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Complete O„as
2
… corrections to zero-recoil sum rules forB˜D* transitions
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We present the completeO(as
2) corrections to the Wilson coefficient of the unit operator in the zero-recoil

sum rule for theB→D* transition. We include both perturbative and power-suppressed nonperturbative effects
in a manner consistent with the operator product expansion. The impact of these corrections onuVcbu extracted
from semileptonicB→D* decays near zero recoil is discussed. The mixing of the heavy quark kinetic operator
with the unit operator at the two loop level is obtained.O(as) corrections to a number of power-suppressed
operators are calculated.@S0556-2821~98!03703-5#

PACS number~s!: 13.20.He, 11.55.Hx, 12.38.Bx, 12.39.Hg
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I. INTRODUCTION

Semileptonic decays ofB mesons provide an opportunit
to measure the Cabibbo-Kobayashi-Maskawa matrix par
eteruVcbu with minimal theoretical uncertainties~for a recent
review, see e.g.@1#!. One of the two most popular methods
based on the experimental determination of the zero-re
B→D* transition amplitude by extrapolating the experime
tal decay rate ofB→D* l n to the point of zero recoil mo-
mentum, where the invariant mass squared of lepton
ql n

2 5(MB2MD* )2. The hadronicB→D* transition ampli-
tude for this kinematics is written as

^D* u c̄gmg5buB&52FD*AMBMD* em* , ~1!

where e is the polarization vector of theD* meson. The
zero-recoil form factorFD* is calculable in the short
distance perturbative expansion up to ter
;(LQCD/mc,b)2. These nonperturbative corrections cann
be evaluated in a model-independent way at present; they
expected to be about28% @1#.

Existing estimates of the long-distance strong interact
corrections toFD* are based on the sum rules for hea
flavor transitions@2,3#. They relate certain sums of the tra
sition probabilities to expectation values of local hea
quark operators in the decaying hadron. The zero-recoil s
rule for the spatial components of the axial current can
written in the form

uFD* u21 (
e,m

uFexcu25jA~m!2
jp~m!

mc
2 mp

2 ~m!

2
jG~m!

mc
2 mG

2 ~m!1OS m3

mQ
3 D . ~2!
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The functionsjA , jp and jG are short-distance~perturba-
tive! coefficient functions,mQ denotes heavy quark mass
mb,c and mp

2 , mG
2 are B-meson expectation values of th

kinetic and chromomagnetic operators, respectively:

mp
2 ~m!5

1

2MB
^Bu b̄~ iDW !2buB&m ,

mG
2 ~m!5

1

2MB
K BU b̄

i

2
sabGabbUBL

m

. ~3!

By Fexc we generically denote transition form factors b
tweenB and excited charm states with massesMD1e. They
are related to the appropriate structure function of theB me-
son:

uFD* u21 (
e,m

uFexcu25
1

2p E
0

m

w1
A~e,qW 50!de, ~4!

w1
A5

2

3
Im hii

A e5MB2MD* 2q0 , ~5!

with the invariant hadronic amplitudesh defined as in@3#:

T̂mn5 i E d4xe2 iqxT$ j m
† ~x! j n~0!% ~here j m5 c̄gmg5b!,

hmn
A [

1

2MB
^BuT̂mnuB&. ~6!

The derivation of such sum rules and their usage for estim
ing physical form factors is explained in detail in@3#.

Because of short-distance perturbative effects the s
over excited states in the left-hand side~LHS! of the sum
rules does not converge ate;LQCD. Instead, forLQCD,e

,mQ one hasw1
A(e,qW 50);as(e)e/mQ

2 . This necessitates
introducing a cutoff at some energym. The same cutoff

al

te,
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serves also as a natural normalization point of the effec
low-energy operators, most appropriate for use with the s
rules. The scalem satisfies the constraintLQCD!m!mc,b .1

As explicitly indicated in Eq.~2!, all coefficient functions are
alsom dependent.

