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Dissipative field theory with the Caldeira-Leggett method and its application
to disoriented chiral condensation
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The effective field theory including the dissipative effect is developed based on the Caldeira-Leggett theory
at the classical level. After the integration of the small field fluctuations considered as the field radiation, the
integrodifferential field equation is given and shown to include dissipative effects. In that derivation, special
care should be taken for the boundary condition of the integration. Application to the dineadel is given,
and the decay process of the chiral condensate is calculated with it, both analytically in the linear approxima-
tion and numerically. With these results, we discuss the stability of chiral condensates within the quenched
approximation[S0556-282(98)03803-X

PACS numbsgs): 12.38.Mh, 05.40tj, 25.75.Ld

I. INTRODUCTION radiation mass and was justified by Wheeler and Feynman
[12].

Recently, there has been great interest in the collective In thermostatistical theory, dissipative dynamics has been
phenomena that might be observed after heavy ion collisiongonsidered with the Brownian motion and the Langevin
especially in the state called the disoriented chiral condenéquation has been one of the most important tools to attack
sate(DCO) [1,2]. the problem{13]:

The quantum chromodynami€¢®CD) that describes the
strong-interaction physics has the chiral symmetry &) Ma+yq+V'(q)=R(t), )
®SUg(2) that is explicitly broken with the order of the pion

massm,. The behavior of the vacuum state can be reprei/vhereq andR are the particle coordinate and the fluctuating

sented by the order parametefsr)=(qq) and (7)  force andy is the dissipative coefficient. However, in Lange-
=(qgys09), whereq is a quark field. At zero temperature, the vin theory, the dissipative coefficient is the given parameter
effective potentiaVx({c),{7)) has a bottom circle with a and cannot be fixed by itself.
radius f., so that this symmetry is spontaneously broken In 1983, Caldeira and Leggett proposed a method to de-
and the vacuum state takés)#0 and(#7)=0. rive the dissipation from the microscopic thedd4]. They

The DCC state is defined as that on the bottom circle oftart with the system-plus-reservoir modéhe interacting
Ve but with (7)#0, and is expected to be produced afterSyStém of the collective coordinates and the background de-
high-energy proton or heavy-ion collisions. About the forma-drees of freedomand, by integrating out the background

tion of the DCC, there have been a lot of discussions, e‘,spéj__egrees o_f freedom, the diss_ipative e_quation for the collec-
cially concerning the quenching or annealing scendries ;miedcpordm?t(las dcan b? obtwgeﬁ. TE'S metholq c\j/v?s tfr:)rmu—
7], but the present situation is still controversial. ated in particie dynamics, and has been applied 1o the po-

As has been pointed out |8], another important problem laron motion in a crysta(acoustlc poIarp)a diffusion of
Karged interstitials in normally conducting metals, and the

is the decay process of the DCC state. Because of the explic namics of Josephson junctiof&g]. In the latter case, the

breaking of the chiral symmetry, the DCC state is only Metay oy ction of the tunneling probability was predicted for the

stable and consit_jered to deca_y ir_lto a true vacuum radiati”&acroscopic quantum tunneling effect between supercon-
many coherent pionf9]. If the lifetime of the DCC is very  g,ctor and insulator with Caldeira-Leggett theory and was
short compared to the formation time, it will be very difficult -gnfirmed experimentallj15,16).
to observe the DCC state through the pion signal. The entire The application of the Caldeira-Leggett theory to the
process of the DCC can be formulated as the dissipativAyclear-hadron physics is very interesting; especially when
system of the collective coordinatéthe order parameters considering phenomena with multiparticle production such
(o) and()) under background pion radiation, so that we as the emission of a meson, photon, and so on. The energy of
can analyze the DCC, especially the decay of it, with thethe systen{the excited nucleus or the fireballs, for example
method of the dissipative theory in semiclassical dynamics.is considered to decrease “dissipatively” with the particle
There has been much work done to derive the equation agfmission and Caldeira-Leggett theory can be applied to
motion with radiative damping in classical electrodynamicsthem, where the reservoir corresponds to the emitted particle.
and thermostatistical theory. The motion of the charged parAnother interesting application is for the DCC phenomenon.
ticle with electromagnetic radiation has been much discussefihe DCC process is described by the nonlineamodel, and
since the prequantum mechanical €t8]. Here we should the collective coordinates and the reservoir are just the con-
mention that the advanced Green function for radiation waslensatego), (), and the radiative pion through the forma-
introduced by Dirad11] to cancel the divergent electron’s tion and decay processes.
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In those phenomena, the dynamical variables of the sys- The Green function in E(6) can be written as

