0!2 ivq# f q~0!,

vq5Fq2211h2~0!2
R~0!

6mR
2 1gS~0!G1/2

for q2.21

1h2~0!2
R~0!

6mR
2 1gS~0!,

vq5Fq2112h2~0!1
R~0!

6mR
2 2gS~0!G1/2

for q2

,211h2~0!2
R~0!

6mR
2 1gS~0!, ~5.4!

where

S~t!5E
0

`

q2dqFU f q~t!U22
1

a~t!2 1
Q~q21!

2q3

3SM2~t!

mR
2 2

R~t!

6mR
2 D G .

The initial conditions forh~t! will be specified later. An
important point to notice is that the equation of motion f
the q50 mode coincides with that of the zero mode~5.3!.
Furthermore, forh(t→`)Þ0, a stationary~equilibrium! so-
lution of Eq. ~5.3! is obtained when the sum rule@12,14,16#

211h2~`!1gS~`!50 ~5.5!
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is fulfilled. This sum rule is nothing but a consequence
Goldstone’s theorem and is a result of the fact that the la
N approximation satisfies the Ward identities associated w
theO(N) symmetry, since the term211h21gS is seen to
be the effective mass of the modes transverse to the sym
try breaking direction, i.e. the Goldstone modes in the b
ken symmetry phase.

In terms of the zero modeh~t! and the quantum mod
function given by Eq.~5.4! we find that the Friedmann equa
tion for the dynamics of the scale factor in dimensionle
variables is given by

h2~t!54h0
2eR~t!, h0

25
4pNmR

2

3M Pl
2 lR

~5.6!

and the renormalized energy and pressure are given by

eR~t!5
1

2
ḣ21

1

4
~211h21gS!2

1
g

2 E q2dqF u ḟ qu22S~1!~q,t!

1
q2

a2 @ u f qu22Q~q21!S~2!~q,t!#G , ~5.7!

~p1«!R~t!5
2NmR

4

lR
H ḣ21gE q2dqF u ḟ qu22S~1!~q,t!

1
q2

3a2 @ u f qu22Q~q21!S~2!~q,t!#G J ,

~5.8!

where the subtractionsS(1) andS(2) are given by the right
hand sides of Eqs.~4.4! and ~4.3! respectively.

The renormalized energy and pressure are covaria
conserved:

ėR~t!13h~t!~p1«!R~t!50. ~5.9!

In order to provide the full solution we now must provid
the values ofh(0), ḣ(0), andh0 . Assuming that the infla-
tionary epoch is associated with a phase transition at
grand unified theory ~GUT! scale, this requires tha
NmR

4/lR'(1015 GeV)4 and assuming the bound on the sc
lar self-couplinglR'10212210214 ~this will be seen later to
be a compatible requirement!, we find thath0'N1/4 which
we will take to be reasonably given byh0'1 – 10 ~for ex-
ample in popular GUT’sN'20 depending on particular rep
resentations!.

We will begin by studying the case of most interest fro
the point of view of describing the phase transition:h(0)50
andḣ(0)50, which are the initial conditions that led to pu
zling questions. With these initial conditions, the evoluti
equation for the zero mode, Eq.~5.3!, determines that
h(t)50 by symmetry.

A. Early time dynamics

Before engaging in the numerical study, it proves illum
nating to obtain an estimate of the relevant time scales
f
e

th

e-
-

s

ly

e

-

d

an intuitive idea of the main features of the dynamics. B
cause the coupling is so weak (g;10212!1) and after
renormalization the contribution from the quantum fluctu
tions to the equations of motion is finite, we can neglect
the terms proportional tog in Eqs.~5.7! and ~5.4!.

For the case where we chooseh(t)50 and the evolution
equations for the mode functions are those for an inver
oscillator in de Sitter space-time, which have been studied
Guth and Pi@20#. One obtains the approximate solution

h~ t !'h0 ,

f q~ t !'e23h0t/2FAqJnS q

h0
e2h0tD1BqJ2nS q

h0
e2h0tD G ,

n5A9

4
1

1

h0
2, ~5.10!

whereJ6n(z) are Bessel functions, andAq andBq are deter-
mined by the initial conditions on the mode functions:

Bq52
1

Avq

pq

2h0 sin np
F ivq2

1

2
h0

q
JnS q

h0
D2Jn8S q

h0
D G ,

~5.11!

Aq5
1

Avq

pq

2h0 sin np
F ivq2

1

2
h0

q
J2nS q

h0
D2J2n8 S q

h0
D G .

~5.12!

After the physical wave vectors cross the horizon, i
whenqe2h0t/h0!1, we find that the mode functions facto
ize:

f q~t!'
Bq

G~12n! S 2h0

q D n

e~n23/2!h0t. ~5.13!

This result reveals a very important feature: Because of
negative mass squared term in the matter Lagrangian lea
to symmetry breaking~and n.3/2!, we see that all of the
mode functionsgrow exponentiallyafter horizon crossing
~for positive mass squaredn,3/2, and they woulddecrease
exponentially after horizon crossing!. This exponential
growth is a consequence of the spinodal instabilities whic
a hallmark of the process of phase separation that occu
complete the phase transition. We note, in addition, that
time dependence is exactly given by that of theq50 mode,
i.e. the zero mode, which is a consequence of the redshif
of the wave vectors and the fact that after horizon cross
the contribution of the termq2/a2(t) in the equations of
motion become negligible. We clearly see that the quant
fluctuations grow exponentially and they will begin to be
the order of the tree level terms in the equations of mot
whengS(t)'1. At large times

S~t!'F2~h0!h0
2e~2n23!h0t ,

with F(h0) a finite constant that depends on the initial co
ditions and is found numerically to be ofO(1) ~see Fig. 10!.
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In terms of the initial dimensionful variables, the cond
tion gS(t)'1 translates tô c2(xW ,t)&R'2mR

2/lR , i.e. the
quantum fluctuations sample the minima of the~renormal-
ized! tree level potential. We find that the time at which t
contribution of the quantum fluctuations becomes of
same order as the tree level terms is estimated to be@14#

ts'
1

~2n23!h0
lnF 1

gh0
2F2~h0!G

5
3

2
h0 lnF 1

gh0
2F2~h0!G1O~1/h0!. ~5.14!

At this time, the contribution of the quantum fluctuatio
makes the back reaction very important and, as will be s
numerically, this translates into the fact thatts also deter-
mines the end of the de Sitter era and the end of inflat
The total number of e-folds during the stage of exponen
expansion of the scale factor~constanth0! is given by

Ne'
1

2n23
lnF 1

gh0
2F2~h0!G5

3

2
h0

2 lnF 1

gh0
2F2~h0!G1O~1!.

~5.15!