The leading termjA(m) is of primary importance, since i
accounts for the short-distance perturbative renormaliza
of the zero-recoil axial current. It is calculable in the pertu
bative expansion providedm is large enough and belongs
the perturbative domain. Ifm is too large, it weakens the
constraining power of the sum rules, since the heavy qu
expansion runs in powers ofm/mQ .

The Wilson coefficients in the operator product expans
~OPE! are presumed to account for the short-distance phy
and not be sensitive to what happens at momenta belo
certain scale. In practical applications, this subtlety is of
neglected. For example, the standard calculation of the

called matching coefficient of the zero-recoilc̄gmg5b cur-
rent, hA , contains contributions of gluons with arbitrar
small momenta, even belowLQCD, already in the first loop.
Therefore, it is not a purely short-distance factor, but a m
ture of short-distance and long-distance contributions. T
theoretical drawbacks of such simplifications are w
known. As stated above, we assume that the coefficient fu
tions in Eq.~2! are purely short distance, and must be cal
lated respectively.

TheO(as) perturbative corrections to the sum rules we
calculated in@3# ~see also@4#!. Separate pieces of Brodsky
Lepage-Mackenzie~BLM ! corrections @5# contributing to
sum rules at orderO(b0as

2) were considered in@6–8#. The
complete BLM resummation of the unit operator coefficie
function jA(m) was carried out in@9#. The impact of these
quasi–one-loop corrections on the sum rules proved to
small when one follows the Wilson approach to the opera
product expansion~OPE! assuming explicit separation o
short-distance and long-distance contributions.

More challenging are the genuine, non-BLMO(as
2) cor-

rections. Their magnitude is crucial for estimating the act
impact of unknown higher-order corrections. Technically t
most complicated piece corresponding to virtual correcti
to heavy quark currents at zero recoil was calculated to o
O(as

2) in @10#. In the present paper the remaining secon
order corrections to the zero-recoil sum rule for spatial co
ponents of the axial current are computed and the comp
two-loop expression for the perturbative coefficient functi
jA(m) is given. We also derive the two-loop evolution of th
kinetic operator. As a byproduct of the analysis, we fi
O(as) corrections to coefficients of some power suppres
operators in the nonrelativistic expansion, and obtain a s
lar correction to the coefficient of the kinetic operator in t
sum rule. TheO(as

2) correction to the sum rule for the time
like component of the vector current~B→D transition! will
be given elsewhere.

1In reality, this amounts to usem;several units timesLQCD. The
existence of such a scale in practice is the criterion for applicab
of the heavy quark expansion to charm quarks at a quantita
level.
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II. O„aS
2
… CORRECTIONS TO jA„µ…

The most efficient way to determinejA(m) was suggested
in @3# ~see also@11,9#!. It relies on considering the OPE
relations of the type of Eq.~2! in perturbation theory. The
structure functionwA is then given by the weak transition
amplitudes between initial and final states consisting
quarks and gluons. Our aim here is to calculate it to or
O(as

2).
The LHS has an elastic contributionb→c for on-shell

quarks and the continuum contribution fromb→c1gluon
and b→c12 gluons. The elastic contribution is equal
uhA

(2 loop)u2, which was calculated in@10#. The inelastic part
of the structure function to orderO(as

2) is calculated in the
present paper as an expansion inm/mQ . In order to deter-
mine perturbative coefficients in the sum rules, we need
inelastic part only through the leading, second order
m/mQ , because as far as nonperturbative effects emerg
from local higher-dimension operators are concerned, we
count explicitly only for 1/mQ

2 terms.2

Therefore, in order to calculatejA(m) with O(as
2) accu-

racy, one has to calculatehA
2 , the inelastic part of the struc

ture functionw1
A , the perturbative correction to the coeffi

cient function jp(m) of the kinetic operator and the
perturbative expectation value of the kinetic operator to
necessary order inas . The expectation value of the chromo
magnetic operator vanishes in the perturbative expansio
leading order in 1/mQ .

Through orderas
2m2/mQ

2 the perturbative contribution to
the LHS of Eqs.~2!, ~4! has the form~some of the Feynman
diagrams for the inelastic part are shown in Fig. 1!

