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Universal behavior of multiplicity differences in the quark-hadron phase transition
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The scaling behavior of the factorial moments of the differences in multiplicities between well separated
bins in heavy-ion collisions is proposed as a probe of the quark-hadron phase transition. The method takes into
account some of the physical features of nuclear collisions that cause some difficulty in the application of the
usual method. It is shown in the Ginzburg-Landau theory that a numerical yalfithe scaling exponent can
be determined independent of the parameters in the problem. The universajitghafracterizes the quark-
hadron phase transition, and can be tested directly by appropriately analyze50&&6-282(98)05103-0

PACS numbds): 13.85.Hd, 24.60.Ky

. INTRODUCTION Fqx 8 %, 2)

The study of multiplicity fluctuations as a phenomeno-
I((;g_ll)c?]l a?zzgisgﬁgﬂ e%fi;hfeg:rirl;::rdsr?r? tﬁzeﬁz r‘r::a?/\rlls:ﬂog? behavior that has been found to be ubiquitous in hadronic
the Ginzburg-LandadGL) formalism for both second-order and leptonic process¢40]. However, in nuclear collisions

. : the situation is very different.
[1-3] and first-ordef4—6] PTs. In both cases scaling behav- ; o .
iors of the factorial moments have been found and are char- In the f|r.st. plac.e the average multlpI|C|§y In an event in
acterized by scaling exponents The value of v for a nuclear collisions is so high that even in bins of sm&the

second-order PT is independent of the details of the GL p \_/2I:ebsegf: 2r2$?§dcgm2?r§1%;?aﬁre OT?;” Erﬂ:lié) ;g?ron'c
rameters. It therefore provides a distinctive signature for th xami Xperi y. 1hus, uni :

existence of a quark-gluon plasma, if its transition to hadron nd leptonic processes, the existent .nt.JcIear datq have not
is of the second orddf7]. een analyzed to study large multiplicity fluctuations, for

The experimental verification of has not been carried Wh'ChqthUStf be m_c;eajed tg Vsama’f(? n sgnall bdm‘;" Th.e d
out so far in heavy-ion collisions although it has beenMomentsq for g=23, =, an at have been determine
checked to a high degree of accuracy in quantum op&its are dommgted _by contributions fron_1 the Iower-ord_er corre-
There are a number of reasons for the difficulties, which will'tions. This point has been emphasized by Sarcevic and col-
be described below. The aim of this paper is to devise %?borators[ll,lﬂ, where the nuclgar data on the cumulants
method to circumvent the obstacles that stand in the way of 9 are shown to be. (;]qnsstelnt with zero lfgza Vxhether
extracting the signal from the experimental data. In so doind<q acquire knonvanl_.lf,hlng Va.lljeﬁ at sma f(so t at(g} .
we also broaden the scope of the analysis to include aspecs®) '(Sj not nocl)wnh US'I until the expﬁg;éent_zlcan € im-
of wavelets and correlations, in addition to incorporatingProved to render the analysis at very smaieasible, a new

some evolutionary properties of heavy-ion collisions that arénethOd gwst b'e ?Qv]ised tq circumvear)t this (ljifficultfy of ex-
particularly relevant to hadron production during PT. tracting fynamical In ormatlo_n qt medium valuesq Our .
Let us now examine the difficulties in analyzing multi- strategy is to consider the distribution of the differences in

plicity fluctuations in heavy-ion collisions. The factorial mo- mulfupllc:ctl.es between bins and to examine the scaling be-
ments that have been suggested to quantify the fluctuatioft@Vvior Of its moments.

are defined by9] Another difficulty associated with the problem of linking
multiplicity fluctuations to the dynamics of phase transition

AN is that the particles are integrated over the entire duration

q:<n(n Y (: Q+1)>' (1)  when quarks turn into hadrons, while the system undergoes

