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Estimating the power spectrum of the cosmic microwave background
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We develop two methods for estimating the power spectrum,Cl , of the cosmic microwave background
from data and apply them to the Cosmic Background Explorer Differential Microwave Radiometer and Saska-
toon datasets. One method involves a direct evaluation of the likelihood function, and the other is an estimator
that is a minimum-variance weighted quadratic function of the data. Applied iteratively, the quadratic estimator
is not distinct from likelihood analysis, but is rather a rapid means of finding the power spectrum that
maximizes the likelihood function. Our results bear this out: direct evaluation and quadratic estimation con-
verge to the sameCl s. The quadratic estimator can also be used to determine directly cosmological parameters
and their uncertainties. While the two methods both requireO(N3) operations, the quadratic is much faster,
and both are applicable to datasets with arbitrary chopping patterns and noise correlations. We also discuss
approximations that may reduce it toO(N2) thus making it practical for forthcoming megapixel datasets.
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PACS number~s!: 98.70.Vc
n
o
va
pa

ca

-
an
’’

th
r-
p
is
rs
an
lc
ta
w

a

c

ap
th
as
c-

in

a-
ect
rer

at
nt

ob-
tic
ons

and

ith
-
be-
tible

-

e
n-
ave

on
e
me
re-
in
ka-
I. INTRODUCTION

Observations of the cosmic microwave backgrou
~CMB! anisotropy are providing strong constraints on the
ries of cosmological structure formation. Planned obser
tions have the potential of providing constraints on the
rameters of these theories at the percent level@1–3#.

Predictions of theories for CMB anisotropy are statisti
in nature. For many theories, the complete description
given by the power spectrum,Cl , defined below. Thus ex
traction of Cl from the data is of utmost importance as
end in itself and for purposes of ‘‘radical compression
@4,5#.

With the assumption of the Gaussianity of the data,
likelihood function—the probability of the data given a pa
ticular theory—takes a simple form; with the further assum
tion of a prior uniform in the parameters, the likelihood
proportional to the posterior distribution of the paramete
given the data. This is precisely the quantity one wants
thus likelihood analysis has been used extensively for ca
lating the constraints on parameters given by CMB da
This is true whether the parameters are those of the po
spectrum itself or cosmological parameters.

Another approach has been to form estimators that
quadratic functions of the data,e.g., @6#. This procedure has
been improved recently by the use of minimum-varian
weighting of all the pairs of data points@7,8#. In this paper
we present a unification of the quadratic and likelihood
proaches. We show that, when used iteratively,
minimum-variance weighted quadratic estimator is a f
technique for finding the maximum of the likelihood fun
tion.

In Section II we introduce the likelihood function, expla
570556-2821/98/57~4!/2117~21!/$15.00
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our method for evaluating it directly, and derive the qu
dratic estimator. We apply quadratic estimation and dir
evaluation to the case of Cosmic Background Explo
~COBE! Differential Microwave Radiometer~DMR! @9# in
Section III. Both methods involve iteration and we find th
for both, the iteration converges rapidly, with excelle
agreement between the two methods on the finalCl s and
their variances. However, the higher moments of the pr
ability distribution cannot be estimated with the quadra
approach—and we find that there are significant deviati
from Gaussianity in the likelihood as a function ofCl . We
discuss these differences, problems arising from them
possible solutions.

For COBE DMR we estimate every individualCl ~for
2<l <24) since the data allow us to determine these w
some precision. The quadrupole,C2, has received more at
tention in previous work than any of the other moments
cause of its small value and because it is the most suscep
to contamination by emission from our galaxy@10#. We also
find the quadrupole to be quite small,C251496126 mK2,
compared toC25810 mK2 for COBE-normalized standard
cold dark matter~CDM!. However, due to the strong skew
ness of the probability distribution forC2, 25% of the prob-
ability is actually above the COBE-normalized CDM valu
of C2. Thus consistency with relatively flat models like sta
dard CDM does not require the quadrupole power to h
been reduced by systematic errors.

For most observations, which only cover a small fracti
of the sky, estimating everyCl is not possible. One must b
content with estimating the power spectrum either with so
binning in l or through some other parameterization. The
fore in Section IV we discuss binning and rebinning. Then
Section V we apply the methods to estimate, from the Sas
2117 © 1998 The American Physical Society
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toon ~SK! data @11#, the power in ten bins froml 519 to
l 5499.

Power spectrum estimation can be used as a form of
compression where the estimates ofCl and their covariance
matrix are then used to constrain cosmological parame
Because of the great simplifications involved in worki
with power spectrum estimates instead of pixelized data,
is currently the only practical procedure for using all t
CMB data. Such exercises have been conducted,e.g., @12–
14#. In Section VI we discuss the approximations involved
such a procedure and methods for reducing the resulting
accuracies, and in Section VII we apply these results to
ture balloon- and satellite-borne experiments.

Unfortunately, direct evaluation of the likelihood functio
is anO(N3) operation, whereN is the number of data points
And it must be evaluated many times. Thus forN*10,000
this procedure becomes rapidly intractable on mod
workstations—at least for the most straightforward imp
mentations. Although the speed of likelihood analysis h
been greatly increased by use of signal-to-noise eigenm
compression@13,15–18#, this procedure still requires a
O(N3) operation to be performed at least once.

Further speed is necessary if we are to be able to ana
forthcoming megapixel datasets. The quadratic estim
may offer a means of achieving this speed. We empha
that as we have applied it here, it is still anO(N3) operation,
but believe that approximations may be made in a contro
manner to reduce it toO(N2). We discuss these problem
and possible solutions in Section VIII, as well as explici
outline our algorithm for power spectrum estimation fro
CMB data.

II. METHODS: LIKELIHOOD ANALYSIS

We begin by establishing the notation used for describ
the pixelized data of a CMB observation. We also define
power spectrum,Cl , and the likelihood function. With this
common groundwork complete, we then move on to a
scription of the two different methods for estimatingCl .

A. The likelihood function

In general, CMB observations are reduced to a set
binned observations of the sky, or pixels,D i , i 51, . . . ,N
together with a noise covariance matrix,Cnii 8. We model the
observations as contributions from signal and noise:

D i5si1ni . ~2.1!

We assume that the signal and noise are independent
zero mean, with correlation matrices given by

CTii 85^sisi 8&; Cnii 85^nini 8& ~2.2!

so

^D iD i 8&5CTii 81Cnii 8 ~2.3!

where^ . . . & indicate an ensemble average. With the furth
assumption that the data are Gaussian, these two point f
tions are all that is necessary for a complete statistical
scription of the data.
ta
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One important complication to the above descripti
comes from the existence of constraints. Often the data,D i ,
are susceptible to a large source of noise, or a not-w
understood source of noise that contaminates only one m
of the data. For example, the average value ofD i may be
very poorly determined. In this case, the average is usu
subtracted fromD i . Similarly, the monopole and dipole ar
explicitly subtracted from the all-sky COBE DMR data, b
cause the monopole is not determined by the data and
dipole is local in origin. In general, placing any constraint
the data or some subset thereof, such as insisting tha
average be zero, results in additional correlations inD i . We
take this into account by adding these additional correlatio
CC , to the noise matrix to create a ‘‘generalized noise m
trix,’’ CN , whereCN5Cn1CC . In the limit that the ampli-
tude of CC gets large, this is equivalent to projecting o
those modes which are now unconstrained by the data@19#,
but this scheme is numerically much simpler to impleme
Thus in the text below, we always write the noise matrix
CN instead ofCn . The details of this procedure for handlin
the effect of constraints are explained in Appendix A.

Due to finite angular resolution and switching strateg
designed to minimize contributions from spurious sign
~such as from the atmosphere!, the signal is generally no
simply the temperature of the sky in some direction,T( x̂),
but a linear combination of temperatures:

si5E dVH~ x̂,x̂i !T~ x̂! ~2.4!

whereH( x̂,x̂i) is sometimes called the ‘‘beam map,’’ ‘‘an
tenna pattern’’ or ‘‘synthesis vector.’’ If we discretize th
temperature on the sky, then we can write the beam ma
matrix form,si5(nHinTn .

The temperature on the sky, like any scalar field on
sphere, can be decomposed into spherical harmonics

T~u,f!5(
l m

al mYl m~u,f!. ~2.5!

If the anisotropy isstatistically isotropic, i.e., there are no
special directions in the mean, then the variance of the m
tipole moments,al m , is independent ofm and we can write:

^al mal 8m8
* &5Cl d l l 8dmm8. ~2.6!

For theories with statistically isotropic Gaussian initial co
ditions, the angular power spectrum,Cl , is the entire statis-
tical content of the theory in the sense that any poss
predictions of the theory for the temperature of the mic
wave sky can be derived from it.1 Even for non-Gaussian
theories, the angular power spectrum is a very important
tistic, probably the most important one for determining t
viability of the most popular non-Gaussian theories. Ho
ever, the techniques we present in this paper for estima
the power spectrum assume that the fluctuations in both
sky signal and experimental noise are Gaussian.

The theoretical covariance matrix,CTii 8, is related to the
angular power spectrum by

1Non-linear evolution will produce non-Gaussianity from Gaus
ian initial conditions, but this is quite sub-dominant forl &1000.
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CTii 85(
l

2l 11

4p
Cl Wii 8~ l ! , ~2.7!

where

Wii 8~ l !5(
nn8

HinHi 8n8Pl ~cosunn8! ~2.8!

is called the window function of the observations andunn8 is
the angular separation between the points on the spher
beled byn andn8.

Let us define the quantityCl [l (l 11)Cl /(2p). This is
useful for two reasons: it is the logarithmic average ofCl

that gives the variance of the data and~therefore! for scale-
invariant theories of structure formation,Cl is roughly con-
stant at large scales.

Within the context of a model, theCl depend on some
parameters,ap , p51, . . . ,Np which could be the Hubble
constant, baryon density, redshift of reionization, etc. T
theoretical covariance matrix will depend on these para
eters through its dependence onCl . We can now write down
the likelihood function forap , which is equal to the prob
ability of the data givenap :

LD~ap!5P~Duap!5
1

~2p!N/2uCT~ap!1CNu1/2

3expF2
1

2
DT@CT~ap!1CN#21DG . ~2.9!

One can then search for the parametersap that maximize this
likelihood.

B. Direct evaluation of the likelihood function

First, we must choose a set of parameters to characte
the theoretical covariance,CT . For a given class of cosmo
logical theories~e.g., adiabatic perturbations from inflation!,
we can calculate the power spectrum from some set of
rameters like the densities of various components,Vx , the
shape of the primordial power spectrum, the Hubble c
stant, etc. A detailed exploration of the cosmological para
eter space constrained by current CMB and large-scale s
ture data is given in@13#. Alternately, we can describe th
power spectrum by its actual value at some discrete m
poles or bands ofl . Moreover, all of the information in the
experiment~again, for Gaussian theories! is captured in the
likelihood function for the power spectrum:

P~Du$ap%!}P„Du$Cl ~ap!%…. ~2.10!

In this paper, we concentrate on theCl parameterization in
order to determine the power spectrum directly from
data. In principle, we would like to calculate the full likel
hood as a function of the power spectrumP(Du$Cl %) for
somel <l max; at the very least we would like to find th
maximum of thisl max-dimensional function, and its prope
ties ~e.g., curvature or ‘‘width’’! around this maximum.

