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We develop two methods for estimating the power specti@m, of the cosmic microwave background
from data and apply them to the Cosmic Background Explorer Differential Microwave Radiometer and Saska-
toon datasets. One method involves a direct evaluation of the likelihood function, and the other is an estimator
that is a minimum-variance weighted quadratic function of the data. Applied iteratively, the quadratic estimator
is not distinct from likelihood analysis, but is rather a rapid means of finding the power spectrum that
maximizes the likelihood function. Our results bear this out: direct evaluation and quadratic estimation con-
verge to the sam€ /s. The quadratic estimator can also be used to determine directly cosmological parameters
and their uncertainties. While the two methods both reqGi¢al®) operations, the quadratic is much faster,
and both are applicable to datasets with arbitrary chopping patterns and noise correlations. We also discuss
approximations that may reduce it ®(N?) thus making it practical for forthcoming megapixel datasets.
[S0556-282(98)04404-X]

PACS numbd(s): 98.70.Vc

[. INTRODUCTION our method for evaluating it directly, and derive the qua-
dratic estimator. We apply quadratic estimation and direct

Observations of the cosmic microwave backgroundevaluation to the case of Cosmic Background Explorer
(CMB) anisotropy are providing strong constraints on theo{COBE) Differential Microwave RadiometefDMR) [9] in
ries of cosmological structure formation. Planned observaSection Ill. Both methods involve iteration and we find that
tions have the potential of providing constraints on the pafor both, the iteration converges rapidly, with excellent
rameters of these theories at the percent I€e8]. agreement between the two methods on the fas and

Predictions of theories for CMB anisotropy are statisticaltheir variances. However, the higher moments of the prob-
in nature. For many theories, the complete description igbility distribution cannot be estimated with the quadratic
given by the power spectrung,,, defined below. Thus ex- approach—and we find that there are significant deviations
traction of C, from the data is of utmost importance as anfrom Gaussianity in the likelihood as a function ©f . We
end in itself and for purposes of “radical compression” discuss these differences, problems arising from them and
[4,5]. possible solutions.

With the assumption of the Gaussianity of the data, the For COBE DMR we estimate every individu&l, (for
likelihood function—the probability of the data given a par- 2</'<24) since the data allow us to determine these with
ticular theory—takes a simple form; with the further assump-some precision. The quadrupolg;, has received more at-
tion of a prior uniform in the parameters, the likelihood is tention in previous work than any of the other moments be-
proportional to the posterior distribution of the parameterscause of its small value and because it is the most susceptible
given the data. This is precisely the quantity one wants anéb contamination by emission from our galah0]. We also
thus likelihood analysis has been used extensively for calcuind the quadrupole to be quite small,= 149+ 126 uK?,
lating the constraints on parameters given by CMB datacompared toC,=810 wK? for COBE-normalized standard
This is true whether the parameters are those of the poweold dark matte(CDM). However, due to the strong skew-
spectrum itself or cosmological parameters. ness of the probability distribution f&€,, 25% of the prob-

Another approach has been to form estimators that arebility is actually above the COBE-normalized CDM value
quadratic functions of the date,g, [6]. This procedure has of C,. Thus consistency with relatively flat models like stan-
been improved recently by the use of minimum-variancedard CDM does not require the quadrupole power to have
weighting of all the pairs of data poin{g,8]. In this paper been reduced by systematic errors.
we present a unification of the quadratic and likelihood ap- For most observations, which only cover a small fraction
proaches. We show that, when used iteratively, theofthe sky, estimating everg  is not possible. One must be
minimum-variance weighted quadratic estimator is a fastontent with estimating the power spectrum either with some
technique for finding the maximum of the likelihood func- binning in/" or through some other parameterization. There-
tion. fore in Section 1V we discuss binning and rebinning. Then in

In Section Il we introduce the likelihood function, explain Section V we apply the methods to estimate, from the Saska-
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toon (SK) data[11], the power in ten bins from’=19 to One important complication to the above description
/=499. comes from the existence of constraints. Often the dsta,
Power spectrum estimation can be used as a form of da@€ susceptible to a large source of noise, or a not-well-
compression where the estimates®f and their covariance understood source of noise that contaminates only one mode
matrix are then used to constrain cosmological parameter§' the data. For example, the average valuelpfmay be
Because of the great simplifications involved in working veB/ poor(ljyfderirmlggd_.l Inl th'f] case, thelaverdagde ISI usually
with power spectrum estimates instead of pixelized data, thig! }.ragte l;? { d f|m| artr)]/ , 1 I? rEongg%E aDnMR 'gote abre
is currently the only practical procedure for using all the SXP!ICIUY subtracted from the all-Sky ata, be-
CMB data. Such exercises have been conducegl, [12— cause the monopole is not determined by the data and the

14]. In Section VI we discuss the approximations involved indeOIe Is local in origin. In general, placing any constraint on

h d d methods f ducing th " . the data or some subset thereof, such as insisting that its
such a procedure and methods tor reducing the resuiting Inéverage be zero, results in additional correlationa;in We
accuracies, and in Section VII we apply these results to f

, ) Utake this into account by adding these additional correlations,
ture balloon- and satellite-borne experiments.

> ) =1 . C¢, to the noise matrix to create a “generalized noise ma-
Unfortunately, direct evaluation of the likelihood function iy » Cy, WhereCy=C,+Cc. In the limit that the ampli-

is anQ(N3) operation, wherd\ is th_e number of data points. ;de of Cc gets large, this is equivalent to projecting out
And it must be evaluated many times. Thus f=10,000  those modes which are now unconstrained by the [degh
this procedure becomes rapidly intractable on modermhyt this scheme is numerically much simpler to implement.
workstations—at least for the most straightforward imple-Thys in the text below, we always write the noise matrix as
mentations. Although the speed of likelihood analysis hag, instead ofC, . The details of this procedure for handling
been greatly increased by use of signal-to-noise eigenmodge effect of constraints are explained in Appendix A.
comgressmn[}&lS—l&, this procedure still requires an  pye to finite angular resolution and switching strategies
O(N®) operation to be performed at least once. designed to minimize contributions from spurious signals
Further speed is necessary if we are to be able to analnguch as from the atmosphgrehe signal is generally not

forthcoming megapixel da_ta;ets. '_I'he quadratic eStima’Foéimply the temperature of the sky in some directidix)
may offer a means of achieving this speed. We emphasmgut a linear combination of temperatures: '

that as we have applied it here, it is still @{N®) operation,
but believe that approximations may be made in a controlled ~ A A

manner to reduce it t®(N?). We discuss these problems Si:j dQH(X,%)T(x) 24
and possible solutions in Section VIII, as well as explicitly o

outline our algorithm for power spectrum estimation fromwhereH(x,x;) is sometimes called the “beam map,” “an-

CMB data. tenna pattern” or “synthesis vector.” If we discretize the
temperature on the sky, then we can write the beam map in
Il. METHODS: LIKELIHOOD ANALYSIS matrix form, s;=2,H; Ty,

_ o _ o The temperature on the sky, like any scalar field on a
We begin by establishing the notation used for describingphere, can be decomposed into spherical harmonics
the pixelized data of a CMB observation. We also define the

power spectrumC -, and the likelihood function. With this
common groundwork complete, we then move on to a de-
scription of the two different methods for estimati@gy .

T(e,¢>=% a/mY /m(6,0). (2.5

If the anisotropy isstatistically isotropic, i.e., there are no
special directions in the mean, then the variance of the mul-

tipole momentsa ,, is independent afn and we can write:
In general, CMB observations are reduced to a set of

binned observations of the sky, or pixels,, i=1,... N (@m0 )=Cr8,/1 S (2.6
together with a noise covariance matit,;;-. We model the
observations as contributions from signal and noise:

A. The likelihood function

For theories with statistically isotropic Gaussian initial con-
ditions, the angular power spectru®,, is the entire statis-
Ai=s,+n;. (2.1) tical content of the theory in the sense that any possible
predictions of the theory for the temperature of the micro-
We assume that the signal and noise are independent withave sky can be derived from ‘itEven for non-Gaussian
zero mean, with correlation matrices given by theories, the angular power spectrum is a very important sta-
tistic, probably the most important one for determining the
Criir=(siSi);  Cpiir=(nin;) (2.2 viability of the most popular non-Gaussian theories. How-
ever, the techniques we present in this paper for estimating
SO the power spectrum assume that the fluctuations in both the
sky signal and experimental noise are Gaussian.
(AjA;y=Crjr + Cpiir 2.3 The theoretical covariance matri€y;;-, is related to the
angular power spectrum by
where( . . .) indicate an ensemble average. With the further
assumption that the data are Gaussian, these two point func-—
tions are all that is necessary for a complete statistical de-Non-linear evolution will produce non-Gaussianity from Gauss-
scription of the data. ian initial conditions, but this is quite sub-dominant 6 1000.
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2/4+1 search through the parameter space would take of order
Crii =2, ype C Wi (/) , (2.7 (¢, 18C,)"maxsuch evaluations to reach an accuracys6 .

’ In our applications, we have found that the space is suffi-
ciently structureless that a simple iteration procedure works
well for finding the maximum. In addition, we do not use all
of the individual C, values as separate parameters, since

Wi (/)= HigHirn P A(COFpy) (2.8)  experiments do not have uncorrelated information about
nn’ bands of widthA /<2#/6, where@ is the angular extent of

the survey[20]. For COBE DMR, we bin in bands of width
A7/ =2-3 for /=25 and only consider’<35; above this
multipole we give the power spectrum a constant shape and
amplitude(that of COBE-normalized standard CDM, in this
case. For SK, we have tried bins of various widths, the
choice of which we will discuss below.

At the first iteration, we choose some appropriate starting
C, . For each/ (or band, we hold all othelCs fixed, while
the one of interest is allowed to vary; in the appropriate
signal-to-noise basis, the likelihood as a function of this

where

is called the window function of the observations dh¢ is
the angular separation between the points on the sphere |
beled byn andn’.

Let us define the quantity,=/(/+1)C,/(2m). This is
useful for two reasons: it is the logarithmic averageCof
that gives the variance of the data aftiderefore for scale-
invariant theories of structure formatio@, is roughly con-
stant at large scales.

