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Universal behavior of multiplicity differences in the quark-hadron phase transition
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Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, Oregon 97403-5203
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The scaling behavior of the factorial moments of the differences in multiplicities between well separated
bins in heavy-ion collisions is proposed as a probe of the quark-hadron phase transition. The method takes into
account some of the physical features of nuclear collisions that cause some difficulty in the application of the
usual method. It is shown in the Ginzburg-Landau theory that a numerical valueg of the scaling exponent can
be determined independent of the parameters in the problem. The universality ofg characterizes the quark-
hadron phase transition, and can be tested directly by appropriately analyzed data.@S0556-2821~98!05103-0#

PACS number~s!: 13.85.Hd, 24.60.Ky
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I. INTRODUCTION

The study of multiplicity fluctuations as a phenomen
logical manifestation of the quark-hadron phase transit
~PT! has been pursued in recent years in the framework
the Ginzburg-Landau~GL! formalism for both second-orde
@1–3# and first-order@4–6# PTs. In both cases scaling beha
iors of the factorial moments have been found and are c
acterized by scaling exponentsn. The value of n for a
second-order PT is independent of the details of the GL
rameters. It therefore provides a distinctive signature for
existence of a quark-gluon plasma, if its transition to hadr
is of the second order@7#.

The experimental verification ofn has not been carried
out so far in heavy-ion collisions although it has be
checked to a high degree of accuracy in quantum optics@8#.
There are a number of reasons for the difficulties, which w
be described below. The aim of this paper is to devis
method to circumvent the obstacles that stand in the wa
extracting the signal from the experimental data. In so do
we also broaden the scope of the analysis to include asp
of wavelets and correlations, in addition to incorporati
some evolutionary properties of heavy-ion collisions that
particularly relevant to hadron production during PT.

Let us now examine the difficulties in analyzing mul
plicity fluctuations in heavy-ion collisions. The factorial mo
ments that have been suggested to quantify the fluctuat
are defined by@9#

Fq5
^n~n21!•••~n2q11!&

^n&q , ~1!

where the averages are performed over a distributionPn of
the multiplicitiesn in a bin of sized. Note thatn must be
>q in order for an event to contribute toFq , for which q is
usually an integer ranging from 2 to 5. Asd is decreased, the
average multiplicitŷ n& in a bin decreases, and may becom
!q in a hadronic collision. ThusFq measures the tail end o
the distributionPn , where n@^n&, i.e., large multiplicity
fluctuations. Intermittency refers to the power-law depe
dence ofFq on d @9#:

*Email address: hwa@oregon.uoregon.edu
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Fq}d2wq, ~2!

a behavior that has been found to be ubiquitous in hadro
and leptonic processes@10#. However, in nuclear collisions
the situation is very different.

In the first place the average multiplicity in an event
nuclear collisions is so high that even in bins of smalld the
values ofn are large compared to the orderq in Eq. ~1! that
has been examined experimentally. Thus, unlike hadro
and leptonic processes, the existent nuclear data have
been analyzed to study large multiplicity fluctuations, f
which q must be increased to values@^n& in small bins. The
momentsFq for q53, 4, and 5 that have been determin
are dominated by contributions from the lower-order cor
lations. This point has been emphasized by Sarcevic and
laborators@11,12#, where the nuclear data on the cumulan
Kq are shown to be consistent with zero forq>3. Whether
Kq acquire nonvanishing values at smallerd ~so that ^n&
!q! is not known. Thus, until the experiments can be i
proved to render the analysis at very smalld feasible, a new
method must be devised to circumvent this difficulty of e
tracting dynamical information at medium values ofq. Our
strategy is to consider the distribution of the differences
multiplicities between bins and to examine the scaling
havior of its moments.

