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We discuss an on-shell approach to pion-nucleon physics that is consistent order by ordef, ixpan-
sion with the chiral reduction formula, crossing, and relativistic unitarity. A number of constraints between the
on-shell low-energy parameters are derived at tree level in the presence of the pion-nucleon sigma term, and
found to be in fair agreement with experiment. We analyze the nucleon form factors, antNtherN
scattering amplitude to one-loop, as well abl— 77N to tree level. We use the latter to derive a new
constraint for the pion-nucleon sigma term at threshold. We compare our results to both relativistic and
nonrelativistic chiral perturbation theory, and discuss the convergence character of the expansion in light of
experiment[S0556-282(98)02603-4

PACS numbgs): 12.39.Pn, 11.30.Rd, 12.39.Fe, 13.75.Gx

[. INTRODUCTION term, the pion-nucleon coupling, and the induced pseudo-
scalar coupling to tree level. In Sec. VI, we discuss the one-
Pion-nucleon interactions have been extensively investiloop on-shell corrections to the vector, axial, and scalar form
gated using dispersion relations and chiral symmetry. Mostactors, and critically examine the character of the conver-
of these studies are built around unphysical points such agence. We then evaluate the one-loop correctionsrid
the soft pion limit[1] or the chiral limit[2]. A typical ex-  scattering in Sec. VII. Finally, we look atN— 7N to tree
ample is the pion-nucleon sigma term—the fraction of thelevel and find an additional way to determine the pion-
nucleon mass due to the explicit breaking of chiralnucleon sigma term in Sec. VIII. Our conclusions are sum-
SU(2)xSU(2). The scattering amplitude is analytically con- marized in Sec. IX. Details about the Feynman rules and the
tinued to the unphysical Cheng-Dashen p¢Bit and chiral loop expansion are found in the Appendices.
perturbation theoryChPT) is applied[4].
An important exception to the above is Weinbergis-
shell formula for pion-nucleon scatterinfp], which also Il. MODEL
yields the Tomozawa-Weinberg relations for the S-wave ) ) ]
scattering length6]. Recently, we have been able to extend ~ There are two kinds of chiral models possible for th
this result to processes involving an arbitrary number of onSystem. The first is a Skyrme-type model, where the nucleon
shell pions and nucleor¥]. A number of identities using 1S @ chiral solitor[9]. Since solitons often accompany spon-
the chiral reduction formula were derived—one of which taneous symmetry breaking, this is a natural approach. Also,
was applied tarr scattering and shown to be in good agree-if vector mesons(particularly the omegaare included in
ment with the data well beyond threshd#l. chiral Lagrang|ans, avoiding soliton solutions is more diffi-
This paper applies the results of the chiral reduction for-cult than having them. S .
mula to the nucleon sector, allowing for an on-shell determi- However, there are two difficulties in this model. One is
nation of the pion-nucleon sigma term amdN scattering. tha}t thg ;emwlasswal expansion does not commute with the
We start by introducing a model in Sec. Il that is uniquely chiral limit. As a result, the S-waverN scattering lengths
specified by the form of the symmetry breaking in QCD toare not compatible with the Tomozawa-Weinberg relation to
tree level. This model can be used to ensure Lorentz invari€ading ordef10]. Similarly, the nucleon axial chargg, is
ance, causality, and positivity while at the same time enforcémall to leading ordefabout half of experimeitand yields
the constraints brought about by the chiral reduction formula2 different sign forga—1 [10] from that obtained with the
The strategy involved in this calculation compared to thosefdler-Weisberger sum rule. This means that a quantitative
of ChPT is presented in Sec. lll. In Sec. IV, we derive ancomparison with experiment is usually difficult, unless a cal-
axial Ward identity and discuss the deviation from theculational scheme beyond the semiclassical expansion is de-
Goldberger-Treiman relation. In Sec. V, we recall Wein-Vveloped.
berg’s relation formN scattering and use the measured S- The other difficulty is more fundamental. In QCD,
wave scattering lengths to predict the pion-nucleon sigmaucleon operatorggq and meson operatoigg exist, which
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are mutually locat. This has not been shown in Skyrme-type  Noether's theorem implies that the symmetry breaking
models[11]. term must be non-derivative, otherwise the vector and axial
We will therefore adopt the other type of model, wherevector currents will not transform as (3;£)1,3). The only
pions and nucleons are taken to be independent. For thether term allowable in thg2,2) representation then is
SU(2)xSU(2) symmetric part ofwN interactions, we take «_U2W, +H.c. which is a linear combination of the terms

the standard nonlinear sigma model as the effective Lagrangiready included in Eq(2). Therefore our starting point for
ian gauged with vector and axial-vector external sources: the |oop-expansioit; ., is essentially unique.

£2 The currents used in this paper can be written down by
T . ~ . ~ H H sl . 4 . _
5122 T{(iD,U+{a, UL ((IDHU) T +{a*,uM] functional differentiation of the ac'uohs_fd XL14o w_|th re-
spect to the external sources. In particular, the pion field is
_ A A _ _ just
+W(id+0+ays)W—my(WPUW + W UTWy)
_ R a1l
+5(ga— DWR(IDU+{&,UhU g ™= £ 50R00)
1 — it 5 ——if—”Tr( a(U—UT))WLL\E W
—E(gA—l)\II,_U (iDU+{a,u}p)w, (1) =717 T f_A YsT
whereU is a chiral field = (Wg, ¥ ) is the nucleon field, +i Tr(#3(U— UT))\FRUWLJF He. (3)

b=v"a,, zA;#=era/2, andD#U:aMU—i[ﬁ#,U]. In the 4f A

low-energy limit, matrix elements calculated froth) are

essentially unique, given that the isospin of the nucleon isvhich reduces to the free incoming pion fietd,(x) as

1 [12]. Higher derivative(1,1) terms at tree level lead to Xq— —. This choice is just the gauge covariant version of

pathologies such as acausality or lack of positivity, so theythe PCAC(partial conservation of axial vector currgmion

will not be considered. field, also defined in terms of the axial curre‘kﬁzél/&ai
Ignoring isospin breaking and stror@P violation, the asaMAiszmfrwa_

term which explicitly breaks chiral symmetry must be a The one-pion reduced axial current can be defined as the

scalar-isoscalar. The simplest non-trivial representation opart of the full axial current that contains ne,, part. The

