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Quantum nondemolition and higher order effects for a nonlinear meter
in an interferometric gravitational wave antenna

Yu. Levin
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 11 March 1997; published 12 January 1998!

A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector
were proposed recently by Braginsky and Khalili. Their method is based on using a nonlinear medium inside
a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer’s standing
optical wave. This paper proposes a quantum nondemolition scheme that could be realistically used for such a
readout device and discusses a ‘‘fundamental’’ sensitivity limit imposed by a higher order optical effect.
@S0556-2821~97!06222-X#

PACS number~s!: 04.80.Nn, 05.40.1j, 06.20.Dk
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I. INTRODUCTION AND SUMMARY

Laser interferometer gravitational wave detectors~LIGO,
VIRGO, GEO 600, TAMA! are designed to detect small pe
turbationsh in the spatial metric due to gravitational wav
~GW’s! passing through the Earth@1#. Being very far from
major astrophysical sources@2#, these detectors are likely t
encounter GW’s that are very weak, so the detectors mus
correspondingly sensitive—e.g., the first LIGO interfero
eter will be able to detect GW’s withh;3310221 in the
frequency band of 302300 Hz. Improving the sensitivity o
measurement may be necessary to achieve the first GW
tection and will surely be necessary to improve the ev
rate.

One of the major noise sources in traditional interfero
eters is the so-called shot noise. What is being detected i
phase shift of the output optical wave@1#:

df;vopttGWh, ~1!

wherevopt is the angular frequency of the optical wave a
tGW is the half-period of a gravitational wave. For cohere
optical pumping the uncertainty in the phase due to s
noise is given byDf51/ANGW, whereNGW is the number
of photons introduced into the interferometer duringtGW.
Thus a gravitational wave can be detected if

NGW.Nmin.
1

~hvopttGW* !2
. ~2!

Therefore, in order to increase the gravity wave sensitivity
the interferometer, we have to increase the number of p
tons in the resonator~and hence the consumed laser pow!
as N}1/h2. On the other hand, the presence of the la
number of optical photons in the resonator poses severe t
nical and fundamental problems. Among the technical pr
lems are distortion of mirrors due to overheating, and la
laser power consumption@1#. The fundamental problem i
that photons in the interferometer will randomly buffet t
mirrors inducing random motion indistinguishable from t
motion produced by a gravitational wave. Balancing this
570556-2821/98/57~4!/2069~10!/$15.00
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diation pressure noise and the shot noise produces the
dard quantum limit~SQL! for monitoring the displacement
of the test masses@2#.

Recently Braginsky and Khalili have proposed a new w
to improve the sensitivity of an interferometric GW detect
without increasing the interferometer’s optical power@3#.
Their method entails a new type of GW readout based o
microwave oscillator containing an optically nonlinear m
dium, which is placed inside the GW detector’s high qual
Fabry-Perot~FP! resonator. The advantage of this reado
method is that, unlike conventional interferometers, it do
not require large optical power circulating inside the FP re
nator in order to achieve high sensitivity. In Sec. II the pr
ciples of this scheme are briefly outlined and some numer
estimates are quoted.

Section III describes a potentially practical quantum no
demolition ~QND! strategy which can be used in th
Braginsky-Khalili ~BK! readout system. We show in Sec. I
and Appendix A@cf. Eq. ~21!# that a QND measurement ca
be performed within a narrow frequency band cente
around

V05A6\N

mcL
vopt, ~3!

wherevopt andN are the frequency of light and the numb
of photons stored in the FP resonator, respectively,L is the
distance between the end mirrors of the FP resonator anm
is the mass of each of the test masses to which the mir
are attached. ForN52.831020, L54 km, m510 kg,
vopt5331015 one obtainsV0/2p560 Hz, which is within
LIGO band. For the resonator’s relaxation time of 10 s~as
assumed in@3#! the necessary laser power to achieve t
number of photons inside the resonator is;9 W.

We demonstrate in Appendix B that the bandwidthDV of
this measurement determines the optimal power input to
microwave oscillator:

Woptimal;WSQL

V0

DV
, ~4!

where WSQL is the power input necessary to achieve t
standard quantum limit sensitivity at frequencyV0; cf. Eq.
2069 © 1998 The American Physical Society
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~24! where the expression and the numerical estimate
WSQL are given. The signal-to-noise ratio achieved by t
QND measurement is greater by a factor ofAV0 /DV than
the SQL:

S S

ND
QND

;AV0

DVS S

ND
SQL

. ~5!

