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Dissipative field theory with the Caldeira-Leggett method and its application
to disoriented chiral condensation

Hiroyuki Yabu, Kenji Nozawa, and Toru Suzuki
Department of Physics, Tokyo Metropolitan University, Hachioji Tokyo 192-0397, Japan

~Received 13 June 1997; published 14 January 1998!

The effective field theory including the dissipative effect is developed based on the Caldeira-Leggett theory
at the classical level. After the integration of the small field fluctuations considered as the field radiation, the
integrodifferential field equation is given and shown to include dissipative effects. In that derivation, special
care should be taken for the boundary condition of the integration. Application to the linears model is given,
and the decay process of the chiral condensate is calculated with it, both analytically in the linear approxima-
tion and numerically. With these results, we discuss the stability of chiral condensates within the quenched
approximation.@S0556-2821~98!03803-X#

PACS number~s!: 12.38.Mh, 05.40.1j, 25.75.Ld
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I. INTRODUCTION

Recently, there has been great interest in the collec
phenomena that might be observed after heavy ion collisio
especially in the state called the disoriented chiral cond
sate~DCC! @1,2#.

The quantum chromodynamics~QCD! that describes the
strong-interaction physics has the chiral symmetry SUL(2)
^ SUR(2) that is explicitly broken with the order of the pio
massmp . The behavior of the vacuum state can be rep

sented by the order parameterŝs&5^ q̄q& and ^p&
5^ q̄g5q&, whereq is a quark field. At zero temperature, th
effective potentialVeff(^s&,^p&) has a bottom circle with a
radius f p , so that this symmetry is spontaneously brok
and the vacuum state takes^s&Þ0 and^p&50.

The DCC state is defined as that on the bottom circle
Veff but with ^p&Þ0, and is expected to be produced af
high-energy proton or heavy-ion collisions. About the form
tion of the DCC, there have been a lot of discussions, es
cially concerning the quenching or annealing scenarios@2–
7#, but the present situation is still controversial.

As has been pointed out in@8#, another important problem
is the decay process of the DCC state. Because of the exp
breaking of the chiral symmetry, the DCC state is only me
stable and considered to decay into a true vacuum radia
many coherent pions@9#. If the lifetime of the DCC is very
short compared to the formation time, it will be very difficu
to observe the DCC state through the pion signal. The en
process of the DCC can be formulated as the dissipa
system of the collective coordinates~the order parameter
^s& and ^p&) under background pion radiation, so that w
can analyze the DCC, especially the decay of it, with
method of the dissipative theory in semiclassical dynami

There has been much work done to derive the equatio
motion with radiative damping in classical electrodynam
and thermostatistical theory. The motion of the charged p
ticle with electromagnetic radiation has been much discus
since the prequantum mechanical era@10#. Here we should
mention that the advanced Green function for radiation w
introduced by Dirac@11# to cancel the divergent electron
570556-2821/98/57~3!/1687~7!/$15.00
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radiation mass and was justified by Wheeler and Feynm
@12#.

In thermostatistical theory, dissipative dynamics has b
considered with the Brownian motion and the Langev
equation has been one of the most important tools to at
the problem@13#:

Mq̈1gq̇1V8~q!5R~ t !, ~1!

whereq andR are the particle coordinate and the fluctuati
force andg is the dissipative coefficient. However, in Lang
vin theory, the dissipative coefficient is the given parame
and cannot be fixed by itself.

In 1983, Caldeira and Leggett proposed a method to
rive the dissipation from the microscopic theory@14#. They
start with the system-plus-reservoir model~the interacting
system of the collective coordinates and the background
grees of freedom! and, by integrating out the backgroun
degrees of freedom, the dissipative equation for the col
tive coordinates can be obtained. This method was form
lated in particle dynamics, and has been applied to the
laron motion in a crystal~acoustic polaron!, diffusion of
charged interstitials in normally conducting metals, and
dynamics of Josephson junctions@13#. In the latter case, the
reduction of the tunneling probability was predicted for t
macroscopic quantum tunneling effect between superc
ductor and insulator with Caldeira-Leggett theory and w
confirmed experimentally@15,16#.

