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On-shell approach to pion-nucleon physics
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We discuss an on-shell approach to pion-nucleon physics that is consistent order by order in a 1/f p expan-
sion with the chiral reduction formula, crossing, and relativistic unitarity. A number of constraints between the
on-shell low-energy parameters are derived at tree level in the presence of the pion-nucleon sigma term, and
found to be in fair agreement with experiment. We analyze the nucleon form factors, and thepN→pN
scattering amplitude to one-loop, as well aspN→ppN to tree level. We use the latter to derive a new
constraint for the pion-nucleon sigma term at threshold. We compare our results to both relativistic and
nonrelativistic chiral perturbation theory, and discuss the convergence character of the expansion in light of
experiment.@S0556-2821~98!02603-4#

PACS number~s!: 12.39.Pn, 11.30.Rd, 12.39.Fe, 13.75.Gx
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I. INTRODUCTION

Pion-nucleon interactions have been extensively inve
gated using dispersion relations and chiral symmetry. M
of these studies are built around unphysical points such
the soft pion limit @1# or the chiral limit @2#. A typical ex-
ample is the pion-nucleon sigma term—the fraction of
nucleon mass due to the explicit breaking of chi
SU~2!3SU~2!. The scattering amplitude is analytically co
tinued to the unphysical Cheng-Dashen point@3#, and chiral
perturbation theory~ChPT! is applied@4#.

An important exception to the above is Weinberg’son-
shell formula for pion-nucleon scattering@5#, which also
yields the Tomozawa-Weinberg relations for the S-wa
scattering lengths@6#. Recently, we have been able to exte
this result to processes involving an arbitrary number of
shell pions and nucleons@7#. A number of identities using
the chiral reduction formula were derived—one of whi
was applied topp scattering and shown to be in good agre
ment with the data well beyond threshold@8#.

This paper applies the results of the chiral reduction f
mula to the nucleon sector, allowing for an on-shell deter
nation of the pion-nucleon sigma term andpN scattering.
We start by introducing a model in Sec. II that is unique
specified by the form of the symmetry breaking in QCD
tree level. This model can be used to ensure Lorentz inv
ance, causality, and positivity while at the same time enfo
the constraints brought about by the chiral reduction formu
The strategy involved in this calculation compared to tho
of ChPT is presented in Sec. III. In Sec. IV, we derive
axial Ward identity and discuss the deviation from t
Goldberger-Treiman relation. In Sec. V, we recall We
berg’s relation forpN scattering and use the measured
wave scattering lengths to predict the pion-nucleon sig
570556-2821/97/57~3!/1703~12!/$15.00
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term, the pion-nucleon coupling, and the induced pseu
scalar coupling to tree level. In Sec. VI, we discuss the o
loop on-shell corrections to the vector, axial, and scalar fo
factors, and critically examine the character of the conv
gence. We then evaluate the one-loop corrections topN
scattering in Sec. VII. Finally, we look atpN→ppN to tree
level and find an additional way to determine the pio
nucleon sigma term in Sec. VIII. Our conclusions are su
marized in Sec. IX. Details about the Feynman rules and
loop expansion are found in the Appendices.

II. MODEL

There are two kinds of chiral models possible for thepN
system. The first is a Skyrme-type model, where the nucl
is a chiral soliton@9#. Since solitons often accompany spo
taneous symmetry breaking, this is a natural approach. A
if vector mesons~particularly the omega! are included in
chiral Lagrangians, avoiding soliton solutions is more dif
cult than having them.

However, there are two difficulties in this model. One
that the semiclassical expansion does not commute with
chiral limit. As a result, the S-wavepN scattering lengths
are not compatible with the Tomozawa-Weinberg relation
leading order@10#. Similarly, the nucleon axial chargegA is
small to leading order~about half of experiment!, and yields
a different sign forgA21 @10# from that obtained with the
Adler-Weisberger sum rule. This means that a quantita
comparison with experiment is usually difficult, unless a c
culational scheme beyond the semiclassical expansion is
veloped.

The other difficulty is more fundamental. In QCD
nucleon operatorsqqq and meson operatorsq̄q exist, which
1703 © 1997 The American Physical Society
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1704 57STEELE, YAMAGISHI, AND ZAHED
are mutually local.1 This has not been shown in Skyrme-typ
models@11#.

We will therefore adopt the other type of model, whe
pions and nucleons are taken to be independent. For
SU~2!3SU~2! symmetric part ofpN interactions, we take
the standard nonlinear sigma model as the effective Lagra
ian gauged with vector and axial-vector external sources

L15
f p

2

4
Tr@~ iD mU1$âm ,U%!~~ iD mU !†1$âm,U†%!#

1C̄~ i ]”1v”̂ 1a”̂ g5!C2m0~C̄RUCL1C̄LU†CR!

1
1

2
~gA21!C̄R~ iD” U1$a”̂ ,U%!U†CR

2
1

2
~gA21!C̄LU†~ iD” U1$a”̂ ,U%!CL ~1!

whereU is a chiral field,C5(CR ,CL) is the nucleon field,
]”5gm]m , v̂m5vm

a ta/2, andDmU5]mU2 i @ v̂m ,U#. In the
low-energy limit, matrix elements calculated from~1! are
essentially unique, given that the isospin of the nucleon
1
2 @12#. Higher derivative~1,1! terms at tree level lead to
pathologies such as acausality or lack of positivity, so th
will not be considered.

