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Complete O(aﬁ) corrections to zero-recoil sum rules forB—D* transitions
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We present the comple@(aﬁ) corrections to the Wilson coefficient of the unit operator in the zero-recoll
sum rule for theB— D* transition. We include both perturbative and power-suppressed nonperturbative effects
in a manner consistent with the operator product expansion. The impact of these correctidgg ertracted
from semileptonid— D* decays near zero recoil is discussed. The mixing of the heavy quark kinetic operator
with the unit operator at the two loop level is obtain€.«a;) corrections to a nhumber of power-suppressed
operators are calculate50556-282(198)03703-5

PACS numbgs): 13.20.He, 11.55.Hx, 12.38.Bx, 12.39.Hg

I. INTRODUCTION The functionsé,, &, and &g are short-distancéperturba-
tive) coefficient functionsmg denotes heavy quark masses

Semileptonic decays d@ mesons provide an opportunity m, . and ,uf, ,ué are B-meson expectation values of the
to measure the Cabibbo-Kobayashi-Maskawa matrix paramkinetic and chromomagnetic operators, respectively:
eter|V.p| with minimal theoretical uncertaintigor a recent
review, see e.d1]). One of the two most popular methods is 1 L
based on the experimental determination of the zero-recoil Wi ()= —(B|b(i|5)2b|B)M,
B—D* transition amplitude by extrapolating the experimen- 2Mg
tal decay rate 0B—D* /v to the point of zero recoil mo-
mentum, where the invariant mass squared of leptons is ) 1 — i
0%,=(Mg—Mpx)2. The hadroni®—D* transition ampli- He(p)= NB< B|b 5%,66&%
tude for this kinematics is written as

B> . 3
"

_ By F. we generically denote transition form factors be-
(D*|c v, vsb|B)=2Fp« yMgMpsx€} , (1) tweenB and excited charm states with massés+ e. They
are related to the appropriate structure function ofBhme-
where e is the polarization vector of th®* meson. The son:
zero-recoil form factorFp« is calculable in the short-
distance  perturbative  expansion up to terms 1 (w R
~(Agcp/Mep)?. These nonperturbative corrections cannot |Fos|2+ > |Fexo|2=2— f wi(e,q=0)de, 4
be evaluated in a model-independent way at present; they are esu mJo
expected to be about 8% [1].
Existing estimates of the long-distance strong interaction
corrections toFp» are based on the sum rules for heavy W/f=§ Im hf}  e=Mg—Mpx—0o, ()
flavor transitiond 2,3]. They relate certain sums of the tran-
sition probabilities to expectation values of local heavyyiih the invariant hadronic amplitudésdefined as irf3]:
guark operators in the decaying hadron. The zero-recoil sum
rule for the spatial components of the axial current can be

I i ko o —i . T . . _—
written in the form T,uv_l f d4xe IqXT{J M(X)J v(o)} (here J,u,_ 07#75b),
Exlp)
[Fosl?+ 2 [Fed®=a(1) = =17 p7(m) 1
e<u A
¢ , = o (BITwlB). 6)
— M 2( )+0 Ll 2)
mZ Helt m% ' The derivation of such sum rules and their usage for estimat-

ing physical form factors is explained in detail [i8].
Because of short-distance perturbative effects the sum
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serves also as a natural normalization point of the effective
low-energy operators, most appropriate for use with the sum
rules. The scalg: satisfies the constraimt gcp<u<mg, 1

As explicitly indicated in Eq(2), all coefficient functions are
also u dependent.

The leading terng, () is of primary importance, since it
accounts for the short-distance perturbative renormalization g, 1. Examples of inelastic contributions to the zero recoil
of the zero-recoil axial current. It is calculable in the pertur-sum rules.
bative expansion provided is large enough and belongs to
the perturbative domain. If. is too large, it weakens the Il. O(a%) CORRECTIONS TO £4(l)

constra_ining power of the sum rules, since the heavy quark The most efficient way to determirig( ) was suggested
expansion runs in powers .WmQ' . in [3] (see alsq[11,9)). It relies on considering the OPE

