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If gravitation is propagated by a massive field, then the velocity of gravitational w@vasitons will
depend upon their frequency asg¢c)2=1—(c/f)\g)2, and the effective Newtonian potential will have a
Yukawa formocr’lexp(—r/)\g), wherel ;=h/myc is the graviton Compton wavelength. In the case of inspiral-
ling compact binaries, gravitational waves emitted at low frequency early in the inspiral will travel slightly
slower than those emitted at high frequency later, resulting in an offset in the relative arrival times at a detector.
This modifies the phase evolution of the observed inspiral gravitational waveform, similar to that caused by
post-Newtonian corrections to quadrupole phasing. Matched filtering of the waveforms could bound such
frequency-dependent variations in propagation speed, and thereby bound the graviton mass. The bound de-
pends on the mass of the source and on noise characteristics of the detector, but is independent of the distance
to the source, except for weak cosmological redshift effects. For observations of stellar-mass compact inspiral
using ground-based interferometers of the LIGO-VIRGO type, the bouns ccould be of the order of 6
X 10'2 km, about double that from solar-system tests of Yukawa modifications of Newtonian gravity. For
observations of massive black hole binary inspiral at cosmological distances using the proposed Laser Inter-
ferometer Space AntenrialSA), the bound could be as large ax 0'® km. This is three orders of magnitude
weaker than model-dependent bounds from galactic cluster dynqr8i2556-282(198)05104-3
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[. INTRODUCTION tional waves come in at most two polarization states, inde-
pendently of the source, while in alternative theories of grav-

The detection of gravitational radiation by either laser in-ity, there are as many as six polarizatioi%s8]. Using a
terferometers or resonant cryogenic bars will, it is widelySufficiently large number of gravitational antennas suitably

stated, usher in a new era of gravitational-wave astronom riented, it is possible to determine or limit the polarization
[1]. Furthermore, according to conventional wisdom, it will ontent of an incident wave, and thereby to test theories. For

yield new and interesting tests of general relatiiBR) in example, should an incident wave be shown definitively to

, . . have three polarizations, the result would be devastating for
its radiative regime. These tests are generally based on threes Although some of the details of implementing such po-

aspects of gravitational radiation: its back-reaction on theyrization observations have been worked out for arrays of
source, its polarization, and its speed. resonant cylindrical, disk-shaped, and spherical detectors

(i) Gravitational back-reactionThis plays an important [7,9], rather litle has been done to assess whether the
role only in the inspiral of compact objects. The equations ofground-based laser-interferometerfLaser Interometric
motion of inspiral include the nonradiative, nonlinear post-Gravitational Wave ObservatoyIGO), VIRGO, GEO600,
Newtonian corrections of Newtonian motion, as well as ra-TAMA] could perform interesting polarization measure-
diation back-reaction and its nonlinear post-Newtonian corments. The results depend sensitively on the relative orien-
rections. The evolution of the orbit is imprinted on the ta()t:]ocr:eotl;the detectors’ arms, which are now odigerally) in
phasmg of the inspiral wa\_/eform, to_\_/vhlch broadband lasef (iil) Speed of gravitational wavesiccording to GR, in
interferometers are especially sensitive through the use %

o . ; e limit in which the wavelength of gravitational waves is
matched filtering of the data against theoretical templategy || compared to the radius of curvature of the background

derived from GR. A number of tests of GR using matChedspacetime, the waves propagate along null geodesics of the
filtering of binary inspiral have been proposed, includingbackground spacetime, i.e., they have the same speed,
putting a bound on scalar-tensor gravif, measuring the [ight. In other theories, the speed could differ frarbecause
nonlinear “tail term” in gravitational radiation dampiri@],  of coupling of gravitation to “background” gravitational
and testing the GR “no hair” theorems by mapping space-ields. For example, in the Rosen bimetric theft@] with a

time outside black hole§4,5]. A concrete test of gravita- flat background metricy, gravitational waves follow null
tional back-reaction, albeit at the lowest order of approximageodesics ofy, while light follows null geodesics ofy

tion, has already been provided by the binary pulsar PSR11,8].

