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Determination of decuplet baryon magnetic moments from QCD sum rules
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A complete set of QCD sum rules for the magnetic moments of decuplet baryons are derived using the
external field method. They are analyzed thoroughly using a Monte Carlo based procedure. Valid sum rules are
identified under the criteria of OPE convergence and ground state dominance and their predictions are ob-
tained. The performances of these sum rules are further compared and a favorable sum rule is designated for
each member. Correlations between the input and the output parameters are examined and large sensitivities to
the quark condensate magnetic susceptibjitgre found. Using realistic estimates of the QCD input param-
eters, the uncertainties on the magnetic moments are found relatively large and they can be attributed mostly
to the poorly knowny. It is shown that the accuracy can be improved to the 30% level, provided the
uncertainties in the QCD input parameters can be determined to the 10% level. The computed magnetic
moments are consistent with existing data. Comparisons with other calculations are made.
[S0556-282(98)03203-2

PACS numbgs): 13.40.Em, 11.55.Hx, 12.38.Lg, 14.20.Gk

[. INTRODUCTION arrive at the final results. But conceptually it presents no
apparent difficulties. Particular attention is paid to the com-

The QCD sum rule methofdl] has proved to be a pow- plete treatment of the phenomenological representation,
erful tool in revealing the deep connection between hadromvhich leads to the isolation of the tensor structures from
phenomenology and QCD vacuum structure via a few conwhich the QCD sum rules for the magnetic moments can be
densate parameters. The method has been successfully apnstructed. Flavor symmetry breakings in the strange quark
plied to a variety of problems to gain a field-theoretical un-are treated consistently across the decuplet family. The suc-
derstanding into the structure of hadrons. Calculations of theess also hinges upon a new analysis of the two-point func-
nucleon magnetic moments in the approach were first carrietions [13], which provides more accurately determined cur-
out in Refs[2] and[3]. They were later refined and extended rent couplings for normalization. Part of the resultsfton™
to the entire baryon octet in Refgl—7]. On the other hand, and(~ have been communicated in a Letfé#d].
the magnetic moments of decuplet baryons were less well Magnetic moments of decuplet baryons have also been
studied within the same approach. There were previous, urstudied in various other methods, including lattice Q[@B],
published reports in Ref8] on A** and()~ magnetic mo- chiral perturbation theonf16], Bethe-Salpeter formalism
ments. The magnetic form factor af** in the low Q2  [17], non-relativistic quark mode[18], relativistic quark
region was calculated based on a rather different techniqueodels[19—-23, chiral quark-soliton mod€l24], chiral bag
[9]. In recent years, the magnetic moment®f has been model[25], cloudy bag mode[26], Skyrme mode[27]. A
measured with remarkable accuraf¥0]: uo-=(—2.02 comparison will be made with some of the calculations and
+0.05)y. The magnetic moment oA ** has also been with existing data.
extracted from pion bremsstrahlunfll]: w++=(4.5 Section |l deals with the derivation of the QCD sum rules.
+1.0)uy. In an earlier wor12], the magnetic moment of Section Il discusses the Monte Carlo analysis procedure.
A% extracted fromm~ p bremsstrahlung data was found to be Section 1V gives the results and discussion. Section V con-
consistent withu,0=0. The experimental information pro- tains the conclusions. The Appendix collects the QCD sum
vides new incentives for theoretical scrutiny of these observtules derived.
ables.

In this work, we present a systematic, independent calcu-
lation of the magnetic moments for the entire decuplet family
in the QCD sum rule approach. The goal is twofold. First, we Consider the time-ordered two-point correlation function
want to find out if the approach can be successfully appliedn the QCD vacuum in the presence ofcanstantback-
to these observables by carrying out an explicit calculationground electromagnetic field,,, :

Second, we want to achieve some realistic understanding of

the uncertainties involved in such a determination by em-

ploying a Monte Carlo based analysis procedure. This would ,4(p)=i f d*x€P X0 T{7,(X) 75(0)}[0)e, (D)
help us assess the limitations and find ways for improve-

ments.

We will show that both goals are achieved in this work.where 5, is the interpolating field for the propagating
The entire calculation is more challenging than the octet casbaryon. The subscrigf means that the correlation function
due to the more complex spin structure of spin-3/2 particlesis to be evaluated with an electromagnetic interaction term
One has to overcome an enormous amount of algebra tadded to the QCD Lagrangian:

IIl. METHOD
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‘clz_AM‘]Hv (2) <O| 77a|BpS>:)\Bua(p!S)r (5)

where A, is the external electromagnetic potential aittl whereu, is the Rarita-Schwinger spin vectfi28].
=€y y"q the quark electromagnetic current.
Since the external field can be made arbitrarily small, one A. Phenomenological representation

can expand the correlation function On the hadronic level, let us consider the linear response

I1,5(p) =T (p) + T (p) + - - - . 3 defined by

HereIT{Q)(p) is the correlation function in the absence of the 4 (p)=i f d*xeP (0] 7,(x)
field, and gives rise to the mass sum rules of the baryons.
The magnetic moments will be extracted from the QCD sum i dtva (v)gm
rules obtained from the linear response funcﬂ@ﬂﬁ)(p). ! YALY)I“(Y)
The action of the external electromagnetic field is two- . ] o )
fold: It couples directly to the quarks in the baryon inter- After inserting two complete sets of physical intermediate
polating fields, and it also polarizes the QCD vacuum. TheStates, it becomes
latter can be described by introducing new parameters called 4 4y
. d*k d%k
vacuum susceptibilities. O9p)= | d* | d¥y —7 —
. . ; . . ap\P y 2% (272
The interpolating field is constructed from quark fields, (2m)" (2m)
and has the quantum numbers of the baryon under consider-

750)[0).  (6)

ation. We use the following interpolating fields for the x> : _2 —
baryon decuplet family: 88’ s¢ K —Mg—iek —Mg, —ie
P = A UATCy, U, X elP XA, (Y){0] 74(x)|ks)(ks|I“(y) [k'S")
X(k's'| 175(0)]0). )
7 = 13622 2(uaTCy,dP)us+ (uTCy,uP)de],
QCD sum rule calculations are most conveniently done in
7]A°: \/1_/3)6""b‘{2(daTCy ub)de+ (d2TCy,dP)uc] the fixed-point gauge. For electromagnetic fields, it is de-

fined byx,A*(x)=0. In this gauge, the electromagnetic po-

- tential is given b
né :Gabc(daTC’yadb)dc, g y

ALY)=—3F,y" ®)
* Y24 y1a%
7y = 1B 2(UPTCy, U (UPTCy,u)s°],
The electromagnetic vertex of spin-3/2 baryons is defined by
772*02 V2736229 2(uaTC y,,d) s+ (d2TC y,sP)uc the current matrix elemeni5]
+(s2TCy,uP)de], (ks|34(0)|K’s"y = U o (k,S) O“*B(P,q)ug(k’,s").  (9)

*— The Lorentz covariant tensor
7o =1/3¢**92(d2"Cy,s?)d°+ (d2TCy,d°)s%],

O*h(P,q)=~g**

ay
=k M M
72" = (1362 2(s2TC y,uP) s+ (s3TC y,sP)uc], ay't 2MBP )

Y agP
- =/1/362"9 2(s2"Cy,dP)s¢+ (s2TCy,sP)d°], _ 99 5 | cpytt C2 pi (10)
(2Mp) 2Mg '
e =€P(sFTCy,s")s". (4 where P=k+k’ and q=k—k’, satisfies the standard re-

N ) quirements of invariance under time reversal, pa@ypar-
Here implicit function formsy(x) andq(x) (q=u,d,s) aré " and gauge transformations. The parametgrsa,, ¢,
assumedC is the charge conjugation operator. The Super-yngc, are independent covariant vertex functions. They are
script T means transpose. The indicesb andc are color o 5ted to the multipole form factors by

indices running from 1 to 3. The antisymmetric teng8P®

ensures the three quarks form a color singlet state. The nor- Geo(qd)=(1+ 2 7)[ay+(1+ 7)a,]
malization factors are chosen so that correlation functions of
these interpolating fields coincide with each other under — 11+ 7)[cy+ (14 7)Cy],

SU(3)-flavor symmetrysee Eqs(20)—(23)].

