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The most important features of the proposed spherical gravitational wave detectors are closely linked with
their symmetry.Hollow spheres share this property wisolid ones, considered in the literature so far, and
constitute an interesting alternative for the realization of an omnidirectional gravitational wave detector. In this
paper we address the problem of how a hollow elastic sphere interacts with an incoming gravitational wave and
find an analytical solution for its normal mode spectrum and response, as well as for its energy absorption cross
sections. It appears that this shape can be designed having relatively low resonance frequeReslg) yet
keeping a large cross section, so its frequency range overlaps with the projected large interferometers. We also
apply the obtained results to discuss the performance of a hollow sphere as a detector for a variety of
gravitational wave signal$S0556-282(97)00522-5

PACS numbd(s): 04.80.Nn, 95.55.Ym

[. INTRODUCTION a factor of 20 over present bars. Moreover, the sphere’s cross
section is also high at its second quadrupole harmonic.
Thirty-five years after the beginning of the experimental The fivefold degeneracy of the quadrupole modes enables
search for cosmic gravitational waveGW's), several the determination of the GW amplitudes of two polarization
resonant-mass detectq@yogenic cylindrical bajsare cur-  states and the two angles of the source direction. The
rently monitoring the strongest potential sources in our Galmethod, first outlined by Forwai®] and later developed by
axy and in the local grouf]. The sensitivity of such detec- Wagoner and Paik10], consists in measuring the sphere
tors ish= 6 x 10~ ° for millisecond GW bursts or, in vibrations in at least five independent locations on the sphere
spectral units, 102* Hz =2 over a bandwidth of a few Hz surface so as to determine the vibration amplitude of each of
around 1 kHz. A further improvement in sensitivity and the five degenerate modes. The Fourier components of the
bandwidth is expected from the operation at ultralow tem-GW amplitudes at any quadrupole frequencies and the two
peratures of the two bar detectors NAUTILUR] and angles defining the source direction can be obtained as suit-
AURIGA [3]in Italy, and even better sensitivities and band-able combinations of these five outp(i%6,8,11,12
widths will come about as more advanced readout systems The signal deconvolution is based on the assumption that
are developed. Projects for spherical resonant-mass GW d@t the wave framdthat in which thez axis is aligned with
tectors have emerged in the last few years in the resonanthe wave propagation directiponly the =2 andm==2
mass community4—7], due to their remarkable advantages modes are excited by the GW, as the helicity of a GW is 2 in
with respect to the operating bdrs|. general relativity. One can take advantage of this to decon-
In a cylindrical bar only the first longitudinal mode of volve the wave propagation direction and the GW ampli-
vibration interacts strongly with the GW, and consequentlytudes in the wave frame.
only onewave parameter can be measured: the amplitude of Most of the nice properties of a spherical GW detector
a combination of the two polarization states. On the othedepend on its beingpherically symmetricA spherical shell,
hand each quadrupole mode of a spherical mass is fivefoldr hollow sphergobviously maintains that symmetry, and so
degeneratg¢its angular dependence is described in terms oft can be considered an interesting alternative to the usual
the five spherical harmonics|,(6,¢) with |=2 and solidsphere. In order to have a good cross section, a resonant
m=—2,...,2], andpresents aisotropic cross section. The GW detector must be made of a high speed of sound material
cross section of the lowest ordar£1) mode is the highest, and have a large mass. The actual construction of a massive
and is larger than that of a cylindrical antenna made of thespherical body may be technically difficult. In fact, fabricat-
same material and with the same resonant frequency by iag a large hollow sphere is a different task than fabricating
factor of about 0.8Rs/R;)? [6,7], whereR, andR,, are the a solid one. Casting a hollow half sphere is a nearly two-
radius of the sphere and of the bar, respectively. This meardimensional cast, at odds with casting a solid sphere, which
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requires rather special moulds. As an example of the feasiwhere the sphere’s surfac® has outward normah. The
bility of large two-dimensional casting we can mention thepossibility of a spherical shella=R) and that of a solid
fabrication of propellers of more than 10 m in size andsphere @=0) are allowed. The stress tensgy is given by
masses of the order of 100 tof$3]. Two hollow hemi- [8]

spheres could then be welded together with electron beam

techniques. However, while it is known that these welding

technique preserve most of the properties of the bare mate- =N Ug 8j + 2 Ugj)- (2.3
rial, its effect on the acoustic quality factta relevant para-
menter in resonant mass detecjaraist be further studied. The general solution to E@2.1) can be cast in the form