SU(2)xSU(2) which contains such a term i2,2). This is  most convenient definition is

the same representation as the quark mass temug in

QCD which generates both the pion mass and the sigma j2 =A3+f g, 7

term. Therefore we take g Tk

_ A 1 _
1 m2 =0aAVY,Ys o W+ 9, (WiysTW)
Lo==f2m2Tr(U+ U — —Z oW re2 At
gl A
c _
m2 - — L 0(TWW) +O(7) @
—CH Tr(U+U"WrUW, +H.c. (2 G

with the expansion to leading order in the PCAC pion field
_ o — given in the last two lines. We note that the PCAC pion field
has been retained, again in analogy witigq. \WWe assume s yniquely defined off-shell within the prescriptions [,
that A is nonvanishing am_.— 0, so that(2) vanishes in the and so i§», . The vectoV® and scalaw currents are simi-
chiral limit. Scalar and pseudoscalar external fields can bfarly define% through #

added to Eq(2) by taking

with ¢ and A arbitrary constants. A bilinear form W in (2)

m2TrU—Tr[(m2+s—ir%p?)U] A 2 - 7
B B VM(X)=I§ Tr([7%,U ]&MU)+h.c.+\I'yMElIf
m2WW—W(m2+s—i72pdys) W )
(g — 1) t
and similarly for TU'. The nucleon mass is defined iam 4(9A DWLy, U U,
=my+ o,y With the pion-nucleon sigma ternor=(1

+c)m?/A as read from the Lagrangian to tree level. 1 —
) greng + (8= D)Wy, [ UJUWg

We are unaware of any tests of locality between nucleon and

meson fields. Taking QCD as correct, the standard dispersion rela- o(x)= mZf_ L.
tion for forward wN scattering only tests locality for the meson "
fields.

2An earlier version of this wor13] used the specific case =~ The Feynman rules fo£,,, that are used throughout this
=0. paper are in Appendix A.
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lll. STRATEGY tions such as resonance saturatj@i] to fix them. In any

L . case, which is the better approach will be dictated by com-
We adopt an on-shell loop expansion irf 1ivhich can parison with experiment.

be thought of as a semiclassical expansion with- 1/f .. It ~ Below, we will show that to one-loop our results for the
mcludes pions and nucleop Ioop; bey.o.nd tree—leyel, and form factors reduce to those obtained by Gasser, Sainio and
consistentorder by order with the identities following from gyarc [4] (GSS in the context of relativistic chiral perturba-
the chiral reduction formula. This expansion applies equallftion theory when the nucleon is taken off mass shell
well to the nonlinear sigma-model and QCD as thoroughly(A — ). On mass shell, however, a number of relations are
discussed irf7]. We recall that in both cases, the physical already observed at tree level in reasonable agreement with
pion decay constant,. shows up through the asymptotic experiment, emphasizing the importance(bfoken chiral
condition of PCAC on the axial-vector current. Therefore, itsymmetry. What is undoubtedly important in our approach is
is a good expansion parameter when the master formula aghat the pion-nucleon sigma term is included at tree level
proach is applied to these two cases. along with the pion mass term. Since both terms originate

All scattering amplitudes will be reduced by the identitiesfrom the same quark mass term in QCD, they naturally go
derived in[7], and then expanded to one-loop using thetogether. This term—along with the on-shell renormalization
Feynman diagrams frorfl—2). This way, reparametrization scheme—allow the pions and nucleons to stay on mass shell
invariance(in the sense of Nishijima-Gurs¢¢4]) and vector to all orders. A nonzero nucleon scalar form factor and
as well as axial-vector current identities are guaranteed téoldberger-Treiman discrepancy at tree level are also conse-
one-loop. If we were to just usél—2 without the chiral quences of this.
reduction formula, thenrs scattering subdiagrams in, for ~ Finally, as is well known, the loop expansion in the pionic
examplemrN— 7N or #N— 77N appear to break reparam- sector is equivalent to a momentum expangiln This is no
etrization invariance. 117] we have checked that conven- longer true in the pion-nucleon sector. To overcome this,
tional ChPT fulfills the pertinent identities following from heavy baryon chiral perturbation thedifBChPT) was pro-
the chiral reduction formula in the mesonic sector. We argposed[18], where an expansion in iy is madé [19,20.
not aware of such checks in the nucleon settbhis work  However, the relativistic one-loop calculations contain terms
and others to follow will provide for these checks in our which behave as Im,/my and are not able to be expanded
approach. in this way. Also in this limit relativistic unitarity is lost,

In our approach broken chiral symmetry and relativisticmaking comparison with experiments difficult. Lacking a
unitarity will be addressed for each process individually di-satisfactory theoretical resolution of these issues, we will
rectly on-shell. This procedure is conceptually clear, sincanaintain a relativistic approach throughout. Comparison
on-shell renormalization implies that quantities, ga, A,  with HBChPT will be made directly by expanding the on-
o.n, T, andm, are fixed once and for all at tree level, shell results.
thereby including all powers of the quark masses and QCD At this point we note that the unitarity bounds are more
scale.(In contrast to ChPT where the chiral logarithms arestringent than simple power counting based on a momentum
assessed in these quantitjes. expansion. For instance iam scattering the unitarity bound

The ultraviolet finite and nondiagrammatic formulation is saturated fork2s5.2me whereas inwN scattering the
extensively discussed [iT] will be presented elsewhef&5]. bound isk?< 3.8me, indicating in both cases that the expan-
To make our exposition in line with current expositions us-sion parameter should in fact be C|og,equ§477f§T instead of
ing ChPT, we will use diagrams. A Bogolubov-Parasiuk-k2/(44)2f2 . Throughout, we will work in the kinematical
Hepp-Zimmerman{BPHZ) (momentum subtraction scheme  regime where tree contributions are greater than one-loop,
will be used throughout. This is to enforce the number ofpyt within the unitary bounds. All the loop corrections dis-
subtraction constants commensurate with the number of disyssed in this work are on the order of 10—30% of the tree
vergences. Dimensional regularization is not appropriat@leve| result with the exception of the A/terms which are
since we need to evaluate nucleon loops in the axial forngma|| enough to be sensitive to the input parameters. These

factors. These are in general quadratically divergent, requitarms will be assessed in as many ways as possible.
ing two subtraction constants as opposed to one by dimen-

sional regularization.