For largeh0 we see that the number of e-folds scales ash0
2 as

well as with the logarithm of the inverse coupling. The
results~5.13!, ~5.14!, ~5.15! will be confirmed numerically
below and will be of paramount importance for the interp
tation of the main consequences of the dynamical evolut

B. h„0…Þ0: Classical or quantum behavior?

Above we have analyzed the situation whenh(0)50 @or
in dimensionful variablesf(0)50#. The typical analysis of
inflaton dynamics in the literature involves theclassicalevo-
lution of f(t) with an initial condition in whichf~0! is very
close to zero~i.e. the top of the potential hill! in the ‘‘slow-
roll’’ regime, for which f̈!3Hḟ. Thus, it is important to
quantify the initial conditions onf(t) for which the dynam-
ics will be determined by the classical evolution off(t) and
those for which the quantum fluctuations dominate the
namics. We can provide a criterion to separate classical f
quantum dynamics by analyzing the relevant time scales
timated by neglecting non-linearities and back reaction
fects. We consider the evolution of the zero mode in term
dimensionless variables, and chooseh(0)Þ0 andḣ(0)50.
@ḣ(0)Þ0 simply corresponds to a shift in origin o
time.# We assumeh(0)2!1 which is the relevant cas
where spinodal instabilities are important. We find

h~t!'h~0!e~n2 3/2!h0t. ~5.16!

The non-linearities will become important and eventua
terminate inflation whenh(t)'1. This corresponds to a tim
scale given by

tc'
ln@1/h~0!#

S n2
3

2Dh0

. ~5.17!
e

n

n.
l

-
n.

-
m
s-
f-
f

If tc is much smaller than the spinodal timets given by Eq.
~5.14!, then theclassical evolution of the zero mode will
dominate the dynamics and the quantum fluctuations will
become very large, although they will still undergo spinod
growth. On the other hand, iftc@ts , the quantum fluctua-
tions will grow to be very large well before the zero mod
reaches the non-linear regime. In this case the dynamics
be determined completely by the quantum fluctuations. T
the criterion for the classical or quantum dynamics is giv
by

h~0!@Agh0⇒classical dynamics,

h~0!!Agh0⇒quantum dynamics, ~5.18!

or in terms of dimensionful variablesf(0)@H0 leads to
classical dynamicsandf(0)!H0 leads toquantum dynam-
ics.

However, even when the classical evolution of the ze
mode dominates the dynamics, the quantum fluctuati
grow exponentially after horizon crossing unless the value
f(t) is very close to the minimum of the tree level potenti
In the largeN approximation the spinodal line, that is th
values of f(t) for which there are spinodal instabilities
reaches all the way to the minimum of the tree level poten
as can be seen from the equations of motion for the m
functions. Therefore even in the classical case one must
derstand how to deal with quantum fluctuations that gr
after horizon crossing.

C. Numerics

The time evolution is carried out by means of a four
order Runge-Kutta routine with adaptive step sizing wh
the momentum integrals are carried out using an 11-p
Newton-Cotes integrator. The relative errors in both the d
ferential equation and the integration are of order 1028. We
find that the energy is covariantly conserved throughout
evolution to better than a part in a thousand. Figures 1
showgS(t) vs t,h(t) vs t and ln@ufq(t)u2# vs t for several
values ofq with larger q’s corresponding to successive
lower curves. Figures 4, 5 showp(t)/«(t) and the horizon
size h21(t) for g510214,h(0)50,ḣ(0)50 and we have
chosen the representative valueh052.0.

Figures 1 and 2 show clearly that when the contribution
the quantum fluctuationsgS(t) becomes of order 1 inflation
ends, and the time scale forgS(t) to reachO(1) is very
well described by the estimate~5.14!. From Fig. 1 we see
that this happens fort5ts'90, leading to a number of e
folds, Ne'180, which is correctly estimated by Eqs.~5.14!,
~5.15!.

Figure 3 shows clearly the factorization of the modes a
they cross the horizon as described by Eq.~5.13!. The slopes
of all the curves after they become straight lines in Fig. 3
given exactly by (2n23), whereas the intercept depends
the initial condition on the mode function and the larger t
value ofq the smaller the intercept because the amplitude
the mode function is smaller initially. Although the interce
depends on the initial conditions on the long-wavelen
modes, the slope is independent of the value ofq and is the
same as what would be obtained in the linear approxima
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for thesquareof the zero mode at times long enough that t
decaying solution can be neglected but short enough tha
effect of the non-linearities is very small. Notice from th
figure that when inflation ends and the non-linearities
come important all of the modes effectively saturate. This
also what one would expect from the solution of the ze
mode: exponential growth in early-intermediate times~ne-
glecting the decaying solution!, with a growth exponent
given by (n23/2) and an asymptotic behavior of small o
cillations around the equilibrium position, which for the ze
mode ish51, but for theqÞ0 modes depends on the initia
conditions. All of the mode functions have this behav
once they cross the horizon. We have also studied the ph
of the mode functions and we found that they freeze a
horizon crossing in the sense that they become indepen
of time. This is natural since both the real and imagina
parts of f q(t) obey the same equation but with differe
boundary conditions. After the physical wavelength cros
the horizon, the dynamics is insensitive to the value ofq for
real and imaginary parts and the phases become indepen
of time. Again, this is a consequence of the factorization
the modes.

FIG. 1. gS vs t, for h(0)50, ḣ(0)50, g510214, h052.0.

FIG. 2. H(t) vs t, for h(0)50, ḣ(0)50, g510214, h052.0.
he
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The growth of the quantum fluctuations is sufficient
end inflation at a time given byts in Eq. ~5.14!. Furthermore,
Fig. 4 shows that during the inflationary epoc
p(t)/«(t)'21 and the end of inflation is rather sharp atts
with p(t)/«(t) oscillating between61 with zero average
over the cycles, resulting in matter domination. Figure
shows this feature very clearly;h(t) is constant during the
de Sitter epoch and becomes matter dominated after the

of inflation with h21(t)' 3
2 (t2ts). There are small oscilla-

tions around this value because bothp(t) and«~t! oscillate.
These oscillations are a result of small oscillations of
mode functions after they saturate, and are also a featur
the solution for a zero mode.

All of these features hold for a variety of initial cond
tions. As an example, we show in Figs. 6–9 the plots cor
sponding to Figs. 1–4 for the case of an initial Hubble p
rameter ofh0510.

D. Zero mode assembly

This remarkable feature of factorization of the mode fun
tions after horizon crossing can be elegantly summarized

FIG. 3. ln@ufq(t)u2# vs t, for h(0)50, ḣ(0)50, g510214,
h052.0 for q50.0,5,10,15,20 with smallerq corresponding to
larger values of ln@ufq(t)u2#.

FIG. 4. p/« vs t, for h(0)50, ḣ(0)50, g510214, h052.0.
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f k~ t !ukph~ t !!H0
5g~q,h0! f 0~t!, ~5.19!

with kph(t)5ke2H0t being the physical momentum,g(q,h0)
a complex constant, andf 0(t) a real function of time that
satisfies the mode equation withq50 and real initial condi-
tions which will be inferred later. Since the factorg(q,h0)
depends solely on the initial conditions on the mode fu
tions, it turns out that for two mode functions correspond
to momentak1 ,k2 that have crossed the horizon at tim
t1.t2 , the ratio of the two mode functions at timet
(ts.t.t1.t2) is

f k1
~ t !

f k2
~ t !

}e~n2 3/2!h0~t12t2!.1.