The application of the Caldeira-Leggett theory to t
nuclear-hadron physics is very interesting; especially wh
considering phenomena with multiparticle production su
as the emission of a meson, photon, and so on. The energ
the system~the excited nucleus or the fireballs, for examp!
is considered to decrease ‘‘dissipatively’’ with the partic
emission and Caldeira-Leggett theory can be applied
them, where the reservoir corresponds to the emitted part
Another interesting application is for the DCC phenomen
The DCC process is described by the nonlinears model, and
the collective coordinates and the reservoir are just the c
densateŝs&, ^p&, and the radiative pion through the forma
tion and decay processes.
1687 © 1998 The American Physical Society
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1688 57HIROYUKI YABU, KENJI NOZAWA, AND TORU SUZUKI
In those phenomena, the dynamical variables of the s
tem are the fields corresponding to the emitted particles.
the application to such a process, we have to ext
Caldeira-Leggett theory for field dynamics. That extension
very interesting by itself because it produces the dissipa
field equation.

In this paper, we formulate Caldeira-Leggett theory
field dynamics, and apply it to the DCC process. The ext
sion of the theory for field theory will be given in the firs
half of this paper as generally as possible. The resultant
mulation is applied for the nonlinears model, and the exis-
tence of dissipative effects is shown analytically and num
cally. In the final part of the paper, the decay process of
DCC is discussed qualitatively within the present formu
tion.

II. DISSIPATIVE FIELD EQUATION WITH
CALDEIRA-LEGGETT THEORY

To illustrate the application of Caldeira-Leggett theory
the field equation, we take a simple system of the order
rameterF(x) and the background fieldf (x) that describes
the particle with the massm:

L5
1

2
~]F!22V~F!2F~F! f 1

1

2
@~] f !22m2f 2#, ~2!

where V(F) is the effective potential forF and F@F# f
gives the interaction betweenF and f . Taking variations
with F and f , we obtain the following field equations from
Eq. ~2!:

]2F1
dV

dF
1

dF

dF
f 50, ~3a!

~]21m2! f 1F@F#50. ~3b!

They are easily checked to satisfy the energy-momen
conservation.

Equation~3b! is formally solved with the Green function
G(x2y;m) that satisfy

~]21m2!G~x2y!52d4~x2y!. ~4!

The fluctuationf is then written as1

f ~x!5E d4yG~x2y;m!F@F~y!#, ~5!

and, substituting it into Eq.~3a!, we obtain the integrodiffer-
ential equation forF

]2F~x!1
dV@F~x!#

dF
1

dF@F~x!#

dF

3E d4yG~x2y;m!F~F@y# !50. ~6!

This equation is essentially equivalent to Eqs.~3a! and~3b!.

1The homogeneous part can be dropped safely because it ca
absorbed with proper adjustment of the boundary condition.
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The Green function in Eq.~6! can be written as

G~x2y;m!5E d4k

~2p!4 G~k;m!e2 ik~x2y!, ~7!

whereG(k;m) is the Fourier transform ofG(x2y;m) and
generally takes a complex value. In Caldeira-Leggett theo
the imaginary component ofG(k;m) can be considered a
the dissipative term caused by the emission of particles
the background fieldf . It is suggested by the analysis of th
simple Newtonian equation including the dissipative ter
mẍ1h ẋ5F that after Fourier transformation, the dissipati
term h ẋ(t) is similar to that of pure imaginaryihvx(v)
with the spectral functionx(v) for x(t). Further, we can
interpret this dissipation as the particle emission beca
ImG(k;m) includesd4(k22m2) ~on-mass shell!. The real
part ReG(k;m) is considered to give the modification of th
effective potential that comes from the background abso
tion and emission, and can be absorbed intoV(F) by redefi-
nition. Thus we can drop it because the parameters inV(F)
are adjusted from the experimental data. Finally, we obt
the dissipative field equation corresponding to Eq.~6!:

]2F~x!1
dV@F~x!#

dF
1

dF@F~x!#

dF
f̃ 50, ~8!

where

f̃ ~x!5E d4yE d4k

~2p!4 i ImG~k;m!e2 ik~x2y!F~F@y# !.