The Wilson coefficients in the operator prodyct expansionie|ations of the type of Eq(2) in perturbation theory. The
(OPB are presumed to account for the short-distance physicgyycture functionw, is then given by the weak transitions
and not be sensitive to what happens at momenta below gnplitudes between initial and final states consisting of
certain scale. In practical applications, this subtlety is oftetyuarks and gluons. Our aim here is to calculate it to order
neglected. For example, the standard calculation of the sq(4?).
called matching coefficient of the zero-recaily,, ysb cur- The LHS has an elastic contributidn—c for on-shell
rent, 75, contains contributions of gluons with arbitrary quarks and the continuum contribution froo—c+ gluon
small momenta, even belowgcp, already in the first loop. and b—c+2gluons. The elastic contribution is equal to
Therefore, it is not a purely short-distance factor, but a mix4 7 '°°?|2, which was calculated if10]. The inelastic part
ture of short-distance and long-distance contributions. Thef the structure function to ord@(ag) is calculated in the
theoretical drawbacks of such simplifications are wellpresent paper as an expansionufmg. In order to deter-
known. As stated above, we assume that the coefficient funanine perturbative coefficients in the sum rules, we need the
tions in Eq.(2) are purely short distance, and must be calcudinelastic part only through the leading, second order in
lated respectively. ulmg, because as far as nonperturbative effects emerging

The O(as) perturbative corrections to the sum rules werefrom local higher-dimension operators are concerned, we ac-
calculated in[3] (see alsd4]). Separate pieces of Brodsky- count explicitly only for 1% terms?
Lepage-MackenzigBLM) corrections[5] contributing to Therefore, in order to calculat(u) with O(a?) accu-
sum rules at orde@(ﬁoag) were considered ifi6—8]. The  racy, one has to calculatﬁf\, the inelastic part of the struc-
complete BLM resummation of the unit operator coefficientture functionwy, the perturbative correction to the coeffi-
function €,(u) was carried out if9]. The impact of these cient function &.(u) of the kinetic operator and the
quasi—one-loop corrections on the sum rules proved to bperturbative expectation value of the kinetic operator to the
small when one follows the Wilson approach to the operatofecessary order ias. The expectation value of the chromo-
product expansionfOPE) assuming explicit separation of magnetic operator vanishes in the perturbative expansion to
short-distance and long-distance contributions. leading order in Ihg.

More challenging are the genuine, non-BLI &2) cor- Through ordera??/m3 the perturbative contribution to
rections. Their magnitude is crucial for estimating the actuathe LHS of Eqs(2), (4) has the form(some of the Feynman
impact of unknown higher-order corrections. Technically thediagrams for the inelastic part are shown in Fiy. 1
most complicated piece corresponding to virtual corrections
to heavy quark currents at zero recoil was calculated to order 1 J#

ag(M)

v

|
O(«a?) in [10]. In the present paper the remaining second- 5 wy P0(e,0)de= (7 )%+ CeAf

order corrections to the zero-recoil sum rule for spatial com-

0
2

ponents of the axial current are computed and the complete ag A w\?
two-loop expression for the perturbative coefficient function + = CrAS(u; M) m.)

. . . . C
Ea(w) is given. We also derive the two-loop evolution of the
kinetic operator. As a byproduct of the analysis, we find (7)

O(axy) corrections to coefficients of some power suppressegvhere M is a normalization point for the strong coupling

operators in the nonrelativistic expansion, and obtain a Simi'constant in the modified minimal subtractioli§) scheme

lar correction to the coefficient of the kinetic operator in theDenotin X=m./m.  we get '

sum rule. TheO(aﬁ) correction to the sum rule for the time- 9 ¢ 9

like component of the vector currefB—D transition will

be given elsewhere. AA==
4

2 2
1+ §X+X , (8)

Yn reality, this amounts to use~ several units timed gcp. The
existence of such a scale in practice is the criterion for applicability 2The 1m% corrections were also calculatéd]. In this paper,
of the heavy quark expansion to charm quarks at a quantitativeowever, we limit our consideration to the Ieading@/nonpertur-
level. bative corrections.
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AS=CrAR+CAAR+TRN AL, 9 ! ' '
2= LrApTLAAAT IRNLAL C) 5 ja f {
AR(w) I()( 2 By +32) 25 11 NP NI N
=IN(X)| = ——+ 5+t X+ X — ==~ ==X
FLH 1-x 8 8 36 18 FIG. 2. One-loop diagrams determining thecorrections to the
o5 nonrelativistic expansion of the vector current in the small velocity
52 (10) kinematics.
36’
1 1-x as(3(1+X)| 1 4
L1 A V= 2x |1 CF T (gm0t 49
AA( )=In(x)(——— x| +A% In( “)——wz
ALK 4 12 . 24 where ¢., ¢, are the corresponding nonrelativistic heavy

quark spinor fields. This is th®(«s)-corrected form of the
“x2, (11 expansion for the vector current given[@8l, Eq.(181). The
720" 1080° ' 720 coefficientsu and v are obtained by evaluating one-loop
graphs shown in Fig. 2 in the linear approximation in

