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Bounding the mass of the graviton using gravitational-wave observations
of inspiralling compact binaries
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If gravitation is propagated by a massive field, then the velocity of gravitational waves~gravitons! will
depend upon their frequency as (vg /c)2512(c/ f lg)2, and the effective Newtonian potential will have a
Yukawa form}r 21exp(2r/lg), wherelg5h/mgc is the graviton Compton wavelength. In the case of inspiral-
ling compact binaries, gravitational waves emitted at low frequency early in the inspiral will travel slightly
slower than those emitted at high frequency later, resulting in an offset in the relative arrival times at a detector.
This modifies the phase evolution of the observed inspiral gravitational waveform, similar to that caused by
post-Newtonian corrections to quadrupole phasing. Matched filtering of the waveforms could bound such
frequency-dependent variations in propagation speed, and thereby bound the graviton mass. The bound de-
pends on the mass of the source and on noise characteristics of the detector, but is independent of the distance
to the source, except for weak cosmological redshift effects. For observations of stellar-mass compact inspiral
using ground-based interferometers of the LIGO-VIRGO type, the bound onlg could be of the order of 6
31012 km, about double that from solar-system tests of Yukawa modifications of Newtonian gravity. For
observations of massive black hole binary inspiral at cosmological distances using the proposed Laser Inter-
ferometer Space Antenna~LISA!, the bound could be as large as 631016 km. This is three orders of magnitude
weaker than model-dependent bounds from galactic cluster dynamics.@S0556-2821~98!05104-2#

PACS number~s!: 04.80.Cc, 04.30.2w, 97.60.Jd, 97.60.Lf
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I. INTRODUCTION

The detection of gravitational radiation by either laser
terferometers or resonant cryogenic bars will, it is wide
stated, usher in a new era of gravitational-wave astrono
@1#. Furthermore, according to conventional wisdom, it w
yield new and interesting tests of general relativity~GR! in
its radiative regime. These tests are generally based on t
aspects of gravitational radiation: its back-reaction on
source, its polarization, and its speed.

(i) Gravitational back-reaction.This plays an importan
role only in the inspiral of compact objects. The equations
motion of inspiral include the nonradiative, nonlinear po
Newtonian corrections of Newtonian motion, as well as
diation back-reaction and its nonlinear post-Newtonian c
rections. The evolution of the orbit is imprinted on th
phasing of the inspiral waveform, to which broadband la
interferometers are especially sensitive through the use
matched filtering of the data against theoretical templa
derived from GR. A number of tests of GR using match
filtering of binary inspiral have been proposed, includi
putting a bound on scalar-tensor gravity@2#, measuring the
nonlinear ‘‘tail term’’ in gravitational radiation damping@3#,
and testing the GR ‘‘no hair’’ theorems by mapping spa
time outside black holes@4,5#. A concrete test of gravita
tional back-reaction, albeit at the lowest order of approxim
tion, has already been provided by the binary pulsar P
1913116, where the tracer of the orbital phase was the ra
emission from a pulsar rather than matched filtering of gra
tational waves@6#.

(ii) Polarization of gravitational waves.In GR, gravita-
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tional waves come in at most two polarization states, in
pendently of the source, while in alternative theories of gr
ity, there are as many as six polarizations@7,8#. Using a
sufficiently large number of gravitational antennas suita
oriented, it is possible to determine or limit the polarizati
content of an incident wave, and thereby to test theories.
example, should an incident wave be shown definitively
have three polarizations, the result would be devastating
GR. Although some of the details of implementing such p
larization observations have been worked out for arrays
resonant cylindrical, disk-shaped, and spherical detec
@7,9#, rather little has been done to assess whether
ground-based laser-interferometers@Laser Interometric
Gravitational Wave Observatory~LIGO!, VIRGO, GEO600,
TAMA # could perform interesting polarization measur
ments. The results depend sensitively on the relative or
tation of the detectors’ arms, which are now cast~literally! in
concrete.

(iii) Speed of gravitational waves.According to GR, in
the limit in which the wavelength of gravitational waves
small compared to the radius of curvature of the backgro
spacetime, the waves propagate along null geodesics o
background spacetime, i.e., they have the same speed,c, as
light. In other theories, the speed could differ fromc because
of coupling of gravitation to ‘‘background’’ gravitationa
fields. For example, in the Rosen bimetric theory@10# with a
flat background metrich, gravitational waves follow null
geodesics ofh, while light follows null geodesics ofg
@11,8#.

