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Timing with resonant gravitational wave detectors: An experimental test
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We measure the time of arrivalt0 of a force signal acting on a room temperature gravitational wave antenna.
The antenna has a noise spectral density whose shape is a rescaled replica of that predicted for the two
subkelvin antennas located in Italy, once at their sensitivity goal.t0 is expressed ast05tf1kT0 whereT0 is
half the natural period of oscillation of the antenna,utfu<T0/2, andk is an integer. We measure the phase part
tf with an accuracy ofs tf

'174ms/SNR, where SNR is the signal to noise ratio for the signal amplitude. We
also find that, for SNR>20, the error onk is dk!1 so that the total statistical error on the arrival time reduces
to the phase errors tf

. We discuss how this last result can be achieved even for smaller values of the SNR, by
better tuning the modes of the antenna. We finally discuss the relevance of these results for source location and
spuria events rejection with the two subkelvin detectors above.@S0556-2821~98!03404-3#

PACS number~s!: 04.80.Nn, 95.55.Ym
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I. INTRODUCTION

Two subkelvin (T'50 mK), resonant ('1 kHz) gravita-
tional wave antennae aimed at a burst sensitivity ofhmin>3
310220 and a post-detection bandwidth of'50 Hz @1# have
been built in Italy@2#, and they are going to operate in coi
cidence in the near future.

The experiment’s target is to detect bursts from supern
explosions or from coalescence of binary neutron star s
tems. For these kinds of signals, the relatively large ba
width will open the possibility@3# of accurate timing.

Timing information can be used both to locate the sou
@2#, or at least some of its coordinates, and to veto candid
events that are not compatible with light’s speed propaga
@4,5#.

In order to demonstrate the practical feasibility of abs
lute timing with resonant antennae, we have performed
experiment with a room temperature antenna connecte
our standard data analysis system@6#. The antenna is excited
by a force pulse generated by a capacitive actuator, and
time of arrival of the pulse is measured by looking at t
maximum of the output of the Wiener filter.

The detector has a relatively poor sensitivity as compa
to cryogenic ones, but its resonant frequencies and its
detection bandwidth happen to be close to those expecte
the subkelvin detectors at their sensitivity goal. As the tim
accuracy depends only on these parameters, the result
tained with the present room temperature detector can
scaled directly to the subkelvin ones.

The plan of the paper is as follows in Sec. II we brie
describe the properties of signals and noise in gravitatio
wave ~GW! resonant detectors and then, by means of
maximum likelihood approach, we give theoretical pred
tions for the uncertainties in the estimate of the signal a
plitude and time of arrival for those detectors. Sections
570556-2821/98/57~4!/2045~6!/$15.00
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and IV are devoted to the description of the experimen
apparatus and to the experimental results, respectively.
nally, in Sec. V we discuss the relevance of our results
the existing cryogenic antennae.

II. ESTIMATE OF THE TIME OF ARRIVAL

The estimate of the arrival time of a signal in the presen
of Gaussian noise is a well-established problem in sig
analysis@7,8#. In this section we summarize some results th
are relevant for the discussion of a timing experiment w
resonant detectors.

The data consist of a series of samples:

xa5«a1A0f ~ ta2t0! ~2N<a<N!, ~1!

where «a is the ath sample of a Gaussian, time-invarian
zero-mean stochastic process andf (t2t0) is a signal of unit
amplitude arriving at timet0 . A0 is the ‘‘true’’ signal am-
plitude that has to be estimated together witht0 .

In order to give an estimate forA0 and t0 , the method of
maximum likelihood@9# searches for the minimum of th
log-likelihood function,

L~A,t !5 (
a,b52N

N

mab@xa2A f~ ta2t !#@xb2A f~ tb2t !#,

~2!

as a function ofA and t. In Eq. ~2! the matrixmab is the
inverse of the cross correlation matrix^«a«b&5mab

21, where
the angular brackets indicate the mean value.

For any givent, the minimum ofL(A,t) is readily found
at
2045 © 1998 The American Physical Society
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Â~ t !5
(a,b52N

N mabxa f ~ tb2t !