Another difficulty associated with the problem of linkin
multiplicity fluctuations to the dynamics of phase transiti
is that the particles are integrated over the entire dura
when quarks turn into hadrons, while the system underg
an expansion. In a second-order PT the fluctuations in h
ronization can be large relative to the average, but that a
age is over a short period nearTc where hadronization is no
robust. When integrated over the whole history of t
nuclear collision process, such fluctuations may well be
eraged out, leaving no discernible effect at the detec
which collects all the particles produced in an event. T
problem is present even if there is no thermalization of
hadrons in the final state, which we shall assume in orde
focus our investigation here. Our present method is to ap
the GL theory in increments of time when hadrons are p
duced nearTc and to integrate the production process ov
the entire duration to yield the measurable multiplicity flu
tuations. Our aim is to show that with appropriate care
1831 © 1998 The American Physical Society
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1832 57RUDOLPH C. HWA
treating the moments certain scaling behavior persists
characterizes the dynamics of phase transition.

Our result reveals a new scaling exponentg, different
from the one,n, found in Refs.@1,2#. It is not a revision ofn,
but a new exponent, since different quantities are inve
gated. Independent of the theoretical considerations unde
ing this work, the proposed moments can be determined
perimentally. Nuclear data should be analyzed in the w
suggested, even if the PT is not an issue. If the scaling
havior is found, but the scaling exponent does not agree w
the predictedg, it would not only imply that there has no
been a PT of the GL type, but also present a numerical
jective for a successful hadronization model to attain
heavy-ion collisions.

II. MULTIPLICITY DIFFERENCE CORRELATORS

To overcome the problem of high multiplicity per bin i
heavy-ion collisions, we introduce the factorial moments t
we shall refer to as multiplicity difference correlato
~MDCs!. They are a form of hybrid of factorial correlator
@9# and wavelets@13#. MDCs are not as elaborate as eith
one of the two separately, but are simpler combinations
the two, possessing the virtues of both.

Let us start with a brief look at the application of wave
analysis to multiparticle physics@13,14# and astrophysics
@15#. Given any event, the structure of a spatial pattern,
emplified here by a one-dimensional functiong(x), can be
analyzed by a multiresolution decomposition, using the ba
functionsc jk

H (x) such that the wavelet coefficients are

Wjk5E
0

L

dx c jk
H ~x!g~x!, ~3!

whereL is the domain ofg(x) being analyzed. This is like a
Fourier transform, except that instead of the exponential
tor exp(inpx/L), one uses the Haar wavelets

c jk
H ~x!5cH~2 j x2k!, ~4!

where

cH~x!5H 1, 0<x,1/2,
21, 1/2<x,1,
0, elsewhere.

~5!

The basis functionc jk
H (x) has a scale indexj and a transla-

tion index k, which enable the wavelet analysis to identi
the location and scale of an arbitrary fluctuation ofg(x) in
terms ofWjk @16#.

While Eq. ~3! and other transforms like it are very pow
erful and have various virtues, such as their invertibility, th
offer more than what is needed at this point in our search
a measure of the multiplicity fluctuations in heavy-ion col
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sions that can convey the signature of phase transition
complete set ofWjk records all the information in the spatia
pattern in an event, whereas we look for an efficient way
capturing some general features averaged over all event

The Haar wavelets, however, contain some features
we regard as important ingredients for an improvement
the usual factorial moments and correlators@9,10,17#. For a
fixed set of the indicesj andk, we have

c jk
H ~x!561 for xPx6, ~6!

where

x15H xuk22 j<x,S k1
1

2D22 j J ,

x25H xuS k1
1

2D22 j<x,~k11!22 j J ,

and so,

Wjk5n12n2 , n65E
x6

dx g~x!. ~7!

It is the difference between the contributions in the neig
boring bins,x1 andx2 . In some wavelet analyses momen
that involve sums overk are studied to reveal scaling beha
iors in j @13–15#. That can be done for one event, sometim
referred to as horizontal analysis. For our purpose in w
follows, we prefer to emphasize first the vertical analys
i.e., we average over all events for fixed bins. For multip
ticle productiong(x) would be the particle density andn6

the multiplicities in the binsx6 . Studying the difference
n12n2 of neighboring multiplicities is a way to overcom
the problem of high multiplicity per bin without abandonin
the focus on multiplicity fluctuations.