Another way in which the speed of gravitational wav
could differ from one is if gravitation were propagated by
massive field~a massive graviton!, in which case,vg would
be given by, in a local inertial frame,

vg
2

c2 512
mg

2c4

E2 , ~1.1!
2061 © 1998 The American Physical Society
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2062 57CLIFFORD M. WILL
wheremg and E are the graviton rest mass and energy,
spectively.

The most obvious way to test this is to compare the
rival times of a gravitational wave and an electromagne
wave from the same event, e.g., a supernova. For a sour
a distanceD, the resulting value of the difference 12vg /c is

12
vg

c
55310217S 200 Mpc

D D S Dt

1 sD , ~1.2!

whereDt is the ‘‘time difference,’’ given by

Dt[Dta2~11Z!Dte , ~1.3!

where Dta and Dte are the differences in arrival time an
emission time, respectively, of the two signals, andZ
.DH0 /c is the redshift of the source, withH0 the Hubble
parameter. In many cases,Dte is unknown, so that the bes
one can do is employ an upper bound onDte based on ob-
servation or modeling. The result will then be a bound
12vg /c.

If the frequency of the gravitational waves is such th
h f@mgc2, where h is Planck’s constant, thenvg /c'1
2 1

2 (c/lgf )2, where lg5h/mgc is the graviton Compton
wavelength, and the bound on 12vg /c can be converted to a
bound onlg , given by

lg.331012 kmS D

200 Mpc

100 Hz

f D 1/2S 1

f Dt D
1/2

.

~1.4!

The foregoing discussion assumes that the source e
bothgravitational and electromagnetic radiation in detecta
amounts, and that the relative time of emission can be es
lished ~by one means or another! to sufficient accuracy, or
can be shown to be sufficiently small.

However, there is a situation in which a bound on t
graviton mass could be set using future observations
gravitational radiation alone. That is the case of the inspi
ling compact binary. Because the frequency of the grav
tional radiation sweeps from low frequency at the initial m
ment of observation to higher frequency at the final mome
the speed of the gravitons emitted will vary, from low
speeds initially to higher speeds~closer toc) at the end. This
will cause a distortion of the observed phasing of the wa
and result in a shorter than expected overall timeDta of
passage of a given number of cycles. Furthermore, thro
the technique of matched filtering, the parameters of
compact binary can be measured accurately@12#, and thereby
the emission timeDte can be determined accuratel
Roughly speaking, the ‘‘phase interval’’f Dt in Eq. ~1.4! can
be measured to an accuracy 1/r, wherer is the signal-to-
noise ratio.

Thus we can estimate the bounds onlg achievable in
principle for various compact inspiral systems, and for va
ous detectors. For stellar-mass inspiral~neutron stars or
black holes! observed by the LIGO-VIRGO class of groun
based interferometers, we haveD'200 Mpc, f '100 Hz,
and f Dt;r21'1/10 @13#. The result islg.1013 km. For
massive binary black holes (104 to 107M () observed by the
proposed Laser Interferometer Space Antenna~LISA!, it is
-
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expected thatD'3 Gpc, f '1023 Hz, and f Dt;r21

'1/1000@14#. The result islg.1017 km.
We have refined these crude estimates by explicit ca

lations using matched filtering~Table I!. We first calculate
the effect of the frequency-dependent massive graviton
locity on the observed gravitational-wave phasing. We
sume that the evolution of the system, driven by gravitatio
back-reaction, is given correctly by general relativity, ap
from corrections of fractional order (r /lg)2, wherer is the
size of the binary system; these corrections can be show
be negligible for the cases of interest. Including GR po
Newtonian~PN! and tail terms~1.5PN! in the phasing, and
assuming circular orbits and nonspinning bodies, we de
mine the accuracy with which the parameters of the sys
can be measured~‘‘chirp’’ mass of the system, reduced
mass, fiducial phase, and fiducial time!, and simultaneously
find the accuracy with which the effect of a graviton ma
can be bounded~effectively, we find an upper bound o
lg

21). We use noise curves appropriate for the advan
LIGO detectors, and for the proposed LISA observatory. I
interesting to note that, despite the apparent distance de
dence in Eq.~1.4!, the bound for a given system is indepe
dent of its distance, because the signal-to-noise ratio, wh
determines the accuracy off Dt, is inversely proportional to
distance. As a result, the bound onlg depends only on the
measured masses of the objects and on detector charac
tics. The only effect of distance is a weakZ dependence
arising from cosmological effects. The results that cou
come from the two kinds of detectors for various sources
given in Table I. These correspond to bounds on the grav
rest mass of order 2.5310222 eV for ground-based, and
2.5310226 eV for space-based observations.

