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We consider af©(N) model coupled self-consistently to gravity in the semiclassical approximation, where
the field is subject to “new inflation” type initial conditions. We study the dynamics self-consistently and
non-perturbatively with non-equilibrium field theory methods in the lakgdimit. We find that spinodal
instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary
growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton
zero mode assemble into a new effective field. This new field behaves classically and it is the object which
actually rolls down. We show how this reinterpretation saves the standard picture of how metric perturbations
are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of
the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the
spectrum of scalar density and tensor perturbations and argue that in all models of this type the spinodal
instabilities are responsible for a “red” spectrum of primordial scalar density perturbations. A criterion for the
validity of these models is provided and contact with the reconstruction program is established validating some
of the results within a non-perturbative framework. The decoherence aspects and the quantum to classical
transition through inflation are studied in detail by following the full evolution of the density matrix and
relating the classicality of cosmological perturbations to that of long-wavelength matter fluctuations.
[S0556-282(198)03804-1

PACS numbds): 98.80.Cq, 04.62:v, 11.30.Qc

I. INTRODUCTION AND MOTIVATION quantum dynamics of inflation is well understood. This is
extremely important, especially in light of the fact that it is
Inflationary cosmology has come of age. From its begin-exactlythis quantum behavior that is supposed to give rise to
nings as a solution to purely theoretical problems such as thine primordial metric perturbations which presumably have
horizon, flatness and monopole problefis, it has grown imprinted themselves in the CMBR. This latter problem is
into the main contender for the source of primordial fluctua-the focus of this paper.
tions giving rise to large scale structyi2-4]. There is evi- The inflaton must be treated asnan-equilibriumquan-
dence from the measurements of temperature anisotropies inm field. The simplest way to see this comes from the re-
the cosmic microwave background radiatictdMBR) that  quirement of having small enough metric perturbation ampli-
the scale invariant power spectrum predicted by generic intudes which in turn requires that the quartic self-coupling
flationary models is at least consistent with observatfdrs of the inflaton be extremely small, typically of order
9] and we can expect further and more exacting tests of the-10"*2 Such a small coupling cannot establish local ther-
inflationary power spectrum when the Microwave Anisot-modynamic equilibrium(LTE) for all field modes; near a
ropy Probe(MAP) and PLANCK missions are flown. In par- phase transition the long wavelength modes will respond too
ticular, if the fluctuations that are responsible for the tem-slowly to be able to enter LTE. In fact, the superhorizon
perature anisotropies of the CMB truly originate from sized modes will be out of the region of causal contact and
qguantum fluctuations during inflation, determinations of thecannot thermalize. We see then that if we want to gain a
spectrum of scalar and tensor perturbations will constraimleeper understanding of inflation, non-equilibrium tools
inflationary models based on particle physics scenarios anthust be developed. Such tools exist and have now been de-
probably will validate or rule out specific proposals veloped to the point that they can give quantitative answers
[6,7,10,1]. Already current bounds on the spectrum of sca-to these questions in cosmolog$2—-16. These methods
lar density perturbations seem to rule out some versions germit us to follow thedynamicsof quantum fields in situa-
“extended” inflation[10]. tions where the energy density is non-perturbatively large
The tasks for inflationary universe enthusiasts are thef~1/\). That is, they allow the computation of the time
two-fold. First, models of inflation must be constructed thatevolution of non-stationary states and of non-thermal density
have a well-defined rationale in terms of coming from a rea-matrices.
sonable particle physics model. This is in contrast to the Our approach is to apply non-equilibrium quantum field
current situation where most, if not all acceptable inflation-theory techniques to the situation of a scalar field coupled to
ary models aread hocin nature, with fields and potentials semiclassicagravity, where the source of the gravitational
put in for the sole purpose of generating an inflationary epfield is the expectation value of the stress energy tensor in
och. Second, and equally important, we must be sure that thibe relevant, dynamically changing, quantum state. In this
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way we can go beyond the standard analy4&s-2Q which (2) On the other hand, the density matyikt) that deter-
treat the background as fixed. mines(T ,,)r Obeys the Liouville equation
We will mainly deal with “new inflation” scenarios,
where a scalar field evolves under the action of a typical _dp(t)
symmetry breaking potential. The initial conditions will be : ot =[H.p()], (2.2

taken so that the initial value of the order paramétee field
expectation valueis near the top of the potentiéhe disor- whereH is the evolution Hamiltonian, which is dependent
dered statewith essentially zero time derivative. on the scale factor(t).

What we find is that the existence of spinodal instabilities, It is this set of equations we must try to solve; it is clear
i.e. the fact that eventuallyin an expanding univer$eall  that initial conditions must be appended to these equations
modes will act as if they have megativemass squared, for us to be able to arrive at unique solutions to them. Let us
drives the quantum fluctuations to gravon-perturbatively discuss some aspects of the initial state of the field theory
large. We have the picture of an initial wave function or first.
density matrix peaked near the unstable state and then As we mentioned above, the situation we consider is one
spreading until it samples the stable vacua. Since these vacira which the theory admits a symmetry breaking potential
are non-perturbatively far from the initial statéypically  and in which the field expectation value starts its evolution
~m/+/\, wherem is the mass scale of the field andthe  near the unstable point. There is an issue as to how the field
quartic self-coupling the spinodal instabilities will persist got to have an expectation value near the unstable point
until the quantum fluctuations, as encoded in the equal timétypically at®=0) as well as an issue concerning the initial
two-point function(®(x,t)?), grow to O(m?/\). state of the non-zero momentum modes. The issue of initial

This growth eventually shuts off the inflationary behavior conditions is present in any formulation of inflation but cha-
of the scale factor as well as the growth of the quantunPtcC. . o .
fluctuations(this last also happens in Minkowski spacetime ~ Since our background is a FRW spacetime, it is spatially
[12)). homogeneous and we can choose our sigt¢ to respect

The scenario envisaged here is that of a quenched or sthis symmetry. Starting from the full quantum fiedol(x, t)
percooled phase transition where the order parameter is zewe can extract a part that has a natural interpretation as the
or very small. Therefore one is led to ask the following: ~ zero momentum, c-number part of the field by writing

() What is rolling down?

(b) Since the quantum fluctuations are non-perturbatively D (x,t)= () + P (X,1),
large (~1/A), will not they modify drastically the
Friedmann-Robertson-WalkéFRW) dynamics? SO =T p(t)D(X,t)]=(D(X,1)). (2.3

(c) How can one extractsmall?) metric perturbations
from non-perturbatively large field fluctuations?

We address the questiof@—(c) as well as other issues
below.

The quantity ¥(x,t) represents the quantum fluctuations

about the zero modeé(t) and clearly satisfie(S\P(i,t»:O.

We need to choose a basis to represent the density matrix.
A natural choice consistent with the translational invariance
of our quantum state is that given by the Fourier modes, in
comoving momentum space, of the quantum fluctuations

Our program consists of finding ways to incorporate theW (x,t):
non-equilibrium behavior of the quantum fields involved in
inflation into a framework that treats gravity self-
consistently, at least in some approximation. We do this via
the use of semiclassical gravif2l] where we say that the
metric is classical, at least to a first approximation, whose In this language we can state our ansatz for the initial
source is the expectation value of the stress energy tensopndition of the quantum state as follows. We take the zero
(T.,) where this expectation value is taken in the dynami-modeg(t=0)= ¢,, (t=0)=0, whereg, will typically be
cally determined state described by the density matftJ.  very near the origin, while the initial conditions on the non-
This dynamical problem can be described schematically agero modesy,(t=0) will be chosen such that the initial

II. NON-EQUILIBRIUM QUANTUM FIELD THEORY,
SEMICLASSICAL GRAVITY AND INFLATION

- d3k RN
\If(x,t)zf (ZT)3exp(—|k-x)z,bk(t). (2.9

follows: _ o density matrixp(t=0) describes a vacuum stdiee. an ini-
(1) The dynamics of the scale facta(t) is driven by the  tial state in local thermal equilibrium at a temperature
semiclassical Einstein equations T;=0). There are some subtleties involved in this choice.

First, as explained if16], in order for the density matrix to
commute with the initial Hamiltonian, we must choose the
modes to be initially in the conformal adiabatic vacuum
(2.1  (these statements will be made more precise beldlis
choice has the added benefit of allowing for time indepen-
Here Gg,AR are the renormalized values of Newton’s con-dent renormalization counterterms to be used in renormaliz-
stant and the cosmological constant, respectively,@pgdis  ing the theory.
the Einstein tensor. The higher curvature terms must be in- We are making the assumption of an initial vacuum state
cluded to absorb divergences. in order to be able to proceed with the calculation. It would

! o 4 A
87TGR lald 87TGR

g,.,+ (higher curvaturg=—(T,,)r.
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be interesting to understand what forms of the density matrixvhere we have included the coupling ®fx) to the scalar
can be used for other, perhaps more reasonable, initial corurvatureR(t) since it will arise as a consequence of renor-
ditions. malization[13].

The assumptions of an initial equilibrium vacuum state The gravitational sector includes the usual Einstein term
are essentially the same used by Lifd&] and Vilenkin in addition to a higher order curvature term and a cosmologi-
[18], as well as by Guth and P20], in their analyses of the cal constant term which are necessary to renormalize the
guantum mechanics of inflation in a fixed de Sitter back-theory. The action for the gravitational sector is therefore
ground.