(n) an expansion. In a second-order PT the fluctuations in had-

ronization can be large relative to the average, but that aver-
where the averages are performed over a distribufigrof  age is over a short period negf where hadronization is not
the multiplicitiesn in a bin of sized. Note thatn must be  robust. When integrated over the whole history of the
=q in order for an event to contribute &, for whichqis  nuclear collision process, such fluctuations may well be av-
usually an integer ranging from 2 to 5. Ads decreased, the eraged out, leaving no discernible effect at the detector,
average multiplicityn) in a bin decreases, and may becomewhich collects all the particles produced in an event. This
<( in a hadronic collision. ThuE ; measures the tail end of problem is present even if there is no thermalization of the
the distributionP,, wheren>(n), i.e., large multiplicity = hadrons in the final state, which we shall assume in order to
fluctuations. Intermittency refers to the power-law depen<ocus our investigation here. Our present method is to apply
dence ofF, on & [9]: the GL theory in increments of time when hadrons are pro-
duced neaiT; and to integrate the production process over
the entire duration to yield the measurable multiplicity fluc-
*Email address: hwa@oregon.uoregon.edu tuations. Our aim is to show that with appropriate care in
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treating the moments certain scaling behavior persists ansions that can convey the signature of phase transition. A

characterizes the dynamics of phase transition. complete set oW, records all the information in the spatial
Our result reveals a new scaling exponentdifferent  pattern in an event, whereas we look for an efficient way of

from the oney, found in Refs[1,2]. It is not a revision ofv,  capturing some general features averaged over all events.

but a new exponent, since different quantities are investi- The Haar wavelets, however, contain some features that

gated. Independent of the theoretical considerations underlyve regard as important ingredients for an improvement of

ing this work, the proposed moments can be determined exhe usual factorial moments and correlat®s10,17. For a

perimentally. Nuclear data should be analyzed in the wayixed set of the indice$ andk, we have

suggested, even if the PT is not an issue. If the scaling be-

havior is found, but the scaling exponent does not agree with}x(x)=*1 for xe x., (6)

the predictedy, it would not only imply that there has not

been a PT of the GL type, but also present a numerical ob¥here

jective for a successful hadronization model to attain for

heavy-ion collisions. X+:(x|k2_1gx< k+% 2—1‘],
Il. MULTIPLICITY DIFFERENCE CORRELATORS 1
To overcome the problem of high multiplicity per bin in X:[X|( k+5 27 =x<(k+ 1)21],

heavy-ion collisions, we introduce the factorial moments that

we shall refer to as multiplicity difference correlators and so,

(MDCs). They are a form of hybrid of factorial correlators

[9] and wavelet§13]. MDCs are not as elaborate as either

one of the two separately, but are simpler combinations of Wie=n.—n_, n.= fhdx 9(x). @)
the two, possessing the virtues of both. -

Let us start with a brief look at the application of wavelet |t is the difference between the contributions in the neigh-
analysis to multiparticle physickl3,14 and astrophysics horing bins,x, andx_ . In some wavelet analyses moments
[15]. Given any event, the structure of a spatial pattern, exthat involve sums ovek are studied to reveal scaling behav-
emplified here by a one-dimensional functig{x), can be  jors inj [13—15. That can be done for one event, sometimes
analyzed by a multiresolution decomposition, using the basigeferred to as horizontal analysis. For our purpose in what

functions:p}*k(x) such that the wavelet coefficients are follows, we prefer to emphasize first the vertical analysis;
. i.e., we average over all events for fixed bins. For multipar-
ij:f dx lﬁﬂ((x)g(x), 3) ticle produpt!qng(?() Woulql be the part|§:Ie densﬂy anm,
0 the multiplicities in the binsx... Studying the difference

n. —n_ of neighboring multiplicities is a way to overcome

whereL is the domain ofy(x) being analyzed. This is like a the problem of high multiplicity per bin without abandoning
Fourier transform, except that instead of the exponential facthe focus on multiplicity fluctuations.