1913+16, where the tracer of the orbital phase was the radio Another way in which the speed of gravitational waves
emission from a pulsar rather than matched filtering of gravicould differ from one is if gravitation were propagated by a

tational waveg6]. massive fielda massive gravitonin which casep 4 would
(i) Polarization of gravitational wavesin GR, gravita- be given by, in a local inertial frame,
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wheremy andE are the graviton rest mass and energy, re- TABLE |. Bounds on\, from gravitational-wave observations
spectively. of inspiralling compact blnarles using ground-baséddGO-

The most obvious way to test this is to compare the arVIRGO) and space-bas&tlISA) observatories. Masses aret .
rival times of a gravitational wave and an electromagnetic

wave from the same event, e.g., a supernova. For a source at Distance Bound on
a distanceD, the resulting value of the difference-y/cis M m, (Mpc) (km)
Ground-basedLIGO-VIRGO)
1-%9 5% 10717 ZOO_M'OC) (ﬂ ' 12 14 14 300 46102
c D ls 1.4 10 630 5.4 102
10 10 1500 6.6 10'

whereAt is the “time difference,” given by

Space-base(LISA)

At=At,—(1+2)At,, (1.3 10 10’ 3000 6.9<10'°

10° 10° 3000 5.4x 106

where At, and At, are the differences in arrival time and 15 1P 3000 2.3 1018
emission time, respectively, of the two signals, aAd 1 10 3000 0.7 108

=DHy/c is the redshift of the source, witH, the Hubble
parameter. In many casest, is unknown, so that the best

one can do is employ an upper bound &t based on ob- expected thatD~3 Gpc, f~10 3 Hz, and fAt~p~ 1!
servation or modeling. The result will then be a bound on~1/1000[14]. The result s\ >10" km.

1-v4lc. We have refined these crude estimates by explicit calcu-
It the frequency of the gravitational waves is such thatiations using matched filteringTable ). We first calculate
hf>m c®, where h is Planck's constant, themg/c~1  the effect of the frequency-dependent massive graviton ve-

(c/>\ f)2 where A\ g=h/myc is the graviton Compton locity on the observed gravitational-wave phasing. We as-
Wavelength and the bound on-bg,/c can be converted to a sume that the evolution of the system, driven by gravitational

bound onAg4, given by back-reaction, is given correctly by general relativity, apart
" s fr'om correcti_ons of fractional orderr()\g).z, wherer is the
N >3% 102 km D 100 HZ) ( 1 ) size of the binary system; these corrections can be shown to
g 200 Mpc f fAt be negligible for the cases of interest. Including GR post-

(1.4 Newtonian(PN) and tail terms(1.5PN in the phasing, and
assuming circular orbits and nonspinning bodies, we deter-
The foregoing discussion assumes that the source emitsine the accuracy with which the parameters of the system
bothgravitational and electromagnetic radiation in detectablecan be measured‘chirp” mass of the system, reduced
amounts, and that the relative time of emission can be estalprass, fiducial phase, and fiducial timend simultaneously
lished (by one means or anotheto sufficient accuracy, or find the accuracy with which the effect of a graviton mass
can be shown to be sufficiently small. can be boundedeffectively, we find an upper bound on
However, there is a situation in which a bound on thex Y. We use noise curves appropriate for the advanced
graviton mass could be set using future observations Olf_IGO detectors, and for the proposed LISA observatory. It is
gravitational radiation alone. That is the case of the inspiralinteresting to note that, despite the apparent distance depen-
ling compact binary. Because the frequency of the gravitadence in Eq(1.4), the bound for a given system is indepen-
tional radiation sweeps from low frequency at the initial mo-dent of its distance, because the signal-to-noise ratio, which
ment of observation to higher frequency at the final momentdetermines the accuracy 6At, is inversely proportional to
the speed of the gravitons emitted will vary, from lower distance. As a result, the bound ag depends only on the
speeds initially to higher speedsloser toc) at the end. This measured masses of the objects and on detector characteris-
will cause a distortion of the observed phasing of the wavesics. The only effect of distance is a wedk dependence
and result in a shorter than expected overall tifg of  arising from cosmological effects. The results that could
passage of a given number of cycles. Furthermore, througBome from the two kinds of detectors for various sources are
the technique of matched filtering, the parameters of thejiven in Table I. These correspond to bounds on the graviton
compact binary can be measured accurdté®y, and thereby  rest mass of order 2610 22 eV for ground-based, and
the emission timeAt, can be determined accurately. 2.5x 1026 eV for space-based observations.