As discussed in the Introduction, if we start from such an R(t) «
initial state, spinodal instabilities will drive the growth of _f d*xC :f d*xa’(t) + ERZ(I)_K ’
non-perturbatively large quantum fluctuations. In order to (3.5
deal with these, we need to be able to perform calculations
that take these large fluctuations into account. Although thavith K being the cosmological constatwe useK rather
guantitative features of the dynamics will depend on the inithan the conventionak /87G to distinguish the cosmologi-
tial state, the qualitative features associated with spinodatal constant from the ultraviolet cutoff we introduce to
instabilities will be fairly robust for a wide choice of initial regularize the theory; see Sec.)I\h principle, we also need
states that describe a phase transition with a spinodal regido include the term&R*’R,,, and R“B“”Raﬁw as they are
in field space. also terms of fourth order in derivatives of the meffisurth
adiabatic order but the variations resulting from these terms
turn out not to be independent of that Bf in the flat FRW
cosmology we are considering.

Having recognized the non-perturbative dynamics of the The variation of the actio®= Sy+ S;;, with respect to the
long wavelength fluctuations, we need to study the dynamic#netricg,,, gives us Einstein’s equation
within a non-perturbative framework, that is, a framework
allowing calculations for non-perturbatively large energy v
densities. We require that such a framework(ipeenormal- 87G
izable, (i) covariant energy conserving, afid) numerically
implementable. There are very few schemes that fulfill all ofwhereG,,, is the Einstein tensor given by the variation of
these criteria: the Hartree and the layeapproximation \/—gR, H,, is the higher order curvature term given by the
[18,12,14. Whereas the Hartree approximation is basically avariation of \/_RZ andT,, is the contribution from the
Gaussian variational approximatig@2,23 that in general matter Lagrangian. With the metri@.1), the various com-
cannot be consistently improved upon, the lalj@pproxi-  ponents of the curvature tensors in terms of the scale factor
mation can be consistently implemented beyond leading orare
der[24,25 and in our case it has the added bonus of provid-
ing many light fieldassociated with Goldstone moddisat ng —3(ala)?, (3.7
will permit the study of the effects of other fields which are

[ll. MODEL AND EQUATIONS OF MOTION

= _<T;w>’ (3.6

lighter than the inflaton on the dynamics. Thus we will study A a2
the inflationary dynamics of a quenched phase transition Gt=—-R=-6|-+—]|, (3.9
within the framework of the larg®dl limit of a scalar theory . a
in the vector representation &f(N). ]
We assume that the universe is spatially flat with a metric 0 a a? )
given by Ho=—-6| - R+ R— — R (3.9
ds?=dt?—a?(t)dx2. (3.1 . a.
Hf=-6 R+35R). (3.10

The matter action and Lagrangian density are given by
Eventually, when we have fully renormalized the theory, we

2 will set ar=0 and keep as our only contribution Ky a
1 [V<I>(x)] piece related to the matter fields which we shall incorporate
Cad(t) intoT,,
To obtain the proper larg®l limit, the vector field is
3.2 written as

H2(x)~

Sm=f d4x£m=f d4xa3(t)

—V(®(x))|,

D (x,1) = (a(X,1), 7(X,1)),

. N[ .. 2Nm?\? 1
V(D)= d2—

N — +5 ER®2, (3.3  with 7 an (N—1)-plet, and we write

a(X,1)=N@(t) + x(x,1),

(t) éﬁ(t))

R()= 6(a<t> (1)

(39 (a(X,1))=Np(1), (x(X1))=0. (3.11)
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To implement the larg®& limit in a consistent manner, one The initial conditions on the mode(t) must now be
may introduce an auxiliary field as if25]. However, the determined. At this stage it proves illuminating to pass to
leading order contribution can be obtained equivalently byconformal time variables in terms of the conformally res-

invoking the factorizatiori14,16| caled fields(see[16] and Sec. IX for a discussigmin which
4 ) the mode functions obey an equation which is very similar to
x"—6(x“)x"+const, (312 that of harmonic oscillators with time dependent frequencies
) in Minkowski space-time. It has been realized that different
X" =3(x)x; (313 jnitial conditions on the mode functions lead to different
+ =y v %2 ;3 renormalization countertermfgl6]; in particular imposing
(7 )= 2(m)m—(7) "+ O(LIN), (314 jnitial conditions in comoving time leads to counterterms
. . . that depend on these initial conditions. Thus we chose to
TP () P+ ()P, (3.19 impose initial conditions in conformal time in terms of the
R . conformally rescaled mode functions leading to the follow-
w2 x—{(m?)x. (3.16 ing initial conditions in comoving time:
To obtain a large N limit, we define [14,16] 1 A(to)
: o .
fi(ty)=—, flto)=|— —iW, [fi(tg), 3.2
N-1 k(to) W k(to) alty) 4 k(to) (3.29
7(Z,t) = ¢¥(&,t)(1,1,---,1), (3.17 _
with
T : 21,2 2 R(to)
where the largeN limit is implemented by the requirement Wi=k™+ M5(to) = —5— (3.29
that
(PPy=0(1) (x*)=~O(1),p~0O(1). (3.19  For convenience, we have sgftg) =1 in Eq.(3.29. At this

point we recognize that wheoM?(ty) —R(to)/6<0 the
The leading contribution is obtained by neglecting theabove initial condition must be modified to avoid imaginary
O(1/N) terms in the formal limit. The resulting Lagrangian frequencies, which are the signal of instabilities for long
density is quadratic, with linear terms jnand . The equa- Wavelength modes. Thus waefinethe initial frequencies
tions of motion are obtained by imposing the tadpole condithat determine the initial condition8.24 as

tions ( x(x,t)}=0 and(w(x,t)}=0 which in this case are

tantamount to requiring that the linear termsyirand  in Wz_kzJr M3(to)— R(to) for k2< ’ M2(tg)— R(tO)
0 0
the Lagrangian density vanish. Since the action is quadratic, 6
the quantum fields can be expanded in terms of creation and (3-26)
annihilation operators and mode functions that obey the
Heisenberg equations of motion R(t R(t
W2=K2+ M2(tg) - (o) o k?=| M>2(tg) — (to)
.. d%k . P . 6 6
w(x,t)=f W[akfk(t)e'k'uaif;(t)e—'“]. (3.27

(3.19 As an alternative we have also used initial conditions which
The tadpole condition leads to the following equations ofsSmoothly interpolate from positive frequencies for the un-

motion[14,16]: stable modes to the adiabatic vacuum initial conditions de-
fined by(3.24), (3.25 for the highk modes. While the alter-
H(t)+3H () () + M3(t) p(t) =0, (3.20  native choices of initial conditions result in small
quantitative differences in the resu(tsfew percent in quan-
with the mode functions tities which depend strongly on these ldwmodes, all of
) 5 the qualitative features we will examine are independent of
G B S+ AR ft)=0, (323  this choice.
dt? dt = a?(t) K T In the largeN limit we find the energy density and pres-
sure density to be given Hyl4,16]
where
A A Lo o0 X, m“ )
Mz(t)=—m2+§7€+§¢2(t)+§<¢2(t)). (3.22 N2 P+ 5 5m 2¢P+ = AR —£GQ¢ +6§ ¢ ¢
In this leading order in N the theory becomes Gaussian, E Y2 2 2 2
but with the self-consistency condition T 2a2<(V¢/) >+ M)+ g [2¢> g

d*k [fi(t)]? a .
()= f(zwﬁ 2|' (323 +(Y?)?]— €Go( ) + 6 — (y), (3.29
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- ST DR |
¢¢+¢2+35¢¢>)<¢2>+52<(V¢)2>

A
+2m* () = EGL(Y2) + S [24%(y?) +(y?)]

+6¢| (i ¢>+<¢Z>+3§<W>), (3.29

where(y?) is given by Eq.(3.23 and we have defined the
following integrals:

d3k
<(V¢)2>=f 20277 k? | fi(t)]?, (3.30

. d*k .
<¢2>:f 2227 | fi(t)]2. (3.3

The composite operatoksj) and (i) are symmetrized
by removing a normal ordering constant to yield

1. o1 d3k  d|f(t)]?
W)+ (b)) =4 2 dt (3.32
1oL .o 1 d% I
§(<¢¢>+<¢¢>)—ZJ W[fk(t)fk(t)+fk(t)fk(t)]-

(3.33
The last of these integrals, E@.33), may be rewritten using
the equation of motiori3.21)

(V)?)

a2

. a .
(g =—3 ()~ —MXy?). (334
It is straightforward to show that the bare energy is covari
antly conserved by using the equations of motion for the zer

mode and the mode functions.
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where the subscrif® stands for bare quantities, we find the
following largek behavior for the case of aarbitrary scale
factora(t) [with a(0)=1]:

1 1
Tkak(t)  2k3a(t)

fi(D)]? B(t)+

1
8k°a(t)
X1 3B(t)2+a(t) %[a(t)B(t)] +O(1K")

=852+ 0O(1k5), 4.3

) k 1 )
|fk(t)|2:a4_(t)+ m[B(t)+2az]

+m{—B(t)Z—a(t)2B(t)+3a(t)'a(t)B(t)
—42%(1)B(t)} + O(1k®)
=SV+0(1k°), (4.4)
1 . .
SO+ f i (1]
1 aw { a(t) }
=T ko an Ak | BV 25 BW
+O(1Kk5). (4.5

Although the divergences can be dealt with by dimen-
sional regularization, this procedure is not well suited to nu-
merical analysigsee however Ref27]). We will make our
subtractions using an ultraviolet cutoffa(t), constant in
physical coordinatesThis guarantees that the counterterms
will be time independent. The renormalization then proceeds
much in the same manner as in REf3]; the quadratic di-

(\’/ergences renormalize the mass and the logarithmic terms

renormalize the quartic coupling and the coupling to the
Ricci scalar. In addition, there is a quartic divergence which
renormalizes the cosmological constant while the leading

Renormalization is a very subtle but important issue infenormalizations of Newton'’s constant and the higher order

gravitational background®1]. The fluctuation contribution

(wz(i,t)>, the energy, and the pressure all need to be reno
malized. The renormalization aspects in curved space tim
have been discussed at length in the literaf@® and have
been extended to the lardé self-consistent approximations
for the non-equilibrium back reaction problem[i25,16,28.