We have investigated the properties of a hollow sphere as
a potential GW antenna. The purpose of this paper is to _ . -
present a detailed report of the main results of such an inU(X)=Co V@(X) +iC1L (x) +iCoVXL () + DoV ¢(X)

vestigation and to discuss the real interest of this new detec-

tor shape. _ . +iD L P(x) +iD,V X L (), (2.9
In Sec. Il we present the complete analytical solution of
the eigenmode problem for a hollow sphere of arbitrarywhereC; andD; are constantd,= —ixx V, and the scalar

thickness, including the full frequency and amplitude SPEC¥,nctions % and 7 are aiven b
trum. Section Il is devoted to the cross section analysis, ¢ ¥ &, v 9 y
while in Sec. IV we take up the study of the system sensi-

tivity to various GW signal classes. Finally, we present an . .

outlook and summary of conclusions in Sec. V. () =11(ANYim( 6, ¢), ‘f/’(x)_]'(kr)Y'm(a"P)'(z 5
Il. NORMAL MODES OF VIBRATION AND

EIGENFREQUENCIES OF A HOLLOW SPHERE

In this section we consider the problem of a hollow elastic PO)=y/(ANYim(6,@),  HX)=Y1(KF) Yim( 0,@'(2.6)

sphere in order to obtain its normal modes and frequency

spectrum. This is a classical problem in elasticity theorywhereqsk wI(\+ ) and Y, denotes a spherical har-
which was posed and partly addressed already in the laghonic, Finally,j, andy, are the standard Bessel functions of
century; see, e.g{14] and references therein. the first and second kinds, respectivétge, e.g.[15]). The
Let R anda be the outer and inner radii of the sphere, |5iter (which are singular at the origirmust be included in
_respectlvely. The ela_stlc properties of the sphere, p_rov[ded Bur case, as=0 lies outside the boundas. The boundary
is homogenous and isotropic, will be described by its Lam&,ngitions(2.2) become, after rather lengthy calculations, a
coefficientsh and w and its densityp. As is well known  gystem of linear equations which splits up into & 4 linear
(see, e.g.[8]), the normal modes are obtained as the solu-System for Co,Cp,Do,D,) and a 22 system for

tions to the eigenvalue equation (C,,Dy). That is, we have a linear system of the form
V2ut (14N @) V(V-u)= —K2u  (kK2=w2plp), Ap 0) el _, 27
2.9 0 A{/\Cy 7 '

subject to the boundary conditions that the solid’s surface pWith
free of any tensions and/or tractions; these are expressed by
the equations Cp=(Cy,C,,Dp,D,)', Cy=(C;,Dy)Y, (2.9

oijnj=0 at r=R andat r=A (R=a=0), where the superscripgtdenotes transposition, and the corre-
(2.2 sponding matrices are

BadR)  —1(1+1)s72B1(kR) By(qR) —1(1+1)s ?B4(kR)
B1(aR) —s?B3(kR)  By(qR) —s?B3(kR)
A=l Byga) —1(1+1)s728(ka) TBy(qa) —I(1+1)s 2B, (ka)
Bi(da) —s?Bs(ka)  By(qa) —s72B4(ka)

(2.9
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FIG. 1. Functional dependence of the first few toroidal eigen-
values of a hollow sphere on the rat#gR. Solid sphere values
(a = 0) are found on the intersections with the ordinate axis.

and

(ﬂl(km B1(kR)
Bi(ka) By(ka)

Heres=q/k, and we have introduced the set of functions

Bo(2=ji(2)27%, Bi(2=(jI(2Z7Y), Bz(Z)Eh;(Z),

1 I(1+1)
Bs(2)= 532(2)_[1_ > ]ﬂo(z),

N
Ba(2)=B2(2)— 522,30(2),

while the tilded ones are their singular counterparts, wijth

, and so of The matri-
cesAp and A; are functions okR, and depend on the pa-
rametera/R, and, in the case dkp, also ort s. Thediscrete
set ofkR values that make compatible the systérv) con-
stitutes thespectrumof the elastic sphere. We can distin-

instead ofj, [i.e., Bo(2)=Y,(2) 22

guish two families of normal modes.
(i) Toroidal modesThese are characterized by

detAT:O, Cp: 0.