Roughly speaking, the “phase intervafAt in Eq. (1.4) can Can bounds be placed o using other observations or
be measured to an accuracy livherep is the signal-to- experiments? If the graviton is massive, then one expects
noise ratio. that, in the nonradiative near zone of a body like the Sun, the

Thus we can estimate the bounds by achievable in gravitational potential will be modified fron&M/r to the
principle for various compact inspiral systems, and for vari-yYukawa form
ous detectors. For stellar-mass inspifakeutron stars or
black hole$ observed by the LIGO-VIRGO class of ground-
based interferometers, we haile=200 Mpc, f~100 Hz,
and fAt~p~'~1/10[13]. The result is\g>10" km. For
massive blnary black holes (46 10'M @) observed by the Strictly speaking, such a conclusion would require a com-
proposed Laser Interferometer Space Antefii®A), it is  plete gravitational theory of a massive graviton, capable of

GM
V(r)zTexp(—r/)\g). (1.5
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making predictions both in the radiative and nonradiative Il. PROPAGATION OF A MASSIVE GRAVITON
regimes, and which otherwise agrees with observation. How-

ever, ?S ser\]/eralhauthors have p‘."?“fd[‘m“.la' _cr?]nstrgc- h at cosmological distances, we study the propagation of a
tion of such a theory Is a nontrivial question. Thus, In the\,aqqive graviton in a background Friedmann-Robertson-

absence of a well-defined theoretical foundation, we shal{,\,a”(er (FRW) homogeneous and isotropic spacetime. We
make the phenomenological assumption that, if the gravitoRyke the line element to have the fofe?]

is massive in the propagation of gravitational waves, the
Newtonian potential takes the form of E€L.5, with the ds?=—dt?+a?(t)[dx?+22(x)(d 6%+ sirfod ¢?)],
same value of. (2.1

With this assumption, one can place bounds\grusing ) ) )
solar-system dynamics. Essentially, the orbits of the innelvherea(t) is the scale factor of the universe alidy) is
planets agree with standard Newtonian gravitluding its ~ €qual tox, siny or sinhy if the universe is spatially flat,
post-Newtonian GR correctiongo an accuracy of order Closed or open, respectively. For a graviton moving radially
10" 8. Since the observed corrections to Newtonian gravity inffom emittery= x. to detectory=0, it is straightforward to
the limit Ag>r go as ¢/\g)? (it is the acceleration, not the Show that the component of 4-rgom§gtm;;F const. US'QQ
potential that is importait this implies a rough bound,  the fact thatmg=—p“pfg,,=E?—a"?p,, where E=p°,
>10* astronomical units, or 18 km. Talmadgeet al. [19]  together withpX/E=dx/dt, we obtain
surveyed solar system data in the context of bounding the
range and strength of a “fifth force,” a Yukawa teradded d_X __ }
to Newtonian gravity. The best bound comes from observa- dt a
tions that verify Kepler's third law for the inner planets:
from observations of Mars, we find,>2.8x10' km.  where pi=a’(t.)(EZ—m(). Assuming thatE;>mg, ex-
Bounds from other planets are summarized in Table IVpanding Eq(2.2) to first order in (ng/Ee)Z, and integrating,
Apart from the Yukawa potential assumption, this bound iswe obtain
solid and model independent.