The interpolating field excitegr annihilates the ground
state as well as the excited states of the baryon from the
QCD vacuum. The ability of an interpolating field to annihi- ) . )
late theground statebaryon into the QCD vacuum is de- Gw1(g%)=(1+ 5 7)a;— 5 7(1+7)cy,
scribed by a phenomenological parametgr(called current
coupling or pole residyedefined by the overlap Gus(@®)=a;— 3 (1+7)cq, (11

Gea(g?)=[a;+(1+n)ay]— 5 (1+7)[cy+(1+7)cy],
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wherer=—q%/(2Mg)?(=0). They are referred to as charge In arriving at Eq.(13), we have used a number of steps: the
(E0), electric quadrupoldE2), magnetic dipole(M1), and translation invariance om,(x) andJ*(y), a change of vari-
magnetic octupol€M3) form factors. The magnetic moment able fromk’ to g, the relation

is related to the magnetic dipole form fac®f,;(q?) at zero

momentum transfer. From E@L1), it is clear that J

aq”
integration by parts, and the Rarita-Swinger spin $@gj

f0|4yeiq"’YV=—i(27T)4 8'a), (14)

Gmi1(0)=a;=ug, (12

where the magnetic momept is in units of particle’s natu-
ral magnetonei/(2cMg). So the goal is to isolate terms in

. — _ ~ 1 ZpapB
Eq. (7) that involve onlya, . 23: Ua(P,S)Up(P,S)=—(P+Ms)| Gap~ 3 7aVp™ BV
The ground state contribution to E() can be written as B
. pa’)/B_ pﬂ')/a)
i o 4L —Pe (15
Dip)= —)\2 4 i(p—k)-x 3M '
Haﬁ(p) ZABFMVJ d*x (2,”_)4 € B
1 _ with normalizationu_aua= 2Myg. The caret notation denotes
Mg re 2 Uk Uk p=p"y,.
Direct evaluation of Eq(13) leads to numerous tensor
d 1 \ structures, not all of which are independent of each other.
Xaqv (k—q)Z—Mé—ie Or#Y(2k—q,q) The dependences can be removed by ordering the gamma

matrices in a specific order. Here we choose to order in

f)'ya‘yﬂ'y,,'yﬁ. After a lengthy calculation, 18 tensor struc-
(13)  tures which involve onha, are isolated. They can be orga-

X2 Ux(k_qys,)u_g(k_qysr)}
s q=0 nized as

5(p)=WEL(p?)PF* 0, s+ WOL(P?)F ¥ 0,00+ WER(P?) PPLF 0,05+ WOL(P?) P F 0P s
+WE3(p?)pyoF "0, Y5+ WO3(P?) YaF* 0, 75+ WE(P?)PoF* 0, v 5+ WOL(P?) PPF# 0, v
+WEs(p?) y,F* 0,0+ WOs(P?) PyoF* o .,P s+ WEs(P2) PYaF* (7,95, 7,95,
+WO4(p?) v FH( Yu9py— V295) +WE;(p?) pF~"( Yu9ar™ Y1au) 7/3+WO7(FJ2)FMV( Yu9ar™ YoGau) Vg
+WEg(P2)P.F*" (7,95, ~ ¥,95.) + WOs(P?) PPLF“" (7,95, ~ ¥,95.) + WEo(P?) FA(¥,000— ¥19a,) Pp

+WOu(P?) PF“"(¥,8au— Yo9au)Ppt " - (16)

The tensor structures associated with \WiBve odd number — —

7 7
of gamma matrices, while those associated with ;\ii@ve WEs=—5 WOs=7gu—
even number of gamma matrices. Apart from a common fac- B
tor ix3ug/(p?—M3)?, the invariant functions are given by 5 5
WE6:§, WOG—§MB,
WE; = ! WO, = ! M
B WE,= 2, WO=—M
=g WormgMe,
WE,=— . WO,=— 2 2
27 Ann2 ! 2 ’ - -
9M 9M S =
B B WEg 3 WOg 3M 5 y
WEgzﬁy WO3:§M81 WEQITa WO9:3MB (17)
7 7 In addition to the ground state contribution, there exist
WE,=—, WO,= ' also excited state contributions. For a generic invariant func-
18 18Mg tion, the pole structure has the form
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)\é e Cg..p the square brackets by a constant, which is to be extracted
m+ (0?—M2)(p2= M2 )+"' , (18 from the sum rule along with the ground state property of
P B * (P B)(P B* interest. Inclusion of such contributions is necessary for the

whereCp. g+ are constants. The first term is the ground state"0Tect extraction of the magnetic moments. The pure ex-
double pole which contains the desired magnetic moment o?'ted state contributions are exponentially s_uppressed rela-
the baryon, the second term represents the non-diagonal trafive o the ground state and can be modeled in the usual way
sitions between the ground state and the excited states cauddyintroducing a continuum model and threshold parameter.
by the external field, and the ellipsis represents pure excited

state contributions. Upon Borel transform, one has

B. Calculation of the QCD side

2
Nais e MaIM? | o~M2/M? On the quark level, one evaluates the correlation function
M2 in Eqg. (1) using the operator product expansi@PE). The
Co pr 2 o, c_alculation i_s most readily done in coordinate space. To ar-
X 2 2;2(1_(3%'\/'5**'\"5)“\" Y]+ rive at the final sum rules, one needs a subsequent Fourier
B* Mg« —Mg transform, followed by a Borel transform.
(19) We decide to carry out four separate calculations for

Q(sss),2* " (uus), E*°(uss), and=*°(uds). They have
We see that the transitions give rise to a contribution that iglistinct strange quark content, which requires special treat-
not exponentially suppressed relative to the ground statement. The QCD sum rules for other members can be ob-
This is a general feature of the external-field technique. Théained by appropriate substitutions in those for these four
strength of such transitions at each structura jgriori un-  members.
known and is an additional source of contamination in the The master formula, which is obtained from contracting
determination ofwg not found in mass sum rules. The usual out the quark pairs in the correlation function, is given by,
treatment of the transitions is to approximate the quantity irfor Q 7,

- - P! A1 ’ ' T ! ’ ' T ’
(OT{n (X) 75 (0)}|0)r=2€P%€ " {SEA T y,CX® Cy,S ]+2S2% y,CX® Cy, S}, (20
for 3* 7,
* + * + 2 Pt AT ’ ' T ’ ’ 1T 7
OT{n;" (75 (0)}0)e=5e™ e P ST ysC® CroSET 1+ S5 T 7,CK" C, 8]
+ S Ty, C Cy S 1+ 283 7,C S Cy S + 2527 y,C LY Cy, S5
’ ' T ’
+2S2% y,C” Cy, S (21)
for E*0,
=*x0 —=*0 2 NN ’ ' T ’ ’ ' T ’
(OT{7Z () m5 (0)}O)r=5 €™ {SE T y,C]" CroS)° 1+ S T y,C" Cy, 7]
+ S T ypC L TCy, S 1+ 2527 y,C L Cyy S+ 252 y,C ' Cy, S
+253 y,C L 'y, S, (22
and, for3*°,
*0 *0 2 Tl AT ’ ’ ’ ’ ’ ’
(OT{7ms (075 (0)}|0)r=75 %€ ™SI T 3,CK" TCy, S 1+ S3* T 7,CL" TCy, 7]
+ STy TCy, S5 1+ S22 y,C S Cy S+ S ,C LY TCy, S
+ 2% s C R CySE + S5 O Cy S5 + S5 7,y S
+ 52y, CR Cy, S 23
In the above equations,

S5°(x,0;F)=(0| T{a*(x)q°(0)}[0), q=u,d,s, (24)
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is the fully interacting quark propagator in the presence of the electromagnetic field. To first ofedgy &and m, (assume
m,=my=0,m¢#0), and orderx*, it is given by[2,5,6]

b . :|_i b__ mq b_ — b b 2qab__ - Jy2 sab
Sg (X,O,Z)— 27_[_2 )(4((5a 4772)(26& <qq>5a <qq>X6a + 192<qgc0' Gq>x 63 1152<qgc0' Gq>XX 58.