Can bounds be placed onlg using other observations o
experiments? If the graviton is massive, then one expe
that, in the nonradiative near zone of a body like the Sun,
gravitational potential will be modified fromGM/r to the
Yukawa form

V~r !5
GM

r
exp~2r /lg!. ~1.5!

Strictly speaking, such a conclusion would require a co
plete gravitational theory of a massive graviton, capable

TABLE I. Bounds onlg from gravitational-wave observation
of inspiralling compact binaries, using ground-based~LIGO-
VIRGO! and space-based~LISA! observatories. Masses are inM ( .

Distance Bound onlg

m1 m2 ~Mpc! ~km!

Ground-based~LIGO-VIRGO!

1.4 1.4 300 4.631012

1.4 10 630 5.431012

10 10 1500 6.031012

Space-based~LISA!

107 107 3000 6.931016

106 106 3000 5.431016

105 105 3000 2.331016

104 104 3000 0.731016
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57 2063BOUNDING THE MASS OF THE GRAVITON USING . . .
making predictions both in the radiative and nonradiat
regimes, and which otherwise agrees with observation. H
ever, as several authors have pointed out@15–18#, construc-
tion of such a theory is a nontrivial question. Thus, in t
absence of a well-defined theoretical foundation, we s
make the phenomenological assumption that, if the grav
is massive in the propagation of gravitational waves,
Newtonian potential takes the form of Eq.~1.5!, with the
same value oflg .

With this assumption, one can place bounds onlg using
solar-system dynamics. Essentially, the orbits of the in
planets agree with standard Newtonian gravity~including its
post-Newtonian GR corrections! to an accuracy of orde
1028. Since the observed corrections to Newtonian gravity
the limit lg@r go as (r /lg)2 ~it is the acceleration, not the
potential that is important!, this implies a rough boundlg
.104 astronomical units, or 1012 km. Talmadgeet al. @19#
surveyed solar system data in the context of bounding
range and strength of a ‘‘fifth force,’’ a Yukawa termadded
to Newtonian gravity. The best bound comes from obser
tions that verify Kepler’s third law for the inner planet
from observations of Mars, we findlg.2.831012 km.
Bounds from other planets are summarized in Table
Apart from the Yukawa potential assumption, this bound
solid and model independent.

Thus the bound inferred from gravitational radiation o
servations of stellar mass compact binary inspiral could
twice as large as the solar-system bound, while that fr
massive binary inspiral as observed by LISA could be
3104 times larger.

Some have argued for a larger bound onlg from galactic
and cluster dynamics@20,16,17#, noting that the evidence o
bound clusters and of clear tidal interactions between ga
ies argues for a rangelg at least as large as a few megap
secs (631019 km!. Indeed this is the value quoted by th
Particle Data Group@21#. However, in view of the uncertain
ties related to the amount of dark matter in the universe,
the absence of a theory that can encompass a massive g
ton and cosmology, these bounds should be viewed with c
tion.

The remainder of this paper provides the details unde
ing these results. In Sec. II, we study the propagation o
massive graviton in a cosmological background, to find
relation between emission interval and arrival interval.
Sec. III, using the standard ‘‘restricted PN approximation
in which the gravitational waveform is expressed as an a
plitude accurate to the lowest, quadrupole approximat
and a phase accurate through 1.5PN order@O(v/c)3# beyond
the quadrupole approximation, we determine the effect
graviton propagation time on the Fourier transform of t
waveform, which is the central ingredient in matched filte
ing. In Sec. IV, we calculate the Fisher information mat
and determine the accuracy with which the compact bina
parameters can be measured, including a bound on the e
of graviton mass. This approach is a reasonable approx
tion to real matched filtering for Gaussian noise and la
signal-to-noise ratio. We apply the results to specific no
curves and binary systems appropriate for ground-ba
~LIGO-VIRGO! and space-based~LISA! detectors. Section
V discusses bounds on the graviton mass using solar-sy
dynamics. Henceforth, we use units in whichG5c51.
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II. PROPAGATION OF A MASSIVE GRAVITON