tor exp{nwmx/L), one uses the Haar wavelets Once we consider multiplicity differences, there is no rea-
Howy— Hooly son why we should restrict the two bins to only the neigh-
Y= 72X =), (4) boring ones. LefA be the distance between two bins, each of

size §, and letn; andn, be the multiplicities in those bins in

where a given event. Definen to be the multiplicity differencem
1, 0=x<1/2, =n,;—n,. We shall be interested in the distribution

PHox)=4 -1, l2sx<1, (5) Qm(4, ) after sampling over many events at fixaddand &,
0, elsewhere. i.e.,Qn is the probability of detecting multiplicity difference

m between the two bins. The factorial moments we shall
The basis functionf}(x) has a scale indek and a transla- ~study are the MDCs:
tion indexk, which enable the wavelet analysis to identify .
the location and scale of an arbitrary fluctuationggk) in _'q _ EPT
terms Oijk [16]. fq_fg: fq 2 m(m—1)---(m-q+1)Qn. (8

[’

While Eq. (3) and other transforms like it are very pow-
erful and have various virtues, such as their invertibility, theyThey are not the same as the Biatas-PeschaBs$Ricorrela-
offer more than what is needed at this point in our search fotors, which are normalized products of factorial moments of
a measure of the multiplicity fluctuations in heavy-ion colli- multiplicities in two bins, averaged over all even,

~(na(ng—1)---(Ng— g+ 1)nz(np—1)- -+ (N— g+ 1))

P (n(n;)

9
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but the two are similar to the extent thaf andn, are the If s; ands, are large, therPni(si) may be well approxi-

multiplicities in the two bins separated hy. HereFy . mated by Gaussian distributions, amj, would also be

have been found to depend Anbut not ond[10], but 7, as  Gaussian with a width proportional ts,(s;) 14 It is because

defined in Eq.(8) will depend on bothF, differ from F,  of this reduced width that we consider MDDs: As discussed

defined in Eq(1) in that they are the moments of the multi- in Sec. |, we need smaller valuesrfto render lower-order

plicity difference distribution(MDD) Q,(A,5), which is a moments effective in measuring the fluctuations;lands,

generalization of the usual multiplicity distribution in a way are small, therP,, becomes Poissonian also. For that reason

that incorporates the virtues of both wavelets and correlatorsve shall consider factorial moments Bf,,, since the statis-
Before we enter into the theoretical description of thetical fluctuations can thereby be filtered d@{. In both ex-

MDD Q, in the following sections, we note that the experi- perimental analysis and theoretical consideration, the bin

mental determination of, for hadronic and nuclear colli- width &'is to be varied so thag; will range over both large

sions should be performed independent of theory. Their deand small values; hence, no approximationRyf will be

pendences oA and § will pose a challenge to any model of made.

such collisions. Our concern in this paper is to make a the- We now introduce the dynamical component of the fluc-

oretical prediction of what should be observed when there isuations. Denoting it byD(s;,S,,A,8) we have, for the ob-

a quark-hadron PT. But if there is no PT, the propertiegpf servable MDD,

will remain as valuable features of multiparticle production

that a good model of soft interaction must explain.

Qm(Avg):f dsldszpm(slst)D(SlISZ!A15) (15)
Ill. STATISTICAL AND DYNAMICAL FLUCTUATIONS

Although our aim is to study the nature of the fluctuations o ) )
due to quark-hadron PTs in heavy-ion collisions, we begiHn essence th_|s isa douple I?0|sson transforr_n of the dynami-
with a formulation that is more generally valid for any had- €@ D, which is a generalization of the formalism for photon
ronic or nuclear collisions. The multiplicities in the two bins €0UNting in quantum optics, later adapted by BP for particle
discussed in the preceding section fluctuate both statisticallproduction[9]. It is this distributionQp, that we have pro-
and dynamically. Focusing on just the statistical part first and?©Sed to study by use of the MDE;, defined in Eq.(8).