Section IV and Appendix C discuss a higher order opti
effect in the BK readout system and derive the sensitiv
limit that it imposes. In particular, thermally excited m
chanical modes in the test masses will, after interacting w
light inside the FP resonator, produce a ‘‘double conv
sion’’ of photons, which will be registered as noise by t
detector; cf. Eq.~25! and Eq.~26!.

II. PRINCIPLE OF OPERATION OF THE BK METER

The layout of the BK meter is shown in Fig. 1~for more
details the reader is referred to@3#!. Three freely suspende
mirrors—A, B, and C—form walls of anL-shaped Fabry-
Perot~FP! resonator which supports a standing optical wa
driven by a laser at endA or C. SectionA-B of the resonator
would be in one arm of the LIGO~or other! vacuum system,
andB-C in the other. The blockD containing two thin slabs
of nonlinear medium~Fig. 2! is sandwiched between tw
thin focusing lenses two focal lengths apart. The lenses
the block are attached to mirrorB.

When the polarization tensor of a gravitational wave
aligned with the arms of the FP resonator, the distances
tweenA andB and betweenB andC will change in coun-
terphase, i.e., when one is increasing, the other one will
crease. This will produce the a net spatial shift of t
standing optical wave with respect to mirrorB, thus chang-
ing the amplitude of the optical field within the two slabs
nonlinear medium. The slabs have cubic nonlinearities
are equal in magnitude but opposite in sign. They are p
tioned symmetrically with respect to the crest of the stand
optical wave as shown in Fig. 2. BlockD, which contains the

FIG. 1. The BK readout system. Two thin lenses focus light
a blockD containing a nonlinear medium. BlockD is shown in Fig.
2.
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slabs, is placed in between the plates of a capacitor whic
turn is part of a microwave oscillator.

The spatial shift in the optical standing wave produc
changes of electric field in the first and second slabs that
equal in magnitude and opposite in sign:

dE152dE2 . ~6!

Since the two slabs have the opposite nonlinearit
x1

(3)52x2
(3) , the change in the index of refraction is th

same for both of them:

dn15dn254px1
~3!E1dE1 . ~7!

This change in dielectric constants of the plates in tu
changes the value of the microwave oscillator’s capacitan
thus producing a shift in its resonant frequency:

dve5
Kvopt

2
h, ~8!

whereve is the frequency of the microwave oscillator,vopt
is the frequency of the optical wave, an
K516p2x (3)lN\voptve /Vc. Here l is the width of each of
the nonlinear slabs andV is the volume of the capacitor. Thi
shift is seen as a phase shift in the readout of the microw
oscillator:

df5dvete* 5
1

2
Kvoptte* h, ~9!

wherete* is the oscillator’s ringdown time.
Braginsky and Khalili compare this with the tradition

optical readout schemes in which the phase shift of the
combined optical wave is detected:

dfopt5voptt0* h, ~10!

where t0* is the ringdown time of the two traditional FP
resonators, one in each arm of the interferometer.
x (3)510214 cm2/V2 ~fused silica!, Eopt

2 5107 V2/cm2 ~op-
tical breakdown of fused silica! they calculateK in Eq. ~8! to

FIG. 2. This is an enlarged view of blockD from Fig. 1. Two
slabs of nonlinear medium are positioned at the points of the m
mal gradient of the intensity of the optical standing wave. T
spatial shift of the optical standing wave changes the resonant
quency of the microwaveLC oscillator.
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57 2071QUANTUM NONDEMOLITION AND HIGHER ORDER . . .
be of order 1, so fortopt* ;te* the responses of both system
in terms of phase shift are of the same order:

fopt;fe . ~11!

For coherent pumping in both cases the uncertainty in
phase isDf;1/ANGW, whereNGW is the number of photons
~optical in conventional interferometers and microwave
the BK readout system! introduced into the interferomete
during an averaging time~half the GW period!. So to achieve
the same level of sensitivity one needs to pump the sa
number of photons in both cases, but the power neede
the BK meter is smaller by a factor ofvopt/ve;104. The
BK estimate for the microwave power is

We5
\veNe

te*
;1W ~12!

for Ne;1020. For more detailed estimates the reader is
ferred to Ref.@3#.