Because some of the detectable compact binaries coul
at cosmological distances, we study the propagation o
massive graviton in a background Friedmann-Roberts
Walker ~FRW! homogeneous and isotropic spacetime. W
take the line element to have the form@22#

ds252dt21a2~ t !@dx21S2~x!~du21sin2udf2!#,
~2.1!

wherea(t) is the scale factor of the universe andS(x) is
equal tox, sinx or sinhx if the universe is spatially flat,
closed or open, respectively. For a graviton moving radia
from emitterx5xe to detectorx50, it is straightforward to
show that the component of 4-momentumpx5 const. Using
the fact thatmg

252papbgab5E22a22px
2 , where E5p0,

together withpx/E5dx/dt, we obtain

dx

dt
52

1

aS 11
mg

2a2

px
2 D 21/2

, ~2.2!

where px
25a2(te)(Ee

22mg
2). Assuming thatEe@mg , ex-

panding Eq.~2.2! to first order in (mg /Ee)
2, and integrating,

we obtain

xe5E
te

ta dt

a~ t !
2

1

2

mg
2

a2~ te!Ee
2E

te

ta
a~ t !dt. ~2.3!

Consider gravitons emitted at two different timeste and te8 ,
with energiesEe andEe8 , and received at corresponding a
rival times (xe is the same for both!. Assuming thatDte

[te2te8!a/ȧ, and noting thatmg /Ee5(lgf e)
21, where f e

is the emitted frequency, we obtain, after eliminatingxe ,

Dta5~11Z!FDte1
D

2lg
2S 1

f e
2 2

1

f e8
2D G , ~2.4!

whereZ[a0 /a(te)21 is the cosmological redshift, and

D[
~11Z!

a0
E

te

ta
a~ t !dt, ~2.5!

wherea05a(ta) is the present value of the scale factor. No
that D is not a conventional cosmological distance measu
like the luminosity distanceDL[a0S(xe)(11Z), or the
proper distanceDP[a0xe . ForZ!1, it is given by the stan-
dard formulaD5Z/H0; for a matter dominated, spatially fla
universe,D andDL are given by

D5~2/5H0!~11Z!„12~11Z!25/2
…, ~2.6a!

DL5~2/H0!~11Z!„12~11Z!21/2
…. ~2.6b!

The ratioD/DL will play a role in our analysis of the boun
on lg . It has the following representative behavior:

D

DL
5H 12Z1O~Z2!, Z!1, all V0

11~21Z!~11Z1A11Z!

5~11Z!2 , V051, all Z

~2.7!
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2064 57CLIFFORD M. WILL
whereV0 is the density parameter. AtZ51, the factorD/DL
varies from 0.5 forV050.01 to 0.6 forV052. For simplic-
ity, we shall henceforth assume thatV0[1.

III. MASSIVE GRAVITON PROPAGATION
AND THE PHASING OF GRAVITATIONAL WAVES

We shall treat the problem of a binary system of comp
bodies of locally measured massesm1 andm2 in a quasicir-
cular orbit, that is an orbit which is circular apart from a
adiabatic inspiral induced by gravitational radiation react
within GR. We ignore tidal interactions and spin effects. F
matched filtering of gravitational waves using LIGO-VIRG
or LISA type detectors, it is sufficient for our purpose
write the gravitational waveformh(t) in the ‘‘restricted post-
Newtonian form’’ @23,24,12#, in terms of an amplitudeA(t)
expressed to the lowest, quadrupole approximation, an
phaseF(t), expressed as a post-Newtonian expansion s
eral orders beyond the quadrupole approximation,

h~ t ![A~ t !e2 iF~ t !, ~3.1a!

F~ t ![Fc12pE
tc

t

f ~ t !dt, ~3.1b!

where f (t) is the observed frequency of the waves, andFc
and tc are ‘‘fiducial’’ phase and time respectively. The am
plitude A is given by

A~ t !5
2m

a0S~xe!

m

r ~ t !
F~ i ,u,f,c!, ~3.2!

where m[m11m2 and m[m1m2 /m are the total and re
duced mass of the system~we also define the reduced ma
parameterh[m/m), r (t) is the orbital separation, andF is
an angular function related to the orientation of the or
~anglesi , c) and the direction of the source relative to t
antenna~anglesu, f), given by

F2~ i ,u,f,c!5
1

4
~11cos2i !2F1

2 1cos2iF 3
2 , ~3.3!

whereF1(u,f,c) andF3(u,f,c) are beam pattern factor
quoted, for example in Eqs.~104! of @1#. For simplicity, we
shall average over all four angles, and use the fact
^F2&54/25.