Once we consider multiplicity differences, there is no re
son why we should restrict the two bins to only the neig
boring ones. LetD be the distance between two bins, each
sized, and letn1 andn2 be the multiplicities in those bins in
a given event. Definem to be the multiplicity difference,m
5n12n2 . We shall be interested in the distributio
Qm(D,d) after sampling over many events at fixedD andd;
i.e., Qm is the probability of detecting multiplicity difference
m between the two bins. The factorial moments we sh
study are the MDCs:

Fq5
f q

f 1
q , f q5 (

m5q

`

m~m21!•••~m2q11!Qm . ~8!

They are not the same as the Białas-Peschanski~BP! correla-
tors, which are normalized products of factorial moments
multiplicities in two bins, averaged over all events@9#,
Fq1q2
5

^n1~n121!•••~n12q111!n2~n221!•••~n22q211!&

^n1&
q1^n2&

q2
, ~9!
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but the two are similar to the extent thatn1 and n2 are the
multiplicities in the two bins separated byD. Here Fq1q2

have been found to depend onD, but not ond @10#, butFq as
defined in Eq.~8! will depend on both.Fq differ from Fq
defined in Eq.~1! in that they are the moments of the mul
plicity difference distribution~MDD! Qm(D,d), which is a
generalization of the usual multiplicity distribution in a wa
that incorporates the virtues of both wavelets and correlat

Before we enter into the theoretical description of t
MDD Qm in the following sections, we note that the expe
mental determination ofFq for hadronic and nuclear colli
sions should be performed independent of theory. Their
pendences onD andd will pose a challenge to any model o
such collisions. Our concern in this paper is to make a t
oretical prediction of what should be observed when ther
a quark-hadron PT. But if there is no PT, the properties ofFq
will remain as valuable features of multiparticle producti
that a good model of soft interaction must explain.

III. STATISTICAL AND DYNAMICAL FLUCTUATIONS

Although our aim is to study the nature of the fluctuatio
due to quark-hadron PTs in heavy-ion collisions, we be
with a formulation that is more generally valid for any ha
ronic or nuclear collisions. The multiplicities in the two bin
discussed in the preceding section fluctuate both statistic
and dynamically. Focusing on just the statistical part first a
using, as usual, the Poisson distributionPni

for it, we have
the statistical MDD

Pm~s1 ,s2!5 (
n1 ,n2

Pn1
~s1!Pn2

~s2!dm2n11n2
, ~10!

wheres1 ands2 are the average multiplicities in the two bin
and

Pni
~si !5

1

ni !
si

nie2si. ~11!

Note that, unlike the usual multiplicity,m can be both posi-
tive and negative. In fact, the sums in Eq.~10! can be ana-
lytically performed, yielding

Pm~s1 ,s2!5~s1 /s2!m/2I m~2As1s2!e2s12s2, ~12!

whereI m is the modified Bessel function.
In the following we shall not assign any intrinsic prope

ties to the two bins and consider only the absolute differe
between their multiplicities: i.e.,

m5un12n2u. ~13!

Since I m is symmetric underm↔2m, we have, from Eq.
~12! with m>0,

Pm~s1 ,s2!5coshS m

2
ln

s1

s2
D I m~2As1s2!e2s12s2~22dm0!.

~14!

