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Nonperturbative y*p interaction in the diffractive regime
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One of the challenging aspects of electroproduction at high energy is the understanding of the transition
from real photons to virtual photons in the GgYegion. We study inclusive electroproduction on the proton
at smallxg using a nonperturbative dipole-proton cross section calculated from the gauge-invariant gluon field
correlators as input. By quark-hadron duality, we construct a photon light cone wave function which links the
“hadronic” behavior at smallQ? to the “perturbative” behavior at larg€?. It contains quark masses which
implement the transition from constituent quarks at [@fto current quarks at high)?. Our calculation gives
a good description of the structure function at fixed energydo< 10 GeV2. Indications for a chiral transition
may already have been seen in the photon-proton cross sd&iaB566-282(97)00223-3

PACS numbss): 12.38.Lg, 13.60.Hb

[. INTRODUCTION interacting quark fields and that this structure gives the main
contribution at smalkg to its interaction{1], as compared to
the direct contribution from its “bare component.” There-
Gore a great deal of insight can be gained from a common

information on theproton struc_ture FOT ph_oton V|_rtuaI|t|es understanding of both photon-hadron and hadron-hadron col-
Q far below theZ mass, the interaction is mediated by A jisions

virtual photon and the inclusive photon-proton cross section In Ref. [2], the application to diffractive scatterings of

can be deSS”bed by means of the proton structure lunctiong, ;s of the model of the stochastic vacuum has been car-
At large Q“, the leading unpolarized structure function, ried out. Recently, in Ref3], the same approach was used

FZ(XB.’QZ.)’ Is to Ieadm_g-lo_g accuracy the wezll-knov_vn linear to describe diffractive leptoproduction of vector mesons in

combination of partonic distributions};(xg,Q<), weighted the rangeQ?=2-10 Ge\?, thus starting to implement the

by th(_a square of the parton electromagnetic charge expressBpﬁgram just mentioned. ,Our aim in the present paper is

in units of the proton charge: twofold: we want to pursue the comparison by considering
the total photon—protonzcross section and we want to extend

2_% a2 2 the phenomenology tQ<—0.
Fa(Xs,Q7) Ef: eiXgi(X Q")- In Ref. [3], the interaction amplitude for the exclusive

vector meson photoproduction off a proton has been written

An illustrative partonic description emerges when the pro-as

cess is envisaged in a frame where the proton has a large

momentump (formally |p|—) and in a particular gauge.

At small Q?, the above decomposition and the partonic in- M(y* +p—>V+p)=isf dzrdrw*w (zr) 39(zr 1)

terpretation of the process get spoiled by power corrections. 2 VISR AE

There is, yet, an alternative to the infinite momentum (11
frame description of the collision which is a description in
the center of mass frame. In this frame, the photon acquires

structure and we have to deal with the interactiontwd ! . .
t photon light cone wave functions. If the final vector meson

structured objectsAlthough it may look as if we had no function i laced bv the virtual ohot f
gained anything by changing our point of view, the operationwave unction 1S replaced by the virtual photon wave func-

is interesting if we focus on the high-energy fixed kine- j[lont,m one gets th.e Eg)rward Compton amplitude, that is
matical domain of the process. In this regime, the bulk of thed S y+p - The quantityJ;”(z,r,t) represents the Pomeron ex-
photon-proton interaction ressembles that of hadron-hadrorchange amplitude for scattering ofgay dipole of sizer off

i.e., diffractive scattering In the Regge approach which is the proton target, where an average over the dipole orienta-
applicable in the kinematical region envisaged here, this i¢ions has been carried out. The light cone fraction carried by
understood as being due to the universality of the Pomeronthe quark in the photon is denoted ky The Mandelstam
Implicitly, this assertion assumes that the photon has devekariables for the process ase=W? andt. The photon is
oped an internal structure due to its coupling to stronglycharacterized by its virtualit)? and polarization.

Since the late 1960s, multi-GeV electron and muon colli-
sions with protons have been intensively used in order to g

12\, and ¢, are, respectively, the vector meson and virtual
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TABLE I. Large Q? behavior of the cross sectian= o + o1 meson production. This cancellation mechanism has to be
and of the longitudinal to transverse rafe=o /oy for both total  implemented in a consistent way to get a unique description
photon-proton cross section and elastic vector meson productiopf the photon in high-energy scattering.

The first line shows the experimental results in the range A possible solution is to use a quark-gluon basis. At val-

Q?=1-10 Ge\~. The second line displays the asymptotic behav- ;ag ofQ? large enough, the hadronic component of the pho-
ior expected from VMD. For comparison, the third line gives the - ~— . had _
ton is indeed a fregq pair, ¢~ ¢4q, so that the quark-

scaling behavior determined with a fre@ wave function(p 1o o101 hasis is more efficient than the hadron basis and the

logarithms. cancellation mechanism occurs automatically. It seems phe-
ot Rtot o Re! nomenologically possible to envisage a kind of hybrid de-
scription where the photon state can be viewed as a super-
Expt Q2 <0.2 Q™ >1 and rising position of a few low-lying resonances plus a figg state.
VMD Q? Q? Q? Q? We stress, however, that identifying the re. st. in Eq2)
Freeqq Q2 Const Q° Q? with the freeq q wave functiony, 4 is not sufficient because,

on the one hand, it would not reproduce the phenomenology
given in Table I, and, on the other hand, it leads to a double
The quantityJ(® has been derived in the model of the counting of some hadronic configurations. In order to avoid
stochastic vacuurfi3] following the method of Ref[2]. In  these problems, one has schematically to modify(Ec) in
these references, the few parameters which fix the magnitudgich a way that, for small values , it agrees with the
and shape o8’ have been adjusted to fit the phenomenol-vector-dominance-like form
ogy of proton-proton elastic cross section. We use the same
parametrization here and focus on the photon structure. had_ 3 efyMy
Let us discuss the photon wave function that enters in Eq. vy TS M+ Q? Py
(1.1). There are two standard schemes. The first one is to
expand the photon wave function in a hadronic beEjsThe  and, for largeQ?, it approaches the perturbative photon wave
wave function for a transversely polarized photon reads  fynction.
This is the problem for which we propose a solution in the
l,bhad -3 efyMy Py 4 Te. st (1.2 present paper. A gentrgl role in our parametrizat_ion of the
T e M\2,+ Q2 "V B ' photon wave function will be played by the effective quark
mass. With increasing resolution of the photon the light