Thus the bound inferred from gravitational radiation ob- _ [(adt 1 mé ta
servations of stellar mass compact binary inspiral could be Xe Lm_ 2 az(te)Egj'te a(t)dt.
twice as large as the solar-system bound, while that from
massive binary inspiral as observed by LISA could be 2Consider gravitons emitted at two different timgsandt,

X 10* times larger. . with energiesE, andE,, and received at corresponding ar-

Some have argued for a larger boundifrom galactic  rival times (y. is the same for both Assuming thatAt,
and cluster dynamchZ0,16,lz, no_tlng thgt the evidence of Ete—té<a/é1, and noting thamg/Eez()\gfe)*l, wheref,
bound clusters and of clear tidal interactions between galaxl-s the emitted frequency, we obtain, after eliminatipg
ies argues for a range, at least as large as a few megapar-
secs (6<10' km). Indeed this is the value quoted by the
Particle Data Group21]. However, in view of the uncertain- At,=(1+2)
ties related to the amount of dark matter in the universe, and
the absence of a theory that can encompass a massive gravi- ) ) _
ton and cosmology, these bounds should be viewed with caivhereZ=ag/a(te) —1 is the cosmological redshift, and
tion. (142) [t

The remainder of this paper provides the details underly- D J aa(t)dt, (2.5

0o Jte

Because some of the detectable compact binaries could be

-1/2

m;a?
, (2.2

Py

2.3

, (2.9

At+D(1 1)
eT N2 ¥ 27 Lo
2Ng\ e 1.2

ing these results. In Sec. Il, we study the propagation of a a

massive graviton in a cosmological background, to find the

relation between emission interval and arrival interval. InWhereap=a(t,) is the present value of the scale factor. Note
Sec. lIl, using the standard “restricted PN approximation,”thatD is not a conventional cosmological distance measure,
in which the gravitational waveform is expressed as an amlke the luminosity distanceD| =ay2(xe)(1+2), or the
plitude accurate to the lowest, quadrupole approximationproper distanc®p=apx.. ForZ<1, itis given by the stan-
and a phase accurate through 1.5PN of@¥w/c)3] beyond  dard formulaD =Z/H,; for a matter dominated, spatially flat
the quadrupole approximation, we determine the effect ofiniverse,D andD, are given by

graviton propagation time on the Fourier transform of the _ g

waveform, which is the central ingredient in matched filter- D=(2/5H)(1+2)(1—(1+2)~%?), (2.6a
ing. In Sec. IV, we calculate the Fisher information matrix
and determine the accuracy with which the compact binary’s

parame;ters can be m_easured, mc_ludlng a bound on the E?ffefﬁe ratioD/D will play a role in our analysis of the bound
qf graviton mass. Th|s_ approach IS a rez_asonat_)le approxXimag, \ . It has the following representative behavior:
tion to real matched filtering for Gaussian noise and large” ¢

signal-to-noise ratio. We apply the results to specific noise 1-7+0(2?), z<1, all Q,
curves and binary systems appropriate for ground-based D

(LIGO-VIRGO) and space-base(.ISA) detectors. Section D= 1+(2+2)(1+Z+V1+2) Q=1 all

V discusses bounds on the graviton mass using solar-system - 5(1+2)° ' o=
dynamics. Henceforth, we use units in whiéh=c=1. 2.7

D =(2/Hy)(1+Z)(1—(1+2Z)?). (2.6b
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where(), is the density parameter. &t=1, the factoiD/D, — 7 -
varies from 0.5 for),=0.01 to 0.6 forQlq=2. For simplic- W( f)=277ff (t—to)df+2mft.— Do~ 7/4,
H — c
ity, we shall henceforth assume tHag=1. (3.5b
IIl. MASSIVE GRAVITON PROPAGATION where M= 7*®m is the “chirp” mass of the emitter, and
AND THE PHASING OF GRAVITATIONAL WAVES where we have used the Newtonian relation'r(t)

_ T \2/3 . ITPRT] “ f "
We shall treat the problem of a binary system of com ac_(ﬂmfe) : T_he SUbSC”pt. e” denotes “at the e’T"“er-
P y Sy P We next substitute Eq2.4) into (3.5b to relate the time at

bodies of locally measured massag andm, in a quasicir- he d h h ) ina that. b £ th
cular orbit, that is an orbit which is circular apart from an the etect_or to that .att e emitter, noting t at,_ ecause of the
cosmological redshiftf.=(1+2Z)f. The result is

adiabatic inspiral induced by gravitational radiation reaction
within GR. We ignore tidal interactions and spin effects. For