77 89 77 2 M f)b’c/mQ. The perturbative corrections toandv are satu-
Aﬁ(,u,): _____ ——x2_ A/i\ In(—). (12) rated at the gluon momenta of the ordema§ . In principle,
180 270" 180" 3 2 excluding the part coming from below would lead to their
modification by terms proportional to powers @fmg . This
Although the sum of the elastlz— c transition probabil-  would lead only to the effects nf’ and smaller in¢,, and,
ity and the inelastic excitations is more infrared stable thartherefore, this effect must be d|scarded
they are separately, it is still not completely free of infrared  Using Eqgs.(14) one determines the normalization of the
contributions whose overall effect is power suppressed. Itstate produced by the vector current:
infrared part is given by the expectation values of the local
operators in the RHS of the sum rut®). Therefore, by cal-
culating the expectation values of the local operators in per—— Z I(n|c y,b|B>|2=—[(u2+ 202),%—(0 —2UU)MG]
turbation theory and accounting for them in E®), we
eliminate the contribution of the infrared domain from the (15
Wilson coefficient of the unit operataa(u).
The expectation value of the kinetic operator in perturba-
tion theory can be determined by using the sum rule for
spatial components of the vector current at zero recoil in the

L1 (M) e17 49 017
6 "M\ 2p

As was shown in Ref.3], this normalization is nothing but
the sum rule of interest. We get

heavy quark limif2,3,9: gvzl 1— Ex+x —2C.=2|[1- zx+x
T4 3 P 3
1 (n &Y () 31+x 0,
Y} _ 57 2 . 2 —__ - S

27 Jo Wy (€)de= mgMW(M) m2 pra(p). (13 + 4 1_x|n x| 1 9 X+X ' (16)
Here a particular field-theoretic scheme, suggesté¢d, 59, v 1 1 2 1 2 )
is used to define the renormalized kinetic operator. The ad- SG™ 2 ||~ 3 §X+X —2C¢ T3 gXtX
vantages of this scheme are discuss€d ji|. The excitation
probability (the perturbative structure functipwy (e) is cal- Cinxl i Ex+ §x2 a7
culated using the same technique as for the axial current. At 4 3 4 '

zero recoil all inelastic contributions are suppressed at least

by 1/m3; therefore, Eq(13) is proportional tO,uZ/m . To The same expression f@ﬁ, can be also obtained by consid-
apply this sum rule, however, we need the coefficient funcering the sum rule for a slowly moving quark. Below, this
tlonsg with O(ag) accuracy. For this purpose we perform method is applied to derive the Wilson coefficient of the
a nonrelativistic expansion of the vector current accountinddnetic operatorg. which enters the axial sum rulef. Egs.

for the O(a,) corrections. The result of this calculation reads (20 and(21)].
In order to get the expectation value of the kinetic opera-

tor in perturbation theory and, therefore, its mixing with the
Cyb|jo0= ¢ (—uiD+v[aXD])ey, unit operator toO(a2) accuracy, one has to evaluate the

LHS of the sum rule(13) to second order in perturbation

theory through termazlmé. Since the chromomagnetic op-

1 J1+x as (3(1+x) erator does not mix with the unit operator, the perturbative
U=l 2x |1 O (—4(1_X) In(x)+1 contribution as a whole should be identified with the kinetic
operator.
& M Performing this calculation, we get, with tm(ag) accu-
Fom1—x|’ racy,
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91 2 will remain. A transparent physical picture underlying this
(E_ F) Ca fact will be discussed in a separate publication.
Equations(7), (18) and (20), (21) combined with the
; known result forz{Z'°°P) allow us to obtaint, to ordera?.
m 18 we note, however, that our perturbative expressions were
given in terms of the pole masses of the heavy quarks as they

5 appear in this order of perturbation theory. To get rid of

duz(p) _ “s(:“)+ E—Inz C 1_10 —ET N spurious I, infrared effects associated with the pole
du?  °F 3 Fle A 3 'R masses, we have to switch to the short-distance masses

(7 (1) per=Cr —— -

agy(2 ag\?