III. QND FOR THE BK READOUT SYSTEM

Any readout system that monitors the displacement of
mirrors must exert on them a fluctuating back action for
thus enforcing the Heisenberg uncertainty relation. As a c
sequence of this, all straightforward displacement meas
ments run into the standard quantum limit~SQL! @4,5#

DxSQL5A\t

m
, ~13!

where Dx is the minimal uncertainty in displacement of
free massm monitored over a time intervalt. This SQL for
displacement can also be written in terms of the limiti
spectral density of the mirrors’ displacement fluctuations@4#:

Sx
SQL~V!5

\

mV2 , ~14!

where V is the frequency. ThenDx5ASx
SQLDV, and for

V;DV;1/t one recovers Eq.~13!.
The SQL for a free mass is by no means a fundame

limit; it can be overcome by a variety of techniques@6#
which are known collectively as quantum nondemoliti
~QND! measurements. All previously proposed QN
schemes that are applicable for conventional GW interfero
eters utilize highly nonclassical states of light, and none
them are practical because of technical difficulties~most es-
pecially because of the large required optical pumping po
and because losses so easily destroy the nonclassical sta
light!. In this paper a different strategy is proposed, o
which does not require the deliberate creation or detectio
any nonclassical state of light and thus can be more pra
cally implemented. This scheme, however, is confined
narrow-band measurements.

We begin by describing the back action mechanism
which the BK readout system enforces the Heisenberg
certainty relation on the measurement of the test-mass p
tion. The quantum state of the BK microwave oscillator s
isfies the usual phase-number uncertainty relation
e
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DfeDNe.
1

2
. ~15!

The more accurately the BK meter reads outfe , the larger
will be the fluctuationsDNe in the oscillator’s number of
microwave photons. Thex (3) nonlinearity will transform
DNe into an uncertainty of the optical index of refraction
the slabs:

dn152dn25
16p2x~3!\

eV
dNe , ~16!

where dNe is the fluctuation inNe , dn1 and dn2 are the
resulting fluctuations inn1 and n2, e is the coefficient of
dielectric permittivity, andV is the volume of the capacitor
Braginsky and Khalili have argued@3# that dn1 and dn2
cause a redistribution of the optical energy between the
and the right parts of the FP resonator, thereby giving rise
a net difference in the forces buffeting the mirrors:

dF5K
vopt

ve

\dNe

L
, ~17!

whereL is the total length of the FP resonator. This fluct
ating force will cause fluctuations in the positions of t
mirrors, thus causing fluctuations in the spatial shift of t
optical field with respect to the mirrorB and the nonlinear
slabs attached to it:

d x̃ ~V!52
3

2

dF̃~V!

mV2 52
3

2
K

vopt

ve

\

L
dÑe~V!, ~18!

whered x̃ (V), dF̃(V), anddÑe(V) are Fourier component
of the corresponding quantities,m is the mass of each of th
mirrors, and the factor32 comes about when motion of a
three mirrors is taken into account.

Now we are ready to describe our QND method, but fi
the following simple remark must be made. Suppose fo
moment that all of the mirrors are rigidly fixed. As alread
mentioned above, fluctuations inNe , by changing the optica
coefficient of refraction of the slabs@Eq. ~16!#, will redistrib-
ute optical energy between the left and right parts of the
resonator. A straightforward calculation@Eq. ~A16! in Ap-
pendix A# shows that this alone will change the optical fie
inside the nonlinear slabs so that

dE152dE25E0

nvoptl

cA2
dn, ~19!

thereby simulating a spatial shift of the optical field as in E
~6!. Here l is the width of the nonlinear slab,n[n15n2,
dn[dn152dn2, andE0 is the peak amplitude of the opti
cal standing wave inside the FP resonator.

Now if we release the mirrors, the back action~18! will
affect our reading as well, and the total fluctuations of t
optical field inside the nonlinear slabs will be given by

dẼ1~V!2dẼ2~V!5A2nE0

voptl

c S 126
vopt

2

V2

\N

mc2t D dn~V!,

~20!
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wheret5L/c; cf. Eq.~A17! of Appendix A. From the above
equation we see that for a given frequencyV5V0 we can
adjustN in such a way thatdẼ1(V)5dẼ2(V)50 and thus
the readout system does not register any fluctuations du
the back action~but only for that value ofV). Thus a QND
measurement is performed. The relationship between
QND angular frequencyV0 and the numberN of optical
photons in the Fabry-Perot resonator is

V05A6\N

mcL
vopt, ~21!

see Eq.~3! of Sec. I.
The essential reason that this readout is QND is tha

registers not only the fluctuations of the mirrors’ displac
ment x due to back action@the second term in large paren
theses in Eq.~17!#, but also directly the back action forc
~the first term!. Thus a position-momentum correlation is i
troduced into the measurement procedure, and such cor
tions are known to make QND possible@4#. For L54 km,
V/2p560 Hz,vopt5331015 s21, andm510 kg the neces-
sary number of optical photons to perform QND is

N5
1

6

V0
2

vopt
2

mc2t

\
;2.831020. ~22!