Searching such multi-dimensional spaces can be diffic
in this case, each evaluation of the likelihood function is
expensiveO(N3) matrix manipulation and a brute forc
la-
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search through the parameter space would take of o
(Cl /dCl ) l max such evaluations to reach an accuracy ofdCl .
In our applications, we have found that the space is su
ciently structureless that a simple iteration procedure wo
well for finding the maximum. In addition, we do not use a
of the individual Cl values as separate parameters, sin
experiments do not have uncorrelated information ab
bands of widthDl &2p/u, whereu is the angular extent o
the survey@20#. For COBE DMR, we bin in bands of width
Dl 5223 for l >25 and only considerl <35; above this
multipole we give the power spectrum a constant shape
amplitude~that of COBE-normalized standard CDM, in th
case!. For SK, we have tried bins of various widths, th
choice of which we will discuss below.

At the first iteration, we choose some appropriate start
Cl . For eachl ~or band!, we hold all otherCl s fixed, while
the one of interest is allowed to vary; in the appropria
signal-to-noise basis, the likelihood as a function of th
single parameter is trivial to compute~see Appendix A!.
That is, for each band labeled byB, we rewrite the correla-
tion matrix as

CT1CN5qBCB1CN* ~2.11!

~no sum overB), where the effective signal and noise mat
ces are given by

CBii 85 (
l PB

2l 11

4p
Cl Wii 8~ l !;

CN* i i 85CNii 81 (
L¹B

2L11

4p
CLWii 8~L ! ~2.12!

and calculate the likelihood as a function of the adjustm
factor qB alone. After going through all thel bands of in-
terest, we then update the starting power spectrum by m
plying the Cl s in each band by theqB that maximized the
likelihood function. We then repeat. Convergence
achieved when all theqBs equal unity. For COBE DMR,
starting from COBE-normalized standard CDM~already a
good fit!, we achieved convergence at the few percent le
after only two such iterations forl <20; after 10 iterations,
convergence is everywhere better than 1024.

There is a drawback to the procedure as described so
compared to what could be achieved by more ambitio
methods such as simulated annealing@21,1#. Even though we
find the maximum of the likelihood function, we have n
accurately determined its shape—only the shape along e
Cl , while the others are held constant~i.e., parallel to the
axes of thel max-dimensional space!. And we have no esti-
mate for the correlations between the uncertainties in e
estimate ofCl . Below, we shall see how to use the Fish
matrix for an estimate of these correlations. Clearly, a m
ambitious minimization strategy would be preferable; w
have chosen not to implement one since the quadratic
mator to be derived below achieves this end without a
explicit likelihood calculation.

We have also considered the possibility of estimat
eachCl assuming no other knowledge of all of the othe
That is, we have attempted to marginalize over theCl values
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outside of each band. This is equivalent to the proced
outlined in Appendix A for marginalizing over removed co
straints ~averages, dipoles, etc.! and foreground templates
However, in this case, the method fails to constrain
power spectrum. In performing this marginalization, we
fectively allow an arbitrary amount of noise consistent w
any power spectrum at alloutside of the band of interes
That is, we multiply the second term in Eq.~2.12! by a very
large number to make the variance in those modes la
than the noise or~expected! signal. For a perfect, all-sky
observation, this would not be a hindrance since all the m
tipoles are independent. For any realistic observation, h
ever, there is aliasing of different multipoles together; so
modes of the data~defined, for example, by the eigenmod
of Appendix A! that are being marginalized over will hav
nonzero contributions from within thel -band of interest.
Thus, the newnoisespectrum alone will span the space
possiblesignals, consistent with having no power at all in th
band. This just reinforces the idea that any unknown nois
the observation should ideally be completely ‘‘orthogona
to the quantities we are attempting to estimate~which will
often be the case when the marginalization technique is u
for experimental constraints or foreground removal!.

C. Gaussian approximation to the likelihood function

If the likelihood function is continous and has a peak th
it can be approximated as a Gaussian near the peak.
well-constrained parameters this approximation should
good except in the tails of the distribution. A Gaussian a
proximation to the likelihood function can be obtained
truncating the Taylor expansion of lnL aboutap at second
order indap :

lnL~a1da!5 lnL~a!1(
p

] lnL~a!

]ap
dap

1
1

2(pp8

]2lnL~a!

]ap]ap8

dapdap8. ~2.13!

This Gaussian approximation is useful because now, ins
of making multiple evaluations of the likelihood function, w
can directly solve for thedap that maximize it:

dap52(
p8

S ]2lnL~a!

]ap]ap8
D 21

] lnL~a!

]ap8

. ~2.14!

The first derivative is given by

] lnL~a!

]ap8

5
1

2
Tr@~DDT2C!~C21CT,p8C

21!# ~2.15!

and the second derivative by

Fpp8
~a! [2

]2lnL~a!

]ap]ap8

5TrF ~DDT2C!S C21CT,pC21CT,p8C
21

2
1

2
C21CT,pp8C

21D G1
1

2
Tr~C21CT,pC21CT,p8!

~2.16!
re
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where Tr is the trace,C[CT1CN is the total covariance
matrix and ,p[]/]ap . We call the second derivative th
curvature matrix and give it the symbolF(a), where the (a)
indicates that we have taken the derivative of lnL with re-
spect toa.

To the extent that the likelihood function is not Gaussia
we will not have correctly solved for its maximum. Thus w
iterate. The closer we get to the maximum, the better
quadratic approximation to lnL will become. This is exactly
the Newton-Raphson method for finding the zero
] lnL/]ap . The procedure is not fool-proof—there is the ris
of getting trapped in a local extremum. In practice we ha
found the likelihood function to be sufficiently structurele
that this is not a problem.

D. Quadratic estimator

The above procedure is not exactly what we do in pr
tice. Calculating the curvature matrix is a computationa
intensive procedure. Matters simplify significantly if w
settle for the ensemble average quantity, called the Fis
matrix, F:

Fpp8
~a! [^Fpp8

~a! &

5
1

2
Tr~C21CT,pC21CT,p8!. ~2.17!

When taking this ensemble average, denoted by^ . . . &, we
assume that the theory is correct and therefore that^DDT&
5C.

Note that the Fisher matrix, like the curvature matrix,
defined with respect to particular parameter choices. If
transform to a new set of parameters,ãp then the Fisher
matrix for these new parameters isF ( ã)5Z21F (a)(Z21)T,
whereZpp85] ãp /]ap8. Tegmark offers a proof of this@7#;
with our approach it is obvious from the definition of th
curvature matrix in Eq.~2.16!.

Replacing the curvature matrix with the Fisher mat
makes our estimator forap quadratic in the data,D:

dap5
1

2
(p8~F ~a!!pp8

21 Tr@~DDT2C!~C21CT,p8C
21!#.

~2.18!

This is what we call the quadratic estimator. The right-ha
side depends onap , so we pick an initialap , calculate the
correctiondap , and then repeat for the new value ofap .
Note that the power spectrum estimate is not constraine
be positive-definite—a point we discuss below.

If we assume that the input theory is correct, th
^DDT&5C and therefore Eq.~2.18! implies ^dap&50. Simi-
larly, one can work out that̂dapdap8&5(F (a))pp8

21 . This is to
be expected since for a Gaussian distribution, the two-p
function is the inverse of the curvature matrix.

Although the quadratic involves using the Fisher matrixF
as an approximation to the full curvature matrixF, both
procedures iterate to thesameparameters, the maximum o
the likelihood function. This is because bothF and F are
invertible, so dap50 from either procedure implies
] lnL/]ap50. Thus, when applied iteratively,the quadratic



k
t

tr
e
o

y

rg

d

o
th
is

nd
m
ix
th
th
as
n

it
um
e
ng
r
ri

e

ec

s

er-

f
l

he

ome

ng
ec-
o

can
ata
is-

as
is

all
i-

imal
he
ion

ing
y a
-
In
qua-

rt
ed

to
e

ve,
n-
ter
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estimator will find the exact location of the likelihood pea;
the only approximation comes in using the Fisher matrix
approximate the errors, rather than the full curvature ma
~and below we show that in the cases studied, this is a v
good approximation; moreover, having found the location
the peak, the curvature there can be calculated explicitl
necessary!.

Our procedure is very similar to that of the Levenbe
Marquardt method@21# for minimizing ax2 with non-linear
parameter dependence. There the curvature matrix~second
derivative of thex2) is replaced by its expectation value an
then scaled according to whether thex2 is reduced or in-
creased from the previous iteration. Similar manipulations
the Fisher matrix may possibly speed convergence of
likelihood maximization, although one would want to do th
without direct evaluation of the likelihood function.

In our applications to COBE DMR and SK we have fou
that iteration converges quickly. Iteration is especially i
portant for the calculation of the error covariance matr
Without iteration, the errors are determined entirely by
initial theoretical assumptions and are not influenced by
data.~Of course, this is exactly why the Fisher matrix h
been so useful in determining how well future observatio
will be able to determine parameters.!

As we have defined it so far, the quadratic estimator w
the iteration procedure is a method for finding the maxim
of the likelihood. Only if one takes the prior probability to b
uniform in the parameters is this equivalent to maximizi
the posterior probability. We could, of course, include diffe
ent priors directly in the definition of the estimator. The de
vation would then begin by changing Eq.~2.13! to a Taylor
expansion of lnPpost where Ppost}LPprior is the posterior
probability distribution andPprior is the~differentiable! prior
distribution.

To see how the quadratic estimator works, we can tak
one-dimensional example~see Fig. 1!. Consider a functionf ,
that is approximately quadratic. If we take its first and s
ond derivatives about some point,x0 (50.7 in the figure!,
we can construct the functionf Q which approximatesf . By
finding the value ofx that maximizesf Q, we have a guess a
to the maximum off . Now, for a further refinement of the

FIG. 1. A one-dimensional example of quadratic estimation.
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estimate, a newf Q can be calculated based upon the prop
ties of f at this new value ofx. ~Note that the full quadratic
estimator of Eq.~2.18! includes the further approximation o
using the Fisher matrix@Eq. ~2.17!# rather than the actua
curvature matrix@Eq. ~2.16!# for the second derivative of the
log-likelihood.!

The applications we discuss in the following all use t
Cl s as the parametersap . In this case,

CTii 8,l [
]CT

]Cl

5
l 11/2

l ~ l 11!
Wii 8~ l !.Wii 8~ l !/l .

~2.19!

We also consider the power spectrum averaged over s
bandsB with some assumed shapeCl

shape; in that case, we
average the above weighted by the shape:

CTii 8,B5 (
l PB

CTii 8,l Cl
shape. ~2.20!

However, there is also the interesting possibility of taki
the ap as the cosmological parameters that affect the sp
trum, V, h, nS , Vb , etc. Iteration in this case should als
converge to the likelihood maximum.

We note that the quadratic estimator discussed here
also be derived by finding the quadratic function of the d
that is unbiased and has minimum variance. For a full d
cussion of the quadratic in this context, see@7,22,23#. The
quadratic function of the data derived this way is the same
Eq. ~2.18!. However, the estimate is only unbiased if there
no iteration. Since the end point of~successful! iteration is
the maximum likelihood, the iterated estimator is, like
maximum likelihood estimators, only asymptotically unb
ased.

The methods we have used can also be applied to opt
determination of the correlation function in angular bins. T
optimal signal plus noise weighting suggested for correlat
function determination differs from the usual diag@Cn

21#
weighting applied to COBE DMR.