We next compute the Fourier transform ofh(t). Expand-
ing h(t) about the timet̃ at which the observed frequency
f̃ , i.e., f ( t̃ )[ f̃ , and using the stationary-phase approxim
tion, we obtain

h̃~ f̃ !5
A~ t̃ !

A ḟ ~ t̃ !
eiC~ f̃ !, ~3.4!

where

A~ t̃ !5
4

5

Me

a0S~xe!
~pMe f̃ e!

2/3, ~3.5a!
t

n
r

a
v-

t

at

-

C~ f̃ !52pE
f c

f̃
~ t2tc!d f12p f̃ tc2Fc2p/4,

~3.5b!

whereMe5h3/5m is the ‘‘chirp’’ mass of the emitter, and
where we have used the Newtonian relationm/r ( t̃ )
5(pm f̃ e)

2/3. The subscript ‘‘e’’ denotes ‘‘at the emitter.’
We next substitute Eq.~2.4! into ~3.5b! to relate the time at
the detector to that at the emitter, noting that, because of
cosmological redshift,f e5(11Z) f . The result is

C~ f̃ !52pE
f̃ ec

f̃ e
~ te2tec!d fe2

pD

f elg
2 12p f̃ t̄ c2F̄c2

p

4
,

~3.6!

where t̄ c5tc2D/@2(11Z)lg
2f c

2#, and F̄c5Fc22pD/@(1
1Z)lg

2f c#. To find te2tec as a function off e , we integrate
the equation for radiation reaction betweentec and te :

d fe

dte
5

96

5pMe
2 ~pMef e!

11/3

3F12S 743

336
1

11

4
h D ~pm fe!

2/314p~pm fe!G ,
~3.7!

where we have included the first post-Newtonian~PN! term
and the 1.5PN ‘‘tail’’ term in the radiation-reaction equatio
~see, e.g.,@23#!. After absorbing further constants of integr
tion into t̄ c and F̄c , dropping the bars on those two qua
tities, and reexpressing everything in terms of themeasured

frequency f̃ @note that (ḟ )1/25(d fe /dte)
1/2/(11Z)#, we ob-

tain

h̃~ f̃ !5H Ã~ f̃ !eiC~ f̃ !, 0, f̃ , f̃ max

0, f̃ . f̃ max

~3.8a!

A~ f̃ ![A f̃ 27/65Ap

30

M2

DL
u27/6, ~3.8b!

C~ f̃ !52p f̃ tc2Fc2p/41
3

128
u25/32bu21

1
5

96S 743

336
1

11

4
h Dh22/5u212

3p

8
h23/5u22/3,

~3.8c!

where u[pM f̃ , andM is the ‘‘measured chirp mass,’
related to the source chirp mass by a redshift:M5(1
1Z)Me . The parameterb is given by

b[
p2DM

lg
2~11Z!

. ~3.9!

The frequency f̃ max represents an upper cutoff frequen
where the PN approximation fails. Equations~3.8a!–~3.8c!
are the basis for an analysis of parameter estimation u
matched filtering.



ou
on

o

o

th

s

is

ca
e
i-

r

in
n-

o

f
a
e-

roxi-
e

qs.
o

ap-
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Before turning to matched filtering, we must address
approximation of the motion and gravitational radiati
damping as being general relativistic up to corrections
order (r /lg)2. In the radiation-reaction formula Eq.~3.7!, we
included corrections to the quadrupole formula at 1.5PN
der, corresponding to corrections of orderv3. Thus our ne-
glect of massive graviton effects amounts to assuming
r 2lg

22v23!1 for all systems of interest. Becausev2.m/r
for circular orbits, we can rewrite this condition a
(m/lg)v25/2!1. Since typicallyv.1022 for all systems of
interest, andlg.1012 km from solar-system bounds, th
condition is easily satisfied.

IV. BOUNDS ON THE GRAVITON MASS USING
MATCHED FILTERING

A. Matched-filter analysis

To obtain a more reliable estimate of the bound that
be placed on the graviton mass, we carry out a full match
filter analysis following the method outlined for compact b
nary inspiral by Cutler and Flanagan@23# and Finn and Cher-
noff @24#. The details here parallel those of@25#.