e L - ~ T D _—
matched filtering of gravitational waves using LIGO-VIRGO ¥ (f)= zﬂﬁf‘?(te_tec)dfe_ 77_2 +27ft — P~ Z,
or LISA type detectors, it is sufficient for our purpose to fec fehg 4

write the gravitational waveforr(t) in the “restricted post- (3.6
Newtonian form”[23,24,12, in terms of an amplitudé(t) — 22 —
expressed to the lowest, quadrupole approximation, and \ghereztCztc—p/[2(1+Z))\ng], and®.=®.—2mD/[(1

phased(t), expressed as a post-Newtonian expansion sevi Z)Agfcl. To findte—tec as a function off, we integrate

eral orders beyond the quadrupole approximation, the equation for radiation reaction betwelgpandt,:
i df 96
h(t)=A(t)e '*®), (3.1a e 77 11/3
dte SWMg(WMEfe)
t
<I>(t)E<DC+277J f(t)dt, (31b) x| 1— Es_l_ E’n (1Tmf )2’3+417(77mf )
te 336 4 © e
wheref(t) is the observed frequency of the waves, and 3.7
andt. are “fiducial” phase and time respectively. The am-\here we have included the first post-Newton{@) term
plitude A is given by and the 1.5PN “tail” term in the radiation-reaction equation
(see, e.g£23]). Aier absorbing further constants of integra-
(t)= 2k ﬂp(i,9’¢,¢), (3.2 tioninto t; and®., dropping the bars on those two quan-
ap2(xe) r(t) tities, and reexpressing everything in terms of theasured

frequencyf [note that §)Y?=(df./dt,)¥%(1+Z)], we ob-
wherem=m;+m, and u=mym,/m are the total and re- i5in

duced mass of the systefwe also define the reduced mass

parameterp= u/m), r(t) is the orbital separation, arfél is ’A(“f’)ei‘lfﬁ), 0<T<TF
an angular function related to the orientation of the orbit h(f)= - (3.8a
(anglesi, ) and the direction of the source relative to the 0, f>fna
antennaanglesé, ¢), given by
~ ~ T M?
A(T)=AT 7= [ zo—u™"® (3.8p
30D, ' ’

F2(i,6,,4) = £1—1(1+coszi)2Fi+c052iF2X , (33

] 7 3
V(f)=2nft,— P mld+ —-u" - pu?

whereF, (0,¢,y) andF (6, ¢,y) are beam pattern factors 128

quoted, for example in Eq$104) of [1]. For simplicity, we

shall average over all four angles, and use the fact that 5(743 11 \ . | 37 o
(F)-ai25. ’ e T A
We next compute the Fourier transformigft). Expand- (3.89

ing h(t) about the timet at which the observed frequency is

T, ie., f(t)=T, and using the stationary-phase approxima-where u=7MT, and M is the “measured chirp mass,”
tion, we obtain related to the source chirp mass by a redshiftt=(1
+Z) M,. The parametep is given by

R(T)=——ev (3.4 7?D M

f(t) ﬁfm (3.9

where The frequencyf .« represents an upper cutoff frequency

4 M where the PN approximation fails. Equatio(&83—(3.809
AT)= = —————(TMT )23 (3.59  are the basis for an analysis of parameter estimation using
5 ap2(xe) matched filtering.
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Before turning to matched filtering, we must address our ah(f) _
approximation of the motion and gravitational radiation =—ih(f), (4.6b
damping as being general relativistic up to corrections of IPe
order (r/)\g)z. In the radiation-reaction formula E¢(B.7), we _
included corrections to the quadrupole formula at 1.5PN or- ah(f) i -
der, corresponding to corrections of ordet. Thus our ne- m:2w|(f/f0)h(f), (4.60
glect of massive graviton effects amounts to assuming that
r?\g %v3<1 for all systems of interest. Becausé=m/r aR(E) 5 :

. . . . . [ 5i 3
for circular orbits, we can rewrite this condition as = —(—u S84 — nut
(m/\g)v ~3?<1. Since typicallyp>10"2 for all systems of dinM 128 96
interest, and\ ;>10" km from solar-system bounds, this i _
condition is easily satisfied. -7 77‘3’5u‘2’3) h(f), (4.60
IV. BOUNDS ON THE GRAVITON MASS USING - .
MATCHED FILTERING oh(f) (si
_ _ any 9877 (mu
A. Matched-filter analysis