E. Single bandpower estimation

It has now become conventional to characterize switch
experiments which covered small patches of the sky b
single bandpower@15#, placing the estimated power at a lo
cation related to the window function of the experiment.
this case, there is just one parameter to determine. The
dratic statistic reduces to

QB5
D†C21CTC21D2Tr CNC21CTC21

Tr CTC21CTC21
. ~2.21!

If the optimal weightC21 is replaced by the diagonal pa
of Cn

21 , then this is related to the quadratic statistic propos
by Boughn and Cottingham@24#, which has been applied
to the COBE DMR and Far Infrared Survey~FIRS! is
unbiased and has data using Monte Carlo simulations
define its distribution. With the optimal weighting and th
proper inclusion of constraints inCN , the values ofQB and
its error estimation are of direct use. As discussed abo
the iterated quadratic estimator for the amplitude will co
verge to the maximum likelihood value. The parame



a
e
la

a
v
r
o

ur

tu
rt
it
c-
,
-
m
en
o
a
th
t

ls
k
M
he

-
io

ce-
the
of

s,
ng
ed

by

he
es

r it-
nce

ct
ra
ar
re

oth
ror
s.

ect

2122 57J. R. BOND, A. H. JAFFE, AND L. KNOX
QB could be any squared amplitude characterizing the
sumed theoreticalCl , such as thes8

2 used to characterize th
strength of the power spectrum on cluster scales. To trans
to an average bandpower one must evaluateQB^Cshape

l &B ,
using an appropriately weighted average ofCshape

l over the
single bandB. Issues associated with such averaging are
dressed in Section IV. Current and future experiments co
large enough patches of the sky that characterizing their
sults by single bandpowers is not useful, but evaluation
power spectrum normalization amplitudes~such ass8) for
particular theories will always be of use.

III. APPLICATION TO COBE DMR

We first apply these methods to the anisotropy meas
ments of the COBE DMR instrument@9,25#. The DMR in-
strument actually measured a complicated set of tempera
differences 60° apart on the sky, but the data were repo
in the much simpler form of a temperature map, along w
appropriate errors~which we have expanded to take into a
count correlations generated by the differencing strategy
treated in@16#, following @26#!. The calculation of the theo
retical correlation matrix includes the effects of the bea
digitization of the time stream, and an isotropized treatm
of pixelization, using the table given by Kneissl and Smo
@27#, modified for resolution 5. We use a weighted combin
tion of the 31, 53 and 90 GHz maps. Because most of
information in the data is at large angular scales, we use
maps degraded to ‘‘resolution 5’’ which has 1536 pixe
Further, we cannot of course observe the entire CMB s
we use the most recent galactic cut suggested by the D
team@9#, leaving us with 999 pixels to analyze. We use t
galactic, as opposed to ecliptic, pixelization.

For both methods we iterated 28 parameters:C2 to C24
individually, C25 to C32 grouped into bins of width 2 and
finally C33 throughC35 grouped into one bin. Binning is de
scribed in more detail prior to the Saskatoon applicat
where it is much more important.

FIG. 2. Maximum-likelihood power spectra from iterative dire
evaluation of the likelihood function. The curve is the zeroth ite
tion: COBE-normalized standard CDM. The points with error b
are, from left to right, the results of the first to third iterations. He
we define the error bars by a likelihood ratio ofe21/2 from the peak.
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In Figs. 2 and 3 we see the results of the iterative pro
dures described in the previous section. Figure 2 shows
results of direct evaluation and Fig. 3 shows the results
quadratic estimation. Momentsl .10 are not shown to
avoid clutter. From left to right are the first to third iteration
together with their error bars. The solid line is the starti
point we chose, the power spectrum for COBE-normaliz
standard CDM. For this method, we define the estimatedCl

as the maximum of the likelihood function, and the errors
the value ofCl where the likelihood drops by a factore21/2

from that maximum.
First we will discuss the direct evaluation method. T

iteration converges rapidly. The maximum likelihood valu
of a fourth iteration~shown in Fig. 4! typically differ from
the third by 1–3% of the error bars~for 2<l <19) with a
maximum deviation of 7% atl 512. In the limit that the
moments were independent, there would be no need fo
eration; iteration is only necessary because of the influe

-
s
,

FIG. 3. Iterative quadratic estimation. The curve is the zer
iteration: COBE-normalized standard CDM. The points with er
bars are, from left to right, the results of the first to third iteration

FIG. 4. We compare the results of the quadratic and dir
evaluation iteration schemes. At eachl , the left error bar~square
symbol! is for the quadratic, the right~triangle! is for the direct
evaluation.
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that the value of one band has on the best value of ano
The rapidity of the convergence is expected because, a
will see below, the moments are in fact fairly uncorrelate
We remind the reader that the error bars given by t
method—indeed the whole probability distribution for ea
Cl —are calculated by holding the others fixed.

Iteration is also quite rapid for the quadratic estimator:
maximum likelihood values of a fourth iteration~shown in
Fig. 4! differ from the third by better than 1% of the squa
root of the variance forl <24, except for the quadrupole an
l 520 which are slightly worse, converging to 3%. Just li
the direct method, most of the change in the maximum li
lihood estimate occurs in the first iteration.

Unlike the direct method, the error bars of the first ite
tion are quite different from the error bars of the later ite
tions. That is because the error bars~the Fisher matrix! do
not depend on the data, but only on the input power sp
trum. Therefore the data have had no effect on the error
until the second iteration is reached. To the extent that
distribution is Gaussian, these error bars accurately repre
the uncertainty on each parameter; they take into accoun
correlations with the other parameters. The largest chan
in the error bars from 1st to 2nd, 2nd to 3rd and 3rd to
are 610% (l 52), 60% (l 52) and 6.5% (l 56), respec-
tively. From the 3rd to the 4th, most of the changes are
than 1%.

In the previous section it was claimed that the curvat
matrix is a good approximation to the Fisher matrix. W
have explicitly checked this for the final iteration and fin
that for l ,20 most of the Fisher matrix and curvature m
trix derived error bars agree with each other to better t
4%. The worst cases arel 54 andl 55 at 13% and 15%.

Not only do these methods converge, but they converg
the same power spectrum, as we see in Fig. 4. The dif
ences between the final iterations are less than 2% of
quadratic error bars forl ,20, except for a 4% difference a
l 518; at higher moments, the methods often do not de
positive power. Note that at multipoles where both metho
do detect nonzero power, the quadratic method gives e
bars which are systematically smaller~than those of the di-
rect method! in the direction of positive power, and system
atically larger towards lower power. This can be understo
as a result of the considerable non-Gaussian skewness o
distribution of power, as seen in Fig. 5. Also note that wh
the likelihood maximum is at zero power, the quadratic e
mate is at~physically meaningless! negative power. This is
to be expected since the existence of a maximum atCl 50
implies] lnL/]Cl <0, and therefore the Gaussian fit to lnL at
Cl 50 will peak atCl <0.

We have also checked that using the full resolution 6 d
~3881 pixels after the galactic cut! changes the results of th
maximum-likelihood estimate for the power spectrum
much less than one sigma. We have checked in detail u
the direct evaluation, for which the resolution 6 results dif
from those at resolution 5 by less than 5% forl <15, except
at l 56 –9 where the difference is almost 10–20% and
l 512 andl 514, where the difference is nearly 50%, st
smaller than the large error at thesel ; the higher resolution
data give an overall normalization that differs by 4%~com-
pared with an error of 14%! from that of the best quadrati
computed at resolution 5. These differences are consis
er.
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with those observed for different pixelizations and galac
cuts@9,25#; note that both the direct evaluation and quadra
procedures converge with considerably higher precision t
these intrinsic errors, even forl *15 where the pixelization
differences become important and, simultaneously, the n
begins to dominate.

We also agree at least qualitatively with other calculatio
that we have compared to, in all cases~with detected power!
well within the various reported error bars. In Fig. 6 we sho
a comparison of our quadratic results with those of@17,25#,
both of whom use a maximum likelihood method. Gors

FIG. 5. Probability distributions for individualCl values, as
labeled, for a prior uniform inCl . The solid curve is the true
likelihood from the last iteration of the full evaluation; the dotte
curve is the Gaussian approximation from the last iteration of
quadratic procedure. Forl 52, we also show the cumulative prob
ability distribution, properly normalized to unit probability a
Cl →`.

FIG. 6. Comparison of different groups’ power spectrum es
mates, as marked. Gorski computes power spectra in both ec
and galactic pixelizations of the sky.
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@25# uses a complete search through parameter space
‘‘cut-sky spherical harmonics’’ to speed up the calculatio
Bunn and White@17# also use the signal-to-noise transform
tion of Appendix A to increase speed. The results of our fi
quadratic iteration also have qualitative agreement with T
mark’s implementation of the quadratic estimator@7#.

The fact that three completely different methods achie
similar results lends support to the claim that the final e
mates are unaffected by the choice of initial starting pla
and the stronger claim that they would have resulted fr
anystarting place. From the Fisher matrix and from the pro
ability distributions of Fig. 5 it should be evident that th
likelihood space is fairly structureless. We could have star
anywhere and converged to the same place, although per
slightly less rapidly. We note though that if the correlatio
were stronger between the differentCl s, the direct method
would be less robust. In particular, if the initial power spe
trum were much too large, then each multipole mom
would try to make up for this all by itself by coming out ver
small. Thus there could be large oscillations—conceiva
without convergence. In addition, these correlations, co
bined with the width of the likelihood function, imply tha
our iterative direct evaluation method for finding the pe
may not converge to a unique maximum, as values oscil
between iterations; in practice, we have found that
changes remain much smaller than the size of the error b
as noted above. Such a broad likelihood function indica
that the data do not strongly prefer a unique maximu
Nonetheless, if we desire to find the exact location of
peak, a more complete search through the many-param
space~as in@17,25#! or the use of the quadratic method w
be necessary.

The probability distributions of the parameters are diff
ent for the two different methods because of the approxim
tion of independence by the direct method and the appr
mation of Gaussianity by the quadratic method. We can
those differences in Fig. 5. The departure from Gaussianit
most dramatic for the quadrupole. According to the Gauss
distributions of C2, COBE-normalized CDM with C2
5770 mK2 is over five standard deviations away from t
mean, highly ruled out. But the strong skewness of the ex
likelihood function has 25% of the probability forC2 above
770 mK2. This is more probability than there is above on
1s for a Gaussian distribution.2 As l increases the distribu
tions become more Gaussian. The distribution forl 521 is
well approximated by a Gaussian as expected from the
tral limit theorem since there are approximately 30 indep
dent modes of roughly equal weight contributing to the co
straint.

The highly non-Gaussian nature of some of these dis
butions implies that other definitions of the point estimati
and the error bars are possible. First, we could consider
mean or median of the distribution, rather than its maximu
and define errors by the amount of enclosed probability. S

2Also these quadrupole probability distributions do not take i
account the possibility of foreground contamination. The DM
team@10# has carefully analyzed the foreground contamination a
report C25(27361856360) mK2 with statistical and systemati
errors.
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ond, we could also have used different prior probabilities
theCl . Throughout the paper, we use a prior uniform inCl ,
equivalent to equating the posterior distribution with t
likelihood itself. When the data constrain the power stron
~i.e., small error bars!, the result is insensitive to the choic
of the prior; in other regimes, such as the quadrupole,C2, the
prior has more significance. To investigate this, we have a
tried other possible prior distributions, along with the defin
tion of the point estimate by the median of the distribution.
prior P(Cl )dCl }dCl /ACl @which is equivalent to a prior
uniform in s th5(Cl )1/2# gives a medianC2 60% higher than
the likelihood maximum; the highly skewed distributio
means that for a constant prior the median is 166% high
while a prior uniform in lnC2 has a median only 5% higher
Finally, we have also tried a ‘‘Fisher Prior,’’ which uses th
element of the Fisher matrix@Eq. ~2.17!# corresponding to
ap5s th to determine the expected amplitude,

P~s th
2 !}Fss

1/2}FTrS ] ln~CN1s th
2 CT!