More recently a consistent and covariant regularization
scheme that can be implemented numerically has been pro-

vided [27].
In terms of the effective mass term for the lafgdimit
given by Eq.(3.22 and defining the quantity

B(t)=a?(t)(M?(t)— RI6), 4.1

A A
MA(1) =~ MG+ EgR() + = (D) + 5 (VD)8
(4.2

r_

curvature coupling are quadratic and logarithmic respec-
tively. The renormalization conditions on the mass, coupling
to the Ricci scalar and coupling constant are obtained from

SRe requirement that the frequencies that appear in the mode

equations be finit¢13], i.e.

A A
Mg+ EaR(D) + 5 620+ 5 (¥(D)s

A A
= M2+ &R()+ 5 $* D)+ 5 (YA(D)r, (4.6

while the renormalizations of Newton’s constant, the higher
order curvature coupling, and the cosmological constant are
given by the condition of the finiteness of the semi-classical
Einstein-Friedmann equation
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GS subtract only quartic and quadratic divergences in the energy
57G +agH3+ Kggd+(T9)s and pressure, and quadratic divergences in the fluctuation
T8 contribution.
GO
~87Gx + agHd+ Krgd+ (TR, (4.7 V. RENORMALIZED EQUATIONS OF MOTION
. FOR DYNAMICAL EVOLUTION
Finally we arrive at the following set of renormalizations |t js convenient to introduce the following dimensionless
[16]: guantities and definitions:
2
; B 1 - (5R_E) AZ =mgt h—i —L Wk :ﬁ
87NGg 87NGg 6) 16 T=MRgL, g q= Mg’ wq= Mg’ g e
) 1\ , In(A/x) g (5.
2| &R g MR 167 49 N
2 — 2
7 (1)=5—73 (1), 9g=(7) PA()R,
ar  ag 1\2In(A/x) i 2mg ~2m 2< I
NN\ 5 Tie7 49
fq(7)=Vmgfi (). (5.2
Ke Kg A* A% mgIn(A/
—R-_B — mﬁ — L (—;) Choosingég=0 (minimal coupling and the renormaliza-
N N 16 16m 2 16m a1 tion point k=|mg| and settinga(0)=1, the equations of
(4.10 motion become
2 A? , IN(A/k) 2 4
“MR= Mt AR o2t NRMR e {d gz T 1 (D +gE (0| n()=0, (6.3
(4.11
1) In(Alx) & +3h o+ @ 2+g3(m)|fo(m)=0
ErR=EBAR| R~ = Rz (4.12 d7? a’(7) K g :
6) 167
IN(A/k) 1 - :
)\R:)\B_)\RW! (413) fq(o):\/Tqa fq(O)Z[—h(O)—qu]fq(O),
dgk 1 R(O) 1/2
2 — 2__
(¢ (t)>R_J m[ fk(t)‘ P wq=|0?— 1+ 7%(0)— o +gE(O)} for g?>—
O(k—k) R(t)
_T( W) 414 +77(0) - 6—(}+92<0>
Here, « is the renormalization point. As expected, the loga- 0 12
rithmic terms are consistent with the renormalizations found | _ P+1-7 R(0) } for g2
using dimensional regularizatiof27,26. Again, we set a 6m3
ar=0 and choose the renormalized cosmological constant R(0)

such thgt the vacuum energy is zero in the true vacuum. We - _ 1. 72(0)— _2_+92(0) (5.4)

emphasize that while the regulator we have chosen does not

respect the covariance of the theory, the renormalized energy

momentum tensor defined in this way nevertheless retainghere

the property of covariant conservation in the limit when the

cutoff is taken to infinity. S ()= fqudq
The logarithmic subtractions can be neglected because of 0

the coupling\ <10 *2. Using the Planck scale as the cutoff

and the inflaton mase, as a renormalization point, these M2(n)  R(7)

terms are of ordek In[M,;/mg]<10"%, for m=10° GeV. ma 6ma

An equivalent statement is that for these values of the cou-

pling and inflaton masses, the Landau pole is well beyond The initial conditions forn(7) will be specified later. An

the physical cutofMp,. Our relative error in the numerical important point to notice is that the equation of motion for

analysis is of order 1%, and therefore our numerical study the q=0 mode coincides with that of the zero mote3).

is insensitive to the logarithmic corrections. Though theseFurthermore, forp(7— ) # 0, a stationaryequilibrium) so-

corrections are fundamentally important, numerically theylution of Eq.(5.3) is obtained when the sum rulé2,14,16

can be neglected. Therefore, in the numerical computations

that follow, we will neglect logarithmic renormalization and — 14 7?(®)+g3(®)=0 (5.5

fq(7)
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is fulfilled. This sum rule is nothing but a consequence ofan intuitive idea of the main features of the dynamics. Be-

Goldstone’s theorem and is a result of the fact that the largeause the coupling is so wealg£10 ?<1) and after

N approximation satisfies the Ward identities associated witlenormalization the contribution from the quantum fluctua-

the O(N) symmetry, since the term 1+ 7°+ g3 is seento tions to the equations of motion is finite, we can neglect all

be the effective mass of the modes transverse to the symmtie terms proportional tg in Egs.(5.7) and(5.4).

try breaking direction, i.e. the Goldstone modes in the bro- For the case where we choogér)=0 and the evolution

ken symmetry phase. equations for the mode functions are those for an inverted
In terms of the zero mode(7) and the quantum mode oscillator in de Sitter space-time, which have been studied by

function given by Eq(5.4) we find that the Friedmann equa- Guth and P{20]. One obtains the approximate solution

tion for the dynamics of the scale factor in dimensionless

variables is given by h(t)~ho,
A7Nm3 q q
20\ — gh2 2_ R ~ a—3hg7/2 A A—hgr A —hgr
h=(7)=4hger(7), h°_3M§|?\R (5.9 fq(t)y~e =m0 [Aq‘]”<hoe 0 +Bqu( hoe 0 ”
and the renormalized energy and pressure are given by 9 1
V= Z + Hz, (51@
0

1. 1
€r(7)= 5 7+ Z(—1+772+92)2 _
wherelJ.. ,(z) are Bessel functions, arkl, andB, are deter-
mined by the initial conditions on the mode functions:

+ g f qqu[li‘qlz—s‘”(q,r)

] 1
q° 2 2) B .= ! ki qu_Eho\] g J! q)
+;[|fq| _®(q_1)8( (a,m]], (5.7 a- \/w—qZhO sinvm q v h_o —Jy h_o '
(5.1)
2NmME (. .
(p+e)r(n)=— k n2+gf qde{lfqlz—«S*l)(q,r) 1
R qu _ho
2 e g
+aoallfo?~0(a-1)52(q,7)] ] " Jag 2hosinvm [T a " lho) Tl
(5.12

5.8
©8 After the physical wave vectors cross the horizon, i.e.

where the subtractions') and 8@ are given by the right whenge "07/hy<1, we find that the mode functions factor-

hand sides of Eqg4.4) and (4.3) respectively. ize:
The renormalized energy and pressure are covariantly
conserved: Bq  [2No|” (, _aones
' fq(7)~m (T e 07, (5.13
er(7)+3h(7)(p+e)r(7)=0. (5.9

) ) ~ This result reveals a very important feature: Because of the

In order to provide the full solution we now must provide negative mass squared term in the matter Lagrangian leading
the values ofy(0), 7(0), andhy. Assuming that the infla- to symmetry breakingand »>3/2), we see that all of the
tionary epoch is associated with a phase transition at thenode functionsgrow exponentiallyafter horizon crossing
grand unified theory (GUT) scale, this requires that (for positive mass squaree<3/2, and they wouldlecrease
Nm‘é/)xR~(1015 GeV)* and assuming the bound on the sca-exponentially after horizon crossing This exponential
lar self-couplingh g~ 10" *?— 10~ * (this will be seen later to  growth is a consequence of the spinodal instabilities which is
be a compatible requireménwve find thath,~NY* which  a hallmark of the process of phase separation that occurs to
we will take to be reasonably given by~1-10 (for ex- complete the phase transition. We note, in addition, that the
ample in popular GUT'$\~ 20 depending on particular rep- time dependence is exactly given by that of g0 mode,
resentations i.e. the zero mode, which is a consequence of the redshifting

We will begin by studying the case of most interest fromof the wave vectors and the fact that after horizon crossing
the point of view of describing the phase transitief{0)=0  the contribution of the terng?/a®(7) in the equations of
and 5(0)=0, which are the initial conditions that led to puz- Motion become negligible. We clearly see that the quantum
zling questions. With these initial conditions, the evolution fluctuations grow exponentially and they will begin to be of
equation for the zero mode, Eq5.3, determines that the order of the tree level terms in the equations of motion
7(7)=0 by symmetry. whengX(7)~1. At large times