Then if we consider the contribution of these modes to
renormalizedquantum fluctuations a long time after the b
ginning of inflation~so as to neglect the decaying solution!,
we find that

gS~t!'Ce~2n23!h0t1small,

FIG. 5. 1/h(t) vs t, for h(0)50, ḣ(0)50, g510214, h052.0.

FIG. 6. gS vs t, for h(0)50, ḣ(0)50, g510214, h0510.0.
-
g

e

where ‘‘small’’ stands for the contribution of mode function
associated with momenta that have not yet crossed the h
zon at timet, which give a perturbatively small~of orderl!
contribution. We find that several e-folds after the beginn
of inflation but well before inflation ends, this factorizatio
of superhorizon modes implies the following:

gE q2dqu f q
2~t!u'uC0u2f 0

2~t!, ~5.20!

gE q2dqu ḟ q
2~t!u'uC0u2 ḟ 0

2~t!, ~5.21!

gE q4

a2~t!
dqu f q

2~t!u'
uC1u2

a2~t!
f 0

2~t!, ~5.22!

where we have neglected the weak time dependence ar
from the perturbatively small contributions of the sho
wavelength modes that have not yet crossed the horizon,
the integrals above are to be understood as the fully re
malized~subtracted!, finite integrals. Forh50, we note that

FIG. 7. H(t) vs t, for h(0)50, ḣ(0)50, g510214, h0510.0.

FIG. 8. ln@ufq(t)u2# vs t, for h(0)50, ḣ(0)50, g510214,
h0510.0 for q50.0,5,10,15,20 with smallerq corresponding to
larger values of ln@ufq(t)u2#.
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Eq. ~5.20! and the fact thatf 0(t) obeys the equation of mo
tion for the mode withq50 leads at once to the conclusio
that in this regime@gS(t)#1/25uC0u f 0(t) obeys the zero
mode equation of motion

F d2

dt2 13h
d

dt
211@ uC0u f 0~t!#2G uC0u f 0~t!50.

~5.23!

It is clear that several e-folds after the beginning of infl
tion, we can define an effective zero mode as

he f f
2 ~t![gS~t!, or in dimensionful variables,

fe f f~ t ![@^c2~xW ,t !&R#1/2. ~5.24!

Although this identification seems natural, we emphas
that it is by no means a trivial orad hocstatement. There ar
several important features that allow anunambiguous

identification:—~i! @^c2(xW ,t)&R# is a fully renormalized op-
erator product and hence finite,~ii ! because of the factoriza
tion of the superhorizon modes that enter in the evaluatio

@^c2(xW ,t)&R#, fe f f(t), Eq. ~5.24!, obeys the equation of mo
tion for the zero mode, and ~iii ! this identification is valid
several e-folds after the beginning of inflation, after the tra
sient decaying solutions have died away and the integra

^c2(xW ,t)& is dominated by the modes with wave vectork that
have crossed the horizon att(k)!t. Numerically we see tha
this identification holds throughout the dynamics except fo
very few e-folds at the beginning of inflation. This factoriz
tion determines at once the initial conditions of the effect
zero mode that can be extracted numerically:—After the fi
few e-folds and long before the end of inflation we find

fe f f~ t ![fe f f~0!e~n23/2!H0t, ~5.25!

where we parametrized

fe f f~0![
H0

2p
F~H0 /m!

FIG. 9. p/« vs t, for h(0)50, ḣ(0)50, g510214, h0510.0.
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to make contact with the literature. As is shown in Fig. 1
we find numerically thatF(H0 /m)'O(1) for a large range
of 0.1<H0 /m<50 and that this quantity depends on the in
tial conditions of the long wavelength modes.

Therefore, in summary, the effective composite ze
mode obeys

F d2

dt2 13h
d

dt
211he f f

2 ~t!Ghe f f~t!50,

ḣe f f~t50!5S n2
3

2Dhe f f~0!, ~5.26!

where he f f(0)[ (AlR/2/mR)fe f f(0) is obtained numeri-
cally for a givenh0 by fitting the intermediate time behavio
of gS(t) with the growing zero mode solution.

Furthermore, this analysis shows that in the caseh50,
the renormalized energy and pressure in this regime in wh
the renormalized integrals are dominated by the superhor
modes are given by

«R~t!'
2NmR

4

lR
H 1

2
ḣe f f

2 1
1

4
~211he f f

2 !2J , ~5.27!

~p1«!R'
2NmR

4

lR
$ḣe f f

2 %, ~5.28!

where we have neglected the contribution proportional
1/a2(t) because it is effectively redshifted away after jus
few e-folds. We found numerically that this term is neg
gible after the interval of time necessary for the superhoriz
modes to dominate the contribution to the integrals. Then
dynamics of the scale factor is given by

h2~t!54h0
2H 1

2
ḣe f f

2 1
1

4
~211he f f

2 !2J . ~5.29!

We have numerically evolved the set of effective equ
tions ~5.26!, ~5.29! by extracting the initial condition for the
effective zero mode from the intermediate time behavior

FIG. 10. F(H/m) vs H, whereF(H/m) is defined by the rela-
tion fe f f(0)5(H/2p)F(H/m) @see Eqs.~5.24! and ~5.25!#.
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gS(t). We found a remarkable agreement between the e
lution of he f f

2 and gS(t) and between the dynamics of th
scale factor in terms of the evolution ofhe f f(t), and thefull
dynamics of the scale factor and quantum fluctuations wit
our numerical accuracy. Figures 11 and 12 show the ev
tion of he f f

2 (t) andh(t) respectively from theclassicalevo-
lution equations~5.26! and ~5.29! using the initial condition
he f f(0) extracted from the exponential fit ofgS(t) in the
intermediate regime. These figures should be compare
Figs. 1 and 2. We have also numerically comparedp/« given
solely by the dynamics of the effective zero mode and i
again numerically indistinguishable from that obtained w
the full evolution of the mode functions.

This is one of the main results of our work. In summa
the modes that become superhorizon sized and grow thro
the spinodal instabilities assemble themselves into an ef
tive composite zero mode a few e-folds after the beginn

FIG. 11. he f f
2 (t) vs t, for he f f(0)53.9431027,

ḣe f f(0)50.317he f f(0), g510214, h052.0. The initial conditions
were obtained by fitting the intermediate time regime ofgS(t) in
Fig. 1. he f f(t) is the solution of Eq.~5.26! with these initial con-
ditions.

FIG. 12.h(t) vs t, obtained from the solution of Eqs.~5.26! and
~5.29! with the conditions of Fig. 11.
o-

n
u-

to

s

,
gh
c-
g

of inflation. This effective zero mode drives the dynamics
the FRW scale factor, terminating inflation when the no
linearities become important. In terms of the underlying flu
tuations, the spinodal growth of superhorizon modes give
non-perturbatively large contribution to the energy mome
tum tensor that drives the dynamics of the scale factor.
flation terminates when the mean square root fluctua
probes the equilibrium minima of the tree level potential.

This phenomenon of zero mode assembly, i.e. the ‘‘cl
sicalization’’ of quantum mechanical fluctuations that gro
after horizon crossing is very similar to the interpretation
‘‘decoherence without decoherence’’ of Polanski and Star
insky @28#.