tem are the fields corresponding to the emitted particles. For .

the application to such a process, we have to extend o dk . —ik(x—y)

Caldeira-Leggett theory for field dynamics. That extension is G(x—y;m)= (277)4G(k,m)e ’ @)

very interesting by itself because it produces the dissipative
field equation. where G(k;m) is the Fourier transform o6 (x—y;m) and

In this paper, we formulate Caldeira-Leggett theory ingenerally takes a complex value. In Caldeira-Leggett theory,
field dynamics, and apply it to the DCC process. The extenthe imaginary component d&(k;m) can be considered as
sion of the theory for field theory will be given in the first the dissipative term caused by the emission of particles for
half of this paper as generally as possible. The resultant forthe background field. It is suggested by the analysis of the
mulation is applied for the nonlinear model, and the exis- simple Newtonian equation including the dissipative terms
tence of dissipative effects is shown analytically and numerimx+ yx=F that after Fourier transformation, the dissipative
cally. !n the final part Of. th? paper, the decay process of th('f'erm ni((t) is similar to that of pure imaginarynwXx(w)
DCC is discussed qualitatively within the present formula-Wi,[h the spectral function(w) for x(t). Further, we can

tion. interpret this dissipation as the particle emission because
ImG(k;m) includes 5*(k?>—m?) (on-mass shell The real
ll. DISSIPATIVE FIELD EQUATION WITH part R&(k;m) is considered to give the modification of the
CALDEIRA-LEGGETT THEORY effective potential that comes from the background absorp-

To illustrate the application of Caldeira-Leggett theory totion and emission, and can be absorbed Witd) by redefi-
the field equation, we take a simple system of the order padition. Thus we can drop it because the parametef&(ih)
rameter®(x) and the background fielf(x) that describes are adjusted from the experimental data. Finally, we obtain

the particle with the mass:
:E 2_ — E 2__ m2f2
L 2(&(1)) V(®)—-F(d)f+ 2[(ﬁf) m<f<], (2

where V(®) is the effective potential fod and F[d]f

the dissipative field equation corresponding to ).

MO | SFPX)] -

2
D (x)+ 5 5D

=0, ®

where

gives the interaction betweed® and f. Taking variations

4
with @ andf, we obtain the following field equations from ?(X):j d4yf (::)mme(k;m)eik(xy)F(q)[y])_

Eq. (2):
9
) 8V 6F
9P+ st 5?)“ =0, (33 Equation(9) is still ambiguous because a variety of Green
functions(advanced, retarded, causal, or their combinajions
(2+m?)f+F[D]=0. (3p)  can be used in it and give solutions with different boundary

conditions. We should select the proper Green functions that
They are_easily checked to satisfy the energy-momenturghow the dissipative effect wher— with real f. In the
conservation. application to the linearr model, it will be shown that the
Equation(3b) is formally solved with the Green functions advanced Green function satisfies both conditions and a
G(x—y;m) that satisfy proper selection.
The dissipative effects given in that manner are essen-

2 2 _ I —
(*+m*)G(x—y)=—*x~y). (4) tially the energy dissipation through the radiation of the on-
The fluctuationf is then written ab mass shell physical modgarticle reprgsented by the field
f. We should comment about the dissipation by the stochas-
tic fluctuations in the finite temperature condensates. This is
f(X)IJ dyG(x—y;mF[®(y)], (5  dictated by the dissipation-fluctuation theorem and, in the

form of the Langevin equatiofl), the dissipative coefficient
v is given by the correlation integral of the fluctuating force
R(t).