]s th
2 D 2G 1/2

~3.1!

which is uniform inCl }s th
2 at low amplitudes, but uniform

in lnCl at high amplitudes, where the smooth transition
determined by the scale at which signal-to-noise becom
about one. For this prior, the median is about 20% hig
than the maximum likelihood.

In Fig. 7 we show the normalized Fisher matri
F l l 8

(C) /AF l l
(C) F l 8l 8

(C) to indicate the level of correlations be
tween the differentCl s. The off-diagonal terms are due t
the inhomogeneous coverage, the most drastic compone
which is due to the galactic cut. This cut discards all m
pixels with galactic latitudeubu<20°, with some modifica-
tions motivated by the Diffuse Infrared Background Explor
~DIRBE! dust map@9#. A map with aubu<20° cut and oth-
erwise homogeneous coverage would result in zero ove
betweenYl ms with opposite parity which explains the ne
zero values of the Fisher matrix forl 82l odd @17#. Modes
with similar parity do mix and hence the nonzero elements
l 85l 62. Even these off-diagonal terms though are mu
smaller than the diagonal, especially for the lower multipo

d

FIG. 7. Rows of the normalized DMR Fisher matrix~see text!,
at l 52,10,21. The solid lines show the matrix at the zeroth ite
tion; the dashed lines for the final iteration.
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moments which are determined by modes with higher sig
to-noise. Iteration does not have much effect on the norm
ized Fisher matrix; the off-diagonal components are large
result of the coverage geometry.

IV. METHODS: BINNING AND REBINNING

For the same reason that limited extent in the time dom
leads to limited spectral resolution in the frequency doma
uncertainties inCl and Cl 8 are strongly correlated whenl
&2p/u, whereu is the linear extent of the observed regio
@20#. Thus binning moments together in bins of widthDl
.p/u is a sensible thing to do. Because of the experime
noise, final bins may need to be even coarser to preven
error bars from being excessively large.

We view binning as a two-step procedure: an initial fi
binning followed by a rebinning to coarser bins. The reas
for the first step is that we want to know, within each coar
bin, where the constraining information is. The finer binni
gives us this knowledge. For pedagogical reasons, we
with a discussion of rebinning and then discuss the ini
binning.

A. Rebinning

We assume here that the initial binning is the finest p
sible,Dl 51, since this makes for the simplest exposition
is easily generalized to arbitrary initial binning. For reaso
that will become clear later, we begin our discussion of t
rebinning procedure by reparameterizing the power spect
in terms of an assumed spectral shape,C l

shape. Thus the pa-
rameters we are trying to estimate are no longerCl directly,
but the deviation from the assumed shape, given byql :

Cl 5ql C l
shape. ~4.1!

If our estimates of individualql are too noisy, then we ca
average them together into coarser bins, which we will la
by the subscriptB. We wish to do this in a ‘‘minimum vari-
ance’’ manner. That is, we want to findQB that minimizes

x25(
l l 8

~QB2ql !F l l 8
~q!

~QB2ql 8! ~4.2!

where the sum~like all sums in this subsection! extends over
the width of the new and coarser bin. The Fisher ma
appears here because, in the Gaussian approximation t
likelihood function, the Fisher matrix is the inverse of th
parameter covariance matrix. Complications due to n
Gaussianity are discussed in Section VI.

It is easy to show that the solution to this minimizatio
problem is given by

QB5

(
l l 8

ql F l l 8
~q!

(
l l 8

F l l 8
~q!

. ~4.3!

The new parametersQB have the Fisher matrix,F BB8
(Q)

5( l l 8F l l 8
(q) , where the sum overl extends across binB

and the sum overl 8 extends across binB8. We see thatQB
l-
l-
a

in
,

al
he

n
r
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l

-
t
s
s
m

l

x
the

-

averagesql over the filter f Bl
(q)5( l 8F l l 8

(q) . The (q) super-
script indicates that this filter is for averagingql s.

As the constraints on the power spectrum become tigh
it is inevitable that we will move from plotting averages
Cl ~band-powers! to plotting ql in what we callq-space, or
deviation space. We show some examples of this late
Section VII where we simulate future data sets. Therefor
is worth exploring this space a little further. One question
answer is: whatl value should be used for locatingQB
horizontally on a graph? We advocate choosing thisl eff so
that for a band ranging froml 1 to l 2

(
l 5l 1

l eff

f Bl
~q!5 (

l 5l eff

l 2

f Bl
~q! . ~4.4!

With this definition, 50% of the weight that constrainsqB
comes froml 1,l ,l eff and the other 50% comes from
l eff,l ,l 2.

Although comparison of theories with the data will occ
in q-space, we wish to translate our values into the fami
Cl -space. To do this we must define a suitable average
C l

shapeover bin B, C B
shape, with which to multiply QB and a

suitablel value at which to plot the error bar,l eff . The best
weighting to use for this is debatable. We emphasize that
ambiguities associated with the translation fromQB to a
power estimate,CB only affect plotting—not the compariso
of theory with data. Furthermore, we have tried several d
ferent weighting schemes and found negligible difference
their values ofl eff andCB , so long as they are proportiona
to f Bl

(q) which encodes the signal-to-noise information in t
band.

To motivate a particular averaging we first rewrite E
~4.3! in terms ofCl and its Fisher matrix:

QB5

(
l l 8
Cl F l l 8

~C! C l 8
shape

(
l l 8
C l

shapeF l l 8
~C! C l 8

shape
. ~4.5!

The relation betweenQB andCl in the above equation sug
gests that the following filter be used to calculateC B

shape:

f Bl
~C!5(

l 8
F l l 8

~C! C l 8
shape

5 f Bl
~q!/C l

shape ~4.6!

since this is the weighting of eachCl in Eq. ~4.5!. Therefore
to make our power estimates we use

C B
shape5

(
l

f Bl
~C!C l

shape

(
l

f Bl
~C!

~4.7!

with the result that
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CB5QBC B
shape5

(
l

f Bl
~C!Cl

(
l

f Bl
~C!

. ~4.8!

The role of the filter function,f Bl
(C) is exactly that ofWl /l in

the band-power procedure of@15#, whereWl is the trace of
the window function matrix defined in Eq.~2.8!. We will
develop this connection more later. For now, we definel eff ,
l 1 andl 2, exactly as was done in@15#, so that we can plot
data points properly located inl space with horizontal erro
bars:

l eff5

(
l

l f Bl
~C!

(
l

f Bl
~C!

~4.9!

and l 2 and l 1 are wherel f Bl
(C) has fallen toe21/2 of its

maximum value. We remind the reader that every sum o
l in this section is only over the values ofl within bandB.

B. Initial binning

One may wish to estimate fewer parameters than ev
multipole moment right from the beginning. In this case o
would parameterize the spectrum as

Cl 5qBC l
shapexB~ l ! ~4.10!

wherexB(l ) is one, whenl is within the range of bandB,
and zero otherwise.

To convertqB to a power estimate,CB , we need an aver
age of the shaped spectrum over band B. A useful conver
factor is given by Eq.~4.7!. Of course, in order to calculat
C B

shapeby Eq. ~4.7! one needs to know the Fisher matrix
every l —which is a calculation we are trying to avoid b
using coarse binning. Once again though, as long as the
ning is not too coarse, the details of the averaging are un
portant. If the binning is fine enough, then a simple aver
~uniform in l ) will suffice—that is, take

C B
shape5

( l C l
shapexB~ l !

( l xB~ l !
; ~4.11!

here, the denominator is simply the width of the bin. This
what we have done in our applications~although see Section
VI for how this can be improved by use of analytic know
edge of the Fisher matrix!.

As is usually the case with binning, we want to make t
bins as fine as necessary to capture all the information,
no finer since that means extra work. A lower limit to the b
sizes comes from the fact that fluctuation power fromCl will
be indistinguishable from that fromCl 8 if ul 2l 8u&2p/u,
whereu is the linear extent of the observed region, as
ready mentioned. We may wish to make our initial bins ev
coarser. Some considerations to keep in mind are that if
is trying to reduce sensitivity to uncertainty in the power-la
index, then logarithmic spacing produces equal shape se
tivity in each bin. If the chief shape uncertainty comes fro
er

ry
e
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in-
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e

e
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features with a characteristic wavelength,e.g., Doppler
peaks, then a linear spacing produces equal shape sensi
in each bin.

V. APPLICATION TO SASKATOON

We now apply our methods to the Saskatoon~SK! dataset
@11#. The SK data are reported as complicated chopping
terns ~i.e., beam patterns,H, above! in a circle of radius
about 8° around the North Celestial Pole. The data w
taken over 1993–1995~although we only use the 1994–199
data! at an angular resolution of 1.0–0.5° full width at ha
maximum~FWHM! at approximately 30 GHz and 40 GHz
More details can be found in@11#. The combination of the
beam size, chopping pattern, and sky coverage mean tha
is sensitive to the power spectrum over the rangel 550–
350. The Saskatoon dataset is calibrated by observation
supernova remnant, Cassiopeia-A. Leitch and collabora
@28# have recently measured the flux and find that the re
nant is 5% brighter than the previous best determination.
have adjusted the Saskatoon data accordingly.

In Fig. 8 we show the results of our iterated quadra
estimator on the SK data, in ten evenly spaced bins froml
519 to l 5499. Again, the convergence proceeds quite r
idly, although not quite as rapidly as for COBE DMR
Evaluation of the Fisher matrix shows that there are appro
mately 20% anti-correlations between neighboring bins.
note in passing that the falling power spectrum seen fol
&100 has been noticed by the experimenters themse
@29#.

What we directly estimate is the adjustment factorqB of
Eq. ~4.10!. As mentioned above, in order to convert this to
power spectrum amplitude, we need some measure of
average power in the bin. Here we have used an ave
uniform in Cl across the bin@Eq. ~4.11!#. For the first bin,
the averaging should probably be weighted more to
higher multipole moments than to the lower ones in the
because the sensitivity to the spectrum is increasing rap

FIG. 8. Quadratic estimates of the power in 10 bins, deriv
from the SK data. The curve is the zeroth iteration, tilted CDM w
n51.45 ands852.16. The squares are from left to right, the resu
of the first to third iterations. The data point with the horizon
error bar is a rebinning of the top three bins.
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with increasingl . We will see this rapid rise in sensitivity to
the power spectrum in the next section where we plot
Fisher matrix for a finer binning.

There is very little information in the three highestl bins.
Thus, for the final iteration we binned them together a
plotted the result as the point with the horizontal error b
Because of the coarseness of the bins, the filter function
the rebinning is coarse and thereforel eff , l 1 and l 2 are
not determined very well. To get the filter function mo
finely, we need to do a finer initial binning, which will b
done in the next section.