There is a discontinuity atm50 because for allm.0 there
is reflection of2m in Eq. ~12! to 1m. Note thatPm is
properly normalized toSm50

` Pm51.
s.

e-

-
is

n

lly
d

e

If s1 ands2 are large, thenPni
(si) may be well approxi-

mated by Gaussian distributions, andPm would also be
Gaussian with a width proportional to (s1s2)1/4. It is because
of this reduced width that we consider MDDs: As discuss
in Sec. I, we need smaller values ofm to render lower-order
moments effective in measuring the fluctuations. Ifs1 ands2
are small, thenPm becomes Poissonian also. For that reas
we shall consider factorial moments ofPm , since the statis-
tical fluctuations can thereby be filtered out@9#. In both ex-
perimental analysis and theoretical consideration, the
width d is to be varied so thatsi will range over both large
and small values; hence, no approximation ofPm will be
made.

We now introduce the dynamical component of the flu
tuations. Denoting it byD(s1 ,s2,D,d) we have, for the ob-
servable MDD,

Qm~D,d!5E ds1ds2Pm~s1 ,s2!D~s1 ,s2 ,D,d!. ~15!

In essence this is a double Poisson transform of the dyna
cal D, which is a generalization of the formalism for photo
counting in quantum optics, later adapted by BP for parti
production@9#. It is this distributionQm that we have pro-
posed to study by use of the MDCFq , defined in Eq.~8!.
Our aim is to examine the scaling properties ofFq and ex-
tract universal features that are characteristic of the dynam
of the problem.

There are many directions in which one can pursue fr
here. For the dynamical distributionD one can consider the
mathematicala model@18# or the more physical models suc
as theFRITIOF model @19#, VENUS @ 20#, andECCO @21#. Al-
ternatively, one may want to emphasize the large-sc
space-time structure by considering the small-D behavior in
an interferometry type of analysis@22#. For us in this paper
we want to consider the opposite, namely, the large-D behav-
ior where the global size of the particle-emitting volume
unimportant. The usual short-range correlation in rapidity
low-pT multiparticle production@10# would also be not im-
portant, if D is sufficiently large, but not large enough t
cause kinematical constraint. Our purpose is to go to a reg
where fluctuations due to the dynamics of PT are the o
ones that need to be taken into account.

More specifically, we shall identifyD(s1 ,s2 ,D,d) with
the Boltzmann factor exp(2F) in the Ginzburg-Landau
theory, in whichs1 and s2 will be functions of the order
parameter. In fact, for two identical bins at largeD apart in
two regions of the expanding system that have similar spa
and temporal properties, we may sets15s2 , ignoreD, and
rewrite Eq.~15! as

Qm~d!5E ds Pm~s!D~s,d!. ~16!

There remains a complication arising from the property t
PT occur over an extended period of time and that the
tected hadrons are the result of an integration over that
riod. That is the subject we turn to in the next section.
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IV. HADRONIZATION IN GINZBURG-LANDAU THEORY

The conventional view of the physical system in a hea
ion collision at very high energy is that a cylinder of local
thermalized partons expands as a fluid, mainly in the lon
tudinal direction, but also in the radial direction at a slow
rate. If the colliding nuclei are massive enough and the in
dent energy high enough, the temperature in the interio
the cylinder may be higher than the critical temperatureTc
for quark-hadron PT, which we shall assume to be sec
order. Because of the transverse expansion, the temper
T decreases with increasing radius, at least initially and
the most part of the lifetime of the system. Thus hadroni
tion takes place mainly on the surface of the cylinder wh
T'Tc . Being a second-order PT, there is no mixed ph
where quarks and hadrons coexist. We assume that the
no thermalized hadronic phase surrounding the partonic
inder, and so the hadrons formed on the surface move in
flow to the detector. With these simplifying assumption
which are not unrealistic at extremely high collision en
gies, we can then focus on the issue of relating the hadr
zation process on the surface to the hadron multiplicity c
lected by the detector.