13
- gTRNL

2 5 mp («) which have concrete numerical values at a giygn

n 1—3—W—)C (15) (19) independent of the order of perturbation theory. To order
12 6) A Fl x| 1/m, this change affects only the termi. Unless this is

done, the sum rules are formally inconsistent since the per-

turbative expansion ofy, has an infrared piece of the order

ag\?

ks

The last term in Eq(19) represents the non-BLM contribu-
tion. Note that the term-Cg is absent. It means that the arg(Mo) A gco/Mg [11].

first-order mixing in the Abelian theory without light flavors In principle, the short-distance masses can be defined in
is not renormalized by effects of higher orders. We note thaigterent ways. Since throughout this paper the renormaliza-
this fact actually holds to all orders in perturbation theoryion scheme with the cutoff over the excitation energy is

(see Ref[9]). implemented, we use th@ relation[12
Finally, we calculate the coefficient functi@n(w) of the P ’ (as) [12]

kinetic operator in the axial sum rule E@) to orderO(«y).

The result is as follows: dm, a. |4 2
oli) o Fs(2# o2 22)
du m\3 mg mg
— 0 oI5 ) +o(i ' 2>, 20
gﬂ(#) §7T F T §7T (lu’) mQ Qs Ag ( ) Then we replace
(0) 1 2 2 (2 loop pole) 2 (2 loop 2
&\l =7 1+§x+x , | 7a (mg 12— |7 (mQ(M))l
a2l 2x
—20%(—3) (—In x+1+x) Ll
" 2 a2 9—17x+31x2—7x3I 7 \1=x e
gﬂT (/.L)—g( X) n m_c 24(1_)() nXx 3 w 2
+=(1+x)|—]| |. (23
1+22x+x2 . 8 c
t——g (21)

To get rid of the infrared b, effects mentioned above, one

The last relation is obtained by considering the zero-recoitan use arbitrary short-distance masses, eT@lomQ) or

sum rule perturbatively, in the first order iry for the initial  normalized at even higher scales. Although such a choice
b quark moving with spatial momentufp|<m,.m.. Letus  may be justified in certain purely perturbative calculations, it
note that form,,#m, , the zero recoil conditiog=0 implies 1S foreign to the OPE at the nonperturbative level, and there-

a change in the spatial quark velocity. This change leads ifpre is not employgd for. zerq—r_ecoil transitions in the litera-
gluon bremsstrahlung. The virtual corrections become infraluré- On the practical side, it is probable that the eventual
red divergent, this divergence, as usual, is compensated [3FcUracy is better for determination of the masses normalized
the contribution of the real gluon emission. This cancelationat Ior\]/ve;_sclaleil]l. or th ficient functi £
however, brings in an explicit logarithmic dependencé'ot The final resuit for the coefficient unctiogy(x) of the

on . unit operator is obtained by combining all terms calculated

We note that this logarithmic dependence is not quiteabove' Following[13], we express the result in terms of
usual. Although the kinetic operator has a vanishing anoma&s(YMcMy), even though then.—m;, symmetry arguments

lous dimension, its coefficient in the sum rule contains theWhich motivate this choigedo not apply foréa(u) because
logarithm of the cut-off parametex at ordera. Because of an addmo_nal momentum scale is present. :

the power mixing of the kinetic operator with the unit opera- 3Coe!lect|ng all pieces together and neglecting terms
tor, the coefficient of the latter has a similar logarithm in the# /Mg, We obtain, foréa(x),

power suppressed termZu?/mf. We must emphasize,

however, that the log in Eq. (21) does not originate from o w2
the dependence of the coefficient function on the normaliza-  £2 '°°P(u)=[ 72 °°P(mq( )]+ Ce— & —)
tion point used for the kinetic operator, but rather from the m Me
explicit dependence of the observable we consi@edial a2 u a\? w2
sum rulg on w. If we introduce a normalization point of +C2 —S) —ga+Ce —s) (—) @2
the operator as an independent parameter not equgl to ™/ Me ™) AMe