In the present application to DCC, the low-temperature
limit is assumed, and the effects of the stochastic fluctuation
can be neglected. However, at finite temperature, the latter
effects are important because they are essential for the ther-
mal equilibration of the system.

and, substituting it into Eq.3a), we obtain the integrodiffer-
ential equation fob

MP(X)]  SF[PX)]

2
P (x)+ 5D 5D

Xf d*yG(x—y;m)F(®[y])=0. (6)

Ill. APPLICATION TO THE LINEAR o MODEL

This equation is essentially equivalent to E(a) and(3b).

We apply the formulation given in the last section to the
linear o model by Gell-Mann and vy [17] and discuss the
bHynamical behavior of the order parameter of the SU(2) chi-
ral symmetry.

The homogeneous part can be dropped safely because it can
absorbed with proper adjustment of the boundary condition.
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The Lagrangian of thee model is 1
L=5[(Ka))?+(Km)*]=V({0)(m))+H{o)

1
=_ 2 21_ 1
£=3l00)"+ (9m)"]=V(e,m), (10 + A @)ado+a(m)asT+ 5[(360)?~m; 507
where o and 7= (7!, 72, 7°) are thes and pion fields. In + 1[(&5”)2_”‘2 P (15)
this paper, we discuss only the phenomena related to the 2 i ’

neutral pion so thatr in Eq. (10) is a single field from now _
on. The app"cation to the Charged pion goes in the same Wa\g{here_ we assume that the background fields are small and
but we have to modify the Lagrangigi0) to include the describe the rear and = meson degrees of freedom. Here

photon degrees of freedom. The effective potendiél,r)  We droppedd(da°,67°) terms and theSo? and 57 terms
is taken to the forth order of the fields: are adjusted to be the mass term with the real pion @nd

massesn, andm,, as in Eq.(2). In this paper, we discuss the
case where the condensates are on the chiral cifol§?
V(o,m) = §(02+W2_ 22— Hg, (11) +(7r>2.= 2, so that(o) and(#) can be parametrized with
4 the chiral anglep:

where the parameteis v, andH are written as (o)=v cos¢p, (m)=vsinde. (16
Substituting Eq(16) into Eq. (15), it is obtained that
2 A2 2 2
Mo” M o2 o il H=f,m2, (12
’ v-= 77—1 = '
212 mZ2—m?

14
L= 7(§¢)2+HV COS ¢+ vd COS pdda+ vd sin pddm

with the o and pion massn, , and the pion decay constant
f

1 1
- + =[(980)2—mZ8a?]+ = [(d8m)2—mi6m?].  (17)
The last term in Eq(11) breaks the chiral symmetry ex- 2 2
plicitly and produces the finite pion mass. It is the simplest ] o ) i
potential that describes the explicit symmetry breaking phe- T2king the variation withp, do,, and 77, we obtain a set
nomena, and is consistent with the low-energy theorem. Of Euler-Lagrange equations:

The fieldso and 7 can be divided into two parts:
v29?¢p+Hv sin ¢— v sin ¢pd?do+ v cos pd>8m=0,
o={(o)+ 8o, m={(m)+m, (13 (189

2 2 2 —
where({o) and(a) correspond to the order parameter of the (9°+m;) 6o+ v5” cos$=0, (18D

chiral symmetry for the(disoriented condensed statd’:

(o)=(¥|qq|¥) and (m)=(¥|qrysq|¥) with the quark (P +m2)dm+ v sin p=0, (189

field g=(u,d). (The condensed states may be described with

the coherent or the squeezed states as quantum Ei&8fgs  which correspond to Eq$3a) and (3b).