~9!

Equation~9! is still ambiguous because a variety of Gre
functions~advanced, retarded, causal, or their combinatio!
can be used in it and give solutions with different bounda
conditions. We should select the proper Green functions
show the dissipative effect whent→` with real f̃ . In the
application to the linears model, it will be shown that the
advanced Green function satisfies both conditions an
proper selection.

The dissipative effects given in that manner are ess
tially the energy dissipation through the radiation of the o
mass shell physical mode~particle! represented by the field
f . We should comment about the dissipation by the stoch
tic fluctuations in the finite temperature condensates. Thi
dictated by the dissipation-fluctuation theorem and, in
form of the Langevin equation~1!, the dissipative coefficien
g is given by the correlation integral of the fluctuating for
R(t).

In the present application to DCC, the low-temperatu
limit is assumed, and the effects of the stochastic fluctua
can be neglected. However, at finite temperature, the la
effects are important because they are essential for the
mal equilibration of the system.

III. APPLICATION TO THE LINEAR s MODEL

We apply the formulation given in the last section to t
linears model by Gell-Mann and Le´vy @17# and discuss the
dynamical behavior of the order parameter of the SU(2) c
ral symmetry.
be
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The Lagrangian of thes model is

L5
1

2
@~]s!21~]p!2#2V~s,p!, ~10!

wheres and p5(p1,p2,p3) are thes and pion fields. In
this paper, we discuss only the phenomena related to
neutral pion so thatp in Eq. ~10! is a single field from now
on. The application to the charged pion goes in the same
but we have to modify the Lagrangian~10! to include the
photon degrees of freedom. The effective potentialV(s,p)
is taken to the forth order of the fields:

V~s,p!5
l

4
~s21p22n2!22Hs, ~11!

where the parametersl, n, andH are written as

l5
ms

22mp
2

2 f p
2

, n25 f p
2

ms
223mp

2

ms
22mp

2
, H5 f pmp

2 , ~12!

with the s and pion massms,p and the pion decay constan
f p .

The last term in Eq.~11! breaks the chiral symmetry ex
plicitly and produces the finite pion mass. It is the simpl
potential that describes the explicit symmetry breaking p
nomena, and is consistent with the low-energy theorem.

The fieldss andp can be divided into two parts:

s5^s&1ds, p5^p&1dp, ~13!

where^s& and^p& correspond to the order parameter of t
chiral symmetry for the~disoriented! condensed stateC:

^s&5^Cu q̄quC& and ^p&5^Cu q̄tg5quC& with the quark
field q5(u,d). ~The condensed states may be described w
the coherent or the squeezed states as quantum states@18#.!
ds and dp are the fluctuations around them, and repres
the s andp meson degrees of freedom. The decomposit
~13! is essentially the same one found in Bogoliubov the
for the weak-interacting Bose liquid. In that theory, the flu
tuation represents elementary excitations~phonon/roton! that
cause the dissipative effects in superfluids@19#.

Minimizing the effective potentialV, we obtain the
vacuum stateu0& with which the order parameters become

^s&5^0usu0&[ f p , ^p&5^0upu0&50, ~14!

and the fluctuationsds and dp describe the mesons wit
massms andmp .