Within the context of a model, thé, depend on some
parametersa,, p=1,. " Np Wh'.Ch COUI.d b_e the Hubble single parameter is trivial to computsee Appendix A
constant, baryon density, redshift of reionization, etc. Th hat is, for each band labeled 1B we rewrite the correla-
theoretical covariance matrix will depend on these param:. - '

. - tlon matrix as
eters through its dependence®n. We can now write down
the likelihood function fora,, which is equal to the prob-

ability of the data givera,,: CrtCrn=0sCet Crr 219

1 (no sum ovemB), where the effective signal and noise matri-

La(ay)=P(Ala,)= ces are given by
A( P) ( | p) (27T)N/2|CT(ap)+CN|1/2

1 e S 2/41 o
><exp[— SAT[Cr(ap)+ChlMA (29 BT S A TR
One can then search for the paramesgyghat maximize this _ 2L+1
likelihood. CN*w—CNnr+L§B - CWi (L) (212
B. Direct evaluation of the likelihood function and calculate the likelihood as a function of the adjustment

First, we must choose a set of parameters to characteriJ8Ct0r ds alone. After going through all the’ bands of in-
the theoretical covarianc€r. For a given class of cosmo- t€rest, we then update the starting power spectrum by multi-
logical theories(e.g, adiabatic perturbations from inflatign ~ PIYing the C,s in each band by theg that maximized the
we can calculate the power spectrum from some set of pdik€linood function. We then repeat. Convergence is
rameters like the densities of various componefig, the ~achieved when all thegs equal unity. For COBE DMR,
shape of the primordial power spectrum, the Hubble conStarting from COBE-normalized standard CDfdlready a
stant, etc. A detailed exploration of the cosmological param900d fid, we achieved convergence at the few percent level
eter space constrained by current CMB and large-scale struéfter only two such iterations fof <20; after 10 iterations,
ture data is given i13]. Alternately, we can describe the CONVergence is everywhere better than 10 _
power spectrum by its actual value at some discrete multi- There is a drawback to the procedure as described so far,

poles or bands of’. Moreover, all of the information in the compared to what could be achieved by more ambitious
experiment(again, for Gaussian theorieis captured in the Meéthods such as simulated annea[i2g, 1]. Even though we

likelihood function for the power spectrum: find the maximum of the likelihood function, we have not
accurately determined its shape—only the shape along each
P(Al{ap})<P(A{C (ap)}). (2.10  C,, while the others are held constafe., parallel to the

axes of the/ ,acdimensional spage And we have no esti-

In this paper, we concentrate on tfie parameterization in mate for the correlations between the uncertainties in each
order to determine the power spectrum directly from theestimate ofC,. Below, we shall see how to use the Fisher
data. In principle, we would like to calculate the full likeli- matrix for an estimate of these correlations. Clearly, a more
hood as a function of the power spectrunfA|{C }) for ambitious minimization strategy would be preferable; we
some/ </, at the very least we would like to find the have chosen not to implement one since the quadratic esti-
maximum of this/,,,-dimensional function, and its proper- mator to be derived below achieves this end without any
ties (e.g, curvature or “width”) around this maximum. explicit likelihood calculation.

Searching such multi-dimensional spaces can be difficult; We have also considered the possibility of estimating
in this case, each evaluation of the likelihood function is aneachC, assuming no other knowledge of all of the others.
expensiveO(N®) matrix manipulation and a brute force That is, we have attempted to marginalize overdhevalues
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outside of each band. This is equivalent to the procedurevhere Tr is the traceC=C;+Cy is the total covariance
outlined in Appendix A for marginalizing over removed con- matrix and ,=d/da,. We call the second derivative the
straints (averages, dipoles, etcand foreground templates. curvature matrix and give it the symb@f®, where the &)
However, in this case, the method fails to constrain theindicates that we have taken the derivative of with re-
power spectrum. In performing this marginalization, we ef-spect toa.

fectively allow an arbitrary amount of noise consistent with  To the extent that the likelihood function is not Gaussian,
any power spectrum at abutside of the band of interest. we will not have correctly solved for its maximum. Thus we
That is, we multiply the second term in E@.12 by a very iterate. The closer we get to the maximum, the better the
large number to make the variance in those modes largejuadratic approximation to fwill become. This is exactly
than the noise ofexpectedl signal. For a perfect, all-sky the Newton-Raphson method for finding the zero of
observation, this would not be a hindrance since all the mulgmgl(gap_ The procedure is not fool-proof—there is the risk
tipoles are independent. For any realistic observation, howef getting trapped in a local extremum. In practice we have
ever, there is aliasing of different multipoles together; soméound the likelihood function to be sufficiently structureless
modes of the datédefined, for example, by the eigenmodesthat this is not a problem.

of Appendix A) that are being marginalized over will have
nonzero contributions from within the’-band of interest.
Thus, the newnoise spectrum alone will span the space of ) )
possiblesignals consistent with having no power at all inthe _ The above procedure is not exactly what we do in prac-
band. This just reinforces the idea that any unknown noise ifice. Calculating the curvature matrix is a computationally
the observation should ideally be completely “orthogonal” intensive procedure. Matters simplify significantly if we
to the quantities we are attempting to estiméatich will settle for the ensemble average quantity, called the Fisher
often be the case when the marginalization technique is use8atrix, F:
for experimental constraints or foreground removal

D. Quadratic estimator

(a) — a)
Fpp’_<fi3p'>
C. Gaussian approximation to the likelihood function

1
_ = -1 -1
If the likelihood function is continous and has a peak then B 2Tr(C CrpC "Crp). (.17

it can be approximated as a Gaussian near the peak. For

well-constrained parameters this approximation should b&Vhen taking this ensemble average, denoted by. ), we
good except in the tails of the distribution. A Gaussian ap-assume that the theory is correct and therefore ¢hat"™)
proximation to the likelihood function can be obtained by =C.

truncating the Taylor expansion of4nabouta, at second Note that the Fisher matrix, like the curvature matrix, is
order inda,: defined with respect to particular parameter choices. If we
transform to a new set of parameteﬁ;p then the Fisher

dinL(a) . a)_7-1p@)(7-1\T

InC(a+ 5a)=|n/:(a)+2 7 day, matrix for these new parameters B =z"1F®@z 1T,

P P wherepr,=(9§p/aap,. Tegmark offers a proof of thif7];
1< #nL(a) with our approach it is obvious from the definition of the

+2> ———éa,da,. (213  curvature matrix in Eq(2.16.

pr’ dapday Replacing the curvature matrix with the Fisher matrix

. . L ) makes our estimator fa, quadratic in the dataj:
This Gaussian approximation is useful because now, instead

of making multiple evaluations of the likelihood function, we 1 .
can directly solve for theSa, that maximize it: 5ap=EEpr(F(a))pprTf[(AAT—C)(C_lCT,prC_l)]-
#inc(a)| anL(a) (218
op= " >\ dayday, Jda., 219 This is what we call the quadratic estimator. The right-hand
p?Ap p . R .
side depends om,, so we pick an initiala,, calculate the
The first derivative is given by correctionda,, and then repeat for the new value &f.
Note that the power spectrum estimate is not constrained to
dinL(a) 1 T 1 . be positive-definite—a point we discuss below.
A =5TM(AA=C)(C°CrpC )] (219 If we assume that the input theory is correct, then
P’ (AAT)=C and therefore Eq2.18) implies(sa,)=0. Simi-
and the second derivative by larly, one can work out thatsa,da, )= (F®) . This is to
be expected since for a Gaussian distribution, the two-point
® 92InL(a) function is the inverse of the curvature matrix.
Fa=————=Tr (AAT—C)< c'Cr,CCrpCt Although the quadratic involves using the Fisher maffrix
dapdap as an approximation to the full curvature matx both

1 procedures iterate to threameparameters, the maximum of
+ ETr(C*CT,pC*CT,p/) the likelihood function. This is because bafiand F are
invertible, so éa,=0 from either procedure implies
(2.1  dInL/da,=0. Thus, when applied iterativelyhe quadratic

1 _
~5C CrppC!
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Quadratic Estimation estimate, a neviy can be calculated based upon the proper-
UL L L DL B

ties of f at this new value ok. (Note that the full quadratic
estimator of Eq(2.18 includes the further approximation of
using the Fisher matriXEq. (2.17)] rather than the actual
curvature matri¥Eq. (2.16)] for the second derivative of the
log-likelihood)

The applications we discuss in the following all use the
C/s as the parametess,. In this case,

Crir = T A =W
i = T AL i (£)=Wii (/)]
(2.19

We also consider the power spectrum averaged over some
bandsB with some assumed shagd@® in that case, we
average the above weighted by the shape:

LAy N R B B B B P B I B B B B B B

T S S ST Y T S TS S
-2 -1 0 1 2

X h
CTii’,B:/EB Criir " (2.20
FIG. 1. A one-dimensional example of quadratic estimation. o<

. - ) . However, there is also the interesting possibility of taking
estimator will find the exact location of the likelihood ppak iha 5 a5 the cosmological parameters that affect the spec-

the only approximation comes in using the Fisher matrix t_otrum, Q, h, ng, Qp, etc. Iteration in this case should also
approximate the errors, rather than the full curvature mat”)&onverge to the likelihood maximum.

(and below we show that in the cases studied, this is a very \ye note that the quadratic estimator discussed here can
good approximation; moreover, having found the Ioca’glqn O,f Iso be derived by finding the quadratic function of the data
the peak, the curvature there can be calculated explicitly ify o+ is unbiased and has minimum variance. For a full dis-

necessary _ . cussion of the quadratic in this context, §&e22,23. The
Our procedure is very similar to that2 of the Levenberg-q,aqratic function of the data derived this way is the same as
Marquardt method21] for minimizing a x“ with non-linear Eq. (2.18. However, the estimate is only unbiased if there is
parameter depenzdgnce. There the curvature megeeond 1, jeration. Since the end point éSuccessfuliteration is
derivative of thex®) is replaced by its expectation value and the maximum likelihood, the iterated estimator is, like all
then scaled according to whether tl‘"_% is reduced or in-  ayimum likelihood estimators, only asymptotically unbi-
creased from the previous iteration. Similar manipulations ot,gqq
the Fisher matrix may possibly speed convergence of the The methods we have used can also be applied to optimal
likelihood maximization, although one would want to do this getermination of the correlation function in angular bins. The
without direct evaluation of the likelihood function. optimal signal plus noise weighting suggested for correlation
In our applications to COBE DMR and SK we have found ¢ tion determination differs from the usual dig ]
that iteration converges quickly. Iteration is e_speC|aIIy 'r_n'weighting applied to COBE DMR.
portant for the calculation of the error covariance matrix.
Without iteration, the errors are determined entirely by the
initial theoretical assumptions and are not influenced by the
data. (Of course, this is exactly why the Fisher matrix has It has now become conventional to characterize switching
been so useful in determining how well future observationgxperiments which covered small patches of the sky by a
will be able to determine parameters. single bandpowef15], placing the estimated power at a lo-
As we have defined it so far, the quadratic estimator withcation related to the window function of the experiment. In
the iteration procedure is a method for finding the maximunthis case, there is just one parameter to determine. The qua-
of the likelihood. Only if one takes the prior probability to be dratic statistic reduces to
uniform in the parameters is this equivalent to maximizing
the posterior probability. We could, of course, include differ- _A'cT'c;,ctA-TrcyCc e, Ct
ent priors directly in the definition of the estimator. The deri- B™ Trc,Clc,Cc? '
vation would then begin by changing E@.13 to a Taylor
expansion of IR,.s Where Ppospc LP o, is the posterior  If the optimal weightC ™! is replaced by the diagonal part
probability distribution andP i, is the (differentiable prior  of C, !, then this is related to the quadratic statistic proposed
distribution. by Boughn and Cottingharfi24], which has been applied
To see how the quadratic estimator works, we can take & the COBE DMR and Far Infrared SurvefIRS) is
one-dimensional examplgee Fig. 1 Consider a functiofi,  unbiased and has data using Monte Carlo simulations to
that is approximately quadratic. If we take its first and sec-define its distribution. With the optimal weighting and the
ond derivatives about some poin, (=0.7 in the figur¢,  proper inclusion of constraints 8, the values ofQg and
we can construct the functioiy, which approximates. By its error estimation are of direct use. As discussed above,
finding the value ok that maximized o, we have a guess as the iterated quadratic estimator for the amplitude will con-
to the maximum off. Now, for a further refinement of the verge to the maximum likelihood value. The parameter