é6co and o7 are the fluctuations around them, and represent Now we can apply the formulation developed in the last

the o and = meson degrees of freedom. The decompositiorsection to Eqs(18a, (18b), and (180, and we obtain the

(13) is essentially the same one found in Bogoliubov theorydissipative field equation to E¢10)

for the weak-interacting Bose liquid. In that theory, the fluc-

tuation represents elementary excitatigpisonon/rotoi that H

cause the dissipative effects in superfluids]. F2P(X)+ —sin ¢— v sin pa2So+ v cos pa26m=0,
Minimizing the effective potentialV, we obtain the v

vacuum staté0) with which the order parameters become (19

wheredo and 87 are functions similar to those found in Eq.
(0)=(0la]0)=f,, (m)=(0|m0)=0, (14 (g)

For G(x—y;m), we take the advanced Green function

and the fluctuation$o and 6= describe the mesons with
massm, andm_..

Now we consider the dynamical behaviors of the Gad\(x—y;m)zf
disoriented-condensed vacuum stgfe) #|0), taking (o)
#f . and(m)+0 as the fieldP given in the last section and _ _
the fluctuationsSo and 7 as the background fielfl. Sub-  The reality of o and 67 can be checked easily using the
stituting Eq.(13) into Eg. (10), we obtain direct calculation. In the next chapter, we will show that the

d4k efik(xfy)
(2m)* K2~ m?—iesgnk®)

(20
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advanced Green function really gives the dissipative solu-
tions. From Eq.(20), we can read off the imaginary part of
G(k;m):

iImG(k;m)=imsgnk®) 6* k?—m?) (21)

so thatso and 7 become

- 1= =)
&250(X)=§f dyof d3yA(x—y;m,)dscos B(y), g
XO —~
(223 5
- 1 (= ’ .
F?ém(x)= Ef dyof d®yA(x—y;m,)agsin ¢(y),
X0
(22b)

whereA(x—y;m) is the invariantA function

A(x—y;m)= J d*ks*(k?—m?)sgn(k®)e kv,

(23) FIG. 1. The momentum dependence of the dissipative coeffi-
cientp(x) given by Eq.(27). « is the pion-mass scaled momentum

As discussed in the previous section, we take out the on<=|kl/m,. p(«) is normalized atx=0 with the valuep(0)

mass-shell contributions from the fluctuatiods and 67  =0-39M:.

because they are essential for the energy dissipation by the

radiative effects, and assume that the off-mass-shell part can Substituting the ansatg,(t)=e~2"" into Eq. (25), we

be renormalized in the chiral potential. One of the importantobtain the characteristic equation for the indek)

effects in the off-mass-shell part is the quantum fluctuations

that should be included in the correlation function 54 (2,24 1/2+ a)ym2a(k)2+{k*+ (1/2+ &) K2+ atm’

(m(x)(y)), and a rigorous treatment of them can be seen in

[7]. =0, (26)

i(2m)°

IV. SOLUTION OF THE DISSIPATIVE FIELD EQUATION with «=|k|/m;. One of the solutions can be written as
. . , a(k) =p(«) +iq(x),
A. Asymptotic behavior of solutions

We consider the asymptotic behavior of the solutions that m
satisfy Eq.(19) and show the dissipative nature of it. The P(K)= —\2p(K)—(2k%+ 112+ @),
order parameteg(x) is assumed to decrease whenx, so 2
that it can be regarded as small. Then we can expand Eq.
(19) about¢ and approximate to first ordéthe linear ap- M o T (22T 1oE 5
proximation. Instead of¢(t,x), we use the Fourier compo- a(x) 2 V2p(x)+ (2 @), @7
nent

wherep(k) = Vk*+ (1/2+ a) k*+ a. It can be shown easily
thatp(k) takes a real and positive value whee:0, so that

di(t) = 3J d3xe(t,x)e kX (24)  the asymptotic behavior apy is found to be
(2m)
for which Eq.(19) is approximated to be P(t)~e Psinq(r)t+ 6],  (t—o) (28)
1m2 e with constant phase. Summarizing all the results, we obtain
(D) + K2y (1) + amP (1) + > _”f dssin w,(t—s) the asymptotic differential equation to Ed.9),
Wy Jt
X{Bi(s) +K*¢i(9)} =0, (25 Pt K2 b y i+ asing~0, (29

with @ = Jm2+k? anda=f,/v~1.052 It should be noted where the dissipative coefficients age=2p(«). The mo-
that no correlations exist among different-momentum modegnentum dependence of «) is shown in Fig. 1.
in Eq. (25) in the linear approximation.