using, as usual, the Poisson distributiBp for it, we have ~Our aim is to examine the scaling properties®f and ex-
. : tract universal features that are characteristic of the dynamics
the statistical MDD

of the problem.
There are many directions in which one can pursue from
P(S1,82)= > Pn,(S1)Pn(S2) m-n,+n,, (100 here. For the dynamical distributidd one can consider the
f1.n2 mathematicakr model[18] or the more physical models such
as therRITIOF model[19], VENus [ 20], andecco[21]. Al-
ternatively, one may want to emphasize the large-scale
space-time structure by considering the sralbehavior in
1 an interferometry type of analysi2]. For us in this paper
Pr(s)= 7 s'e” s, (1)  we want to consider the opposite, namely, the lakgeehav-
r ior where the global size of the particle-emitting volume is
Note that, unlike the usual multiplicityn can be both posi- unimportant. The usual short-range correlation in rapidity in

tive and negative. In fact, the sums in H@0) can be ana- low-ps multiparticle productiorf10] would also be not im-
lytically performed, yielding portant, if A is sufficiently large, but not large enough to

cause kinematical constraint. Our purpose is to go to a region
Pm(S1,S:)=(5,/5,)™2 m(Z@)e*Ssz, (12)  Wwhere fluctuations due to the dynamics of PT are the only
ones that need to be taken into account.
wherel , is the modified Bessel function. More specifically, we shall identif{p(s;,s,,A,5) with
In the following we shall not assign any intrinsic proper- the Boltzmann factor exp{F) in the Ginzburg-Landau
ties to the two bins and consider only the absolute differencéheory, in whichs; ands, will be functions of the order

wheres; ands, are the average multiplicities in the two bins
and

between their multiplicities: i.e., parameter. In fact, for two identical bins at lardeapart in
two regions of the expanding system that have similar spatial
m=[ny—ny|. (13 and temporal properties, we may sgt=s,, ignore A, and

. : . rewrite Eq.(15) as
Sincel, is symmetric undem« —m, we have, from Eq. a-(19

(12) with m=0,

5=jdsP S)D(s,9). 16
Pm(sl,sz)=cosr{g In z—;) I m(2Vs1S)e %17 %2(2— 50) - Onl(2) m(s)D(s.9) 19
(14
There remains a complication arising from the property that
There is a discontinuity an=0 because for alin>0 there  PT occur over an extended period of time and that the de-
is reflection of —m in Eqg. (12) to +m. Note thatP, is  tected hadrons are the result of an integration over that pe-
properly normalized t&,_,Pn=1. riod. That is the subject we turn to in the next section.
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IV. HADRONIZATION IN GINZBURG-LANDAU THEORY sence of fluctuations around the minimum of E48) at
|&ol? is zero forT>T,, but positive forT<T.. Thus the

The conventional view of the physical system in a heavy average multiplicity in a bin is

ion collision at very high energy is that a cylinder of locally
thermalized partons expands as a fluid, mainly in the longi-
tudinal direction, but also in the radial direction at a slower
rate. If the colliding nuclei are massive enough and the inci-
dent energy high enough, the temperature in the interior ok[n
the cylinder may be higher than the critical temperaftige

no= 6% 9| (19

should be borne in mind, however, that this is the average
ultiplicity during the hadronization timg,, when the sys-
tem is momentarily regarded as static and the GL consider-

for quark-hadron PT, which we shall assume to be secon tion is applied to describe the formation of hadrons from
order. Because of the transverse expansion, the temperatucgﬁarkS atT<T,. It is not the average multiplicity ins?
=T,.