E. Single bandpower estimation

(2.2)
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FIG. 2. Maximum-likelihood power spectra from iterative direct ~ FIG. 3. lterative quadratic estimation. The curve is the zeroth
evaluation of the likelihood function. The curve is the zeroth itera-iteration: COBE-normalized standard CDM. The points with error
tion: COBE-normalized standard CDM. The points with error barsbars are, from left to right, the results of the first to third iterations.
are, from left to right, the results of the first to third iterations. Here,
we define the error bars by a likelihood ratioesf'? from the peak. In Figs. 2 and 3 we see the results of the iterative proce-

dures described in the previous section. Figure 2 shows the
Qg could be any squared amplltude characterizing the asesults of direct evaluation and Fig. 3 shows the results of
sumed theoretical, , such as ther8 used to characterize the quadratic estimation. Momentg>10 are not shown to
strength of the power spectrum on cluster scales. To translate/oid clutter. From left to right are the first to third iterations,
to an average bandpower one must eval@géCcsae ), together with their error bars. The solid line is the starting
using an appropriately weighted averageCd®S over the  point we chose, the power spectrum for COBE-normalized
single bandB. Issues associated with such averaging are adstandard CDM. For this method, we define the estim&ted
dressed in Section IV. Current and future experiments covesis the maximum of the likelihood function, and the errors by
large enough patches of the sky that characterizing their rethe value ofC, where the likelihood drops by a facter ¥/
sults by single bandpowers is not useful, but evaluation ofrom that maximum.

power spectrum normalization amplitudésich asog) for First we will discuss the direct evaluation method. The
particular theories will always be of use. iteration converges rapidly. The maximum likelihood values
of a fourth iteration(shown in Fig. 4 typically differ from
IIl. APPLICATION TO COBE DMR the third by 1-3% of the error baf$or 2</<19) with a

maximum deviation of 7% at'=12. In the limit that the

We first apply these methods to the anisotropy measurdnoments were independent, there would be no need for it-
ments of the COBE DMR instrumefi,25]. The DMR in- eration; iteration is only necessary because of the influence
strument actually measured a complicated set of temperature

differences 60° apart on the sky, but the data were reported 8000 e e
in the much simpler form of a temperature map, along with
appropriate erroréwhich we have expanded to take into ac- 2000 |

count correlations generated by the differencing strategy, as N
treated in[16], following [26]). The calculation of the theo- §
retical correlation matrix includes the effects of the beam, ~
digitization of the time stream, and an isotropized treatment &
of pixelization, using the table given by Kneissl and Smoot }

%

ey

=
[ Y
=
—_
_
—
—

[27], modified for resolution 5. We use a weighted combina-
tion of the 31, 53 and 90 GHz maps. Because most of the
information in the data is at large angular scales, we use the
maps degraded to “resolution 5” which has 1536 pixels. —1000
Further, we cannot of course observe the entire CMB sky;
we use the most recent galactic cut suggested by the DMR
team[9], leaving us with 999 pixels to analyze. We use the 2000 Lo L vtk
galactic, as opposed to ecliptic, pixelization. gmlti :)Ole molé’lent lzo

For both methods we iterated 28 parametéksito C,, P
individually, C,5 to C3, grouped into bins of width 2 and FIG. 4. We compare the results of the quadratic and direct
finally C33 throughCss grouped into one bin. Binning is de- evaluation iteration schemes. At each the left error barsquare
scribed in more detail prior to the Saskatoon applicatiorsymbo) is for the quadratic, the righttriangle is for the direct
where it is much more important. evaluation.
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@

that the value of one band has on the best value of another.
The rapidity of the convergence is expected because, as we
will see below, the moments are in fact fairly uncorrelated. f
We remind the reader that the error bars given by this &
method—indeed the whole probability distribution for each £ -2
C,—are calculated by holding the others fixed. :

Iteration is also quite rapid for the quadratic estimator: the
maximum likelihood values of a fourth iteratigighown in N TR T
Fig. 4) differ from the third by better than 1% of the square 0 200 400 600 800 0 200 400 600 800
root of the variance for’= 24, except for the quadrupole and € [1k?] & (1)
/=20 which are slightly worse, converging to 3%. Just like i T N
the direct method, most of the change in the maximum like- : 1
lihood estimate occurs in the first iteration.

Unlike the direct method, the error bars of the first itera-
tion are quite different from the error bars of the later itera-
tions. That is because the error batise Fisher matrix do
not depend on the data, but only on the input power spec- . 1 .
trum. Therefore the data have had no effect on the errorbars [ . ., ... . % .. . 4 R A
until the second iteration is reached. To the extent that the 0 1000 2000 3000 0 2000 4000 6000
distribution is Gaussian, these error bars accurately represent 6, [uK®] 8, (kK7
the uncertainty on each parameter; they take into accountthe o\~ & o onaniliny distributions for individual, values, as
porrelatlons with the other parameters. The largest Changefgoeled, for a prior uniform inC,. The solid curve is the true
in the error bars from 1St‘ to 2nd, 2nd to 3rd and 3rd to 4thlikelihood from the last iteration of the full evaluation; the dotted
are 610% {'=2), 60% ("=2) and 6.5% ('=6), respec- e is the Gaussian approximation from the last iteration of the
tively. From the 3rd to the 4th, most of the changes are lesgagratic procedure. Fof=2, we also show the cumulative prob-

than 1%. ) o ) ability distribution, properly normalized to unit probability as
In the previous section it was claimed that the curvature;,

matrix is a good approximation to the Fisher matrix. We

have explicitly checked this for the final iteration and find \yith those observed for different pixelizations and galactic
that for /<20 most of the Fisher matrix and curvature ma-¢s[9 25]; note that both the direct evaluation and quadratic
trix derived error bars agree with each other to better tha’ﬂ)rocedures converge with considerably higher precision than
4%. The worst cases are=4 and/'=5 at 13% and 15%.  these intrinsic errors, even faf=15 where the pixelization

Not only do these methods converge, but they converge tgjtferences become important and, simultaneously, the noise
the same power spectrum, as we see in Fig. 4. The d'fferbegins to dominate.
ences between the final iterations are less than 2% of the \ye also agree at least qualitatively with other calculations
quadratic error bars for' <20, except for a 4% difference at tn5t we have compared to, in all cagesth detected power
/'=18; at higher moments, the methods often do not deteGje|| within the various reported error bars. In Fig. 6 we show
positive power. Note that at multipoles where both methods, comparison of our quadratic results with thosd 13,25,

do detect nonzero power, the quadratic method gives errq§gih of whom use a maximum likelihood method. Gorski
bars which are systematically smallghan those of the di-

rect methodlin the direction of positive power, and system- ——
atically larger towards lower power. This can be understood 4000 |-« This work (quadratic) 7
as a result of the considerable non-Gaussian skewness of the [ °Bunn/White ]
distribution of power, as seen in Fig. 5. Also note that when + Gorski (Galactic)
the likelihood maximum is at zero power, the quadratic esti- s000 L Gorski (Reliptic) ]
mate is at(physically meaninglegsegative power. This is L |
to be expected since the existence of a maximuréi,at0 r N
impliesdlinL/dC,<0, and therefore the Gaussian fit tlat v I i
C,=0 will peak atC,<0. 32000 - -
We have also checked that using the full resolution 6 data * i 1
(3881 pixels after the galactic guthanges the results of the I .
maximum-likelihood estimate for the power spectrum by - ¢
much less than one sigma. We have checked in detail using 1000 = 1
the direct evaluation, for which the resolution 6 results differ L * "
from those at resolution 5 by less than 5% f6= 15, except - il ﬂ 1
at /=6-9 where the difference is almost 10-20% and at ol SIS ST N I S
/=12 and/ =14, where the difference is nearly 50%, still 5 10 15
smaller than the large error at thesethe higher resolution
data give an overall normalization that differs by 4eem- FIG. 6. Comparison of different groups’ power spectrum esti-
pared with an error of 14%from that of the best quadratic mates, as marked. Gorski computes power spectra in both ecliptic
computed at resolution 5. These differences are consisteahd galactic pixelizations of the sky.

o
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[25] uses a complete search through parameter space with P L A B B
“cut-sky spherical harmonics” to speed up the calculation; E /= 21 .
Bunn and Whitd17] also use the signal-to-noise transforma- 05 F 3
tion of Appendix A to increase speed. The results of our first C ]
quadratic iteration also have qualitative agreement with Teg- o7 YV
mark’s implementation of the quadratic estimaft@}. L L

The fact that three completely different methods achieve C ]
similar results lends support to the claim that the final esti- 0.5 |- =
mates are unaffected by the choice of initial starting place, 5 ]
and the stronger claim that they would have resulted from O " T T
anystarting place. From the Fisher matrix and from the prob- L L
ability distributions of Fig. 5 it should be evident that this C ]
likelihood space is fairly structureless. We could have started 05 ]
anywhere and converged to the same place, although perhaps i ]
slightly less rapidly. We note though that if the correlations O Ty e T T T
were stronger between the differefits, the direct method 5 10 15 20
would be less robust. In particular, if the initial power spec- multipole moment &

trum were much too large, then each multipole moment
would try to make up for this all by itself by coming out very ¢ /—5 10 21. The solid lines show the matrix at the zeroth itera-
small. Thus there could be large oscillations—conceivablyjon: the dashed lines for the final iteration.
without convergence. In addition, these correlations, com-
bined with the width of the likelihood function, imply that ond, we could also have used different prior probabilities for
our iterative direct evaluation method for finding the peaktheC, . Throughout the paper, we use a prior unifornCin
may not converge to a unique maximum, as values oscillatéquivalent to equating the posterior distribution with the
between iterations; in practice, we have found that théi'kelihood itself. When the data gor_lstrain.t_he power strqngly
changes remain much smaller than the size of the error baré:€. small error bars the result is insensitive to the choice
as noted above. Such a broad likelihood function indicate®! the prior; in other regimes, such as the quadrup@lethe
that the data do not strongly prefer a unique maximumPHor has more s_|gn|f|c_ance_. To investigate th's.' we have _al_so
Nonetheless, if we desire to find the exact location of thet_rIeOI other po_ssmle_ prior d|str|but|on§, along W't.h t_he o_leflm-
peak, a more complete search through the many-paramet@?n of the point estimate by th_e m§d|an c_)f the dlstnbutpn. A
space(as in[17,25) or the use of the quadratic method will PMor P(C./)dC/och/li\/C_/. [which is equivalent to a prior
be necessary. unn‘qrm in om:(c/). 2] gives a medlaltfz 60% hlgher.thaln
The probability distributions of the parameters are differ-the likelihood maximum; the highly skewed distribution
ent for the two different methods because of the approximaMéans that for a constant prior the median is 166% higher,
tion of independence by the direct method and the approxi‘-"’.h'Ie a prior uniform in I€, has a median only 5% higher.
mation of Gaussianity by the quadratic method. We can seEinally, we have also tried a “Fisher Prior,” which uses the
those differences in Fig. 5. The departure from Gaussianity i§'ement of the Fisher matrijEq. (2.17)] corresponding to
most dramatic for the quadrupole. According to the GaussiaRp= ¢ i 10 determine the expected amplitude,
distributions of C,, COBE-normalized CDM with C, AN(Cy+02Cr) 2712
=770 uK? is over five standard deviations away from the P(02)ocF Y20 | Tp| ——~ T
mean, highly ruled out. But the strong skewness of the exact
likelihood function has 25% of the probability fak, above o ] ) ) ) )
770 wK2. This is more probability than there is above only which is uniform inC,« o, at low amplitudes, but uniform
1o for a Gaussian distributiohAs / increases the distribu- 1N InC, at high amplitudes, where the smooth transition is
tions become more Gaussian. The distributionfer21 is  determined by the scale at which signal-to-noise becomes
well approximated by a Gaussian as expected from the cefoout one. For this prior, the median is about 20% higher
tral limit theorem since there are approximately 30 indepenthan the maximum likelihood. _ . ,
dent modes of roughly equal weight contributing to the con- N Fig. 7 we show the normalized Fisher matrix,
straint. FOIVFOFY , to indicate the level of correlations be-
The highly non-Gaussian nature of some of these distritween the differenC,s. The off-diagonal terms are due to
butions implies that other definitions of the point estimationthe inhomogeneous coverage, the most drastic component of
and the error bars are possible. First, we could consider thehich is due to the galactic cut. This cut discards all map
mean or median of the distribution, rather than its maximumpixels with galactic latitudeéb|<20°, with some modifica-
and define errors by the amount of enclosed probability. Sedions motivated by the Diffuse Infrared Background Explorer
(DIRBE) dust map[9]. A map with a|b|<20° cut and oth-
erwise homogeneous coverage would result in zero overlap
2Also these quadrupole probability distributions do not take intobetweenY ,,s with opposite parity which explains the near
account the possibility of foreground contamination. The DMR zero values of the Fisher matrix fat' —/ odd[17]. Modes
team([10] has carefully analyzed the foreground contamination andwith similar parity do mix and hence the nonzero elements at
report C,=(273+ 185+ 360) wK? with statistical and systematic /’=/+2. Even these off-diagonal terms though are much
errors. smaller than the diagonal, especially for the lower multipole