Our strategy is essentially the same as for ordinary renor-
malizable theories. No constants other than those required by The matrix element of the axial-vector current between
the divergences will be considered. This makes our approaahucleon states of momentupn and implicit spin dependence
minimal in comparison to ChPT whegdl possible constants s; can be decomposed as
required by symmetry and power counting are used. This is
appealing in that less constants need to be fixed. AlthoughN(p2)|ia,(0)IN(py))

ChPT is more generdhnd generalized ChFIL6] even more
s0), the excess of constants there require additional assump-

IV. AXIAL WARD IDENTITY

a

= U(P2) (7, 75G1(0)+ (P2~ P, 75Ga(1) -U(py)
©

3In [4] it was shown that Weinberg's relation for the particular
reactionTN— 7N holds to leading order in ChPT, thereby con-
firming the reparametrization invariance of their results to the order “Since the nucleon is off mass shell in these approaches, the ex-
quoted. pansion is more in terms of a “bare” nucleon mass.
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with t:(pl—pz)z and G; andG_2 are free of pion poles. The isospin structure is decomposed gPa= 527+

From (3—4), we also have)j,,=f (0+m?2) . Hence, +i€°°7°T ™ to give
(N(p2)|m*(0)|N(py)) T =Ti+Tap T =Ty+Tpa
1 1 o 2 The amplitudesZ = can be calculated to tree level using the
=i m(ZmNGl(t)thGz(t)) u(py)i y5§u(p1). Feynman rules in Appendix A. At threshold they are
(6) Se TN A2 _(3_2 m2/my ©
By definition, Eq.(6) is also equal to f2 f2my f2 4Amg—m:
— . om, G2 2m,
97— U(p2)i Ys7°U(p1) T =2—fi(1—g§\)+ T ame e (10
and leads to the following Ward identity: Here the pion-nucleon sigma teran, and the Goldberger-
t Treiman discrepancy .y appear. These expressions reduce
f 20N =myG(t)+ > G,(1) (7) to the Tomozawa-Weinberg formulas fér—c, showing

the corrections are small.

Experimentally, the threshold amplitudes are expressed in
terms of the S-wave scattering length® ==4m(1
+m, /my)a“. The Karlsruhe-Helsinki phase shift analysis
gives @ ,a")=(9.2+0.2,- 0.8+ 0.4)x 10" %/m,, [21]. The
same group now has new data from P3&2] which reduces
many of the inconsistencies for low pion energies and finds a
positive value a* =0—4X 130* 3/m,.. Furthermore, pionic

2y - A atoms givea® =2+1x10"3m, [23]. Therefore we take
PG (M) = Grun(0)) == A the weighted meaa™ = 1.5(9)x 10~ 3/m_. The accuracy of
We stress again that_y(t) is physically accessible at both & is less of an issue, so we will take the value given above.
t=m? andt=0, making the above discrepancy measurableThese giveA =—54+10 MeV and o,n=14+1 MeV.
Substituting(4) at tree level into(5) gives G,(t)=g, and  Using Eq.(8), this value ofG gives g, yn=13.45-0.15,
G_Z(t)z —2/A. Therefore using7) we find A_wszi/A to  Very close to the experimental value 13.4 taken in the Paris
tree level. We choose to renormalize on-shell such that @nd Bonn potentialg24]. Our on-shell tree level calculation

WheregWNN=gWNN(mi) is the pion-nucleon coupling con-
stant. Extrapolating fr0m=mi to t=0 gives the standard
Goldberger-Treiman relatiogymy~f .g.nn. With G4(0)
=0a-

Relation (7) is exact. The Goldberger-Treiman discrep-
ancy is just given by

this is true to all orders in the loop expansion. So favors a positive value foa ™ and smaller than normal value
for o,y. This is opposite to whaf25] finds, meriting a
me one-loop evaluation as carried out in Sec. VII.
f20mn=0amy— 5==G (8 We can also determine the value for the induced pseudo-

scalar coupling constant which has been experimentally mea-
andm?2/A is exactly the Goldberger-Treiman discrepancy. Sured by two groups

8.2+2.4 Ref.[26]

V. WEINBERG'S RELATION = _ 2\ —
9p=M,Cao(~0.88M) =10 7. 1 9 Ref. [27]

One way to determin& and therefore attain a value for . .
0NN IS to use pion-nucleon scattering at threshold. The scaf—rom muon capture in hydrogen. Using E¢é)—(6) and the

tering amplitude 7 fulfills a basic Ward identity established €Tinition of G, from the full-axial vector current

by Weinberg[5] and reproduced by the master formula ap- (N(p2)|AZ(0)|N(py))

proach[7]. Taking (k;,a) as the incoming pion, and,b) 21w !

as the outgoing pion, witlp; + k;=p,+k,, the formula is — 7

= U(pz)(’)’ﬂ?’sGl(t)"‘(pz_pl)ﬂyst(t))EU(pl)
i T=iTy+iTs+iTap

1 gives a relation betweeB, andG_z
1Ty= = 7 KL e AN(p2)[V(0)IN(PL))comn,
Ga(t)=

7 (2MGL()+mIGy(). (1D

i
i7Tg= — —m26%(N 0)|N
N (N(P) | (O)IN(P1))com Using Eq.(8) we find to tree level
2m,G

%=z 0.8z P

_ 1 .
i Tan= — kafk;j d?xe ki

X(N(P2)|T*3,,(X)iR,(0)IN(P1))conn. which is at most 10% higher than the experimental value.
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VI. FORM FACTORS We can also check the consistency of our results with
those of heavy baryon chiral perturbation theory by taking
A — and expanding im_./my andt/mﬁ. The consistency
of the finite parts of the vector form factor with the relativ-
istic theory has been shown ¥9]. However, the opening
of the two pion threshold at=4m2 which is also seen in the
data for the vector form factd28] is lost in HBChPT. In

We now calculate the vector form factor in order to gain
insight into the loop corrections. It can be decomposed as

(N(p2)[VLL(0)[N(p1))

i
= Uu(P2)| vuF1(D)+ 5=0,,(P2=P1) Fa(l) addition, extra divergences in thendy expansion can de-
my ) ;
velop. If these divergences cannot be absorbed into the al-
2 ready existing divergence structure, the procedure of taking
XEu(pl)- the limit of a large nucleon mass at the level of the Lagrang-

ian could be different than taking this limit after calculating
all amplitudes with a finite nucleon mass.