~ T2 24(2v-3)hgr
A. Early time dynamics 2 (7)~=F(ho)hge ,

Before engaging in the numerical study, it proves illumi- with #(h) a finite constant that depends on the initial con-
nating to obtain an estimate of the relevant time scales anditions and is found numerically to be 6f(1) (see Fig. 10
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In terms of the initial dimensionful variables, the condi- If 7. is much smaller than the spinodal timggiven by Eq.
tion g3 (7)~1 translates tqy?(x,t))g~2m2/\g, i.e. the (5.14, then theclassical evolution of the zero mode will
quantum fluctuations sample the minima of tfienormal-  dominate the dynamics and the quantum fluctuations will not
ized) tree level potential. We find that the time at which the become very large, although they will still undergo spinodal
contribution of the quantum fluctuations becomes of thedrowth. On the other hand, if.> 7, the quantum fluctua-

same order as the tree level terms is estimated @_b:b tions will grow to be very Iarge well before the zero mode
reaches the non-linear regime. In this case the dynamics will

be determined completely by the quantum fluctuations. Then

1 1
~ In the criterion for the classical or quantum dynamics is given
T 2v=3)hy | gheF(hg) oy | Y ’
3h | ! +O(1/hy) (5.19 (0)>\/—h lassical d i
=-hgIn|—=—— . . s =classica namics,
2 0 gh(z)fz(ho) 0 n g 0 y

At this time, the contribution of the quantum fluctuations 7(0)<ghy=quantum dynamics,  (5.18

makes the back reaction very important and, as will be S€€D; in terms of dimensionful variableg(0)>H, leads to

numerically, this translates into the fact that also deter- : .
. ’ ) ; . < -
mines the end of the de Sitter era and the end of mflatlonlegssmaI dynamicand ¢(0)<H leads toguantum dynam

. . fc
The total number of e-folds during the stage of exponent|a| However, even when the classical evolution of the zero

expansion of the scale factaronstantho) is given by mode dominates the dynamics, the quantum fluctuations
grow exponentially after horizon crossing unless the value of
+0O(1). ¢(1) is very close to the minimum of the tree level potential.
In the largeN approximation the spinodal line, that is the
values of ¢(t) for which there are spinodal instabilities,
reaches all the way to the minimum of the tree level potential
For largeh, we see that the number of e-folds scalehéas as can be seen from the equations of motion for the mode
well as with the logarithm of the inverse coupling. Thesefunctions. Therefore even in the classical case one must un-
results(5.13), (5.14), (5.15 will be confirmed numerically derstand how to deal with quantum fluctuations that grow
below and will be of paramount importance for the interpre-after horizon crossing.
tation of the main consequences of the dynamical evolution.

3
=-h3In

Ne 5

1 1
T 20-3 " ghZA(hy)

gh5F2(ho)

C. Numerics

B. 7(0)#0: Classical or quantum behavior? The time evolution is carried out by means of a fourth

Above we have analyzed the situation whef0)=0 [or ~ order Runge-Kutta routine with adaptive step sizing while
in dimensionful variablegh(0)=0]. The typical analysis of the momentum integrals are carried out using an 11-point
inflaton dynamics in the literature involves thiassicalevo- ~ Newton-Cotes integrator. The relative errors in both the dif-
lution of ¢(t) with an initial condition in whichg(0) is very  ferential equation and the integration are of order .0we
close to zerdi.e. the top of the potential hjliin the “slow-  find that the energy is covariantly conserved throughout the
roll” regime, for which ¢<3H . Thus, it is important to evolution to better than a part in a thzousand. Figures 1-3
quantify the initial conditions omp(t) for which the dynam- SROWGZ(r) vs 7,h(7) vs 7and If|fy(7)[’] vs 7 for several
ics will be determined by the classical evolutiongft) and ~ Values ofg with larger g's corresponding to successively
those for which the quantum fluctuations dominate the dylOWer curves. Figures 4, 5 shop(r)/e(7) and the horizon
namics. We can provide a criterion to separate classical frorgize h™*(7) for g=10"147(0)=0,7(0)=0 and we have
quantum dynamics by analyzing the relevant time scales, eshosen the representative valog=2.0.
timated by neglecting non-linearities and back reaction ef- Figures 1 and 2 show clearly that when the contribution of
fects. We consider the evolution of the zero mode in terms ofhe quantum fluctuationg=, () becomes of order 1 inflation
dimensionless variables, and choog@®)+0 and5(0)=0.  €nds, and the time scale fg2(7) to reachO(1) is very
[-7’(0);&0 simply corresponds to a shift in origin of well dgscnbed by the_estlma(6.14)._ From Fig. 1 we see
time.] We assumen(0)?<1 which is the relevant case that this happens TOf_. 75~ 90, Ieadmg to & number of e-
where spinodal instabilities are important. We find E(;I?.?S) Ne~180, which is correctly estimated by EdS.14),
()~ n(0)elr~ 32hor, (5.16 Figure 3 shows clearly the factorization of the modes after

they cross the horizon as described by Eq13. The slopes

The non-linearities will become important and eventuaIIyOf all the curves after they become straight lines in Fig. 3 are

terminate inflation whem( )~ 1. This corresponds to a time 9iven exactly by (2—3), whereas the intercept depends on
scale given by the initial condition on the mode function and the larger the

value ofq the smaller the intercept because the amplitude of

In[1/7(0)] the mode function is smaller initially. Although the intercept

Te~ (5.17  depends on the initial conditions on the long-wavelength
( 3) ho modes, the slope is independent of the valug aind is the

T2 same as what would be obtained in the linear approximation
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FIG. 3. If|fy(DP] vs 7, for 7(0)=0, 5(0)=0, g=10"*4
hy=2.0 for q=0.0,5,10,15,20 with smalleq corresponding to
larger values of IFjfy(7)[].

FIG. 1. g3 vs 7, for 7(0)=0, 7(0)=0, g=10"4 h,=2.0.

for the squareof the zero mode at times long enough that the
decaying solution can be neglected but short enough that the The growth of the quantum fluctuations is sufficient to
effect of the non-linearities is very small. Notice from the end inflation at a time given by, in Eq. (5.14. Furthermore,
figure that when inflation ends and the non-linearities beFig. 4 shows that during the inflationary epoch
come important all of the modes effectively saturate. This ip(7)/e(7)~—1 and the end of inflation is rather sharprat

also what one would expect from the solution of the zerowith p(7)/e(7) oscillating betweent1 with zero average
mode: exponential growth in early-intermediate timeg-  over the cycles, resulting in matter domination. Figure 5
glecting the decaying solutignwith a growth exponent shows this feature very clearlyy(7) is constant during the
given by (v—3/2) and an asymptotic behavior of small os- de Sitter epoch and becomes matter dominated after the end
cillations around the equilibrium position, which for the zero of inflation with h~%(7)~ (7— 7). There are small oscilla-

mode is»=1, but for theq+# 0 modes depends on the initial tjons around this value because beify) ande(7) oscillate.
conditions. All of the mode functions have this behavior These oscillations are a result of small oscillations of the

once they cross the horizon. We have also studied the phasgfyde functions after they saturate, and are also a feature of
of the mode functions and we found that they freeze aftegne solution for a zero mode.

horizon crossing in the sense that they become independent || of these features hold for a variety of initial condi-

of time. This is natural since both the real and imaginaryiions. As an example, we show in Figs. 6-9 the plots corre-

parts of fo(7) obey the same equation but with different sponding to Figs. 1-4 for the case of an initial Hubble pa-
boundary conditions. After the physical wavelength crossegzmeter ofhy=10.

the horizon, the dynamics is insensitive to the valug dbr

real and imaginary parts and the phases become independent

of time. Again, this is a consequence of the factorization of

the modes. This remarkable feature of factorization of the mode func-
tions after horizon crossing can be elegantly summarized as

D. Zero mode assembly

2.0 T T T
10 F ] f
15 - A
= 10 T g_ 00 -
05 - A
0.0 'L . -1.0 |
0.0 100.0 200.0 300.0 0.0 100.0 200.0 300.0
T T

FIG. 2. H(7) vs 7, for 5(0)=0, (0)=0, g=10"%, hy=2.0. FIG. 4. ple vs 1, for 7(0)=0, 7(0)=0, g=10 4 hy=2.0.
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FIG. 5. 1h(7) vs 7, for 7(0)=0, 7(0)=0,g=10"* hy=2.0. FIG. 7. H(7) vs 7, for (0)=0, 7(0)=0, g=10"4 h,=10.0.

(0]« ty<H,=9(0,hg) fo(7), (5.19 where “small” stands for the contribution of mode functions
ph 0 . . .
associated with momenta that have not yet crossed the hori-

with Kpp(t) = ke~ Hot being the physical momenturg(q,h,) zon at timer, which give a perturbatively smalbf order)\)
a Comp|ex Constant’ anﬂa(T) a real function of time that Contribution. We f|nd that Sevel’a| e-f0|dS aﬂ:er the beginning
satisfies the mode equation wit=0 and real initial condi- of inflation but well before inflation ends, this factorization
tions which will be inferred later. Since the factgtq,h,)  ©f Superhorizon modes implies the following:
depends solely on the initial conditions on the mode func-
tions, it turns out that for two mode functions c_:orrespor_1ding gf q2dq|f5(7)|%|co|2fg(7-)' (5.20
to momentak,,k, that have crossed the horizon at times
t,>t,, the ratio of the two mode functions at time

(t>t>t>t,) is g [ aPdal 3|~ ICol7i57), (522
fkl(t) 4 2
(v— 31Dhg(ry— 1) q |C4

g e et of 2l 5. 622

Then if we consider the contribution of these modes to thevhere we have neglected the weak time dependence arising
renormalizedguantum fluctuations a long time after the be-from the perturbatively small contributions of the short-
ginning of inflation(so as to neglect the decaying solutipns wavelength modes that have not yet crossed the horizon, and
we find that the integrals above are to be understood as the fully renor-
malized(subtractey finite integrals. Forp= 0, we note that
g3 (7)~Ce?*=3Mo7+ small,