FIG. 7. Rows of the normalized DMR Fisher matfsee text,

Tr (3.1

2
(90’th
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moments which are determined by modes with higher signalaverages;, over the filterf @=3 ,,F (/q/) . The (@) super-
to-noise. Iteration does not have much effect on the normalscrint indicates that this filter is for averagings.

ized Fisher matrix; the off-diagonal components are largely a ag the constraints on the power spectrum become tighter,

result of the coverage geometry. it is inevitable that we will move from plotting averages of
C, (band-powerkto plotting g, in what we callg-space, or
IV. METHODS: BINNING AND REBINNING deviation space. We show some examples of this later in

r§ection VIl where we simulate future data sets. Therefore it
is worth exploring this space a little further. One question to
answer is: what” value should be used for locatinQg
horizontally on a graph? We advocate choosing tig so
that for a band ranging fronf, to /,

For the same reason that limited extent in the time domai
leads to limited spectral resolution in the frequency domain
uncertainties inC, andC,, are strongly correlated when
=<2/ 6, whered is the linear extent of the observed region
[20]. Thus binning moments together in bins of widkh”
=1/ 6 is a sensible thing to do. Because of the experimental
noise, final bins may need to be even coarser to prevent the
error bars from being excessively large. ffsq/)z _2/ f(Bq/)- (4.4

We view binning as a two-step procedure: an initial fine -
binning followed by a rebinning to coarser bins. The reason
for the first step is that we want to know, within each coarseiWith this definition, 50% of the weight that constraigg
bin, where the constraining information is. The finer binningcomes from/; </ </ and the other 50% comes from
gives us this knowledge. For pedagogical reasons, we starfg</</,.
with a discussion of rebinning and then discuss the initial Although comparison of theories with the data will occur

binning. in g-space, we wish to translate our values into the familiar
C,~-space. To do this we must define a suitable average of
A. Rebinning CshaPeover binB, CEM'P with which to multiply Qg and a

We assume here that the initial binning is the finest pos—su'f[ablg/ value at Wh'(.:h.to plot the error baf . The best

sible,A/'=1, since this makes for the simplest exposition. |twe'9.ht”.‘9 to use fqr this |s.debatable. We .emphaS|ze that the

is easily generalized to arbitrary initial binning. For reasonsamb'gu't";’_s atssomatled f\?"ﬂ: trit_translattlciﬂ fradg to.a

that will become clear later, we begin our discussion of this‘:)?‘,:‘r’]er es '“_’t";‘] %CBI onFy ihec pio mg—hno t('a gompanslogT

rebinning procedure by reparameterizing the power spectru eory with dafa. Furthermore, we have lried several dit-

in terms of an assumed spectral Sha¢)§13pe Thus the pa- erent Welghtlng schemes and found negligible differences in
o their values of/ o« andCg, so long as they are proportional

rameters we are trying to estimate are no longedirectly, . . L7 L
but the deviation fr}Zngthe assumed shape, giver by Y to f @ which encodes the signal-to-noise information in the
' ’ band.

C,=q,cshare (4. To motivate a particular averaging we first rewrite Eg.
(4.3) in terms ofC, and its Fisher matrix:
If our estimates of individuat|, are too noisy, then we can
average them together into coarser bins, which we will label

by the subscripB. We wish to do this in a “minimum vari- > C,F (/C/),Cs/h,ape
ance” manner. That is, we want to fir@g that minimizes iz
Q= E— (4.5
2 Cshaptf_— ,Cs ,ape
x*=2 (Qe—0a,)F ¥.(Qg—0,) (4.2 o e
70

where the sunflike all sums in this subsectipextends over The relation betwee®@gz andC, in the above equation sug-
the width of the new and coarser bin. The Fisher matrixgests that the following filter be used to calculg&@a*®
appears here because, in the Gaussian approximation to the
likelihood function, the Fisher matrix is the inverse of the
parameter covariance matrix. Co_mpllcatlonS due to non- fg?}:E F(/C),ij}apgfg})/cihape (4.6)
Gaussianity are discussed in Section VI. /!

It is easy to show that the solution to this minimization

problem is given by since this is the weighting of each in Eq. (4.5). Therefore

to make our power estimates we use

> qF,
Qo= 43
= . (C) ,»shape
2 F(q) Z fB/C/
= Cpe 4.7
IREY
The new parameter®y have the Fisher matrixfF fSQB), ’

=E//,F(,/q/)f, , where the sum over” extends across biB
and the sum over” extends across biB’. We see thaQg  with the result that
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c 1.5x1o4........,........,...l
Z fi)c I ]
Ce=Qplre — (4.8 I ]
S f© o .
7 B 2106 -
3
The role of the filter functionf  is exactly that ofN/, // in IS T
the band-power procedure pf5], whereW, is the trace of } | 1
the window function matrix defined in Eq2.8). We will = 5000 _
develop this connection more later. For now, we defig, s .
/" and/~, exactly as was done {i5], so that we can plot m ]
data points properly located ifi space with horizontal error - |
bars: i ]
o b 1 P R |
E /f (BC/) 0 100 200 300 400 500
. 7 : 4.9 multipole moment ¢
’ eff— .

z fgf/) FIG. 8. Quadratic estimates of the power in 10 bins, derived
/ from the SK data. The curve is the zeroth iteration, tilted CDM with
n=1.45 andog=2.16. The squares are from left to right, the results
and /"~ and /" are wherelf ) has fallen toe™*? of its  of the first to third iterations. The data point with the horizontal
maximum value. We remind the reader that every sum oveerror bar is a rebinning of the top three bins.
/ in this section is only over the values gfwithin bandB.

-1/2

features with a characteristic wavelength,g, Doppler
B. Initial binning peaks, then a linear spacing produces equal shape sensitivity

One may wish to estimate fewer parameters than ever&? each bin.

multipole moment right from the beginning. In this case one
would parameterize the spectrum as V. APPLICATION TO SASKATOON

C,=qgC"%p(7) (4.10 We now apply our methods to the Saskat¢BK) dataset
[11]. The SK data are reported as complicated chopping pat-
where yg(/) is one, when/ is within the range of ban8,  terns (i.e, beam patternsH, above in a circle of radius
and zero otherwise. about 8° around the North Celestial Pole. The data were
To convertgg to a power estimatélg, we need an aver- taken over 1993—199lthough we only use the 1994—1995
age of the shaped spectrum over band B. A useful conversiofiatg at an angular resolution of 1.0-0.5° full width at half
factor is given by Eq(4.7). Of course, in order to calculate maximum(FWHM) at approximately 30 GHz and 40 GHz.
CE"P°by Eq. (4.7) one needs to know the Fisher matrix at More details can be found ifL1]. The combination of the
every /—uwhich is a calculation we are trying to avoid by beam size, chopping pattern, and sky coverage mean that SK
using coarse binning. Once again though, as long as the biiis sensitive to the power spectrum over the range50—
ning is not too coarse, the details of the averaging are unim350. The Saskatoon dataset is calibrated by observations of
portant. If the binning is fine enough, then a simple averag&upernova remnant, Cassiopeia-A. Leitch and collaborators
(uniform in /) will suffice—that is, take [28] have recently measured the flux and find that the rem-
nant is 5% brighter than the previous best determination. We
2 ,C35s(/) _ have adjusted the Saskatoon data accordingly.
Zoxe(7) (4.1 In Fig. 8 we show the results of our iterated quadratic
estimator on the SK data, in ten evenly spaced bins from
here, the denominator is simply the width of the bin. This is=19 to/'=499. Again, the convergence proceeds quite rap-
what we have done in our applicatiot@though see Section idly, although not quite as rapidly as for COBE DMR.
VI for how this can be improved by use of analytic knowl- Evaluation of the Fisher matrix shows that there are approxi-
edge of the Fisher matnix mately 20% anti-correlations between neighboring bins. We
As is usually the case with binning, we want to make thenote in passing that the falling power spectrum seen/for
bins as fine as necessary to capture all the information, but 100 has been noticed by the experimenters themselves
no finer since that means extra work. A lower limit to the bin[29].
sizes comes from the fact that fluctuation power frioawill What we directly estimate is the adjustment faajgrof
be indistinguishable from that froid,, if |/ —/"|<2mu/0, Eqg. (4.10. As mentioned above, in order to convert this to a
where @ is the linear extent of the observed region, as alpower spectrum amplitude, we need some measure of the
ready mentioned. We may wish to make our initial bins everaverage power in the bin. Here we have used an average
coarser. Some considerations to keep in mind are that if oneniform in C, across the bifEqg. (4.11)]. For the first bin,
is trying to reduce sensitivity to uncertainty in the power-lawthe averaging should probably be weighted more to the
index, then logarithmic spacing produces equal shape sendiigher multipole moments than to the lower ones in the bin
tivity in each bin. If the chief shape uncertainty comes frombecause the sensitivity to the spectrum is increasing rapidly

shape_
Cg =
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By the definition of a Gaussian probability distribution, this
compression involves no loss of information. The “lossless”
nature of this compression was pointed out by Tegmatk
although here we emphasize that it is only true in the Gauss-
ian limit. We refer to compression to the power spectrum as
“radical compression” because the data reduction is impres-
sive: the information in a map withl pixels and arfN XN
noise covariance matrix is now held in less thdd power
estimates and theiNx /N covariance matrix.