Now we consider the dynamical behaviors of t
disoriented-condensed vacuum stateuC&Þu0&, taking ^s&
Þ f p and^p&Þ0 as the fieldF given in the last section an
the fluctuationsds anddp as the background fieldf . Sub-
stituting Eq.~13! into Eq. ~10!, we obtain
he

ay

t
-

h

nt
n
y
-

L5
1

2
@~]^s&!21~]^p&!2#2V~^s&,^p&!1H^s&

1]^s&]ds1]^p&]dp1
1

2
@~]ds!22ms

2ds2#

1
1

2
@~]dp!22mp

2 dp2#, ~15!

where we assume that the background fields are small
describe the reals and p meson degrees of freedom. He
we droppedO(ds3,dp3) terms and theds2 anddp2 terms
are adjusted to be the mass term with the real pion ans
massesms andmp as in Eq.~2!. In this paper, we discuss th
case where the condensates are on the chiral circle,^s&2

1^p&25n2, so that^s& and ^p& can be parametrized with
the chiral anglef:

^s&5n cosf, ^p&5n sin f. ~16!

Substituting Eq.~16! into Eq. ~15!, it is obtained that

L5
n2

2
~]f!21Hn cosf1n] cosf]ds1n] sin f]dp

1
1

2
@~]ds!22ms

2ds2#1
1

2
@~]dp!22mp

2 dp2#. ~17!

Taking the variation withf, ds, anddp, we obtain a set
of Euler-Lagrange equations:

n2]2f1Hn sin f2n sin f]2ds1n cosf]2dp50,
~18a!

~]21ms
2 !ds1nd2 cosf50, ~18b!

~]21mp
2 !dp1nd2 sin f50, ~18c!

which correspond to Eqs.~3a! and ~3b!.
Now we can apply the formulation developed in the la

section to Eqs.~18a!, ~18b!, and ~18c!, and we obtain the
dissipative field equation to Eq.~10!

]2f~x!1
H

n
sin f2n sin f]2ds̃1n cosf]2dp̃50,

~19!

whereds̃ anddp̃ are functions similar to those found in Eq
~9!.

For G(x2y;m), we take the advanced Green function

Gadv~x2y;m!5E d4k

~2p!4

e2 ik~x2y!

k22m22 i esgn~k0!
. ~20!

The reality ofds̃ and dp̃ can be checked easily using th
direct calculation. In the next chapter, we will show that t
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1690 57HIROYUKI YABU, KENJI NOZAWA, AND TORU SUZUKI
advanced Green function really gives the dissipative so
tions. From Eq.~20!, we can read off the imaginary part o
G(k;m):

i ImG~k;m!5 ipsgn~k0!d4~k22m2! ~21!

so thatds̃ anddp̃ become

]2ds̃~x!5
1

2Ex0

`

dy0E d3yD~x2y;ms!]y
2cosf~y!,

~22a!

]2dp̃~x!5
1

2Ex0

`

dy0E d3yD~x2y;ms!]y
2sin f~y!,

~22b!

whereD(x2y;m) is the invariantD function

D~x2y;m!5
1

i ~2p!3E d4kd4~k22m2!sgn~k0!e2 ik~x2y!.

~23!

As discussed in the previous section, we take out the
mass-shell contributions from the fluctuationsds and dp
because they are essential for the energy dissipation by
radiative effects, and assume that the off-mass-shell part
be renormalized in the chiral potential. One of the import
effects in the off-mass-shell part is the quantum fluctuati
that should be included in the correlation functio
^p(x)p(y)&, and a rigorous treatment of them can be see
@7#.

IV. SOLUTION OF THE DISSIPATIVE FIELD EQUATION

A. Asymptotic behavior of solutions

We consider the asymptotic behavior of the solutions t
satisfy Eq.~19! and show the dissipative nature of it. Th
order parameterf(x) is assumed to decrease whent→`, so
that it can be regarded as small. Then we can expand
~19! aboutf and approximate to first order~the linear ap-
proximation!. Instead off(t,x), we use the Fourier compo
nent

fk~ t !5
1

~2p!3E d3xf~ t,x!e2 ik•x, ~24!

for which Eq.~19! is approximated to be

f̈k~ t !1k2fk~ t !1amp
2 fk~ t !1

1

2

mp
2

vk
E

t

`

dssin vk~ t2s!

3$f̈k~s!1k2fk~s!%50, ~25!

with vk5Amp
2 1k2 anda5 f p /n;1.05.2 It should be noted

that no correlations exist among different-momentum mo
in Eq. ~25! in the linear approximation.