T decreases with increasing radius, at least initially and for_ - : : i
the most part of the lifetime of the system. Thus hadroniza-Fengtered by the detector, since the experimental measure

. : . ment integrates the hadronization process over the entire life-
tion takes place mainly on the surface of the cylinder Wher‘?ime Tof the whole parton system, during which partons are

T~T. Being a second-order PT, there is no mixed ph""S%ontinuously converted to hadrons. Thus the measured aver-
where quarks and hadrons coexist. We assume that there ae multiplicity in 82 is

no thermalized hadronic phase surrounding the partonic cyl-

inder, and so the hadrons formed on the surface move in free T

flow to the detector. With these simplifying assumptions, s= §2 f dt| ()|, (20

which are not unrealistic at extremely high collision ener- 0

gies, we can then focus on the issue of relating the hadroni- _ _

zation process on the surface to the hadron multiplicity colwhereé(t) is formally the time-dependent order parameter,

lected by the detector. which has to be varied in a functional-integral description of
Consider first just one bin, which occupiégdg in pseu- Qm(6). Indeed,s in Eq. (20) is the average multiplicity of

dorapidity 7 and azimuthal angle. We defines® to be its ~ Pm(S) in Eq. (16) butng in Eq. (19) is the relevant average

area. Such an area selected by an analyst of the data corf@ultiplicity for the GL description duringy, . Thus, to adapt

sponds to a similar area on the surface of the cylinder. Lethe formalism of the previous sections to the PT process in

the hadronization time bg,, which is of order 1 fmé: Itis  heavy-ion collisions, it is necessary to modify E6) into a

the average time of the formation of one hadron on the surfunctional integral

face. During that time, we use the GL description of PT to

specify the probabilityD (s, §) thats hadrons are created in -1 2 2

the areas’. The GL free energy, being time independent, Qn(&7)=2 f D¢ Pr(7[%)

does not track the time evolution of the system. It is also not

equipped to describe the spatial variations on the surface; nor

need it be. As a mean field theory, it is concerned with the :

probability for PT neail, as a function of the order param- WNereDo= md|$|?, Z=Dpex —F(¢)], and the integral

eter ¢. Let the two-dimensional coordinates on the surfacein Eq. (20) has peen d_iscretized into= "7/t segments_. In
be labeled byz; then, the GL free energy (23] each segmen is spatially and temporally constant if
’ ’ and is itself integrated over the whole complex plane. For

collisions of large nucleiy may be a large number. Herein
F[ 1= f , dZ al¢(z)|?+b|p(z)|*+c|apliz|?], lies the crux of the problem: The PT &ts T, gives spar-
g 17 ingly few hadrons withins? in any time interval arount, ,

but the detected number in a bin at the end of the collision
wherea, b, andc are GL parameters that dependBnFor ~ Process is roughly times as many. Our aim to find some
hadronization within the bin of sizé? it is only necessary to Universal feature of the problem that is essentially indepen-
integratez over that area. FGF<T, the GL theory requires dent ofa, b, 6, and~.
thata<0 andb>0. We have found i1,3] that for small

xex — 6%(al ¢|*+b| 4], (21)

bins the third term in Eq(17) does not have any significant V. SCALING BEHAVIOR
effect on the multiplicity fluctuations, and so we shall set . o )
—0, as it has been done in all previous wik-8]. Further- We now proceed to determine the multiplicity difference

correlator MDC, which in the present case of latgéas no
dependence o and is just the normalized factorial mo-
ments 7, of the MDD Q, defined in Eq.(8). As we have
F[ 1= 6%(a|p|?+b|p|*). (18 mentioned in general terms earlier, an important reason for
studyingQ,, instead of the usual multiplicity distributioR,,
Assuming that this is valid for any local area on the cylin-in a single bin is the largeness 67| $|? in Eq. (21), when
drical surface, the same free energy is to be used for both is large. In that case the bin multiplicity is high, and so
bins of P, in Eq. (15), resulting in the same average multi- factorial moments of low orders are ineffective in extracting
plicity s; ands,. We now must specify the relationship be- genuine correlations. The multiplicity differenceis on the
tweens=s;=s, and| ¢|>. average proportional ta/7, thus enabling?, to be more
As discussed extensively ii2], the square of the order effective at lowq.
parameter ¢|? is the hadron densityp, which, in the ab- Settings; =s,=s in Eqg. (14), with

more, we make the approximation thatz) is constant ins?
so that
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FIG. 1. Factorial momentst, versusx in a log-log plot for
various values of] at 7=10.