X+ g*Bx ( An

2

ab
33210<qq><gCG2>X45ab 327t 2(gc ﬁ) ?) 48 32 2<g > X2 ?

B By n\ ab
262 Xo® -I-O'“X()\)
X

n n\ ab

1 ab _
+—2¥O<QQ>(9§GZ>X2 “ﬁ( 2) —@WQCU'GCDU“B(?

|m n\ ab
768<qgca- Gq>(X0.a,3+0.a[3X)( 2)

ieq XaP+ g*Bx

e
af sab
+ 32772Faﬁ XZ 561 24X<qq>FaBU 6%+ 96

aﬁ(Xa'“B-i- o *Px) 620

e, J—
+ Sggl ADFap(XCo = 2x, xPoP*) 62+ 576<qq>Faﬁ[x (r+ 8§ o P—x,xP(2K— §)0F] 8%~ 16<QQ>

ab
+higher order terms. (25

n

i
X KF“B_ ngaﬁ'uvlzﬂv) (?

We use the conventioe’*?3= + 1 in this work. The vacuum As it turns out, the validity of a particular sum rule depends

susceptibilities are defined by on the input parameter set. Sum rules that are valid for one
o o set may become invalid for another, avide versaFor this
(9o, e=ex{(qa)F,,, reason, it is useful to present all of the sum rules. Another

benefit is that it provides a basis for other authors to check
- _ — the calculation. Sufficient detail is given in this work for that
(049G, Dr=eqr(qa)F,,, @9 imose.
— oA . — The various symbols in the sum rules are explained in the
(A49c€urpn G yst)r=ieqé(qa)F,, . following. The condensate parameters are denoted by

Note thaty has the dimension of GeV, while x and ¢ are
dimensionless.

The calculation proceeds by substituting the quark propa- _ _
gator into the master formulas, keeping terms to first order in (ugeo- Guy=—mj(uu). (27)
the external field and in the strange quark mass. Terms up to
dimension 8 are considered. The various combinations cahhe rescaled current coupling
be represented by diagrams. Figure 1 shows the basic dia- _
grams considered for the decuplet baryon magnetic mo- Ag=(27)%\g. (28
ments. Figure 2 shows the diagrams considered for the
strange quark mass corrections. Note that each diagram ®he quark charge factors, are given in units of electric
only generic. All possible color permutations are understoodcharge
Numerous tensor structures emerge from the calculations.
Upon ordering the gamma matrices in the same order as in e,=2/3, e4=—-1/3, es=-1/3. (29
the phenomenological side, 18 invariant functions are ob-
tained at the corresponding tensor structures. By equatin§ote that we choose to keep the quark charge factors explicit
them with those in Eq(16), QCD sum rules are constructed. in the sum rules. The advantage is that it can facilitate the
These invariant functions can be classified by the chirality oktudy of quark effective magnetic moments. The parameters
the vacuum condensates they contain. Eight of them, denotefdand ¢ account for the flavor symmetry breaking of the
by WE;, involve only dimension-even condensates; thus westrange quark in the condensates and susceptibilities:
call the corresponding sum rules chiral even. The other eight,

a=—(2m%(uu), b=(g?G?),

denoted by W, involve only dimension-odd condensates, (s_s> (S_gca'-GS) Ys Ks &

and we call the corresponding sum rules chiral odd. Note that f=—=—= , p=—=—=—_ (30
previous works such as Refi2,4] use the chirality of the (uu)  (ugco-Gu) X k&

tensor structures to refer to the sum rules. The two are op-

posite. The four-quark condensate is parametrized by the factoriza-

To keep the presentation smooth, the complete set of sufPn approximation
rules(a total of 160 for the decuplet famjlybtained in this o o
work are given in the Appendix in a highly condensed form. (uuuu)=k,(uu)?, (31
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FIG. 2. Diagrams considered for the strange quark mass correc-
tions to the decuplet baryon magnetic moments.

(1) for A**, replace s quark by u quark @,

FIG. 1. Diagrams considered for the decuplet baryon magnetic (2) for A*, replace s quark by d quark B* *,

moments.

and we will investigate its possible violation via the param-

eter x,. The anomalous dimension corrections of the cur-

(3) for A°, replace s quark by d quark &*°,
(4) for A™, replace s quark by d quark 2™,
(5) for =* ~, replace u quark by d quark B**,
(6) for 2* ~, replace u quark by d quark &*°.

rents and various operators are taken into account in the lead-

ing logarithmic approximation via the factor

}L

where u =500 MeV is the renormalization scale ang,cp

Y

as(ﬂz) 32)

ag(M 2)

IN(M2/Acp)

Ly=
In(?/AQcp)

Here the conversions between u and d quarks are achieved
by simply switching their charge factors, and ey. The
conversions from s quark to u or d quarks involve setting
ms=0, f=¢=1, in addition to the switching of charge fac-
tors.

is the QCD scale parameter. As usual, the excited state con- Furthermore, in the course of collecting the coefficients
tributions are modeled using terms on the OPE side survivfor the four selected membe* *, 3*0 =Z*0 O~ we
ing M2—2 under the assumption of duality, and are repre-discovered some relations among them that allow one to

sented by the factors

n

X
En(x):l—e*"z K x:WS/MZ, (33
n H

wherewg is an effective continuum threshold. Note thagf
is in principle different for different sum rules and we will
treat it as a free parameter in the the analysis.

write down one set of; staring from another. The relations
are given as follows.

(1) From3** to 3*9: simply replace every occurrence
of e, by (e, +eg)/2.

(2) FromZ*%to O~ involves converting the u quark to s
quark. This is achieved by collapsing each coefficient into a
single term that has the maximum numbeegf f, ¢ in that
coefficient. The numerical factor of it is the sum of the nu-

The coefficients for other members of the decuplet familymerical factors in front each of the terms in the coefficient.
can be obtained by appropriate replacements of quark corcor example, (B,+e,) goes to &;, (2esf$+e,) goes to

tents. They are

3esf o, (2e4f —3e,—3e,f+e,) goes to—3e4f, etc.
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These relations were also used as consistency checks of tpéed to the sum rule by adjusting the phenomenological fit
calculation. parameters. Note that the uncertainties in the OPE are not
From the above discussions, we see that it is possible taniform throughout the Borel window. They are larger at the
write down the coefficients for all other members of the de-lower end where uncertainties in the higher-dimensional con-
cuplet family starting just from those fa&* * and=*°. In  densates dominate. Thus, it is crucial that the appropriate
the sum rule from WEin Eq. (Al), the complete sets a; weight is used in the calculation gf. For the OPE obtained
are given for the four selected memb&rs™, 3*° Z*%and  from the kth set of QCD parameters, the¢ per degree of
Q™. They are intended as examples for the reader to gdteedom is
familiar with the relations. The rest of the sum rules are
presented witre; only given for>** and 2*°, Xk 1
Finally, let us point out some exact relations among the N_DF_ Ng—N,
OPE sides of the sum rules:

28 [IRPE(M ) —TIE"(M; i\, my, W) 12

OPE,+=310OP 34 X ;
OPE,0=0, (35) (39)
OPE,-=—OPE,+, (36)  wheren, is the number of phenomenological search param-
eters, andIP"®" denotes the phenomenological representa-
OPE;«0= 2(OPEs+ + + OPEsx ). (37)  tion. In practice,ng=51 points were used along the Borel

axis. The procedure is repeated for many QCD parameter
These results are consequences of symmetries in the correRets, resulting in distributions for phenomenological fit pa-
tion functions. As an example, let us examine B4). Fora  rameters, from which errors are derived. Usually, 200 such
given diagram, the master formula far" * can be written as  configurations are sufficient for getting stable results. We
2(e,Cy+€,C,) = 4(C,+C,) whereC, has the trace depen- generally select 1000 sets which help resolve more subtle
dence, whileC, not. On the other hand, the master formulacorrelatlons among the QCD parameters and the phenomeno-

Y ; 2 logical fit parameters.
ffrzA can be written asi[(2e,+eq)C1+(2e,+eq)Co] The Borel window over which the two sides of a sum rule