Toroidal I=2 amplitudes

N T

R a=0375R
18 T M.~ —-— a=0725R
22 a=0
25 L2 : :
0.0 0.2 0.4 0.6 0.8 1.0

(r-a)/(R-a)

FIG. 2. Toroidal mode radial functions for the first two quadru-
pole harmonics and a few values of the geometric ratie. The
magnitude represented in abscissas is such that the region plotted
spans radially the material thickness of the hollow sphere.

Toi(r1) =Ca(n,D{B1(kniR)j 1 (Knir) = B1(KniR) Y (Knih)},
(2.15

where C(n,l) is fixed by the chosen normalization. The
corresponding eigenvalues are obtained as solutions to the
transcendental equatiof2.13. For the degenerate limit
a=R the equation to be solved is

B1(kR)  By(kR
de< ' AulkR) -0, 2.16

B1(KR)  Bi(kR)

with the prime denoting differentation respect to the argu-
ment. Using standard properties of Bessel functid, it
can be easily shown that

B1(KR)B1(KR) = B1(kR) 81 (KR)
=(kR) "¢ [(kR)?+2—-1(1+1)],
and, in this case, there is onbneeigenvalue for each>1,

given by the only root of the above equatin,
(kR)?>=I1(1+1)—2. Figure 1 display%,R as a function of

Hence they are purely tangential, and their frequencies dea/R for the first few toroidal modes. The existence of just

pend only on the rati@/R. Their amplitudes are

Unim(¥)=Toi(r) iLY (6, ),

with

This parameter is a function of the Poisson ratidfor the usual

one mode for each>1 in the thin shell limit shows as a
divergence ok, R whena/R approaches 1 ana>1. In Fig.

2 we plot the normalized toroidal amplitudé&s,(r) for two
quadrupolar modes and three different values of the param-
etera/R. We observe that their absolute values at the outer
surface show little dependence on the rati®.

2This equation shows explicitly a property shared by all toroidal

value c=1/3,s=0.5 and\/u=2. These values are assumed, un- modes, namely, that their dimensionless eigenvalyg® do not

less otherwise stated.

depend on the elastic properties of the material.
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(ii) Spheroidal modesThis second family is characterized . [(1+1)
by Npi(r)=Co(n,l) J|'(Qn|f)—po(n.|)WJl(kmf)
n
detA,=0, C;=0. (2.17 , [(1+1)
P2 1) Yi (@) = pa(n. D) === yi(kil) |,
In this case, the expressions get more involved, as we "
have to handle a 44 determinant. Once the spectriy is (219

found for a givera/R ands, the systen(2.7) can be solved 1
for C,/Cqy, Dy/Cq, andD,/Cy. If we label these coeffi- En(r)=Co(n, 1) =—[ji(qnr)—po(n,){kur ji(kmr)}’
cientspy(n,l), p1(n,l), andp,(n,l), the eigenmodes can be Anif

written as +P1(n, DY (Anir) = pa(nD{Knr yi(knr)} '],

U= Nt (1) Y0, 5N Ey(N)NX LY (6,6), (220
(2.18  whereCy(n,l) is, again, free up to normalization. The spec-
trum for the degenerate caae=R is given by the solutions
with to

Ba(AR) —1(1+1)s7?B1(kR)  Bu(qR) —I(1+1)s ?B,(kR)

B1(aR) —5 2B5(kR) B1(qR) —5?B5(kR)

def | i ~, i =0, (2.21)
Bi(aR) —1(1+1)s 1B1(kR) B4(qR) —I(1+1)s B(kR)
Bi(gR) —s 1B4(kR) B1(gR) —s 1B4(kR)

which happens to havewvo solutions for each value dof calculateAE,(w). Here we shall assume that general rela-
whenl>1 and onlyoneroot® for |<2. tivity is the correct gravitation theory and proceed to calcu-

Plotting kR as a function ofa/R, we see that the third late the oscillation energy of the solid as a consequence of its
and higher roots diverge as the inner radius approaBhes excitation by an incoming GW, which we shall naturally
see Figs. 3 and 4. Figures 5—-7 show the normalized radiatlentify with AE,(w). We briefly sketch the details of the
functions for a few spheroidal modes and valuesti®. As  process now.