Ignoring isospin breaking and strongCP violation, the
term which explicitly breaks chiral symmetry must be
scalar-isoscalar. The simplest non-trivial representation
SU~2!3SU~2! which contains such a term is~2,2!. This is
the same representation as the quark mass termm̂q̄q in
QCD which generates both the pion mass and the sig
term. Therefore we take2

L25
1

4
f p

2 mp
2 Tr~U1U†!2

mp
2

L
C̄C

2c
mp

2

4L
Tr~U1U†!C̄RUCL1H.c. ~2!

with c andL arbitrary constants. A bilinear form inC in ~2!

has been retained, again in analogy withm̂q̄q. We assume
thatL is nonvanishing asmp→0, so that~2! vanishes in the
chiral limit. Scalar and pseudoscalar external fields can
added to Eq.~2! by taking

mp
2 TrU→Tr@~mp

2 1s2 i tapa!U#

mp
2 C̄C→C̄~mp

2 1s2 i tapag5!C

and similarly for TrU†. The nucleon mass is defined asmN
[m01spN with the pion-nucleon sigma termspN5(1
1c)mp

2 /L as read from the Lagrangian to tree level.

1We are unaware of any tests of locality between nucleon
meson fields. Taking QCD as correct, the standard dispersion
tion for forward pN scattering only tests locality for the meso
fields.

2An earlier version of this work@13# used the specific casec
50.
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Noether’s theorem implies that the symmetry break
term must be non-derivative, otherwise the vector and a
vector currents will not transform as (3,1)1(1,3). The only
other term allowable in the~2,2! representation then is
C̄RU2CL1H.c. which is a linear combination of the term
already included in Eq.~2!. Therefore our starting point fo
the loop-expansionL112 is essentially unique.

The currents used in this paper can be written down
functional differentiation of the actionI[*d4xL112 with re-
spect to the external sources. In particular, the pion field
just

pa~x!5
1

f p

dI

dpa~x!

52 i
f p

4
Tr~ta~U2U†!!1

1

f pL
C̄ig5taC

1 i
c

4 f pL
Tr~ta~U2U†!!C̄RUCL1H.c. ~3!

which reduces to the free incoming pion fieldp in(x) as
x0→2`. This choice is just the gauge covariant version
the PCAC~partial conservation of axial vector current! pion
field, also defined in terms of the axial currentAm

a [dI /dam
a

as]mAm
a 5 f pmp

2 pa.
The one-pion reduced axial current can be defined as

part of the full axial current that contains nop in part. The
most convenient definition is

jAm
a 5Am

a 1 f p]mpa

5gAC̄gmg5

ta

2
C1

1

L
]m~C̄ig5taC!

2
c

f pL
]m~paC̄C!1O~p3! ~4!

with the expansion to leading order in the PCAC pion fie
given in the last two lines. We note that the PCAC pion fie
is uniquely defined off-shell within the prescriptions of@7#,
and so isjAm . The vectorVm

a and scalars currents are simi-
larly defined through

Vm
a ~x!5 i

f p
2

8
Tr~@ta,U†#]mU !1h.c.1C̄gm

ta

2
C

2
1

4
~gA21!C̄LgmU†@ta,U#CL

1
1

4
~gA21!C̄Rgm@ta,U#U†CR

s~x!5
1

mp
2 f p
L2 .

The Feynman rules forL112 that are used throughout thi
paper are in Appendix A.

d
la-
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57 1705ON-SHELL APPROACH TO PION-NUCLEON PHYSICS
III. STRATEGY

We adopt an on-shell loop expansion in 1/f p which can
be thought of as a semiclassical expansion withA\;1/f p . It
includes pions and nucleon loops beyond tree-level, an
consistentorder by order with the identities following from
the chiral reduction formula. This expansion applies equa
well to the nonlinear sigma-model and QCD as thoroug
discussed in@7#. We recall that in both cases, the physic
pion decay constantf p shows up through the asymptot
condition of PCAC on the axial-vector current. Therefore
is a good expansion parameter when the master formula
proach is applied to these two cases.

All scattering amplitudes will be reduced by the identiti
derived in @7#, and then expanded to one-loop using t
Feynman diagrams from~1–2!. This way, reparametrization
invariance~in the sense of Nishijima-Gursey@14#! and vector
as well as axial-vector current identities are guaranteed
one-loop. If we were to just use~1–2! without the chiral
reduction formula, thenpp scattering subdiagrams in, fo
examplepN→pN or pN→ppN appear to break reparam
etrization invariance. In@7# we have checked that conven
tional ChPT fulfills the pertinent identities following from
the chiral reduction formula in the mesonic sector. We
not aware of such checks in the nucleon sector.3 This work
and others to follow will provide for these checks in o
approach.

In our approach broken chiral symmetry and relativis
unitarity will be addressed for each process individually
rectly on-shell. This procedure is conceptually clear, sin
on-shell renormalization implies that quantitiesmN , gA , L,
spN , f p , and mp are fixed once and for all at tree leve
thereby including all powers of the quark masses and Q
scale.~In contrast to ChPT where the chiral logarithms a
assessed in these quantities.!

The ultraviolet finite and nondiagrammatic formulatio
extensively discussed in@7# will be presented elsewhere@15#.
To make our exposition in line with current expositions u
ing ChPT, we will use diagrams. A Bogolubov-Parasiu
Hepp-Zimmerman~BPHZ! ~momentum! subtraction scheme
will be used throughout. This is to enforce the number
subtraction constants commensurate with the number o
vergences. Dimensional regularization is not appropri
since we need to evaluate nucleon loops in the axial fo
factors. These are in general quadratically divergent, req
ing two subtraction constants as opposed to one by dim
sional regularization.

Our strategy is essentially the same as for ordinary ren
malizable theories. No constants other than those require
the divergences will be considered. This makes our appro
minimal in comparison to ChPT whereall possible constants
required by symmetry and power counting are used. Thi
appealing in that less constants need to be fixed. Altho
ChPT is more general~and generalized ChPT@16# even more
so!, the excess of constants there require additional assu

3In @4# it was shown that Weinberg’s relation for the particul
reactionpN→pN holds to leading order in ChPT, thereby co
firming the reparametrization invariance of their results to the or
quoted.
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tions such as resonance saturation@17# to fix them. In any
case, which is the better approach will be dictated by co
parison with experiment.