2This slight shift from 1 results from the deformation of the chir
circle because of the explicit symmetry breaking.
-
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Substituting the ansatzfk(t)5e2a(k)t into Eq. ~25!, we
obtain the characteristic equation for the indexa(k)

a~k!41~2k211/21a!mp
2 a~k!21$k41~1/21a!k21a%mp

4

50, ~26!

with k5uku/mp . One of the solutions can be written a
a(k)5p(k)1 iq(k),

p~k!5
mp

2
A2r~k!2~2k211/21a!,

q~k!5
mp

2
A2r~k!1~2k211/21a!, ~27!

wherer(k)5Ak41(1/21a)k21a. It can be shown easily
that p(k) takes a real and positive value whenk>0, so that
the asymptotic behavior offk is found to be

fk~ t !;e2p~k!tsin@q~k!t1d#, ~ t→`! ~28!

with constant phase. Summarizing all the results, we ob
the asymptotic differential equation to Eq.~19!,

f̈k1k2fk1gḟk1Aasinfk;0, ~29!

where the dissipative coefficients areg52p(k). The mo-
mentum dependence ofp(k) is shown in Fig. 1.

B. Numerical results

The fieldsds̃ and dp̃ defined by Eqs.~22a! and ~22b!
satisfy the differential equations

FIG. 1. The momentum dependence of the dissipative coe
cientp(k) given by Eq.~27!. k is the pion-mass scaled momentu
k5uku/mp . p(k) is normalized atk50 with the value p(0)
50.35mp .
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~]21ms
2 !ds̃1]2cosf50, ~]21mp

2 !dp̃1]2sinf50.
~30!

Hence the solutions of the original integrodifferential equ
tions are given as those of the three differential equati
~19! and ~30!.

In the following, we show the numerical solutions for tw
cases: the uniform and the expanding solutions. For phys
quantities, we took

f p592.5 MeV, M5940 MeV, mp5135 MeV,
~31!

andms5600 MeV was used for the mass of thes meson.
With these values, the parameters in Eq.~3b! are fixed as
l520.0 andn587.4 MeV.

1. Uniform solution

The solution that is uniform for the space dependenc
characterized byf5f(t) @and correspondingly,ds̃5ds̃(t)
anddp̃5dp̃(t)#. In this case, Eqs.~19! and~30! are reduced
to the ordinary differential equations, which can be eas
solved. The numerical results are shown in Fig. 2, where
scaled timej5mpt has been used. In this figure, the damp
oscillation behavior proved analytically in the last section
easily confirmed.

The dissipating behaviors can be read off in the ph
diagram~Fig. 3! too, where each line is a phase trajectory
these solutions; the spiral pattern around the origin sh
that they behave as the damped oscillator asymptotically

For a quantitative check, we consider the damped ri
oscillator

f̈1gḟ1sinf50, ~32!

FIG. 2. A series of solutions of the integrodifferential equati
~19! for the space-independent uniform casef(x)[f(t). Thej is
the pion-mass scaled timej5mpt andf(t) is a chiral angle of the
order parameter. The initial conditions are given atj50 with
df/dj50.
-
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al

is

y
e

d

e
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d

with the damping coefficientg consistent with the dissipa
tive coefficientp(k) in Eq. ~27!:

g52p~0!50.7mp . ~33!

The phase diagrams for Eq.~32! are given in Fig. 4. The
trajectories in Fig. 3 are found to behave in a manner sim
to those in Fig. 4, especially in the asymptotic region~close
to the origin!. In the nonasymptotic region~far from the ori-
gin!, the trajectories in Fig. 3 have modulations that are cl
to those of the damped rigid oscillator. They come from t
nonlinear dissipating behavior in Eqs.~19! and~30!, which is
more effective in the nonasymptotic region.

Through a comparison with the damped rigid oscillat
we can also realize the complicated behaviors at (f5

6p,ḟ50) in Fig. 3. They are the turning points of the rig
oscillator, and the trajectories around them are changed
chaotic manner under small perturbation.