The extension of this analysis to the case for wh
h(0)Þ0 is straightforward. Since bothh~t! and
AgS(t)5uC0u f 0(t) obey the equation for the zero mod
Eq. ~5.3!, it is clear that we can generalize our definition
the effective zero mode to be

he f f~t![Ah2~t!1gS~t!, ~5.30!

which obeys the equation of motion of aclassical zero
mode:

F d2

dt2 13h
d

dt
211he f f~t!2Ghe f f~t!50. ~5.31!

If this effective zero mode is to drive the FRW expansio
then the additional condition

ḣ2f 0
222hḣ f 0 ḟ 01h2 ḟ 0

250 ~5.32!

must also be satisfied. One can easily show that this rela
is indeed satisfied if the mode functions factorize as in E
~5.19! and if the integrals~5.20!–~5.22! are dominated by the
contributions of the superhorizon mode functions. This lea
to the conclusion that the gravitational dynamics is given
Eqs.~5.27!–~5.29! with he f f(t) defined by Eq.~5.30!.

We see that inall cases, the full largeN quantum dynam-
ics in these models of inflationary phase transitions is w
approximated by the equivalent dynamics of a homogene
classical scalar field with initial conditions on the effectiv
field he f f(0)>Agh0F(h0). We have verified these result
numerically for the field and scale factor dynamics, findi
that the effective classical dynamics reproduces the resul
the full dynamics to within our numerical accuracy. We ha
also checked numerically that the estimate for the classica
quantum crossover given by Eq.~5.18! is quantitatively cor-
rect. Thus in the classical case in whichh(0)@Alh0 we find
that he f f(t)5h(t), whereas in the opposite, quantum ca
he f f(t)5AgS(t).

This remarkable feature of the zero mode assembly
long-wavelength, spinodally unstable modes is a con
quence of the presence of the horizon. It also explains w
despite the fact that asymptotically the fluctuations sam
the broken symmetry state, the equation of state is tha
matter. Since the excitations in the broken symmetry s
are massless Goldstone bosons, one would expect radi
domination. However, the assembly phenomenon, i.e.
redshifting of the wave vectors, makes these modes beh
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exactly like zero momentum modes that give an equation
state of matter~upon averaging over the small oscillation
around the minimum!.

Subhorizon modes at the end of inflation withq.h0eh0ts

do not participate in the zero mode assembly. The beha
of such modes does depend onq after the end of inflation.
Notice that these modes have extremely large comovinq
sinceh0eh0ts>1026. As discussed in Ref.@16# such modes
decrease with time after inflation as;1/a(t).

VI. MAKING SENSE OF SMALL FLUCTUATIONS

Having recognized the effective classical variable that
be interpreted as the component of the field that drives
FRW background and rolls down the classical potential h
we want to recognize unambiguously the small fluctuatio
We have argued above that after horizon crossing, all of
mode functions evolve proportionally to the zero mode, a
the question arises as to which modes are assembled int
effective zero mode whose dynamics drives the evolution
the FRW scale factor and which modes are treated as pe
bations. In principle everykÞ0 mode provides some spati
inhomogeneity, and assembling these into an effective
mogeneous zero mode seems in principle to do away w
the very inhomogeneities that one wants to study. Howe
scales of cosmological importance today first crossed the
rizon during the last 60 or so e-folds of inflation. Recen
Grishchuk@29# has argued that the sensitivity of the me
surements ofDT/T probes inhomogeneities on scales'500
times the size of the present horizon. Therefore scales
are larger than these and that have first crossed the ho
much earlier than the last 60 e-folds of inflation are uno
servable today and can be treated as an effective hom
neous component, whereas the scales that can be probe
perimentally via the CMB inhomogeneities today must
treated separately as part of the inhomogeneous perturba
of the CMB.

Thus a consistent description of the dynamics in terms
an effective zero mode plus ‘‘small’’ quantum fluctuatio
can be given provided the following requirements are met
~a! the total number of e-foldsNe@60, ~b! all the modes that
have crossed the horizonbefore the last 60–65 e-folds ar
assembled into an effectiveclassical zero mode via
fe f f(t)5@f0

2(t)1^c2(xW ,t)&R#1/2, and ~c! the modes that
cross the horizon during the last 60–65 e-folds are accou
as ‘‘small’’ perturbations. The reason for the requirement~a!

is that in the separationf(xW ,t)5fe f f(t)1df(xW ,t) one re-
quires thatdf(xW ,t)/fe f f(t)!1. As argued above, after th
modes cross the horizon, the ratio of amplitudes of the m
functions remains constant and given bye(n23/2)DN with DN
being the number of e-folds between the crossing of
smallerk and the crossing of the largerk. Then fordf(xW ,t)
to be much smaller than the effective zero mode, it must
that the Fourier components ofdf correspond to very large
k’s at the beginning of inflation, so that the effective ze
mode can grow for a long time before the components ofdf
begin to grow under the spinodal instabilities. In fact requi
ment ~a! is not very severe; in Figs. 1–5 we have tak
h052.0 which is a very moderate value and yet forl510212

the inflationary stage lasts for well over 100 e-folds, and
f
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argued above, the largerh0 for fixed l, the longer is the
inflationary stage. Therefore under this set of conditions,
classical dynamics of the effective zero modefe f f(t) drives
the FRW background, whereas the inhomogeneous fluc
tions df(xW ,t), which are made up of Fourier componen
with wavelengths that are much smaller than the horizon
the beginning of inflation and that cross the horizon dur
the last 60 e-folds, provide the inhomogeneities that s
density perturbations.

VII. SCALAR AND TENSOR METRIC PERTURBATIONS

A. Scalar perturbations

Having identified the effective zero mode and the ‘‘sm
perturbations,’’ we are now in position to provide an es
mate for the amplitude and spectrum of scalar metric per
bations. We use the clear formulation by Mukhanov, Fe
man and Brandenberger@30# in terms of gauge invarian
variables. In particular we focus on the dynamics of t
Bardeen potential@31#, which in longitudinal gauge is iden
tified with the Newtonian potential. The equation of motio
for the Fourier components~in terms of comoving wave vec
tors! for this variable in terms of the effective zero mode
@30#

F̈k1FH~ t !22
f̈e f f~ t !

ḟe f f~ t !
G Ḟk

1F k2

a2~ t !
12S Ḣ~ t !2H~ t !

f̈e f f~ t !

ḟe f f~ t !
D GFk50. ~7.1!

We are interested in determining the dynamics ofFk for
those wave vectors that cross the horizon during the las
e-folds before the end of inflation. During the inflationa
stage the numerical analysis yields to a very good appr
mation

H~ t !'H0 , fe f f~ t !5fe f f~0!e~n23/2!H0t, ~7.2!

whereH0 is the value of the Hubble constant during infl
tion, leading to

Fk~ t !5e~n22!H0tFakHb
~1!S ke2H0t

H0
D1bkHb

~2!S ke2H0t

H0
D G ,

b5n21. ~7.3!

The coefficientsak ,bk are determined by the initial condi
tions.