One such case does occur in the slope of the Pauli form
factor F,(t). The full one-loop calculation can be worked
out from the explicit form of the loop integrals in Appendix

The tree level result just gives the charfgg(t) =1. Includ-
ing the one-loop form of the vector current, we find

2(g5—1) — G2 i =
F()=1+ (9?2 (te+ IFF (1) + 7 [2TF() Ato give (u=m;/my)

NN ) TN 277N ) 2 AN F'O——G2 Ly LAY
—JTN() +8L37(1) —mII (1) +8my (', (1) a( )_3(47Tf77)2 oY [y2+u?(1-y)]?
+ATYT(0) —4TY (O +TV7(1)] G2 [ L 29

—m @+2In,u +€ +O(,LL)

m2 2

N

Fa()= = —z—[TINO+TV(0) +4T37() 4T (D] which is consistent with GSS in the—c limit. The In?

i cannot be expanded inrhf . In principle, this should be

with the I”s representing loop integrals defined in Appendixtaken into account in HBChPT by an additional subtraction

2 . ) . constant.

A and G=gymy—m /A as in the previous section. An ) — )
overlined function denotes a subtractiontat0. Other than | 2KiNGga=1.265 an_dA,Tyt —54 MeV as in the last sec-
the subtraction constants, this reduces to the ChPT result §n: the magnetic radiuér<); =6F;(0)/x, is 0.21 fnf to
GSS forA —. This is to be expected from the form of the ONe-loop. The terms t6X(1) give 0.31 fnf and the 14 term
Lagrangian used and is a good check on the calculatiorflone gives the HBChPT result of 0.5_12\‘.mThe empirical
Notice that the coefficients of the terms group into factors of/alue is 0.77 fré [28]. lIronically, the first term in theu
G/f =gy to the order we are calculating by E@®). expansion gives the re;ult closegt to expenmgr.\t..However,

Another check is that the chardg(0)=1 is not renor- thls term can only be singled outin a non.-relat|V|st|c expan-
malized by loop corrections from the strong force. This carSion Which then would require the additional subtraction
be shown to be true in dimensional regularizatiéh How- constant to absorb the logarithmic singularities mentioned
ever, for the rest of this paper we will instead adopt the@P0ve: . )
BPHZ renormalization scheme. This just amounts to sub- There are no corrections of OrdE'ZN/(4Wf7) to F4(0)
tracting the Taylor series of divergent loop integrals up to theSince it is protected by a non-renormalization condition. In
degree of divergence and replacing the subtraction by arb@ddition,F>(0) had no contribution from tree level and the
trary constants. This has two advantageswé& do not need one-loop value was shown to be close to the experimental
to construct the most genera| Lagrangian to Obtain the Con\[alue. Therefor.e, further verdict on the Convergence of this
stants, 2 we obtain only the minimal amount of constants €xpansion requires a two-loop calculation.
consistent with the symmetries of the theory. In other words, Extending the results of the previous sections requires the
if a diagram is not divergent, we do not do any subtractiongixial-vector form factors to one-loop:

on it.
The only constanf[ to one—loop,\z’, can be2 f\i/xed bly the Gy()=ga— gA—ZGZ[ZF_:,’T’\‘(t)—JN_N(t)—meW(t)]
vector charge radius of the nucleofr<);=6F;(0) fz
=0.578 fnf [28] giving 2(g5—1)cy=7.30< 10" °. This ac-
counts for about one third of the radius with the rest being —,,. 2 20AMNG?  —1 NN, 2
given by the loop integrals. This also agrees with ChPT. A0="73F m2f2 (2157 (me) = J75(m)
The first difference with ChPT is that there is no subtrac- 5 )
tion constant for the Pauli form factdt,. In fact, the ex- 2N, 2 N NN
perimental value forF,(0) is just the difference in the —mel (m”)]_f Agamyls (D) + = (J7(D)

anomalous magnetic moments— x,=,=3.71; and a nu-
merical calculation shows this is indeed valid to about 3% as
first shown by GSS. The most general Lagrangian, however,
allows an extra subtraction constant fBr which is not
needed4]. with

+mf,rWN(t))—8|(t)}
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0.10

It should also be noted that taki@(t) =0 in(11) along
with the linear approximation foGl(t)=gA(l+rit/6) re-
produces the Adler-Dothan-Wolfenstein reqd1i]

:Zm,ugﬂ—Nwa _E mem r2
FTmZrogamz  39ANMTLIA

Taking the proper empirical dipole form fd@g,; gives less

than a 1% correction, and including tk®, contribution to
one-loop gives about a 5% correction, comparable tar ghe
term above. Again more precise data is needed before any
statements can be made.