1

2p E
0

m

w1
A ~pert!~e,0!de5~hA

~2 loop!!21H as~M !

p
CFD1

A

1S as

p D 2

CFD2
A~m; M !J S m

mc
D 2

,

~7!

where M is a normalization point for the strong couplin
constant in the modified minimal subtraction (MS) scheme.
Denotingx5mc /mb , we get

D1
A5

1

4 S 11
2

3
x1x2D , ~8!

y
e

2The 1/mQ
3 corrections were also calculated@1#. In this paper,

however, we limit our consideration to the leading 1/mQ
2 nonpertur-

bative corrections.

FIG. 1. Examples of inelastic contributions to the zero rec
sum rules.
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D2
A5CFDF

A1CADA
A1TRNLDL

A , ~9!

DF
A~m!5 ln~x!S 2

2

12x
1

13

8
1x1

3

8
x2D2

25

36
2

11

18
x

2
25

36
x2, ~10!

DA
A~m!5 ln~x!S 2

1

4
2

1

12
xD1D1

AF lnS 2m

mc
D2

5

24
p2

1
11

6
lnS M

2m D G1
917

720
1

949

1080
x1

917

720
x2, ~11!

DL
A~m!52

77

180
2

89

270
x2

77

180
x22

2

3
D1

A lnS M

2m D . ~12!

Although the sum of the elasticb→c transition probabil-
ity and the inelastic excitations is more infrared stable th
they are separately, it is still not completely free of infrar
contributions whose overall effect is power suppressed.
infrared part is given by the expectation values of the lo
operators in the RHS of the sum rule~2!. Therefore, by cal-
culating the expectation values of the local operators in p
turbation theory and accounting for them in Eq.~2!, we
eliminate the contribution of the infrared domain from t
Wilson coefficient of the unit operatorjA(m).

The expectation value of the kinetic operator in pertur
tion theory can be determined by using the sum rule
spatial components of the vector current at zero recoil in
heavy quark limit@2,3,9#:

1

2p E
0

m

w1
V~e!de5

jp
V

mc
2 mp

2 ~m!2
jG

V~m!

mc
2 mG

2 ~m!. ~13!

Here a particular field-theoretic scheme, suggested in@2,3,9#,
is used to define the renormalized kinetic operator. The
vantages of this scheme are discussed in@1,9#. The excitation
probability ~the perturbative structure function! w1

V(e) is cal-
culated using the same technique as for the axial curren
zero recoil all inelastic contributions are suppressed at l
by 1/mQ

2 ; therefore, Eq.~13! is proportional tom2/mc
2 . To

apply this sum rule, however, we need the coefficient fu
tions jp

V with O(as) accuracy. For this purpose we perfor
a nonrelativistic expansion of the vector current account
for theO(as) corrections. The result of this calculation rea

c̄gW buqW 505wc
1~2uiDW 1v@sW 3DW # !wb ,

u5
1

mb
H 11x

2x F12CF

as

p S 3~11x!

4~12x!
ln~x!11D G

1CF

as

2p

ln~x!

12xJ ,
n

ts
l

r-

-
r
e

d-

At
st

-

g

v5
1

mb

12x

2x F12CF

as

p S 3~11x!

4~12x!
ln~x!11D G , ~14!

where wc , wb are the corresponding nonrelativistic hea
quark spinor fields. This is theO(as)-corrected form of the
expansion for the vector current given in@3#, Eq. ~181!. The
coefficientsu and v are obtained by evaluating one-loo
graphs shown in Fig. 2 in the linear approximation
pW b,c /mQ . The perturbative corrections tou and v are satu-
rated at the gluon momenta of the order ofmQ . In principle,
excluding the part coming from belowm would lead to their
modification by terms proportional to powers ofm/mQ . This
would lead only to the effects 1/mQ

3 and smaller injA , and,
therefore, this effect must be discarded.