With a given noise spectrumSn( f ), one defines the inne
product of signalsh1 andh2 by

~h1uh2![2E
0

` h̃1* h̃21 h̃2* h̃1

Sn~ f !
d f , ~4.1!

whereh̃a is the Fourier transform of the waveform defined
Eqs.~3.8a!–~3.8c! ~henceforth, we drop the tilde on freque
cies!. The signal-to-noise ratio for a given signalh is given
by

r@h#[S/N@h#5~huh!1/2. ~4.2!

If the signal depends on a set of parametersua which are to
be estimated by the matched filter, then the rms error inua in
the limit of largeS/N is given by

Dua[AŠ~ua2^ua&!2
‹5ASaa, ~4.3!

whereSaa is the corresponding component of the inverse
the covariance matrix or Fisher information matrixGab de-
fined by

Gab[S ]h

]uaU ]h

]ubD . ~4.4!

The correlation coefficient between two parametersua and
ub is

cab[Sab/ASaaSbb. ~4.5!

We estimate the following six parameters, lnA, Fc , f 0tc ,
lnM, lnh, andb, where f 0 is a frequency characteristic o
the detector, typically a ‘‘knee’’ frequency, or a frequency
which Sn( f ) is a minimum. The corresponding partial d
rivatives of h̃( f ) are

] h̃~ f !

] lnA5 h̃~ f !, ~4.6a!
r

f

r-

at

n
d-

f

t

] h̃~ f !

]Fc
52 i h̃ ~ f !, ~4.6b!

] h̃~ f !

] f 0tc
52p i ~ f / f 0! h̃~ f !, ~4.6c!

] h̃~ f !

] lnM52S 5i

128
u25/31

5i

96
g~h!u21

2
ip

4
h23/5u22/3D h̃~ f !, ~4.6d!

] h̃~ f !

] lnh
5S 5i

96
hg8~h!u21

1
9ip

40
h23/5u22/3D h̃~ f !, ~4.6e!

] h̃~ f !

]b
52 iu21h̃~ f !, ~4.6f!

where g(h)[(743/336111h/4)h22/5, and g8[dg/dh.
Since we plan to derive the error in estimatingb about the
nominal ora priori GR valueb50, we have setb50 in all
the partial derivatives.

We assume that the detector noise curve can be app
mated by an amplitudeS0, which sets the overall scale of th
noise, and a function of the ratiof / f 0[x, which may include
additional parameters, that isSn( f )5S0ga(x), where the
subscripta denotes a set of parameters. Then from E
~3.8a!–~3.8c! and ~4.2! we find that the signal-to-noise rati
is given by

r52Af 0
22/3~ I ~7!/S0!1/25A 2

15

M5/6

DL
~p f 0!22/3S I ~7!

S0
D 1/2

,

~4.7!

where we define the integrals

I ~q![E
0

` x2q/3

ga~x!
dx. ~4.8!

Note that any frequency cutoffs are to be incorporated
propriately into the endpoints of the integralsI (q). If we
define the coefficientsI q[I (q)/I (7), then all elements of the
covariance matrix turn out to be proportional tor2 times
linear combinations of terms of the formu0

2n/3I q for various
integersn and q, whereu05pMf 0. This overallr depen-
dence is characteristic of the largeS/N limit. As a result, the
rms errorsDua are inversely proportional tor, while the
correlation coefficients are independent ofr. Defining Db
[D1/2/r, viewing Db as an upper bound onb, and combin-
ing this definition with Eqs.~3.9! and ~4.7! we obtain the
lower bound onlg :

lg.S 2

15

I ~7!

S0
D 1/4S D

~11Z!DL
D 1/2p2/3M11/12

f 0
1/3D1/4 . ~4.9!
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TABLE II. The rms errors for signal parameters, the corresponding bound onlg , in units of 1012 km, and
the correlation coefficientscMh , cMb andcbh . The noise spectrum is that of the advanced LIGO syst
given by Eq.~4.10!, and a signal-to-noise ratio of 10 is assumed. Masses are in units ofM ( , Dtc is in msec.

m1 m2 Dfc Dtc DM/M Dh/h lg cMh cMb cbh

1.4 1.4 4.09 1.13 0.034% 7.88% 4.6 20.971 20.993 0.992
1.4 10.0 6.24 2.04 0.191% 12.2% 5.4 20.978 20.994 0.994
10.0 10.0 9.26 3.53 1.42 % 57.3% 6.0 20.983 20.994 0.997
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Note that the bound onlg depends only weakly on distanc
via theZ dependence of the factor@D/(11Z)DL#1/2, which
varies from unity atZ50 to 0.45 atZ51.5. This is because
while the signal strength, and hence the accuracy, falls w
distance, the size of the arrival-time effect increases w
distance. Otherwise, the bound depends only on the c
mass and on detector noise characteristics. We now a
this formalism to specific detectors.