= 5(C1+Cy), hence the factor of 2. The key here is th@t 516 matched is determined by the following two criteria.
each term is proportional to a quark charge factby;SU2)  First, OPE convergencethe highest-dimension operators
flavor symmetry in u and d quarké) it is the sameC, and  contribute no more than 10% to the QCD side. Second,
C, that appear in both cases. The argument can be genergjround-state dominanceexcited state contributions should
ized to any diagrams, only wit; and C, different from  not exceed more than 50% of the phenomenological side.
diagram to diagram. Thus the factor of 2 will survive, re- The first criterion effectively establishes a lower limit, the
gardless of the number of diagrams considered. One can agecond an upper limit. Those sum rules which do not have a
gue for the rest of the relations by the same token. The abovBore| window under these criteria are considered invalid.
results have been explicitly verified using the calculated co-
efficients in the sum rules. They also provided a set of highly
non-trivial checks of the calculation. A number of hard-to- ) ) ) .
detect errors have been eliminated this way. The QCD input parameters and their uncertainty assign-
Now let us consider the phenomenological side of EqMments are given as follows. The condensates are taken as
(37). Since the continuum is modeled using terms on the
OPE side, the continuum contributions also differ by a factor
of 2. Assuming the transitions, which are modeled by a con-
stant, also differ by a factor of 2, then E®4) can be ex-
tended to the magnetic moments. This assumption was co
firmed by numerical analysis. The same is true for &%)
and Eq.(36). The situation for Eq(37) is a little different.
The convergence properties may change when two OPE se-

ries are added up. Numerical analysis confirmed that fewef,o QCD scale parameter is restricted AQ,cp=0.15

A. QCD input parameters

a=0.52+0.05 Ge\, b=1.2+0.6 Ge,
m3=0.72+0.08 Ge\. (39)

IIq-'_or the factorization violation parameter, we use

k,=2*1 and I=x,<4. (40)

. 0 + —
sum rules are valid fo£*" than for>*™ and>* . +0.04 GeV. The vacuum susceptibilities have been esti-
mated in studies of nucleon magnetic momdrs4], but
lll. MONTE CARLO ANALYSIS the values vary in a wide range depending on the method

i 1 0, in-
To analyze the sum rules, we use a Monte Carlo base se.d. Here we take some median values with 50% uncertain

procedure recently developed in Rg29]. The basic steps

are as follows. First, the uncertainties in the QCD input pa-_ _ ~6.0+3.0 GeV2 and 0 GeV<y<-10 GeV?2
rameters are assigned. Then, randomly selected, Gaussiarfﬁl T (41’)
distributed sets for these uncertainties are generated, from

which an uncertainty distribution in the OPE,%F,E(MJ-) and

whereM; are evenly distributed points in the desired Borel

window, can be constructed. Nextx& minimization is ap- k=0.75+0.38, &=-1.5+0.75. (42
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TABLE I. Monte Carlo analysis of the QCD sum rules for the magnetic moment'df and{)~. The six columns correspond to, from
left to right, the sum rule that has a valid Borel region, the Borel region determined by the 10%—-50% criteria, the percentage contribution
(Con of the excited states and transitions to the phenomenological side at the lower end of the Borditregimases to 50% at the upper
end, the continuum threshold, the transition strength, the magnetic moment in nuclear magnetons. The uncertainties in each sum rule were
obtained from consideration of 1000 QCD parameter sets.

Region Cont w A MB

Sum rule (GeV) (%) (GeV) (GeV?) (un)
AT WE, 0.70-1.53 1.7 1.65 —0.28+0.52 7.7652.67
WE; 1.04-1.42 19 1.65 0.200.20 3.06:1.14
WE, 0.675-1.56 5 1.65 —0.35+0.37 3.34:1.44
WEs 0.765-1.47 8.5 1.65 0.530.81 3.56:3.49
07 WE,; 0.592-1.70 2.3 2.30 —0.12+0.11 —2.66+-0.88
WE, 0.872-1.53 20 2.30 —0.26:0.20 —5.31+3.66
WE; 0.885-1.68 8.5 2.30 —0.09+0.04 —1.24+0.51
WE, 0.60-1.72 2 2.30 —0.03£0.05 —1.24+0.24
WE;5 0.747-1.66 7.4 2.30 —0.14+0.14 —1.32-1.08
WE;g 0.59-2.32 0.86 2.30 —0.01£0.02 —1.14+0.40
WEg 0.69-2.60 3.3 2.30 0.2330.03 —0.65+1.22
WO, 0.663-1.26 12 2.30 —-0.32-0.42 —0.65+1.22
WO, 1.06-1.43 31 2.30 —0.62+0.18 —4.94+5.58
WO, 0.836-2.22 7.4 2.30 —0.03:0.01 —0.70+0.24

Note thaty is almost an order of magnitude larger thaand  These uncertainties are assigned conservatively and in accor-

¢, and is the most important of the three. The strange quarlance with the state of the art in the literature. While some

parameters are placed [&;13] may argue that some values are better known, others may
find that the errors are underestimated. In any event, one will

ms=0.15-0.02 GeV, 1=0.83£0.05, $=0.60x0.05. |05 how the uncertainties in the QCD parameters are

(43

TABLE Il. Same as Table I, but foB**, 3*% and3* ~. The presence of a second row in a specific sum rule indicates that the
continuum threshold was successfully searched.

Region Cont w A MmB

Sum rule (GeV) (%) (GeV) (GeV?) (uen)
S*t WE, 0.853-1.445 11 1.80 0.28.18 2.96-1.41
WE; 0.996-1.39 23 1.80 0.230.08 1.49-0.79
WE, 0.622-1.61 1 1.80 —0.05+0.10 1.74-0.42
WE; 0.715-1.45 10 1.80 0.340.35 1.82:1.94
0.715-1.45 6 2.655.96 0.26:0.49 1.711.96
WEg 0.575-1.96 0.2 1.80 —0.01+0.08 2.16:0.79
0.575-1.96 0.9 1.560.11 —0.06:0.04 2.00:0.68
WEq 0.79-2.36 13 1.80 —0.17+0.08 1.09:0.71
0.79-2.36 15 1.525.39 —0.21+0.08 1.08:-0.67
WO, 0.89-1.46 23 1.80 0.070.06 0.39-0.48
3*0: WE; 0.577-1.95 2.8 1.80 0.610.01 0.19-0.13
WEg 0.639-1.70 9.4 1.80 0.63.01 —0.18+0.06
WO, 0.846-1.38 18 1.80 0.110.09 1.06:0.96
WOg 0.662-1.66 5 1.80 —0.01£0.01 —0.30£0.18
WQOq 0.627-1.73 34 1.80 —0.01+0.01 —0.33+0.19
3* 7 WE; 0.662-1.54 1 1.80 —0.05+0.19 —3.34+1.33
WE; 0.926-1.42 16 1.80 —0.17+0.08 —1.42+0.71
WE, 0.602-1.61 1.3 1.80 0.6680.10 —1.70+0.38
WE; 0.735-1.37 13 1.80 —0.33+0.36 —-1.40+1.74
WEq 0.588-1.97 0.2 1.80 0.310.07 —1.72+0.63
WEg 0.71-2.51 9.4 1.80 0.130.07 —1.22+0.65
WO, 0.618-1.05 10 1.80 —0.34+0.77 —0.66t1.45

WO, 0.89-1.57 19 1.80 —0.08+0.05 —0.54+0.39
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TABLE IIl. Same as Table I, but foE*® and E* ~.