Below, we will show that to one-loop our results for th
form factors reduce to those obtained by Gasser, Sainio
Švarc @4# ~GSS! in the context of relativistic chiral perturba
tion theory when the nucleon is taken off mass sh
(L→`). On mass shell, however, a number of relations
already observed at tree level in reasonable agreement
experiment, emphasizing the importance of~broken! chiral
symmetry. What is undoubtedly important in our approach
that the pion-nucleon sigma term is included at tree le
along with the pion mass term. Since both terms origin
from the same quark mass term in QCD, they naturally
together. This term—along with the on-shell renormalizati
scheme—allow the pions and nucleons to stay on mass s
to all orders. A nonzero nucleon scalar form factor a
Goldberger-Treiman discrepancy at tree level are also co
quences of this.

Finally, as is well known, the loop expansion in the pion
sector is equivalent to a momentum expansion@4#. This is no
longer true in the pion-nucleon sector. To overcome th
heavy baryon chiral perturbation theory~HBChPT! was pro-
posed@18#, where an expansion in 1/mN is made4 @19,20#.
However, the relativistic one-loop calculations contain ter
which behave as lnmp /mN and are not able to be expande
in this way. Also in this limit relativistic unitarity is lost,
making comparison with experiments difficult. Lacking
satisfactory theoretical resolution of these issues, we
maintain a relativistic approach throughout. Comparis
with HBChPT will be made directly by expanding the o
shell results.

At this point we note that the unitarity bounds are mo
stringent than simple power counting based on a momen
expansion. For instance inpp scattering the unitarity bound
is saturated fork2<5.2mp

2 whereas inpN scattering the
bound isk2<3.8mp

2 , indicating in both cases that the expa
sion parameter should in fact be closer tok2/4p f p

2 instead of
k2/(4p)2f p

2 . Throughout, we will work in the kinematica
regime where tree contributions are greater than one-lo
but within the unitary bounds. All the loop corrections di
cussed in this work are on the order of 10–30% of the t
level result with the exception of the 1/L terms which are
small enough to be sensitive to the input parameters. Th
terms will be assessed in as many ways as possible.

IV. AXIAL WARD IDENTITY

The matrix element of the axial-vector current betwe
nucleon states of momentumpi and implicit spin dependenc
si can be decomposed as

^N~p2!u jAm
a ~0!uN~p1!&

5 ū~p2!~gmg5G1~ t !1~p22p1!mg5Ḡ2~ t !!
ta

2
u~p1!

~5!

r 4Since the nucleon is off mass shell in these approaches, the
pansion is more in terms of a ‘‘bare’’ nucleon mass.
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1706 57STEELE, YAMAGISHI, AND ZAHED
with t5(p12p2)2 and G1 and Ḡ2 are free of pion poles
From ~3–4!, we also have]mjAm5 f p(h1mp

2 )p. Hence,

^N~p2!upa~0!uN~p1!&

5
1

f p

1

mp
2 2t

~2mNG1~ t !1tḠ2~ t !! ū~p2!ig5

ta

2
u~p1!.

~6!

By definition, Eq.~6! is also equal to

gpNN~ t !
1

mp
2 2t

ū~p2!ig5tau~p1!

and leads to the following Ward identity:

f pgpNN~ t !5mNG1~ t !1
t

2
Ḡ2~ t ! ~7!

wheregpNN5gpNN(mp
2 ) is the pion-nucleon coupling con

stant. Extrapolating fromt5mp
2 to t50 gives the standard

Goldberger-Treiman relationgAmN; f pgpNN , with G1(0)
[gA .

Relation ~7! is exact. The Goldberger-Treiman discre
ancy is just given by

f p~gpNN~mp
2 !2gpNN~0!![2D̄pN.

We stress again thatgpNN(t) is physically accessible at bot
t5mp

2 and t50, making the above discrepancy measurab
Substituting~4! at tree level into~5! gives G1(t)5gA and
Ḡ2(t)522/L. Therefore using~7! we find D̄pN5mp

2 /L to
tree level. We choose to renormalizeL on-shell such that
this is true to all orders in the loop expansion. So

f pgpNN5gAmN2
mp

2

L
[G ~8!

andmp
2 /L is exactly the Goldberger-Treiman discrepancy

V. WEINBERG’S RELATION

One way to determineG and therefore attain a value fo
gpNN is to use pion-nucleon scattering at threshold. The s
tering amplitudeiT fulfills a basic Ward identity establishe
by Weinberg@5# and reproduced by the master formula a
proach@7#. Taking (k1 ,a) as the incoming pion, and (k2 ,b)
as the outgoing pion, withp11k15p21k2 , the formula is

iT5 iTV1 iTS1 iTAA

iTV52
1

f p
2 k1

mebac^N~p2!uVm
c ~0!uN~p1!&conn.

iTS52
i

f p
mp

2 dab^N~p2!us~0!uN~p1!&conn.

iTAA52
1

f p
2 k1

mk2
nE d4xe2 ik1•x

3^N~p2!uT* jAm
a ~x!jAn

b ~0!uN~p1!&conn..
.

t-

-

The isospin structure is decomposed asT ba5dabT 1

1 i ebactcT 2 to give

T 15T S
11T AA

1 T 25T V
21T AA

2 .

The amplitudesT 6 can be calculated to tree level using th
Feynman rules in Appendix A. At threshold they are

T 15
spN

f p
2 2

D̄pN
2

f p
2 mN

2
G2

f p
2

mp
2 /mN

4mN
2 2mp

2 ~9!

T 25
mp

2 f p
2 ~12gA

2 !1
G2

f p
2

2mp

4mN
2 2mp

2 . ~10!

Here the pion-nucleon sigma termspN and the Goldberger-
Treiman discrepancyD̄pN appear. These expressions redu
to the Tomozawa-Weinberg formulas forL→`, showing
the corrections are small.