where we have explicitly written the low-lying vector meson uarks experience azsort of chiral transit[di with constitu-
contribution. The symbol re. st. stands for a sum over re-er;t masses at lowQ” becoming current quark masses for
sidual 1" states, like higher radial and orbital excitations andQ“=1 GeV~. The outline of the paper is as follows. I_n Sec._
nonresonant multiparticle states. According to the vector mell We demonstrate that the two-dimensional harmonic oscil-
son dominancéVMD) hypothesis, the low-lying vector me- lator can be used to m_odel our light cone parametrization of
son statesp, , ¢, dominate the photon wave function at the photon wave functlor!. In. Sep. Il the agproxmjate form
smallQ2 making Eq.(1.2) a useful expansion in this regime. Of the photon wave function is given at l0@. Section IV
The wave function for a longitudinally polarized photon is deals Wlth- the calculation of the inclusive virtual photon
obtained by changing fyMy—ef,Q, ym— v, and the cross section fgr large energy and smg]l. In Sec. V we
re. st. term accordingly. discuss corrections from finite energy.
To assess the relative importance of the residual contribu-

tion re. st. at largeQ?, we examine first the experimental Il. THE TWO-DIMENSIONAL HARMONIC OSCILLATOR
behavior of the inclusive cross section and the ratio AS A MODEL FOR THE PHOTON WAVE FUNCTION
R°= ¢ /o7 in the rangeQ?=1-10 Ge\? (cf. left part of
Table I). At large Q?, the success of the parton model with
spin 1/2 quarks tells us that the structure functieg(x)
«Q%0(Q?) scales, i.e., the total cross section decreases
Q™2 and that it is dominated by transverse photon scattering.
In VMD the contributions ofp, w, ¢ alone would lead to a 2

x : 14 —2 : d°k
y*-p total cross sectioprrc Q™" ando «Q ™4, i.e., a domi- lpy(z,r)ocj
nating longitudinal cross section. It means that in the VMD (2)
description the transverse inclusive cross section must be
t_)uilt from the residua[ term re. st. in the photon wave func- ociKo[ mhu 2.1)
tion. Let us next consider vector meson productici right 2@
part of Table J. In the rangeQ?=1-10 Ge\? the experi-
mental cross section has@ “ behavior and is predomi- Herem is the current quark mass of the quark and antiquark
nantly longitudinal. This dependence is overshot by the lonwith flavor f. The transverse extension of the wave function
gitudinally dominated VMD cross sectionQ 2. It thus  is given byr, ~&~ 1, wheree = \/z(1—2)Q?+ mZ. For small
turns out that the re. st. term in the photon wave functionyalues ofe, however, the confining gluonic forces and/or the
Eq. (1.2, is also needed to cancel thew, ¢ contribution in ~ spontaneous chiral symmetry breaking will intervene and
order to provide the righ® ~* behavior for the elastic vector limit the transverse extent of the photon wave function. At

In light cone perturbation theory, the photon wave func-
tion is given by the light cone energy denominator and spin
matrix elements. Leaving aside the spin complexities, we
ave the approximate form

ei kr

2k2+2(1-2)Q%+m?
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large energy, far away from the target, the perturbative wave 1
function is certainly valid, but at finite smaf)?, there is <f2>oo=m
enough time for the photon to dress up like a bound state.

_In quantum mechanics, the two-dimensional harmonic 0Sp, the |ast equation, the contribution of the second excited
cillator is a very reasonable testing ground for the behaviogiaie and the ground state are shown separately. With
of the photon wave function in transversal space, since th _ _ '

. . X s 0)=+Vom/7 and 0)=—+wm/27, they add up to
harmonic oscillator has two essential features in commo 0o(0) = Vom/m Y0A0) @em y P

with the behavior of oug q dipole in QCD: on the one hand, ) [ 2
large transverse distances are prohibited, because of the har- (r*)oo= ﬁ(3w+ M) (0t M)’

monic potential(confinement and, on the other hand, the

potential vanishes at the origin which corresponds in OUFpe free Green’s function gives, for the same moment
problem to the fact that, for short times and small relative ’ ’

V20A0) oo 0)
3w+M w+M

transverse distances of the quark and antiquark, the dynamics m
is entirely governed by the kinetic energy in the Hamiltonian (r®)o0 freezf d?r rz;Ko( V2MMTr) ¢oo(r)
(asymptotic freedom The Green’s function of the two-
dimensional harmonic oscillator 2400 0) \/j 2
~ =\ ——s.
ry* 0 m M2 mmM
Grom= 3 ()™ ¥s(0) 22

n={ny.np) (N1 N2+ Dw+M As expected, the large! behavior of the full Green’s func-