Region Cont w A "B

Sum rule (GeVv) (%) (GeV) (GeV™) (un)
E*0: WEg 0.636-1.55 13 2.00 0.680.03 —0.35+0.12
WO, 0.977-1.25 13 2.00 0.110.13 2.25-1.92
WOy 0.654-1.85 3.7 2.00 —0.02+0.02 —0.62+0.34
WOy, 0.621-1.91 2.8 2.00 —0.02£0.02 —0.69+0.35
E* 71 WE; 0.628-1.61 1.3 2.00 —0.07+0.14 —2.88+1.02
WE, 0.898-1.12 37 2.00 —0.30+0.83 —3.65+5.68
WE; 0.906-1.53 12 2.00 —0.12+0.05 —1.25+0.55
WE, 0.6-1.66 0.3 2.00 0.00640.07 —1.38+0.27
WEs 0.74-1.50 10 2.00 —0.22+0.21 —1.27+1.30
WEg 0.59-2.11 0.5 2.00 —0.006+-0.04 —1.38+0.48
WEg 0.70-2.54 6.3 2.00 0.070.05 —0.88+0.47
WO, 0.641-1.12 13 2.00 —0.3550.57 —0.58+1.26
WO, 0.863-1.86 12 2.00 —0.05+0.02 —0.60+0.29

mapped into uncertainties in the phenomenological fit pamatch for a good sum rule. This way of matching the sum
rameters. In the numerical analysis below, we will also ex+ules is similar to looking for a “plateau” as a function of
amine how the spectral parameters depend on different urBorel mass in the conventional analysis, but has the advan-
certainty assignments in these input parameters. tage of not restricting the analysis regime in Borel space to
the valid regimes common tooth two-point and three-point

B. Search procedure correlation functions.

To extract the magnetic moments, a two-stage fit was per-
formed. First, the corresponding chiral-odd mass sum rule, as IV. RESULTS AND DISCUSSIONS

obtained previously in Re{13], was fitted to get the mass We have analyzed all of the sum rules for the entire de-

Mg, the coupling Ng and the continuum thresholdy.  cyplet family. We confirmed the three relations among mag-
Then,Mg and )\é were used in the magnetic moment sumnetic moments as extended from E@34) to (36). So we
rule for a three-parameter fit: the transition strengththe  will only present results for seven members. Valid sum rules
continuum thresholdv,, and the magnetic momentg.  were identified using the criteria discussed earlier. The re-
Note thatw,; andw, are not necessarily the same. We im- sults are given in three tables: Tables I-IIl. The correspond-
pose a physical constraint on both andw,, requiring that ing overlap plots are given in seven figures: Figs. 3—9. These
they be larger than the mass, and discard QCD paramet@tots show how well a sum rule performs in the entire Borel
sets that do not satisfy this condition. In the actual analysigegion. Such information is absent in the tables. From the
of the sum rules, however, we found that a full search wagesults, the following observations are in order.

not always successful. In such cases, the search algorithm In general, more chiral-even sum rules are valid than

consistently returneav, either zero or smaller thaMg. chiral-odd ones. This is consistent with previous findings for
This signals insufficient information in the OPE to com-
pletely resolve the spectral parameters. To proceed, we fixed 2
w, atw,, which is a commonly adopted choice in the litera- o 1
ture, and searched féx and ug. The two-stage fit incorpo- -2 F 1
rates the uncertainties from the two-point functions in a cor- gl ]
related fashion into the three-point functions, and represents = -6 .
a more realistic scenario. E 8 8
To illustrate how well a sum rule works, we first cast it -10 |- .
into the subtracted form —12 b 4

0.0 0.5 2.0 25

~ 2002 ] .
Ms=\zuge” Vo™, (44) i GevS

; +
and then plot the logarithm of the absolute value of the twg G- 3: Overlap plots of the valid QCD sum rules for the
sides against the inverse b2, In this way, the right-hand magnetic moment. Each sum rule is searched independently. The

id il traight i h | 812 and solid line corresponds to the ground state contribution, the dotted
side will appear as a straight ine whose siope-islg an line the rest of the contributionSOPE minus continuum minus

whose intercept with thg axis gives some measure of the yansition. The error bars are only shown at the two ends for clar-
coupling strength and the magnetic moment. The linearityty From top down, the sum rules are arranged by magnitudes of
(or deviation from i of the left-hand side gives an indication ,,_ extracted from them. For better viewing, the curves for each

of OPE convergence, and information on the continuumsym rule are shifted downward by 3 units relatively to the previous
model and the transitions. The two sides are expected tene.
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FIG. 4. Similar to Fig. 3, but fof) ™. FIG. 6. Similar to Fig. 3, but foB*°,

the octet baryon magnetic moments. It was argued in[Rgf. The important point is that the results with the continuum
that the interval of dimension@ot counting the dimension threshold searched or not are almost the same. This suggests
of F,,) in the chiral-even sum rulg®-8) is larger than that that fixing it to that of the corresponding two-point function
in the chiral-odd sum rule€l-7). Indeed, more chiral-even seems a good approximation.
sum rules\WE,, WE,, WEs;, WE;, WEg, WEg) have power It is gratifying to observe that the valid sum rules for most
corrections up to M* than chiral-odd onesWO,, WO,, members give consistent predictions for the magnetic mo-
WO, WOg). Because of the additional terms in the OPEments in terms of the sign, except fB*° and Z*° whose
series, these sum rules are expected to be more reliable tharagnitudes are small. The magnitudes for the magnetic mo-
the other sum rules. The situation here is almost opposite tments are consistent within errors for the most part, with
that for the two-point function§13]. It was pointed out in  only a few exceptions. The performances of the sum rules
Ref. [30] that chiral-odd sum rules are more reliable thanare quite different within each member. This is best dis-
chiral-even sum rules for baryon two-point functions. Theplayed in the overlap plots. In some sum rules, the overlap is
reason could be traced to the fact that even and odd parityoor, as evidenced by the deviation from linearitdotted
excited states contribute with different signs. In the threedines). It signals poor OPE convergence in these sum rules.
point functions, however, the statement is no longer validAs expected, the deviation is more severe in the lower end of
due to the appearance of transitions and vacuum susceptibihe Borel region where nonperturbative physics dominates.
ties. Therefore, caution should be used when applying th&@hese sum rules will more likely suffer from uncertainties
chirality argument to determine the reliability of a sum rule associated with the selection of the Borel window. As a re-
in three-point functions. In addition, numerical analysissult, the spectral parameters extracted from them are less
showed that the sum rules from WBWNE;, WO, are valid  reliable. One way to alleviate the problem is to increase the
for the standard input parameter set, despite the absence lofver end of the Borel window to values where the overlap
1/M* terms. We have varied the central values of the inpuis good, even to extend the upper end to ensure the existence
parameters and discovered that sum rules that were valid f@f a window. This was not attempted in this work because
one set of input parameters became invalid for another, ande feel the results obtained this way are somewhat mislead-
vice versa Thus the situation with three-point functions is ing. The reason is that the sum rules in these windows will
more complicated. Our experience is that each sum rulbe dominated mostly by perturbative physics. It is common
should be examined individually in order to find out its reli- knowledge that if one goes deep enough into the Borel space,
ability. one can always find a match in a QCD sum rule. But such
It turns out that for most of the valid sum rules, a full practice is against the philosophy of the QCD sum rule ap-
search was unsuccessful, except for three sum rules;, WEproach, which relies upon power corrections to resolve the
WEg and WK for 2* *. Of the three, only WE returned a  spectral properties. Therefore, some standard is necessary to
continuum threshold with reasonable error. The other twemphasize such physics, and we feel the 10%—-50% criteria
returned it with large errors. The large errors indicate that th@dopted here are a reasonable choice.
sum rules are not very stable: They contain barely enough Based on the quality of the overlap, the broadness of the
information to completely resolve the spectral parametersBorel window and its reach into the lower end, the size of the

25 30 35 0.0 0.5

15 2.0 1.0 15 2.0
M2 (GeVE) M2 (GeV?)

FIG. 5. Similar to Fig. 3, but foB* *. FIG. 7. Similar to Fig. 3, but foB* ~.
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25 3.0

1.0 15 R0
M2 (GeV?)