Consider first just one bin, which occupiesdhdw in pseu-
dorapidityh and azimuthal anglew. We defined2 to be its
area. Such an area selected by an analyst of the data c
sponds to a similar area on the surface of the cylinder.
the hadronization time beth , which is of order 1 fm/c: It is
the average time of the formation of one hadron on the s
face. During that time, we use the GL description of PT
specify the probabilityD(s,d) that s hadrons are created i
the aread2. The GL free energy, being time independe
does not track the time evolution of the system. It is also
equipped to describe the spatial variations on the surface
need it be. As a mean field theory, it is concerned with
probability for PT nearTc as a function of the order param
eter f. Let the two-dimensional coordinates on the surfa
be labeled byz; then, the GL free energy is@23#

F@f#5E
d2

dz@auf~z!u21buf~z!u41cu]f/]zu2#,

~17!

wherea, b, andc are GL parameters that depend onT. For
hadronization within the bin of sized2 it is only necessary to
integratez over that area. ForT&Tc the GL theory requires
that a,0 andb.0. We have found in@1,3# that for small
bins the third term in Eq.~17! does not have any significan
effect on the multiplicity fluctuations, and so we shall sec
50, as it has been done in all previous work@1–8#. Further-
more, we make the approximation thatf(z) is constant ind2

so that

F@f#5d2~aufu21bufu4!. ~18!

Assuming that this is valid for any local area on the cyl
drical surface, the same free energy is to be used for b
bins of Pm in Eq. ~15!, resulting in the same average mul
plicity s1 ands2 . We now must specify the relationship b
tweens5s15s2 and ufu2.

As discussed extensively in@2#, the square of the orde
parameterufu2 is the hadron density,r, which, in the ab-
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sence of fluctuations around the minimum of Eq.~18! at
uf0u2, is zero forT.Tc , but positive forT,Tc . Thus the
average multiplicity in a bin is

n̄05d2ufu2. ~19!

It should be borne in mind, however, that this is the avera
multiplicity during the hadronization timeth , when the sys-
tem is momentarily regarded as static and the GL consid
ation is applied to describe the formation of hadrons fro
quarks atT&Tc . It is not the average multiplicity ind2

registered by the detector, since the experimental meas
ment integrates the hadronization process over the entire
time T of the whole parton system, during which partons a
continuously converted to hadrons. Thus the measured a
age multiplicity ind2 is

s5d2 E
0

T
dtuf~ t !u2, ~20!

wheref(t) is formally the time-dependent order paramet
which has to be varied in a functional-integral description
Qm(d). Indeed,s in Eq. ~20! is the average multiplicity of
Pm(s) in Eq. ~16! but n̄0 in Eq. ~19! is the relevant average
multiplicity for the GL description duringth . Thus, to adapt
the formalism of the previous sections to the PT process
heavy-ion collisions, it is necessary to modify Eq.~16! into a
functional integral

Qm~d,t!5Z21E Df Pm~d2tufu2!

3exp@2d2~aufu21bufu4!#, ~21!

whereDf5pdufu2, Z5*Dfexp@2F(f)#, and the integral
in Eq. ~20! has been discretized intot5T/th segments. In
each segmentf is spatially and temporally constant ind2

and is itself integrated over the whole complex plane. F
collisions of large nuclei,t may be a large number. Herei
lies the crux of the problem: The PT atT&Tc gives spar-
ingly few hadrons withind2 in any time interval aroundth ,
but the detected number in a bin at the end of the collis
process is roughlyt times as many. Our aim to find som
universal feature of the problem that is essentially indep
dent ofa, b, d, andt.

V. SCALING BEHAVIOR

We now proceed to determine the multiplicity differen
correlator MDC, which in the present case of largeD has no
dependence onD and is just the normalized factorial mo
mentsFq of the MDD Qm defined in Eq.~8!. As we have
mentioned in general terms earlier, an important reason
studyingQm instead of the usual multiplicity distributionPn
in a single bin is the largeness ofd2tufu2 in Eq. ~21!, when
t is large. In that case the bin multiplicityn is high, and so
factorial moments of low orders are ineffective in extracti
genuine correlations. The multiplicity differencem is on the
average proportional toAt, thus enablingFq to be more
effective at lowq.