Finally, the scalar form factor cannot be directly mea-
‘ ‘ ‘ sured, but is important in that its value at the Cheng-Dashen
0.00 0.05 0.10 0.15 0.20 point may be tied to the pion-nucleon scattering data by dis-

~t (GeV?) persion analysi§28]. It is defined as

G,(t) (MeV™)

0.01

FIG. 1. The pseudoscalar form factor for spacetik&he dotted ~ _ —
line is the pion pole prediction and the solid line includes the one- (N(p2)|a(0)IN(p1))=Fs(t)u(pz)u(py)
loop form of G,. The dashed-dotted line is from using the one-loop

da 2
form for bothG; andG,. Fs(t):_%—%&mé*‘%

J™(t)

2

3 _ _
- f—s[mN(TN“(t)—ZF'I'”(t))

m

G 1
|(t)=mﬂ(t)+xﬂ(t)

and an underlined function denotes a subtractiot=an? . 1+c L

The functionl (t) is from the nucleon loop. It is doubly sub- + T(JNN(t)eriF”N(t))}. (12
tracted in order to satisfy the consistency relation

(0ljalm)y=0 stating that the one-pion reduced axial current .

truly does not contain asymptotic pion fields. B&h(t) and E:Iesfr?g\t,vtshitpwﬁe?:\fs kt?lgtqng;girgrg(]a%ilsg::li;;t)theshliger?/\?g_
Shzéltl) rgi‘éfﬁ?{;g;%gf;ggg:ﬁgz }’(‘g:cahngrf ;';(e doilskc):)lljstzg donrenormalize this quantity on-shell, no subtraction constants

t th d of Sec. IV. Therefore th | i tappear here. Other than this fact, we agree with GSS for
atine end of Sec. 1v. ezre ore the one-loop COMrections 1y _, ., Npote that, unlike in the vector form factors, the co-
G, (t) are of ordett/(4=f )“. In addition to this correction,

- ) efficients of the terms do not group exclusively into factors
G, has an additional constant correction of ordémy. We  of G/f_ showing different factors from just the naigeyy .
have fixedA~3m, in the last section. Therefore this is  pefining o(t)=—m2f_F4t) as used by other authors
about a 50% correction to the tree level result. The correyith +(0)=0¢_,, we can use Eqi12) to give a prediction
sponding correction tgnn(t) andGy(t) is on the order of - for the scalar form factor at the Cheng-Dashen pdint

a f?_\’r\]’ p_eré:ent.d q | i ant i =2mf, [3]. The value of the sigma term obtained from elas-
€ Induced pseudoscalar coupling constant IS oW ¢ 7N scatteringatt=2m?) as compared to the value from

om G2 the baryon mass spectrugat t=0) is about 20 MeV larger
gp=m G+ 1:7(]-“(—O.88ni)—]-"(m,27)) [32]. A numerical evaluation shows far_ =14 MeV that
L m the differenceo(meT)—a(O)=5.2 MeV and is not large
with enough to account for this discrepancy. This observation is
similar to GSS.

F(£)=G[INN(t) + m2T ™N(t)]+4m2I ()
JE— VIl. ONE-LOOP @&N SCATTERING

—2gamy[ T3 () +m2TgN(t)]

In order to calculaterN scattering to one-loop, we only

and G:gAmN—me/A as before. Takingn,=106 MeV, need the two-axial-vector correlator to one-loop since the

this result givesy,=8.85 to one-loop. This is about a 1% Vvector and scalar form factors were evaluated in the previous

correction to the tree result. A plot &,(t) for spaceliket is  section. Defining

shown in Fig.zl. The dotted line is the pio? pole prediction

2myGy(t)/(m5—t) with Gy (t)=ga[1—t/M3] 2 and M, PO .

=(0.96+0.03) GeV[29]. The solid line is from including T==A +§(k1+k2)B '

the one-loop form forG,(t) for A .n=—54 MeV and the

dashed-dotted line is the one-loop form for all®j(t). The and using the Mandelstam variables-(p;+k;)? and t

data[30] is not precise enough to distinguish between the=(k,—k5)?, the tree and one-loop result for the form factors

results. can be written as



a(t)
Ag:—fz—,

ko

AV == 8f2ﬂ-mN FZ(t)

1
BQ:W[Fl(t)JFFz(t)]-
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age =—11.34m2, byl =11.62m2.

One can see that these contributions are large and need to be
taken into account for a proper fit. We have analytically
checked that for any value & and indeed even for the case
where the nonpole terms aneglectedhe final result for the

The rest of the tree result comes from the Born terms Ofscattering lengths presented below is identical. The only dif-

(N|T*jajalN)
QA6 _
AXA,tree:_fZ_AAA,treezo
. G*[ 1 1
Baatree™ Zlsom o=
_ ga G?[ 1 1
BAA,tree: - Z_fi - g S— mﬁl u— mﬁ

with G=2G—g,my. Its one-loop contribution is quoted in
Appendix B.

Analyzing the divergence structure of the one-loop ampli-gives a’
tude shows that it contains six independent subtraction corZ=n=0

stants for the total crossing symmetric amplitude
f2AL, =mytc,+mic,
f4Agi,, =Mn(s—u)cs F2Bg, =(s—u)c,

f4Bg;, =tCs+ mMiCs.

ference is that part of the strength of thecontribution is
shifted from subthreshold to threshold; the overall difference
between the subthreshold and threshold remaining the same.
Our choiceZ=1/2 is merely for convenience since for this
value theA contribution vanishes at threshold.

Moving to threshold, a prediction on the scattering
lengths can be made to one-loop. Takiggyn=G/f,
=13.3, a reasonable result is found foyy=53 MeV

a1 joop=2.1X1073/m,,, a150;~=12x10"%/m,,.

The value fora* is close to the weighted average discussed
in sectionV whereasa™ is somewhat large. The results are
very sensitive to the\ contribution. Takingo =45 MeV
—8.7x10 3/ m_ without changinga™. Taking
and G=gymy give (a*,a”)=(—4.8,10)
X 10" 2/m,. similar to[36]. A more recent calculatiofi25]
findsa®=—10x10"3/m, . This shows that the contribution
of the 1/A terms to one-loop really makes a large difference.
Note that the value ofr .\ required to fit the one-looprN
scattering amplitude differs by a factor of two from the value
required to fit the tree level amplitude in E®).