Since we are interested in the wave vectors that cross
horizon during the last 60 e-folds, the consistency for
zero mode assembly and the interpretation of ‘‘small pert
bations’’ requires that there must be many e-folds before
last 60. We are then considering wave vectors that were d
inside the horizon at the onset of inflation. Mukhanovet al.
@30# show thatFk(t) is related to the canonical ‘‘velocity
field’’ that determines scalar perturbations of the metric a
which is quantized with Bunch-Davies initial conditions fo
the largek-mode functions. The relation betweenFk andv
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and the initial conditions onv lead at once to a determinatio
of the coefficientsak andbk for k@H0 @30#:

ak52
3

2 F 8p

3M Pl
2 G ḟe f f~0!A p

2H0

1

k
, bk50. ~7.4!

Thus we find that the amplitude of scalar metric pertur
tions after horizon crossing is given by

udk~ t !u5k3/2uFk~ t !u'
3

2 F 8Ap

3M Pl
2 G ḟe f f~0!

3S 2H0

k D n2 3/2

e~2n23!H0t. ~7.5!

The power spectrum per logarithmick interval is given by
udk(t)u2. The time dependence ofudk(t)u displays the un-
stable growth associated with the spinodal instabilities
super-horizon modes and is a hallmark of the phase tra
tion. This time dependence can be also understood from
constraint equation that relates the Bardeen potential to
gauge invariant field fluctuations@30#, which in longitudinal
gauge are identified withdf(xW ,t). The constraint equation
and the evolution equations for the gauge invariant sc
field fluctuations are@30#

d

dt
~aFk!5

4p

M Pl
2 adfk

giḟ0 , ~7.6!

F d2

dt2
13H

d

dt
1

k2

a2 1M2Gdfk
gi24ḟe f fḞk12V8~fe f f!Fk

50. ~7.7!

Since the right hand side of Eq.~7.6! is proportional to
ḟe f f /M Pl

2 !1 during the inflationary epoch in this model, w

can neglect the terms proportional toḞk andFk on the left
hand side of Eq.~7.7!, in which case the equation for th
gauge invariant scalar field fluctuation is the same as for
mode functions. In fact, sincedfk

gi is gauge invariant, we
can evaluate it in the longitudinal gauge wherein it is ide
tified with the mode functionsf k(t). Then absorbing a con
stant of integration in the initial conditions for the Barde
variable, we find

Fk~ t !'
4p

M Pl
2 a~ t !

E
t0

t

a~ t8!fe f f~ t8! f k~ t8!dt81OS 1

M Pl
4 D ,

~7.8!

and using thatf(t)}e(n23/2)H0t and that after horizon cross
ing f k(t)}e(n23/2)H0t, one obtains at once the time depe
dence of the Bardeen variable after horizon crossing. In p
ticular the time dependence is found to be}e(2n23)H0t. It is
then clear that the time dependence is a reflection of
spinodal~unstable! growth of the superhorizon field fluctua
tions.

To obtain the amplitude and spectrum of density pert
bations at asecondhorizon crossing we use the conservati
law associated with the gauge invariant variable@30#,
-

f
si-
he
he

ar

e

-

-
r-

e

-

jk5
2

3

Ḟk

H
1Fk

11p/«
1Fk , j̇k50, ~7.9!

which is valid after horizon crossing of the mode with wa
vector k. Although this conservation law is an exact sta
ment of superhorizon mode solutions of Eq.~7.1!, we have
obtained solutions assuming that during the inflationary st
H is constant and have neglected theḢ term in Eq.~7.1!.
Since during the inflationary stage

Ḣ~ t !52
4p

M Pl
2 ḟe f f

2 ~ t !}H0
2S dhe f f~t!

dt D 2

!H0
2 ~7.10!

andf̈/ḟ'H0 , the above approximation is justified. We the
see thatfe f f

2 (t)}e(2n23)H0t which is the same time depen
dence as that ofFk(t). Thus the term proportional to
1/(11p/«) in Eq. ~7.9! is indeed constant in time after ho
rizon crossing. On the other hand, the term that does
have this denominator evolves in time but is of ord
(11p/«)522Ḣ/3H2!1 with respect to the constant term
and therefore can be neglected. Thus, we confirm that
variablej is conserved up to the small term proportional
(11p/«)Fk which is negligible during the inflationary
stage. This small time dependence is consistent with the
that we neglected theḢ term in the equation of motion fo
Fk(t).

The validity of the conservation law has been recen
studied and confirmed in different contexts@32,33#. Notice

that we do not have to assume thatḞk vanishes, which in
fact does not occur.

However, upon a second horizon crossing it is straightf

ward to see thatḞk(t f)'0. The reason for this assertion ca
be seen as follows: Equation~7.7! shows that at long times
when the effective zero mode is oscillating around the m
mum of the potential with a very small amplitude and wh
the time dependence of the fluctuations has saturated~see
Fig. 3!, Fk will redshift as'1/a(t) @16# and its derivative
becomes extremely small.

Using this conservation law, assuming matter dominat

at a second horizon crossing, andḞk(t f)'0 @30#, we find

udk~ t f !u5
12G~n!Ap

5S n2
3

2DF~H0 /m!

S 2H0

k D n2 3/2

~7.11!

whereF(H0 /m) determines the initial amplitude of the e
fective zero mode~5.25!. We can now read the power spe
trum per logarithmick interval

Ps~k!5udku2}k22~n2 3/2! ~7.12!

leading to the index for scalar density perturbations

ns5122S n2
3

2D . ~7.13!

For H0 /m@1, we can expandn23/2 as a series inm2/H0
2

in Eq. ~7.11!. Given that the comoving wave number of th



f

o

o

ec
th
n
fo
f i

th
ac

on
n

-
fo

s
es
s
ic
n

ou
od
ha
an
th
ar

o
to

n

d

o
b

as
a
by

of

are
lu-
ale
a-
f

in
w
al
tter

ual
e of

n-
the

and
ith
from
f the
r

ap-
er-

low

2180 57BOYANOVSKY, CORMIER, de VEGA, HOLMAN, AND KUMAR
mode which crosses the horizonn e-folds before the end o
inflation is k5H0e(Ne2n) whereNe is given by Eq.~5.15!,
we arrive at the following expression for the amplitude
fluctuations on the scale corresponding ton in terms of the
de Sitter Hubble constant and the couplingl:

udn~ t f !u.
9H0

3

5&m3
~2en!m2/3H0

2AlF11
2m2

3H0
2 S 7

6
2 ln 22

g

2D
1OS m4

H0
4D G . ~7.14!

Here,g is Euler’s constant. Note the explicit dependence
the amplitude of density perturbations onAl. Forn'60, the
factor exp(nm2/3H0

2) is O ~100! for H0 /m52, while it is
O~1! for H0 /m>4. Notice that forH0 /m large, the ampli-
tude increases approximately as (H0 /m)3, which will place
strong restrictions onl in such models.