Settings15s25s in Eq. ~14!, with
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s5d2tufu2, ~22!

we have the distributionPm in Eq. ~21!,

Pm~s!5~22dm0!I m~2s!e22s, ~23!

wherem>0. Let us simplify Eq.~21! by using the variable
u25d2bufu4, getting

Qm~t,x!5Z21E
0

`

du Pm~txu!exu2u2
, ~24!

where

Z5E
0

`

du exu2u2
, x5uaud/Ab. ~25!

For notational economyt has been redefined as

t5
T

thuau
. ~26!

It is therefore thet defined earlier in units ofuau. It makes
physical sense becauseuau is a measure of how readily had
ronization can take place in GL theory. The minimum
F@f# in Eq. ~18! is at uf0u25uau/2b, for a,0, and so there
would be virtually no hadron condensates apart from fluct
tions, if uau→0, resulting int→`. Thus the expanding par
ton system must drive the surface temperature to belowTc ,
making a sufficiently negative anduf0u2 large enough to
produce hadrons at a rate just such as to carry away
necessary energy to maintain the hydrodynamical flow w
T,Tc at the surface. The beauty of the GL approach is t
all the complications of the hydrodynamics of the proble
are hidden in a few parameters, which would be in the fi
answer@like t andx in Eq. ~24!# unless we can find observ
ables that are insensitive to them.

To find such observables we now calculate the normali
factorial momentsFq of Qm using Eq.~8!. We first fix t and
examineFq as a function ofx, which is proportional tod. In
Fig. 1 we show how lnFq depends on log2 x for t510 and

FIG. 1. Factorial momentsFq versusx in a log-log plot for
various values ofq at t510.
f

-

he
h
t

l

d

2<q<6. No simple behavior can be ascribed to the risi
and falling of the curves. It should be noticed that the
crease ofFq with increasingd is opposite to the usual be
havior of the single bin factorial momentsFq @1,3,7#, which
increase with decreasingd. ThusFq do not have the inter-
mittency behavior of BP@9#.

The similarity of the dependences ofFq on x for the
various q values shown in Fig. 1 suggests that we sho
examine, as in@1#, the dependences ofFq on F2 for 3<q
<6. That is shown in Fig. 2, where the dots are the values
Fq for log2 x5i/2 with i being integers in the range212
< i<4. The straight lines are fits of the linear portion
Clearly,Fq exhibit the power-law behavior

Fq}F2
bq, ~27!

which we shall callF scaling. It is a scaling behavior that i
independent ofd andb. The dependence ona is so far un-
known, since the calculation is done at a fixedt.

From the slopes of the straight lines in Fig. 2, we show
Fig. 3 the dependence ofbq on q. It can be well fitted by the
formula

bq5~q21!g, ~28!

whereg51.099. We use the symbolg here for the scaling
exponent, instead ofn, which we have used previously for
similarly defined quantity@as in Eq.~28!# for Fq . For com-
parison, we recall that@1#

n51.304. ~29!

Thus the scaling exponentg for MDCs is significantly lower.
A lower value of that exponent means larger fluctuations

So far, the result is fort510 only. To see the depen
dences ont, we have repeated the calculation for a range
t values. Scaling behavior as in Eq.~27! has been found in

FIG. 2. Factorial momentsFq versusF2 in a log-log plot for
various values ofq at t510. Dots are calculated values atx52i /2

for 212< i<4. Straight lines are fits of the linear portions of th
dots.
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1836 57RUDOLPH C. HWA
each case, and Eq.~28! is also well satisfied. Figure 4 show
the dependence ofg on t. Evidently, it is nearly constant fo
3,t,30 with the value

g51.0960.02. ~30!

Thus the result of this study is embodied in just one numb
g. It is independent ofa, b, d, and t, provided thata is
negative to allow hadronization.