Using Eqs.~14! one determines the normalization of th
state produced by the vector current:

1

3 (
n

u^nu c̄g ibuB&u25
1

3
@~u212v2!mp

2 2~v222uv !mG
2 #.

~15!

As was shown in Ref.@3#, this normalization is nothing bu
the sum rule of interest. We get

jp
V5

1

4 H S 12
2

3
x1x2D22CF

as

p F S 12
2

3
x1x2D

1
3

4

11x

12x
ln xS 12

10

9
x1x2D G J , ~16!

jG
V5

1

4 H S 2
1

3
2

2

3
x1x2D22CF

as

p F S 2
1

3
2

2

3
x1x2D

2 ln xS 1

4
1

2

3
x1

3

4
x2D G J . ~17!

The same expression forjp
V can be also obtained by consid

ering the sum rule for a slowly movingb quark. Below, this
method is applied to derive the Wilson coefficient of t
kinetic operatorjp which enters the axial sum rule@cf. Eqs.
~20! and ~21!#.

In order to get the expectation value of the kinetic ope
tor in perturbation theory and, therefore, its mixing with t
unit operator toO(as

2) accuracy, one has to evaluate th
LHS of the sum rule~13! to second order in perturbatio
theory through termsm2/mQ

2 . Since the chromomagnetic op
erator does not mix with the unit operator, the perturbat
contribution as a whole should be identified with the kine
operator.

Performing this calculation, we get, with theO(as
2) accu-

racy,

FIG. 2. One-loop diagrams determining theas corrections to the
nonrelativistic expansion of the vector current in the small veloc
kinematics.
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„mp
2 ~m!…pert5CF

as~2m!

p
m21CFS as

p D 2F S 91

18
2

p2

6 DCA

2
13

9
TRNLGm2, ~18!

dmp
2 ~m!

dm2 5CF

as~m!

p
1S 5

3
2 ln 2DCFS 11

6
CA2

2

3
TRNLD

3S as

p D 2

1S 13

12
2

p2

6 DCACFS as

p D 2

. ~19!

The last term in Eq.~19! represents the non-BLM contribu
tion. Note that the term;CF

2 is absent. It means that th
first-order mixing in the Abelian theory without light flavor
is not renormalized by effects of higher orders. We note t
this fact actually holds to all orders in perturbation theo
~see Ref.@9#!.

Finally, we calculate the coefficient functionjp(m) of the
kinetic operator in the axial sum rule Eq.~2! to orderO(as).
The result is as follows:

jp~m!5jp
~0!1CF

as

p
jp

~1!~m!1OS m

mQ
as ,as

2D , ~20!

jp
~0!5

1

4 S 11
2

3
x1x2D ,

jp
~1!~m!5

2

3
~12x!2 lnS 2m

mc
D1

9217x131x227x3

24~12x!
ln x

1
1122x1x2

18
. ~21!

The last relation is obtained by considering the zero-re
sum rule perturbatively, in the first order inas for the initial
b quark moving with spatial momentumupW u!mb ,mc . Let us
note that formbÞmc , the zero recoil conditionqW 50 implies
a change in the spatial quark velocity. This change lead
gluon bremsstrahlung. The virtual corrections become in
red divergent, this divergence, as usual, is compensate
the contribution of the real gluon emission. This cancelati
however, brings in an explicit logarithmic dependence ofjp

(1)

on m.
We note that this logarithmic dependence is not qu

usual. Although the kinetic operator has a vanishing ano
lous dimension, its coefficient in the sum rule contains
logarithm of the cut-off parameterm at orderas . Because of
the power mixing of the kinetic operator with the unit oper
tor, the coefficient of the latter has a similar logarithm in t
power suppressed termas

2m2/mQ
2 . We must emphasize

however, that the logm in Eq. ~21! does not originate from
the dependence of the coefficient function on the normal
tion point used for the kinetic operator, but rather from t
explicit dependence of the observable we consider~axial
sum rule! on m. If we introduce a normalization pointn of
the operator as an independent parameter not equal tm,
there will be no logn dependence injp

1 and onlyas log m
t

il

to
-
by
,

e
a-
e

-

a-

will remain. A transparent physical picture underlying th
fact will be discussed in a separate publication.