To investigate the probability distributions beyond t
mean and the variance, we used our direct likelihood ev
ation procedure, starting from the final quadratic iterati
The results are shown in Fig. 9. The uncertainties in the
bin are strongly sample-variance dominated. In the sam
variance limit the fractional variance, (dCl )2/C l

2 , is in-
versely proportional to the number of independent mo
contributing to the estimate. Since the first bin is not we
determined we can therefore surmise that only a few mo
contribute to it. With so few modes we cannot expect
distribution to be Gaussian and thus the strong n
Gaussianity for the first band, shown in Fig. 9, is not surp
ing.

VI. METHODS: RADICAL COMPRESSION

As mentioned above, for Gaussian theories,P(DuCl ) con-
tains all the information that is in the map. If the probabili
distribution were Gaussian inCl , then all the information in
the probability distribution could be compressed into a me
and a covariance matrix:

P~DuCl !→Ĉl ,^dCl dCl 8&. ~6.1!

FIG. 9. Probability distributions for the power in bands,CB , as
labeled, for a prior uniform inCB . The solid curve is the true
likelihood from the direct evaluation; the dotted curve is the Gau
ian approximation from the third iteration of the quadratic proc
dure.
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By the definition of a Gaussian probability distribution, th
compression involves no loss of information. The ‘‘lossles
nature of this compression was pointed out by Tegmark@7#,
although here we emphasize that it is only true in the Gau
ian limit. We refer to compression to the power spectrum
‘‘radical compression’’ because the data reduction is impr
sive: the information in a map withN pixels and anN3N
noise covariance matrix is now held in less thanAN power
estimates and theirAN3AN covariance matrix.

With compression toAN numbers and a covariance m
trix, analysis of constraints on cosmological parameters
comes quite rapid. One simply forms thex2:

x2~$a%!5(
l l 8

„Cl ~$a%!2 Ĉl …M l l 8
21

„Cl 8~$a%!2 Ĉl 8…

~6.2!

and simply evaluates it to find the minimum and also the o
sigma and possibly two sigma confidence regions of the
rameter space. Here,Cl ($a%) is the calculated spectrum fo
the paramtersap and M l l 8[^dCl dCl 8& is some appropri-
ately determined correlation matrix,e.g., the inverse of the
Fisher matrix or the exact curvature matrix for the quadra
method, or a likelihood ratio or Bayesian determination
the direct evaluation of the likelihood.

Unfortunately, the probability distribution is non
Gaussian, as we have seen. One might think that this o
causes minor inaccuracies to the method of Eq.~6.2!. In fact,
the problems are of a systematic nature and can be q
important. To see this we need only examine the case
COBE DMR. Say we wanted to use our power spectr
estimates to measure the best fit amplitude of standard C
expressed as a prediction fors8, by using Eq.~6.2!. Using
our estimates ofCl from the final iteration of either the direc
or quadratic estimation procedures together with the Fis
matrix from the final iteration, we finds851.1 instead of the
correct value ofs851.2. This example does not mean th
non-Gaussianity has made radical compression useless
rather that we must proceed with some care.

The decrease in power is a systematic effect due to
skewness of the probability distributions which allow mo
positive and less negative fluctuations relative to a Gaus
distribution with the same variance. Another way of thinkin
about it is that those amplitudes that fluctuate downwa
have their variance reduced and thus their weight increa
while those that fluctuate upward have their variance
creased and therefore their weight decreased. Contrast th
a Gaussian probability distribution for which the curvature
independent of location. Thus one can see that the n
Gaussianity of the probability distribution can be very im
portant and some care must be used in attempting this rad
compression.

One solution to the problem may be to find a function
Cl whose distribution is more Gaussian than that ofCl itself.
Motivation for one particular form comes from considerin
the sources of the variance. There is a sample-variance
tribution which is proportional to the power and a noise co
tribution which is independent of the power, thusdCl }Cl

1xl for some appropriatexl related to the experimenta
noise. According to this proportionality, the probability di
tribution for ln(Cl 1xl ) might be well approximated by a

-
-
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Gaussian since its variance is independent ofCl . This pro-
cedure is under investigation@4#.

It is the iterated Fisher matrix that overweights~under-
weights! the points that fluctuated downward~upward!; to
prevent these fluctuations from affecting the Fisher mat
one can iterate on the parameters of a smooth function
stead of the amplitudes in fine bins, and then use the re
ing Fisher matrix for the covariance matrix associated w
the power estimates in bins. This is the method of solut
we have adopted here.

We emphasize that the problems we are discussing are
peculiar to the use of the quadratic estimator, but are ass
ated with the attempt to compress the probability distribut
of Cl into a mean and covariance matrix. Because of n
Gaussianity, this procedure is necessarily approximate.
above being said, we will now assume Gaussianity, but
ways use the Fisher matrix derived from a smooth the
curve, and not one derived from a bin by bin iteration.

A more benign problem than non-Gaussianity is the ex
tence of correlated uncertainties. Although not a problem
the x2 of Eq. ~6.2!, the correlations do complicate dire
visual interpretation. We may remove these correlations b

linear transformation on the parameter space,q→ q̃5Zq,
where Z diagonalizes the parameter covariance mat
ZF21ZT5diag ~or, equivalently, Z21 diagonalizes the
Fisher matrix,F (q)).

While having the advantage of uncorrelated uncertaint
the interpretation of these new parameters themselves
been complicated by the transformation. Fortunately, th
are transformations with some very useful properties. Ma
transformations can lead to independent modes. Hami
@22# made a lengthy study of the different possible diagon
izing transformations and found one that has a smalll -space
width and is positive-definite. His transformation transla
to Z5LT, where L is the Cholesky factorization ofF; F
5LLT. Another useful transformation is given by settingZ
5F1/2, the Hermitian square root ofF @23#. Parameter eigen
modes@3#, involving rotation only to the orthogonal comb
nations of bandpowers, rather than scale transformation
well, are of great interest and emphasize another point: w
linear combinations of modes are being taken, we have f
dom in exactly what the scaling will be. It is obvious thoug
that if we are representing a bandpower at a representativl ,
we want to ensure that the normalization makes sense s
the goal is direct visual comparison with theoreticalCl

curves.
In the Gaussian approximation, these linear combinati

are independent. Thus we can now estimate eachq̃ j indepen-
dently of the q̃ i for iÞ j . The l max-dimensional space ha
been reduced tol max one-dimensional spaces. In fact, f
eachq̃ j , there is no need to keep the Gaussian approxi
tion; one can calculate its complete distribution function.
the Fisher matrix is a good approximation to the curvat
matrix, then, at least near the peak, the total likelihood fu
tion can be approximately decomposed into a product
these one-dimensional likelihood functions:L($ q̃ i%)
') iL( q̃ i). Since q̃l5ql Zl l5Cl /C l

shapeZl l , the filter
function is f ll

(C)5Zl l /C l
shape. Thus
,
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Cl5
q̃l

(
l

f ll
~C!

5

(
l
Cl f ll

~C!

(
l

f ll
~C!

. ~6.3!

If we wish to rebin these uncorrelated estimates, we
do so in a minimum variance manner by performing t
following sums:

Cb5

(
lPb

q̃lNl

(
l

f bl
~C!

~6.4!

where

f bl
~C!5 (

lPb
f ll

~C!Nl ~6.5!

and Nl[( l Zl l . These equations are derived in Append
B.

For COBE DMR we used Cholesky decomposition to g
filter functions, f ll

(C)5L l l /C l
shape, and then binned togethe

combinations 1-3,4-5,6-7,8-9,10-12,13-16 and 17-27. E
of the combinations’ filter functions is shown in Fig. 1
together with the power estimates. To avoid the system
underestimate of power discussed above, we used theCl s
from our final iteration, but the Fisher matrix from the zero
iteration. This does not imply that the errors are complet
unaffected by the data. We are using standard CDM as
zeroth iteration precisely because it is a good fit to the d

In order to make accurate filter functions for SK we d
vided it up into 26 bins. Starting from the results of our thi
iteration on the 10 bands of the previous section, we e
mated the power in these 26 bands with a single iterat
The fractional uncertainty in most of these bands was gre

FIG. 10. DMR with ortho-rebinning.
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than unity. In order to make the rebinned statistically
thogonal linear combinations plotted in Fig. 11 we used
n51.45,s852.16 tilted standard CDM Fisher matrix. The
are the parameter values for tilted CDM that maximize
likelihood function.

At high l , some of our 26 bands still have significa
width; their ‘‘sub-band structure’’ may be important. To e
timate the structure of the filter functionswithin each band,
we employ an analytic approximation to the Fisher matr
For a map of the sky with uniform weight per solid angle,w,
covering a fraction of the sky,f sky, we know the Fisher
matrix is such that@1–3#:

(
l 8

F l l 8
~C! .

~2l 11! f sky

2 S Cl 1
l ~ l 11!

2pwB2~ l !
D 22

, ~6.6!

where, for a Gaussian beam,B(l )5e2l 2s b
2/2.

An approximation appropriate for difference experime
rather than maps is to replacewB2(l ) with the noise-
weighted window functionwW̄ l

(N)[Tr(C N
21Wl )/N, where

Wl is the window function matrix of Eq.~2.8!. In this uni-
form case, we also have

f Bl
~q!.

~2l 11! f sky

2 S «Tl

~11«Tl ! D
2

,

«Tl [wW̄ l
~N!Cl

2p

l ~ l 11!
. ~6.7!

The quantity«Tl is a measure of the mean square of t
signal-to-noise ratio in modesl . The «Tl /(11«Tl ) factor
which appears in the square is the Wiener filter~i.e., the
optimal signal-to-noise filter!. In the«Tl @1 limit of signal-
dominance, f Bl

(q)→(l 11/2)f sky, half the number of l

modes available. This is of course a general result for
signal-dominated regime, requiring no assumption of hom
geneous noise. It is often a reasonable approximation to
the usual filter functionWl [Tr(Wl )/N in place of the
noise-weighted one. Eq.~6.7! is applied to realizations o
power spectra for future balloon and satellite experiment
Section VII.

FIG. 11. SK with ortho-rebinning.
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The weight map for COBE DMR varies gently with sp
tial scale outside of the galactic cut, so we expect the anal
approximation Eq.~6.6! to be reasonably good for it and w
see in Fig. 12 that this is so. The two curves with a peak
l 510 are sums over the exact and analytic Fisher matr
for standard CDM. For the analytic form we tookf sky
50.65,w2159.5310213 ~equivalent to an rms noise of 2
mK on 7° pixels! and the appropriate beam shape.

For the SK data, the comparison of the 26 band ex
Fisher matrix and the analytic Fisher matrix approximati
shows some interesting differences~Fig. 13!. The analytic
curve is forf sky50.005,w2153.3310214 andu fwhm50.5°.
The deficit at smallerl is presumably due to the differenc
ing schemes that were necessary to filter out atmosph
contamination. These are partly encoded in the no
weightedW̄ l

(N) , but for the plot only the beam,B2(l ), was
used, as in Eq.~6.6!. This deficit bears on the question o
what quality of map it is possible to create from the S
dataset; the loss of lowl information implies that there will
be long-distance noise correlations in any map made fr
the data@31#.

FIG. 12. The Fisher matrix sum,( l 8F l l 8
(C) for the zeroth itera-

tion of DMR for exact~solid! and analytic~dashed!. For compari-
son,Wl /l ~dotted! is also shown.