B. Ground-based detectors of the LIGO-VIRGO type

The proposed advanced version of LIGO is expected
detect compact binary inspiral to distances of 200 Mpc t
Gpc. The sensitive frequency band extends from around
Hz to several hundreds of Hz. We adopt the benchmark
vanced LIGO noise curve, given by

Sn~ f !5H `, f ,10 Hz

S0@~ f 0 / f !41212~ f / f 0!2#/5, f .10 Hz
~4.10!

whereS053310248 Hz21, and f 0570 Hz. The cutoff at
10 Hz corresponds to seismic noise, while thef 24 and f 2

dependences denote thermal and photon shot noise, re
tively @13#. We choose an upper cutoff frequency, where
PN approximation fails, corresponding to the innerm
stable circular orbit. Although this is known rigorously on
for test body motion around black holes@26#, a conventional
estimate is given byf ISCO'@63/2p(m11m2)#21. Converting
this to the measured frequency and chirp mass, we h
xmax5@63/2ph23/5Mf 0#21. For this case, we thus hav
g(x)5(x241212x2)/5, and I (q)5*1/7

xmax@x2q/3/g(x)#dx.
We then calculate and invert the covariance matrix a
evaluate the errors in the five relevant parameters~the pa-
rameter lnA decouples from the rest and is relevant only
the calculation ofr), and the correlation coefficients be
th
h
rp
ly

o
1
0

d-

ec-
e
t

ve

d

r

tweenM, h and b. For various ‘‘canonical’’ compact bi-
nary systems observable by advanced LIGO, the results
shown in Table II. Note that, in determining the bound
lg , we must include theZ dependence embodied in Eq
~4.9!. To do so, we take our assumed value for signal-
noise ratior510, determine the luminosity distance usin
Eq. ~4.7!, and convert that to a redshift using Eq.~2.6b!, with
an assumed valueH0550 km s21Mpc21 and V051. We
then substitute it, along with Eq.~2.6a! into Eq. ~4.9!.

It is useful to compare these results to those from para
eter estimation calculations using pure GR to 1.5PN or
including spin-orbit effects~see e.g.,@23,25#!. There, an ad-
ditional parameter related to the spin-orbit effect~also called
b, with a nominal value of zero! was estimated, although i
produced a differentu-dependent term in the phasing fo
mula (u22/3 instead ofu21). Nevertheless, the errors in th
fiducial phaseDFc , time Dtc and chirp massD lnM are
virtually identical in both cases, and somewhat larger tha
no additionalb parameter were estimated~compare Table II
with Table I and II of@23# or Table II of @25#!. But in our
case, the errors in the reduced mass parameterh are, surpris-
ingly smaller, despite the nearly perfect correlation (u21 de-
pendence! between the 1PN term and theb-term in the phas-
ing, Eq.~3.8c!. The error grows dramatically with total mas
because the smaller number of observed gravitational-w
cycles reduces the ability of the tail term (}u22/3) to break
the degeneracy.

C. Space-based detectors of the LISA type

The proposed Laser Interferometer Space Antenna~LISA!
is expected to be able to detect the inspiral of massive b
hole binaries to cosmological distances, with very lar
signal-to-noise ratio. The sensitive frequency band exte
from around 1024 to 1021 Hz, with a typical integration time
of the order of one year. We adopt a noise curve describe
y Eq.
s are
TABLE III. Rms errors on signal parameters, the bound onlg , in units of 1016 km, and the correlation
coefficients. The noise spectrum is that of LISA including white-dwarf binary confusion noise, given b
~4.13!. Signal-to-noise ratior is shown, corresponding to a luminosity distance of about 3 Gpc. Masse
in units of M ( , Dtc is in sec.