Equations~7!, ~18! and ~20!, ~21! combined with the
known result forhA

(2 loop) allow us to obtainjA to orderas
2 .

We note, however, that our perturbative expressions w
given in terms of the pole masses of the heavy quarks as
appear in this order of perturbation theory. To get rid
spurious 1/mQ infrared effects associated with the po
masses, we have to switch to the short-distance ma
mb,c(m) which have concrete numerical values at a givenm,
independent of the order of perturbation theory. To ord
1/mQ

2 this change affects only the termhA
2 . Unless this is

done, the sum rules are formally inconsistent since the p
turbative expansion ofhA has an infrared piece of the orde
of as(mQ)LQCD/mQ @11#.

In principle, the short-distance masses can be define
different ways. Since throughout this paper the renormali
tion scheme with the cutoff over the excitation energy
implemented, we use theO(as) relation @12#

dmQ~m!

dm
52CF

as

p
X4
3

1
m

mQ
1OS m2

mQ
2 D C. ~22!

Then we replace

uhA
~2 loop!~mQ

pole!u2→uhA
~2 loop!

„mQ~m!…u2

22CF
2 S as

p D 2S 2x

12x
ln x111xD X m

mc

1
3

8
~11x!S m

mc
D 2C. ~23!

To get rid of the infrared 1/mQ effects mentioned above, on
can use arbitrary short-distance masses, evenm̄Q(mQ) or
normalized at even higher scales. Although such a cho
may be justified in certain purely perturbative calculations
is foreign to the OPE at the nonperturbative level, and the
fore is not employed for zero-recoil transitions in the liter
ture. On the practical side, it is probable that the event
accuracy is better for determination of the masses normal
at lower scales@1#.

The final result for the coefficient functionjA(m) of the
unit operator is obtained by combining all terms calcula
above. Following@13#, we express the result in terms o
as(Amcmb), even though themc↔mb symmetry arguments
~which motivate this choice! do not apply forjA(m) because
an additional momentum scale is present.

Collecting all pieces together and neglecting ter
m3/mQ

3 , we obtain, forjA(m),

jA
~2 loop!~m!5@hA

~2 loop!
„mQ~m!…#21CF

as

p
jA

~1!S m

mc
D 2

1CF
2 S as

p D 2 m

mc
§A1CFS as

p D 2S m

mc
D 2

zA
~2! ,

~24!
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§A522S 2x

12x
ln x111xD , ~25!

zA
~2!5CFzA

F1CAzA
A1TRNLzA

L , ~26!

zA
F5

2

3
~12x!2 lnS 2m

mc
D2

x~1715x14x2!

6~12x!
ln x

2
25

18
2

8

9
x2

25

18
x2, ~27!

zA
A52S 11

2x

3
1x2D F2

3
lnS 2m

mc
D1

3p2

32 G2S 17

24
1

7x

18

1
11x2

24 D ln x1
203

80
1

1859

1080
x1

203

80
x2, ~28!

zA
L5

1

3 S 11
2x

3
1x2D F lnS 2m

mc
D1

1

2
lnxG2

71

90
2

77x

135
2

71x2

90
.

~29!

The functionhA
(2 loop) to orderO(as

2) can be found in@10#.
The terms, explicitly proportional tom/mc and (m/mc)

2, in
Eq. ~24! are necessary to subtract the corresponding infra
contributions from the momenta below the scalem, which
are implicitly included in the Feynman one- and two-lo
diagrams used to calculatehA

2 .
Since the BLM part of the corrections was discussed

the literature in detail@9#, we single out the genuine non
BLM part a2

0 which is defined as the value of the full secon
order coefficienta2 at NL5 11

4 (CA /TR):

jA~m!511a1„m,mQ~m!…
as

p
1a2„m,mQ~m!…S as

p D 2

1•••

511a1„m,mQ~m!…
as

p
1@c2

BLM
„m,mQ~m!…b0

1a2
0
„m,mQ~m!…#S as

p D 2

1••• , ~30!