(a,b52N
N mab f ~ ta2t ! f ~ tb2t !

, ~3!

with an error

s
Â

2
~ t !5

1

(a,b52N
N mab f ~ ta2t ! f ~ tb2t !

. ~4!

We assume from now on that, as usually happens in prac
the data span a long enough time interval so that the erro
Eq. ~4! is in practice independent oft: s

Â

2
(t)5s

Â

2
(t0)

5sA
2.

Equations~3! and~4! are fully equivalent to the results o
the Wiener filter method, andÂ(t) can then be considered a
the output of this filter as well.

The minimum ofL(A,t), at A5Â(t), is given by

L~ t !5 (
a,b52N

N

mabxaxb2
Â2~ t !

sA
2 . ~5!

Equation~5! shows that the best estimate for the arriv
time t is the value that maximizes the signal to noise rati

SNR~ t !5UÂ~ t !

sA
U. ~6!

Both Â(t) and SNR(t) are random processes dependi
on the parametert. By substituting Eq.~1! into Eq. ~3! and
by shifting the time axis untilt050, one gets thatÂ(t) can
be written asÂ(t)5A0R(t)1Ar(t). Here the functionR(t)
is given by

R~ t !5
( i ,k52N

N mab f ~ ta2t ! f ~ tb!

( i ,k52N
N mab f ~ ta! f ~ tb!

, ~7!

while Ar(t), the random part ofÂ(t), is a zero-mean random
process that, in the limit whereN→`, becomes also time
invariant with autocorrelation̂Ar(t)Ar(t1t)&5sA

2R(t).
Up to linear terms in the inverse of the ‘‘true’’ signal t

noise ratio SNR05A0 /sA , SNR2(t) can then be expande
as

SNR2~ t !'SNR0
2$R2~ t !12R~ t !@Ar~ t !/A0#%. ~68!

Before proceeding further, it is worth pointing out th
resonant detectors, both in operation or under developm
consist of two or more coupled oscillators with nearby f
quencies. Of these oscillators, one is the fundamental r
nating mode of the detector itself and the others are provi
by some form of resonant electromechanical transdu
@1,2# that converts the signal into an electromagnetic o
The noise results then, at least in the neighborhood of
useful detector bandwidth, both from the narrow band no
due to excitation of those modes by different sources of r
dom force~Brownian noise, back action noise, etc.! and from
the wide band noise due to the detector read out. One
calculate@6# that in this caseR(t) is the superposition of few
exponentially damped oscillating functions, one for each
cillator, with nearby frequencies~Fig. 1!.
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in

l

nt,
-
o-
d
rs
.
e
e
-

an

-

R(t) shows then a series of maxima and minima appro
mately spaced byT0/2, where 1/T0 is the natural frequency
of the detector. The first of these extrema is always locate
t50.

For high enough values of SNR0, at each maximum of the
mathematical functionR2(t) corresponds a maximum of th
random process SNR2(t). Because of the fluctuation of thi
one, the two maxima are not located at the same time va

In the vicinity of theath maximum ofR2(t), attained at
time t5tk , SNR2(t) in Eq. ~68! can be further expanded i
powers oftf5t2tk . By truncating the expansion to secon
order, one can then calculate that SNR2(t) has a maximum,
as a function oftf , at

tfk52
Ȧr~ tk!

A0R̈~ tk!
, ~8!

where Ȧr(tk) stands for the time derivative of the rando
processAr(t) evaluated att5tk andR̈(tk) is the second time
derivative of the functionR(t) at same time.

While R̈(tk) andA0 are just numbers,Ȧr(tk) is a random
variable. As a consequence,tfk is also a random variable
From the standard theory of random variables one then g
for the various mean values, that

^tfk&52
d^Ar~ tk!&/dt

A0R̈~ tk!
50, ~9a!

^Ar~ tk!tfk&52
^Ȧr~ tk!Ar~ tk!&

A0R̈~ tk!
5

Ṙ~0!

A0R̈~ tk!
50, ~9b!