To obtain a more reliable estimate of the bound that can + 9'_77773/5u2/3)’|21‘(f) (4.60
be placed on the graviton mass, we carry out a full matched- 40 ' '
filter analysis following the method outlined for compact bi-
nary inspiral by Cutler and Flanagg?3] and Finn and Cher- ah(f) _
noff [24]. The details here parallel those [@5]. 5 —iu"th(f), (4.6f)

With a given noise spectrui@,(f), one defines the inner B
product of signal, andh; by where y(7)=(743/336F 117/4) 725 and y'=dyidy.

wﬁ’{ﬁzﬂLm‘E Since we plan to derive the error in estimatiBgabout the
(h1|h2)52j df, (4.7 nominal ora priori GR value=0, we have seB=0 in all
o Si(f) the partial derivatives.

- We assume that the detector noise curve can be approxi-
whereh, is the Fourier transform of the waveform defined in mated by an amplituds,, which sets the overall scale of the
Eqgs.(3.89—(3.89 (henceforth, we drop the tilde on frequen- noise, and a function of the ratfdf,=x, which may include
cies. The signal-to-noise ratio for a given sigrtalis given  gdditional parameters, that i8,(f)=S,9,(x), where the

by subscripta denotes a set of parameters. Then from Egs.
(3.89—(3.89 and(4.2) we find that the signal-to-noise ratio
p[h]=S/N[h]=(h|h)"2. 4.2 s given by

If the signal depends on a set of paramet#tsvhich are to 5/6 12
be estimated by the matched filter, then the rms erréfiim p:2Af’2’3(| (7)/Sy) M2= EM (rrf 2/3( Q)
the limit of largeS/N is given by 0 15 D, 0 S

(4.7)
A= (67— (67))%)= V=2, (4.3
where we define the integrals
where32? is the corresponding component of the inverse of
the covariance matrix or Fisher information matfix, de- o x 3
fined by I(a) fo ga(x)dx' (4.9
dh| oh i
Faﬁ(ﬁ m). 4.9 Note that any frequency cutoffs are to be incorporated ap-
propriately into the endpoints of the integrdl&y). If we
The correlation coefficient between two parametétsand defing the coeffic.ients]EI(q)/l(?),then aII_eIements.of the
o is covariance matrix turn out to be proportional #8 times
linear combinations of terms of the foray ™| q for various
cab=y aby, /S aay b (4.5  integersn andq, whereuy=mMf,. This overallp depen-
dence is characteristic of the lar§&N limit. As a result, the
We estimate the following six parametersAin®.., fqt., rms errorsA 62 are inversely proportional tp, while the

InM, Iny, and B8, wheref, is a frequency characteristic of correlation coefficients are independent mf Defining A3
the detector, typically a “knee” frequency, or a frequency at=AY?%p, viewing A3 as an upper bound g8, and combin-
which S,(f) is a minimum. The corresponding partial de- ing this definition with Eqs(3.9) and (4.7) we obtain the

rivatives of h(f) are lower bound on\:
h 14 12,213 ) 411/12
ah(f) — >(5|(7)) D ) 2B\
—ina =), (4.69 Y l157s, | \arzp,) T @9
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TABLE Il. The rms errors for signal parameters, the corresponding boung, pm units of 162 km, and
the correlation coefficients,,,, €z andcg, . The noise spectrum is that of the advanced LIGO system,
given by Eq.(4.10, and a signal-to-noise ratio of 10 is assumed. Masses are in us ofAt. is in msec.

m, m, A, At AMIM Anly Ag Cy Cumgp Csy
1.4 1.4 4.09 1.13 0.034% 7.88% 4.6 —-0.971 —-0.993 0.992
1.4 10.0 6.24 2.04 0.191% 12.2% 54 -0.978 —0.994 0.994
10.0 10.0 9.26 3.53 1.42 % 57.3% 6.0 —0.983 —-0.994 0.997