) tion moment is exactly reproduced by the free Green’s func-
shows the analogy to the photon wave function. The wavgion, The important lesson of this simple exercise is the dem-
function ¢,,(0) stands for the hard processapd] production  onstration that the largsl behavior follows from a delicate
and ¢,(r) gives the transversal extension. The short timecancellation between ground and excited state contributions.
restriction can be included by looking at the dynamics forNote that the contribution of one single state~4/M and
large negative values ofE=—M, where largeM corre-  would overshoot the full result at large valueshf This is
sponds to the deep Euclidean region of QCD. The harmonig be compared with the discussion we had in the Introduc-
oscillator Green’s function approaches for large negative valtion.
ues ofE=—M the free two-dimensional Green’s functionin  Although the harmonic oscillator Green’s function,
guantum mechanics G(r,01), is known analytically, we know of no such repre-

sentation for the Fourier transform&{r,0,M = — E); there-
d2k elkr m fore, we have obtained an “exact” expression by performing
52 K2 = —Ko(v2m M[r[). the sum in Eq(2.2) with the first 500 terms using the known
(2m) (2m)+M 23 wave functions of the harmonic oscillator. A simple calcula-
23 tion shows that even for moderate valuedwf say 5w, one
When we put 21M= — 2mE= z(1—z)Q2+mf2, we see di- needs more than 20 inte(mediate terms in the representation
rectly the similarity to the perturbative photon wave func- Eq. (2.2 in order to obtain a better accuracy than the one
tion. Since many exact results are available for the harmonifrom the _free Green's function. In term§ of vectgr domi-
¥ (ﬁance, this means that we need many intermediate vector

oscillator, we will be able t_o check several mamp_ulatlons Onmesons in order to get an adequate description for moderate
the transverse wave functions. In the end, we will not apply.

the results of the harmonic oscillator directly to QCD, but Wevalues of the photon virtuality. As we will show, a much

; A more efficient procedure is to shift the argumenti@ in the
extract the essential features from the nonrelativistic mOdeHree Green’s function by aM dependent valusy; it turns
0y

and transpose them into relativistic quantum fleld_theory. out that this method gives, even fod =0, a very decent
To begin with, let us illustrate the point made in the In- apbroximation to the full Green's function
troduction on the cancellation mechanism. In diffractive vec-2PP" ; L .
Since the exact Green'’s function is available for the har-

tor meson prod_uctlon, we need the matrix element“obf ~monic oscillator, the shift parameter can be calculated by
the qq state with the vector meson state. In the harmoniGomparing the modified free Green’s function with the exact
oscillator case, this second moment, one. This procedure cannot be, however, carried over to the
light cone wave function of the photon. We consider, there-
<r2>00=f d?r r2 G(r,0M) doolr), (2.4) fore, the “two-point” function,IT(M), and its derivatives

Gied ,0M)= J

n dn

II =(—=1)"
~II(M) (1)d

can be computed exactly for the full Green’s function. Using IT!™(M):=(—1)" G(0,0M),
the spectral decomposition of the full Green’s function, Eq. dm

(2.2), and the one-dimensional harmonic oscillator property (2.9

Mﬂ

\/55 +s instead of the “three-point” function@_(r,(_),M). For con- _
(n|x2|0)= n2 nO’ vergence, we need at Ieas_t one derlvat_we. The two-point
2om functions have been extensively studied in QCD, especially
with sum rule techniquels]. From this, we know that in an
one gets asymptotically free theory the ansatz “one resonance plus
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0.7 \
Mlw=0 |, M/w=05
0 0.5
0.5
0.4 0.4
0.3~ 0.3 FIG. 1. Green’s functiongin
0.2 0.2 units of m) of an harmonic oscil-
0.1 0.1 lator as function ofr (in units of
0 0 1~Nwm) for different values of
M/w. Solid line, exact Green's
* * function G(r,0M); long dashes,
our approximationG,(r,0M,sg),
0.6 0.4 _ i.e., the shifted free Green’s func-
o s M/w - 4 tion Eq. (2.7) with the shift sy
‘ 0.3 from Eq.(2.10; short dashes, ap-
0.4 proximation with two resonances;
0.3 0.2 dots, free Green’s function.
0.2
0.1
0.1
0 0
0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5
perturbative continuum” is a very good phenomenological P
representation for the two-point function in the Euclidean I3V (M,50) = (—1)"——G,(0,0M,50)
region. Our method is then to make for the two-point func- M
tion, II(M(M), the model “one resonance plus perturbative
. M ) : m (n—1)!
continuum” and to use for the three-point function an ap- - = 2.8
proximate form which can be parametrized easily and ad- 27 (so/2m+M)"
justed in such a way that the two-point function obtained
from it agreeslwit-h the model two-point function. (Notice that on the left-hand side the relation involves the
For the derivatives ofI(M), the ansatz “one resonance partial derivative and not the total derivativ®y equating
plus perturbative continuum” reads, to lowest order, the approximation Eq(2.9) to the phenomenological func-
tion Eq.(2.6)
n!god0))*  m  (n-1)!
(M) = +— . (2.6 (n) —m
Ph (0+M)"*1 27 (g/2m+M)" (M, So) =TT (M), 2.9

. . we can determine the only free parameter of the approxima-
where i is the ground state wave function agdthe con- tion, namelysy(M), and obtain

tinuum threshold above which we use the perturbative
Green’s function. Duality states that the integral from Gto _ (n+1)/n n
over the imaginary part of the fre@e., perturbative two- Sof2m=(w+M) CoTM)[2no(20+M)

point function accounts fotr times the residue at the reso- +(w+M)M1 . (2.10
nance pole:

The exact form of the shift depends on the number of differ-
St o o 2 entiations assumed. Yet, st=0, sp/2m is aroundw/2 and
JO dkAImITed k*) = 7| oo )] * decreases to become a small correctioMMtpi.e., less than
5%, for M larger than .

In Fig. 1, we display the approximated Green’s function
obtained with ann=3 shift (long dashes and the full
Green’s function(full line), for M/w=0, 0.5, 1, and 4. For
the first two values, we also show for comparison a two-
. . , ) . resonance approximation to E@.2). For the last two val-

As a simple approximate Green's function, we considef,es the short dashes represent the free Green’s function; for
the free Green’s function with a shifted argument M/w=4 the approximated Green’s function can hardly be
distinguished from the free one.

We estimate the quality of our approximation by forming
the moments

Thereby, we obtain the continuum threshold

s=47| 4o 0) = 4wm.