^tfk
2 &5

^Ȧr~ tk!Ȧr~ tk!&

A0
2R̈2~ tk!

52
sA

2R̈~0!

A0
2R̈2~ tk!

'
T0

2

SNR0
24p2uR~ tk!u

.

~9c!

Equations~9a! and ~9b! state that, within the present ap
proximation,tfk is a zero-mean, Gaussian variableindepen-
dentof Ar(tk).

FIG. 1. Pattern of the autocorrelation functionR(t), with v0

55300 rad/s,t0v05200, andv* 5120 rad/s. These paramete
have been measured on the room temperature antenna.
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Equation~9c!, where the final approximate term has be
obtained by usingR̈(tk)'(T0/2p)2R(tk) and R(0)51,
shows that the widths tfk

5A^tfk
2 & of the Gaussian distribu

tion of tfk is much smaller than the spacingT0/2 between
two adjoining maxima and is

s tfk
5

T0

2p3SNRk
, ~10!

with SNRk5R(tk)SNR0 the signal to noise ratio on thekth
maximum. Equation~10! is the classical formula@3# for the
‘‘phase’’ timing of narrow band signals. With this we mea
that if the above timing error is converted to a phase e
sf5(2p/T0)s tf

, this amounts tosfk51/SNRk .
Up to this point, then, the maximum likelihood criterio

gives a discrete series of possible arrival time valuestk
6tfk , spaced roughly byT0/2. For each of these possib
arrival times, the estimate of the amplitudeÂ(tk) is a Gauss-
ian random variable with mean valueA0R(tk) and widthsA .
In order to get a well-defined arrival time, one has then
pick up the valuet* at which the seriesuÂ(tk)u attains its
maximum.

As already stated, for resonant detectors,R(t) can be
written as R(t)5a(t)cos(v0t)1b(t)sin(v0t), with v0 some
center ‘‘carrier’’ angular frequency not more than a few p
cent far from the detector resonant angular freque
2p/T0 . Herea(t) andb(t) are two slowly varying functions
of time that consist of a combination of exponential a
beating notes among the various modes of the ante
transducer-amplifier chain. As a consequence,R(tk), which
attains its maximum attk50 ~which we assume to corre
spond tok50! and which is an even function ofk, can be
expanded, for the first few values ofk, as

R~ tk!'~21!k~12utku/t2v
*
2 tk

2/2!, ~11!

with t andv* two constants that obey 1/t, v* !v0 .
In addition, as for large signal to noise ratios and fora not

too large, Ar(tk)!A0uR(tk)u, then uÂ(tk)u5uA0R(tk)
1Ar(tk)u'A0uR(tk)u1(21)kAr(tk)[A0uR(tk)u1Ar* (tk). It
is easy to calculate that the seriesAr* (tk) has autocorrelation
^Ar* (tk)Ar* (tm)&5sA

2 uR(tk2tm)u.
The seriesuÂ(tk)u can then be considered as made

samples of the ‘‘signal’’A0uR(tk)u buried in the Gaussian
zero-mean noiseAr* (tk) and all the machinery we have ap
plied then to extracttf can in principle be applied again t
evaluatet* .

If this is made, it is straightforward to calculate that t
analogue of the functionR(t) in Eq. ~7! becomesR* (t)
'(12utu/t2v

*
2 t2/2) and two limiting case are given wher

quite different results are obtained.
If for all values of k in Eq. ~10! utku/t is negligible in

comparison tov
*
2 tk

2/2, i.e., if v
*
2 T0t/4@1, thenR* (t)51

2v
*
2 t2/2 has a well-defined second derivative att50 and

one gets that

s t* 5
1

v* 3SNR0
. ~12!
r

o

-
y

a-

f

In the opposite limit wherev
*
2 T0t/4!1 instead, the signa

12utu/t has an infinite second derivative at the origin a
the linear expansion used to get Eqs.~8! or ~12! cannot be
used anymore. To estimates tb