0.0 T T
g -10.0
1.0 + ‘uNj
g
1w
9
& 200
o o
=
s g
05 i =
£ =300
-40.0 s s
0.0 200.0 400.0 600.0
0.0 : : '
0.0 200.0 400.0 600.0 2 . 14
. FIG. 8. IM|fy(n)*] vs 7, for 7(0)=0, 7(0)=0, g=10"*,

_ hy=10.0 for g=0.0,5,10,15,20 with smalleq corresponding to
FIG. 6. g3 vs 7, for (0)=0, (0)=0, g=10"* hy,=10.0. larger values of IFify(7)|*].
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FIG. 9. p/e vs 7, for 7(0)=0, (0)=0, g=10"%4 hy=10.0. FIG. 10. A(H/m) vs H, whereF(H/m) is defined by the rela-

tion ¢e(0)= (H/27) F(H/m) [see Eqgs(5.24 and(5.25)].
Eq. (5.20 and the fact thafy(7) obeys the equation of mo-
tion for the mode Wltl’q=0 leads at once to the conclusion to make contact with the literature. As is shown in Flg 10,
that in this regime[ g3 (7)]Y2=|Co|fo(7) obeys the zero We find numerically thatF(Ho/m)~O(1) for a large range

mode equation of motion of 0.1<H,/m=50 and that this quantity depends on the ini-
tial conditions of the long wavelength modes.
d? Therefore, in summary, the effective composite zero
d—72+3ha_—1+[|co|fo(7')]2 |Col fo(7)=0. mode obeys
+3h——1+ 24(7) | 7e11(7) =0,
It is clear that several e-folds after the beginning of infla- dr? dr Tert et
tion, we can define an effective zero mode as 3
n2(1)=g2(7), or in dimensionful variables, 779”(7:0):<V_ E) 7eri(0), (5.29

where 7.11(0)= (VARr/2IMR) d¢:1(0) is obtained numeri-
cally for a givenh by fitting the intermediate time behavior
f g2 (7) with the growing zero mode solution.

Furthermore, this analysis shows that in the cgse0,
the renormalized energy and pressure in this regime in which
the renormalized integrals are dominated by the superhorizon
modes are given by

ber(D=[(P2(x,1))r]Y2 (5.24

Although this identification seems natural, we emphasize0
that it is by no means a trivial ad hocstatement. There are
several important features that allow amambiguous

identification:—i) [(42(x,t))r] is a fully renormalized op-
erator product and hence finit@,) because of the factoriza-

tion of the superhorizon modes that enter in the evaluation of 2Nm3 (1 . 1

- . ~ 2 2 2
[(P2(X,1))r], deri(t), EQ.(5.24, obeys the equation of mo- er(7)~ 12 ettt 7 (7 1+ M), (5.27)
tion for the zero modeand (iii) this identification is valid
several e-folds after the beginning of inflation, after the tran- m‘é _
sient decaying solutions have died away and the integral in (pte)g~ g {nﬁff}, (5.28

(2(x,t)) is dominated by the modes with wave vedtahat
have crossed the horizontgk) <t. Numerically we see that \where we have neglected the contribution proportional to
this identification holds throughout the dynamics except for aj/a2(7) because it is effectively redshifted away after just a
very few e-folds at the beginning of inflation. This factoriza- few e-folds. We found numerically that this term is negli-

tion determines at once the initial conditions of the eﬁectivegib|e after the interval of time necessary for the Superhorizon

zero mode that can be extracted numerically:—After the firsjmodes to dominate the contribution to the integrals. Then the
few e-folds and long before the end of inflation we find dynamics of the scale factor is given by

beri(t)= deri( 0) e~ 32H!, (5.29 1. 1
° ) h2(r)=4hGi = neut Z(~1+ 722 (529

where we parametrized
We have numerically evolved the set of effective equa-

tions (5.26), (5.29 by extracting the initial condition for the

Ho
et 0)= 2 F(Ho/m) effective zero mode from the intermediate time behavior of
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. . of inflation. This effective zero mode drives the dynamics of
the FRW scale factor, terminating inflation when the non-
linearities become important. In terms of the underlying fluc-
10 e tuations, the spinodal growth of superhorizon modes gives a
non-perturbatively large contribution to the energy momen-
tum tensor that drives the dynamics of the scale factor. In-
flation terminates when the mean square root fluctuation
probes the equilibrium minima of the tree level potential.

This phenomenon of zero mode assembly, i.e. the “clas-
05 - ] sicalization” of quantum mechanical fluctuations that grow
after horizon crossing is very similar to the interpretation of
“decoherence without decoherence” of Polanski and Starob-
insky [28].

The extension of this analysis to the case for which
. . 7(0)#0 is straightforward. Since both#z(r) and
0.0 100.0 2000 300.0 Va2 (7)=|Col|fo(7) obey the equation for the zero mode,

T Eqg. (5.3, it is clear that we can generalize our definition of

the effective zero mode to be

%)

0.0

FIG. 11. 7%(7) vs 7 for 74;(0)=3.94x10",
7e11(0)=0.3177.¢1(0), g=10"* hy=2.0. The initial conditions — ADFE D
were obtained by fitting the intermediate time regimeg@f(7) in Mer(T)=N7(7)+92(7), (5.30

Fig. 1. nes(7) is the solution of Eq(5.26) with these initial con- . . . )
ditions. which obeys the equation of motion of @assical zero

mode:

g2 (7). We found a remarkable agreement between the evo-
lution of ngff andg3(7) and between the dynamics of the
scale factor in terms of the evolution @f¢¢(7), and thefull
dynamics of the scale factor and quantum fluctuations within
our numerical accuracy. Figures 11 and 12 show the evoluf this effective zero mode is to drive the FRW expansion,
tion of ngff(r) andh(7) respectively from thelassicalevo-  then the additional condition

lution equationg5.26) and (5.29 using the initial condition

70¢¢(0) extracted from the exponential fit g (7) in the ﬁzfg—Zvﬁfofo+ 772i‘§=0 (5.32
intermediate regime. These figures should be compared to

Figs. 1 and 2. We haye also numerlcfally compapeﬂgwen. . must also be satisfied. One can easily show that this relation
sole_ly by the_ dynarmgs .Of the effective zero mode_ and ' 1S5 indeed satisfied if the mode functions factorize as in Eq.
again numerically indistinguishable from that obtained Wlth(sllg) and if the integral$5.20—(5.22 are dominated by the
the full evolution of the mode functions. contributions of the superhorizon mode functions. This leads

th Thisdis otr;]e to;‘)the main resﬂlts. of our wgrk. (;n sum?]ary,t the conclusion that the gravitational dynamics is given by
e modes that become superhorizon sized and grow through s 5 5% " (5 29 with 7,,,(7) defined by Eq(5.30.

the spinodal instabilities assemble themselves into an effec-"\, "o inat imll cases, the full largdl quantum dynam-

tive composite zero mode a few e-folds after the begmnlnqcs in these models of inflationary phase transitions is well

approximated by the equivalent dynamics of a homogeneous,
classical scalar field with initial conditions on the effective
field 70¢1(0)=ghoF(hy). We have verified these results
numerically for the field and scale factor dynamics, finding
15 i that the effective classical dynamics reproduces the results of
the full dynamics to within our numerical accuracy. We have
also checked numerically that the estimate for the classical to
qguantum crossover given by E(.18) is quantitatively cor-
<10 ] rect. Thus in the classical case in whigh0)> \\h, we find
that 7.¢¢(7) = n(7), whereas in the opposite, quantum case
Netf(7) = VI%(7).

This remarkable feature of the zero mode assembly of

d? d
d_r7+3hd_r_ 1+ 7etr(7)? | Metf(1)=0.  (5.3))

2.0 T T

05 . . ;
long-wavelength, spinodally unstable modes is a conse-
quence of the presence of the horizon. It also explains why,

\ despite the fact that asymptotically the fluctuations sample

0.0 ) the broken symmetry state, the equation of state is that of

0.0 100.0 200.0 8000 matter. Since the excitations in the broken symmetry state
' are massless Goldstone bosons, one would expect radiation

FIG. 12.h(7) vs 7, obtained from the solution of Eq&.26 and ~ domination. However, the assembly phenomenon, i.e. the
(5.29 with the conditions of Fig. 11. redshifting of the wave vectors, makes these modes behave
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exactly like zero momentum modes that give an equation orgued above, the largdr, for fixed \, the longer is the

state of mattefupon averaging over the small oscillations inflationary stage. Therefore under this set of conditions, the

around the minimum classical dynamics of the effective zero maflg(t) drives
Subhorizon modes at the end of inflation wift-hye™s  the FRW background, whereas the inhomogeneous fluctua-

do not participate in the zero mode assembly. The bghaviq;ons 5¢(>Z,t), which are made up of Fourier components
of such modes does depend grafter the end of inflation.  with wavelengths that are much smaller than the horizon at
Notice that these modes have extremely large comouing the beginning of inflation and that cross the horizon during

sincehge”s=10?. As discussed in Ref16] such modes the last 60 e-folds, provide the inhomogeneities that seed
decrease with time after inflation asl/a(7). density perturbations.