Experimentally, the threshold amplitudes are expresse
terms of the S-wave scattering lengthsT 654p(1
1mp /mN)a6. The Karlsruhe-Helsinki phase shift analys
gives (a2,a1)5(9.260.2,20.860.4)31022/mp @21#. The
same group now has new data from PSI@22# which reduces
many of the inconsistencies for low pion energies and find
positive value a150—431023/mp . Furthermore, pionic
atoms givea1526131023/mp @23#. Therefore we take
the weighted meana151.5(9)31023/mp . The accuracy of
a2 is less of an issue, so we will take the value given abo
These give D̄pN5254610 MeV and spN51461 MeV.
Using Eq. ~8!, this value ofG gives gpNN513.4560.15,
very close to the experimental value 13.4 taken in the P
and Bonn potentials@24#. Our on-shell tree level calculation
favors a positive value fora1 and smaller than normal valu
for spN . This is opposite to what@25# finds, meriting a
one-loop evaluation as carried out in Sec. VII.

We can also determine the value for the induced pseu
scalar coupling constant which has been experimentally m
sured by two groups

gp[mmG2~20.88mm
2 !5H 8.262.4 Ref. @26#

8.761.9 Ref. @27#

from muon capture in hydrogen. Using Eqs.~4!–~6! and the
definition of G2 from the full-axial vector current

^N~p2!uAm
a ~0!uN~p1!&

5 ū~p2!~gmg5G1~ t !1~p22p1!mg5G2~ t !!
ta

2
u~p1!

gives a relation betweenG2 andḠ2

G2~ t !5
1

mp
2 2t

~2mNG1~ t !1mp
2 Ḡ2~ t !!. ~11!

Using Eq.~8! we find to tree level

gp5
2mmG

mp
2 10.88mm

2 .9.0

which is at most 10% higher than the experimental value
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57 1707ON-SHELL APPROACH TO PION-NUCLEON PHYSICS
VI. FORM FACTORS

We now calculate the vector form factor in order to ga
insight into the loop corrections. It can be decomposed a

^N~p2!uVm
a ~0!uN~p1!&

5 ū~p2!S gmF1~ t !1
i

2mN
smn~p22p1!nF2~ t ! D

3
ta

2
u~p1!.

The tree level result just gives the chargeF1(t)51. Includ-
ing the one-loop form of the vector current, we find

F1~ t !511
2~gA

221!

f p
2 ~ tc2

V1J22
pp% ~ t !!1

G2

f p
2 @2G3

pN~ t !

2JNN~ t !18G3
Np~ t !2mp

2 GpN~ t !18mN
2 ~G4

pN~ t !

14G4
Np~ t !24G1

Np~ t !1GNp~ t !!#

F2~ t !52
8mN

2 G2

f p
2 @G4

pN~ t !1GNp~ t !14G4
Np~ t !24G1

Np~ t !#

with theG’s representing loop integrals defined in Append
A and G5gAmN2mp

2 /L as in the previous section. A
overlined function denotes a subtraction att50. Other than
the subtraction constants, this reduces to the ChPT resu
GSS forL→`. This is to be expected from the form of th
Lagrangian used and is a good check on the calculat
Notice that the coefficients of the terms group into factors
G/ f p[gpNN to the order we are calculating by Eq.~8!.

Another check is that the chargeF1(0)51 is not renor-
malized by loop corrections from the strong force. This c
be shown to be true in dimensional regularization@4#. How-
ever, for the rest of this paper we will instead adopt t
BPHZ renormalization scheme. This just amounts to s
tracting the Taylor series of divergent loop integrals up to
degree of divergence and replacing the subtraction by a
trary constants. This has two advantages: 1! we do not need
to construct the most general Lagrangian to obtain the c
stants, 2! we obtain only the minimal amount of constan
consistent with the symmetries of the theory. In other wor
if a diagram is not divergent, we do not do any subtractio
on it.

The only constant to one-loop,c2
V , can be fixed by the

vector charge radius of the nucleon̂r 2&1
V56F18(0)

50.578 fm2 @28# giving 2(gA
221)c2

V57.3031023. This ac-
counts for about one third of the radius with the rest be
given by the loop integrals. This also agrees with ChPT.

The first difference with ChPT is that there is no subtra
tion constant for the Pauli form factorF2 . In fact, the ex-
perimental value forF2(0) is just the difference in the
anomalous magnetic momentskp2kn[kv53.71; and a nu-
merical calculation shows this is indeed valid to about 3%
first shown by GSS. The most general Lagrangian, howe
allows an extra subtraction constant forF2 which is not
needed@4#.
of
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We can also check the consistency of our results w
those of heavy baryon chiral perturbation theory by tak
L→` and expanding inmp /mN andt/mN

2 . The consistency
of the finite parts of the vector form factor with the relati
istic theory has been shown by@19#. However, the opening
of the two pion threshold att54mp

2 which is also seen in the
data for the vector form factor@28# is lost in HBChPT. In
addition, extra divergences in the 1/mN expansion can de
velop. If these divergences cannot be absorbed into the
ready existing divergence structure, the procedure of tak
the limit of a large nucleon mass at the level of the Lagra
ian could be different than taking this limit after calculatin
all amplitudes with a finite nucleon mass.

One such case does occur in the slope of the Pauli f
factor F2(t). The full one-loop calculation can be worke
out from the explicit form of the loop integrals in Append
A to give (m5mp /mN)

F28~0!5
G2

3~4p f p!2 E
0

1

dy
y3@y214~12y!2#

@y21m2~12y!#2

5
G2

~4p f p!2mN
2 S p

3m
12 lnm21

29

6 D1O~m!

which is consistent with GSS in theL→` limit. The lnm2

cannot be expanded in 1/mN . In principle, this should be
taken into account in HBChPT by an additional subtract
constant.

TakinggA51.265 andD̄pN5254 MeV as in the last sec
tion, the magnetic radiuŝr 2&2

V56F28(0)/kv is 0.21 fm2 to
one-loop. The terms toO~1! give 0.31 fm2 and the 1/m term
alone gives the HBChPT result of 0.51 fm2. The empirical
value is 0.77 fm2 @28#. Ironically, the first term in them
expansion gives the result closest to experiment. Howe
this term can only be singled out in a non-relativistic expa
sion which then would require the additional subtracti
constant to absorb the logarithmic singularities mention
above.