With compression to/N numbers and a covariance ma-
trix, analysis of constraints on cosmological parameters be-
comes quite rapid. One simply forms tiyé:

Clboooo o b v 1wy iy 1]
0 1000 2000 3000

K({ah=2 € ({ah-CoM L€ ({a)=E)
h (6.2

and simply evaluates it to find the minimum and also the one
4L 1 4t . sigma and possibly two sigma confidence regions of the pa-

[0} 5000 104 1.5x1042x10¢ 0 5000 104 1.5x1042x10¢ .

8, [uK?] 6, [uK?] rameter space. Her€, ({a}) is the calcqlated spectrum f_or
the paramters, andM . =(8C,8C,/) is some appropri-

FIG. 9. Probability distributions for the power in bands,, as  ately determined correlation matrig,g, the inverse of the
labeled, for a prior uniform inCg. The solid curve is the true Fisher matrix or the exact curvature matrix for the quadratic
likelihood from the direct evaluation; the dotted curve is the Gaussinethod, or a likelihood ratio or Bayesian determination for
ian approximation from the third iteration of the quadratic proce-the direct evaluation of the likelihood.
dure. Unfortunately, the probability distribution is non-

Gaussian, as we have seen. One might think that this only
with increasing”. We will see this rapid rise in sensitivity to causes minor inaccuracies to the method of B). In fact,
the power spectrum in the next section where we plot theéhe problems are of a systematic nature and can be quite
Fisher matrix for a finer binning. important. To see this we need only examine the case of

There is very little information in the three higheSbins. COBE DMR. Say we wanted to use our power spectrum
Thus, for the final iteration we binned them together andestimates to measure the best fit amplitude of standard CDM,
plotted the result as the point with the horizontal error barexpressed as a prediction fog, by using Eq.(6.2). Using
Because of the coarseness of the bins, the filter function foour estimates of , from the final iteration of either the direct
the rebinning is coarse and therefofgs, /* and/~ are  or quadratic estimation procedures together with the Fisher
not determined very well. To get the filter function more matrix from the final iteration, we findg=1.1 instead of the
finely, we need to do a finer initial binning, which will be correct value ofoeg=1.2. This example does not mean that
done in the next section. non-Gaussianity has made radical compression useless, but

To investigate the probability distributions beyond therather that we must proceed with some care.
mean and the variance, we used our direct likelihood evalu- The decrease in power is a systematic effect due to the
ation procedure, starting from the final quadratic iteration.skewness of the probability distributions which allow more
The results are shown in Fig. 9. The uncertainties in the firspositive and less negative fluctuations relative to a Gaussian
bin are strongly sample-variance dominated. In the sampledistribution with the same variance. Another way of thinking
variance limit the fractional variance,5(,)?/C%, is in-  about it is that those amplitudes that fluctuate downwards
versely proportional to the number of independent mode&ave their variance reduced and thus their weight increased,
contributing to the estimate. Since the first bin is not well-while those that fluctuate upward have their variance in-
determined we can therefore surmise that only a few modegreased and therefore their weight decreased. Contrast this to
contribute to it. With so few modes we cannot expect thea Gaussian probability distribution for which the curvature is
distribution to be Gaussian and thus the strong nonindependent of location. Thus one can see that the non-
Gaussianity for the first band, shown in Fig. 9, is not surpris-Gaussianity of the probability distribution can be very im-
ing. portant and some care must be used in attempting this radical

compression.
VI. METHODS: RADICAL COMPRESSION One solution to the problem may be to find a function of
C, whose distribution is more Gaussian than thaf eftself.

As mentioned above, for Gaussian theor&) |C,) con-  Motivation for one particular form comes from considering
tains all the information that is in the map. If the probability the sources of the variance. There is a sample-variance con-
distribution were Gaussian i, then all the information in  tribution which is proportional to the power and a noise con-
the probability distribution could be compressed into a meanribution which is independent of the power, th8€,«C,
and a covariance matrix: +x, for some appropriate, related to the experimental

R noise. According to this proportionality, the probability dis-
P(A|C,)—C,(8C,8C ). (6.2 tribution for In(C,+x,) might be well approximated by a
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Gaussian since its variance is independent of This pro- 1500
cedure is under investigatidd]. - §

It is the iterated Fisher matrix that overweightander- L T T .
weight9 the points that fluctuated downwardpward; to L 4
prevent these fluctuations from affecting the Fisher matrix, & i T
one can iterate on the parameters of a smooth function, in-* \/\/\/'/
stead of the amplitudes in fine bins, and then use the result> 1000 - T N
ing Fisher matrix for the covariance matrix associated with &
the power estimates in bins. This is the method of solution{
we have adopted here. @)

We emphasize that the problems we are discussing are né—
peculiar to the use of the quadratic estimator, but are associ$ 500
ated with the attempt to compress the probability distribution =
of C, into a mean and covariance matrix. Because of non- |l
Gaussianity, this procedure is necessarily approximate. Thegs™
above being said, we will now assume Gaussianity, but al-
ways use the Fisher matrix derived from a smooth theory
curve, and not one derived from a bin by bin iteration. 0

A more benign problem than non-Gaussianity is the exis-
tence of correlated uncertainties. Although not a problem for
the x? of Eq. (6.2), the correlations do complicate direct FIG. 10. DMR with ortho-rebinning.
visual interpretation. We may remove these correlations by a

linear transformation on the parameter spage;q=2q,

5 10 15 20 25 30
multipole moment ¢{

(€)
where Z diagonalizes the parameter covariance matrix, N 2/: ARV
ZF~'Z"=diag (or, equivalently, Z"! diagonalizes the C\ = = . (6.3
Fisher matrix,F(%). Z £ Z £

While having the advantage of uncorrelated uncertainties,
the interpretation of these new parameters themselves has It ish to rebin th lated estimat
been complicated by the transformation. Fortunately, there we wish to rebin these uncorrelated estimates, we can

. . . in a minimum variance manner rforming th
are transformations with some very useful properties. Man)?o S0 a u ariance manner by perfo g the

. . .. Jollowing sums:
transformations can lead to independent modes. Hamilton 9

[22] made a lengthy study of the different possible diagonal-

izing transformations and found one that has a smaipace 2 EKNA
width and is positive-definite. His transformation translates C _MeB (6.4)
to Z=LT, wherelL is the Cholesky factorization of; F ’ 2 £00

B/

=LL". Another useful transformation is given by settifig

=F2 the Hermitian square root & [23]. Parameter eigen-

modes[3], involving rotation only to the orthogonal combi- where

nations of bandpowers, rather than scale transformations as

well, are of great interest and emphasize another point: when - 2 fON (6.5

linear combinations of modes are being taken, we have free- e R '

dom in exactly what the scaling will be. It is obvious though

that if we are representing a bandpower at a representafive andN,=%,Z, . These equations are derived in Appendix

we want to ensure that the normalization makes sense sin@&

the goal is direct visual comparison with theoreticil For COBE DMR we used Cholesky decomposition to get

curves. filter functions, f (?=L ,, /Cc$'"*¢ and then binned together
In the Gaussian approximation, these linear combinationsombinations 1-3,4-5,6-7,8-9,10-12,13-16 and 17-27. Each

are independent. Thus we can now estimate Eﬁ,dhdepen- of the combinations’ filter functions is shown in Fig. 10,

dently of theq; for i#]. The /acdimensional space has together with the power estimates. To avoid the systematic

been reduced te’,,,, one-dimensional spaces. In fact, for Underestimate of power discussed above, we used’tse

eachd. . there is no need to keep the Gaussian a roximafrom our final iteration, but the Fisher matrix from the zeroth
e 4. ; b the f>auss ppr iteration. This does not imply that the errors are completely
tion; one can calculate its complete distribution function. If .
; . L unaffected by the data. We are using standard CDM as our
the Fisher matrix is a good approximation to the curvature : ; : L :
. L zeroth iteration precisely because it is a good fit to the data.
matrix, then, at least near the peak, the total likelihood func- ' . .
In order to make accurate filter functions for SK we di-

tion can be approximately decomposed into a product 0{‘/ided it up into 26 bins. Starting from the results of our third

these one-dimensional likelihood ) functions£({qi}) jteration on the 10 bands of the previous section, we esti-
~II;£(q;). Since q,=q,Z,,=C,IC3"*Z,,, the filter —mated the power in these 26 bands with a single iteration.
function isf (=2, /CS"%° Thus The fractional uncertainty in most of these bands was greater
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FIG. 11. SK with ortho-rebinning. FIG. 12. The Fisher matrix suny, ,F (/C) for the zeroth itera-

tion of DMR for exact(solid) and analytic(dashegl For compari-
than unity. In order to make the rebinned statistically or-son.W,// (dotted is also shown.
thogonal linear combinations plotted in Fig. 11 we used the The weight map for COBE DMR varies gently with spa-
n=1.45,05=2.16 tilted standard CDM Fisher matrix. These j5| scale outside of the galactic cut, so we expect the analytic
are _the paramgter values for tilted CDM that maximize th%pproximation Eq(6.6) to be reasonably good for it and we
likelihood function. _ o see in Fig. 12 that this is so. The two curves with a peak at
At high /, some of our 26 bands still have significant /=10 are sums over the exact and analytic Fisher matrices
width; their “sub-band structure” may be important. To es- for standard CDM. For the analytic form we todgky
timate the structure of the filter functiongithin each band, =0.65,w~*=9.5x10"*2 (equivalent to an rms noise of 22
we employ an analytic approximation to the Fisher matrix., K on 7° pixel9 and the appropriate beam shape.
For a map of the sky with uniform weight per solid angle, For the SK data, the comparison of the 26 band exact
covering a fraction of the skyfg,, we know the Fisher Fisher matrix and the analytic Fisher matrix approximation
matrix is such thaf1-3J: shows some interesting differencéSig. 13. The analytic
o s curve is forf g,=0.005w ™~ *=3.3x 10" ** and 6 gyn,=0.5°.
S EO - (2/+ 1)fsky/ ot /(/+1) (6.6 The deficit at smaller” is presumably due to the differenc-
= 2 \ ComwBd ) ing schemes that were necessary to filter out atmospheric
contamination. These are partly encoded in the noise-
where, for a Gaussian beadﬁ(/)=e‘/2‘f§’2. weightedVT(/N) , but for the plot only the bean?(/), was
An approximation appropriate for difference experimentsused, as in Eq(6.6). This deficit bears on the question of
rather than maps is to replaceB?(/) with the noise- what quality of map it is possible to create from the SK
weighted window functiowW™N=Tr(C y*W ,)/N, where  dataset; the loss of Ipvﬂ' information implies that there will
W, is the window function matrix of Eq(2.8). In this uni- be long-distance noise correlations in any map made from
form case, we also have the datg[31].