The QND measurement described above is clearly narr
band. In principle one can dynamically tune the frequency
which the QND is performed by changing the laser pow
and thus changing the number of optical photonsN in the
resonator, provided that the frequency of the signal chan
slowly compared to the ring-down rate of the optical reso
tor. In practice the issues of fluctuations inN and stability of
control systems may be a serious obstacle for such dyn
cal tuning. Analysis of these and other practical difficulties
beyond the scope of the present work.

Appendix B considers a particular scheme for measur
of the phase of the microwave oscillator. In this scheme
oscillator is coupled to a transmission line, and the phy
cally measured quantity is the phase quadrature of the
going electromagnetic wave propagating along the transm
sion line. Having specified fully the measurement model,
find that if the bandwidth of measurement isDV then the
signal-to-noise ratio for the narrow-band QND measurem
can be as high as

S S

ND
QND

2

;S S

ND
SQL

2 V0

DV

5
1

2p

V0

DVE
V02DV

V01DVmV2L2uh~Ṽ !u2

\
dV. ~23!

The above signal-to-noise ratio is achieved when the pu
ing power of the microwave oscillator is given by

Woptimal5
V2

32p2x~3!2Nt
S V0

vopt
D 2S L

l D
2 1

\ve

V0

DV
5WSQL

V0

DV
,

~24!
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where V is the volume of the capacitor andWSQL is the
minimal power necessary to achieve the SQL sensitiv
level; cf. Eq.~B13! of Appendix B and Eq.~4! of the Intro-
duction. ForV5(0.01 mm! 3, ve51011 s21, and for other
parameters having numerical values as in Eq.~22!, we get
Wopt50.1 W(V0 /DV) ~cf. the 1 kW of the optical power
required to achieve the SQL in a conventional interferom
ric scheme!.

While we have not devised a general proof, it see
likely that no other microwave readout scheme can ope
with a power less than in Eq.~24!; expression~24! is prob-
ably a general relation for optimally designed microwa
readout schemes.

IV. HIGHER ORDER OPTICAL EFFECTS:
FUNDAMENTAL SENSITIVITY LIMIT

In this section we identify and discuss a fundamental lim
on the sensitivity of the BK readout system—a limit th
applies whether or not the system is being operated i
QND mode.

In an interferometric GW detector, mirrors are install
on the surfaces of test masses, which have internal ela
mechanical modes of frequenciesVm/2p>12 kHz. The
noise curve of the interferometer will have large peaks n
these frequencies. When photons of frequencyvopt interact
with walls oscillating with the frequancyVm , some of the
photons will be up or down converted to frequenci
vopt6Vm . These up or down converted photons in turn
teract with the ‘‘noisy’’ walls, and if there is a nonzero com
ponent of the mirrors’ motion atVm6V, then some of the
photons will up or down convert a second time to freque
cies v06V. If V is the frequency of detection, then th
second-order process of double frequency conversion wil
registered by the BK readout system as a signal from a gr
tational wave.

The perturbation theory for FP resonators with movi
walls is worked out in detail in Appendix C. Here just th
main result is quoted. From Eq.~C26! the noise curve in
units of 1/AHz is given by

ASh~V!;
1

3p

voptkBTeAgm

mLVm
2 V2tc

AVt1e, ~25!

where Te is the temperature of the test masses,gm is the
damping rate of their mechanical modes, a
e;max(dx(3)/x(3),dl/l). Heredx[x1

(3)1x2
(3) , x (3)[x1

(3) , l
is the wavelength of light in the resonator andd l is the
spatial offset of the slabs from the position in shown Fig.
For L54 km,V560 rad/s,Te5300 K,Vm57.23104 rad/s,
m510 kg, andgm51028Vm we get the noise level of

ASh;10228A~Vt1e!/AHz. ~26!

It is not unimaginable that future interferometers w
achieve sensitivitiesASh;10229/AHz for low frequency
(102100 Hz! narrow-band signals~by, e.g., using the QND
technique described in this paper!. In this case, Eqs.~25! and
~26! show that higher order effects will give rise to a ‘‘fun
damental’’ low frequency noise limit of magnitude



ea
e

ou
et
.

e
rn
n
n
a

e

nd
n

:

o-

-

of

e
g

is
h
rors

n

s

n as

e

ft
y

of
lef

57 2073QUANTUM NONDEMOLITION AND HIGHER ORDER . . .
ASh~V!;10228S 60 rad/s

V D 2Y AHz. ~27!