We remark that we have not included the small corr
tions to the dynamics of the effective zero mode and
scale factor arising from the non-linearities. We have fou
numerically that these non-linearities are only significant
the modes that cross about 60 e-folds before the end o
flation for values of the Hubble parameterH0 /mR.5. The
effect of these non-linearities in the largeN limit is to slow
somewhat the exponential growth of these modes, with
result of shifting the power spectrum closer to an ex
Harrison-Zeldovich spectrum withns51. Since for
H0 /mR.5 the power spectrum given by Eq.~7.13! differs
from one by at most a few percent, the effects of the n
linearities are expected to be observationally unimporta
The spectrum given by Eq.~7.11! is similar to that obtained
in Refs.@6, 20# although the amplitude differs from that ob
tained there. In addition, we do not assume slow roll

which (n2 3
2 )!1, although this would be the case ifNe@60.

We emphasize an important feature of the spectrum:
has more power atlong wavelengthsbecausen23/2.0.
This is recognized to be a consequence of the spinodal in
bilities that result in the growth of long wavelength mod
and therefore in more power for these modes. This seem
be a robust prediction of new inflationary scenarios in wh
the potential has a negative second derivative in the regio
field space that produces inflation.

It is at this stage that we recognize the consistency of
approach for separating the composite effective zero m
from the small fluctuations. We have argued above t
many more than 60 e-folds are required for consistency,
that the small fluctuations correspond to those modes
cross the horizon during the last 60 e-folds of the inflation
stage. For these modesH0 /k5e2H0t* (k) wheret* (k) is the
time since the beginning of inflation of horizon crossing
the mode with wave vectork. The scale that corresponds
the Hubble radius today,l052p/k0 , is the first to cross
during the last 60 or so e-folds before the end of inflatio
Smaller scales today will correspond tok.k0 at the onset of
inflation since they will cross the first horizon later an
therefore will reenter earlier. The bound onudk0

u
}DT/T<1025 on these scales provides a lower bound
the number of e-folds required for these type of models to
consistent:
f

f

-
e
d
r
n-

e
t

-
t.

r

It

ta-

to
h
of

r
e
t
d
at
y

f

.

n
e

Ne.601
12

n2
3

2

2

lnS n2
3

2D
n2

3

2

, ~7.15!

where we have written the total number of e-folds
Ne5H0t* (k0)160. This in turn can be translated into
bound on the coupling constant using the estimate given
Eq. ~5.15!.

The four year Cosmic Background Explorer~COBE!, Dif-
ferential Microwave Radiometer~DMR! Sky Map@34# gives
n'1.260.3, thus providing an upper bound onn,

0<n2
3

2
<0.05, ~7.16!

corresponding toh0>2.6. We then find that these values
h0 andl'10212– 10214 provide sufficient e-folds to satisfy
the constraint for scalar density perturbations.

B. Tensor perturbations

The scalar field does not couple to the tensor~gravita-
tional wave! modes directly, and the tensor perturbations
gauge invariant from the beginning. Their dynamical evo
tion is completely determined by the dynamics of the sc
factor @30,35#. Having established numerically that the infl
tionary epoch is characterized byḢ/H0

2!1 and that scales o
cosmological interest cross the horizon during the stage
which this approximation is excellent, we can just borro
the known result for the power spectrum of gravitation
waves produced during inflation extrapolated to the ma
era @30,35#:

PT~k!'
H0

2

M Pl
2 k0. ~7.17!

Thus the spectrum to this order is scale invariant~Harrison-
Zeldovich! with an amplitude of the orderm4/lM Pl

4 . Then,
for values ofm'1012– 1014 GeV andl'10212– 10214 one
finds that the amplitude is<10210 which is much smaller
than the amplitude of scalar density perturbations. As us
the amplification of scalar perturbations is a consequenc
the equation of state during the inflationary epoch.

VIII. CONTACT WITH THE RECONSTRUCTION
PROGRAM

The program of reconstruction of the inflationary pote
tial seeks to establish a relationship between features of
inflationary scalar potential and the spectrum of scalar
tensor perturbations. This program, in combination w
measurements of scalar and tensor components either
refined measurements of temperature inhomogeneities o
CMB or through galaxy correlation functions, will then offe
a glimpse of the possible realization of the inflation@36,37#.
Such a reconstruction program is based on the slow roll
proximation and the spectral index of scalar and tensor p
turbations is obtained in a perturbative expansion in the s
roll parameters@36,37#
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e~f!5

3

2
ḟ2

ḟ2

2
1V~f!

, ~8.1!

h~f!52
f̈

Hḟ
. ~8.2!

We can make contact with the reconstruction program
identifying f above with ourfe f f after the first few e-folds
of inflation needed to assemble the effective zero mode f
the quantum fluctuations. We have numerically establis
that for the weak scalar coupling required for the consiste
of these models, the cosmologically interesting scales c
the horizon during the epoch in whichH'H0, ḟe f f

'~n23/2!H0fe f f, V'mR
4/l@ḟe f f

2 . In this case we find

h~fe f f!52S n2
3

2D , e~fe f f!'O~l!!h~fe f f!.

~8.3!

With these identifications and in the notation of@36,37#
the reconstruction program predicts the index for scalar d
sity perturbationsns given by

ns21522S n2
3

2D1O~l!, ~8.4!

which coincides with the index for the power spectrum p
logarithmic intervaludku2 with udku given by Eq.~7.11!. We
must note, however, that our treatment did not assume s

roll for which (n2 3
2 )!1. Our self-consistent, non

perturbative study of the dynamics, plus the underlying
quirements for the identification of a composite operator a
ing as an effective zero mode, validates the reconstruc
program in weakly coupled new inflationary models.

IX. DECOHERENCE: QUANTUM TO CLASSICAL
TRANSITION DURING INFLATION

An important aspect of cosmological perturbations is t
they are of quantum origin but eventually they become c
sical as they are responsible for the small classical me
perturbations. This quantum to classical crossover is ass
ated with a decoherence process and has received muc
tention @28,38#.

Recent work on decoherence focused on the descrip
of the evolution of the density matrix for a free scalar ma
less field that represents the ‘‘velocity field’’@30# associated
with scalar density perturbations@28#. In this section we
study the quantum to classical transition of superhoriz
modes for the Bardeen variable by relating these to the fi
mode functions and analyzing the full time evolution of t
density matrix of the matter field. This is accomplished w
the identification given by Eq.~7.8! which relates the mode
functions of the Bardeen variable with those of the sca
field. This relation establishes that in the models under c
sideration the classicality of the Bardeen variable is de
y
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mined by the classicality of the scalar field modes.
In the situation under consideration, long-waveleng

field modes become spinodally unstable and grow expon
tially after horizon crossing. The factorization~5.13! results
in the phases of these modes ‘‘freezing out.’’ This featu
and the growth in amplitude entail that these modes beco
classical. The relation~7.8! in turn implies that these feature
also apply to the superhorizon modes of the Bardeen po
tial.

Therefore we can address the quantum to classical tra
tion of the Bardeen variable~gravitational potential! by ana-
lyzing the evolution of the density matrix for the matter fiel

To make contact with previous work@28,38# we choose to
study the evolution of the field density matrix in conform
time, although the same features will be displayed in com
ing time.

The metric in conformal time takes the form

ds25C2~T !~dT 22dxW2!. ~9.1!