(2/+Dfgyl er, 2

£~ I
5 2 \(1+er)) .
0.8 - —
i 2
8T/=WW/ C/m (67) L
©3 08 L ]
The quantitye, is a measure of the mean square of the = L
signal-to-noise ratio in modes. Theet, /(1+¢e1,) factor N ol

which appears in the square is the Wiener fil(ee., the
optimal signal-to-noise filtgr In thee1,>1 limit of signal-
dominance, f — (/+1/2)fg,, half the number of/ o2
modes available. This is of course a general result for the
signal-dominated regime, requiring no assumption of homo-

geneous noise. It is often a reasonable approximation to use ol b L o 1T
the usual filter functionW,=Tr(W,)/N in place of the ° multipole moment ¢ 0
noise-weighted one. Eq6.7) is applied to realizations of

power spectra for future balloon and satellite experiments in  FIG. 13. The Fisher matrix sun, .F ¢ , for the zeroth itera-
Section VII. tion on 26 band SK for exact and analytic.
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S N L B U = tions and there has been no net improvement. However, we
05 E B =21 3 think that, when binning has been done, the use of the or-
E E thogonal linear combinations improves, or at least simplifies,
0 E E the process of radical compression. Once binning has oc-
-0.5 = curred, one wants to know what the filter looks like across
1 F = the bin. Thus binning implies the use of filters and once
B E : . - -
1F E filters are being used, the orthogonal linear combination ap-
05 E 3 proach of providing uncorrelated data and filters is simpler
of E than providing correlated data with filteesid a covariance
2 E matrix.
-0.5 3 E Experiments typically report broad-band power spectrum
= U T N = estimates, together with the trace of their window function,
1 _ R o '_ W,, which can be used to make a filter functiofy,
0.5 F 3 =W, //. These power spectrum estimates have indeed been
o b 3 used to constrain cosmological parameters, [12]. Using
—05 3 E f,=W,// as the filter function is in general not the optimal
Tk E procedure. Only iC;;/ is a multiple of the identity matrix is
-TE ) I W= W, // the minimum-variance filter. In general, the Fisher

5

10

15

[Av)
[9)]

matrix-derived filters should be used. And they can be quite
different; in Fig. 12 one can see the tremendous difference
FIG. 14. Slices of the SK 26 band covariance matrix at bandetweenW, /7 and the minimum variance filtef, . In the
11, 16 and 21, normalized to unity along the diagonal. noise-dominated regime(high ~ for DMR), W, //
«/"1B?(/) whereasf ,«/3B*(/).
In Fig. 14 we show some rows of the normalized param- In our power spectrum plots we have not included cali-
eter covariance matridgg /VMggMpg'g/, Where Mgg,  bration uncertainty which is-6% for SK and negligible for
. E—;é/, The correlations for bin 11/(=120-132) extend COBE DMR. The calibration uncertainty is gompletely cor-
well beyond thes/ =/ § expected for a map—again, this is rel_ated across the bands. It can be taken mto_account as a
presumably due to the differencing schemes. nuisance parameter to be gdd(_ed_ to tHeexpression gbove
Returning to Fig. 13, we see that the agreement at least &12]. Other methods for taking it into account are discussed
higher /, is good. We consider it to be good enough to!n [4)
encourage the use of the analytic form for doing some sub-
band shaping of the filter functions. To be more precise
about the procedure, within each baii],we give f (BC) the

shapes ,.f),c, with the amplitude chosen so thaf3

Bin Number B’

VIl. FORECASTING POWER SPECTRA
FOR FUTURE EXPERIMENTS

B % ] ] i ) ) In this section, we exercise our methods on an instructive
=2 ,f ). We have applied this shaping to the five high€st  gjmple case, homogeneous noise over regular patches cover-
bins in Fig. 11. , o ing a fractionf ,, of the sky. We apply the relations to simu-
One might wonder why the analytic curve in Fig. 13 has|ating realizations of power spectra and their error bars for
no peak, corresponding to where sample variance and noisgg planned balloon experiments, MAXIMA and TOPHAT,
are equal contributors to the uncertaintyin. The absence  anq two satellite experiments, Microwave Anisotropy Probe
of the peak is due to the rise &y from /=20t0/'=200.If  (\AP) and PLANCK. The results are shown in the familiar
we plottedC23 ,.F ), , which is related to thdractional ¢, space in Fig. 15 and inC,/C, space in Fig. 16. In this
uncertainty inC,, then there would be a peak neér 80. g-space, which we believe will become more and more uti-
While the independence of the power estimaiiesthe  lized as the CMB data starts to converge on a specific shape,
Gaussian approximatigsimplifies Eq.(6.2) some, the exis- we compare théconvergell quadratic power estimator val-
tence of the filter functions complicates it: ues and their error bars with the fractional deviation,
AC,IC,, of aC, whose parameters we are testing from a
fiducial shape. Here the shape that entered into the power
spectrum analysis was a standard COBE-normalized cold
dark matter modef,, and the model used to construct the
whereCg({a}) is calculated using the filters in EGt.7). We ~ power spectrum realization was also this standard CDM one.
have cast this equation in an intuitive form involving the  For fg,=1, power spectrum analysis simplifies consider-
deviation of a measured bandpow@y from the predicted ably if the weight matrixC y* is diagonal in the spherical
spectrum. This is exactly thg? appropriate tog-space, harmonics basis, since then tigg and Ct,p matrices are.
which emphasizes relative deviations of both the data and thBoth the Fisher and curvature matrices are also diagonal as
theoretical predictions from the fiducial spectrum used tdong as the bandB do not overlap in/-space. Foff <1,
calculate the quadratic estimat@e., the details of how one another simple limiting case involves rectangular regions of
goes from the estimates g to the appropriate bandpower size N,@ i, X Nyw,;,, consisting of square pixels of size
drop out of they?. WHixX @pix- The SIN eigenmodes are then discrete Fourier
One might argue that the complication of the covariancecomponents, labelled by a wave vec@r which, to a high
matrix has been traded for the complication of the filter func-degree of accuracy, diagonaligg: and Cy ,, and, by as-

2 — 1 _ 2
x'({ah=2 o) 5CB)Z[CB<{a}> Cel?, 6.8
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10 _ ....l.ﬁ)o _ ...1..(?'00. 10 _ ””130 _ ...1..(.),00. sumption,C y*. The number of modes of a givé@| avail-

o 6L - ] fsy2|Q|. Using|Q|~/+ 3, which follows from relating an
n C 1 ] expansion in these modes to an expansion in spherical har-
S 4 [ 1 N monics at high/ [30], the number of modes is {2
>~ T I 1 +1)fgy, asin the all-sky case.
© . F 4 . The Fisher matrix and the quadratjeestimator are given

iy Kk_: 7 by

oL | 4L ]

Mg ] 8Qe=ve/(2F)ea, Fae= 2 i), .0
o 6 ] ]
S ] ] [(1+e§9p2—(1+e¥)]
— 4 __ __ U= 2 2f (Bq/) - ,( - y
~ . . /eB & T*/)
w5 ] ]
] ] 2fgl=g s P11+ ¥N?  9,=(2/+ Vi,
1 1 IIIIIII 1 1 IIIIII| ir 1 1 IIIIIII 1 1 IIIIIII 3
010 100 1000k10 100 1000 The signal-to-noise factoe;, is related to the average
multipole ¢ multipole ¢ weightw, the noise-weighted filter functiow/,, andC, by

Eq.(6.7); and the expression fdrl) is a repeat of E(6.7).

FIG. 15. Comparison of forecasts for the two balloon experi-|t is also straightforward to modifyr, to take into account
ments, TOPHAT and MAXIMA, with the satellite experiments the noise in multifrequency experiments, including the ex-
MAP and PLANCK. Bands are required to have a signal-to-noise ojected beam size variation with frequency chariBgl
at least 25 and a minimum spacing4ndefined by the logarithmic The combination (% & tTr5 p§ is the average power in
fﬁ:i‘gﬁ)‘gr/gf gjﬁg’:'tsigwsst;qg;ﬁ:gfe'ggﬁe binning, the growth in o 0 ges with given’, wheree ™€ s the true value of the

g precision and sky cover-ower spectrum. and
age of the experiments. The error bars are those appropriate to tlpe P !
guadratic estimator after convergence.
2 -1 2
pl=g;' 2 GRDZ,
ne{/—mode$

T where GRD , is a Gaussian random deviate for the mode of
MAXIMA given/ labelled by a degeneracy variakle(the azimuthal

)., =0.96,0.98 cf [l quantum numbenn, in the spherical harmonic case, a dis-

! crete angle index in the rectangular patch gaselividual

realizations of this variable are due to sample and/or cosmic

variance. Thereforeg/pi is distributed likex? with g, de-

grees of freedomi,e., with a cumulative probability given by

an incomplete Gamma function with argumemts/2 and

p?//2. Numerical realizations can be done very quickly.

The factore {*) denotes an approximate value for the
signal-to-noise power spectrum. As we have discussed,
within the band we adopt an assumed shape, but allow the
amplitude Qg to vary. In the iterative scheme,{*)=¢ (")
would be the value on iteratiom, and &{"Y=(1
+6Qg)e { would be the value to be inserted for the next
T iteration.

e Note thatQg is the weighted average of the quadratics in

500 1000 1500 500 1000 1500 g phands of width unityQ,, with weightf (& . Therefore,

A { the classic optimal signal-to-noise filter, the Wiener filter,
. . e1,/(1+e&7,) in this case, enters in a fundamental way into
80, 1C,)-space. n which the relevant comparison with the datale POWeT SPectrum estimation procedure.
’ In the signal-dominated regios;,> 1, the weighting is

is the fractional difference between th& we are testing and . b b f des. 149 h d
cshare A few differences are shown for each case by solid linesJUSt by number of modes, f37—g,. ThusF does not

They are deviations in single parameters, as marked, from the shaf®@nge, an@Qg converges afte_r one iteration. Ttg error
theory (@=0), in this case a standard COBE-normalized CDM bars change because tK€,)g is multiplied by the con-
model with()5=0.05. The theoretical curves can have their ampli-verged (I 6Qg). In the fine-grained case, wheBeencom-
tudes adjusted up or down to best fit the simulated data. passes just ong, the f (Bq/) weights in thev g numerator and
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the Fisher denominator cancel, Ieaving+:1(T'? = (1 error onC¥?; we also chosé\In/=0.1. Clearly, because of
+&9p2 for n=1 even in the noise-domimated regime. the all-sky nature of MAP and PLANCK, the bands are

We adopt improved specifications especially in beam sizénostly determined by the logarithmic criterion. This is only
for MAP [32] and PLANCK[33] over the original proposal true at the higher” (but before the beam kicks irfor the
values; these are likely to evolve for PLANCK. Of the 5 balloon experiments. o
High Electron Mobility Transistor(HEMT) channels for _ ©One of the nice features of the homogeneous sky simplic-
MAP, we assume the three highest frequency channels, Iy is that we can easily test what different prescriptions and
40, 60 and 90 GHz, will be dominated by the primary Cos_welghtmgs \.N'” do. For_example, we ha\_/e explored other
mological signalwith 30 and 22 GHz channels partly con- ways of finding the maximum and estimating the errors. The

taminated by bremsstrahlung and synchrotron emigsion r%oagri?((.aar maximum likelihood estimator uses the curvature
MAP also assumes 2 years of observing. For PLANCK, 14 ’

months of observing and currefgroposal-modifiefivalues 0Qg(maxl)=vg/(2F)gg, (7.2)
are used. The HEMT-based Low Frequency Instrument
(LFI) specifications are significantly improved; the 100, 65, (1+e¢ w p?/_(1+8 <T*/>)

44 GHz channels, but not the 30 GHz channel, were used. fBB=FBB+E 2f(Bq/)
For the bolometer-based High Frequency Instruniétfil), ’
100, 150, 220 and 350 GHz were used. Dust-contaminatio
will certainly affect the 550 and 850 GHz channels. For both, tru