There are no corrections of ordermN
2 /(4p f p)2 to F1(0)

since it is protected by a non-renormalization condition.
addition,F2(0) had no contribution from tree level and th
one-loop value was shown to be close to the experime
value. Therefore, further verdict on the convergence of t
expansion requires a two-loop calculation.

Extending the results of the previous sections requires
axial-vector form factors to one-loop:

G1~ t !5gA2
gAG2

f p
2 @2G3

pN~ t !2JNN~ t !2mp
2 GpN~ t !#

Ḡ2~ t !52
2

L
1

2gAmNG2

mp
2 f p

2 @2G3
pN~mp

2 !2JNN~mp
2 !

2mp
2 GpN~mp

2 !#2
G2

f p
2 F4gAmNG6

pN~ t !1
2

L
~JNN~ t !

1mp
2 GpN~ t !!28I ~ t !G

with
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I ~ t !5
G

mp
2 2t

JNN~ t !1
1

L
JNN~ t !

and an underlined function denotes a subtraction att5mp
2 .

The functionI (t) is from the nucleon loop. It is doubly sub
tracted in order to satisfy the consistency relati
^0u jAmup&50 stating that the one-pion reduced axial curre
truly does not contain asymptotic pion fields. BothG1(t) and
Ḡ2(t) have subtraction constants which are fixed by the
shell renormalization prescription forgA andL as discussed
at the end of Sec. IV. Therefore the one-loop corrections
G1(t) are of ordert/(4p f p)2. In addition to this correction
Ḡ2 has an additional constant correction of orderL/mN . We
have fixedL;3mp in the last section. Therefore this
about a 50% correction to the tree level result. The co
sponding correction togpNN(t) andG2(t) is on the order of
a few percent.

The induced pseudoscalar coupling constant is now

gp5
2mm

mp
2 10.88mm

2 FG1
G2

f p
2 ~F~20.88mm

2 !2F~mp
2 !!G

with

F~ t !5G@JNN~ t !1mp
2 GpN~ t !#14mp

2 I ~ t !

22gAmN@G3
pN~ t !1mp

2 G6
pN~ t !#

and G5gAmN2mp
2 /L as before. Takingmm5106 MeV,

this result givesgp.8.85 to one-loop. This is about a 1%
correction to the tree result. A plot ofG2(t) for spaceliket is
shown in Fig. 1. The dotted line is the pion pole predicti
2mNG1(t)/(mp

2 2t) with G1(t)5gA@12t/MA
2 #22 and MA

5(0.9660.03) GeV @29#. The solid line is from including
the one-loop form forḠ2(t) for D̄pN5254 MeV and the
dashed-dotted line is the one-loop form for all ofG2(t). The
data @30# is not precise enough to distinguish between
results.

FIG. 1. The pseudoscalar form factor for spaceliket. The dotted
line is the pion pole prediction and the solid line includes the o

loop form ofḠ2 . The dashed-dotted line is from using the one-lo

form for bothG1 andḠ2 .
t

-

o

-

e

It should also be noted that takingḠ2(t)50 in ~11! along
with the linear approximation forG1(t)5gA(11r A

2 t/6) re-
produces the Adler-Dothan-Wolfenstein result@31#

gp5
2mmgpNNf p

mp
2 10.88mm

2 2
1

3
gAmNmmr A

2.

Taking the proper empirical dipole form forG1 gives less
than a 1% correction, and including theḠ2 contribution to
one-loop gives about a 5% correction, comparable to ther A

2

term above. Again more precise data is needed before
statements can be made.

Finally, the scalar form factor cannot be directly me
sured, but is important in that its value at the Cheng-Das
point may be tied to the pion-nucleon scattering data by d
persion analysis@28#. It is defined as

^N~p2!uŝ~0!uN~p1!&5FS~ t ! ū~p2!u~p1!

FS~ t !52
11c

f pL
2

3

2 f p
3 S gAG̃1

mp
2

L D Jpp~ t !

2
3G2

f p
3 FmN~GNp~ t !22G1

Np~ t !!

1
11c

L
~JNN~ t !1mp

2 GpN~ t !!G . ~12!

The fact that we have keptspN to tree level in the Lagrang
ian shows up here as the leading piece inFS(t). Since we
renormalize this quantity on-shell, no subtraction consta
appear here. Other than this fact, we agree with GSS
L→`. Note that, unlike in the vector form factors, the c
efficients of the terms do not group exclusively into facto
of G/ f p showing different factors from just the naivegpNN .

Defining s(t)52mp
2 f pFS(t) as used by other author

with s(0)5spN , we can use Eq.~12! to give a prediction
for the scalar form factor at the Cheng-Dashen point
52mp

2 @3#. The value of the sigma term obtained from ela
tic pN scattering~at t52mp

2 ! as compared to the value from
the baryon mass spectrum~at t50! is about 20 MeV larger
@32#. A numerical evaluation shows forspN514 MeV that
the differences(2mp

2 )2s(0)55.2 MeV and is not large
enough to account for this discrepancy. This observatio
similar to GSS.

VII. ONE-LOOP pN SCATTERING

In order to calculatepN scattering to one-loop, we only
need the two-axial-vector correlator to one-loop since
vector and scalar form factors were evaluated in the previ
section. Defining

T 65A61
1

2
~k” 11k” 2!B6,

and using the Mandelstam variabless5(p11k1)2 and t
5(k12k2)2, the tree and one-loop result for the form facto
can be written as

-
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AS
15

s~ t !

f p
2 , AV

252
s2u

8 f p
2 mN

F2~ t !

BV
25

1

2 f p
2 @F1~ t !1F2~ t !#.