b05
11

3
CA2

4

3
TRNL . ~31!

Note thata2
0 does not depend on the convention for the n

malization point of the strong coupling. Its value is shown
Fig. 3 as a function ofm/mc for three values ofmc /mb
50.2, 0.25 and 0.3. We denote the corresponding non-B
second-order shift injA(m) by D0(m):

D0~m!5a2
0
„m,mQ~m!…S as

p D 2

.

d

n

-

III. zVCBz DETERMINATION AND ZERO-RECOIL
SUM RULES

Let us now turn to the application of our results for th
determination ofuVcbu. First, we note that the net impact o
the non-BLMas

2 corrections on the sum rules is rather sma
Taking a reasonable valuem/mc50.5 andmc /mb50.25 we
geta2

0'20.7. Assumingas50.22 to 0.27, the absolute shi
D0(m) constitutes20.003 to20.005 which translates into
20.0015 to20.0025 decrease of the short-distance pert
bative renormalization of the zero-recoil axial current. F
any reasonable choice of the parameterm in the sum rules
consistent with using the 1/mc expansion, this effect is wel
below 1%. It should be noted that since in the Wilson O
the infrared domain is completely excluded from the coe
cient functions, the effective coupling cannot become lar

The perturbative correction to the coefficient of the k
netic operator@Eq. ~21!# is strongly suppressed. The actu
value of this coefficient changes only by several percent.
did not calculate the corresponding effect in the chromom
netic term; due to the anomalous dimension of this opera
it depends on the specific renormalization procedure. In v
of the result for the vector sum rule@see Eq.~17!# we do not
expect this correction to be significant either.

The axial sum rule~2! allows one to get a QCD-base
estimate of the combined effect of the perturbative and n
perturbative effects on theB→D* zero-recoil form factor:

uFD* u5F jA~m!2
jp~m!

mc
2 mp

2 ~m!2
jG~m!

mc
2 mG

2 ~m!

2 (
e,m

uFexcu2G1/2

1OS m3

mQ
3 D . ~32!

It is seen thatAjA(m) plays the role of a short-distanc
renormalization factor of the weak current, while the rema
ing terms in square brackets yield 1/m2 long-distance correc-
tions to the form factor. The quantum-mechanical mean
of each of the three power terms, confirming this form
conclusion, was elucidated in@3# ~see also@1#!. As expected,
the short-distance renormalization factor depends on

FIG. 3. The value of the non-BLM part of theas
2 coefficienta2

0

of the Wilson coefficientjA(m) in the zero recoil axial sum rule fo
x50.2 ~dotted line!, x50.25~solid line! andx50.3 ~dashed line! as
a function of m/mc . The short-distance renormalization of th
c̄gkg5b at zero recoil is given byjA

1/2.
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separation scalem defining which effects are considered
short-distance and which are included into the low-sc
physics.

With the good perturbative control over the short-distan
part of FD* , the main uncertainty dominating theoretic
predictions for the form factor resides in power correctio

In Ref. @9# higher order BLM-type corrections to the su
rule were analyzed. It was shown that, assuming that
running of the QCD couplingas below the charm mass is
valid practical concept, it is necessary to perform a resu
mation of the leading BLM corrections in order to arrive a
meaningful numerical result. Within the Wilson approach
OPE, the overall impact of the BLM corrections appears
be moderate. The typical BLM-resummed value forjA(m) at
m/mc.0.5 appears to be near 0.99.