V. CONCLUSIONS

In this paper we have shown that a practical QND m
surement might be possible for a narrow-band measurem
by a gravitational wave interferometer using a BK read
system. Also it was shown that second-order effects s
‘‘fundamental’’ limit on the precision of the measurement
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APPENDIX A: PHYSICS OF THE NONLINEAR MEDIUM
INSIDE THE BK FABRY-PEROT RESONATOR

First consider one slab of nonlinear medium position
inside a FP resonator. Letx1 ~Fig. 3! be the total path length
from the left mirror to the left edge of the slab,x3 be the path
length from the right mirror to the right edge of the slab, a
l be the width of the slab. For simplicity of the calculatio
we assumel !l wherel is the wavelength of light in the
resonator. Also for convenience definet15x1 /c, t25 l /c,
t35x3 /c.

The eigenfrequenciesv of this optical resonator were
worked out in@3#. They satisfy the following eigenequation

sin~vt!5~n21!sin~nvt2!Fsin~vt1!sin~vt3!

1
1

n
cos~vt1!cos~vt3!G , ~A1!

wheret5t11t31nt2 . This equation has approximate s
lutions

v5v01~n221!v0

t2

2t
$cos@v0~t12t3!#21%, ~A2!

wherev05pk/t, andk is any integer. When the slab’s in
dex of refractionn changes,v changes accordingly:

FIG. 3. The changing coefficient of refraction of the slab
nonlinear medium will redistribute optical energy between the
and right parts of the Fabry-Perot resonator.
-
nt
t
a

e
y
in
rt

d

dv

dn
5

nv0t2

t
$cos@v0~t12t3!#21%. ~A3!

The total optical energy contained in the resonator is

U5N\v, ~A4!

whereN is the number of optical photons. We can find all
the forces acting on the mirrors by taking derivatives ofU
with respect tot1 andt3. For example,

F left52
N\

c

]v

]t1
~A5!

and

F right52
N\

c

]v

]t3
, ~A6!

whereF left andF right are the forces acting on the left and th
right mirrors, respectively, with the positive direction bein
out of the resonator. When taking derivatives ofv one has to
keep in mind thatv0 also depends ont1 andt3.

The force acting on the slab of nonlinear medium
F left2F right . The total spatial shift of the optical wave wit
respect to the slab due to the forces acting on the end mir
and the slab itself is

d x̃ ~V!52
3

2mV2 @ F̃ left~V!2F̃ right~V!#, ~A7!

where ‘‘tildas’’ stand for Fourier transforms. IfF left and
F right are produced by a fluctuating index of refractio
n5n01dn then on substituting Eqs.~A5! and~A6! into Eq.
~A7! we get

d x̃ ~V!5
3N\

2mV2S ]

]t1
2

]

]t3
Ddv

dn
d ñ~V!. ~A8!

By then putting Eqs.~A3! and ~A8! together we obtain

d x̃ ~V!52
3N\n

mc

v2

V2

t2

t
sin@v~t12t3!#d ñ~V!.

~A9!

For the two slabs of opposite nonlinearitie
(dn152dn25dn) in the configuration of Fig. 2 their two
contributions add up to give

d x̃ ~V!526
Nn\

mc

v2

V2

t2

t
d ñ~V!. ~A10!

The above expression is a manifestation of the back actio
explained in Sec. II.

Now let the amplitude of the optical electric field in th
left part of the resonator be

Eleft5E0sinS vx

c D , ~A11!

wherex is the spatial coordinate with the origin at the le
wall. Then the field in the middle of the left slab is given b

t
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E15E0Fsin~vt1!1
1

n
cos~vt1!sinS nvt2

2 D G1O@~vt2!2#.

~A12!

Now

dE1

dn
.

dE0

dn
sin~vt1!1E0t1cos~vt1!

dv

dn
. ~A13!

In the case when two slabs are present inside the FP res
tor, their contributions to the frequency and field chang
add up linearly~since the perturbations are very small!. For
the configuration of Fig. 2 we see from Eq.~A3! that
dv/dn50, so

dE1

dn
5

dE0

dn
sin~vt1!. ~A14!

But F left}E0
2, so

dE0 /dn

E0
5

1

2

dFleft /dn

F left
52

t

v

d

dn

]v

]t1
. ~A15!

Putting Eq.~A3! and Eq.~A14! into Eq. ~A15! and doing
exactly the same calculation for the second slab, we obt

dE152dE25E0

nvoptl

A2c
dn ~A16!

for the case when mirrorB is in the middle of the resonator
Combining this with the back action from Eq.~A10! we
finally get Eq.~20! of Sec. III:

dẼ1~V!2dẼ2~V!5A2nE0

voptl

c S 126
vopt

2

V2

\N

mc2t D dn~V!.

~A17!

APPENDIX B: CALCULATION OF OPTIMAL
MICROWAVE POWER AND SIGNAL-TO-NOISE RATIO

FOR A QND MEASUREMENT

Consider the microwave oscillator as shown in Fig. 2.
order to get information about the phase of the oscillator,
have to couple it to the outside world. Whatever the nature
this coupling is, it will cause dissipation of the induced o
cillations and hence, by the fluctuation-dissipation theore
give birth to a fluctuating component of the oscillator’s cu
rent.