FIG. 13. The Fisher matrix sum,( l 8F l l 8
q for the zeroth itera-

tion on 26 band SK for exact and analytic.
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In Fig. 14 we show some rows of the normalized para
eter covariance matrixMBB8 /AMBBMB8B8, where MBB8
5F BB8

21 . The correlations for bin 11 (l 5120–132) extend
well beyond thedl .p/u expected for a map—again, this
presumably due to the differencing schemes.

Returning to Fig. 13, we see that the agreement at lea
higher l , is good. We consider it to be good enough
encourage the use of the analytic form for doing some s
band shaping of the filter functions. To be more prec
about the procedure, within each band,B, we give f bl

(C) the
shape( l 8 f l l 8

(C) Cl with the amplitude chosen so thatf bB
(C)

5( l f bl
(C) . We have applied this shaping to the five highesl

bins in Fig. 11.
One might wonder why the analytic curve in Fig. 13 h

no peak, corresponding to where sample variance and n
are equal contributors to the uncertainty inCl . The absence
of the peak is due to the rise inCl from l 520 to l 5200. If
we plottedC l

2 ( l 8F l l 8
(C) , which is related to thefractional

uncertainty inCl , then there would be a peak nearl 580.
While the independence of the power estimates~in the

Gaussian approximation! simplifies Eq.~6.2! some, the exis-
tence of the filter functions complicates it:

x2~$a%![(
B

1

~dCB!2
@CB~$a%!2 ĈB#2, ~6.8!

whereCB($a%) is calculated using the filters in Eq.~4.7!. We
have cast this equation in an intuitive form involving th
deviation of a measured bandpowerCB from the predicted
spectrum. This is exactly thex2 appropriate toq-space,
which emphasizes relative deviations of both the data and
theoretical predictions from the fiducial spectrum used
calculate the quadratic estimator;i.e., the details of how one
goes from the estimates ofqB to the appropriate bandpowe
drop out of thex2.

One might argue that the complication of the covarian
matrix has been traded for the complication of the filter fun

FIG. 14. Slices of the SK 26 band covariance matrix at ba
11, 16 and 21, normalized to unity along the diagonal.
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tions and there has been no net improvement. However
think that, when binning has been done, the use of the
thogonal linear combinations improves, or at least simplifi
the process of radical compression. Once binning has
curred, one wants to know what the filter looks like acro
the bin. Thus binning implies the use of filters and on
filters are being used, the orthogonal linear combination
proach of providing uncorrelated data and filters is simp
than providing correlated data with filtersand a covariance
matrix.

Experiments typically report broad-band power spectr
estimates, together with the trace of their window functio
Wl , which can be used to make a filter function,f l

5Wl /l . These power spectrum estimates have indeed b
used to constrain cosmological parameters,e.g. @12#. Using
f l 5Wl /l as the filter function is in general not the optim
procedure. Only ifCTii 8 is a multiple of the identity matrix is
Wl /l the minimum-variance filter. In general, the Fish
matrix-derived filters should be used. And they can be qu
different; in Fig. 12 one can see the tremendous differe
betweenWl /l and the minimum variance filter,f l . In the
noise-dominated regime~high l for DMR!, Wl /l
}l 21B2(l ) whereasf l }l 23B4(l ).

In our power spectrum plots we have not included ca
bration uncertainty which is;6% for SK and negligible for
COBE DMR. The calibration uncertainty is completely co
related across the bands. It can be taken into account
nuisance parameter to be added to thex2 expression above
@12#. Other methods for taking it into account are discuss
in @4#.

VII. FORECASTING POWER SPECTRA
FOR FUTURE EXPERIMENTS

In this section, we exercise our methods on an instruc
simple case, homogeneous noise over regular patches c
ing a fractionf sky of the sky. We apply the relations to simu
lating realizations of power spectra and their error bars
two planned balloon experiments, MAXIMA and TOPHAT
and two satellite experiments, Microwave Anisotropy Pro
~MAP! and PLANCK. The results are shown in the famili
Cl space in Fig. 15 and inDCl /Cl space in Fig. 16. In this
q-space, which we believe will become more and more u
lized as the CMB data starts to converge on a specific sh
we compare the~converged! quadratic power estimator val
ues and their error bars with the fractional deviatio
DCl /Cl , of a Cl whose parameters we are testing from
fiducial shape. Here the shape that entered into the po
spectrum analysis was a standard COBE-normalized c
dark matter modelCl , and the model used to construct th
power spectrum realization was also this standard CDM o

For f sky51, power spectrum analysis simplifies conside
ably if the weight matrixC N

21 is diagonal in the spherica
harmonics basis, since then theCT and CT,p matrices are.
Both the Fisher and curvature matrices are also diagona
long as the bandsB do not overlap inl -space. Forf sky,1,
another simple limiting case involves rectangular regions
size NxÃpix3NyÃpix , consisting of square pixels of siz
Ãpix3Ãpix . The S/N eigenmodes are then discrete Fou
components, labelled by a wave vectorQ, which, to a high
degree of accuracy, diagonalizeCT and CT,p , and, by as-
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FIG. 15. Comparison of forecasts for the two balloon expe
ments, TOPHAT and MAXIMA, with the satellite experimen
MAP and PLANCK. Bands are required to have a signal-to-noise
at least 25 and a minimum spacing inl defined by the logarithmic
spacingD lnl 50.1. With this signal-to-noise binning, the growth
the number of bands shows the increasing precision and sky co
age of the experiments. The error bars are those appropriate t
quadratic estimator after convergence.

FIG. 16. The forecasted data with error bars are shown inq
5DCl /Cl )-space, in which the relevant comparison with the d
is the fractional difference between theCl we are testing and
C l

shape. A few differences are shown for each case by solid lin
They are deviations in single parameters, as marked, from the s
theory (q50), in this case a standard COBE-normalized CD
model withVB50.05. The theoretical curves can have their amp
tudes adjusted up or down to best fit the simulated data.
sumption,C N
21 . The number of modes of a givenuQu avail-

able in a duQu51 band is @NxNyÃ pix
2 /(2p)#uQu; i.e.,

f sky2uQu. Using uQu'l 1 1
2 , which follows from relating an

expansion in these modes to an expansion in spherical
monics at high l @30#, the number of modes is (2l
11) f sky, as in the all-sky case.

The Fisher matrix and the quadraticq-estimator are given
by

dQB5vB /~2F !BB , FBB5 (
l PB

f Bl
~q! , ~7.1!

vB5 (
l PB

2 f Bl
~q!

@~11« Tl
true!r l

2 2~11« Tl
~* !!#

« Tl
~* !

,

2 f Bl
~q![gl @« Tl

~* !/~11« Tl
~* !!#2, gl [~2l 11! f sky.

The signal-to-noise factor«Tl is related to the averag
weight w, the noise-weighted filter functionW̄l , andCl by
Eq. ~6.7!; and the expression forf Bl

(q) is a repeat of Eq.~6.7!.
It is also straightforward to modify«Tl to take into account
the noise in multifrequency experiments, including the e
pected beam size variation with frequency channel@3#.

The combination (11« Tl
true)r l

2 is the average power in
the modes with givenl , where« Tl

true is the true value of the
power spectrum, and

r l
2 5g l

21 (
mP$l 2modes%

GRDl m
2 ,

where GRDl m is a Gaussian random deviate for the mode
given l labelled by a degeneracy variablem ~the azimuthal
quantum number,m, in the spherical harmonic case, a di
crete angle index in the rectangular patch case!; individual
realizations of this variable are due to sample and/or cos
variance. Therefore,gl r l

2 is distributed likex2 with gl de-
grees of freedom,i.e., with a cumulative probability given by
an incomplete Gamma function with argumentsgl /2 and
r l

2 /2. Numerical realizations can be done very quickly.
The factor « Tl

(* ) denotes an approximate value for th
signal-to-noise power spectrum. As we have discuss
within the band we adopt an assumed shape, but allow
amplitudeQB to vary. In the iterative scheme,« Tl

(* )5« Tl
(n)

would be the value on iterationn, and « Tl
(n11)5(1

1dQB)« Tl
(n) would be the value to be inserted for the ne

iteration.
Note thatQB is the weighted average of the quadratics

sub-bands of width unity,Ql , with weight f Bl
(q) . Therefore,

the classic optimal signal-to-noise filter, the Wiener filte
«Tl /(11«Tl ) in this case, enters in a fundamental way in
the power spectrum estimation procedure.

In the signal-dominated region,«Tl @1, the weighting is
just by number of modes, 2f Bl

(q)→gl . Thus F does not
change, anddQB converges after one iteration. TheCl error
bars change because the^Cl &B is multiplied by the con-
verged (11dQB). In the fine-grained case, whereB encom-
passes just onel , the f Bl

(q) weights in thevB numerator and
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the Fisher denominator cancel, leaving 11« Tl
(n) 5 (1

1« Tl
true)r l

2 for n>1 even in the noise-domimated regime.
We adopt improved specifications especially in beam s

for MAP @32# and PLANCK @33# over the original proposa
values; these are likely to evolve for PLANCK. Of the
High Electron Mobility Transistor~HEMT! channels for
MAP, we assume the three highest frequency channels
40, 60 and 90 GHz, will be dominated by the primary co
mological signal~with 30 and 22 GHz channels partly con
taminated by bremsstrahlung and synchrotron emissi!.
MAP also assumes 2 years of observing. For PLANCK,
months of observing and current~proposal-modified! values
are used. The HEMT-based Low Frequency Instrum
~LFI! specifications are significantly improved; the 100, 6
44 GHz channels, but not the 30 GHz channel, were us
For the bolometer-based High Frequency Instrument~HFI!,
100, 150, 220 and 350 GHz were used. Dust-contamina
will certainly affect the 550 and 850 GHz channels. For bo
it was assumed that 65% of the sky would be useful. M
hasw2150.8310215 and PLANCK hasw2153.3310218.

The balloon forecasts used conservative numbers for
bolometer-based TOPHAT@34# and MAXIMA @35# experi-
ments that take account of excess noise associated with
ground removal. It was assumed that 65% of the region c
ered by TOPHAT would be useable for CMB analysis (f sky
50.028). The beam is 208 and w2151.5310215 was cho-
sen.~These noise values are for roughly a 10 day missio!
MAXIMA has a 128 beam, and f sky50.01, w2150.9
310215 were chosen.

Other long duration balloon~LDB! bolometer experi-
ments such as BOOMERANG@36# should be able to do a
well. HEMT-based LDB experiments, such as BEAST@37#
using 40 GHz HEMTs, might also achieve similar accura
A sharp lowerl -cut was included to treat the limited sk
coverage for TOPHAT (l cut512) and MAXIMA (l cut
520); we allowed one mode perl above this until (2l
11) f sky exceeded unity, at which point the number of mod
was given by the integer part of (2l 11) f sky. An uncertain
part of this approach is the treatment of modes of order
size of the patch.

In Fig. 15, we have tested various prescriptions for pl
ing the power and thel value. In Section IV A, we recom
mended usingf Bl

(C)52 f Bl
(q)/Cl , but other schemes can also b

defended;e.g., weighting by the power in the modes, so t
numerator averages@ l (l 11)#21Cl wrt f Bl

(q) and the de-
nominator averages@ l (l 11)#21. For a steeply falling
spectrum, the former places the error bar at highl , with
power weighting it is placed at slightly lowerl . In all cases,
f Bl

(q) is essential to include, but, apart from this, the ma
lesson we have learned is that otherwise the prescrip
does not matter very much.