— 2
it was assumed that 65% of the sky would be useful. MAP;st(i#J;feg a’; 4 ;%?r—BBe:oFrBE;gd ;;rr]g t;,r\:g psc;vrvneé Sg_‘:}?g‘#rgrm
hasw™!=0.8x10 ' and PLANCK hasw™'=3.3x10 18 : ,

boll—) rrfe?e?[lggge?r?g%ﬁiﬁgadaﬁgnfﬂi;?&\f [r13u5r]ngirserfic_)r th\‘ia(lhen the deviations are too large the iteration may not con-
P verge.(This is typical for the Newton-Raphson methpA.

ments that take account of excess noise associated with forgom arison ofFsg in Eq. (7.2 andvg in Eq. (7.1) shows
ground removal. It was assumed that 65% of the region cov; P . BB q- (7. Us g. (7.

that, for wider bands, we can expect plus and minus fluctua-
ered by TOPHAT would be useable for CMB analysig tions over the band which giveg=0, but, because of the
=0.028). The beam is 20andw ™ 1=1.5x 10" *® was cho- B 2

sen.(These noise values are for roughly a 10 day mis$ion'dlﬁlsgfnta\évelgggrgt'icwcl)“ Q?atltger%;BoBtEeFrBri'easure of the error
MAXIMA has a 12 beam, andfgy=0.01, w 1=0.9 q P ’

% 10-15 were chosen bars is the variance of th®@g, and this can partly take the
Other long duration balloor(LDB) bolometer experi- non-Gaussian spread of the probability function for the qua-

ments such as BOOMERAN(6] should be able to do as dratic_intq account. For the case considered here,_this vari-
X ance is diagonal iB. When the ensemble average is taken,

well. HEMT-based LDB experiments, such as BEART] the result is
using 40 GHz HEMTSs, might also achieve similar accuracy.
A sharp lower/-cut was included to treat the limited sky @ - (2
coverage for TOPHAT {¢=12) and MAXIMA (/ ¢yt 2 fer(ter)I(Ater))
=20); we allowed one mode pef above this until (2 <AQBAQB>=F§§
+1)fg, exceeded unity, at which point the number of modes £ ()
was given by the integer part of {2+ 1)f,,. An uncertain e R
part of this approach is the treatment of modes of order the
size of the patch. (), truey (%) _

In Fig. 15, we have tested various prescriptions for plac- Z ferlerder/—1)
ing the power and the” value. In Section IV A, we recom- + : (7.3
mended using = 2f {)/c,, but other schemes can also be Z fe)
defendedg.g, weighting by the power in the modes, so the '
numerator averagels’ (/' +1)]7*C, wrt f§ and the de- Thus in the limit thate () approaches I, it reduces to
nominator average$/ (/' +1)]"*. For a steeply faling F -1 the Fisher error we quote. However, thé correc-
spectrum, the former places the error bar at highwith  tions inherent in any realization preclude convergence to
power weighting it is placed at slightly lowef. In all cases, F_1 in such a way as to increase the error bars for low
f§) is essential to include, but, apart from this, the mainpower modes and lowering them for high power modes over
lesson we have learned is that otherwise the prescriptiofhatF ;2 gives.
does not matter very much.

The decision on the number and placement of bands has VIII. DISCUSSION
also been explored. We prefer using a combination of con-
ditions to determine the spacing: when the S/N estimate
vB/(ZJF_BB) exceeds some threshold, orAfn/” across the Evaluating the likelihood function is a@(N?®) operation.
band reaches some prescribed value, then a new band Adthough both matrix inversion and determinant calculation
made. If we only used logarithmic spacing, then there wouldare O(N®) operations, it is only the determinant evaluation
be too many bands at lowef with poorly determined band- that prevents the likelihood analysis from beil@gN?). That
powers for TOPHAT and MAXIMA. For the figures, we is because onlf *A is needed in thg? evaluation, not the
chose a S/N minimum of 25, translating to a 20% fractionalfull inverse, and this can be potentially calculated @ieN?)

(1+e7)

fh the fine-grained case, the amplitude adjusts untils4"

though, takes longer to converge than the quadratic, and

2

A. Computer resource demand
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iterative techniques. Today,single evaluatiorof the likeli-  calculate it in a band around the diagonal, reducing the pro-
hood function (and it must be evaluated many times to cess toO(N%9). {If we skip the power spectrum and go
search the parameter space; see AppendilaRes approxi- straight to the estimation of cosmological parameters, then
mately 45 minutes for th&=2928 SK dataset on a DEC N,<N and the process i©(N?). Of course, ifC™* is cal-
Alpha 250/ev5 and roughly a factor of five less on a Crayculated directlyfan O(N®) operatior}, then this is the most
J90 parallel supercomputer; compressing to 1200 eigerintensive step in calculating the Fisher matrix, and the whole
modes takes only five minutes on the DEC including overprocess is stilO(N3).}
head from the compression process. Upcoming balloon The method we outline is completely general, allowing
datasets are expected to have at least an order of magnitueebitrary chopping strategies and off-diagonal noise correla-
more data—which translates to a factor of 1000 in executionions, including those generated by the subtraction of con-
time (and 100 in storage requirementMegapixel datasets straints or foreground templates, as explained in Section I
foreseen for upcoming satellite missions are clearly too largand Appendix A. We expect that these noise correlations will
to analyze in this way with any foreseeable increase in combecome increasingly important in future balloon and satellite
puter speed. experiments, which will exhibit both 1/streaking and sig-
The quadratic estimator is al€d(N3) despite claims that nificant foreground contamination. Although we hope to find
it is O(N?) [7]. Finding good approximations that will re- techniques that will reduce the computational load from
duce it toO(N?) is an unsolved problem, crucial for further O(N®) to O(N?), with general inhomogeneous noise this is a
study. difficult problem. One approach is to try to find the best
Even as we have implemented it, the quadratic is muclpossible approximation to the generalized noise matrix
faster than direct evaluation of the likelihood function. Start-which allows fast computation, then treat the residual pertur-
ing from the signal-to-noise basis, one iteration of the quabatively. Another is to rely on the special nature of the noise
dratic estimator for the 10 SK bands of Section VI took 250for a given experiment. For example, if an approximate set
seconds to calculate the window function rotated into thabf eigenmodes along with their projection onto the spherical
basis, and 180 seconds to form the Fisher matrix and calclrarmonics is known for the geometry and weighting of a
late the quadratic estimator on the Digital Equipment Corpoyparticular dataset, then quantities Ii@élcTyp can be calcu-
ration (DEC) Alpha, compressing to 1200 modes. The directlated without explicit inversion or matrix manipulation. Gor-
evaluation method, in contrast, requires a new rotation to theki's cut-sky spherical harmoni¢&5] have this property, but
signal-to-noise basis at each band, which is roughly 5 minfequire anO(N®) Cholesky decomposition for their con-
utes per band, using the same 1200-mode compression. struction.
We have also performed the quadratic calculation via di- For mapping experiments, the parameter derivatves
rect evaluation oféa, and the Fisher matrix in the pixel will be proportional to the Legendre polynomials, which can
basis, calculating quantities IiKé‘lcTyp using the Cholesky in turn be written as a sum over spherical harmonics using
decomposition ofC. This is somewhat faster than the samethe appropriate summation formula. We have shown that at
calculation in the eigenmode basis, although it does not alhigh /, two-dimensionalflat-sky) fourier modes with wave
low easy implementation of signal-to-noise compression. number|Q|~/ are very useful, and expect that they will be
In Appendix A we explicitly calculate the Fisher matrix in effective as we look for ways to improve the computational
O(N3) operationgthe signal-to-noise eigenmode decompo-speed. For COBE DMR, using an approximate weight is
sition). To see what makes the quadratic estimato®éN®) adequate for some statistical measures, but for high precision

operation in general, it helps to rewrite it. If we define work the residual 60° correlation and constraints should be
1 _ taken into account. For upcoming balloon and satellite ex-
Yp=A'C "Cr,C A (8.1) periments, full and correct modelling of the noise and its

behavior in various subspaces will be essential for achieving
the forecasted accura¢g,3] in cosmological parameter de-
terminations.

then (yp):Tr(CflcT,p) and we can rewrite the quadratic
estimator as

_1 (a)y —1
5ap_§% (F )pp’(yp’_<yp’>)' (8.2 B. Redshift surveys
So far, we have concentrated our analysis on applications
We can iteratively solve for the vect@™*A and therefore o CMB anisotropy data. However, much of it can be carried
yp can be calculated. The slowest parts of the quadratic argyer to estimate the power spectrum of other sorts of data,
the Fisher matrix andy,)—both of which require calculat- particularly that of upcoming redshift survelas,19. In that
ing CilCT,p- case, we partition the three-dimensional volume probed by
If we can find a good approximation © *Cr , that can  the surveys into bins=1, . .. N and use counts-in-cells as
be calculated ifD(N?) operations, then the entire estimation the dataA;=s;+n;. Now, the “beam function” becomes
procedure will beD(N?) for each element of the Fisher ma- the selection function of the survey restricted to the indi-
trix. Since the Fisher matrix has$?> elements, the estimation vidual bins, which accounts for the flux cutoff in its obser-
procedure isO(N?N f,). If the number of parameters is vational bands. The noise becomes considerably more com-
roughly the square root of the number of pixéts is ex- plicated: it is the ‘“shot noise” which comes from the
pected to be the case for power spectrum estimptien the  sampling of the underlying density field in whose correla-
estimation procedure ®(N?®). For the largest maps, we can tions we are actually interested. This noise is not Gaussian,
take advantage of the sparseness of the Fisher matrix to onbut Poissoniarfand only that if we ignore correlations within
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the bin; to use this formalism requires that we have enough (7) Calculate the parameter derivatives g=JCr/d0qg
galaxies per bin that a Gaussian approximation is adequat& each band, using Eq§2.19—-(2.20 or, in the S/N basis,
but small enough that the correlations within the bin areEgs.(A7)—(A8). The parameteqg, Eq. (4.10, is the frac-
ignorable (and small enough that we still have information tional difference frorrCQ).

on scales of intereptin that case, the Poisson noise term has (8) Calculate the Fisher Matrix, Eq2.17) or Eq. (A10),
(n?) given by the counts in the bin. Of course, there arefor the chosen bands.

further complications due to redshift-space distortions. For (9) Calculate the complete quadratiqg using Eq.(2.18
an alternative to this procedure, @9). or Eq.(A1l), and set

C. Summary cU=" (1+48qs)CVxa(/).
B

We have demonstrated two techniques for determining
the power spectrum of CMB fluctuations from realistic mi-  (10) Lather, rinse, and repeat with Step 5 urdiijg~0 to
crowave data. We have presented an analysis of both a direttte desired accuracy.
likelihood search and a specific quadratic estimator; the most This description has not included the complications asso-
important result of this paper is the proof that the iteratedciated with rebinningsee Section 1Y and the use of filter
application of the quadratic estimator is a fast method foifunctions for reporting bandpowe(see Section Vi
finding the peak and curvature of the likelihood function.

Our methods easily incorporate such realistic features as E. Numerical results

convoluted chopping strategies, incomplete sky coverage, Our power spectrum estimates for COBE DMR and SK

and the removal of linear constraints from the data. Asare available over the WWW and by anonymous FTP in the
. . 3 -

implemented today, our method requit®¢N”) operations  irectory file://ftp.cita.utoronto.ca/cita/knox/pspec_Cl

in order to deal with these complications. We have appliedrhese numerical results include the results of both the full-
the techniques to both the DMR and SK datasets, whiclyelihood and quadratic procedures; for the latter we include

exhibit all of these complications. Numerically, our resultsha results for “orthogonalized” and “shaped” bands, along
agree quite well with other analyses of these datasets. with appropriately tabulated filter functions.