For concreteness, we model this coupling by an op
transmission line of impedanceR. We assume that the osci
lator, consisting of the capacitorC and inductorL, is driven
on resonance by a generatorG with a voltage output of am-
plitudeV0 ~see Fig. 2!. We also assume the transmission li
encompasses all of the dissipation present in the oscilla
i.e., more generally, that we can access all of the informa
escaping from the oscillator. And finally, we set the tempe
na-
s

n

e
f

-
,

n

r,
n
-

ture of the outside world to 0~in reality, one will have to
cool the oscillator to temperatures below the ones co
sponding to a microwave frequency!. The ingoing vacuum
modes drive fluctuations in the circuit as described abo
and the phase of the outgoing wave contains informat
about the phase of the oscillator.

The ingoing modes are described by the positive f
quency part of a voltage operator

Vin5E
0

`

dvAR\vain~v!e2ıvt, ~B1!

where ain(v) is the annihilation operator for the ingoin
mode of frequency v normalized so that
^0uain(v)ain

† (v8)u0&5d(v2v8). Then the Fourier compo
nent of the outgoing wave is

Vout~ve1V!5AR\ve

a1ıV

a2ıV
ain~ve1V!1

V0dve~V!

2V1ıa
,

~B2!

wherea5R/L is the ringdown rate of the microwave osci
lator and dve is the variation in the oscillator’s resonan
frequency due to fluctuating optical fields in the slabs
nonlinear medium, as explained in Sec. II:

dve5
8p2x~3!lN\voptve

A2VL

dE12dE2

E0
. ~B3!

Here V is the volume of the capacitor. The change of t
optical field inside the slabs is given by

dE1~V!2dE2~V!5A2E0nvoptt2S 126
N\

mc2t

vopt
2

V2 D dn~V!

1A2E0

vopt

c
xs~V!, ~B4!

where the first term on the right-hand side is due to
fluctuating index of refraction of the slabs@cf. Eq. ~20! of
Sec. III and discussion therein#, and the second term is due t
the GW-induced relative displacementxs of the slabs with
respect to the standing optical wave. The fluctuationsdn of
the indices of refraction of the nonlinear slabs in the abo
expression are caused by the voltage fluctuations on
plates of the capacitor, which in turn can be traced to
incoming vacuum modes of the transmission line:

dn~V!52ı
2px~3!AR\veV0ve

2

a~2V1ıa!d2
@ain~ve1V!

1ain
† ~ve2V!#, ~B5!

whered is the distance between the plates of the capaci
Collecting Eqs.~B2!, ~B3!, ~B4!, and~B5! together, we can
write down the expression for the phase quadrature of
outgoing wave in the transmission line, which is the me
sured readout signal:
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r ~V!5@Vout~ve1V!2Vout
† ~ve2V!#/V05

AR\ve

V0

a1ıV

a2ıV
@ain~ve1V!2ain

† ~ve2V!#1
8p2V0x~3!lN\vopt

2 ve

V0~2V1ıa!VLc

3H xs2
8p2x~3!V0AR\vel

RV~2V1ıa! S 12
6N\

mc2t

vopt
2

V2 D @ain~ve1V!1ain
† ~ve2V!#J . ~B6!

The measuredx is then given by

xmeasured~V!5xs~V!2
8p2x~3!A\veWl

V~2V1ıa! S 12
6N\

mc2t

vopt
2

V2 D @ain~ve1V!1ain
† ~ve2V!#1

VLc~2V1ıa!A\ve

16p2x~3!lN\vopt
2 veAW

3@ain~ve1V!2ain
† ~ve2V!#, ~B7!

whereW5V0
2/R is the power pumped into the microwave oscillator by the generatorG. The corresponding spectral density

the Gaussian noise seen by the readout system is

Sx~V!5S 8p2x~3!l

V D 2 \veW

4V21a2S 12
6N\

mc2t

vopt
2

V2 D 2

1S VLc

16p2x (3)lN\vopt
2 ve

D 2~4V21a2!\ve

W
. ~B8!
a
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The first term on the right-hand side corresponds to the b
action noise and the second term corresponds to the intr
noise of the measuring device.

We aim to perform a measurement with a narrow f
quency band centered around the frequencyV0 at which the
back action noise is zero:

V05A6N\

mt

vopt

c
. ~B9!

We write Sx as a Taylor expansion in frequency aroundV0:

Sx~V!.A~V0!W
~V2V0!2

V0
2 1

B~V0!