The rest of the tree result comes from the Born terms
^NuT* jAjAuN&

AAA,tree
1 5

gAG̃

f p
2 AAA,tree

2 50

BAA,tree
1 52

G2

f p
2 S 1

s2mN
2 2

1

u2mN
2 D

BAA,tree
2 52

gA
2

2 f p
2 2

G2

f p
2 S 1

s2mN
2 1

1

u2mN
2 D

with G̃52G2gAmN . Its one-loop contribution is quoted i
Appendix B.

Analyzing the divergence structure of the one-loop am
tude shows that it contains six independent subtraction c
stants for the total crossing symmetric amplitude

f p
4 Adiv.

1 5mNtc11mN
3 c2

f p
4 Adiv.

2 5mN~s2u!c3 f p
4 Bdiv.

1 5~s2u!c4

f p
4 Bdiv.

2 5tc51mN
2 c6 .

These six constants are in one-to-one correspondence
the six renormalized constants of GSS:c124

r , b2
r , andb5

r .
The five additional finite constants in@4# have no counterpar
here. This is a direct consequence of our minimality assu
tion: only taking into account the divergent constants.5

The constants may be fixed at subthresholds5u, t50 by
fixing the following constants defined in@28,33#

a00
1 5~21.2860.24!/mp, b00

1 5~23.5460.06!/mp
3

a00
2 5~28.8360.10!/mp

2 , b00
2 5~10.3660.10!/mp

2

a01
1 5~1.1460.02!/mp

3 , b01
2 5~0.2460.01!/mp

4 .

Since we will be only looking at reactions in the forwa
direction (t50) below, the coefficients oft, a01

1 and b01
2 ,

will not be discussed further. Using the conventional mo
for the inclusion of theD~1232! @28# ~we take gD

2 /4p
517.7 GeV22 as in @34# andZ5 1

2 as in the original Rarita-
Schwinger paper for the nonpoleD terms @35#!, the contri-
bution of theD included in the experimental subthresho
values is

a00
1D521.11/mp, b00

1D524.86/mp
3

5It would be interesting to compare our predictions for the fin
constants to those that could be obtained through fitting the G
amplitude to experiment. The latter has not been done in the lit
ture.
f

-
n-

ith

p-

l

a00
2D5211.34/mp

2 , b00
2D511.62/mp

2 .

One can see that these contributions are large and need
taken into account for a proper fit. We have analytica
checked that for any value ofZ and indeed even for the cas
where the nonpole terms areneglectedthe final result for the
scattering lengths presented below is identical. The only
ference is that part of the strength of theD contribution is
shifted from subthreshold to threshold; the overall differen
between the subthreshold and threshold remaining the sa
Our choiceZ51/2 is merely for convenience since for th
value theD contribution vanishes at threshold.

Moving to threshold, a prediction on the scatterin
lengths can be made to one-loop. TakinggpNN5G/ f p

513.3, a reasonable result is found forspN553 MeV

a1 loop
1 .2.131023/mp, a1 loop

2 .1231022/mp .

The value fora1 is close to the weighted average discuss
in sectionV whereasa2 is somewhat large. The results a
very sensitive to theD contribution. TakingspN545 MeV
gives a1528.731023/mp without changinga2. Taking
spN50 and G5gAmN give (a1,a2)5(24.8,10)
31022/mp similar to @36#. A more recent calculation@25#
findsa1521031023/mp . This shows that the contribution
of the 1/L terms to one-loop really makes a large differenc
Note that the value ofspN required to fit the one-looppN
scattering amplitude differs by a factor of two from the val
required to fit the tree level amplitude in Eq.~9!.

Both scattering lengths come from large cancellations
tween the constants that were fixed at subthreshold and
loop contribution. This cancellation is needed due to
close proximity of the tree result to experiment. The lar
contribution from theD clouds the predictability, but ou
one-loop analysis seems to favor a value ofspN close to the
commonly accepted value of 4568 MeV @32# and a small
but positivea1 scattering length. Both of these results are
contrast to@25# and rely on the non-zero value ofspN and
the Goldberger-Treiman discrepancy at tree level. The va
for a2 is about 20% off from the experimental extrapolatio
from the Karlsruhe-Helsinki data.

The ability to fixgA andgpNN independently from experi-
ment allows for a satisfactory starting point to the sensit
prediction of thepN scattering lengths and can also lead
an estimation ofspN . The above analysis, however, show
an extreme sensitivity of the threshold results inpN scatter-
ing and calls for further study in the future.

VIII. pN˜ppN AND THE PION-NUCLEON
SIGMA TERM

As a final estimate on the value ofspN , we turn to the
processpa(k1)N(p1)→pb(k2)pc(k3)N(p2). The scattering
amplitudeiT 3p fulfills an identity which can be derived by
chiral reduction from the master formula approach@7# simi-
lar to what was done forpN scattering. Defining the Man
delstam variables for a three body process@37#

s5~p11k1!2, s15~p21k3!2, s25~k21k3!2

t15~p12p2!2, t25~k12k2!2,

S
a-



e-
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the identity is

iT 3p5$ iT p1 iT A1 iT SA1 iT VA%12 perms1 iT AAA

iT p5
i

f p
2 ~ t22mp

2 !dab^N~p2!upc~0!uN~p1!&

iT A5
1

2 f p
3 ~k22k1!mdab^N~p2!u jAm

c ~0!uN~p1!&

iT SA52
imp

2

f p
2 k3

mdabE d4xe2 i ~k12k2!•x

3^N~p2!uT* ŝ~x!jAm
c ~0!uN~p1!&

iT VA5
1

f p
3 k1

mk3
neabeE d4xe2 i ~k12k2!•x

3^N~p2!uT* Vm
e ~x!jAn

c ~0!uN~p1!&
rs
n
n

g

iT AAA52
1

f p
3 k1

mk2
nk3

lE d4x1d4x2e2 ik1•x11 ik2•x2

3^N~p2!uT* jAm
a ~x1!jAn

b ~x2!jAl
c ~0!uN~p1!&

with ‘‘perms’’ meaning a permutation of~k1 ,a;2k2 ,b;
2k3 ,c!. The structure of the chiral reduction formula imm
diately shows that the amplitude depends onspN ~through
the appearance of the scalar currentŝ in the T SA term! al-
lowing for an alternative way to fix its value.