We have also discussed several caveats in the further use
of the power spectrum, associated with the non-Gaussian na-
ture of the posterior distribution of thé,. This can have
repercussions in any analyggich asy?, or even in our own The authors thank Scott Dodelson, Andrew Hamilton,
rebinning techniqugswhich implicitly or explicitly assume Uros Seljak and Max Tegmark for useful conversations, and
Gaussianity of the distributiofi.e., the constant curvature of Ted Bunn and Kris Gorski for providing the results of their
the log-likelihood. analyses. A.J. and L.K. would especially like to acknowledge

The traditional procedure for reporting constraints on thethe hospitality of the Aspen Center for Physics, where por-
power spectrum is the band-power method, where the poweions of this work were completed. Some of the computa-
spectrum estimate is considered to be a measurement of thiens described herein were performed by A.J. on the com-
power averaged through some specific filter. In the past thiputers of the National Energy Research Scientific Computing
filter has been given by the trace of the window function,Center(NERSQ.

W, . We advocate a generalization of this procedure where
the filter is derived from the Fisher matrix instead. With this APPENDIX A: SIGNAL-TO-NOISE EIGENMODES
better definition of the filter, the new technique will improve AND CONSTRAINTS

the accuracy of analyses that start from band-power esti- _ _ _ _
mates. Some of the calculations described in this paper are per-

formed in the “signal-to-noise eigenmode” badi$3,15—
D. Quadratic estimation cookbook 17]. To effect this transformation, we model the observation

] ) _at a pixel as
We now summarize the complete algorithm for quadratic

power spectrum estimation: Aj=s,+n, (A1)
(1) Obtain the data and the error or weight mat@x,
(including the effects of constraints as discussed in Appendiyheres; is the contribution to the signal, amg to the noise.
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A). ‘ They have zero means, and independent correlation matrixes
(2) Choose an initiak” binning, as discussed in Section (n,n;,)=C,;;» and (sis;/)=04Crii. Here, oy, is the un-

V. ) ) ] ‘ known amplitude of the signal to be measufatbng with
(3) Calculate the window fun’CtI'Oﬂ matrIprr(,//), Eq other possib'e parameters @ll_)

(2.8), perhaps averaged over thebins. We may ascribe more than the experimental noise contri-

(4) Choose a power spectrui® to begin the iteration.  pution ton; : in particular, any contributions to the observa-

(5) CalculateC for CQ) (i=0 for the first iteratiop, from  tion with which we are not concerned in a given part of the
Eqg. (2.7). calculation can be included in the noise. This could be the

(6) If desired, the rest of the calculation can be performedCMB monopole and dipole, or constraints such as averages
in the signal-to-noise basis of Appendix A. In that caBg, and gradients that may have been removed from the data to
and the data are transformed according to E4d)—(A5). compensate for atmospheric and instrumental drift. For
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COBE DMR, we allow arbitrary amplitudes for the mono- In this new basis, the datg are uncorrelated with variance
pole (one componentand the dipoldthree componentsfor  (¢2)=1+02&.. The & are “eigenmodes of signal-to-
SK, we allow an arbitrary average for each “demodulation” noise”; modes with large eigenvalue are expected to be well-
[11], giving a total of 66 separate amplitudes. In the eventmeasuredfor the specific theory matri€+ used in the trans-
each constraint componeatcan be represented by a tem- formation); modes with small eigenvalue are poorly
plate in pixel spaceY;, with an unknown amplitudex.. = measuredand do not contribute significantly to the likeli-
Thus, the CMB signal plus experimental noise is given byhood. In particular, we use this transformation to compress
the combinationA;—X k.Y, which is distributed as a the SK data: we pick a fiducial modéin this case,ng
Gaussian with correlatlon matri€,+ o 4Cr. We do not =1.45 tilted standard CDM, which fits the SK data alone
know the amplitudesc. a priori, but we can assign them a reasonably welland calculate the modes for this theory. We
prior probability distribution given by a zero-mean Gaussianthen discard all but the top 1200 modes$ 2928 data poinfs
with very large variances in the matrix . ) =K., (com-  and treat this linear combination as our new datdet
pared to the expected signal and the experimental h@sed  which we subsequently calculate all likelihoods without fur-
then marginalize over the amplitudas. It turns out that ther approximatiop elsewherd13] we show that this trun-
this marginalization procedure can be done analytically, andation to 1200 theory-dependent modes is an excellent ap-
the result is that the likelihood is now given by a zero-mearproximation to the entire dataset.

Gaussian distribution ith alone, with a full correlation ma- Note that in the S/N basis, the likelihood as a function of
trix including a new term accounting for the unknown con-the amplitudeoy, is quite easy to compute for arbitrary val-
straints: ues:
AiAY=02Criir+Cpiir+Ceiir (A2) &2
< i > th™~Tii nii Cii —2InP(A|at2hC/)=Z |n(l+0't2h5k)+ k2
where . 1+ oiné
(A6)
Ceiir=> YeiKee Yerir (A3)  (up to a constant In the calculation of the likelihood as a
cc’ function of the values of the power spectrum, we iterate by

ascribing only the singl€C, (or within a band, with some
is the constraint or template correlation matrix. For a diagoshape foiC, over the banglof interest to the signak; , and
nal matrix of priors,K=diag(c2), this reduces taCg;;s the rest to the noise;, along with the actual experimental
=302Y Y. noise, and any terms due to constraints such as dipole re-
In effect, we have added a new term to the noise correlamoval. This way, the single parameter of interest at anytime
tion, Cy=C,,+C¢; in the following we shall implicitly in- is just the amplitudartzhocc/ for that band, for which the
clude this inCy. In the limit 02—, this procedure is likelihood is easy to compute once the S/N mode decompo-
equivalent to projecting out the constrained componentsition has been determined.
from the data and the correlation matrix; because this projec- We also compute the quadrafit;, estimators in this ba-
tion results in a singular matrix, the marginalization proce-sis. First, we define the window function matfikq. (2.8)]
dure is numerically simpleibut seq 19] for the details of an transformed into this basis,
implementation of the projection procedurélote also that
this procedure is more generally useful: in particular it pro- N T~ —1/2 N~ =12
vides a new technique for removing foreground contamina- Gkk’(/)_§ (R'C ™ )iWii ()(C N R
tion with a known spatial morphology0]. (A7)
With this split of the observation into signal aiigener-
a||zed n0|se we first perform a so-called Wh|ten|ng trans- This quantlty comes into the calculations because it is related

formation to the derivative of the theory covariance in the eigenbasis,
—1 —12_ . _ ICriir
Chn—Cy 2CNCN l; gkk’,/Ez (R’rCNl/Z)kI aC“ (CNIIZR) ”
i’
Cr—CyYCC M o o
A—CRY2A. (Ad) Ay TR

Here.C -2 is th f the Cholesky d ‘ Here we have assumed that we are interested in the indi-
ere,Cy " is the inverse of the Cholesky decomposition of iy a1 ¢, values. If we are instead interested in the values

Cy or its Hermitian Square Root. Now, the noise part of the,or some bands, of / with some assumed spectral shape
“new data,” C A, are uncorrelated, with unit variance. shape

. . . k L X , then we use instead
We next diagonalize the signal matrix with its matrix of
eigenvectors, A
Eue 8= 2 Ete /7" (A9)
Cr—RTCYC1C Y R=£=diag &); a

12 Note that, unlike the full theory covariancé=diag(&),
A—-RICyTA=¢. (A5)  these derivatives have off-diagonal components. In Egs.
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(A10) and(A11) below, & g and &y~ can be used inter-
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Plugging inq,=Z,,C,/C3"**andN, =3 ,Z,, a little alge-

changeably, depending on whether one is estimating indiera shows that the filter function is

vidual C, values, or those in bands.
The Fisher matrix for the parametefs [Eq. (2.17)] then
becomes

Er Exrk,r
(1+ o i)+ oiée)

Fop=2

kk'

(A10)

Then the full quadratic estimatpcompare Eq(2.18)] is

&€
(1+ 0281+ 0 aE)

1 _
5C,=52, F/},(Z
//

kk'

E, o

- ——1. Al1
K 1+0't2h5k) (ALY

Note that in this formalism th@©(N®) transformation into

Flr=2 FION, (B4)
where
0=z, 1c5%e (B5)
is the filter function prior to rebinning. Therefore
AN 3 et

;fg?) ng?)

which is Eq.(6.4).
As an aside, we consider the case of rebinning all the
estimates into one bin. We expect that the estimated power

the S/N basis is the mos.t.expeznsive part of the calculationyny filter function in this case should be independent of the
the remainder requires trivi@(N®) sums and the inverse of s of the original estimates; they should not depend.on

the (comparitively sma)l N, XN, Fisher matrix.

APPENDIX B: REBINNING ORTHOGONAL LINEAR
COMBINATIONS

Here we derive Eq(6.4) which tells how to rebin or-
thogonal linear combinations @f,. We then generalize to
the case where the initial binning is coarser than=1.

We start by parameterizing the spectrum as

C,=q,Csne (B1)

and then transforming the, to q=2"q. If we assume the

shape is correct, then the expectation valug BEGX /N, is
independent ok, whereN, =X ,Z , . Since we always want

to average things together that we expect to be measureme

of the same quantity, we average together'(ﬁrﬁé. Calling
the resultq -

—~ =N
PICINGNG

~ AN
qp= (B2)

~N :
q
2 Fi
AN

Here, and in the following, the sums overand\’ extend
only over the range determined Iy For example, if for3

=1 we are averaging together the first three linear combina-

tions, then the sums ovarand\’ run from one to three.
2 -
Using the fact thak |, =N,F /N, and specializing to
the case wheré& f)\,= Sy (which is the case foZ=L or
Z=F?) we get

=, 0\N,

TNE )

a)-

Indeed, this is the case:

> CICSZ 027, 2 CCSPEY
N O oo
q 5= =

> ZnZon
V7

> F9,

o
(B7)

The second equality follows since when the sum oveoes
overall\, Z,,Z],,=F% .

When the initial binning is coarser thaxry’=1, then this
procedure is slightly more complicated. We introduce the
sub-band structure filtef, ., which is defined within each
,P{g‘”dB- The sub-band structure is given by

©
F//’

19-3

Vi

csheve (B8)

which is the same as E#.6). The difference here is that we
have not calculatedr (/C} and thus must rely on analytic
knowledge of it.

The rebinning procedure is the same for hé=1 initial
binning except

C h
2 fgiesee

Cshape, oghape " , (B9)
2 e
N, —Ng= % Zgg (B10)

and
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fi) hape (C)
PO = —2—) £, (B11) 2 Ae I ),
f Cpr = =2 Xggde.  (B13
/eB (©) B
where o i
The last equality is used to define the maty,z and to
7 emphasize thafg is simply a linear transformation of the
ffBC,)B: > sﬁ: Ng. (B12)  original qg parameters. The Fisher matrix f6g, can easily
gep’ CpoP be calculated from that fogg, using the general rule for
how the Fisher matrix changes under linear transformation of
The final result is the parameters.
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