in the toroidal case, their values =R (where measure- As shown in[8], an elastic solid’s response to a GW force
ments using transducers are to be made evenjuallg can be expressed by a very general formula, which is easily
nearly independent c/R. particularized to a spherically symmetric body such as the

solid sphereor the hollow sphere. In both cases, as we have
lll. CROSS SECTION FOR THE HOLLOW SPHERE

6.0

A convenient way to characterize a resonant detector sen
sitivity is through its GW energy absorption cross section, [—
defined as -

Spheroidal eigenvalues

AEy(w)

Uabs(w)ZW, (3.1 o

where AE,(w) is the energy absorbed by the detector at
frequency w, and ®(w) is the incident flux density ex- 3o
pressed, e.g., in W/fmHz. Estimation ofo,,{ ) requires a

hypothesis about the underlying gravitation theory to calcu-
late ®(w) and specification of the antenna’s geometry to 20 f

%The purely radial casé=0 is simpler, because the eigenvalue 93 02 oa 06 08 10
equation(2.21) becomes a/R
Ba(ARB4(AR —~ Bi(ARB4qRI=0, FIG. 3. Functional dependence of the first few spheroidal eigen-

and has only one solution, namelyR= (u/\)+3— w/\. Unlike values of a hollow sphere on the ratdR. Solid sphere values
toroidal eigenvalues, spheroidal ones do depengbn (a = 0) are found on the intersections with the ordinate axis.
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30.0 . . . o T 1.0
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FIG. 4. Functional dependence of higher spheroidal eigenvalues g|G. 6. Spheroidal mode radial functions—see E@s19 and
of a hollow sphere on the rat@/R. The harmonics in this graph do (2 20—for the first quadrupole harmonic.

not exist in the thin shell limit, and this shows as divergences as

approaches. andg™(t) are the quadrupole components of the Riemann

. o . __ tensor, whileb, is an overlapping integral factorof the

just seen, the vibration eigenmodes belong to two familiess\y's tidal coefficient over the solid’s extension. Much like
(spheroidal and toroidalbut GW's only couple tajuadru-  jn the case of a solid sphere, it has dimensions of length and
pole spheroidal harmonicdf the frequencies of these modes s given by a definite integral of the radial terms in the wave
are noted byw,, (n = 1 for the lowest valuen = 2 for the  fynction u,,(x); more specifically,

next, etc) and the corresponding wave functionsuy,(x),

then the elastic displacements are given by b, p (R,
"= MJ r3[Npal(1) +3En(r)] dr
a

0

2

> Upn(X) g0 ], (3.2 Co(N,2)

m==2 =—W[G2(R)—Gz(a)]a (3.4

n

u(x,t)= z b—

n=1 Wnp2

where . . . .
where we have introduced the dimensionless function

3

t
M= [ gmtr) si _ey dy __ ol
Ot (1) fog (1) sinony(t=t7) dt - (m=-2,....2 GZ(Z)ERS—[IZ(anZ)_I'pl(nyz)yZ(anZ)

)
(3.3 a
co —3pPo(N,2)j 2(Kn2z) —3p2(N,2)y,(Knp2) |
(3.5
N TY]
a=0375R
—-— a=0725R 2.0
T
a=0375R Em ..
— = e=07SR T

00 k.. Ny

S Num
X 00 k.

5.0

Spheroidal I=0 amplitudes 20
-10.0 ' . ‘ ‘
0.0 0.2 0.4 0.6 0.8 io T - TT===-
(r-a)l(R-a) Spheroidal 1=2 n=2 amplitudes
FIG. 5. Spheroidal mode radial-functions —see Eq2.19— 40, e 53 o5 Y o
for the first two monopole harmonics and a few values of the geo- } (r-a)/(R-a) ' '

metric ratioa/R. The magnitude represented in abscissas is such
that the region plotted spans radially the material thickness of the FIG. 7. Spheroidal mode radial functions—see HEgsl9 and
hollow sphere. (2.20—for the secondquadrupole harmonic.
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and assumed the following normalization for the wave func-1-0

tions: Normalised cross sections
2 43 R 2 2 2 08 1
[Uniml® p d%=| r2dr p [Nf,(r)+1(1+1)Ef(r)] &
solid a
=M. (3.6 06 |
The calculation oAE,(w) can now be pursued along the *
lines set up in Ref[8]: The Fourier transform(x,w) of the 04 L 1
response function(x,t) of Eq. (3.2) is calculated, whereby
the spectral energy densityan be obtained as
02 r
1 1
W(w)= = J = ? |U(x,w)|? p d3X, (3.7
T Jsolid?
0.0 : : : :
. . . . . . 0.0 0.2 0.4 0.6 0.8 1.0
whereT is theintegration timeof the signal in the detector. a/R