Note that the bound on4 depends only weakly on distance, tween M, # and 8. For various “canonical” compact bi-

via theZ dependence of the factpp/(1+Z)D ]*2 which  nary systems observable by advanced LIGO, the results are
varies from unity aZ=0 to 0.45 aZ=1.5. This is because, shown in Table Il. Note that, in determining the bound on
while the signal strength, and hence the accuracy, falls WitI’Ag, we must include theZ dependence embodied in Eqg.
distance, the size of the arrival-time effect increases with4.9). To do so, we take our assumed value for signal-to-
distance. Otherwise, the bound depends only on the chirpoise ratiop=10, determine the luminosity distance using
mass and on detector noise characteristics. We now appiq.(4.7), and convert that to a redshift using Eg.6b), with

this formalism to specific detectors. an assumed valubl,=50 km s *Mpc™! and Qy=1. We
then substitute it, along with E¢2.63 into Eq. (4.9).
B. Ground-based detectors of the LIGO-VIRGO type It is useful to compare these results to those from param-

ster estimation calculations using pure GR to 1.5PN order

The proposed advanced version of LIGO is expected t . X ;
detect compact binary inspiral to distances of 200 Mpc to 1|nclud|ng spin-orbit effects(see e..[23,25). There, an ad-

Gpc. The sensitive frequency band extends from around leitional parameter related to the spin-orbit efféaibo called

Hz to several hundreds of Hz. We adopt the benchmark ad® with a nominal value of zejowas estimated, although it
vanced LIGO noise curve, given by produced a differenti-dependent term in the phasing for-

mula (u~?® instead ofu™!). Nevertheless, the errors in the
o, <10 Hz fiducial phaseA®., time At, and chirp masAInM are
4 2 virtually identical in both cases, and somewhat larger than if

Sol(fo/f)"+2+2(1/fo)"J/5,  1>10 szl 10 no additionalB parameter were estimatécdompare Table I

' with Table | and Il of[23] or Table Il of[25]). But in our
where Sy=3x10"% Hz !, andf,=70 Hz. The cutoff at case, the errors in the reduced mass paramggee, surpris-
10 Hz corresponds to seismic noise, while the® and f2  ingly smaller, despite the nearly perfect correlation { de-
dependences denote thermal and photon shot noise, resp&&ndencebetween the 1PN term and tjgeterm in the phas-
tively [13]. We choose an upper cutoff frequency, where theénd, Eg.(3.809. The error grows dramatically with total mass
PN approximation fails, corresponding to the innermostoecause the smaller number of observed gravitational-wave
stable circular orbit. Although this is known rigorously only cycles reduces the ability of the tail terrr g~ %) to break
for test body motion around black holE26], a conventional the degeneracy.
estimate is given by,sco~[6%%m(m;+m,)] L. Converting
this to the measured frequency and chirp mass, we have C. Space-based detectors of the LISA type

Xmax=[6%%m7~3°Mfo]~ . For this case, we thus have  Tpe proposed Laser Interferometer Space AntéhtBA)
g(x)=(x"*+2+2x%)/5, and I(q)=/1"*[x ¥¥g(x)]dx. s expected to be able to detect the inspiral of massive black
We then calculate and invert the covariance matrix anchole binaries to cosmological distances, with very large
evaluate the errors in the five relevant parametdre pa-  signal-to-noise ratio. The sensitive frequency band extends
rameter 4 decouples from the rest and is relevant only forfrom around 10 to 10" ! Hz, with a typical integration time
the calculation ofp), and the correlation coefficients be- of the order of one year. We adopt a noise curve described in

Si(f)=

TABLE Ill. Rms errors on signal parameters, the bound\gn in units of 13% km, and the correlation
coefficients. The noise spectrum is that of LISA including white-dwarf binary confusion noise, given by Eq.
(4.13. Signal-to-noise ratip is shown, corresponding to a luminosity distance of about 3 Gpc. Masses are
in units of Mg, At. is in sec.