there will be no logr dependence irf}, and only a¢ log w (29




The function 7{?'°°P to orderO(«?) can be found ir{10].
The terms, explicitly proportional ta/m, and (u/mg)?, in
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SA:—Z m'ﬂ X+1+X], (25)
& =Crlp+tCalnt+ TeNLia, (26)
2 2;\  X(17+5x+4x3?)
F_Sa_2 o s _A=rrorrar)
Ia 3(1 X) In( mc) 6(1—x) In X
25 8 25, 27
— == =X— 75X5,
18 9 18 (.) 0.2 0.4 0:6 0.8 1
FIG. 3. The value of the non-BLM part of the? coefficientad
2% 2 (2u 372 17  7x of the Wilson coefficient,(u) in the zero recoil axial sum rule for
§ﬁ= -1+ ?erz §In(—) + 3} — (ﬂ+ 18 x=0.2(dotted ling, x=0.25(solid line) andx= 0.3 (dashed lingas
Me a function of u/m.. The short-distance renormalization of the
11)(2) 203 1859 203 CTyyysh at zero recoil is given byx?.
+——|In X+ o=+ X+ ==X, (28)
24 80 = 1080 80 Ill. |Vcg| DETERMINATION AND ZERO-RECOIL
SUM RULES
L1 2x ., 2u) 1 71 77x 7P Let us now turn to the application of our results for the
Ca=g| 1+ z XN o+ I — 55~ 735~ g5+ determination ofVy|. First, we note that the net impact of
(29 the non-BLM ai corrections on the sum rules is rather small.

Taking a reasonable valye/m.=0.5 andm,/m,=0.25 we
getag~ —0.7. Assumingrs=0.22 to 0.27, the absolute shift
A°(u) constitutes—0.003 to—0.005 which translates into

Eq. (24) are necessary to subtract the corresponding infrared@ 0-0015 to—0.0025 decrease of the short-distance pertur-

contributions from the momenta below the scalewhich
are implicitly included in the Feynman one- and two-loop

diagrams used to calculatg, .

Since the BLM part of the corrections was discussed i
the literature in detai[9], we single out the genuine non-
BLM part a3 which is defined as the value of the full second-

order coefficienta, at N, =4 (C/TR):

2
4.

Ealp)=1+ al(#me(M))% + az(/J«va(/vL))(%

s BLM
= 1+a1(,u,mq(,u))? +[cy " (u,mo(1))Bo

2
0 %s
+a2(,LL,mQ(,U,))](? +eee, (30)
11 4
,80=§CA— §TRNL- (31)

Note thata) does not depend on the convention for the nor-

bative renormalization of the zero-recoil axial current. For
any reasonable choice of the parametein the sum rules
consistent with using the iy, expansion, this effect is well

nbelow 1%. It should be noted that since in the Wilson OPE

the infrared domain is completely excluded from the coeffi-
cient functions, the effective coupling cannot become large.

The perturbative correction to the coefficient of the ki-
netic operatofEg. (21)] is strongly suppressed. The actual
value of this coefficient changes only by several percent. We
did not calculate the corresponding effect in the chromomag-
netic term; due to the anomalous dimension of this operator
it depends on the specific renormalization procedure. In view
of the result for the vector sum rulsee Eq(17)] we do not
expect this correction to be significant either.

The axial sum rulg?2) allows one to get a QCD-based
estimate of the combined effect of the perturbative and non-
perturbative effects on thB— D* zero-recoil form factor:

Ex( ) éo(m)
|Fosl = &alp)— mg W2 () - fné’“ Wa(w)
1/2 Iu3
_E |Fexo|2 +0 _3) (32)
e<p mQ

malization point of the strong coupling. Its value is shown in

Fig. 3 as a function ofu/m, for three values ofm./m,

It is seen thatyéa(u) plays the role of a short-distance

=0.2, 0.25 and 0.3. We denote the corresponding non-BLMenormalization factor of the weak current, while the remain-

second-order shift iga(w) by A%(w):

0 0 o) ?
AN(w) =az(umo(p)| —| -

ing terms in square brackets yieldr# long-distance correc-
tions to the form factor. The quantum-mechanical meaning
of each of the three power terms, confirming this formal
conclusion, was elucidated |8] (see alsd1]). As expected,

the short-distance renormalization factor depends on the
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separation scal@ defining which effects are considered as experimental uncertainties—with the results obtained from
short-distance and which are included into the low-scalénclusive semileptonic decay widthg(B— X lv|). The es-
physics. timate of the complet@(ag) correction inI'g(b— Xl v)),
With the good perturbative control over the short-distanceecently presented in Refl14], is another example of the
part of Fp«, the main uncertainty dominating theoretical theoretical progress in the perturbative treatment of one of
predictions for the form factor resides in power corrections.the most important heavy quark decays.
In Ref.[9] higher order BLM-type corrections to the sum
rule were analyzed. It was shown that, assuming that the IV. CONCLUSIONS