in this case, one can use th

following argument:uÂ(tk)u is approximately a Markov se
ries. ThenuÂ(tk)u5uÂ(0)u(12utku/t)1«sAA2utku/t, where
« is a zero-mean Gaussian variable with unit variance in
pendent of uÂ(0)u. The probability then thatuÂ(tk)u
>uÂ(0)u is the same as the probability that«
>SNR0Autku/2t. The probability thatuÂ(tk)u>uÂ(0)u and/or
uÂ(t2k)u>uÂ(0)u is approximately twice as much, i.e., th
same as the probability thatu«u>SNR0Autku/2t. In summary,
this crude reasoning brings us to the result thatt* is approxi-
matelyx2 distributed, with a standard deviation

s t* 5
2t

SNR0
2, ~13!

a result that can be found, based on more rigorous grou
in Ref. @8#

As already stated, the timestk are, within a few percent
spaced byT0/2, i.e., tk5kT0/2. The random variablek has
then a standard deviation

sk5
v0

pv* SNR0
S v0

v*
D 2

!
p

2
tv0 , ~14a!

sk5
2&v0t

pSNR0
2 S v0

v*
D 2

@
p

2
tv0 , ~14b!

and whensk!1, the timing error reduces to the phase co
tribution only in Eq.~10!.

In summary, the time of arrival,t, is expected to be a
zero-mean random variable with an approximate distribut
made of a series of Gaussian peaks with Gaussian-distrib
relative amplitudes:

F~ t !' (
m52`

`
v0SNRm

2psk
e2$@v0SNRm~ t2mT/2!#21~m/sk!2%/2,

~15!

where the approximation@10# has a better accuracy towar
low absolute values ofk.

III. EXPERIMENTAL APPARATUS
AND MEASUREMENT METHODS

To experimentally test the above ideas, we have use
room temperature replica of the subkelvin AURIGA dete
tor. The sensitive part of the apparatus is a 2.3-ton cylind
made of 5056 aluminum alloy, suspended to a single cop
wire. The fundamental mode of the antenna is at'850 Hz.
A multiple-stage vibration attenuator provides, at this fr
quency, an attenuation of about 150 dB, which is enough
suppress the environmental noise below the thermal vib
tions of the fundamental mode of the bar. The readout c
sists of an electromechanical capacitive, high mass tra
ducer@2# and a very low noise~field effect transistor FET!
preamplifier@11#.

Briefly, the transducer consists of an aluminum disk r
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idly connected to one of the bar end faces. The disk for
the first plate of a capacitor, the second plate of which
another disk parallel and very close to the first o
('100mm). This last disk is mechanically connected to t
bar by just a thin axial rod and can thus vibrate in its fir
‘‘mushroom’’-shaped, symmetrical mode. As this mode
coupled to the oscillations of the bar, these modulate
transducer capacitance. The capacitor is charged to a ch
of about 1.6mC by means of a voltage generator, which
then disconnected. The capacitance oscillation results the
a voltage signal across the capacitor.

The signal is led to a field effect transistor~FET! preamp-
lifier with a 12.560.1 GV input impedance and measure
noise temperature and resistance ofTn>100 mK and Rn
>2.4 MV, respectively@12#. The signal is further amplified
by a commercial low noise amplifier.

The measurements consist of the following procedu
The bar is excited by a very short pulse of force with kno
amplitude and time of arrival. The resulting output signal
then collected and analyzed in order to estimate, via a s
able processing algorithm, the amplitude and time of arriv
The true and estimated values for both parameters are
compared in order to evaluate the measurement errors.

To apply the force pulse, a force actuator is mounted
the opposite side of the bar. This device is just like the tra
ducer except that its first symmetrical mode is found
'2800 Hz, well above the resonant frequency of the
tenna, and that the capacitor gap is wider~200mm! than that
of the transducer. The force pulse is generated by feedin
top of the dc bias, via a decoupling capacitor, a voltage

nal V(t)5V0e2t 2/t 0
2
cos(v0t), with v0'2p kHz and t0

'1 ms from a programmable signal generator. The resul
force pulse f (t)5(E0 /C)V(t) thus crudely simulates th
shape of the signal expected from a gravitational colla
event.