2. Expanding solution

Puttingf5f(t5At22x2) in Eqs.~19! and ~30!, we get
the expanding solution in thex direction ~uniform in other
directions!. Originally, this type of solution was given b
Blaizot and Krzywicki @20# with no dissipative effect, and
more rigorous calculations have been done, including qu
tum fluctuation effects, by Cooperet al. @7#.

The numerical solution is given as the rigid line in Fig.
where the scaled local timej5mpt was used. In this figure
we find that the expanding solution is damped faster than
uniform solution ~shown as the dotted line in Fig. 4!. To
realize the expansion effect, we study the differential eq
tion that Blaizot and Krzywicki solved. In our notation,
becomes

FIG. 3. The trajectories of the integrodifferential equation~19!
for the space-independent uniform casef(x)[f(t). f anddf/dj
are the chiral angle and the corresponding velocity with the sca
time j5mpt. The initial conditions of each trajectory are chosen
they behave asymptotically@Eq. ~28!# with d5pn/5 (n50,
61, . . . ,65).
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f91
1

j
f81sin f50, ~34!

where the differentiations are forj5mpt. The second term
in Eq. ~34! is proportional to the time derivative off, and
has the effect of dissipation with the time-dependent diss
tive coefficient 1/j. ~This effect is not a real dissipation, bu
a smearing off brought on by volume expansion.! In the
present case, this smearing effect has an additional effe
the real dissipative effect@represented by the second term
Eq. ~32! asymptotically#, and it causes faster damping in th
expanding solution. The smearing effect is found to be m
effective in the nonasymptotic region, because the effec
dissipating coefficient is inversely proportional with the loc
time t.

V. SUMMARY AND DISCUSSIONS

We formulated a dissipative field theory by applying t
Caldeira-Leggett method. Explicit calculations were done
the linears model and the resultant field equations we
shown to have dissipative properties both analytically a
numerically.

As a phenomenological application, we discussed the
oriented chiral condensate that is expected to appear afte
high-energy hadron collision. In the standard picture, the c
ral symmetry is considered to be broken spontaneousl
zero temperature and its order parameters take the exp
tion values^s&Þ0 and ^p&50. The DCC is also in the
broken phase, but is defined to be the state where the o
parameters take different values:^s&Þ0 and ^p&Þ0. Be-
cause of the explicit chiral-symmetry breaking, the DC

FIG. 4. The trajectories of the damped rigid oscillator~32!. The
dissipative coefficient is chosen to be consistent with the asymp
value in the integrodifferential equation~19!: g52p(0)50.7mp .
f and df/dj are the chiral angle and the corresponding veloc
with the scaled timej5mpt. The initial conditions of each trajec
tories are chosen as in Fig. 3.
a-
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state has higher energy, and it should be observed as a m
stable state.

As written in the Introduction, there exist many contr
versies about the formation process of the DCC state a
rebreaking of the chiral symmetry, but we concentrate on
decay process of it in the remainder of this paper. We c
sider the neutral DCC state witĥp0&Þ0 and ^p6&50.3

The main decay process of this state should bep0 radiation,
so we can apply the above-developed formula regardingp in
Eq. ~29! as p0. The lifetime tL can be estimated with the
dissipative constantp(0) in Eq. ~27!:

tL51/p~0!;3mp
21 . ~35!

If we take the quenching scenario for the DCC formation,
formation timetR is estimated to be@2#

tR;A2ms
21;0.3mp

21 . ~36!

It tells us that the lifetimetL in ~35! is ten times longer than
the formation time, so that the neutral DCC state will
metastable enough.

In this paper, we considered the case where the o
parameters move only on the chiral circle^s&21^p&25 f p

2 ,
therefore, we could not consider the DCC formation proce
The extension beyond the chiral circle will be given els
where.
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FIG. 5. One-dimensional expanding~scaling! solutions for the
chiral angle f(j) where j is a pion-mass scaled local timej
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