s=6°7]¢|?, (22)
we have the distributiof®,,, in Eq. (21),
Pm(8)=(2— 6mo)Im(25)€7 %%, (23

wherem=0. Let us simplify Eq.(21) by using the variable
u?=5%b| ¢|*, getting

Qm(r,x)=Z_1f du Ppy(7xu)ers v, (24)
0
where
z:f du ev ¥’ x=|a|d/\b. (25)
0
For notational economy has been redefined as
z (26)
T=—.
tylal

It is therefore ther defined earlier in units ofa|. It makes
physical sense becauka is a measure of how readily had-
ronization can take place in GL theory. The minimum of
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FIG. 2. Factorial momentg§, versusF; in a log-log plot for
various values ofy at 7=10. Dots are calculated valuesat 2/’
for —12<i=<4. Straight lines are fits of the linear portions of the
dots.

2=<qg=<6. No simple behavior can be ascribed to the rising
and falling of the curves. It should be noticed that the in-
crease ofF, with increasingé is opposite to the usual be-
havior of the single bin factorial moment, [1,3,7], which
increase with decreasing Thus 7, do not have the inter-
mittency behavior of BF9].

The similarity of the dependences @i, on x for the
various g values shown in Fig. 1 suggests that we should
examine, as if1], the dependences of; on 7, for 3<q
<6. That is shown in Fig. 2, where the dots are the values of
Fy for log, x=i/2 with i being integers in the range 12
<i<4. The straight lines are fits of the linear portions.
Clearly, 7, exhibit the power-law behavior

For Ty, (27)
which we shall calF scaling. It is a scaling behavior that is
independent of andb. The dependence aais so far un-
known, since the calculation is done at a fixed

From the slopes of the straight lines in Fig. 2, we show in
Fig. 3 the dependence gf, ong. It can be well fitted by the

F[#] in Eq. (18) is at|¢o|?=]|al/2b, for a<0, and so there formula

would be virtually no hadron condensates apart from fluctua-

tions, if |a|]—0, resulting inT—o. Thus the expanding par-

ton system must drive the surface temperature to bdlgw )

making a sufficiently negative and¢,|? large enough to Wherey=1.099. We use the symbal here for the scaling

produce hadrons at a rate just such as to carry away tHexponent, instead of, which we have used previously for a

necessary energy to maintain the hydrodynamical flow wittsimilarly defined quantityas in Eq.(28)] for F. For com-

T<T, at the surface. The beauty of the GL approach is thaparison, we recall thdtl|

all the complications of the hydrodynamics of the problem

are hidden in a few parameters, which would be in the final

answeflike 7 andx in Eg. (24)] unless we can find observ-

ables that are insensitive to them. Thus the scaling exponentfor MDCs is significantly lower.
To find such observables we now calculate the normalize@ lower value of that exponent means larger fluctuations.

Bq=(q—1)7, (29)

v=1.304. (29

factorial momentsr, of Q, using Eq.(8). We first fix r and
examinef, as a function ok, which is proportional ta. In
Fig. 1 we show how Iif, depends on logx for 7=10 and

So far, the result is forr=10 only. To see the depen-
dences onr, we have repeated the calculation for a range of
7 values. Scaling behavior as in E@7) has been found in
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In B In the absence of PT we may regard the two bins sepa-
q y=1.099 rated by a largeA to be totally uncorrelated. In that case
) Qm(d) can be identified withP [ S(5) ], where, if we varys
/ in the range ¥s<100, the corresponding without PT
can be calculated directly. Agak scaling is found, satisfy-
- ing Egs.(27) and(28), but this time with

y=1.33+0.02 (no PT). (3

This value is sufficiently separated from that of EG0)
derived for PT so that phenomenological distinguishability
0.5 between the two cases should be quite feasible.