Upon a conformal rescaling of the field,

FW ~xW ,t !5xW ~xW ,T !/C~T !, ~9.2!

the action for a scalar field becomes, after an integration
parts and dropping a surface term,

S5E d3x dT H 1

2
~xW 8!22

1

2
~¹W xW !22V~xW !J , ~9.3!

with

V~xW !5C4~T ! VS xW

C~T !
D 2C2~T !

R
12

xW 2, ~9.4!

whereR56C9(T )/C3(T ) is the Ricci scalar, and prime
stand for derivatives with respect to conformal timeT ~for
more details see the Appendix of Ref.@16#!. As we can see
from Eq. ~9.3!, the action takes the same form as
Minkowski space-time with a modified potentialV(xW ).

The conformal time Hamiltonian operator, which is th
generator of translations inT, is given by

HT5E d3xH 1

2
PxW

2
1

1

2
~¹W xW !21V~xW !J , ~9.5!

with PW x being the canonical momentum conjugate toxW ,
PW x5xW 8. Separating the zero mode of the fieldxW ,

xW ~xW ,T !5x0~T !d i ,11xŴ ~xW ,T !, ~9.6!

and performing the largeN factorization on the fluctuations
we find that the Hamiltonian becomes linear plus quadra
in the fluctuations, and similar to a Minkowski space-tim
Hamiltonian with aT dependent mass term given by

M2~T !5C2~T !Fm21S j2
1

6D R1
l

2
x0

2~T !1
l

2
^x̂2&G .

~9.7!

We can now follow the steps and use the results of R
@13# for the conformal time evolution of the density matr
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by settinga(t)51 in the proper equations of that referen
and replacing the frequencies by

vk
2~T !5kW21M2~T !. ~9.8!

The expectation value in Eq.~9.7! and that of the energy
momentum tensor are obtained in thisT evolved density ma-
trix. @As is clear, we obtain in this way the self-consiste
dynamics in the curved cosmological background~9.1!.#

The time evolution of the kernels in the density mat
~see@13#! is determined by the mode functions that obey

F d2

dT 2
1k21M2~T !GFk~T !50. ~9.9!

The Wronskian of these mode functions,

W~F,F* !5Fk8Fk* 2FkFk8* , ~9.10!

is a constant. It is natural to impose initial conditions su
that at the initialT the density matrix describes a pure sta
which is the instantaneous ground state of the Hamiltonia
this initial time. This implies that the initial conditions of th
mode functionsFk(T) be chosen to be~see@13#!

Fk~T0!5
1

Avk~T0!
, Fk8~T0!52 ivk~T0! Fk~T0!.

~9.11!

With such initial conditions, the Wronskian~9.10! takes the
value

W~F,F* !522i . ~9.12!

The Heisenberg field operatorsx̂(xW ,T ) and their canoni-
cal momentaPx(xW ,T ) can now be expanded as

xŴ ~xW ,T !5E d3k

~2p!3/2@aW kWFk~T !1aW
2kW
†

Fk* ~T !#eikW•xW,

~9.13!

PW x~xW ,T !5E d3k

~2p!3/2 @aW kWFk8~T !1aW
2kW
†

Fk8* ~T !#eikW•xW,

~9.14!

with the time independent creation and annihilation opera
aW kW and aW kW

† obeying canonical commutation relations. Sin
the fluctuation fields in comoving and conformal time a
related by a conformal rescaling given by Eq.~9.2!, it is
straightforward to see that the mode functions in comov
time t are related to those in conformal time simply as

f k~ t !5
Fk~T !

C~T !
. ~9.15!

Therefore the initial conditions given in Eq.~9.11! on the
conformal time mode functions and the choi
a(t0)5C(T0)51 imply the initial conditions for the mode
functions in comoving time given by Eq.~3.24!.

In the largeN or Hartree~also in the self-consistent one
loop! approximation, the density matrix is Gaussian, and
t

h

at

rs

g

-

fined by a normalization factor, a complex covariance t
determines the diagonal matrix elements, and a real cov
ance that determines the mixing in the Schro¨dinger represen-
tation as discussed in Ref.@13# ~and references therein!.

That is, the density matrix takes the form

r@F,F̃,T #5)
kW
Nk~T!expH 2

1

2
Ak~T !hW kW~T !•hW 2kW~T !

2
1

2
Ak* ~T !hW̃ kW~T !•hW̃ 2kW~T !

2Bk~T !hW kW~T !•hW̃ 2kW~T !

1 i pW kW~T !•@hW 2kW~T !2hW̃ 2kW~T !#J , ~9.16!

hW kW~T !5xW kW~T !2x0~T !d i ,1d~kW !,

hW̃ k~T !5xW̃ k~T !2x0~T !d i ,1d~kW !.

pW kW(T ) is the Fourier transform ofPx(T,xW ). This form of the
density matrix is dictated by the Hermiticity condition

r@F,F̃,T #5r* @F̃,F,T #;

as a result of this,Bk(T ) is real. The kernelBk(T ) deter-
mines the amount of ‘‘mixing’’ in the density matrix since
Bk50, the density matrix corresponds to a pure state beca
it factorizes into a wave functional depending only onF~•!

times its complex conjugate taken atF̃(•). This is the case
under consideration, since the initial conditions correspo
to a pure state and under time evolution the density ma
remains that of a pure state@13#.

In conformal time quantization and in the Schro¨dinger
representation in which the fieldx is diagonal the conforma
time evolution of the density matrix is via the conform
time Hamiltonian~9.5!. The evolution equations for the co
variances are obtained from those given in Ref.@13# by set-
ting a(t)51 and using the frequenciesvk

2(T )5k2

1M2(T ). In particular, by setting the covariance of th
diagonal elements@given by Eq.~2.20! in @13#; see also Eq.
~2.44! of @13##,

Ak~T!52 i
Fk8* ~T !

Fk* ~T !
. ~9.17!

More explicitly @13#,

Nk~T !5Nk~T0!expF E
T0

T
AIk~T 8!dT 8G5

Nk~T0!

Avk~T0!uFk~T !u
,

AIk~T !52
d

dT loguFk~T !u52ȧ~ t !2a~ t !
d

dt
logu f k~ t !u,

ARk~T !5
1

uFk~T !u2
5

1

a~ t !2u f k~ t !u2 ,

Bk~T ![0, ~9.18!
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whereARk and AIk are respectively the real and imagina
parts ofAk and we have used the value of the Wronsk
~9.12! in evaluating Eqs.~9.18!.

The coefficientsAk(T ) andNk(T ) in the Gaussian den
sity matrix ~9.16! are completely determined by the confo
mal mode functionsFk(T ) @or alternatively the comoving
time mode functionsf k(t)#.

Let us study the time behavior of these coefficients. D
ing inflation, a(t)'eh0t, and the mode functions factoriz
after horizon crossing, and superhorizon modes grow in c
mic time as in Eq.~5.13!:

a2~ t !u f k~ t !u2'
1

Dk
e~2n21!h0t,

where the coefficientDk can be read from Eq.~5.13!.
We emphasize that this is aresult of the full evolutionas

displayed from the numerical solution in Fig. 3. These mo
functions encode all of the self-consistent and no
perturbative features of the dynamics. This should be c
trasted with other studies in which typically free field mod
in a background metric are used.