The energy deposited by the GW in th#h quadrupole mode

is hence calculated by integration of this spectral density "'C: 8. Cross sections of a hollow sphere in its first two quad-
over the linewidth of the mode. It is readily found that rupole modes as a function of thickness. Values are referred to the
) cross section of a solid sphere in its first quadrupole resonance,

1 2 whoseradius is assumed to be equal to tlaiter radius of the
AE(wp2) = 5 M b2 mz , IGM™(w,,)|2, (3.8  hollow sphere.

resonant transducergerfectly matched to electronic ampli-
WhereG(m)(w) is the Fourier transform @(m)(t) fiers with noise temperaturé'n. UnaVOidably, Brownian
The GW flux in the denominator of Eq3.1) is (clearly) motion noise associated with dissipation in the antenna and

proportional to the sum in the right-hand sitRHS) of Eq. electronic noise from the amplifiers limit the sensitivity of

(3.8), the proportionality factor being in turn proportional to the detector. We refer the reader[6-19 for a complete
? —see[8] for a detailed discussion—so we finally obtain discussion on the sensitivity of resonant-mass detectors and

report here only a few basic formulas for the evaluation of
the detector sensitivity to various signals.

The total noise at the output of each resonant mode can be
seen as due to an input noise generator having spectral den-
sity of strainS;,(f), acting on a noiseless oscillatds,(f)
whereuf = ul/p, M is the detector's mass ar@ is New-  represents the input GW spectrum that would produce a sig-
ton’s constant. This equation allows relatively easy numerinal equal to the noise spectrum actually observed at the out-
cal evaluation of the cross sections, as well-defined computgrut of the detector instrumentation. In a resonant-mass de-
programs can be written for the purpose. tector, this function is a resonant curve and can be

As we have seen in Sec. Il above, the eigenvalues ancharacterized by its value at resonai$s€f,) and by its half
wave functions of a hollow sphere only depend on the raticheight width.S,(f,,) can be written as
a/R, and therefore so does the quantikyfb,,) in Eq. (3.9).

So the cross sectiom,, only depends on that ratio, too, once S\(f.)= E 4kTe
a suitable unit ofmassis adopted for reference. In Figs. 8 "3 o Qnfa’
and 9 we ploto, for the first two quadrupole modes of the

hollow sphere in two different circumstances: In Fig. 8 we
assume a hollow sphere fiked outer radius—thus its mass
decreases with thickness—and in Fig. 9 we have instead as
sumed that the mass of the hollow spheréxed so that its
geometrical size increases as it gets thinner. In either case w
see that, for the higher mode, the maximum cross sectior®’ |
does not happen a&=0, but at some intermediate inner ra-
dius: Fora~0.377 4R, the cross section for the second
guadrupole mode equals that of the first, and we have theos
possibility of working with a detectowith the same (high)
sensitivity at two frequencies.

1672 GMo? )
=0 apd ®n2) = 5 T(anbn) , (3.9

4.0

09 | Normalised cross sections

0_3 L n 1 1 1
IV. SENSITIVITY TO GW SIGNALS ° 02 o4 ar %® 08 !

We assume that the mechanical oscillations induced in a FIG. 9. Cross sections of a hollow sphere in its first two quad-
resonant mass by the interaction with the GW are transrupole modes as a function of thickness. Values are referred to the
formed into electrical signals by a set of identical noiselesgross section of a solid sphere in its first quadrupole resonance,
transducergfor the sake of simplicity, we consider here non- whosemassequals that of the hollow sphere.
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TABLE I. Main features and sensitivities for several hypothetical hollow spheres of two different materials.