The signal generator is triggered by an external transis
transistor logic~TTL! signal~Fig. 2!, which is also sent to a
GPS clock that returns the universal time~UT! to the acqui-
sition workstation up to a precision of a few hundreds of
In this way we are able to tag each impulsive signal w
comparable accuracy.

The amplified analog signal is then sampled at 4.9 k

FIG. 2. Scheme of the excitation and readout systems for tim
measurements. The TTL triggering signal is sent both to the s
thesized function generator, which excites the bar trough the
bration transducer, and to the GPS clock, which provides the t
tag associate with the event. The amplified signal from the reso
capacitive transducer is digitized by the analogue to digital c
verter ~ADC!, and its samples are tagged by the same GPS c
with an accuracy of about 0.1ms.
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and converted into an 18 effective bit digital signal which
stored on 4.5 Gbyte magnetic tapes. Because of the pres
of analog and digital filters on the acquisition line, a delay
introduced, which has been measured to be 1.
60.001 ms.

The pulse arrival time is estimated by filtering data
discussed in Sec. II. Moreover, to keep track of antenna
rameter drift due to slow changes of temperature and b
electric field, the Wiener filter has been made adaptive:
filter parameters~zeros and poles of the transfer function! are
periodically adjusted by maximizing the signal to noise ra
of a high amplitude calibration pulse. When the maximu
SNR is reached, the filter gives the correct amplitude a
arrival time of any impulsive event.

For each SNR value we have collected at least a
hundreds of events. At low a SNR~i.e., SNR'6!, when
measured arrival times are spread over many peaks (>10),
we have collected more than 5000 events.

IV. TIMING RESULTS

With reference to Fig. 1, we have separated the unc
tainty in the estimate of the arrival time into the ‘‘phas
error’’ tfk

and the ‘‘peak error’’ k by writing t̂5tfk

1kT* , where k is the nearest integral value to the rat
t̂/T0 . There is no ambiguity in assigning an event to t
corresponding peak order, since peaks are well separ
from each other.

In Fig. 3 we show the joint histogram forfk and k for
SNR56. We find that within the statistical uncertainty the
is no correlation between the mean and variance oftfk

andk

at least fork<10.
In Fig. 4 we report the standard deviation oftfk

for events

in the central peak (k50) at different SNR’s. The solid line
represents the fit to the experimental data of the power

g
n-
li-
e
nt
-
k

FIG. 3. Complete ‘‘peak’’ vs ‘‘phase’’ distribution of arriva
times with SNR56 and over 5000 trials; the ‘‘true’’ arrival time is
t50. The phase error is given in unit of fraction of the periodT0

5178ms. Notice that the phase error never exceedsT0/4.
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P/SNR, from which we obtainP517863 ms. This value
has to be compared with 1/v05185ms.

In Fig. 5 we report the histogram of the distribution ofk,
which is just the projection of the bidimensional histogra
of Fig. 3 over thek axis. Again, those data refer to SN
56.

In Fig. 6 we plot the standard deviationsk of k as a
function of the SNR. The error bar associated with each d
point of Fig. 6 has been estimated as follows. For S
<10, k is spread over many integer values and the stand
Gaussian estimator of the variance is a reasonable choic
this case the variance of the estimate has a relative e
'A(2/N), where Ne is the total number of events in th
histogram.

At a high SNR (.10), most of the events fall into th
central peak, which gives no contribution to the estimate
the variance, and hence the error on the latter must be m
higher than the Gaussian estimate. Assuming a Poisson

FIG. 4. Fit to the experimental data~solid line! and theoretical
~dotted line! curve of the ‘‘phase’’ standard deviationsf as a func-
tion of the SNR. The experimental points refer to the central p
events.

FIG. 5. ‘‘Peak’’ distribution of the arrival times obtained wit
SNR56.
ta

rd
In
or

f
ch
is-

tribution for the rare events falling outside the central pe
we calculate that the relative error onsk is of the order of
1/ANe2Ne0, whereNe0 is the number of events withk50.