W
, ~B10!

whereA and B can be read from Eq.~B8!. If the relevant
bandwidth isDV then we place a limit (V2V0)2<DV2

and

Sx~V!<A~V0!W
DV2

V0
2 1

B~V0!

W
. ~B11!

Minimizing the right-hand side of the above equation w
respect toW, we find the expression for the minimum nois
in a fixed bandwidth:

Sxoptimal~V!<2AAB
DV

V0
5

1

2p2

l2t

N

DV

V0
;SxSQL~V0!

DV

V0
,

~B12!

which is achieved at the input power

Woptimal5
V2

32p2x~3!2Nt
S V0

vopt
D 2S L

l D
2 1

\ve

V0

DV
.

~B13!

In the above expressionsl is the wavelength of light inside
the FP resonator andSSQL(V0) is the standard quantum lim
noise at the frequencyV0 for a free mass. Clearly, th
ck
sic

-

signal-to-noise ratio for this narrow-band measuremen
AV0 /DV greater than that in the case of the SQL:

S S

ND;S S

ND
SQL

AV0

DV
. ~B14!

APPENDIX C: PERTURBATION THEORY
FOR FABRY-PEROT CAVITY WITH MOVING WALLS

In this appendix we derive a formal series for the optic
field inside a Fabry-Perot resonator which is pumped b
monochromatic laser beam and the walls of which are fre
perform motions small compared to the wavelength of lig
l. The expansion parameter isdx/l, wheredx is the change
of length of the resonator. For our purposes we are o
interested in expanding up to (dx/l)2; and we use this for-
mal series to derive Eq.~25!.

The following situation is considered: for simplicity w
assume that light is pumped on resonance by a laser b
Ein5ae2ı(voptt2kx) through the left mirror which is at res
and has reflectivityr and transmissivityT. For concreteness
it is assumed that the fluctuations in lengthdx originate from
the motion of the right mirror which is assumed to be p
fectly reflecting. Further, we assume that the plain wave
proximation is applicable and hence the optical field ins
the resonator satisfies the one-dimensional wave equatio

S ]2

]t2 2c2
]2

]x2DA~x,t !50. ~C1!

The general solution of of the above equation is

A~x,t !5 f S t1
x

cD1gS t2
x

cD , ~C2!

where f andg are arbitrary functions. The boundary cond
tions at the left mirror (x50) and at the right mirror
(x5L1dx) read, respectively,
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g~ t !2r f ~ t !5Tae2ıvoptt ~C3!

and

f S t1t01
dx

c D1gS t2t02
dx

c D50, ~C4!

wheret05L/c. Eliminating g(t) from these two equations
we get

f S t1t01
dx

c D2r f S t2t02
dx

c D
5Tae2ıvoptteıvoptt0eı~vopt /c!dx ~C5!

or, expanding indx up to second order,

f ~ t1t0!2r f ~ t2t0!

5Tae2ıvoptteıvoptt0S 11ı
vopt

c
dx2

vopt
2

c2
dx2D

2
1

c
@ f 8~ t1t0!1r f 8~ t2t0!#dx

2
1

2c2 @ f 9~ t1t0!2r f 9~ t2t0!#dx2. ~C6!

We take a Fourier tranform of the above equation and t
solve it by iterations:

f ~v!5 f ~0!~v!1 f ~1!~v!1 f ~2!~v!1•••, ~C7!

where

f ~0!~v!5
Ta

12r
d~v2vopt!, ~C8!
n
o
u

id
n
n
s
u

n

f ~1!~v!5
2ıvoptTa

c@~12r !cos~vt0!2ı~11r !sin~vt0!#~12r !

3dx~v2vopt!, ~C9!

f ~2!~v!52
4vopt

2 Ta

c2@~12r !cos~vt0!2ı~11r !sin~vt0!#~12r !

3E dv8
cos~v8t0!dx~v82vopt!dx~v2v8!

~12r !cos~v8t0!2ı~11r !sin~v8t0!
.

~C10!

When writing down the above terms we took into accou
the fact that 12r !1. The structure off (2) is clear: it corre-
sponds to upconversion of light at frequencyvopt to an in-
termediate frequencyv8 and then fromv8 to v, with v8
being integrated over. From Eqs.~C2! and ~C3!,

A~x,v!.22ısinS v

c
xD f ~v!. ~C11!

The BK readout system detects the square of the am
tude of the optical field:

S~x,t ![uA~x,t !u25S~0!~x,t !1S~1!~x,t !1S~2!~x,t !1•••,
~C12!

where

S~0!~x,V!54sin2S vopt

c
xDC2d~V!, ~C13!