10 15 20
M (GeV?)
FIG. 8. Similar to Fig. 3, but foEE*°. FIG. 9. Similar to Fig. 3, but foE* ™.

continuum contribution, and the standard QCD input paramthe accuracy by reducing the errors in the input is beyond the
eter set, we designate one sum rule for each member as toapability of these sum rules as thé/Npr becomes unac-
most favorable. They are WEor A**, WEs; for 3**, WOy ceptably large, signaling an internal inconsistency of the sum
for 2*0, WE; for 3* ~, WOg for £*°, WE; for £, and  rules. For that purpose, one would have to resort to finding
WE; for 0. The selection is undoubtedly subjective. Thesum rules that have better convergence properties and de-
reader may find a different set that has equal or comparableend less critically on the poorly known
performance. We want to stress that such a selection depends To get a different perspective on how the spectral param-
on the QCD input parameters. It is possible that the onesters depend on the input parameters, we study correlations
selected here become invalid for a different set of input paamong the parameters by way of scatter plots. In the Monte
rameters, in which case a new set should be selected. Carlo analysis, all the parameters are correlated. Therefore,
Relatively large errors were found in the valid sum rulesone can study the correlations between any two parameters
using the standard QCD input parameter set: from 50% tby looking at their scatter plots. Such plots are useful in
100% in the magnetic moments. But in most cases, the sigrevealing how a particular sum rule resolves the spectral
and order of magnitudes are unambiguously predicted wheproperties. We have examined numerous such plots. Here we
compared to the measured values. The situation is similar ttocus on the favorable sum rules as selected earlier. To con-
a previous finding o, [31]. To gain some idea about how serve space, we only give two examples. Figure 10 shows
the uncertainties depend on the input, we also analyzed thibe scatter plot for correlations betwe&i magnetic mo-
sum rules by adjusting the error estimates individually. Wement and the QCD input parameters for the sum rule from
found large sensitivities to the quark condensate magneti®/Es. Figure 11 shows a similar plot f&*° and the sum
susceptibility y. In fact, most of the errors came from the rule from WGQ;. Perhaps the most interesting feature is the
uncertainties iny. We also tried with reduced error estimates strong correlations withy in both sum rules. This is the
on all the QCD input parameters: 10% relative errors uni+eason for the large sensitivities to this parameter as alluded
formly. It leads to about 30% accuracy on the magnetic moto earlier. Precise determination gfis crucial for keeping
ments in the favorable sum rules. Further improvement othe uncertainties in the spectral parameters under control.
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FIG. 10. Scatter plots showing correlations between the magnetic momé@nt ahd the standard QCD input parameters for the sum rule
from WEs. The result is drawn from 430 QCD parameters sets.
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FIG. 11. Similar to Fig. 10, but foE*° and the sum rule from Wg The result is drawn from 1000 QCD parameters sets.

Other charged membefall use sum rule¢SR’s) from WE;] ~ possible to reproduce the central value o1 (using it as
display qualitatively the same patterns for parameters othdfput) by fine-tuning of the susceptibility alone, given the
than y and the factorization violation parameter. For y, ~ Sensitivity to this parameter and the large freedom at the
positively charged membefd ** and3* *) show negative Present time on its value. However, we feel that such an
correlations. The opposite is true for negatively chargedi€mpt is not very meaningful given the accuracy of the
membergQ~, S*~ and=*): They show positive corre- method. A more meaningful practice would be to reanalyze
lations with y. The patterns fotk, essentially follow those the octet baryon magnetic moments by the same me_thqq as
for x, although the correlations are weaker. The correlatio employed here, obtain a best fit on the the susceptibilities

X %0 S ) 0 rhsing their accurately measured values, and then use them to
patterns for=* " are qualitatively the same as those Etr°.

Table IV sh ; f th : gredict the decuplet magnetic moments. It would yield valu-
able IV shows a comparison of the magnetic moments,, e information on these important quantities and on the

from various calculations and existing experimental dataconsistency of the approach. From the table, it is fair to say
The results with 10% errors from the QCD sum rule methodat the QCDSR approach is at least competitive with other
are used in the comparison. Note that the central values ag|culations. The results came about from a rather different
slightly different from those in Tables I-IIl where conserva- perspective: the nonperturbative structure of the QCD
tive uncertainties were used. The reason is that the resultaghcuum. The results from various calculations roughly agree,
distributions vary with input errors and are not Gaussian inexcept for the charge-neutral resonanads 3*°, and=*°

this case. In such event the median and the average of tHer which both the sign and the magnitude vary. It would be
asymmetric errors are quoted. The QCDSR results are comelpful to have experimental information on the other mem-
sistent with data, although the central value far is  bers of the decuplet, although such measurements appear dif-
slightly underestimated. We would like to point out that it is ficult.

TABLE IV. Comparisons of decuplet baryon magnetic moments from various calculations: thiS@GEXSR), lattice QCD(Latt) [15],
chiral perturbation theoryyPT) [16], light-cone relativistic quark moddRQM) [19], non-relativistic quark modelNQM) [18], chiral
quark-soliton mode(yQSM) [24]. All results are in units of nuclear magnetons.

Baryon Expt. QCDSR Latt xPT RQM NQM xQSM
ATT 4.5+1.0 4.13-1.30 4.910.61 4.0:0.4 4.76 5.56 4.73
AT 2.07+0.65 2.46-0.31 2.1-0.2 2.38 2.73 2.19
A° ~0 0.00 0.00 —0.17+0.04 0.00 —0.09 —0.35
A~ —2.07+0.65 —2.46+0.31 —2.25+0.25 —2.38 —2.92 —2.90
Sr 2.13+0.82 2.55-0.26 2.0:0.2 1.82 3.09 2.52
3*0 —0.32£0.15 0.270.05 —0.07+x0.02 —-0.27 0.27 —0.08
3*T —1.66+0.73 —2.02+0.18 —2.2+£0.2 —2.36 —2.56 —2.69
g*0 —0.69+0.29 0.46£0.07 0.10.04 —0.60 0.63 0.19
B* —1.51+0.52 —1.68+0.12 —2.0£0.2 —-241 —-2.2 —2.48

O~ —2.024£0.056 —1.49+0.45 —1.40+0.10 input —2.48 —1.84 —2.27
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V. CONCLUSION uncertainties could be attributed o A better estimate of

this parameter is clearly needed. By varying the uncertainty

It has been demonstrated in this work that the magnetig, . - i the input parameters, we found that a 30% ac-
moments of decuplet baryons can be successfully compute

) curacy can be achieved with the designated sum rules if the
in the QCD sum rule_ approach. A Comp'ete set of QCD su CD input parameters could be determined to the 10% ac-
rules are derived using the external field technique. They ar
. : . uracy level.
analyzed extensively with a comprehensive Monte Carlo
based procedure which, in our opinion, provides the most
realistic estimates of the uncertainties present in the ap- ACKNOWLEDGMENTS
proach. ) ) .

Valid sum rules are identified using criteria established by It is @ pleasure to thank D. B. Leinweber for providing an
OPE convergence and ground-state dominance. For ea&figinal version of his Monte Carlo analysis program and for
member, usually several sum rules are valid, but not all of€lpful discussions. This work was supported in part by U.S.
them perform equally well. This was best displayed by thePOE under Grant DE-FG03-93DR-40774.
overlap plots. Some have large deviations in the lower end of
the Borel window, signaling insufficient convergence in the
OPE. These sum rules are less reliable. Based on overall
performance, a favorable sum rule was selected for each
member. They are WgEfor charged members, WOfor Here we give the complete set of QCD sum rules derived
charge-neutral members. We also found the following relain this work. For each member, there are 18 sum rules, 9
tions between the magnetic momengsi+=3u,++, mpo  chiral even, 9 chiral odd. It turns out that the sum rules from
=0, andu,-=—ua+, and approximatelyus«o=3(us«ry WEg and WE are degenerate, and so are those from,WO
+ ). and WQ. So the number of independent sum rules is 16 for

Using conservative estimates of the QCD input parameach member. The total number for the entire decuplet fam-
eters, the uncertainties in the extracted magnetic momently is 160. They are given in the following in a highly com-
are found relatively large as compared to the two-point funcpact form. The explanation on how to obtain a sum rule for a
tions. We found that the results are sensitive to the quarkarticular member is discussed in the main text.
condensate magnetic susceptibiligy In fact, most of the The sum rule from WE

APPENDIX: QCD SUM RULES FOR MAGNETIC
MOMENTS OF DECUPLET BARYONS

c,LY2E M4+ comeyal ~Y22EgM 2+ cgb L7+ ¢ xa2L 227+ (cs+ cg) meaLl ¥27+ (¢, + cg)a2L28’27%
+ chméazL*Z’”% + clomsméaL*mm% = % N2 % +A|eMaM?, (A1)
where the coefficients fa* * are
ci=g(est2ey), C=15 (esfop+2ey),
C3=7(est2e,), Ci=7% (efp+ef+ey),
Cs=15(—2ef+9e,+9e,f+5e,), Cs=15 (esfp+2e,)(7Tk+ &),
c;=3 (—ef+3es+5e,f—e))k,, Cg=zs(efp+ef+e,)(Tx+é),
Co=7z (efpt+e,f+e), cr=73(estef+ey), (A2)

for 3*°,
ci=z(este,tey), C=1 (efote,tey),
Ca=—1T72(este,+ey), Ci=7% (efop+(eyt+eq)(f+1)12),
Cs5=15 (—2e,f+9e,+ (e, +€4)(9F+5)/2), cs=15 (efdp+e,+ey)(Tx+§),
C,=3 (—ef+3es+(e,+eg)(5f—1)/2)k,, Cg=z1(efdp+(e,+ey)(f+1)/2)(Tx+é),

