Decay of *Z* **into three pseudoscalar bosons**

E. Keith and Ernest Ma

Department of Physics, University of California, Riverside, California 92521 (Received 8 August 1997; published 24 December 1997)

We consider the decay of the *Z* boson into three pseudoscalar bosons in a general two-Higgs-doublet model. Assuming m_A to be very small, and that of the two physical neutral scalar bosons h_1 and h_2 , A only couples to *Z* through h_1 , we find the $Z \rightarrow AAA$ branching fraction to be negligible for moderate values of tan β $\equiv v_2/v_1$, if there is no $\lambda_5(\Phi_1^{\dagger} \Phi_2)^2$ +H.c. term in the Higgs potential; otherwise there is no absolute bound but very large quartic couplings (beyond the validity of perturbation theory) are needed for it to be observable. $[S0556-2821(98)04103-4]$

PACS number(s): 14.80.Cp, 12.60.Jv

If the standard $SU(2) \times U(1)$ electroweak gauge model is extended to include two scalar doublets, there will be a neutral pseudoscalar boson *A* whose mass may be small. In that case, the decay of the *Z* boson into 3 *A*'s may not be negligible. This process was first studied $[1]$ in a specific model [2]. It was then discussed $[3]$ in a more general context. More recently, it has been shown $[4]$ that there is a lower bound on m_A of about 60 GeV in the minimal supersymmetric standard model (MSSM), hence the decay *Z*→*AAA* is only of interest for models with two scalar doublets of a more general structure. Even in the context of supersymmetry, this is possible $[5]$ if there exists an additional $U(1)$ gauge factor at the TeV scale.

In this paper we consider a general two-Higgs-doublet model and identify the conditions for which the decay *Z→AAA* may be enhanced, despite the nonobservation of $e^+e^- \rightarrow h+A$, where *h* is either one of the two neutral scalar bosons of the model. We will show that in principle this decay is limited only by the scalar coupling $\lambda_1 - \lambda_2$ as defined below. However, if $\lambda_5=0$, which is true in a large class of models $[6]$, then it may be bounded as discussed below.

Let the Higgs potential *V* for two $SU(2)\times U(1)$ scalar doublets $\Phi_{1,2} = (\phi_{1,2}^+, \phi_{1,2}^0)$ be given by

$$
V = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1)
$$

+ $\frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)$
+ $\lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \frac{1}{2} \lambda_5^* (\Phi_2^{\dagger} \Phi_1)^2,$
(1)

where the discrete symmetry $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$ is only broken softly by the m_{12}^2 term. Assume λ_5 to be real for simplicity. Define tan $\beta = v_2 / v_1$ as is customary, where $v_{1,2} = \langle \phi_{1,2}^0 \rangle$ are the usual two nonzero vacuum expectation values. The pseudoscalar neutral Higgs boson is then

$$
A = \sqrt{2}(\sin \beta \text{ Im } \phi_1^0 - \cos \beta \text{ Im } \phi_2^0), \tag{2}
$$

with mass given by

$$
m_A^2 = -m_{12}^2(\tan \beta + \cot \beta) - 2\lambda_5 v^2, \tag{3}
$$

where $v^2 = v_1^2 + v_2^2$, and the charged Higgs boson is

$$
h^{\pm} = \sin \beta \phi_1^{\pm} - \cos \beta \phi_2^{\pm}, \qquad (4)
$$

with

$$
m_{h^{\pm}}^2 = m_A^2 + (\lambda_5 - \lambda_4)v^2.
$$
 (5)

To get the maximum $Z \rightarrow AAA$ rate, we let $m_A = 0$, i.e.

$$
m_{12}^2 = -2\lambda_5 v^2 \sin \beta \cos \beta. \tag{6}
$$

Then the mass-squared matrix spanning the two neutral scalar Higgs bosons $\sqrt{2}$ Re $\phi_{1,2}^0$ is given by

$$
\mathcal{M}^2 = 2v^2 \left[\begin{array}{cc} \lambda_1 \cos^2 \beta + \lambda_5 \sin^2 \beta & (\lambda_3 + \lambda_4) \sin \beta \cos \beta \\ (\lambda_3 + \lambda_4) \sin \beta \cos \beta & \lambda_2 \sin^2 \beta + \lambda_5 \cos^2 \beta \end{array} \right].
$$

(7)