S~1!~x,V!50, ~C14!

and
S~2!~x,V!52S 2voptC

c D 2E H sin$@~vopt2V8!/c#x%sin$@~vopt1V2V8!/c#x%

L~V8!L~V2V8!

1
2„sin$@~vopt1V!/c#x%1sin$@~vopt2V!/c#x%…

L~V!L~V8!
J dx~V8!dx~V2V8!dV8. ~C15!
-

In the above expressionC[Ta/(12r ) and L(V)
[~12r !cos(Vt)1(11r )sin(Vt).

In real interferometersdx represents, for example, motio
of the surface of the mirror due to the thermal excitation
the test mass’ internal modes. In what follows the contrib
tion from the internal mode of lowest frequency is cons
ered and then it will be shown that the sum of contributio
of all the higher modes will have the same order of mag
tude. It is assumed that the thermal noise is a Markoff Gau
ian process, and therefore is described by the following eq
tion:
f
-
-
s
i-
s-
a-

dx~V!5
F~V!

V22Vm
2 1ıgmV

, ~C16!

whereVm is the eigenfrequency of the mechanical mode,gm
is the damping rate, andF(V) is the Langevin force satisfy
ing

^F~V1!F~V2!&5
D

2p
d~V11V2!, ~C17!
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whereD5kBTegm /m* is the velocity diffusion rate. Here
m* is the effective mass of the mode~approximately given
by the mirror massm), kB is Boltzmann’s constant, andTe is
the temperature of the enviroment. To calculate the spec
density of the fluctuations ofS(2) ~the goal of this analysis!
we will need the four-point correlation function:

^F~V1!F~V2!F~V3!F~V4!&

5
D2

8p2 @d~V11V2!d~V31V4!1d~V11V3!

3d~V21V4!1d~V11V4!d~V21V3!#. ~C18!

Using the above expression, Eq.~C15! and Eq.~C16!, we
obtain
al

^S~2!~x,V1!S~2!~x,V2!&5~2v0C!4@M1d~V1!d~V2!

1M2~x,V1!d~V11V2!#.

~C19!

Here M2(V), which characterizes the spectral density
fluctuations ofS(2), is given by

M2~x,V!5
D2

8p2E @K~V,V8!K~2V,2V8!1K~V,V8!

3K~2V,2V1V8!#dV8, ~C20!

where
tical

ig.
K~V,V8!5
1

L~V8!~V822Vm
2 1ıgmV8!@~V2V8!22Vm

2 1ıgm~V2V8!#

3H sin$@~vopt2V8!/c#x%sin$@~vopt1V2V8!/c#x%

L~V2V8!

1
„sin$@~vopt1V!/c#x%1sin$@~vopt2V!/c#x%…sin@~vopt/c!x#

L~V! J . ~C21!

It is possible to integrate Eq.~C20! exactly, but it is clear that the main contribution will come from mechanical and op
resonances,V85Vopt andV85Vm . For gm!(12r )/t ~which is the case for, e.g., fused silica! the major contribution in Eq.
~C20! is due to the mechanical resonances:

M2~x,V!;
D2

8p2 ~2voptC!2@K1~x,V!1K2~x,V!1K3~x,V!#, ~C22!

where

K1~x,V!;
2sin2$@~vopt2Vm!/c#x%sin2$@~vopt1Vm!/c#x%1sin4$@~vopt1Vm!/c#x%1sin4$@~vopt2Vm!/c#x%

16sin4~Vmt!Vm
4 V2gm

,

~C23!

K2~x,V!;
„sin$@~vopt1V!/c#x%1sin$@~vopt2V!/c#x%…2

16sin2~Vmt!~Vt!2Vm
4 V2gm

, ~C24!

K3~x,V!;
„sin2$@~vopt1Vm!/c#x%1sin2$@~vopt2Vm!/c#x%…sin2@~vopt/c!x#

16sin3~Vmt!~Vt!Vm
4 V2gm

. ~C25!

We are only interested in detection frequencies such thatVt!1. Then for the configuration of nonlinear slabs shown in F
2 the main contribution to the noise in the BK meter readout will come fromK2 and K3. The spectral density of the
displacement noise will be

Sdx;
1

8p2S kBTe

m* D 2 vopt
2

c2

gm

Vm
4 V2~Vt!2 ~Vt1e!, ~C26!

wheree characterizes the degree of positioning error and the mismatch of nonlinearities of the two slabs:

e;maxS ux1
~3!u2ux2

~3!u

x1
~3!

,
d l

l D . ~C27!

Hered l is the spatial offset of the central point between the two slabs.
Equation~C26! is the main result of this Appendix. Its implications are discussed at the end of Sec. IV.
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