V. CONCLUSIONS

The experimental results obtained above support qua
tatively the standard theory presented in Sec. I. To be s
cific the result show that~1! tfk

is independent ofk, ~2! that
Eq. ~10! for the phase noise is obeyed, and~3! that for the
kind of ‘‘one beat note’’ autocorrelation function w
achieved with our room temperature antenna Eqs.~14! hold.
It must be noted that the room temperature detector par
eters were found@13# to be v* '120 rad/s andt0'75 ms.
Heret0 is the decay time of the two exponentials that ent
in R(t). However, the parametert in Eq. ~11! is a compli-
cated function ofv* andt0 and one can estimate that in ou
caset@t0 so that we are fully in the regime of Eq.~14a!,
v

*
2 T0t/4.1. It can be seen from Fig. 6 that experimen

data indeed reasonably fit the theoretical behaviour ofsk vs
SNR predicted by Eq.~14a!, the slight, barely significan
excess of experimental data with respect to the theore
curve, being fully accounted for by the imperfections of t
filter mask.

The overall timing ability of the room temperature a
tenna is then such that for SNR.20 the total uncertainty on
the arrival time iss t'174ms/SNR.

Being the antenna in the regime of Eq.~14a!, the uncer-
tainty is mainly dominated by the nonoptimal matching
the transducer to the antenna itself and to a comparati
poor performance of our FET amplifier as compared,
instance, to a superconducting quantum interference de
~SQUID! one. All this brings a comparatively low value fo
v* .

The transducer used in the present experiment has b
indeed optimized to work at low temperature with a lo
noise SQUID amplifier. Matching to those condition
yielded a mass ofM52.17 kg and an unperturbed frequen
value for the transducer ofn5875 Hz at room temperature
An optimal choice for the room temperature detector wo
have yielded a much lower value for the mass,M

k

FIG. 6. Experimental~d! and theoretical~line! values of the
‘‘peak’’ error as a function of the SNR. Ifsk<1 ~i.e., SNR.20!,
the total uncertainty of the arrival time reduces to the phase co
bution of Fig. 3. The line represents the theoretical prediction of
~14a!.
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2050 57V. CRIVELLI-VISCONTI et al.
'0.05 kg. This detuning is the source of the abov
mentioned limitation.

When the same transducer is assembled on AURIGA
if a SQUID noise performance corresponding to a noise
ergy density per unit frequency ofe'100\ is attained, the
detector will havev* '200 rad/s. This will give the sam
timing performance as that achieved above, but for S
.12.

We believe that the main result of our test is the prospe
it opens for the near future, when different kinds of detect
will be operating together. For the class of impulsive gra
tational signals~SN explosions, to give an example! without
a characteristic waveform pattern, comparison between
ferent detectors is the only way to reject fake events and g
information on the signal, and accurate timing on each
them is theconditio sine qua non.

At the moment five resonant bars are operating wo
wide, so that simple triangulation can be performed to de
mine the source position by measuring time-of-flight dela
between different detectors. The timing precision we ha
reached is sufficient to apply this method even at regio
A.
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scales, as for the Italian gravitational wave detectors A
RIGA, NAUTILUS, and VIRGO.

High precision absolute timing, however, opens the w
to a more accurate method of analysis of gravitational s
nals. In fact, it has been shown@2# that with at least six
resonant bars one can reconstruct on the same wave fron
amplitude and direction of propagation of the wave, in ord
to solve ‘‘the inverse problem’’ and test the Riemann te
sor’s transversality and tracelessness. Source position
also be determined within few arcmin. This method can
easily extended to the upcoming global network of bars~AU-
RIGA, NAUTILUS! and interferometers@~TAMA 300, GEO
600, Laser Interferometric Gravitational Wave Observato
~LIGO!, VIRGO#, which all are expected to have the sam
sensitivity at 1 kHz and will thus provide the first actu
gravitational wave observatory.

In addition, correlation between instruments operating
different physical principles, such as resonant bars and in
ferometers, is very important not only because it provide
way to compare independently generated data, but also
cause different detectors have different noise sources
hence spuria rejection will be much more reliable.
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