Ga(r,O,M,so)=gKO(\/ZmM+so r). (2.7

The derivatives of the correponding approximate two-point n __J' 2. n 2
function have the form (rM:= [ dr r" G(r,0M),
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TABLE Il. Differences of the exact and approximated moments: TABLE Ill. Comparison of exact and approximated overlap
Ayi=({r2y—={r3)I{r2y andAg:=({r%—(r%)/{r°%. with ground statéin unitsm=w=1).
M/w n=1 n=3 n=>5 M Approx. Exact Error
A, Ao A, A A, A 0 0.400 0.376 0.06
0 1.09 0.01 0.11 -0.26 —0.16 —-0.35 ! 0.155 0-141 0.10
' ’ ’ ' ’ ' 2 0.0819 0.0752 0.09
0.5 0.51 0.02 005 -014 -0.13 -0.23 3 0.0504 0.0470 0.07
1 0.28 0.02 002 -009 -011 -0.15 4 0.0342 0.0322 0.06
5 0.0247 0.0235 0.05
which can be evaluated easily, both for the full and the ap$ 0.0186 0.0179 0.04
proximate Green’s function. Since in electroproduction, for? 0.0146 0.0141 0.03
high virtualities, theqq-proton cross section behaves ap-8 0.0117 0.0114 008
proximately liker2 and, in the hadronic region, likeé-5[3],  ° 0.0096 0.0094 0.03
we pay special attention to the momént). In Table II, we 10 0.0081 0.0079 0.02
give the relative differences of the exact and approximated
moments . . .
different from the value ok, which one obtains from Eq.
Ayi=({(r3y—(r3))l(r?), (2.9. Our method underestimates the shifts considerably for
largeM, but the overall errors on the matrix elements remain
AO;:(<r0>_<r0>a)/<r0>, small as shown in Table Il and Fig. 2. Indeed we already

noticed that folM> w the full Green’s function Eq(2.2) is
for different values oM and numbers of differentiations.  well approximated by the free one E@.J), i.e., sy can be
As can be expected, the lowervalue,n=1, yields a good safely set equal to O in this region.
approximation for the zeroth moment, whereas the second
moment is well reproduced with=3. The maximal error
for (r?) turns out to be 11%at M =0).
We also compare the overlap of the exact Green'’s func-

I1l. APPROXIMATE PHOTON WAVE FUNCTION
EXTENDED TO LOW VALUES OF Q2

tion and the ground state wave function, i2)q, defined We now want to apply the approximation methods devel-
in Eqg. (2.4), with the respective overlap including the ap- oped for the harmonic oscillator to the photon wave function.
proximated Green'’s function For this purpose, we consider first the polarization tensor for

the vector currenﬂ“:%f‘(p of a quark of massn:
<r2>00a:f d?r 12 Gy(r,0M) groo(r).
114(q,m?) = [ d'x &90[T[2#(x3"(0)1|0)
This is shown in Fig. 2 and Table Ill. One sees that the

shifted free Green’s function gives a good estimate of the =(g“q"—g**q?) (g2, m?).
exact matrix element, the relative error being at most 10%.

In Table IV, we compare the shiftg, obtained from Eq. At Jarge g2, the imaginary part of the polarization function
(2.10 with n=2, 3, and 4 differentiations, with the ones 7(¢2 m2) is obtained to lowest order in perturbation theory

needed to get exact agreement for the second moment. Tgym the free quark-antiquark propagation. One has
reproduce the second moment, the displacersgiig quite

N, q?+2m? L 4m? 3.0
127 q2 q2 ’ ’

Im I1(g%,m?) =

The polarization function itself is only determined up to a
subtraction constant, but its derivatives

TABLE IV. sy/2m determined by the sum rule method for 2,
3, 4 subtractions and adjusted to give exact overlap.

0.02
M/ w n=2 n=3 n=4 Exact

0.01
0 0.485 0.547 0.593 0.585
0.001 : 1 0.279 0.344 0.397 0.455
M 2 0.179 0.234 0.283 0.385
FIG. 2. Overlap Eq.(2.4) of the Green’s function of a two- 3 0.123 0.168 0.211 0.325
dimensional harmonic oscillator with the ground state: solid line,4 0.090 0.127 0.162 0.27
exact result; dashes, calculated with our approximated Green's 0.068 0.099 0.129 0.255

function from Eq.(2.7) (in unitsm=w=1).
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N The continuum threshols, can be related to the decay con-
IMW(Q%=—qg?m?):= ( 2)nH(qZ,mZ) (3.2  stantFy by local duality:
a(q
St
can be written fon=1 by dispersion relations: F\2,=;J4m2ds ImII(s,mg).
f

1102 m?) = nt (= SImH(s,mz) (33 We copy now the procedure from the discussion of the
Q\m9= 7 Jam? (s+Q3)"+L’ ' harmonic oscillator. The photon wave function plays the role

of the three-point function which we want to approximate.

Due to asymptotic freedom, the polarization tensor has #s in Eq.(2.7), we take as approximate Green’s function the
very good representation in the Euclidean region consistinfree Green’s function but shift the variab@. The structure
of the ground state vector meson with masg and residue of the perturbative photon wave function is of the forsee

Fy and perturbativegq continuum calculated with current Ed- (2.1)]:
uark masses:
q U, Kol V2(1—2) Q2+ m? r].

n! F§ N n! ® g ImTI(s,m{) A Q? dependent shift thus corresponds to a replacement of
(Q%+ m\Z/)n+l s S (s+QHN+1’ the current massn; by an effective massn.(Q?). Here
some improvement is still possible, since in reality the virtu-
V is the lowest-lying vector meson in the flavor channelality Q2 appears in combination with the light cone momen-
considered, i.ep,w=(uu¥dd)/\2 and¢=ss. Fy is the tum fraction through the term(1-z). We leave this diffi-

Q%)=

decay constant of th|s vector meson defined through Culty aSide fOI’ the moment and Sha” return to |t |ater. From
Egs.(3.1)—(3.3), we form the derivatives of the approximate
Fymye*(q,\)=(0]J*(0)|V(q,\)). polarization function