VI. MAKING SENSE OF SMALL FLUCTUATIONS VII. SCALAR AND TENSOR METRIC PERTURBATIONS
Having recognized the effective classical variable that can A. Scalar perturbations

be interpreted as the component of the field that drives the Having identified the effective zero mode and the “small
FRW background and rolls down the classical potential hill,perturbations,” we are now in position to provide an esti-
we want to recognize unambiguously the small fluctuationsmate for the amplitude and spectrum of scalar metric pertur-
We have argued above that after horizon crossing, all of théations. We use the clear formulation by Mukhanov, Feld-
mode functions evolve proportionally to the zero mode, andnan and BrandenbergéB0] in terms of gauge invariant
the question arises as to which modes are assembled into thariables. In particular we focus on the dynamics of the
effective zero mode whose dynamics drives the evolution oBardeen potentidl31], which in longitudinal gauge is iden-
the FRW scale factor and which modes are treated as pertutified with the Newtonian potential. The equation of motion
bations. In principle everk#0 mode provides some spatial for the Fourier componentin terms of comoving wave vec-
inhomogeneity, and assembling these into an effective hators) for this variable in terms of the effective zero mode is
mogeneous zero mode seems in principle to do away with30]
the very inhomogeneities that one wants to study. However,

scales of cosmological importance today first crossed the ho- dDeii(t) | .
rizon during the last 60 or so e-folds of inflation. Recently Px+| H(t) =2 ——| Dy
Grishchuk[29] has argued that the sensitivity of the mea- Deti(t)

surements oA T/T probes inhomogeneities on scake$00
times the size of the present horizon. Therefore scales that
are larger than these and that have first crossed the horizon +
much earlier than the last 60 e-folds of inflation are unob-
servable today and can be treated as an effective homoge- We are interested in determining the dynamicsbgffor
ggfiﬁ"nseﬁ(t)z;]lso\z:nttr’\;Nr(]:el\r/leBaSir:rTgrr?ggfrfeEgZ; Ct?)g;; rslrl?;ege%ése wave vectors that cross t_he horizpn during the_ last 60
treated separately as part of the inhomogeneous perturbatioﬁélmgsthze;olﬁéui;gi c:f |:’1ﬂait|c:3. ItDurm\? rthe mf(ljatlon?r))/(i_
of the CMB. g alysis yields to a very good appro
Thus a consistent description of the dynamics in terms opwatlon
an effective zero mode plus “small” quantum fluctuations
can be given provided the following requirements are met:—
(8 the total number of e-foldil,>60, (b) all the modes that
have crossed the horizdreforethe last 60—65 e-folds are
assembled into an effectivelassical zero mode via

beri() =[ d2(t) +(2(x,1))r]¥2% and (c) the modes that

cross the horizon during the last 60—65 e-folds are accounted @ (t)=e*~2Hot
as “small” perturbations. The reason for the requirem@nt

is that in the separatiogh(X,t) = pes1(t) + Sp(X,t) one re-

quires that6¢(§,t)/¢eff(t)<1. As argued above, after the

modes cross the horizon, the ratio of amplitudes of the modghe coefficientsa, ,by are determined by the initial condi-
functions remains constant and givendy *2N with AN tions.

being the number of e-folds between the crossing of the Since we are interested in the wave vectors that cross the
smallerk and the crossing of the largkr Then for S¢(x,t) horizon during the last 60 e-folds, the consistency for the
to be much smaller than the effective zero mode, it must bgero mode assembly and the interpretation of “small pertur-
that the Fourier components & correspond to very large bations” requires that there must be many e-folds before the
k's at the beginning of inflation, so that the effective zerolast60. We are then considering wave vectors that were deep
mode can grow for a long time before the componentégf inside the horizon at the onset of inflation. Mukharehal.
begin to grow under the spinodal instabilities. In fact require{30] show that®,(t) is related to the canonical “velocity
ment (a) is not very severe; in Figs. 1-5 we have takenfield” that determines scalar perturbations of the metric and
ho= 2.0 which is a very moderate value and yetXet 10 12>  which is quantized with Bunch-Davies initial conditions for
the inflationary stage lasts for well over 100 e-folds, and aghe largek-mode functions. The relation betwedn, andv

k2

H(t)—H(t) -

&, =0. 7.1
Deri(t) “ (7D

az—(t)+2

(.i’eff(t))

H()~Hg, er(t)=derr(0)e32Mt, (7.2

whereH, is the value of the Hubble constant during infla-

tion, leading to
kefHot kefHOt
A |
k B HO k B H0

B=v—1. (7.3
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and the initial conditions on lead at once to a determination

P
of the coefficientsa, andb, for k=Hg [30]: 9 Fk+q)k
= — 4+ ®,, &=0, 7.9
3[ 8w |. T 1 873 Trpe TP & (79
&="5 |3m2 beii(0) \ i P=0. (7.4 S _ _ _
PI 0 which is valid after horizon crossing of the mode with wave

) . . vector k. Although this conservation law is an exact state-
Thus we find that the amplitude of scalar metric perturbainent of superhorizon mode solutions of Ed.1), we have

tions after horizon crossing is given by obtained solutions assuming that during the inflationary stage

3[8ym H is constant and have neglected tHeterm in Eq.(7.2).
| 8(1)]| =k P (1)~ > 3M—727 bet(0) Since during the inflationary stage
Pl
: 4m . d7e(7) |
(2Ho>"- A 75 H(O =~ 2 ¢§ff<t>o<Hé(;—T <H§ (7.10
K . .

and ¢/ p~ Hg, the above approximation is justified. We then
see thatgZ,(t)<e®*~3Hot which is the same time depen-
ence as that ofb,(t). Thus the term proportional to
1/(1+pl/e) in Eq. (7.9 is indeed constant in time after ho-
tizon crossing. On the other hand, the term that does not
ave this denominator evolves in time but is of order

1+ple)=— 2H/3H2<1 with respect to the constant term

The power spectrum per logarithmicinterval is given by
|8,(t)|?. The time dependence ¢b,(t)| displays the un-
stable growth associated with the spinodal instabilities o
super-horizon modes and is a hallmark of the phase trans
tion. This time dependence can be also understood from t
constraint equation that relates the Bardeen potential to th

gauge invariant field fluctuatioj80], which in longitudinal !
dentified witBd(x.t). Th traint i and therefore can be neglected. Thus, we confirm that the
gauge are identified witli¢(x,t). The constraint equation variable ¢ is conserved up to the small term proportional to

a_md the evqlution equations for the gauge invariant scala{1+p/8)¢k which is negligible during the inflationary
field fluctuations ar¢30] stage. This small time dependence is consistent with the fact

d . N that we neglected thel term in the equation of motion for
giaPu= IVEN adey bo, (7.6 D (t). _

Pl The validity of the conservation law has been recently
& g ) studied and confirmed in different contex&2,33. Notice

— +3H — + — + M? 5¢,ki_4¢e”c'pk+ 2V’ (horr) Py that we do not have to assume thibt vanishes, which in
dt dt  a fact does not occur.

-0 7.7 However, upon a second horizon crossing it is straightfor-

ward to see tha®,(t;)~0. The reason for this assertion can
Since the right hand side of E¢7.6) is proportional to  be seen as follows: Equati@i.7) shows that at long times, -
¢eff/M§>|<1 during the inflationary epoch in this model, we when the effective zero mode is oscillating around the mini-

) mum of the potential with a very small amplitude and when
can neglect the terms proportionaldg and®, on the left 6 {ime dependence of the fluctuations has saturéted

hand side of Eq(7.7), in which case the equation for the pig 3 g, will redshift as~1/a(t) [16] and its derivative
gauge invariant scalar field fluctuation is the same as for thBecomes extremely small.

i i gi ; i i . . . . L
mode functions. In fact, sincé¢y is gauge invariant, we Using this conservation law, assuming matter domination
can evaluate it in the longitudinal gauge wherein it is iden-

tified with the mode function$,(t). Then absorbing a con- at a second horizon crossing, afi{(ty)~0 [30], we find

stant of integration in the initial conditions for the Bardeen 12F(10\/; 2H .\ v 32
variable, we find |8 (te)| = ( O) (7.1
4 t 5(1»— E)f(Holm)
an
‘Dk(t)me’ a(t’) des(t') fi(t)dt' + O M_“)'
Pl to P'(7 9 where 7(H,/m) determines the initial amplitude of the ef-

fective zero modé5.25. We can now read the power spec-

and using thatp(t) «<e(*~3Mot and that after horizon cross- trum per logarithmick interval

ing f(t)<ce(*~32Het one obtains at once the time depen- P(k)=| 8| 2ock—2v— 32 (7.12
dence of the Bardeen variable after horizon crossing. In par-
ticular the time dependence is found tode?”~3Met |tis  leading to the index for scalar density perturbations
then clear that the time dependence is a reflection of the
spinodal(unstable growth of the superhorizon field fluctua-
tions.

To obtain the amplitude and spectrum of density pertur-
bations at aseconchorizon crossing we use the conservation ForHy/m>1, we can expand—3/2 as a series imleg
law associated with the gauge invariant varigtde], in Eq. (7.11). Given that the comoving wave number of the

ng=1-2

3
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mode which crosses the horizone-folds before the end of 3
inflation is k=HqeNe™™ whereN, is given by Eq.(5.15), 12 |”( v E)
we arrive at the following expression for the amplitude of N> 60+ 3~ 3 (7.15
fluctuations on the scale correspondingntén terms of the S S
de Sitter Hubble constant and the couplixg 2 2
9H8 21012 2m? (7 y where we have written the total number of e-folds as
|6n(te)|= 5 (2eM)T BHoN 1+ 352 (g—m 2— E) Ne=Ht* (ko) +60. This in turn can be translated into a
5v2m 0 bound on the coupling constant using the estimate given by
4 Eqg. (5.15.
+0 m) . (7.19 The four year Cosmic Background Explof€OBE), Dif-
0 ferential Microwave RadiometédDMR) Sky Map[34] gives

Here, v is Euler's constant. Note the explicit dependence oinzl'zﬁ: 0.3, thus providing an upper bound on

the amplitude of density perturbations ¢n. Forn~60, the 3
factor expan?/3H3) is © (100 for Ho/m=2, while it is 0<p— -<0.05, (7.1
O(1) for Hy/m=4. Notice that forHy/m large, the ampli- 2

tude increases approximately asy/m)3, which will place i i
strong restrictionE%m in sucr): mooc(iels). P corresponding td,=2.6. We then find that these values of