Both scattering lengths come from large cancellations be-
tween the constants that were fixed at subthreshold and the

These six constants are in one-to-one correspondence Wit§op contribution. This cancellation is needed due to the

the six renormalized constants of GS$:. ,, b5, andbs.
The five additional finite constants [#] have no counterpart

close proximity of the tree result to experiment. The large
contribution from theA clouds the predictability, but our

here. This is a direct consequence of our minimality assumpone-loop analysis seems to favor a valuergf, close to the

tion: only taking into account the divergent constahts.
The constants may be fixed at subthrestssidi, t=0 by
fixing the following constants defined (28,33

ag=(—1.28+0.24/m,, b= (—3.54+0.06/m
ag=(—8.83+0.10/m2, bg=(10.36+0.10/m?
ag;=(1.14+0.02/m3, bgy,=(0.24+0.01)/m* .

Since we will be only looking at reactions in the forward
direction ¢=0) below, the coefficients of, ay, and by,

will not be discussed further. Using the conventional mode

for the inclusion of theA(1232 [28] (we take g3/4m
=17.7 GeV 2 as in[34] andZ= 3 as in the original Rarita-
Schwinger paper for the nonpole terms[35]), the contri-

bution of the A included in the experimental subthreshold

values is

agl=—1.11m,, bji=-4.86m3

commonly accepted value of 48 MeV [32] and a small

but positivea™ scattering length. Both of these results are in
contrast t[25] and rely on the non-zero value of_ and

the Goldberger-Treiman discrepancy at tree level. The value
for a” is about 20% off from the experimental extrapolation
from the Karlsruhe-Helsinki data.

The ability to fixg, andg N independently from experi-
ment allows for a satisfactory starting point to the sensitive
prediction of thewN scattering lengths and can also lead to
an estimation ofr . The above analysis, however, shows
an extreme sensitivity of the threshold resultsiN scatter-
|ing and calls for further study in the future.

VIll. #N—m7wN AND THE PION-NUCLEON

SIGMA TERM

As a final estimate on the value of,, we turn to the
processm?(k,)N(p,)— 7P(k,) 7¢(k3)N(p,). The scattering
amplitudei7 5. fulfills an identity which can be derived by
chiral reduction from the master formula approhsimi-
lar to what was done fotrN scattering. Defining the Man-
delstam variables for a three body procg3sg|

SIt would be interesting to compare our predictions for the finite
constants to those that could be obtained through fitting the GSS
amplitude to experiment. The latter has not been done in the litera-
ture.

s=(p1+kp)? s;=(Patks)?, s;=(kytks)?

t1=(P1—P2)?, tr=(ki—ky)?,
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the identity is T _ 1 kMka)\f d4 4 —iky-xq+iky Xy
AAA 73 K1 KoKz X1d"x,e
i 7 3, ={iT ,+iT a+iT satiTya}+2 permstiT ann e
i X (N(P2)| T* A, (XD R, (X2)i 2 (0)IN(p1))
T o=z (t=m7) 8*XN(p2)| 7°(0)[N(py))

with “perms” meaning a permutation ofk,,a;—k-,b;

_ 1 _ —k3,¢). The structure of the chiral reduction formula imme-
i7T = ﬁg(kz—kl)”5ab<N(p2)|JZﬂ(0)|N(I01)> diately shows that the amplitude dependscy, (through
" the appearance of the scalar currenin the 7 g, term) al-
im?2 . lowing for an alternative way to fix its value.
iT gp=— TQ—”kgaabJ d*xe(kimka)x At threshold, the amplitude can be decomposedses
4 [38))

X<N(p2)|T*(AT(X)J';M(O)|N(pl)>
cba_ k béac Céab a sbe
iTVA— k'uky abef d4xe(ki—ka)-x T [Dl(T + 7°6%°) + D, 72 5°°.

><(N(pz)|T*V2(X)iiV(0)|N(Dl)) The tree contribution to the threshold amplitudes is
£ _ 3 mytmg | my+2m; - 1 - N 3A_7,N N N m_,.G
7172 my+2m, /| 2my+m,, wN| 7 7 (2Mn+M7) Ga my+2m._ | - ZN 9AT (m Fmo) (2my+m)
1 9a 2myG 3. | %A . _—  Oam,
+_ — —
g (Mt 3m.) (2my+m_)(my+m,) my+2m,| 2 (G=24m)
G gam> =, 2(my+2m,) G2
T (mytmo(2mytm,) |2 9= 2my+m,
B 3 mN+2m”G o m,. N SA_WN G 4Amy+5m,,
w27 T 5| omyrm. O AN T S 9t o | TN 9aT S 2m2+2mym, —m>
1 ga 2myG BAm | GA 4
g =2 +22(G— + +
7 (2My+3m.)l 5 (2my+m,)(my+m.) my+2m_ 7 (G=2Aam)+ga(mytm,)
gAGé Amy+5m,; 2G 92 6 49 N G? 4my+5m,.
2 s amm . Em ) (mymy | 4 TR OMm )

The brackets section off, in order, the contribution of the firstAlthough bothD,’s depend ornr ., only D; is sensitive to
four terms in the chiral reduction formula. The contribution it, decreasing td,=2.5 fn? for o,y=14 MeV. Therefore
from 7 paa is given by the remaining terms. This calculation experiment seems to favor a smalteg,, .

is in agreement with39] if we take A — . Note the explicit The large 30% discrepancy i reflects on the difficulty
dependence oy in the threshold amplitudes. Taking in extracting the threshold parameters. A different fit in the

A_n=—54 MeV for the proper value 0§y, o,n=53 literature[41] gives (D;,D,)=(2.26,-9.05) fi?’. Further-

MeV as in the previous section, and definibg=D,/2my,, more, large corrections occur in ChPT from higher order

we find terms bringing the convergence of this parameter into ques-
tion. The one-loop corrections to ti’'s will be presented
elsewhere.

D,=2.78 fi¥ D,=-—6.59 fnt
IX. CONCLUSIONS

whereas experimentalfy0] We have introduced a minimal model farN dynamics
that embodies uniquely at tree level the main features of
broken chiral symmetry with on-shell pions and nucleons to
DPP=1.82£0.09 fm? D3P=-7.30+0.24 fn?. all orders. Using this on-shell expansion and a BPHZ sub-
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traction scheme, we have shown how the chiral reduction APPENDIX A

formula can be enforced with a minimal number of param-
eters. All of our results are consistent with data.