M (ton) 2R(m) (R—a)(cm f,(Hz2) f,(Hz2 oy (M?Hz) o,(M2Hz) S, (Hz Yy S,(Hz 1

CuAl 200 4 81 395 1188 181072  2.4x10°% 4.7x10°% 3.7x10°%
200 6 25 191 753 141072 1.7x10° % 5.4x10 % 4.4x10° %
100 4 31 302 1161 5810 %  8.8x10 7.5x10°% 6.1x10°24
100 6 12 185 738 58102 8.2x10°% 7.7x10° % 6.3x10°24
40 3 22 399 1543 28107 35x10°% 1.2x10° 8 9.7x10° %
40 4 11 281 1115 2210°% 33x10°% 1.2x10° 2 1.0x10 23

Al 5056 200 6 90 273 935 18102  2.9x10 % 4.3x10° % 3.4x10°2%*
100 6 37 230 896 7410  1.2x10°% 6.6x 10724 5.4x 10724
40 4 35 361 1370 3210  4.8x10% 1.0x10° 23 8.3x10°%*
40 6 14 218 866 3810°%*  4.4x10 % 1.0x10° 23 8.7x10°%*

HereT, is the thermodynamic temperature of the detector G 4mB Nk
plus a back-action contribution from the amplifiers, ag Sy(fp)= ; - . (4.5
n

is the quality factor of the mode.
The half height width of5,,(f) gives the bandwidth of the

resonant mode: In these conditions the fractional bandwiditf ,/f, be-
comes of the order oB,, that we assume of about 0.1. We
fo 1 shall consider hollow spheres made of the usual aluminum
Afn:Q_Fn : (4.2 alloy Al5056 and of a recently investigated copper alloy
n

(CuAl) [21]. Table I displays numerical values of the most
relevant parameters for a few example detectors with a noise

Here, I', is the ratio of the wideband noise in thgh |5\ g equal to the quantum limit, i.eN = 1.

resonance bandwidth to the narrowband noise,

T, A. Bursts

= —2,3 Q, T’ (4.3 We model the burst signal as a featureless waveform, ris-
noen e ing quickly to an amplituden, and lasting for a timer,

where B, is the transducer coupling factor, defined as themUCh shorter than the detector integration tife=Af, .

. . s Fourier transform will be considered constant within the
fraction of the total mode energy available at the tranSducegetector bandwidthH (f)=H(f,) = Ho. From Eq.(4.4) we

Ly

output.
In practicel’,, < 1 and the bandwidth is much larger than get
the pure resonance linewidth/Q,,. In the limitT"',—0, the 27TAan(2)
bandwidth becomes infinite. The bandwidth of the present —_— (4.9
resonant bars is of the order of a few HY. If a quantum- Sh(fn)
limited readout system were available, values of the order of . .
100 Hz could be reachdd9,20. For SNR= 1 and using the equatidfy"" = hg""r,, we find
Equations(4.1) and (4.2) can be used to characterize the
sensitivity of the quadrupole modes of a hollow spherical _ Si(f,) 142
resonant-mass detector. The optimum performance is ob- (he") purs= 7-51 SrAf } . 4.7
tained by filtering the output with a filter matched to the 2N
signal. The energy signal-to-noise ratiSNR) of the filter )
output is given by the well-known formula The levelh§"=10"2? can be reached by the lowest-order
mode of a typical large hollow spherical detector such as the
+o|H(F)|2 one being considered. The GW !um!npsity of burst sources is
SNR=I W df, (4.9 still largely unknown, and so it is difficult to accurately es-
- timate their detectability. The above sensitivity is however
likely to enable the detection of GW collapses in the Virgo
whereH(f) is the Fourier transform df(t). cluster for an energy conversion of 1M into a milli-

We now report the SNR of a hollow spherical detector forsecond GW burst. See Table Il for a few specific examples.
various GW signals. To be specific, we shall assume that the
thermodynamic temperature of the detector can be reduced
to below 50 mK and that the quality factors of the modes are
of the order of 10, so that the overall detector noise will be ~ We consider a sinusoidal wave of amplitudg and fre-
dominated by the electronic amplifier noise. If we expresgjuencyfg constant over the observation tirhg. The Fou-
the energy of the latter as a multiple of thgantum limit  rier transform amplitude at, is 1/2hgt,, with a bandwidth
i.e., kT, = Nfw, then the strain spectral density becomes given byt,.*. The SNR can be written as

B. Monochromatic signals
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TABLE Il. Sensitivity to burst and monochromatimtegrated for 1 y GW signals of a few hollow spheres of two different materials.