102, m2) " .(Q%.m2y) N M 4mZy . 2m2q L 4mgg \1+4mgg/Q°+1
M) =———5 ,Meg) = - -l 1- In .
a e a(—QH)N e oM 127% 9(-QH)"| @2 Q2 Q% J1+4amZ/Q*-1
(3.9
|
Next, in complete analogy to Eq2.9), we determine the Mei(Q?)=0.22(1-Q%Q3) inGeV
effective mass in such a way that the shifted two-point func-
tion, II{", is equal to the model two-point functidﬁ&?: for Q?=Q2=1.05 GeV
n! F2 n! (= ImIl(s,m?) 2y 2= 2
Hg”)(Qz,mﬁﬁ)— Y% L f Mer(Q°)=0 for Q=Qyg. (3.6

(Q2+m\2,)“+1 + T s S(S+Q2)n+1'

(3.5  To support our point to set the effective light quark mass to
zero for largeQ?, we display in Fig. 4 the second derivative
I;?f the model Green’s function together with the free one. We
see that the two agree at lar@8 values where our effective
mass formally would become imaginary. A more refined pro-
cedure would be to make a smooth connection between the
|EnaIIQ2 behavior obtained with the present method and the
ehavior obtained around 1 Gé&Wsing operator product
xpansion4]. We shall not dwell on this possibility in the

The method gives the effective quark mass as a functio
of Q2 on the left-hand side from the purely hadronic param-
etersF, andmy, on the right-hand side. In Fig. 3, we display
the resulting effective quark massegg(Q?), puttingn=2,
for massless current quarks and strange quarks with a curreﬁ
massmg= 150 MeV. As for the harmonic oscillator, the re-

sult depends on the number of differentiation assumed. F llowing. For the stranae quark. we refer to the second bart
m,=0, the effective mass starts @& =0 at 220 MeV for wing. ol 9eq ’ : X P
a of Fig. 3, which shows that the corresponding starting value

n=2 and 245 MeV forn=3 which are typical constituent . ; :
quark mass values. The effective mass drops to O afpr the constituent strange mass is 310 MeV. It reaches its

Q3~15-2m2. Beyond this value ofQ?, it formally be- asymptotic value in the rang®’=1.5-2 Ge\?. A simple
comes imaginary. We have seen in the harmonic oscillato
that the method underestimates the shift at large virtuality,
but the errors introduced are less than 5%. We therefore put
the effective mass equal to zero ab@é To be specific, we )
use the simple linear parametrization for Q*>=Q5=1.6 GeV, 3.7

?arametrization for the strange quark mass is

Meer(Q?)=0.15+0.16(1— Q%/Q3) in GeV
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FIG. 3. Effective quark masses which reproduce the model po- FIG. 5. Second derivative of the polarization function for vector
larization function, see Eq(3.5. (a) The Q? behavior for light  current of light and strange quarks. Solid, model funcﬁbd?q(Qz);

quarks andb) strange quarks. dashes, approximate expressilg(Q?,my) with the quark mass
depending orQéﬁ: 47(1—2)Q?. Note that for the quark mass de-
. 2 ;
mseﬂ(Qz) —0.15 GeV for QZ;QS. pending onQ“ alone we get exact agreement by construction.

as a function oQ%;=4z(1—2z) Q. This modifies the treat-
ment that leads to E(q3.4) along the following lines. The
imaginary part of the polarization functidi(g?,m?) of the
vector two-point functiorll ,, can be written as

As mentioned before, in the photon wave functi@?
appears together with the factafl—z). We reanalyzed the
polarization functiori'[(a“) including an effective quark mass

8 ' ' ' ' B Ne (1 ¢2+2m?
2 2y _ C _ 2_m2
ImII(g°,m°)= 127_J0 dz e O[z(1-z)g°—m~].

Upon integration oveg, it yields to the familiar result given
in Eg. (3.1). We then obtain the derivatives by dispersion

al \ relations:
N 1 @
nmMQ2m?)=—= J dzJ
2r \ 1 (@ ) 1272Jo m2/[z(1-2)]
N d s+2m? n! 3.9
ol . : . . | s . .
0 1 2 3 1 5 S (s+tQ)"?
Q* [Gev?] Settingm=me(Q%) on the right-hand side of this equation

FIG. 4. Second derivative of the polarization function: dashesJ!V€S @ NeW expression f‘ﬂgn?- We numerically find that
model functionll(Q?), i.e., one resonance plus continuum; solid, thé phenomenological two-point function can be reproduced
lowest-order perturbative expression with zero mass. Note foWith an accuracy better than 10@see Fig.  with param-
Q?>1 GeV? the perturbative expression becomes indistinguishabletrizations similar to that given above, provided we change
from the perturbative one. the value onS. We get, for light quarks,
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Mei(QZ) =0.22(1- Q%/Q4?)  in GeV

l oo
CUT= D O LTE D efZJ dzf rdrZ r(zr) (4.9
for QZ=Q4*=0.69 GeVf, f S

Men(QZ) =0 for QZ=QJ2. (3.9 with the integrands
The lower scaIeQ(’)2 is due to the difference between the O Ne 22 2
average irz occurring in Eq.(3.8) and the value at the av- W(zn)= 77242717 27°QKo(er)” Jy(z,1), (4.2
eragez=1/2. For the strange quark, the result is
! H N
Meer( Q) = 0.15+0.16(1— Q5/Q4°) in GeV Ir(z,r)= 4—7:2{[22+(1—z)2]82K1(8r)2
for Q%,<Q(’°=1.16 Ge?,
Qer=Qo +mZKo(er)?}dy(z,r). 4.3