The decision on the number and placement of bands
also been explored. We prefer using a combination of c
ditions to determine the spacing: when the S/N estim
vB /(2AFBB) exceeds some threshold, or ifD lnl across the
band reaches some prescribed value, then a new ban
made. If we only used logarithmic spacing, then there wo
be too many bands at lowerl with poorly determined band
powers for TOPHAT and MAXIMA. For the figures, w
chose a S/N minimum of 25, translating to a 20% fractio
e
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error onC l
1/2; we also choseD lnl 50.1. Clearly, because o

the all-sky nature of MAP and PLANCK, the bands a
mostly determined by the logarithmic criterion. This is on
true at the higherl ~but before the beam kicks in! for the
balloon experiments.

One of the nice features of the homogeneous sky simp
ity is that we can easily test what different prescriptions a
weightings will do. For example, we have explored oth
ways of finding the maximum and estimating the errors. T
nonlinear maximum likelihood estimator uses the curvat
matrix:

dQB~maxL!5vB /~2F!BB , ~7.2!

FBB5FBB1(
l

2 f Bl
~q!

~11« Tl
true!r l

2 2~11« Tl
~* !!

~11« Tl
~* !!

.

In the fine-grained case, the amplitude adjusts until 11« Tl
(n)

5 (11« Tl
true)r l

2 , soFBB→FBB and the two power spectrum
estimates and their error bars are the same. This fo
though, takes longer to converge than the quadratic,
when the deviations are too large the iteration may not c
verge.~This is typical for the Newton-Raphson method.! A
comparison ofFBB in Eq. ~7.2! and vB in Eq. ~7.1! shows
that, for wider bands, we can expect plus and minus fluct
tions over the band which givevB50, but, because of the
different weighting, will not giveFBB5FBB .

For the quadratic operator, another measure of the e
bars is the variance of theQB , and this can partly take the
non-Gaussian spread of the probability function for the q
dratic into account. For the case considered here, this v
ance is diagonal inB. When the ensemble average is take
the result is

^DQBDQB&5F BB
21

(
l PB

f Bl
~q!~11« Tl

true!2/~11« Tl
~* !!2

(
l PB

f Bl
~q!

1F (
l

f Bl
~q!~« Tl

true/« Tl
~* !21!

(
l

f Bl
~q! G 2

. ~7.3!

Thus in the limit that« Tl
(* ) approaches« Tl

true, it reduces to
F BB

21 , the Fisher error we quote. However, ther l
2 correc-

tions inherent in any realization preclude convergence
F BB

21 , in such a way as to increase the error bars for l
power modes and lowering them for high power modes o
what F BB

21 gives.

VIII. DISCUSSION

A. Computer resource demand

Evaluating the likelihood function is anO(N3) operation.
Although both matrix inversion and determinant calculati
are O(N3) operations, it is only the determinant evaluatio
that prevents the likelihood analysis from beingO(N2). That
is because onlyC21D is needed in thex2 evaluation, not the
full inverse, and this can be potentially calculated viaO(N2)
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iterative techniques. Today, asingle evaluationof the likeli-
hood function ~and it must be evaluated many times
search the parameter space; see Appendix A! takes approxi-
mately 45 minutes for theN52928 SK dataset on a DEC
Alpha 250/ev5 and roughly a factor of five less on a Cr
J90 parallel supercomputer; compressing to 1200 eig
modes takes only five minutes on the DEC including ov
head from the compression process. Upcoming ball
datasets are expected to have at least an order of magn
more data—which translates to a factor of 1000 in execu
time ~and 100 in storage requirements!. Megapixel datasets
foreseen for upcoming satellite missions are clearly too la
to analyze in this way with any foreseeable increase in co
puter speed.

The quadratic estimator is alsoO(N3) despite claims tha
it is O(N2) @7#. Finding good approximations that will re
duce it toO(N2) is an unsolved problem, crucial for furthe
study.

Even as we have implemented it, the quadratic is m
faster than direct evaluation of the likelihood function. Sta
ing from the signal-to-noise basis, one iteration of the q
dratic estimator for the 10 SK bands of Section VI took 2
seconds to calculate the window function rotated into t
basis, and 180 seconds to form the Fisher matrix and ca
late the quadratic estimator on the Digital Equipment Cor
ration ~DEC! Alpha, compressing to 1200 modes. The dire
evaluation method, in contrast, requires a new rotation to
signal-to-noise basis at each band, which is roughly 5 m
utes per band, using the same 1200-mode compression

We have also performed the quadratic calculation via
rect evaluation ofdap and the Fisher matrix in the pixe
basis, calculating quantities likeC21CT,p using the Cholesky
decomposition ofC. This is somewhat faster than the sam
calculation in the eigenmode basis, although it does not
low easy implementation of signal-to-noise compression.

In Appendix A we explicitly calculate the Fisher matrix i
O(N3) operations~the signal-to-noise eigenmode decomp
sition!. To see what makes the quadratic estimator anO(N3)
operation in general, it helps to rewrite it. If we define

yp[DTC21CT,pC21D ~8.1!

then ^yp&5Tr(C21CT,p) and we can rewrite the quadrat
estimator as

dap5
1

2(p8
~F ~a!! pp8

21
~yp82^yp8&!. ~8.2!

We can iteratively solve for the vectorC21D and therefore
yp can be calculated. The slowest parts of the quadratic
the Fisher matrix and̂yp&—both of which require calculat
ing C21CT,p .

If we can find a good approximation toC21CT,p that can
be calculated inO(N2) operations, then the entire estimatio
procedure will beO(N2) for each element of the Fisher ma
trix. Since the Fisher matrix hasN p

2 elements, the estimatio
procedure isO(N2N p

2). If the number of parameters i
roughly the square root of the number of pixels~as is ex-
pected to be the case for power spectrum estimation! then the
estimation procedure isO(N3). For the largest maps, we ca
take advantage of the sparseness of the Fisher matrix to
y
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calculate it in a band around the diagonal, reducing the p
cess toO(N2.5). $If we skip the power spectrum and g
straight to the estimation of cosmological parameters, t
Np!N and the process isO(N2). Of course, ifC21 is cal-
culated directly@an O(N3) operation#, then this is the most
intensive step in calculating the Fisher matrix, and the wh
process is stillO(N3).%

The method we outline is completely general, allowi
arbitrary chopping strategies and off-diagonal noise corre
tions, including those generated by the subtraction of c
straints or foreground templates, as explained in Sectio
and Appendix A. We expect that these noise correlations
become increasingly important in future balloon and satel
experiments, which will exhibit both 1/f streaking and sig-
nificant foreground contamination. Although we hope to fi
techniques that will reduce the computational load fro
O(N3) to O(N2), with general inhomogeneous noise this is
difficult problem. One approach is to try to find the be
possible approximation to the generalized noise ma
which allows fast computation, then treat the residual per
batively. Another is to rely on the special nature of the no
for a given experiment. For example, if an approximate
of eigenmodes along with their projection onto the spheri
harmonics is known for the geometry and weighting of
particular dataset, then quantities likeC21CT,p can be calcu-
lated without explicit inversion or matrix manipulation. Go
ski’s cut-sky spherical harmonics@25# have this property, but
require anO(N3) Cholesky decomposition for their con
struction.

For mapping experiments, the parameter derivativesCT,l
will be proportional to the Legendre polynomials, which c
in turn be written as a sum over spherical harmonics us
the appropriate summation formula. We have shown tha
high l , two-dimensional~flat-sky! fourier modes with wave
numberuQu;l are very useful, and expect that they will b
effective as we look for ways to improve the computation
speed. For COBE DMR, using an approximate weight
adequate for some statistical measures, but for high preci
work the residual 60° correlation and constraints should
taken into account. For upcoming balloon and satellite
periments, full and correct modelling of the noise and
behavior in various subspaces will be essential for achiev
the forecasted accuracy@2,3# in cosmological parameter de
terminations.

B. Redshift surveys

So far, we have concentrated our analysis on applicati
to CMB anisotropy data. However, much of it can be carr
over to estimate the power spectrum of other sorts of d
particularly that of upcoming redshift surveys@38,19#. In that
case, we partition the three-dimensional volume probed
the surveys into binsi 51, . . . ,N and use counts-in-cells a
the dataD i5si1ni . Now, the ‘‘beam function’’ becomes
the selection function of the survey restricted to the in
vidual bins, which accounts for the flux cutoff in its obse
vational bands. The noise becomes considerably more c
plicated: it is the ‘‘shot noise’’ which comes from th
sampling of the underlying density field in whose corre
tions we are actually interested. This noise is not Gauss
but Poissonian~and only that if we ignore correlations withi
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the bin!; to use this formalism requires that we have enou
galaxies per bin that a Gaussian approximation is adequ
but small enough that the correlations within the bin a
ignorable~and small enough that we still have informatio
on scales of interest!. In that case, the Poisson noise term h
^n i

2& given by the counts in the bin. Of course, there a
further complications due to redshift-space distortions.
an alternative to this procedure, see@39#.

C. Summary

We have demonstrated two techniques for determin
the power spectrum of CMB fluctuations from realistic m
crowave data. We have presented an analysis of both a d
likelihood search and a specific quadratic estimator; the m
important result of this paper is the proof that the itera
application of the quadratic estimator is a fast method
finding the peak and curvature of the likelihood function.

Our methods easily incorporate such realistic features
convoluted chopping strategies, incomplete sky covera
and the removal of linear constraints from the data.
implemented today, our method requiresO(N3) operations
in order to deal with these complications. We have appl
the techniques to both the DMR and SK datasets, wh
exhibit all of these complications. Numerically, our resu
agree quite well with other analyses of these datasets.

We have also discussed several caveats in the further
of the power spectrum, associated with the non-Gaussian
ture of the posterior distribution of theCl . This can have
repercussions in any analysis~such asx2, or even in our own
rebinning techniques! which implicitly or explicitly assume
Gaussianity of the distribution~i.e., the constant curvature o
the log-likelihood!.

The traditional procedure for reporting constraints on
power spectrum is the band-power method, where the po
spectrum estimate is considered to be a measurement o
power averaged through some specific filter. In the past
filter has been given by the trace of the window functio
Wl . We advocate a generalization of this procedure wh
the filter is derived from the Fisher matrix instead. With th
better definition of the filter, the new technique will improv
the accuracy of analyses that start from band-power e
mates.

D. Quadratic estimation cookbook

We now summarize the complete algorithm for quadra
power spectrum estimation:

~1! Obtain the data and the error or weight matrixCN
~including the effects of constraints as discussed in Appen
A!.

~2! Choose an initiall binning, as discussed in Sectio
IV.

~3! Calculate the window function matrixWpp8(l ), Eq.
~2.8!, perhaps averaged over thel bins.

~4! Choose a power spectrumC l
(0) to begin the iteration.

~5! CalculateCT for C l
( i ) ( i 50 for the first iteration!, from

Eq. ~2.7!.
~6! If desired, the rest of the calculation can be perform

in the signal-to-noise basis of Appendix A. In that case,CT
and the data are transformed according to Eqs.~A4!–~A5!.
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~7! Calculate the parameter derivativesCT,B[]CT /]qB
in each band, using Eqs.~2.19!–~2.20! or, in the S/N basis,
Eqs. ~A7!–~A8!. The parameterqB , Eq. ~4.10!, is the frac-
tional difference fromC l

( i ) .
~8! Calculate the Fisher Matrix, Eq.~2.17! or Eq. ~A10!,

for the chosen bands.
~9! Calculate the complete quadraticdqB using Eq.~2.18!

or Eq. ~A11!, and set

C l
~ i 11!5(

B
~11dqB!C l

~ i !xB~ l !.