Consider now the following two linear combinations:

$$
h_1 = \sqrt{2}(\sin \beta \text{ Re}\phi_1^0 - \cos \beta \text{ Re}\phi_2^0),
$$
 (8)

$$
h_2 = \sqrt{2}(\cos \beta \operatorname{Re} \phi_1^0 + \sin \beta \operatorname{Re} \phi_2^0). \tag{9}
$$

It is well known that h_1 couples to AZ but not ZZ , whereas *h*² couples to *ZZ* but not *AZ*. However, the process $e^+e^- \rightarrow h+A$ is in general possible because *h* will normally have a h_1 component, thereby putting a constraint on m_A if kinematically allowed. For our purpose, we will require h_1 and h_2 to be mass eigenstates, in which case m_A is uncontrained by the nonobservation of $e^+e^- \rightarrow h+A$ even if m_2 is small, as long as m_1 is larger than the e^+e^- center-of-mass energy. This allows us to have the maximum effective coupling of *Z* to *AAA* as shown below.

The requirement that h_1 and h_2 be mass eigenstates leads to the condition

$$
\lambda_2 \sin^2 \beta - \lambda_1 \cos^2 \beta + (\lambda_3 + \lambda_4 + \lambda_5)(\cos^2 \beta - \sin^2 \beta) = 0.
$$
\n(10)

As a result, the masses of $h_{1,2}$ are given by

57 2017 © 1997 The American Physical Society

FIG. 1. One of 3 diagrams for the decay *Z→AAA*. The other 2 are obvious permutations.

$$
m_1^2 = [\lambda_1 \cos^2 \beta + \lambda_2 \sin^2 \beta + \lambda_5 - \lambda_3 - \lambda_4]v^2, \quad (11)
$$

$$
m_2^2 = \left[\lambda_1 \cos^2 \beta + \lambda_2 \sin^2 \beta + \lambda_5 + \lambda_3 + \lambda_4\right]v^2. \quad (12)
$$

Note that in the MSSM, Eq. (10) cannot be satisfied in the presence of radiative corrections.

We now extract the h_1AA coupling from Eq. (1), using Eqs. (2) and (8) . We find it to be given by

$$
\frac{\sin 2\beta}{2\sqrt{2}}(\lambda_1 - \lambda_2)v, \qquad (13)
$$

where Eq. (10) has been used. As a function of β , this expression is obviously maximized at $\sin 2\beta = \pm 1$. On the other hand, our conditions so far do not limit the combination $\lambda_1 - \lambda_2$, hence there is no absolute bound on *Z* \rightarrow *AAA* in this general case.

Let us consider the case $\lambda_5=0$. This is natural in a large class of models where the two Higgs doublets are remnants $[6]$ of a gauge model larger than the standard model such that they are distinguishable under the larger symmetry. In that case, we have

$$
m_1^2 = 2(\lambda_1 - \lambda_3 - \lambda_4)v^2 \cos^2 \beta = 2(\lambda_2 - \lambda_3 - \lambda_4)v^2 \sin^2 \beta,
$$
\n(14)

and we can rewrite (13) as

$$
-\frac{m_1^2}{v\sqrt{2}}\cot 2\beta.
$$
 (15)

The above expression appears to be unbounded as $\sin 2\beta \rightarrow 0$. However, that would require very large quartic scalar couplings. This can be seen two ways. First, since (15) is equal to (13) , we need an extremely large value of $\lambda_1 - \lambda_2$. Second, from Eq. (14), we see also that if sin β is small, then $\lambda_2 - \lambda_3 - \lambda_4$ has to be big, and if cos β is small, then $\lambda_1 - \lambda_3 - \lambda_4$ has to be big. Thus we will choose moderate values of tan β in (15) for the following discussion.

In Fig. 1 we show the diagram for the decay *Z→AAA* with an intermediate virtual h_1 . To maximize this rate, we minimize m_1 to be just above the maximum experimental e^+e^- center-of-mass energy, which is 172 GeV up to now but will soon be 183 GeV. As for h_2 , it interacts exactly as the one Higgs boson of the standard model, from which we have the experimental limit $[7]$ of m_2 >65 GeV. However, m_2 is not directly involved in the h_1AA coupling here. Note also that λ_4 by itself must be large and negative so that $m_h \pm$ of Eq. (5) can be greater than $m_t - m_b$ for $m_A = 0$, so as to prevent the decay $t \rightarrow b + h^+$. This condition is not satisfied in the MSSM where $\lambda_4 = -g_2^2/2$, hence $m_A = 0$ is not allowed there $[4]$.