m; m, p A, At AMIM Anly Ag Crty Crp Csy

10’ 10 1600 0.073 20.0 0.0187% 0.562% 6.9 —0.979 —0.992  0.997
10’ 10° 710 0.145 225 0.0119% 0.362% 3.9 —0.984 —0.995 0.997
10° 10° 5800 0.017 0.48 0.0021% 0.108% 5.4 —0.954 —0.985 0.991
10° 10° 4300 0.026 0.40 0.0015% 0.062% 3.0 —0.970 —0.992  0.991
10° 10° 2100 0.017 0.09 0.0008% 0.072% 2.3 -0.946 —0.975 0.992
10° 10 750 0.048 0.18 0.0007% 0.059% 1.2 —0.955 —0.987 0.989
10t 10 320 0.092 0.22 0.0004% 0.141% 0.7 —0.963 —0.992  0.989
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TABLE IV. Bounds on\g in units of 132 km from Kepler's n
third law applied to the solar system. Semimajor axes are in astro- g=-— _2'”“(r)’ (5.2
r

nomical units, and the appropriate one-sided,i®und onz;, from
Talmadgeet al.[19] is shown.

where
Planet a, Bound onz, Ag /L(r)EM(lJrr/)\g)exp(—r/)\g)
Mercury 0.387 14108 0.5 5 3
Venus 0.723 1510°° 11 :M[1_3<L) +O(L) _ (5.2
Mars 1.523 —6.5x10° 10 2.8 2\ hg Ng
Jupiter 5.203 —-6x10°8 1.3

For a planet with semimajor axég, and periodP,, Kepler's
third law givesa,(27/P,)#3= u(a,) ¥ For a pure inverse-

the LISA pre-Phase A repoftl4], augmented by a fit to Sduare law,u=constant, and its value is determined accu-
“confusion noise” generated by a population of close white 2€ly using the orbit of the Earth. Thus, by checking Ke-

dwarf binaries in our galaxj27], given by the equations: pler’s third law for other planets, one can test the constancy
’ of u. For a given planet, we define the paramejgrby

=4.2x10 % Hz 1, 4.1
SO ( :D s B M(ap) 1/3 £ 3
fo=10"% Hz, (4.12 =\ () (5.3
g(x) = JIOx 1434 1+ x2/1000+ 313.5¢~ (6:398+ 35181080 Combining Eq.(5.3) and(5.2), we obtain a bound ol in
(4.13  termsofzy,
In order, the four terms irg(x) correspond to: test-mass N 1—af, vz 54
acceleration noise, photon shot noise, loss of sensitivity o~ 67, ' 54

when the arm lengths exceed the gravitational wavelength,
and a fit to the white-dwarf binary confusion noise. For thewhere\ and a,, are expressed in astronomical units (1.5
maximum frequency, we again adopt that of the innermosi< 10° km). Table IV lists the observed bounds of, for
stable circular orbit. The minimum frequency is set by theMercury, Venus, Mars and Jupiter compiled by Talmadge
characteristic integration time for LISA, nominally chosen toet al.[19], and the resulting bounds o .
be one year. We calculate the tirfg remaining until the A Yukawa violation of the inverse square law will also
system reaches the innermost stable orbit by integrating Egeroduce anomalous perhelion shifts of orbits, of the form
(3.7 using only the dominant, Newtonian contribution, con- 6w~7r(ap/>\g)2. By comparing measured shifts with the
vert from time at the emitter to observation tifieusing Eq.  general relativistic prediction for Mercury and Maigenus
(2.4) (ignoring the small correction due to massive gravitonand Jupiter are unsuitable for this purppEE9], one obtains
propagation, and obtain bounds a factor two weaker than those from Kepler's law.
Systems like the binary pulsar do not yield useful bounds,
1 [5Mm 38 mainly because they are so compact. Since the deviations
Xmin™ T Mfo\ 256T 414 fom GR go as &/\g)?, wherea is the size of the system,
the bound is roughly,>a/ €2, wheree is the accuracy of
For massive binaries ranging from“® 1M, and for  agreement with observations. Singe-10° km, and e
integration timeT = 1 year, we estimate the errors in the five ~ 1073, the bound is far from competitive with that from the
parameters and determine a boundXn We choose the solar system.
signal-to-noise ratiep for each case such that the luminosity
distance to the source 3 Gpc, so that cosmological effects ACKNOWLEDGMENTS
do not become too severe. The results are shown in Table Ill.
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the acceleration of a test body takes the form comments.
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