The universality of g is remarkable and should b
checked experimentally. If a signature of a quark-hadron
depends on the details of the heavy-ion collisions, such
nuclear sizes, collision energy, transverse energy, etc., e
after they have passed the thresholds for the creation
quark-gluon plasma, such a signature is likely to be sensi
to the theoretical model used. Hereg is independent of such
details; it depends only on the validity of the GL descripti
of PT for the present problem. The MDDQm can readily be
measured experimentally, and the momentsFq directly de-
termined as functions of bin size. If the scaling behav
~27!, supplemented Eq.~28!, is satisfied withg.1.1, then
we may interpret the system as having undergone a sec
order PT describable by GL theory.

FIG. 3. Dots are the slopes of the straight lines in Fig. 2, plot
againstq21 in a log-log plot. The straight line is the best fit of th
dots, whose slope isg, defined in Eq.~28!.

FIG. 4. Solid line shows the dependence ofg on t; dotted line
is at g51.09 to guide the eye.
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In the absence of PT we may regard the two bins se
rated by a largeD to be totally uncorrelated. In that cas
Qm(d) can be identified withPm@s(d)#, where, if we varys
in the range 1,s,100, the correspondingFq without PT
can be calculated directly. AgainF scaling is found, satisfy-
ing Eqs.~27! and ~28!, but this time with

g51.3360.02 ~no PT!. ~31!

This value is sufficiently separated from that of Eq.~30!
derived for PT so that phenomenological distinguishabi
between the two cases should be quite feasible.

VI. CONCLUSION

In this work we have solved a number of problems th
have obstructed the study of multiplicity fluctuations
heavy-ion collisions as a means of finding signatures
quark-hadron phase transition. One problem is the large m
tiplicities even in small bins, for which the usual factori
momentsFq fail to reveal distinctive features for 3<q<6,
since events with large fluctuations are submerged by
neric events. That is mainly an experimental problem wh
the analysis of the data cannot be pushed to the reg
^n&d,q. Another problem of a more theoretical nature
that the application of the Ginzburg-Landau theory of P
needs special tailoring for a system whose lifetime is fin
but long compared to the transition time for individual ha
rons, and whose observables are integrated over that t
We have overcome both of these problems by showing
effectiveness of studying the fluctuations of multiplicity di
ferences.

We have started with wavelet analysis and found tha
generates more information than can easily be filtered
yield a succinct signature of PT. However, we extracted
simple feature of the wavelets and considered the MDDQm
involving two bins separated by a distanceD. Although D
can be any value, we have considered only largeD in order
to apply the simplest description of PT by GL theory. T
time integration problem of the detectable multiplicities
handled at the expense of an extra parametert, which cannot
be specified without a hydrodynamical model lying outsi
the scope of this treatment. The goal has then been to fi
measure of PT that is independent of the unknown par
eters in the problem.

That goal was achieved by the discovery that the facto
momentsFq of Qm satisfy a scaling behavior that is chara
terized by a numberg.1.1. It is independent of the detail
of the dynamics, except that a PT occurs in a way desc
able by GL theory. Thusg is a universal constant for th
problem. We callg a scaling exponent, but it has absolute
no connection with the critical exponents of the conventio
critical phenomena. There is no need to know the tempe
ture, which is not measurable, or the criticalTc . The mo-
mentsFq can directly be determined from the data and c
therefore be checked forF scaling, independent of any the
oretical input. Whatever experimental value the exponeng
turns out to be would be of great interest, since a va
different from 1.1 would demand an explanation. If it a
proaches 1.1 as energy or nuclear size is increased, it w
suggest an approach to the condition required for the for
tion of quark-gluon plasma.

Experimentally, it should be easy to varyD and check not
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only howFq themselves depend onD, but also whether and
how the scaling behavior is affected. TheD dependence ha
not been investigated here. Theoretically, there are m
other challenges that also await undertaking. A verificat
of g51.1 will undoubtedly stimulate an upsurge of intere
in the study of multiplicity fluctuations in particle an
nuclear collisions.
,
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