With this simple model we have analyzed the axial Ward
identity derived in Sec. IV as well as a Ward identity fol
scattering originally derived by Weinberg and a new chiral
reduction formula forrN— 77wN. We have presented a one-

The Feynman rules front,,, needed in this paper are
ones with external current lines and interr@op) pion
lines. We take the transformatiolf;— &4, (i=R,L) with
U=§R§I and choos§R=§I. The rules for theys nucleon
fields are as follows:

loop calculation of the nucleon form factors amtll scatter- g VZ

ing and shown their equivalence to ChPT in thesco limit. || _1+ec 5 Tt
For finite A, this model has the additional feature of al- W  fRA CEY

lowing room forga, My, 9.nn. @ndo .y to be fixed to their Jap

phenomenological values—all at tree level in & ,lloop Pti 2P 7

expansion. In particular, an estimate can be made on th - = <9A7”+ A “) oy

value of o from various processes. Terms proportional to

o N are certainly important in the scalar form facteg(t), o b

the 7N scattering lengtia™, and the threshold paramef@y E i b H - 9A o

from the 7N— 77N process. — = — x0T = —gfa T YuYs
The only hindrance in nailing down a more stringent pre- n 4

diction ono .\ comes from determining the contribution of

nucleonic resonances such as M@ 232) at the point where — J%4y P b (

the divergent constants are fixed. An ideal situation would bt e wieabcTc + M pu(;ab)

to find an amplitude with the divergences constrained by 2fx

current conservation and yet still dependentay, for an .

unambiguous determination of the pion-nucleon sigma term g Vi

Photo-productionyN— 7N may be such a case. IZ”JL"C_ —L(S"C IZ__S_._C_ i€ (ky + k)
On-shell renormalization along with the approach of us- fx - ! 2n

ing a minimal amount of parameters dictated purely by the

divergences increases the predictability of the model due t k,a

fewer constraints needed to fix the constants. In particulal i 1 2m? e

there are no constants Fy(t) or Fg(t) as opposed to one —_ = f_ (gAk + A > 75-5-

each in ChPT and there are six constanteh scattering as 4

opposed to eleven in ChPT.

The analysis ofrN scattering shows that all six of the k1,@ . ko b ( 2 )

A

k1 ko

subtraction constants in the amplitude can be fixed at sut S oY Mieab%c + Méab

threshold. Including the (1232) contribution, the scattering N 2f2

lengths can be predicted with reasonable accuracy. The valt

of o,y as constrained fromrN scattering goes from being jgm ) ) it

on the lower side of the canonically accepted value of 4¢ o il d =—ig ( salesdb _ 9gab 6cd)

+8 MeV [32] at tree level to within the predicted accuracy at g

one-loop, showing an improvement upon adding loop correc-  All loop processes in this paper can be expressed in terms

tions as expected. of the following general Feynman parameter integrals. Here
We have kept a relativistic formulation in order to main- dk is shorthand ford*k/(2)* properly regularized and

tain relativistic unitarity. Indeed, many HBChPT calcula- [p], = (k+ p)z—mg. For two propagators, the integrals are
tions, although formulated with a heavy baryon Lagrangian,

tend to start with the relativistic Feynman rules and only _ (Lk, k,k,)
after evaluation of the amplitude take the non-relativistic 'f dkw (J3Pud1iPuPudz2rt und22)
limit. This is not only more natural but keeps from missing al=lb
terms as could happen from the non-relativistic formulationith J, = 32°(p?),

The convergence of a relativistic calculation crucially de-
pends on the appearance of the constant tenﬁ1$47rfw)2. — 1 dx h;(p?)
Although such terms do appear, in all the cases considered (33313020 =— 0 (47)2 n m
here they are always accompanied by a divergent subtraction JHHO

2 A

(1;%;x%)

constant. A mere redefinition of this arbitrary constant re- __ 1 dx hy(p?)
moves such terms from the expansion and rectifies the cony, = —f ———| hy(p?)In ? 7 +X(1=X)(p?~pp)
vergence. Whether this is a general feature of the loop ex- o 2(4m) hy(po)

pansion employed here merits further investigation.
hy(s)=m2x+ma(1—x)—sx(1—x),
ACKNOWLEDGMENTS and pS is the subtraction point. The number of bars above a
This work was supported in part by the US DOE grantfunction denote how many terms of its Taylor series are sub-
DE-FG02-88ER40388. tracted at the chosen point. Note tii&f=2J32.
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FIG. 2. One-loop diagrams farN scattering. The graphs with a star also have a mirror image diagram which must be taken into account

and all graphs except for those in the last line require the addition of a crossed diagram.

For three propagators, since there are only two partlcles

which play a role in the loop&ucleon and piop two of the
propagators will certainly have the same mass:

LKk Kk k)
'f T p]b[ ah
+QMQVF4+Q(MPV)F5+P;LPVFG)

with (Q,P)=(p+4a,p—q), I';=I?(p%,g% P?). The finite
integrals are

=(I"Q.I'1+P,I'5;9,,I'3

T L [Maxdyy S
T am? o XYYy
with
y y
a 1, al—z, a2=§(2x—1)
2 2 2
a4—yz, =y—(2x 1), ag=-"-(2x—1)2
and

hr=mZ(1-y)+miy—p*y(1-y)— g’ (1=x)y(1-y)
—P2x(1-x)y?.
The divergent function can be subtracted to give
Ta=— ! — f dxdyylin - fr
2(4) r,0

with  Ty(md,m3,P)=T(P?) and T(s,mg,P?)
=T(s,P?) shorthand notation used in this paper.

(1K, kuk,)
fdk[OJW[—p]N[—q]N[—r]N
=(G:pG11+4,G,+1,G3)

with gizgi””(p,q,r). All four integrals are finite

_ ! flddd ad
gl_(4ﬂ_)§ 0 X y Z)%ZHZQ

with
B=1, B1=xyzZ Br=(1—Xx)yz, B3=(1-2)y.