M(on) 2R(mM) (R-a)(m f1(H) f,H)  (WMpus  bwst (WG (h&2)m
CuAl 200 6 25 191 753 49102 2.0x10% 14x10% 1.1x10%
100 4 31 302 1161 581022 2.3x10% 1.9x10°% 1.5x10°%
Al 5056 100 6 37 230 896 5%10°%2  2.3x10°%2 1.7x10°%  1.4x10°%
n g [24]: Much like in a solid sphere detector, one can measure
SNR= 25.(F) (14T, [QA(1—f2£2)+£2/2]}. the time delayr,— 7, between excitations of the first and
n

4.8 second quadrupole modes on a hollow spherical detector to
' calculate the chirp mass through equation

For SNR= 1 we obtain a minimum detectable valuehg,

which atfg = f is o 5 35 63 [ 5 83— 83| 35
M =2 o= =|————| , (412
) ZSh(f ) 1/2 256 G Tp— T1
(hgm= . (4.9
tm wherew; andw, are the angular frequencies of the first and

second quadrupole modes, respectively. Time delays are of

See Table Il for a few specific examples. For instance, th(?h ;

: e order of a fraction of a second for the hollow spheres
ngarby pu_lsa[22] PSR J0437-4715,_at a dlsta_nc_e of 150 PC.considered in this paper, well within the timing possibilities
might emit at 347 Hz a GW amplitudéptimistically) of of resonant mass detectdi2s]

726 . . .
2X 10", This would give SNR= 100 on a hollow spheri- Another consequence of the multimode and multifre-

cal detector having =100 tons after integrating the signal ¢,,ency nature of a spherically symmetric detector is the pos-
for1y. sibility to determine the orbit orientation by the measurement
of the relative proportion of the two polarization amplitudes,

C. Chirps and thereby the distance to the source and the intrinsic GW

We consider here the interaction of the hollow sphericamplitudes24]. See Figs. 10 and 11 for a specific example
detector with the waveform emitted by a binary system, confeferring to optimally oriented circular orbits.
sisting of either neutron stars or black holes, in the inspiral Because of the Newtonian approximation, Egs11) and
phase. The system, in the Newtonian regime, has a cled#-12 become inaccurate near coalescence. In analogy with
analytic behavior, and emits a waveform of increasing amPrevious analysef23,24, we limit our considerations to the
p||tude and frequency that can sweep up to the kHz range erquency at which there are still five CyCleS remaining in the
frequency. waveform until coalescence. The highest chirp mass values
From the resonant-mass detector viewpoint, the chirp sig-
nal can be treated as a transient GW, depositing energy in a
time-scale short with respect to the detector damping time
[23]. We can then use E@4.6) to evaluate the SNR, where
the Fourier transfornid (f,)) at the resonant frequendy can
be explicitly written as 10

H(fn)=

2
f h(t)cog 27 f,t) dt}
m

J’_

2) 172
f h(t)sin(2=f,t) dt ] , (4.10
with h(t) indicating h, (t) or hy(t). Substituting into Eq. 11
(4.10 the well-known chirp waveforms for an optimally ori-
ented orbit of zero eccentricity in the Newtonian approxima-
tion [18], the SNR for chirp detection 4]

o135 G513 -2Af. 1 1 m, 10
SNR= 15~ §(fy) 2 Me (27T " (41D

FIG. 10. Contours of constant chirp mags. in m;, m, space.
. . . B 35 At each chirp mass corresponds the maximum distanaewhich
Mc is l}5he chirp mass defined aMc=(mimy)* (M1 he chirp can be observed with a SNRO by a 200-ton CUAI
+my) >, wherem; andm, are the masses of the two com- nojiow sphere 6 m in diameter, at its first resonance frequency
pact objects and is the distance to the source. The chirp f,=191 Hz. The reported chirp mass valués units of solar
mass is the only parameter that determines the frequenGyassesand the corresponding maximum distances frg=8.0,
sweep rate of the chirp signal in the Newtonian approximar =214 Mpc(curvea), M.=4.0,r =119 Mpc(curveb), M.=2.6,
tion and can be determined bydmuble passagéechnique r=84 Mpc(curvec), andM.=1.2,r =45 Mpc (curved).