B. Numerical results

2This slight shift from 1 results from the deformation of the chiral ~ The fields So and 67 defined by Egs(228 and (22b)
circle because of the explicit symmetry breaking. satisfy the differential equations
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FIG. 2. A series of solutions of the integrodifferential equation
(19) for the space-independent uniform caggx)=¢(t). The ¢ is ] ) ) ) )
the pion-mass scaled time=m_t and ¢(t) is a chiral angle of the FIG. 3. Th_e trajectories of_ the integrodifferential equati@g)
order parameter. The initial conditions are givenét0 with  for the space-independent uniform casx) = (t). ¢ andd$/d¢
depldé=0. are the chiral angle and the corresponding velocity with the scaled

time é&=m_t. The initial conditions of each trajectory are chosen so
— - they behave asymptoticallfEq. (28)] with S=an/5 (n=0,
(9?+m2) S+ d*cosp=0, (d*+m?2)Sm+ d?sing=0. +1,...,%5).
(30)
with the damping coefficieny consistent with the dissipa-
Hence the solutions of the original integrodifferential equa-tive coefficientp(k) in Eq. (27):
tions are given as those of the three differential equations
(19 and(30).
In the following, we show the numerical solutions for two
cases: the uniform and the expanding solutions. For physic
guantities, we took

v=2p(0)=0.7m,,. (33

aTlhe phase diagrams for E¢32) are given in Fig. 4. The
trajectories in Fig. 3 are found to behave in a manner similar
to those in Fig. 4, especially in the asymptotic regiolose
f-=925 MeV, M=940 MeV, m_ =135 MeV, to the origin. In the nonasymptotic regioffar from the ori-
31 gin), the trajectories in Fig. 3 have modulations that are close
to those of the damped rigid oscillator. They come from the
andm,=600 MeV was used for the mass of themeson.  nonlinear dissipating behavior in E¢49) and(30), which is
With these values, the parameters in E8p) are fixed as more effective in the nonasymptotic region.

A=20.0 andv=87.4 MeV. Through a comparison with the damped rigid oscillator,
_ _ we can also realize the complicated behaviors ét=(
1. Uniform solution +,¢=0) in Fig. 3. They are the turning points of the rigid

The solution that is uniform for the space dependence igscillator, and the trajectories around them are changed in a
characterized bys= (t) [and correspondinglyso = o (t) chaotic manner under small perturbation.

and 7= 8= (t)]. In this case, Eq$19) and(30) are reduced
to the ordinary differential equations, which can be easily
solved. The numerical results are shown in Fig. 2, where the Putting ¢= ¢(7=t“—x) in Egs.(19) and(30), we get
scaled timeé=m,t has been used. In this figure, the dampedthe expanding solution in the direction (uniform in other
oscillation behavior proved analytically in the last section isdirections. Originally, this type of solution was given by
easily confirmed. Blaizot and Krzywicki[20] with no dissipative effect, and
The dissipating behaviors can be read off in the phasenore rigorous calculations have been done, including quan-
diagram(Fig. 3 too, where each line is a phase trajectory totum fluctuation effects, by Coopet al. [7].
these solutions; the spiral pattern around the origin shows The numerical solution is given as the rigid line in Fig. 5,
that they behave as the damped oscillator asymptotically. where the scaled local tim&=m,_ = was used. In this figure,
For a quantitative check, we consider the damped rigidve find that the expanding solution is damped faster than the
oscillator uniform solution (shown as the dotted line in Fig.).4To
realize the expansion effect, we study the differential equa-
_ tion that Blaizot and Krzywicki solved. In our notation, it
d+ yp+sing=0, (320  becomes