Meer( Q) =0.15 GeV  forQ%=Q;%. (3.1 ,
seffl < eff Qer=Qo (319 The extension parameter of the photon is

e?=2(1—2)Q?+m?. It depends on the quark flavor through
the quark mass and thus each flavor contributes in a different
Let us now consider the forward Compton amplitude, i.e.Way to the above sum,, K, are modified Bessel func-
the amplitude in Eq(1.1), with the replacementy — % , at tions. They arise from the perturbative light cone wave func-
t=0: tion of the photon when one takes into account all the spin
complexities ignored in Sec. Il. For a general dipole-proton
~ [ dzrdr 5 cross section,J,, these expressions are identical to those
M(y* p—y*p)= ISJ — 1z 0" Jp(zn), given in Refs[6,7]. Our dipole-proton cross sectidy(z,r)
calculated from gluon-gluon correlators describes the scatter-
where we use the notatio}g,(z,r)=JE,°)(z,r,t=0) for short.  ing on a proton of a Iioop with transverse sizand infinite
We employ the same dipole-proton cross section as in opxtension a_long the light cone. It d(_apends only very weakly
previous work on exclusive vector meson product[@, on the longitudinal momentum fractianand shows fqr val-
which is based on the evaluation of gluon field strength cor4€S ofr smaller than approximatelys2=0.7 fm the dipole
relators between Wilson areas mapped out by the color nedehavior
tral dipole and the proton. The absolute size airddepen- .
dences of the cross sectidiy(z,r) are determined by the Jp(z,r)=~Cr? with C=423. (4.4
gluon condensate(g’FF)=2.49 GeV*, the correlation
lengtha=0.346 fm and the transverse radius of the protonFor very large values af it increases linearly and around 1
R, ,=0.52 fm, together with the form of the correlators as-fm it goes approximately like*> .
sumed there. One can get a rough idea on tk¥ dependence of the
We compute the square of the photon wave function usingross sections if one assumes the dipole behavior given in
the expression given in Ref3]. This leads to the longitudi- Eq. (4.4). Then one obtains analytical expressions for the

IV. INCLUSIVE PHOTON-PROTON CROSS SECTION

nal and transverse cross sections cross sections for each flavor channel, settirgdm?/Q?:
|
. ,NcC u(4+3u) (1+\/1+u)2i 2u
5N C at 2 . 1 At Ut u | (1+1+u)?
TET= Qenft 3702 1T+u itu RIETTY R '

From these expressions, we deduce easily the behavior for (2) Small Q?:
large and smalQ?.
(1) Large Q%

.,2N; C Q° -
4N C|  4m® Q7 m? Of L= Cent zz 2 —[1+0(Q7mI)],
Of L= Uenf 57— 1—- —In—+0| — 45mTm® m
L= denfi 352 Q2 'm? Q2 | (4.6)
(4.9
,4N. C| Q% 1 m? Q? ,7N; C
(o T:aen’ﬁf 37TQ2 InF_E_FO &Inﬁ ’ Of 1= leemef W[l"‘O(QZ/mZ)]
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For large values oQ? and longitudinal photons the small section is certainly correct if the quark mass is large enough,
dipole sizes are dominant and the use of a purely perturbatherwise it gives a first approximation. The limit of small
tive photon wave function is justified. We see indeed that theQ? was given in Eq(4.6):
limit of the longitudinal cross section for large values@ft

is unproblematic. For transversal photons however small val- ~, INC
ues of the longitudinal momentum fractiomsand (1-2) Uf:aemef%—mz- (4.7)
f

become more important and large dipole sizes may play an
important role even if the value @? is large. Ar? behavior
of Jp(z,r) thus leads to a logarithmic divergence in the quar
mass, as can be seen from E4.5. For large values of
such a behavior is however unrealistic, and any reduced i

kThis means that the photoproduction cross section depends
crucially on the value of the constituent quark mass. The
feproduction of the cross section within 15% is encouraging
crease of the formr2—¢ with €>0 leads to a finite cross especially taking into account the fact that we have deter-
section even for a perturbative photon wave function and gwmed the effective qua_rk mass, 5@.6), without any re-
quark mass equal to zero. This feature stresses the impoﬁ;purse to electroproduction phenomenology. If we attributed
) S o i ;
tance of a realistic model both for the long distance part oithe remaining 15% @fference between_ the experimental
the photon wave function and the dipole cross sections. A/alue of the cross section and our theoretical one to the value
— . o of mek, we would get an 8% decrease of the effective quark
good qg wave function and a realistic dipole-proton cross

on b I for | lues0df mass value. Because of other sources of uncertainty, this
section become even more relevant for low value refinement does not make sense here. We also notice that, in
Our model for the hadronic scattering part is inherently non

; . the approximate cross section, 40% come from the second
perturbative. For the photon we absorb the nonperturbatlvgerm in Eq.(4.3 which is proportional to the quark mass

effects in a virtuality dependent constituent mass. We Stres§quared Within the present determinationnag;, this sup-
that all input to these models is taken from sources outsid§ s the interpretation of the modification of the photon ex-

the realm of electroproduction. tension parameter as being due to the generation of the ef-
fective quark mass rather than being just a shift in the
A. Photoproduction argument oK, in Eq. (4.3). For the strange quark, the com-
grarison with the extracted cross section is correct within

Let us compare our computed cross section with dat 10%. A indicati h litud ith
starting with photoproduction. In the following we consider ~070- AS an indication, we note that our amplitudes with a
current strange quark mass of 150 MeV would produce a

data at a center of mass eneiyy=20 GeV. We choose this . :

value because it is the one where the model parameters a%UCh too big cross section of 3&b.
adjusted to fit the corresponding proton-proton elastic scat-

tering data. At this center of mass energy, the photon-proton B. Electroproduction
total cross section is 11&b. The Pomeron part of the
Donnachie-Landshoff fif8] gives opoi=110 ub, the re-
maining part being attributed to other Regge trajectories. Th
model of the stochastic vacuum accounts for the Pomeron 2

part of the cross section. The Reggeon contribution to F,(Q?%)= — (o1t ay), 4.8
strange(and heavier quark interaction is much suppressed e

(Zweig suppressionand can be neglected. The charm quark

We now consider virtual photor?+ 0, scattering off a
groton. We form the structure functions

contribution is measured independently and is rather small, 1 Q2
wnb. In the present study, we focus ond, ands which give FL(Q%)= — 0L (4.9
the bulk of the cross section. According to Donnachie and e
Landshoff, the strange quark contribution to the total cross
section is 8.3ub. Since the light and strange quarks contribute in a different
Our theoretical results for the light, andd, and strange way, we first calculate the corresponding quantities sepa-
quark contributions are rately. Special attention will be paid to ti¢* dependence of
the structure functions at fixe/=20 GeV, which corre-
ou+a=84 ub, sponds to the energy where we determined our input dipole-
proton cross section. We want to investigate the question
0s=9.4 ub. whether the chiral transition from the constituent quark to the

parton can be seen in the inclusive electron scattering data.