57 HOLLOW SPHERE AS A DETECTOR OF ... 2059

10 : Detectors located some distance apart do not correlate
quite so well because GW’s coming from within a certain
cone about the line joining the detectors will reach one of
them before the other. The falloff in the correlation with
separation is a function of the ratio of the wavelength to the

b separation and has been studied for pairs of bars, pairs of
c interferometer$27,28, and pair of spherical detectoj29].
Assuming two identical large hollow spherical detectors
"y are colocated for optimum correlation, the background will
reach a SNR= 1 if Qg is

QGW: 1079 X

5

200 H 10- 24 Hz™ 1/2

] - 10 X( NEAS ) (20 Hz) 1’2( 107 secj 172
: 1024 Hz 2] Af, tm ’

FIG. 11. Contours of constaM . for the same hollow sphere as
in Fig. 10, observing the chirp at the second resonance frequency (4.16
f,=753 Hz, with SNR=10. The chirp masses and the maximum
distances ar#.=2.0,r =131 Mpc(curvea), M;=1.2,r=86 Mpc  where the Hubble constant has been assumed 100 ®m s
(curve b), and M;=0.9, r=65 Mpc (curve c). If the double- Hollow spherical detectors can set very interesting limits
passage technique is applied, the delay times between the excitatigh the GW background. In particular, following recent esti-
of the first and the second mode by the chirps of the given mass ai@ations based on cosmological string modéB0], it
160 ms(curvea), 373 ms(curveb), and 648 mgcurvec). emerges that experimental measurements performed at the

) _ ) _ level of sensitivity attainable with these detectors would be
reported in the figures are determined by the requirement thafe tests of Planck-scale physics.

the five-cycle frequency of the source be larger than the reso- Equation (4.15 and (4.16 hold for whichever cross-

nant frequencies of the detector. correlation experiment between two GW detectors adjacent
and aligned for optimum correlation. An interesting conse-
D. Stochastic background quence is that the sensitivity of a hollow sphere-

In this caseh(t) is a random function and we assume thatinterferometer observatory will be unprecedented. It can be
its power spectrum, indicated e,(f), is flat and its en- worthwhile to build a hollow spherical mass detector close to

ergy density per unit logarithmic frequency is a fraction & Iarg_e interferometer, like LIGO or VIRGO, to perform sto-
Qew(f) of the closure densitp,. of the Universe: chastic searche1]

d V. CONCLUSIONS
ot = Qcupe. (4.13

In this paper we have been mainly concerned with the
problem of how an elastibollow sphere responds to a GW
signal impinging on it. To address this problem we have
developed an analytical procedure to fully sort out the eigen-
frequencies and eigenmodes of that kind of solid, and then
Sew(f)= 7f_SQGW(f)pC. (4.19 applied it to calculate the GVelbsorption cross sectiofor
arbitrary thicknesses and materials of our solid.

When realistic hypotheses are made regarding the size
and material of a possible GW detector of this shape, we
have seen that a hollow sphere can be advantageous in sev-

Two different detectors with overlapping bandwidiH eral respects. It has all the features associated with its sym-

will respond to the background in a correlated way. The SNRMety, such as omnidirectionality, and the capability to de-

of a GW background in a cross correlation experiment pelermine the source dlirecnon and wave polarization. Also, its
adrupole frequencies are below those of an equally mas-

tween two detectors located near one another and having gak’/e solid sphere, thus making the low-frequency range ac
. . 2 . f - -
power spectral density of nmﬁﬁ(f) and $;(f) is [26] cessible to this antenna with good sensitivity. We have in-

vestigated the system response to the classical GW signal
> 1/4 sources(bursts, chirps, continuous, and stochagstor sev-
Saw ; ; ) ) -
SNR= Aft (4.15 eral sizes and materials, and seen that interesting signal-to-
12 m L . . . . . .
S.S; noise ratios are attainable with such a detector. Also, its
bandwidth partly overlaps with that of the projected large
wheret,, is the total measuring time. interferometer$32,33, and so potentially both kinds of de-

Sew(f) is given by

The measured noise spectrUsqy(f) of a single resonant-
mass detector automatically gives an upper limiSgg,(f)
[and hence td)gw(f)].
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