VI. CONCLUSION

In this work we have solved a number of problems that
In (g-1) have obstructed the study of muiltiplicity fluctuations in
heavy-ion collisions as a means of finding signatures of
FIG. 3. Dots are the slopes of the straight lines in Fig. 2, plottedquark-hadron phase transition. One problem is the large mul-
againstg— 1 in a log-log plot. The straight line is the best fit of the tiplicities even in small bins, for which the usual factorial
dots, whose slope ig, defined in Eq(28). momentsF, fail to reveal distinctive features for8q<®6,
since events with large fluctuations are submerged by ge-
each case, and E(R8) is also well satisfied. Figure 4 shows neric events. That is mainly an experimental problem where
the dependence of on 7. Evidently, it is nearly constant for the analysis of the data cannot be pushed to the regions

3<7<30 with the value (n)s<g. Another problem of a more theoretical nature is
that the application of the Ginzburg-Landau theory of PT
y=1.09+0.02. (30) needs special tailoring for a system whose lifetime is finite,

but long compared to the transition time for individual had-
rons, and whose observables are integrated over that time.
'We have overcome both of these problems by showing the
effectiveness of studying the fluctuations of multiplicity dif-
ferences.

X ) We have started with wavelet analysis and found that it
checked experimentally. If a signature of a quark-hadron P enerates more information than can easily be filtered to
depends on the details of the heavy-ion collisions, such ield a succinct signature of PT. However, we extracted a
nuclear sizes, collision energy, transverse energy, etc., ever ple feature of the wavelets and conside’red the MDD
after they have passed the thresholds for the creation q volving two bins separated by a distanae Although A
guark-gluon plasma, such a signatqrg is likely to be sensitiv<(=:an be any value, we have considered only lakge order

to th_e t.h_eoretlcal model used. He?.ﬂ_s independent of s_uc_h to apply the simplest description of PT by GL theory. The
details; it depends only on the validity of the GL de;cnpﬂontime integration problem of the detectable multiplicities is
of PT for the pre_sent problem. The MDQp, can readily be handled at the expense of an extra parametetich cannot
mea_sured expenmentally, "’?”d Fhe momeﬁ&sdlr_ectly de- . be specified without a hydrodynamical model lying outside
termined as functions of bm size. .If the' scaling ber]"’“"Orthe scope of this treatment. The goal has then been to find a
(27), sup_plemented Eq28), is sat|sf|_ed withy=1.1, then easure of PT that is independent of the unknown param-
we may interpret the system as having undergone a secong%erS in the problem.

order PT describable by GL theory. That goal was achieved by the discovery that the factorial
moments7, of Q, satisfy a scaling behavior that is charac-
terized by a numbey=1.1. It is independent of the details

Thus the result of this study is embodied in just one numbe
v. It is independent ofa, b, &, and r, provided thata is
negative to allow hadronization.

The universality of y is remarkable and should be

1.4 of the dynamics, except that a PT occurs in a way describ-
1.2 able by GL theory. Thusy is a universal constant for the
Y W 1.09 problem. We cally a scaling exponent, but it has absolutely
no connection with the critical exponents of the conventional
0.8 critical phenomena. There is no need to know the tempera-
0.6 ture, which is not measurable, or the criticel. The mo-
0.4 mentsF, can directly be determined from the data and can
therefore be checked fd¥ scaling, independent of any the-
0.2 oretical input. Whatever experimental value the exponent
0 turns out to be would be of great interest, since a value
2 5 0. 20. 50.  100. different from 1.1 would demand an explanation. If it ap-
1 proaches 1.1 as energy or nuclear size is increased, it would

suggest an approach to the condition required for the forma-
FIG. 4. Solid line shows the dependenceyobn 7; dotted line  tion of quark-gluon plasma.
is at y=1.09 to guide the eye. Experimentally, it should be easy to vatyand check not
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