Some comments are called for. To illustrate our purposeln our theoretical calculation the effective quark mass
it is again useful to stick to the approximate amplitudes deMer(Q?) evolves with the photon virtualit®?. A priori it is
rived by assuming the short distance behavior @w). In not clear whether the photon virtuality or the combination of
Eq. (4.4 the magnitude of the cross section, given bylight cone momenta and?, namely Q3;=4z(1—2)Q?
C~4.3, is determined by the properties of the QCD vacuumshould be used in the running of the quark mass for low
namely the gluon condensate and the correlation length ofirtualities. In the second case the integration over the light
gluon field strength correlators, and the proton radius. As weone momentum fractionmay wash out the chiral transition
have seen in the beginning of this section, the transverseffect.
extension of the photon is bounded by the value of the quark In Fig. 6, we show the theoretical results for
mass,r<1/my, therefore ther? dependence of the cross Fi*9(xg=Q%W?,Q?) and F5(xg=Q%W?,Q?) at a fixed
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FIG. 7. R=0 /o7 as a function ofQ2. The solid curve is our
expectation withz dependent quark masses for light and strange
quarks, Eq(3.9 and Eq.(3.10, respectively. The dashed curve is
the result with the effective quark masses given in B and Eq.

(3.7). Data are from NM{J9].

6 interpolates smoothly the case wky(Q?) between the
minimal and maximal values aD?. It lies about 10—20 %
above the curve with constam, for Q?=0.2 Ge\2. The
strange quark structure function reaches at the maxi@dm
the asymptotic rate of 20% of the light quark structure func-
tion. The difference between the contribution given by the
effective mass of Eq3.7) and the one of Eq3.10 is quali-
tatively the same as in the light quark case.

The longitudinal scattering is suppressed compared with
the transverse scattering in agreement withrthestimates.
Here the difference between thadependent effective quark
mass and the onl@? dependent quark mass is very small,
since the longitudinal photon wave function suppresses the
end points in thez integration. Conversely the difference
with the fixedm, mass reaches about 30%Q@t=1 GeV?

shown as a dash-dotted curve. The dotted curve is with the effectiv@Nd is more visible than if .

strange mass of Eq3.10. (b) Same study for the longitudinal
structure functiorf .

energy W=20 GeV. At this energy and in th®? range
considered, the Reggeon contributionRg is less than 5%
[8].

The calculation in Fig. 6 with fixed light quark masg,

At the photoproduction point the ratiB= o /o1 van-
ishes, it then increases un®?=1 GeV?. For the quark
mass depending on the virtuali@? its behavior is more flat
than when the quark mass dependsQﬁa. A computation
with a fixed massm,, and the short distance behavi
«r? |leads to a ratio similar in shape with a maximumQ
around 40m2. This result was already obtained in the classic

shows a dependence similar to the logarithmic dependengsaper of Bjorken, Kogut, and Soper on the electroproduction
In(QZ/mé) expected for ther? dipole-proton cross section. of lepton pairs in a slowly varying external fie[6]. Note
This agreement is also quantitatively good. The sliding quarkhat in this case a constant quark mags=0.22 GeV would

massm=mgx(Q?) produces a steeper variationfs for 0.1
GeV?<Q?<1 GeV?, in agreement with the variation of the
mass in the logarithm. Abov€?=1.05 Ge\? where its

give a maximum irR= o /o7 at Q?>~2 GeV?. The precise
behavior of the ratidR= o /o1 gives another signal for the
chiral transition in the experimental deep inelastic scattering

value has gone to zero, the finitenes$gfis connected with  data. We show in Fig. 7 the ratio we get in our computation,
the long distance behavior of the dipole-nucleon cross sea@ombining light and strange contributions. We compare this
tion. In this region ofQ? the z averaged integrand in Eq. ratio to NMC results. Unfortunately experiments do not

(4.3) has a maximum im in the regionr =0.2-0.8 fm and it
extends to very large values ofbeing only damped because
of the change of the quadratic behaviorJgf=Cr2 at small

reach the smalkQ? transition region.
We next combine the light and strange contribution to
form the structure functiofr,=F4" 9+ F$ as a function of

distances to a power 1.5—1.8. The maxima of the integrand®? and for fixed energyV= 20 GeV. In Fig. 8, we compare

for the transverse and longitudinal cross sections ane not

our results with data from both the E665 Collaboration and

so different but the profile is much faster decreasing in theNew Muon Collaboration(NMC) at energies 18.5 GeV

longitudinal case. In the case of a dependencengf on
Qiﬁz 47(1-2)Q? the resulting structure functiof, in Fig.

<W=21.5 GeV. The transition region is correctly described
and the scheme with thedependent effective mass seems to
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(q—k+1)2=~(1—2))2,W>=M3,.