~10! Lather, rinse, and repeat with Step 5 untildqB'0 to
the desired accuracy.

This description has not included the complications as
ciated with rebinning~see Section IV! and the use of filter
functions for reporting bandpowers~see Section VI!.

E. Numerical results

Our power spectrum estimates for COBE DMR and S
are available over the WWW and by anonymous FTP in
directory file://ftp.cita.utoronto.ca/cita/knox/pspec_Cl/.
These numerical results include the results of both the f
likelihood and quadratic procedures; for the latter we inclu
the results for ‘‘orthogonalized’’ and ‘‘shaped’’ bands, alon
with appropriately tabulated filter functions.
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APPENDIX A: SIGNAL-TO-NOISE EIGENMODES
AND CONSTRAINTS

Some of the calculations described in this paper are p
formed in the ‘‘signal-to-noise eigenmode’’ basis@13,15–
17#. To effect this transformation, we model the observat
at a pixel as

D i5si1ni ~A1!

wheresi is the contribution to the signal, andni to the noise.
They have zero means, and independent correlation matr
^nini 8&5Cnii 8 and ^sisi 8&5s th

2 CTii 8. Here, s th is the un-
known amplitude of the signal to be measured~along with
other possible parameters inCT).

We may ascribe more than the experimental noise con
bution toni : in particular, any contributions to the observ
tion with which we are not concerned in a given part of t
calculation can be included in the noise. This could be
CMB monopole and dipole, or constraints such as avera
and gradients that may have been removed from the da
compensate for atmospheric and instrumental drift. F
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COBE DMR, we allow arbitrary amplitudes for the mon
pole ~one component! and the dipole~three components!; for
SK, we allow an arbitrary average for each ‘‘demodulatio
@11#, giving a total of 66 separate amplitudes. In the eve
each constraint componentc can be represented by a tem
plate in pixel space,Yci , with an unknown amplitude,kc .
Thus, the CMB signal plus experimental noise is given
the combinationD i2(ckcYci , which is distributed as a
Gaussian with correlation matrixCn1s th

2 CT . We do not
know the amplitudeskc a priori, but we can assign them
prior probability distribution given by a zero-mean Gauss
with very large variances in the matrix^kckc8&5Kcc8, ~com-
pared to the expected signal and the experimental noise!, and
then marginalize over the amplitudeskc . It turns out that
this marginalization procedure can be done analytically,
the result is that the likelihood is now given by a zero-me
Gaussian distribution inD alone, with a full correlation ma-
trix including a new term accounting for the unknown co
straints:

^D iD i 8&5s th
2 CTii 81Cnii 81CCii 8 ~A2!

where

CCii 85(
cc8

YciKcc8Yc8 i 8 ~A3!

is the constraint or template correlation matrix. For a dia
nal matrix of priors,K5diag(s c

2), this reduces toCCii 8
5(cs c

2YciYci8.
In effect, we have added a new term to the noise corr

tion, CN5Cn1CC ; in the following we shall implicitly in-
clude this in CN . In the limit s c

2→`, this procedure is
equivalent to projecting out the constrained compone
from the data and the correlation matrix; because this pro
tion results in a singular matrix, the marginalization proc
dure is numerically simpler~but see@19# for the details of an
implementation of the projection procedure!. Note also that
this procedure is more generally useful: in particular it p
vides a new technique for removing foreground contami
tion with a known spatial morphology@40#.

With this split of the observation into signal and~gener-
alized! noise, we first perform a so-called whitening tran
formation

CN→C N
21/2CNC N

21/25I ;

CT→C N
21/2CTC N

21/2;

D→C N
21/2D. ~A4!

Here,C N
21/2 is the inverse of the Cholesky decomposition

CN or its Hermitian Square Root. Now, the noise part of t
‘‘new data,’’ C N

21/2D, are uncorrelated, with unit variance
We next diagonalize the signal matrix with its matrix
eigenvectors,

CT→R†C N
21/2CTC N

21/2R5E5diag~Ek!;

D→R†C N
21/2D5j. ~A5!
’
t,
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n
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n
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a-

ts
c-
-

-
-

-

f

In this new basis, the datajk are uncorrelated with varianc
^j k

2&511s th
2Ek . The Ek are ‘‘eigenmodes of signal-to

noise’’; modes with large eigenvalue are expected to be w
measured~for the specific theory matrixCT used in the trans-
formation!; modes with small eigenvalue are poor
measured~and do not contribute significantly to the likel
hood!. In particular, we use this transformation to compre
the SK data: we pick a fiducial model~in this case,ns
51.45 tilted standard CDM, which fits the SK data alo
reasonably well! and calculate the modes for this theory. W
then discard all but the top 1200 modes~of 2928 data points!
and treat this linear combination as our new dataset~for
which we subsequently calculate all likelihoods without fu
ther approximation!; elsewhere@13# we show that this trun-
cation to 1200 theory-dependent modes is an excellent
proximation to the entire dataset.

Note that in the S/N basis, the likelihood as a function
the amplitudes th is quite easy to compute for arbitrary va
ues:

22lnP~Dus th
2 Cl !5(

k
S ln~11s th

2Ek!1
j k

2

11s th
2Ek

D
~A6!

~up to a constant!. In the calculation of the likelihood as
function of the values of the power spectrum, we iterate
ascribing only the singleCl ~or within a band, with some
shape forCl over the band! of interest to the signal,si , and
the rest to the noise,ni , along with the actual experimenta
noise, and any terms due to constraints such as dipole
moval. This way, the single parameter of interest at anyti
is just the amplitudes th

2 }Cl for that band, for which the
likelihood is easy to compute once the S/N mode decom
sition has been determined.

We also compute the quadraticCl estimators in this ba-
sis. First, we define the window function matrix@Eq. ~2.8!#
transformed into this basis,

Gkk8~ l !5(
i i 8

~R†C N
21/2!kiWii 8~ l !~C N

21/2R! i 8k8.

~A7!

This quantity comes into the calculations because it is rela
to the derivative of the theory covariance in the eigenbas

Ekk8,l [(
i i 8

~R†C N
21/2!ki

]CTii 8
]Cl

~C N
21/2R! i 8k8

5
l 11/2

l ~ l 11!
Gkk8~ l !. ~A8!

Here we have assumed that we are interested in the i
vidual Cl values. If we are instead interested in the valu
over some bands,B, of l with some assumed spectral sha
C l

shape, then we use instead

Ekk8,B5 (
l PB
Ekk8,l C l

shape. ~A9!

Note that, unlike the full theory covariance,E5diag(Ek),
these derivatives have off-diagonal components. In E
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~A10! and~A11! below,Ekk8,B andEkk8,l can be used inter
changeably, depending on whether one is estimating i
vidual Cl values, or those in bands.

The Fisher matrix for the parametersCl @Eq. ~2.17!# then
becomes

F l l 85(
kk8

Ekk8,l Ek8k,l 8

~11s th
2Ek!~11s th

2Ek8!
. ~A10!

Then the full quadratic estimator@compare Eq.~2.18!# is

dCl 5
1

2(
l 8

F l l 8
21 S (

kk8

jkEkk8,l 8jk8

~11s th
2Ek!~11s th

2Ek8!

2(
k

Ekk,l 8

11s th
2Ek

D . ~A11!

Note that in this formalism theO(N3) transformation into
the S/N basis is the most expensive part of the calculat
the remainder requires trivialO(N2) sums and the inverse o
the ~comparitively small! Np3Np Fisher matrix.

APPENDIX B: REBINNING ORTHOGONAL LINEAR
COMBINATIONS

Here we derive Eq.~6.4! which tells how to rebin or-
thogonal linear combinations ofCl . We then generalize to
the case where the initial binning is coarser thanDl 51.

We start by parameterizing the spectrum as

Cl 5ql C l
shape ~B1!

and then transforming theql to q̃5ZTq. If we assume the
shape is correct, then the expectation value ofq̃ l

N[ q̃l /Nl is
independent ofl, whereNl5( l Zl l . Since we always wan
to average things together that we expect to be measurem
of the same quantity, we average together theq̃ l

N . Calling

the resultq̃ b
N :

q̃ b
N5

(
ll8

q̃ l
NF ll8

q̃N

(
ll8

F ll8
q̃N

. ~B2!

Here, and in the following, the sums overl andl8 extend
only over the range determined byb. For example, if forb
51 we are averaging together the first three linear comb
tions, then the sums overl andl8 run from one to three.

Using the fact thatF ll8
q̃N

5NlF ll8
q̃ Nl8 and specializing to

the case whereF ll8
q̃

5dll8 ~which is the case forZ5L or
Z5F1/2) we get

q̃ b
N5

(l q̃lNl

(lN l
2 . ~B3!
i-

n;

nts

a-

Plugging inq̃l5Zl lCl /C l
shapeandNl5( l Zl l a little alge-

bra shows that the filter function is

f bl
~C!5(

l
f ll

~C!Nl ~B4!

where

f ll
~C!5Zl l /C l

shape ~B5!

is the filter function prior to rebinning. Therefore

Cb5

(
l

q̃lNl

(
l

f bl
~C!

5

(
l

ql C l
shapef bl

~C!

(
l

f bl
~C!

~B6!

which is Eq.~6.4!.
As an aside, we consider the case of rebinning all

estimates into one bin. We expect that the estimated po
and filter function in this case should be independent of
basis of the original estimates; they should not depend onZ.
Indeed, this is the case:

q̃ b
N5

(
l l 8l

Cl /C l
shapeZl lZl 8l

(
l l 8l

Zl lZl 8l

5

(
l l 8
Cl /C l

shapeF l l 8
q

(
l l 8

F l l 8
q

.

~B7!

The second equality follows since when the sum overl goes
over all l, Zl lZ ll 8

T
5F l l 8

q .
When the initial binning is coarser thanDl 51, then this

procedure is slightly more complicated. We introduce t
sub-band structure filter,f Bl

(C) , which is defined within each
bandB. The sub-band structure is given by

f Bl
~C!5(

l 8
F l l 8

~C! C l 8
shape ~B8!

which is the same as Eq.~4.6!. The difference here is that w
have not calculatedF l l 8

(C) and thus must rely on analyti
knowledge of it.

The rebinning procedure is the same for theDl 51 initial
binning except

C l
shape→C B

shape5

(
l PB

f Bl
~C!C l

shape

(
l PB

f Bl
~C!

, ~B9!

Nl→Nb5(
B

ZBb ~B10!

and
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f bl
~C!→ f b8l

~C!
5S f Bl

~C!

(
l PB

f Bl
~C!D f b8B~ l !

~C! ~B11!

where

f b8B
~C!

5 (
bPb8

ZBb

C B
shape

Nb . ~B12!

The final result is
r-

k,

00

h
hi
D.

D.
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.F

,

.J

n,

,’’

ar

y

Cb85

(
l

qB~ l !C l
shapef b8l

~C!

(
l

f b8l

~C!
5(

B
Xb8BqB . ~B13!

The last equality is used to define the matrixXb8B and to
emphasize thatCb8 is simply a linear transformation of th
original qB parameters. The Fisher matrix forCb8 can easily
be calculated from that forqB , using the general rule fo
how the Fisher matrix changes under linear transformation
the parameters.
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