For this paper only the forng””(ler d1,P1,P2) With p%
=p3= mN, P1+di=Py+ 0 andq;=q;=mZ was used, for
which gTV= g3 and

(s—mR)y(1-y)(1-2)
—m2y?z(1—2z)—tx(1—x)(y2)?

hg=mZ(1-y)+miy?—

with s=(p;+0;)? andt=(p;—py)*
APPENDIX B

The one-loop form for the two axial-vector correlator
(N|T*jajalN) is quoted below. This is needed feN scat-

tering. Using the notation\ .y=g,my— G we find the dia-
grams in Fig. 2.

Writing ~ AT=A"(s,t,u) +A*(u,t,s) and B~
=B*(s,t,u) ¥B*(u,t,s) to take into account the crossed
diagrams, we only quote the contribution from the direct
diagrams shown in Fig. 2. The self energy and form factor
contributions of Fig. 2a can be written succinctly with the
use of the axial-vector nucleon form factors with one off-

Finally we need the following functions for four propaga- shell nucleon le15]. With the understanding of only taking

tors

As,(s,t,u)=

1 s
42 s

. 1
Bia(S,t,U)Z - F

with g=(V/s+my)g;+m2g,—(s—m3)gs,

3 9A\/_+G)2

fs.e.(\/g): 4f2 (\/—

1
Vs— my

2

[mNW( s)— \/ngW

this to order 1f*

T

it can be written as

TN (VOGNS My ) TP (V5 — \5)

1
@fs.e.(\/g)[g(\/g,mN,mi)]2+(\/§—>—\/5)

My (gavs+G)2
22 Js—my

(3™ (md) =37 (mY)]

(s)]—

91(Vs,my 1) = gA+g4f2 (9aVs+B)[mI™(s)— VsIT™ <s>]+2f2(gAf +8)[- 2T 5N (s.)+ I (D) +mIT (s, )
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—(s—mZ)TTN(s,1) — (Vs—my)2TFN(s,1)]

— 2(1+
o s )= o+ 2 g B)ImIT(5)~ VT (911 gy (a5 OITN0)+ M N5,

1T

G —~
~ (V5= mT T (.0~ (5= 5,01 - Tz (V5 + BIL(S-my) 2T g0 - TN

G
—T3N(s,0)+2(Vs+myT'g (st)]+ gAI+G> —

7T

- JNN(t)+ INN(Y)

9a(Vs,my,t) = f2<gAf s+8)[2(Vs—myT (s, +2(Vs+ myT(s,t) + (Js—myITM(s,t) + (Vs—myT'TN(s, )],

andG=2G—g,my. It can be checked by the Ward identity in E@) thatg(my,my ,me)EZ f -9..nn €Xactly to one loop
therefore showing a simple way in which the on-shell values are maintained. The other graphs in Fig. 2 give

FAR(8.L) = e gAML G3(s— MR + 45 2137(s) + ~ 02 20,8(G 28 o) + mi(gls + (G~ 28,2 197(s)

16g

+3gaGG2 —INN(M2) — M2 ™(s) + (s+3mZ) T TN(s) + (s— m3)TZN(s) ]+ 3g2myGA(s— m2) T N(s)
3 3
+ 5 GAGMN(s— WMt —BmyG T T(1) + 59,52 INN(1) + mIT ™ (1))

+3myGA(s—md)[267N+gIM]
3 - — — 3 U — —_— 3 J—
F2B2n(St,U) = gGAMN(G— 2 1) I™(8) + T OA(GRS+(G— 24, ITN(9) + 5 GRG — IMN(m?) —mIT ™() + (s—my)

3 N NN ~
X(PTN(s)+T5%(9)1+ 792G 25 (1) = INN(t) —mZ I ™(1) ]+ 6gamyG G2 T(s) +3G [ (s—my) G5 "

—m2G™—TNNm2 ,m2 t)]

1

_ 1 _

feAS(st,u)= EmN[(S M3 +202,)3™(s) — (s—mi — 202 IT(S)]
1
frAs(s,tu)= 7 (s- mR)[ M I™N(s) = (my— 40\ )IT(S)]
f4B3u(s,t,u)=— %[2m§ﬁ(s) —(s+m+202)I7(9)]
40— _ 1 TN 2 7N
fszc(S,t,U)—_Z[ZmN(mN_ZUwN)J (s)=(s+my—4myo,n)J7 (s)]

4 5+ __E 2y =\ 17N, _E _AA 2y 2
f Az (S t,u)= 29AmN(gA(S my) — 20 ,nG)JI™(S) ZgA((gAmN 4A n)(S—MY) —gaT 7n(STMY)
+AMyA 0 o) ITN(S) + 20\ GA(s— M) TTN(S) — 20,y GAINN(M2) + M2 ™N(s))

1 1 _
f2B3y(s,t,u)= ZgAmN(gAUwN+4Aﬂ-N)JWN(S)__gA(gA(S my— mNO'wN)"‘ZAwN(ZmN"‘UwN))JfN(S)"‘ZGZ(JNN(mi)

+m2TI ™(s)) = 2G2(s— mZ)(I'TN(s) + T5N(s)) + 4myo W G2T TN(s)
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As4(s,t,u)=0, Boy(s,t,u)=0
F4AZ(s,1,u) = (t—2m2)[gaGI™(1) + 2myGHT ™ (1) - 2I TN(1))]

f4AS (s, tu)= o n(t—2m2) 77 ().

In the A — oo limit we reproduce all the finite parts of GSS. This shows that calculation ofrtescattering amplitude using
the Ward identity with external fields is equivalent to a calculation with the pion vertices from the Lagrangian without mention
of external fields or the Ward identity. Whether this holds #a¥4— 77N will be discussed elsewhere.
The relation between the two calculations can be made more transparent by use of diagrams. The vector and scalar form
factor contribution to therN Ward identity, along with the contact interactions fr@id|T*jAja|N), are equivalent to the
graphs from the pion calculation which contain two external pions meeting at one point. Diagramatically this is just

4 v

4 4 -

with the left-hand side containing the proper coefficient given by the Ward identity. The other possible graphs from the pion
calculation are in one-to-one correspondence with the graphs of the same topology from the two axial-vector correlator.

Ja da
S ¥
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