Co= 515 (esfp+ (e, +eg)(f+1)/2), c10=75 (es+ (g, +eg)(f+1)/2), (A3)
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for E*°,
ci=3(2este,), C,=13 (2efop+e,),
C3=75 (2este,), C,=7% f(efoptespte,),
Cs= 15 (5esf+9e,+9e,f—2e,), cg=15 (2efp+e,)(Tx+§),
c;=3 f(—ef+5e+3e,f—e)k,, Cg=zif(efot+epte)(7x+¢§),
Co=nz f(efp+epte,), Cio=72(ef+ef+es), (A4)
for Q7

ci=ses, C=7Fesfg,
C3=71 6, C4=7 ef?e,
Cs= % esf, cg= %l esfd(7x+§),
cr=5esf?k,, Co=17 esf?h(T+8),
Co=17 &2, C10= 7 &f. (A5)

The sum rule from WE

ci LY EoM?+comgyal ™ t#27+cgb L4’27% +cymga L‘”ﬂ% + csmsmgarm’ﬂ% = _Tl Xg( ﬁ +A|eMaM?
(A6)
where the coefficients fa* * are
ci=1 (est+2e,), Cr=7%(efp+2e,), cz=33(est+2e,), C,=3(etef+ey),
Cs=15 (es+e,f+ey), (A7)
for E*0,
c1= 12 (2estey), Co=7 (2esfp+e,), c3=7 (2e5+e,), ci=3(ef+e,f+eg),
cs=15 (esf+e,f+e). (A8)
The sum rule from WE
ciLY2E M %+ comeyal PP EGM 2+ cab LY+ ¢y xa®L 1?2+ (cs+ co)msal Y2+ (¢ + cg)a2L28’27%
- chmgaZL‘z’”% +cygmgmaal ™ 10/27% = _1—; N2 % +A) e~ Ma/M? (A9)

where the coefficients fa* * are
c1=71(est2ey), Co=3(esfop+2ey),
Ca=srs(8st2€y), C4=1s(esfotesfstey),
Cs=13 (2ef—3e,—3e,f+e,), Co=%(efp+2e,)(4x+§),
cr=u (ef—3e/2—2e,f+e))k,, Csg=15s(efo+e,f+e,)(dx+é),

Co=—T7/432(efp+e,f+ey), Cio=as(este,f+ey), (A10)
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for E*°
ci=—5(2estey), Co=x(2efgp+ey),
Cs=3575(2estey), Ci=1sf(efo+epte),
Cs=35 (ef—3e,—3e,f+2e,), cg=3:(2efp+e,)(4x+¢),
c,=z f(esf—2e,—3e,fl2+e,)k,, Cg=tssf(efd+edp+e,)(dr+é),
Co=— gzt (esfptrespte,), Cio=as(esf+ef+es. (A11)

The sum rule from WE

1 1
clL4’27E1M4+czmSXaL‘lszoM2+cgbL4’27+(c4+05)mSaL4’27+(cG+c7)a2L28’27W+c8m§a2L14’27W
I T SN PRI (A12)
18 "Bl M2 ’

where the coefficients fa* * are
ci=72;(est26,), Co=73 (esfop+2ey),
C3=3s —1/96(es+2e,), C,=15(esf+6e.,+6e,f+8e),
7 (eSfp+2e.)(10k+ &), cg= (esf+3e/2+4e,f+e,)k,,
=10 (esfptef+e)(de+é), cg=as(eftef+e,), (A13)
for E*°
Ci=35(2este,), Co,=73¢ (2efp+e,),
C3=73s (2este,), C,=15(8ef+6e,+6e,f+e,),
Cs= 73 (2efp+e,)(10k+§), cg=3 f(esf+4e,+3e,f/2+e))k,,
cr=15s f(esfop+espte)(dx+é), cg=zmflef+este,). (A14)

The sum rule from WE

1
C1 LB M+ comoyal ™ PR EM? 4+ b LY+ (4 + cs)meal ¥+ coxa®L 1+ (co + cg)a’L ¥
1 1 1 -7 2
+ chmgazL*Z’”W + clomsmgaL*1°’27W + cllmgale“mW =5 32 '“2 +A|eMaM? (A15)

where the coefficients fa* * are
C1=77 (6st2ey), C=15(efop+2ey),
Ca=1m (Bs+2e,), Cu=z¢(ef+es+e,f+3e),
Cs=35 (esfp+2e,)(2k+ &), ce=3(efopt+e,f+ey),

c,=% (eff+ef+e)k,, Cg=15(efot+ef+e,)(dx+é),
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Co=71z (esfp+e,f+ey), Cro=n(esteftey),
Cii=sz (esf+e,f+ey), (A16)
for E*°,
ci=7 (2estey), c=5(2efp+e),
C3=1a (2es+e,), c,=3z(3ef+etef+e),
Cs=2: (2esfp+e,)(2x+§), ce=5f(efot+epte),
cr=%f(eff+esteyk,, Cg=15f(esfot+esp+e,)(du+é),

216f(esf¢’+ esptey), C10=2L4(esf+euf+es),

Ci1i= 525 fesf +estey). (A17)
The sum rule from WE
12/27 /2 28/2 1 0/2 1 2,2 /2 1
cimsyal 2B M2+ (c,+ cy)meal¥?7+ (¢, + cs)a’l 7M +cgmgmzal ~* 7M2+c7m0a L4 7W
2 ~
=3 %4 2+A e~ MaM?, (A18)

where the coefficients faE* * are
ci=F (efpt+2e), cr=15(esf+2ey),
C3=75 (efp+2e,)(2k—§&), cu=5 (esf+e,f+e))k,,
Cs=15s (esfp+e,f+e)(2k—¢), Ce==%(es+e,f+e,),
C=ws (ef+e,f+ey), (A19)
for %0
c1= % (2efptey), cr=15(2esf+ey),
cs=7; (2esfp+e ) (2k—§), cu=7flesf+este))x,,
cs=10s f(esfp+espte,)(2k—§), ce=3;(ef+e,f+ey),
C7=5as f(esf +estey). (A20)

The sum rule from WEis identical to that from WEafter multiplying an overall sign on both sides.
The sum rule from WE

1 1
cimeyal ~?2E M2+ ¢ b L¥27+ cyya?L 1227+ (¢ 4+ cs)meal 27+ (co+ c7)a2L28’27W + cgymaa’l *2’27W
1 l _2 MB 2,012
+comemial~ 10’27M—+c om a2L14’27M4: 5 A3 vz tAe —Mg/M (A21)

where the coefficients fa* * are
ci=3(efg+2e,), co=1m(est2e),
ci=F(esfoptef+ey), c,=7 (5ef+ 12+ 12,f+22,),
Cs=35 (esfp+2e,)(1d4x—§&), Co=77 (8esf+6e,+20e,f+8e,)k,,