2. Expanding solution
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FIG. 4. The trajectories of the damped rigid oscillata®). The FIG. 5. One-dimensional expandirigcaling solutions for the
T L . . : .chiral angle (&) where ¢ is a pion-mass scaled local timé
dissipative coefficient is chosen to be consistent with the asymptotic’ —m.JZ—x2. The rigid line is for the dissipati “th
value in the integrodifferential equatigd9): y=2p(0)=0.7m_,. =My 7=M, 17— X" The ngid line IS or the dissipalive case. the
¢ andd¢/d¢ are the chiral angle and the corresponding velocity.SOIUtlon of the {nt(_agrqdlfferentlal eque_ltl_ajmg), ar?d the dashed_ line
with the scaled time=m.t. The initial conditions of each trajec- is for the nondissipative case: the original Blaizot-Kryzwicki solu-

tories are chosen as in Fig. 3. tion of Eq. (34).

state has higher energy, and it should be observed as a meta-
stable state.

1
¢"+ — ¢’ +sin p=0, (39 As written in the Introduction, there exist many contro-
¢ versies about the formation process of the DCC state after
rebreaking of the chiral symmetry, but we concentrate on the
where the differentiations are fgi=m_7. The second term g%‘;?ytﬁéoﬁzs‘:’rglf g gcthstetarteéma]tnd%r igth;igapir-_"‘é% con-
in Eq. (34) is proportional to the time derivative @b, and Tlhe main degay process of thi\glgté should78<e;Tad>i;[ioh
?as the f?.ff‘?“ tOf d'?_?'hpat'c;? V‘f{'t.h thettlme—cli%pendetr_\t d|s§ 'E[’aéo we can apply the above-developed formula regardiiy
Ive coetticien 1. IS efiect Is not a real dissipation, bu Eq. (29) as 7°. The lifetime 7, can be estimated with the
a smearing of¢ brought on by volume expansignn the dissipati ; 27):
. . o pative constar(0) in Eq. (27):

present case, this smearing effect has an additional effect to
the real dissipative effe¢tepresented by the second term in _ am—1
Eq. (32) asymptotically, and it causes faster damping in the n=1p(0)~3m, " (39
expanding solution. The smearing effect is found to be morgf we take the quenching scenario for the DCC formation, the
effective in the nonasymptotic region, because the effectivgormation timery is estimated to bé2]
dissipating coefficient is inversely proportional with the local
time 7.

rr~+2m;1~0.3m 1. (36)
It tells us that the lifetimer, in (35) is ten times longer than
the formation time, so that the neutral DCC state will be
We formulated a dissipative field theory by applyin themetastqble enough. .
Caldeira-Leggett method.pEpricit calculati)énsywé)r%)(/jo?]e for In this paper, we conS|dered.the .Casez‘”he“i_th‘é order
the linearo model and the resultant field equations Wereparameters move only on th_e chiral cirgle) +<7T.> =t
shown to have dissipative properties both analytically an herefore, we could not conS|d¢r the_ Dcc formathn Process.
numerically. he extension beyond the chiral circle will be given else-
As a phenomenological application, we discussed the diswhere.
oriented chiral condensate that is expected to appear after the ACKNOWLEDGMENT
high-energy hadron collision. In the standard picture, the chi-
ral symmetry is considered to be broken spontaneously at T.S. was supported by an ME grant.
zero temperature and its order parameters take the expecta-
tion values(o)#0 and(m)=0. The DCC is also in the
broken phase, but is defined to be the state where the ordefFor the charged DCC state, photon degrees of freedom are im-

parameters take different valugsr)#0 and{m)#0. Be-  portant and we have to extend our equations to include the dissipa-
cause of the explicit chiral-symmetry breaking, the DCCtive effect by photon radiation.

V. SUMMARY AND DISCUSSIONS
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