On the practical side, excluding the infrared domain n
tably improves the accuracy of the perturbative calculati
for the charm quark, at least in the context of the BL
calculus. We recall that the perturbative zero-recoil factorhA
has an intrinsic uncertainty;(LQCD/mc)

2 due to infrared
renormalons. By calculatingujA(m)u1/2 and taking into ac-

count m2/mQ
2 terms, the (LQCD/mc)

2 uncertaintyd IR
1/m2

is
eliminated~an explicit demonstration of this cancellation c
be found in@9#!. As long as we do not account for 1/mQ

3

terms explicitly, the perturbative expressions still have
infrared renormalon uncertainty of the order of (LQCD/mc)

3.
Using the same overall normalization for both cases one

d IR
1/m2

~hA!;~11x!2S LQCD

mc
D 2

→d IR
1/m3

;
3e5/6

16
~1115x15x2111x3!S LQCD

mc
D 3

.

~33!

Performing a simple estimate, one finds that the size of
1/mc

2 uncertainty inhA becomes quite significant forLQCD

.250 MeV. This shows up in the BLM corrections whic
become quite large already at the lowest orders. Shifting
uncertainty down to;(LQCD/mc)

3, we significantly reduce
it.

The analysis of theO(as
2) corrections presented in thi

paper shows that the genuine two-loop effects are q
small. Therefore, our numerical conclusions do not differ
practice from the estimate of the zero-recoil axial form fac
given in @1#

FD* .0.9120.013
mp

2 20.5 GeV2

0.1 GeV2 60.02excit

60.01pert60.0251/m3. ~34!

For further improvements, one has to bring in a new dyna
cal input yielding the magnitude of long-distance 1/mc

2 and
1/mc

3 corrections more precisely.
Experimental data on the small-recoilB→D* decay rate

are not fully conclusive yet. Nevertheless, the value ofuVcbu
extracted from the exclusiveB→D* transitions usingFD*
.0.9 seems to be in a reasonable agreement—already w
e
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experimental uncertainties—with the results obtained fr
inclusive semileptonic decay widthGsl(B→Xcln l). The es-
timate of the completeO(as

2) correction inGsl(b→Xcln l),
recently presented in Ref.@14#, is another example of the
theoretical progress in the perturbative treatment of one
the most important heavy quark decays.

IV. CONCLUSIONS

We have calculated the completeO(as
2) corrections to the

zero-recoil heavy quark axial sum rule which is used
evaluate the zero-recoilB→D* form factor. The calcula-
tions performed here are a necessary supplement to th
sults of Ref.@10#. The use of the sum rules allows one
incorporate bothO(as

2) and power-suppressed nonperturb
tive effects in a consistent way. The genuine~non-BLM!
two-loop corrections are shown to be relatively small a
under good theoretical control. We note that the uncerta
associated with these effects had not been reliably estim
previously. This theoretical uncertainty is now eliminated

As an important theoretical conclusion, we emphasize t
a consistent implementation of the Wilson OPE separa
short- and long-distance contributions, is feasible even w
highly nontrivial completeO(as

2) corrections are taken into
consideration. In principle, this procedure does not bring
additional complications, compared to purely perturbat
calculations performed without an infrared cutoff. The W
son approach, on the other hand, allows one to operate
well defined notions of short-distance and long-distance
fects. From the practical viewpoint, it allows one to decrea
significantly the uncertainty in perturbative coefficients
beauty decays. This essential reduction originates ma
from the BLM-type corrections; the genuine two-loop effec
are less radically changed.

We note also, that only in the framework of the Wilso
OPE approach to QCD is it possible to preserve a numbe
exact inequalities formulated for hadrons containing a he
quark. They exist in a simplified quantum mechanical tre
ment which ignores the peculiarities of the field-theoreti
description. These inequalities are important in constrain
those parameters of the heavy quark expansion which are
yet measured in experiment.

As a byproduct of our analysis, we obtained the compl
two-loop perturbative evolution of the kinetic operator, E
~19!.3

We also calculatedO(as) corrections to the coefficien
function of the kinetic operator in the axial sum rule. Th
nonrelativistic expansion ofc̄gW b at zero recoil and the cor
responding sum rule were obtained withO(as) accuracy.
Numerically, we found an overall short-distance renorm
ization of the zero-recoil current to be very small, close
the estimates of@2,3,1# and rather different from the valu
used in other analyses ofFD* where long-distance 1/m2 cor-
rections were addressed.
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