112 14 - - -
We remark that we have not included the small correcilo @dA~10""°-10""* provide sufficient e-folds to satisfy

tions to the dynamics of the effective zero mode and thdn€ constraint for scalar density perturbations.

scale factor arising from the non-linearities. We have found

numerically that these non-linearities are only significant for B. Tensor perturbations

the modes that cross about 60 e-folds before the end of in- 4 scalar field does not couple to the tenégravita-

flation for values of the Hubble parametdy/mg>5. The  {jona| wave modes directly, and the tensor perturbations are
effect of these non-linearities in the largelimit is to slow 5,96 invariant from the beginning. Their dynamical evolu-
somewhat the exponential growth of these modes, with thgqnis completely determined by the dynamics of the scale

result of shifting the power spectrum closer to an exackscior[30,35. Having established numerically that the infla-

Harrison-Zeldovich spectrum withng=1. Since for . . . o
: : tionary epoch is characterized By Hg<1 and that scales of
Ho/mg>5 the power spectrum given by E(.13 differs cosmological interest cross the horizon during the stage in

from one by at most a few percent, the effects of the NNV hich this approximation is excellent, we can just borrow
linearities are expected to be observationally unimportant, PP ' Just bo
The spectrum given by E@7.11) is similar to that obtained the known result for. thg power spectrum of gravitational
in Refs.[6, 20] although the amplitude differs from that ob- waves produced during inflation extrapolated to the matter

tained there. In addition, we do not assume slow roll forera[BO,Sﬂ:
which (v— 2) <1, although this would be the caseN§> 60. H2 o
We emphasize an important feature of the spectrum: It PT(k)”MTk : (7.1

has more power along wavelengthecausev—3/2>0. P!

This is recognized to be a consequence of the spinodal inSté}‘hus the spectrum to this order is scale invaridrrison-
bilities that result in the growth of long wavelength modes eldovich with an amplitude of the orden®/AM%,. Then
and therefore in more power for these modes. This seems ér values ofm~ 10— 104 GeV and\~ 10~ 12— f(')_'m one
be a robust prediction of new inflationary scenarios in whichf.

; . A , ds that the amplitude is<10 *° which is much smaller
the potential has a negative second derivative in the region han the amplitude of scalar density perturbations. As usual
field space that produces inflation. |

Itis at this stage that we recognize the consistency of Outhe amplification of scalar perturbations is a consequence of

approach for separating the composite effective zero mod{ehe equation of state during the inflationary epoch.
from the small fluctuations. We have argued above that

many more than 60 e-folds are required for consistency, and VIll. CONTACT WITH THE RECONSTRUCTION
that the small fluctuations correspond to those modes that PROGRAM

cross the horizon during the last 60 e-folds of the inflationary The program of reconstruction of the inflationary poten-

stage. For these modety/k=e """ () wheret* (k) is the  {ja| seeks to establish a relationship between features of the
time since the beginning of inflation of horizon crossing ofjnflationary scalar potential and the spectrum of scalar and
the Hubble radius todayso=27/ko, is the first to cross measurements of scalar and tensor components either from
during the last 60 or so e-folds before the end of inflation.refined measurements of temperature inhomogeneities of the
Smaller scales today will correspondko-k, at the onset of  cMB or through galaxy correlation functions, will then offer
inflation since they will cross the first horizon later and a g||mpse of the possib|e realization of the |nf|at[@6,3ﬂ
therefore will reenter earlier. The bound ofd |  Such a reconstruction program is based on the slow roll ap-
«AT/T<10 ° on these scales provides a lower bound onproximation and the spectral index of scalar and tensor per-
the number of e-folds required for these type of models to beéurbations is obtained in a perturbative expansion in the slow
consistent: roll parameter$36,37]
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3 mined by the classicality of the scalar field modes.
— ¢? In the situation under consideration, long-wavelength
2 field modes become spinodally unstable and grow exponen-

e(¢)=- 2 ’ (8. tially after horizon crossing. The factorizatigs.13 results
—+V(¢) in the phases of these modes “freezing out.” This feature
2 and the growth in amplitude entail that these modes become
classical. The relatiof.8) in turn implies that these features
b also apply to the superhorizon modes of the Bardeen poten-
n(Pp)=——. (8.2 tial.
Heo Therefore we can address the quantum to classical transi-

tion of the Bardeen variabl@ravitational potentialby ana-
We can make contact with the reconstruction program byyzing the evolution of the density matrix for the matter field.
identifying ¢ above with ourg,+ after the first few e-folds To make contact with previous wofR8,38 we choose to
of inflation needed to assemble the effective zero mode fl’OI"@tudy the evolution of the field density matrix in conformal
the quantum fluctuations. We have numerically establisheﬂme, a|th0ugh the same features will be d|3p|ayed in comov-
that for the weak scalar coupling required for the consistencyng time.
of these models, the cosmologically interesting scales cross The metric in conformal time takes the form

the horizon during the epoch in whicli~Hg, ¢ess , -
~(v=312QHget, V=~MENS $2;. In this case we find ds’=C*(7)(dT?-dx’). 9.9)

3 Upon a conformal rescaling of the field,
N det) = — ( v— E) v €(Pet) ~ON)<7(Perr)-

83 d(x,t)=x(x,7)IC(T), 9.2

. . o ) ) the action for a scalar field becomes, after an integration by
With these identifications and in the notation[86,37  narts and dropping a surface term,
the reconstruction program predicts the index for scalar den-

sity perturbationsg given by B 3 1., 1 .-, -
S—jd x d71 5 (x5 (V)™= Vx) . (93

+ON), (8.4)

2 with

3
nS—1=—2( v

>

X
C(T)

which coincides with the index for the power spectrum per
logarithmic interval| 5,/ with | 8| given by Eq.(7.11). We
must note, however, that our treatment did not assume slow
roll for which (v—32)<1. Our self-consistent, non- WhereR=6C"(7)/C3(T) is the Ricci scalar, and primes

perturbative study of the dynamics, plus the underlying reStand for derivatives with respect to conformal tirfigfor

quirements for the identification of a composite operator actMore details see the Appendix of Ret6]). As we can see
ing as an effective zero mode, validates the reconstructiofom EQ. (9.3), the action takes the same form as in

- R -
Vx)=CXT) V —C¥7T) 1—2)(2, 9.4

program in weakly coupled new inflationary models. Minkowski space-time with a modified potentia(x).
The conformal time Hamiltonian operator, which is the
IX. DECOHERENCE: QUANTUM TO CLASSICAL generator of translations @ is given by

TRANSITION DURING INFLATION 1 1
_ 3,120 29002 >
An important aspect of cosmological perturbations is that HT_f d X[an+ 2(VX) ROUE ©.9
they are of quantum origin but eventually they become clas- R R
sical as they are responsible for the small classical metrizvith I1, being the canonical momentum conjugate xp
perturbations. This quantum to classical crossover is assocfj —’. Separating the zero mode of the figld
ated with a decoherence process and has received much at¥
tention[28,38. v soe
’ - X, T)=xo(T) 6 1+ x(X,T), 9.6

Recent work on decoherence focused on the description X( )=Xo(T) i1t x( ) 0.6
of the evolution of the density matrix for a free scalar massand performing the larghl factorization on the fluctuations
less field that represents the “velocity field30] associated e find that the Hamiltonian becomes linear plus quadratic
with scalar density perturbationi@8]. In this section we i the fluctuations, and similar to a Minkowski space-time

study the quantum to classical transition of superhorizorygmiltonian with a7 dependent mass term given by
modes for the Bardeen variable by relating these to the field

mode functions and analyzing the full time evolution of the ) ) ) 1 A, NoA,

density matrix of the matter field. This is accomplished with M (7)=C(T) m*+| &= = R+ 5 xo(7)+ 5 (x%) |-

the identification given by Eq.7.8) which relates the mode 9.7)
functions of the Bardeen variable with those of the scalar

field. This relation establishes that in the models under con- We can now follow the steps and use the results of Ref.
sideration the classicality of the Bardeen variable is deterf13] for the conformal time evolution of the density matrix
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by settinga(t)=1 in the proper equations of that reference
and replacing the frequencies by
w2(T)=K*+ MA(T). (9.8

The expectation value in Eq9.7) and that of the energy
momentum tensor are obtained in tligvolved density ma-
trix. [As is clear, we obtain in this way the self-consisten
dynamics in the curved cosmological backgroufd).]

The time evolution of the kernels in the density matrix
(see[13)) is determined by the mode functions that obey

t

d2

— +k2+ M*(T) |F(T)=0. 9.9

o= (T) |Fi(T) 9.9
The Wronskian of these mode functions,

W(F,F*)=F/F§ —FF.* (9.10

is a constant. It is natural to impose initial conditions such

that at the initial7 the density matrix describes a pure state
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fined by a normalization factor, a complex covariance that
determines the diagonal matrix elements, and a real covari-
ance that determines the mixing in the Salingier represen-
tation as discussed in Rdfl3] (and references thergin

That is, the density matrix takes the form

pl®3,7]= l'k[ Nkmexp[ - %Akm m(T)- n_i(T)
(T p(T)- 7-(T)
~BJ(T) 7(T)- 7-((T)
+i7;E(T)‘[7;—E(T)—7;—Q(T)]], 9.16
(T)=XK(T) = xo(T) 8 15(K),

I =X T) = xo(T) 3 18(K).

which is the instantaneous ground state of the Hamiltonian at

this initial time. This implies that the initial conditions of the
mode functiong=,(7) be chosen to bésee[13])

Fr(Zo) = —iw(To) Fu(To).