At threshold, the amplitude can be decomposed as~see
@38#!

iT cba5
sW •k1

W

2mN
@D1~tbdac1tcdab!1D2tadbc#.

The tree contribution to the threshold amplitudes is
f p
3D15

3

2 S mN1mp

mN12mp
D FmN12mp

2mN1mp
G12D̄pNG2

1

4
~2mN1mp!FgA1

3D̄pN

mN12mp
G1spNFgA1

mpG

~mN1mp!~2mN1mp!G
1

1

4
~2mN13mp!FgA

4
2

2mNG

~2mN1mp!~mN1mp!
2

3D̄pN

mN12mp
G1

gA
2

2
~G22D̄pN!2

gA
3mp

2

2
G

~mN1mp!~2mN1mp!
S gA

2mp
2

2
2gAmpG̃1

2~mN12mp!G2

2mN1mp
D

f p
3D252

3

2 FmN12mp

2mN1mp
G12D̄pNG1

mp

2
FgA1

3D̄pN

mN12mp
G1spNFgA2

G

2

4mN15mp

2mN
2 12mNmp2mp

2 G
2

1

2
~2mN13mp!FgA

4
2

2mNG

~2mN1mp!~mN1mp!
2

3D̄pN

mN12mp
G1

gA
2

2
~G22D̄pN!1gA

3~mN1mp!

2
gAGG̃

2

4mN15mp

2mN
2 12mNmp2mp

2
2

2G

~2mN1mp!~mN1mp!
S gA

2

4
~6mN

2 19mNmp1mp
2 !2

G2

2

4mN15mp

2mN1mp
D .
he

er
es-

of
to

ub-
The brackets section off, in order, the contribution of the fi
four terms in the chiral reduction formula. The contributio
from T AAA is given by the remaining terms. This calculatio
is in agreement with@39# if we takeL→`. Note the explicit
dependence onspN in the threshold amplitudes. Takin
D̄pN5254 MeV for the proper value ofgpNN , spN553
MeV as in the previous section, and definingDi5Di /2mN ,
we find

D152.78 fm3 D2526.59 fm3

whereas experimentally@40#

D1
exp51.8260.09 fm3 D2

exp527.3060.24 fm3.
tAlthough bothDi ’s depend onspN , only D1 is sensitive to
it, decreasing toD152.5 fm3 for spN514 MeV. Therefore
experiment seems to favor a smallerspN .

The large 30% discrepancy inD1 reflects on the difficulty
in extracting the threshold parameters. A different fit in t
literature @41# gives (D1 ,D2)5(2.26,29.05) fm3. Further-
more, large corrections occur in ChPT from higher ord
terms bringing the convergence of this parameter into qu
tion. The one-loop corrections to theDi ’s will be presented
elsewhere.

IX. CONCLUSIONS

We have introduced a minimal model forpN dynamics
that embodies uniquely at tree level the main features
broken chiral symmetry with on-shell pions and nucleons
all orders. Using this on-shell expansion and a BPHZ s
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traction scheme, we have shown how the chiral reduc
formula can be enforced with a minimal number of para
eters. All of our results are consistent with data.

With this simple model we have analyzed the axial Wa
identity derived in Sec. IV as well as a Ward identity forpN
scattering originally derived by Weinberg and a new chi
reduction formula forpN→ppN. We have presented a one
loop calculation of the nucleon form factors andpN scatter-
ing and shown their equivalence to ChPT in theL→` limit.

For finite L, this model has the additional feature of a
lowing room forgA , mN , gpNN , andspN to be fixed to their
phenomenological values—all at tree level in a 1/f p loop
expansion. In particular, an estimate can be made on
value ofspN from various processes. Terms proportional
spN are certainly important in the scalar form factorFS(t),
thepN scattering lengtha1, and the threshold parameterD1
from thepN→ppN process.

The only hindrance in nailing down a more stringent p
diction onspN comes from determining the contribution o
nucleonic resonances such as theD(1232) at the point where
the divergent constants are fixed. An ideal situation would
to find an amplitude with the divergences constrained
current conservation and yet still dependent onspN for an
unambiguous determination of the pion-nucleon sigma te
Photo-productiongN→pN may be such a case.

On-shell renormalization along with the approach of u
ing a minimal amount of parameters dictated purely by
divergences increases the predictability of the model du
fewer constraints needed to fix the constants. In particu
there are no constants inF2(t) or FS(t) as opposed to one
each in ChPT and there are six constants inpN scattering as
opposed to eleven in ChPT.

The analysis ofpN scattering shows that all six of th
subtraction constants in the amplitude can be fixed at s
threshold. Including theD(1232) contribution, the scatterin
lengths can be predicted with reasonable accuracy. The v
of spN as constrained frompN scattering goes from bein
on the lower side of the canonically accepted value of
68 MeV @32# at tree level to within the predicted accuracy
one-loop, showing an improvement upon adding loop corr
tions as expected.

We have kept a relativistic formulation in order to mai
tain relativistic unitarity. Indeed, many HBChPT calcul
tions, although formulated with a heavy baryon Lagrangi
tend to start with the relativistic Feynman rules and o
after evaluation of the amplitude take the non-relativis
limit. This is not only more natural but keeps from missin
terms as could happen from the non-relativistic formulati

The convergence of a relativistic calculation crucially d
pends on the appearance of the constant termsmN

2 /(4p f p)2.
Although such terms do appear, in all the cases consid
here they are always accompanied by a divergent subtrac
constant. A mere redefinition of this arbitrary constant
moves such terms from the expansion and rectifies the
vergence. Whether this is a general feature of the loop
pansion employed here merits further investigation.
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APPENDIX A

The Feynman rules fromL112 needed in this paper ar
ones with external current lines and internal~loop! pion
lines. We take the transformationCi→j ic i ( i 5R,L) with
U5jRjL

† and choosejR5jL
† . The rules for thec nucleon

fields are as follows:

All loop processes in this paper can be expressed in te
of the following general Feynman parameter integrals. H
dk is shorthand ford4k/(2p)4 properly regularized and
@p#a5(k1p)22ma

2 . For two propagators, the integrals ar

2 i E dk
~1;km ;kmkn!