running of the QCD couplings below the charm mass isa e have calculated the comple®¢ ) corrections to the
valid practical concept, it is necessary to perform a resumserg-recoil heavy quark axial sum rule which is used to
mation of the Ieading BLM corrections in order to arrive at devaluate the zero-recoB—D* form factor. The calcula-
meaningful numerical result. Within the Wilson approach totjons performed here are a necessary supplement to the re-
OPE, the overall impact of the BLM corrections appears tosults of Ref.[10]. The use of the sum rules allows one to
be moderate. The typical BLM-resummed valued@(u) at  incorporate bottO(a?2) and power-suppressed nonperturba-
ulme=0.5 appears to be near 0.99. _ tive effects in a consistent way. The genuitr®n-BLM)

On the practical side, excluding the infrared domain no-wo-loop corrections are shown to be relatively small and
tably improves the accuracy of the perturbative calculationginder good theoretical control. We note that the uncertainty
for the charm quark, at least in the context of the BLM ggsociated with these effects had not been reliably estimated
calculus. We recall that the perturbative zero-recoil fagior  previously. This theoretical uncertainty is now eliminated.
has an intrinsic uncertainty- (Aqcp/mc)® due to infrared As an important theoretical conclusion, we emphasize that
renormalons. By calculatinfga(u)|% and taking Into ac-  a consistent implementation of the Wilson OPE separating
count ,u,zlmé terms, the (\QCD/mC)2 uncertainty 54™ is  short- and long-distance contributions, is feasible even when
eliminated(an explicit demonstration of this cancellation can highly nontrivial completeO(ag) corrections are taken into
be found in[9]). As long as we do not account forn:\% consideration. In principle, this procedure does not bring in
terms explicitly, the perturbative expressions still have aradditional complications, compared to purely perturbative
infrared renormalon uncertainty of the order df¢cp/mc)3.  calculations performed without an infrared cutoff. The Wil-
Using the same overall normalization for both cases one hagon approach, on the other hand, allows one to operate with
well defined notions of short-distance and long-distance ef-
fects. From the practical viewpoint, it allows one to decrease

2
5Ilém2( na)~(1+ x)2< ALCD _)5I1F/{m3 significantly the unpertainty ?n perturb_ative _cqefficients 'in
me beauty decays. This essential reduction originates mainly
/6 A 3 from the BLM-type corrections; the genuine two-loop effects
~ T (11+5x+5x2+ 133)(ﬂ> are less radically changed. _
16 c We note also, that only in the framework of the Wilson

(33 OPE approach to QCD is it possible to preserve a number of
exact inequalities formulated for hadrons containing a heavy
Performing a simple estimate, one finds that the size of th@uark. They exist in a simplified quantum mechanical treat-
1/m§ uncertainty iny, becomes quite significant fok gcp ment which ignores the peculiarities of the field-theoretical
~250 MeV. This shows up in the BLM corrections which description. These inequalities are important in constraining
become quite large already at the lowest orders. Shifting théhose parameters of the heavy quark expansion which are not
uncertainty down to- (A qcp/mc)?, we significantly reduce yet measured in experiment. .
it. As a byproduct of our analysis, we obtained the complete
The analysis of théd(a?) corrections presented in this two-Iaoop perturbative evolution of the kinetic operator, Eq.
paper shows that the genuine two-loop effects are quitélg)' ) o
small. Therefore, our numerical conclusions do not differ in. W€ also calculated®(as) corrections to the coefficient
practice from the estimate of the zero-recoil axial form factorfunction of the kinetic operator in the axial sum rule. The

given in[1] nonrelativistic expansion of yb at zero recoil and the cor-
responding sum rule were obtained wi(«g) accuracy.
2 o\? Numerically, we found an overall short-distance renormal-
M7= 0. ot B
Fpx=0.91-0.013 +0.0201 ization _of the zero-recoil current to. be very small, close to
0.1 GeV the estimates 0f2,3,1] and rather different from the value
used in other analyses Bf,« where long-distance i cor-
*0.0%per 0.023 . (34 rections were addressed.
For further improvements, one has to bring in a new dynami- ACKNOWLEDGMENTS
cal input yielding the magnitude of long-distancen/and ] )
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