m1 m2 r Dfc Dtc DM/M Dh/h lg cMh cMb cbh

107 107 1600 0.073 20.0 0.0187% 0.562% 6.9 20.979 20.992 0.997
107 106 710 0.145 22.5 0.0119% 0.362% 3.9 20.984 20.995 0.997
106 106 5800 0.017 0.48 0.0021% 0.108% 5.4 20.954 20.985 0.991
106 105 4300 0.026 0.40 0.0015% 0.062% 3.0 20.970 20.992 0.991
105 105 2100 0.017 0.09 0.0008% 0.072% 2.3 20.946 20.975 0.992
105 104 750 0.048 0.18 0.0007% 0.059% 1.2 20.955 20.987 0.989
104 104 320 0.092 0.22 0.0004% 0.141% 0.7 20.963 20.992 0.989
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the LISA pre-Phase A report@14#, augmented by a fit to
‘‘confusion noise’’ generated by a population of close wh
dwarf binaries in our galaxy@27#, given by the equations:

S054.2310241 Hz21, ~4.11!

f 051023 Hz, ~4.12!

g~x!5A10x214/3111x2/10001313.5x2~6.39813.518log10x!.
~4.13!

In order, the four terms ing(x) correspond to: test-mas
acceleration noise, photon shot noise, loss of sensiti
when the arm lengths exceed the gravitational wavelen
and a fit to the white-dwarf binary confusion noise. For t
maximum frequency, we again adopt that of the innerm
stable circular orbit. The minimum frequency is set by t
characteristic integration time for LISA, nominally chosen
be one year. We calculate the timeTe remaining until the
system reaches the innermost stable orbit by integrating
~3.7! using only the dominant, Newtonian contribution, co
vert from time at the emitter to observation timeT using Eq.
~2.4! ~ignoring the small correction due to massive gravit
propagation!, and obtain

xmin'
1

pMf 0
S 5M
256TD 3/8

. ~4.14!

For massive binaries ranging from 104 to 107M ( , and for
integration timeT5 1 year, we estimate the errors in the fiv
parameters and determine a bound onlg . We choose the
signal-to-noise ratior for each case such that the luminos
distance to the source.3 Gpc, so that cosmological effec
do not become too severe. The results are shown in Table

V. SOLAR-SYSTEM BOUNDS ON THE GRAVITON MASS

If the Newtonian gravitational potential is modified by
massive graviton to have the Yukawa form of Eq.~1.5!, then
the acceleration of a test body takes the form

TABLE IV. Bounds onlg in units of 1012 km from Kepler’s
third law applied to the solar system. Semimajor axes are in as
nomical units, and the appropriate one-sided, 2s bound onhp from
Talmadgeet al. @19# is shown.

Planet ap Bound onhp lg

Mercury 0.387 1.431028 0.5
Venus 0.723 1.531029 1.1
Mars 1.523 26.5310210 2.8
Jupiter 5.203 2631028 1.3
-

ra
ty
h,

st

q.

II.

g52
n

r 2
m~r !, ~5.1!

where

m~r ![M ~11r /lg!exp~2r /lg!

5M F12
1

2S r

lg
D 2

1OS r

lg
D 3G . ~5.2!

For a planet with semimajor axisap and periodPp , Kepler’s
third law givesap(2p/Pp)2/35m(ap)1/3. For a pure inverse-
square law,m[constant, and its value is determined acc
rately using the orbit of the Earth. Thus, by checking K
pler’s third law for other planets, one can test the consta
of m. For a given planet, we define the parameterhp by

11hp[S m~ap!

m~a% ! D
1/3

. ~5.3!

Combining Eq.~5.3! and ~5.2!, we obtain a bound onlg in
terms ofhp

lg.S 12ap
2

6hp
D 1/2

, ~5.4!

where lg and ap are expressed in astronomical units (1
3108 km!. Table IV lists the observed bounds onhp for
Mercury, Venus, Mars and Jupiter compiled by Talmad
et al. @19#, and the resulting bounds onlg .

A Yukawa violation of the inverse square law will als
produce anomalous perhelion shifts of orbits, of the fo
dv'p(ap /lg)2. By comparing measured shifts with th
general relativistic prediction for Mercury and Mars~Venus
and Jupiter are unsuitable for this purpose! @19#, one obtains
bounds a factor two weaker than those from Kepler’s law

Systems like the binary pulsar do not yield useful boun
mainly because they are so compact. Since the deviat
from GR go as (a/lg)2, wherea is the size of the system
the bound is roughlylg.a/e1/2, wheree is the accuracy of
agreement with observations. Sincea;106 km, and e
;1023, the bound is far from competitive with that from th
solar system.
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