@2p#a@0#b
[~J;pmJ1 ;pmpnJ211gmnJ22!

with Ji5Ji
ab(p2),

~ J̄ ;J1;J21!52E
0

1 dx

~4p!2 ln
hJ~p2!

hJ~p0
2!

~1;x;x2!

J2252E
0

1 dx

2~4p!2 FhJ~p2!ln
hJ~p2!

hJ~p0
2!

1x~12x!~p22p0
2!G

hJ~s!5ma
2x1mb

2~12x!2sx~12x!,

andp0
2 is the subtraction point. The number of bars abov

function denote how many terms of its Taylor series are s
tracted at the chosen point. Note thatJaa52J1

aa .
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FIG. 2. One-loop diagrams forpN scattering. The graphs with a star also have a mirror image diagram which must be taken into a
and all graphs except for those in the last line require the addition of a crossed diagram.
le

a-

or

d
ct
tor
e

ff-
For three propagators, since there are only two partic
which play a role in the loops~nucleon and pion!, two of the
propagators will certainly have the same mass:

2 i E dk
~1;km ;kmkn ;kmknkr!

@0#a@2p#b@2q#b
[~G;QmG11PmG2 ;gmnG3

1QmQnG41Q~mPn)G51PmPnG6!

with (Q,P)5(p1q,p2q), G i5Gab(p2,q2,P2). The finite
integrals are

G i52
1

~4p!2 E
0

1

dxdyy
a i

hG

with

a51, a15
y

2
, a25

y

2
~2x21!

a45
y2

4
, a55

y2

4
~2x21!, a65

y2

4
~2x21!2

and

hG5ma
2~12y!1mb

2y2p2xy~12y!2q2~12x!y~12y!

2P2x~12x!y2.

The divergent function can be subtracted to give

Ḡ352
1

2~4p!2 E
0

1

dxdyy ln
hG

hG,0

with G i(mN
2 ,mN

2 ,P2)5G i(P2) and G i(s,mN
2 ,P2)

5G i(s,P2) shorthand notation used in this paper.
Finally we need the following functions for four propag

tors
s
2 i E dk

~1;km ;kmkn!

@0#p@2p#N@2q#N@2r #N

[~G;pmG11qmG21r mG3!

with Gi5Gi
pN(p,q,r ). All four integrals are finite

Gi5
1

~4p!2 E
0

1

dxdydzy2z
b i

hG
2

with

b51, b15xyz, b25~12x!yz, b35~12z!y.

For this paper only the formGi
pN(p11q1 ,p1 ,p2) with p1

2

5p2
25mN

2 , p11q15p21q2 andq1
25q2

25mp
2 was used, for

which G1
pN5G2

pN and

hG5mp
2 ~12y!1mN

2 y22~s2mN
2 !y~12y!~12z!

2mp
2 y2z~12z!2tx~12x!~yz!2

with s5(p11q1)2 and t5(p12p2)2.

APPENDIX B

The one-loop form for the two axial-vector correlat
^NuT* jAjAuN& is quoted below. This is needed forpN scat-
tering. Using the notationD̄pN5gAmN2G we find the dia-
grams in Fig. 2.

Writing A65A6(s,t,u)6A6(u,t,s) and B6

5B6(s,t,u)7B6(u,t,s) to take into account the crosse
diagrams, we only quote the contribution from the dire
diagrams shown in Fig. 2. The self energy and form fac
contributions of Fig. 2a can be written succinctly with th
use of the axial-vector nucleon form factors with one o
shell nucleon leg@15#. With the understanding of only taking
this to order 1/f p

4 , it can be written as
A2a
6 ~s,t,u!5

1

4 f p
2

As2mN

As
f s.e.~As!@g~As,mN ,mp

2 !#21~As→2As!

B2a
6 ~s,t,u!52

1

4 f p
2

1

As
f s.e.~As!@g~As,mN ,mp

2 !#21~As→2As!

with g5(As1mN)g11mp
2 ḡ22(s2mN

2 )g3 ,

f s.e.~As!5
1

As2mN

1
3

4 f p
2

~gAAs1G̃!2

~As2mN!2
@mNJpN~s!2AsJ1

pN~s!#2
3mN

2

2 f p
2

~gAAs1G̃!2

As2mN

@JpN8~mN
2 !2J1

pN8~mN
2 !#

g1~As,mN ,t !5gA1
gA

224

4 f p
2 ~gAAs1G̃!@mNJpN~s!2AsJ1

pN~s!#1
gAG

2 f p
2 ~gAAs1G̃!@22G3

pN~s,t !1JNN~ t !1mp
2 GpN~s,t !
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2~s2mN
2 !G1

pN~s,t !2~As2mN!2G2
pN~s,t !#

ḡ2~As,mN ,t !52
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In theL→` limit we reproduce all the finite parts of GSS. This shows that calculation of thepN scattering amplitude using
the Ward identity with external fields is equivalent to a calculation with the pion vertices from the Lagrangian without m
of external fields or the Ward identity. Whether this holds forpN→ppN will be discussed elsewhere.

The relation between the two calculations can be made more transparent by use of diagrams. The vector and sc
factor contribution to thepN Ward identity, along with the contact interactions from^NuT* jAjAuN&, are equivalent to the
graphs from the pion calculation which contain two external pions meeting at one point. Diagramatically this is just

with the left-hand side containing the proper coefficient given by the Ward identity. The other possible graphs from t
calculation are in one-to-one correspondence with the graphs of the same topology from the two axial-vector correla
,
.
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