(9.11

With such initial conditions, the Wronskiai®.10 takes the
value

1
Fi(To)= ——
k(7o) o T

W(F,F*)=—2i (9.12

The Heisenberg field operatoggx,7’) and their canoni-
cal momenthX(i,T) can now be expanded as

XX T)= f —rz[akF (T)+a' Fr (7)),
(9.13

= > d3k gy =1 1% iK-x
H)((X,T)zf (277)3)2 [alek(T)—’_aflek (T)]e ’
(9.149

with the time independent creation and annihilation operators

a; anda, obeying canonical commutation relations. Since
the fluctuation fields in comoving and conformal time are
related by a conformal rescaling given by H§.2), it is

%Q(T) is the Fourier transform dﬂX(T,i). This form of the
density matrix is dictated by the Hermiticity condition

p[®,D,T]=p*[®,D,T];

as a result of thisB (7)) is real. The kerneB,(7) deter-
mines the amount of “mixing” in the density matrix since if
B,=0, the density matrix corresponds to a pure state because
it factorizes into a wave functional depending only @)

times its complex conjugate taken@®{-). This is the case
under consideration, since the initial conditions correspond
to a pure state and under time evolution the density matrix
remains that of a pure staf&3].

In conformal time quantization and in the Schimger
representation in which the fiejdis diagonal the conformal
time evolution of the density matrix is via the conformal
time Hamiltonian(9.5). The evolution equations for the co-
variances are obtained from those given in R&8] by set-
ting a(t)=1 and using the frequencie&)ﬁ(T):k2
+ M?(T). In particular, by setting the covariance of the
diagonal elementlgiven by Eq.(2.20 in [13]; see also Eq.
(2.44 of [13]],

straightforward to see that the mode functions in comoving

timet are related to those in conformal time simply as

Fu(T)

fi(t)= cT)

(9.19

Therefore the initial conditions given in E@9.11) on the
conformal time mode functions and the choice
a(tg)=C(7y) =1 imply the initial conditions for the mode
functions in comoving time given by E@3.24).

In the largeN or Hartree(also in the self-consistent one-

loop) approximation, the density matrix is Gaussian, and de-

RN
AT =—i 57) (9.17
More explicitly [13],
N(Tp)
N(T) =N (T;)ex A (7)dT'’
k( ) k( O) %J Ik( ) } mll: T)|

) d
A(T)=— d—T|09|Fk(T)| =—a(t)—a(t) at log| f ()],
1 1
AT = E P~ a o

BW(7)=0, (9.18
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where Ag, and A, are respectively the real and imaginary __ . ___ d3k p G
parts of A, and we have used the value of the Wronskian <X(X.7)X(X’,T)>:f 202m)° [F(T)|%e )
(9.12 in evaluating Eqs(9.18).

The coefficientsA (7)) and N (7') in the Gaussian den- ) d3 2Kk
sity matrix (9.16) are completely determined by the confor- =a(t) f 20277 |fi(t)|%€ ,
mal mode functiond=,(7) [or alternatively the comoving
time mode functiong(t)]. (9.20

Let us study the time behavior of these coefficients. Dur4,4 is seen to be dominated by the superhorizon mode func-

ing inflation, a(t)~eM!, and the mode functions factorize tions and to grow as®*~ et whereas the field commuta-

after horizon crgssmgi, and superhorizon modes grow in COSgrs remain fixed showing the emergence of a classical be-
mic time as in Eq(5.13: havior. As a result we obtain

2 2. L @1t (XOGT) X (X', T))oc@(t) degi(t) dese(t ) G(IX—xX')
a(t)|fi(1)] ~5.° % +small, (9.21

whereG(|x—x'|) falls off exponentially for distances larger
. . ) than the horizorj14] and “small” refers to terms that are

_ We emphasize that this israsult of the full evolutioras g6 in magnitude. This factorization of the correlation
displayed from the numerical solution in Fig. 3. These mOdefunctions is another indication of classicality.

functions encode all of the self-consistent and non- perefore, it is possible to describe the physics by using
perturbatl_ve features qf the dy_namlcs_:. This sho_uld be cong|assical field theory. More precisely, one can use a classical
trasted with other studies in which typically free field modesgistical(or stochastigfield theory described by the func-

in a background metric are used. , tional probability distribution(9.19.

Inserting this expression in Eqe.18 yields These results generalize the decoherence treatment given
in Ref.[39] for a free massless field in pure quantum states
to the case of interacting fields with broken symmetry. Note

+O(e hoty, that the formal decoherence or classicalization in the density
matrix appears after the modes with wave vedtdyecome
superhorizon sized, i.e. when the factorization of the mode
functions becomes effective.

where the coefficienD, can be read from Eq5.13).

t—o 1
A|k(T) = _hoehot V_E

t—oo
ARl T) = De™ (271t X. CONCLUSIONS
) . ) ) It can be argued that the inflationary paradigm as cur-

Sincev—3>1, we see that the imaginary part of the co- rently understood is one of the greatest applications of quan-
varianceA,(7) growsvery fast. Hence, the off-diagonal el- tum field theory. The imprint of quantum mechanics is ev-
ements ofp[ ®,®D,7 ] oscillate wildly after a few e-folds of erywhere, from the dynamics of the inflaton, to the
inflation. In particular their contribution to expectation val- generation of metric perturbations, through to the reheating
ues of operators will be washed out. That is, we quicklyof the universe. It is clear then that we need to understand the
reach aclassicalregime where only the diagonal part of the quantum mechanics of inflation in as deep a manner as pos-
density matrix is relevant: sible so as to be able to understand what we are actually

testing via the CMBR temperature anisotropies, say.
What we have found in our work is that the quantum
_ _ N Q mechanics of inflation is extremely subtle. We now under-
pLE..T] 1;[ AT = AdT) (1) 7T} stand that it involves both non-equilibrium as well as non-
(9.19 perturbative dynamics and that what you start from mat
be what you wind up with at the end.

In particular, we see now that the correct interpretation of
the non-perturbative growth of quantum fluctuations via
spinodal decomposition is that the background zero mode
must be redefined through the process of zero mode reassem-

The real part of the covariandeg, (7) [as well as any
non-zero mixing kernel B,(7) [13]] decreases as
e~ (2»=Dhet  Therefore, characteristic field configurationg

(v—1/2)hgt : ;
are very largdgof ordere oY). Therefore configurations bly that we have discovered. When this is do@aad only

it f ; (v—12)hgty \pi ) ' ) 1. W
with f'eld ampl!t_udes up tcO_(e ! 0.) will have a sup when we can interpret inflation in terms of the usual slow-
stantial probability of occurring and being represented in the,, approach with the now small quantum fluctuations

density matrix. e , , around the redefined zero mode driving the generation of
Notice thaty~e(”~ 2"t corresponds to field configura- etric perturbations.

tions® with amplitudes of ordee(”~¥2"o' [see Eq(9.2)]. It We have studied the non-equilibrium dynamics of a “new

is the fact that— 2>0 which in this situation is responsible inflation” scenario in a self-consistent, non-perturbative

for the “classicalization,” which is seen to be a consequencdramework based on a lardé expansion, including the dy-

of the spinodal growth of long-wavelength fluctuations. namics of the scale factor and back reaction of quantum fluc-
The equal-time field correlator is given by tuations. Quantum fluctuations associated with superhorizon
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modes grow exponentially as a result of the spinodal instavalidated the results for these type of models based on the
bilities and contribute to the energy momentum tensor irslow-roll assumption, despite the fact that our study does not
such a way as to end inflation consistently. involve such an approximation and is non-perturbative.
Analytical and numerical estimates have been provided Finally we have studied the quantum to classical cross-
that establish the regime of validity of the classical approachover and decoherence of quantum fluctuations by studying
We find that these superhorizon modes reassemble into dRe full evolution of the density matrix, thus making contact
effective zero mode and unambiguously identify the composWith the concept of “decoherence without decoherence™

ite field that can be used as an effective expectation value ¢£8] Which is generalized to the interacting case. In the case
the inflaton field whoselassicaldynamics drives the evolu- under consideration decoherence and classicalization are a

consequence of the spinodal growth of superhorizon modes

tion of the scale factor. This identification also provides the :
initial condition for this effective zero mode and the presence of a horizon. The phases of the mode func-

A consistent criterion is provided to extract “small” fluc- tions “freeze out” and the amplitudes of the superhorizon

tuations that will contribute to cosmological perturbationsmOd.es grow exponentially during 'ghe mflg.nonary stage,
from “large” non-perturbative spinodal fluctuations. This is again as a result of long-wavelength instabilities. As a result

an important ingredient for a consistent calculation and in—f'eld. h(_:onflgurstlg_ﬁ Wlth blarge amp)tlltctjjqesthha;/e no_n—l
terpretation of cosmological perturbations. This criterion re-/anishing probabilities 1o be represented in the dynamica

quires that the model must provide many more than 60 cdensity matrix. In the situation considered, the quantum to
folds to identify the “small perturbations” that give rise to classical crossover of cosmological perturbations is directly

scalar metriccurvature perturbations. We then use this cri- related to the “classicalization” of superhorizon matter field

rion combined with th invarian roach iﬁnodgs that grow exponentially upon horizon.crossin'g (_juring
terion combined with the gauge invariant approach to obta inflation. The diagonal elements of the density matrix in the

the dynamics of the Bardeen variable and the spectrum for. .~ . : .
chralinger representation can be interpreted as a classical

scalar perturbations. distribution functi h the off-di | el X
We find that during the inflationary epoch, superhorizon Istribution function, whereas the ofi-dlagonal elements are
strongly suppressed during inflation.
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