C7:5i4(esf¢+euf+eu)(4’<+§)v Cszﬁ(esfd’—’_euf_'—eu),
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Co=13s(este,f+e,), Cio=15(ef+ef+e,), (A22)
for E*°
ci=3(2efptey), co=1m(2este),
Cy=7F f(esfp+epte,), Ci=7% (22ef+12e,+12e,f+5e,),
Cs=35 (2esfp+e,) (14— &), cg=77 f(8esf+20e,+6e,f+8e,)k,,
cr= feffp+epte,)(du+é), cg=r1gf(efo+ep+e,),
Co=135 (sf+e,f+es), Cro=15f(esf+este,). (A23)
The sum rule from WEhas the same form as that from \WBnly with differentc; :
ci=(efp+2ey), c=15(est2e),
cs=5(efpreftey), ci=s5(4esf+12.+12,f+208,),
Cs=15(esfp+2e,)(—8k+¢&), cg=3(2esf+2e,+6e,f+2e))k,,
cr=7 (esfo+ef+e)k, cg=15(esfoptrefte,),
Co=15 (st eyf+ey), Cio=1as (esf+e,f+ey), (A24)
for E*°
ci=(2esfptey), cr=13(2este),
cy=2f(efptespte,), c,=3(20ef+12e,+12e,f+4e,),
Cs=15(2efp+e)(—8k+§&), ceg=5f(2ef+6es+2e,f+2e))x,,
c;=Ff(efp+tespre)k, Cg=r1msf(esfot+esdtey),
Co=Tr(esf+e,f+e), cio=tmf(ef+estey). (A25)
The sum rule from WQ

1
ClXaElM4+ C2m3L16/27E1M4+ (C3+ C4)aL16/27E0M2+ C5m(2)aL2/27+ CGXab+ C7mSXa2+ Cgab L16/27W

+(CotCr9mea e Mg/M?) (A26)

2|_16/27M_12: %)\ ('“BMB+A

where the coefficients fa* * are
ci=% (efp+2e), co=5(est2ey),
ca=77(esf+2ey), ci=z3(esfpt2e)(—8k+7¢),
cs=1s(estef+ey), Cg=o5(esfd+2e,),
c,=2—(efp+ef+e,), cg=:(estefte,),
Co=135(—2esf+3es+4e,f—2e,)k,, Cio=75 (efod+e,f+e)(8k+11E), (A27)
for £*°
=% (2efptey), c=5(2estey),
C3=7(2ef+ey), Ci=z3(2efp+e,)(—8k+7§),

Cs= %(esf+euf+es): Ce= 91_6 (2esfpte,),
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C7= _Tzf(esf¢+es¢+eu)y Cg= % (esf+euf+es)y
Co=»T(—2ef+4e,+3e,f—2e,)k,, Cio=zsf(efp+esd+e,)(8x+11E). (A28)

The sum rule from W@Q

ClxanM2+(02+C3)aL16/27+C4msXaz+C5Xab%+(CG+C7)mSaZL16/2,\jl- = ngZ(MM:/|2+A e MM’
(A29)
where the coefficients fa* * are
ci=s(efp+2e,), c,=(ef+2e,),
Ca=m(efp+2e,)(5k+2&), c,=% (efptef+ey),
Cs=71s(esfp+2e,), co=7F (esf+e,f+ey)k,,
c,=L(efpt+e,f+e)k, (A30)
for E*9,
ci=5(2efp+e), c,=2(2ef+e,),
cs=z5(2efp+e,)(5k+2&), c,=Ff(efop+epte,),
Cs=srs(2efp+e,), cg=7F f(esf+este)x,,
c,=5f(efp+ep+e)k. (A31)

The sum rule from W@Q
4 16/27; 2 2 2127 2 16/27 1 2| 16/27 1
cixaE;M*+(cyo+cz)al ™™ EgM“+cympal <+ csyab+ cgmgya+ c,abl W+(cg+cg)msa L VU
-7~

- 18)‘

o #8Ms

7oA e (A32)

+A|e

where the coefficients fa* * are
ci=(efpt2e), Cco,=75 (7Tesf+6e,+66,f+20e,),
C3=ms(esf p+26)(2k—118), cu,=73 (esteyf+ey),
cs=1s(efp+2e,), ce=1i(efp+tef+tey,
c,=13s(estef+e,), Ccg=3s(ef+3e,+7e,f+ey)k,,
Co= 155 (esf p+e,f+e,)(12«+7¢), (A33)
for E*°,
ci=%(2efp+e,), c,=75(20ef+6e,+6e,f+7e,),
=5s(2efp+e,)(2k—11¢), c,=15 (ef+e,f+ey),
cs=os(2esfpt+e,), cg=13 f(esfoptespte,),
cr=mm(esftef+e), cg=7 f(esf+7e+3e,f+e)x,,
==f(efo+ept+e)(12«+7¢&). (A34)

The sum rule from WQ
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cimeL ~82EgM2+ (c,+ cg)al %"+ ¢ ymgya’+ c5m§aL2’27M%+06XabM%+c7abL16’27N1| +(Cg+ Cq) Mg a%lﬁm%
7~2 B _M2/m2
=156 (—M2+A B/M?, (A35)
where the coefficients fa* * are
ci=3(est2e,), Cr=z(estef+ey),
cs=1m(efo+2e,)(12«+¢), c,=3(efp+ef+ey),
cs=r(estef+ey), cs=ms(efot+2e,),
cr=ms(estef+ey), cg=1s(est2e,f )k,,
Co=15:(efpte,f+e,)(12«+ &), (A36)
for E*°
ci=z(2este,), C,=—i(ef+ef+ey),
Ca=1m(2efp+e,)(12«c+¢), c,=:f(efop+eptey),
cs=1r(esf+ef+e), Co=1ss(2efp+e,),
c,=mm(ef+ef+e), cg=13f(2es+ef )k, ,
=f(efp+ep+e,)(12«+&). (A37)

The sum rule from W@is identical to that from WQ@after multiplying an overall sign on both sides.
The sum rule from W@

1 1
CixaEM*+comil =B M+ (Ca+ ) al o EgM 2+ csmgal #27+ coxab+ c7ab L1 + (g + o) mea?L 0%y

—Mé/MZ’ (A38)

2~,( nsMp
:g)\B( M2 +A

where the coefficients fa* * are
ci1=7F(esfp+2e,), c,=F (es+2e),
= z3(11ef+ 18e,+ 18e,f +40e,), C4= 15 (esf P+ 2e,) (14K + 23¢),
cs=z(estef+ey), ce=13(efod+2e,),
c,=ms(estef+e,), cg=3 (5ef+3e,+1le,f+5e))«,,
Co=(efp+e,f+e,)(2x—3¢), (A39)
for E*°
c1=5(2esfpte), c=F (2estey),
=5 (40ef+18e,+18e,f+11e,), C, =75 (2efp+e,)(14x+23¢),
cs=z(ef+e,f+e), cg=13;(2efop+e,),
c,=—1/432ef+e,f+e,), cg=35 f(5e,f+1le,+3e,f+5e))x,

=f(efp+esp+e,)(2k—3¢). (A40)
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The sum rule from W@has the same form as that from \W@fter multiplying an overall sign on both sides. They only
differ in ¢, andcg for 3* *:

Ci=7s(esf p+2e,)(14k+29), co=15(efop+e,f+e)(—4k+5é), (A41)
for E*9,
Ci= 75 (2efp+e,)(14k+29¢), co=1ssf(efp+esp+e,)(—4k+5¢). (A42)

The sum rule from W@

cixaEqM?+ comeL ~82EqM 2+ (c5+ c4)al to27+ csméaLz’”%Jrc(;Xab%Jrqab L16’27%+(c8+ cg)msaleﬁ’”%
S v LSS PESVEVYE) (A43)
3 "Bl Mz M
where the coefficients fat* * are
ci=s(efp+2e), c=7 (est2e),
C3= 7 (5ef+9e,+9e,f+19%,), C,=15s(efd+2e,)(8k—¢),
cs=z(estef+ey), ce=3(efod+2e,),
c,=ss(estef+e), cg=3(2ef+es+4e,f+2e))k,,
Co=1os(esf p+e,f+e)(6k—¢), (A44)
for E*°,
ci=75(2efp+e,), c,=F (2et+ey),
C3=77(19%f+9es+9e,f+56e,), Cs=r15(2esfp+e,)(8k—&),
cs=z(ef+e,f+e), cg=35(2efop+e,),
cr=sms(ef+ef+ey), cg=3f(2ef+4e,+e,f+2e)k,,
Co=Tosf(esfp+esp+e,)(6k—§&). (A45)
The sum rule from W@has the same form as that from \WQrhey only differ inc, andcg for 3* *:
Ci=3(efp+2e,)(2k—¢), co=15(efod+ef+e))k, (A46)
for £*°,
ci= 5 (2efptey)(2k—§), co=1sf(esfp+esp+e ). (A47)
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