Assuming $\lambda_5=0$ and using Eq. (15) with $m_1=180$ GeV and $|cot 2\beta|=1$ (i.e. tan $\beta=0.4$ or 2.4), we now calculate the $Z \rightarrow AAA$ decay rate, following Ref. [1]. The amplitude is given by

$$
\mathcal{M} = g \frac{m_1^2 \sqrt{2}}{v} \left[\frac{\epsilon \cdot k_1}{(p - k_1)^2 - m_1^2} + \frac{\epsilon \cdot k_2}{(p - k_2)^2 - m_1^2} + \frac{\epsilon \cdot k_3}{(p - k_3)^2 - m_1^2} \right],
$$
\n(16)

where $g_Z = e/\sin \theta_W \cos \theta_W$, *p* is the four-momentum of the *Z* boson, and $k_{1,2,3}$ are those of the *A*'s. The effective coupling used in Ref. $[1]$ is now determined to be

$$
\lambda_{\rm eff} = \frac{m_1^2 \sqrt{2}}{v^2} \approx 1.5. \tag{17}
$$

Using the estimate of Ref. [1], this *Z*→*AAA* rate is then about 1.0×10^{-7} GeV. Hence its branching fraction is about 4×10^{-8} which is clearly negligible. To obtain a branching fraction of 10^{-6} , we need cot $2\beta=5$ (i.e. tan $\beta=0.1$ or 10). In this case, either $\lambda_1 - \lambda_3 - \lambda_4$ or $\lambda_2 - \lambda_3 - \lambda_4$ in Eq. (14) has to be about 53.5. If $\lambda_5 \neq 0$, then we cannot use Eqs. (14) and (15) , but Eq. (13) is still valid. To obtain a branching fraction of 10^{-6} , we will then need $|\lambda_1 - \lambda_2|$ to be about 53.5. Thus in both scenarios, one or more quartic scalar couplings have to be very large and beyond the validity of perturbation theory.

If h_1 and h_2 are not exact mass eigenstates, then there is an additional contribution from $h_1 - h_2$ mixing which is necessarily very small from the constraint of experimental data if m_2 is below 172 GeV. The h_2AA coupling is given by

$$
\frac{v}{\sqrt{2}} \left(\frac{m_2^2}{2v^2} - 2\lambda_5 \left[1 - \sin^2 \beta \cos^2 \beta \right] \right). \tag{18}
$$

If $\lambda_5=0$, this expression is bounded independent of tan β and the overall contribution (including the small $h_1 - h_2$ mixing) is negligible. If $\lambda_5 \neq 0$, then its value has to be huge for the process to be observable.

The reason that $\Gamma(Z \rightarrow A A A)$ is so small is twofold. One is that with the higher energy reached by the CERN $e^+e^$ collider LEP2, the nonobervation of $Z \rightarrow h + A$ forces m_1 to be much greater than M_Z . The other is that for $m_1 \ge M_Z$, the leading term in *M* vanishes because $\epsilon \cdot (k_1 + k_2 + k_3) = 0$, resulting in a very severe suppression factor $[1]$. Our conclusion is that the decay *Z→AAA* is not likely to be observable in a general two-Higgs-doublet model with parameters in the perturbative regime.

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

- [1] T. V. Duong and E. Ma, Phys. Rev. D 47, 2020 (1993).
- [2] E. Ma, Phys. Rev. Lett. **68**, 1981 (1992).
- [3] D. Chang and W.-Y. Keung, Phys. Rev. Lett. **77**, 3732 (1996).
- [4] E. Keith, E. Ma, and D. P. Roy, Phys. Rev. D **56**, 5306 (1997).
- [5] E. Keith and E. Ma, Phys. Rev. D **56**, 7155 (1997).
- [6] E. Ma and D. Ng, Phys. Rev. D **49**, 569 (1994).
- [7] G. Mikenberg, in *Proceedings of the 17th International Symposium on Lepton-Photon Interactions*, Beijing, China, 1995, edited by Zhi-Peng Zheng and He-Sheng Chen (World Scientific, Singapore, 1996), p. 593.