Inserting this expression in Eqs.~9.18! yields

AIk~T ! 5
t→`

2h0eh0tS n2
1

2D1O~e2h0t!,

ARk~T ! 5
t→`

Dke
2~2n21!h0t.

Sincen2 1
2 .1, we see that the imaginary part of the c

varianceAIk(T) growsvery fast. Hence, the off-diagonal e
ements ofr@F,F̃,T # oscillate wildly after a few e-folds of
inflation. In particular their contribution to expectation va
ues of operators will be washed out. That is, we quic
reach aclassicalregime where only the diagonal part of th
density matrix is relevant:

r@F,F,T #5)
kW
Nk~T !exp$2ARk~T ! hkW~T ! h2kW~T !%.

~9.19!

The real part of the covarianceARk(T ) @as well as any
non-zero mixing kernel Bk(T ) @13## decreases as
e2(2n21)h0t. Therefore, characteristic field configurationshkW

are very large~of ordere(n21/2)h0t). Therefore configurations
with field amplitudes up toO(e(n21/2)h0t) will have a sub-
stantial probability of occurring and being represented in
density matrix.

Notice thatx;e(n21/2)h0t corresponds to field configura
tionsF with amplitudes of ordere(n23/2)h0t @see Eq.~9.2!#. It

is the fact thatn2 3
2 .0 which in this situation is responsibl

for the ‘‘classicalization,’’ which is seen to be a consequen
of the spinodal growth of long-wavelength fluctuations.

The equal-time field correlator is given by
-

s-

e
-
n-

e

e

^ x̄ ~xW ,T ! x̄ ~xW8,T !&5E d3k

2~2p!3 uFk~T !u2eikW•~xW2xW8!

5a~ t !2E d3k

2~2p!3 u f k~ t !u2eikW•~xW2xW8!,

~9.20!

and is seen to be dominated by the superhorizon mode f
tions and to grow ase(2n21)h0t, whereas the field commuta
tors remain fixed showing the emergence of a classical
havior. As a result we obtain

^ x̄ ~xW ,T ! x̄ ~xW8,T !&}a2~ t !fe f f~ t !fe f f~ t8!G~ uxW2xW8u!

1small, ~9.21!

whereG(uxW2xW8u) falls off exponentially for distances large
than the horizon@14# and ‘‘small’’ refers to terms that are
smaller in magnitude. This factorization of the correlati
functions is another indication of classicality.

Therefore, it is possible to describe the physics by us
classical field theory. More precisely, one can use a class
statistical~or stochastic! field theory described by the func
tional probability distribution~9.19!.

These results generalize the decoherence treatment g
in Ref. @39# for a free massless field in pure quantum sta
to the case of interacting fields with broken symmetry. No
that the formal decoherence or classicalization in the den
matrix appears after the modes with wave vectork become
superhorizon sized, i.e. when the factorization of the mo
functions becomes effective.

X. CONCLUSIONS

It can be argued that the inflationary paradigm as c
rently understood is one of the greatest applications of qu
tum field theory. The imprint of quantum mechanics is e
erywhere, from the dynamics of the inflaton, to th
generation of metric perturbations, through to the rehea
of the universe. It is clear then that we need to understand
quantum mechanics of inflation in as deep a manner as
sible so as to be able to understand what we are actu
testing via the CMBR temperature anisotropies, say.

What we have found in our work is that the quantu
mechanics of inflation is extremely subtle. We now und
stand that it involves both non-equilibrium as well as no
perturbative dynamics and that what you start from maynot
be what you wind up with at the end.

In particular, we see now that the correct interpretation
the non-perturbative growth of quantum fluctuations v
spinodal decomposition is that the background zero m
must be redefined through the process of zero mode reas
bly that we have discovered. When this is done~and only
when! we can interpret inflation in terms of the usual slow
roll approach with the now small quantum fluctuatio
around the redefined zero mode driving the generation
metric perturbations.

We have studied the non-equilibrium dynamics of a ‘‘ne
inflation’’ scenario in a self-consistent, non-perturbati
framework based on a largeN expansion, including the dy
namics of the scale factor and back reaction of quantum fl
tuations. Quantum fluctuations associated with superhori
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modes grow exponentially as a result of the spinodal in
bilities and contribute to the energy momentum tensor
such a way as to end inflation consistently.

Analytical and numerical estimates have been provid
that establish the regime of validity of the classical approa
We find that these superhorizon modes reassemble int
effective zero mode and unambiguously identify the comp
ite field that can be used as an effective expectation valu
the inflaton field whoseclassicaldynamics drives the evolu
tion of the scale factor. This identification also provides t
initial condition for this effective zero mode.

A consistent criterion is provided to extract ‘‘small’’ fluc
tuations that will contribute to cosmological perturbatio
from ‘‘large’’ non-perturbative spinodal fluctuations. This
an important ingredient for a consistent calculation and
terpretation of cosmological perturbations. This criterion
quires that the model must provide many more than 60
folds to identify the ‘‘small perturbations’’ that give rise t
scalar metric~curvature! perturbations. We then use this cr
terion combined with the gauge invariant approach to ob
the dynamics of the Bardeen variable and the spectrum
scalar perturbations.

We find that during the inflationary epoch, superhoriz
modes of the Bardeen potential grow exponentially in tim
reflecting the spinodal instabilities. These long-wavelen
instabilities are manifest in the spectrum of scalar den
perturbations and result in an index that is less than one
a ‘‘red’’ power spectrum, providing more power at lon
wavelengths. We argue that this ‘‘red’’ spectrum is a rob
feature of potentials that lead to spinodal instabilities in
region in field space associated with inflation and can
interpreted as an ‘‘imprint’’ of the phase transition on t
cosmological background. Tensor perturbations, on the o
hand, are not modified by these features; they have a m
smaller amplitude and a Harrison-Zeldovich spectrum.

We made contact with the reconstruction program a
nd
a

on

l-

g
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validated the results for these type of models based on
slow-roll assumption, despite the fact that our study does
involve such an approximation and is non-perturbative.

Finally we have studied the quantum to classical cro
over and decoherence of quantum fluctuations by study
the full evolution of the density matrix, thus making conta
with the concept of ‘‘decoherence without decoherenc
@28# which is generalized to the interacting case. In the c
under consideration decoherence and classicalization a
consequence of the spinodal growth of superhorizon mo
and the presence of a horizon. The phases of the mode f
tions ‘‘freeze out’’ and the amplitudes of the superhoriz
modes grow exponentially during the inflationary stag
again as a result of long-wavelength instabilities. As a res
field configurations with large amplitudes have no
vanishing probabilities to be represented in the dynam
density matrix. In the situation considered, the quantum
classical crossover of cosmological perturbations is dire
related to the ‘‘classicalization’’ of superhorizon matter fie
modes that grow exponentially upon horizon crossing dur
inflation. The diagonal elements of the density matrix in t
Schrödinger representation can be interpreted as a class
distribution function, whereas the off-diagonal elements
strongly suppressed during inflation.
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