For the present discussion, we restore the internal degrees
of freedom of the proton, i.e., the cross section envisaged
here is written as in Ref.3] with the full dependence on
transverse and light cone coordinates of the quarks in both
the photon and the proton:

dz,d?r; dz,d’r,
‘Tv*pzzf dzbf yp. |'/’y(21,r1)|2f an

><|lr//p(221r2)|2 J(X11XT1X21XE)®(211221W)1
(5.2

0.1 1 10 Q*(GeV?)
where 1 and 2 refer to the photon and nucleon sides, respec-
FIG. 8. Contribution ofu, d, ands to F; as a function oQ®>.  tively. The proton is considered in a simple quark-diquark
Curves are as in F|g 7. Squares are NMC reimand diamonds picture which has proved to be a good approximation in the
are E66510]. framework of the stochastic vacuum model. In E52), we

) have inserted the threshold fact®r which realizes the re-
be preferred. At larg®? region, our result overshoot data by quirement of Eq(5.1):

10-20 %. As we now show finite energy corrections may
reduce cross sections in this lar@é region. O(24,25, W) = 6] 21(1— 2)) W2~ M2]

_ 2 np2
V. MODIFICATION AT FINITE ENERGY X o[(1 Zl)ZZW MM]' (5.3

A. Slow quarks In the integrand of Eq(4.1), the effect of the threshold

In the forward Compton amplitude, we integrate overfaCtor is to generate 2=z, dependent phase space factor:
configurations with quark light cone fractions varying from 0 L
to 1. For the transverse cross section, there is a large contri- q)(z):f dz, f(z,) O(2,2,,W).
bution from aligned jet configurations, where one quark car- 0
ries most of the momentum and the other one a minute frac-
tion. At large buffinite energy, however, the slow quark may In the integral,f(z,) represents the, dependence as it re-
not carry enough energy to generatdadronicfinal state.  sults for the various term in Ed5.2). Indeed, since the,
Formally, the photon-proton total cross section is related talependence of the quantifyis rather weakf(z,) turns out
the imaginary part of the forward elastic amplitude via theto be given essentially by the square of the proton wave
optical theorem. In this amplitude we must sum only over thefunction, for which we usé(zz)zzszzg(l—zz)ﬁ_ For large
accessible channels, i.e., we have to take into account energyiergies, Ws>M,,+ Mg, ®(z)=1 for intermediatez and

conservation at finite energies. To be more precise we havigipidly decreases to 0 when approaches the boundaries
to care about how the energy is distributed in the physicajyhich at large enoughV read

color neutral final states. We require that the intermediate
guark-antiquark and quark-diquark staisee Fig. 9 both M2 M2,
have an invariant mass bigger than a typical mesonic or —<7z<1l-——.
baryonic state with massMy=(M,,Myx) or Mg

=(My.,M,), respectively: .
(My.,M,), respectively For Mg=M,, My=M,, andW=20 GeV, the boundaries

(k+p—1)2~z;(1—2,) W2=M32, (5.1)  are approximately 0.0022z=0.9985.

The threshold factor is therefore important in case where
the end point contribution is sizable. Usual hadron wave
functions suppress this region in both hadron-hadron colli-
sions and vector meson production, thus rendering this effect
unimportant at large energys=100 Ge\. In inclusive
photon-hadron scattering, however, this end point region
cannot be overlooked. The importance of the various region
in z, in the full integral Eq(4.1), may be studied by varying
the lower limit Z of the integration over quark light cone
p- B momenta in the photon wave function. Recall that the thresh-
old condition for light quarks gives a lower lim#t=0.0022
for W=20 GeV as calculated above and that this lower limit

FIG. 9. The intermediate rearrangement for light quarks is degoes like IW?. Since the integrand is symmetric i the
termined by the momenta of the collision partners as calculated inpper integration limit can be restricted2e:0.5. The result-

Eq. (5.0. ing functionl(2),

C

M
N\

B
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FIG. 11. Contribution ofu, d, ands to F, as a function oW,
for Q?=1, 3, and 9 GeV, from bottom to top (0.25 has been

a function of the cutoff limiting the momentum fraction of quarks subtracted to the first set and 0.15 to the sefomte solid lines
in the photon. The effective mass used in this computation is theepresent our result fardependent effective masses and the dashed

one given in Eq(3.9).

IT(Z)=f:sdzf:rdrIT(z,r),

is shown in Fig. 10 for the transverse cross section.

lines correspond tdQ? dependent effective masses. Squares are
NMC results[9] and diamonds are E6640].

then=2 case. Fo?<4m?, the integrands become more or
less flat inz and theZ behavior is linear in the whole range.
Because the photon size parametérs z(1—2z) Q%+ m?,

In order to understand what happens in the end point reis the important 52C8|29 i, the behavior changes in the neigh-
gion, it is instructive to study the behavior of the amplitudeborhood ofZ=m</Q<. The region where the threshold sup-

for a simplifiedJ,(z,r) behaving likeCr" with n=1 or 2.

pression in photon-proton collisions is sizable is therefore

Our actualJ, is in some sense interpolating between thosegiven by

two choices, the powear=2 corresponding to the short dis-

tance dipole behavior already mentioned in Eg4). With
such a simple dependence, one can performrtlitegral
analytically:

f dr T —K 47%(1-2)%Q? 5.4
rar £, = [Z(l_Z)Q2+m2]l+n/2’ ( '
_(1+2m)[Z2+(1-2)%]

f A QR e
m2
(5.5

K b
[Z(l_ Z)Q2+ m2]l+n/2
where the overall constant is

Ko N.C_  T*1+n/2)
4P (n+1)!

For m?<Q?, one can focus on the first term in E&.5). At
Z—0, the quantityQ"l+(Z) behaves, fon=2, like

Q?l(Z)xconst-In[Z+m?/Q?],
and, forn=1, like

Q I4(Z)xconst-Z+ mZ/QZ.

m2/Q2<M2/W?2,

m2/M2<xg.

ForM=M, andW=10 GeV, this shows that the effect be-
comes sizable whe®?=0.5 Ge\?, for an effective quark
mass~0.1 GeV. If we were to consider a current quark mass
below this value 0fQ?, the effect would show up at even a
much smaller value of?.

B. Threshold effect in the cross section

We now compare with data our computed cross section
modified by the threshold effects from slow quarks. For pho-
toproduction, the change is negligible. For electroproduction,
it is best to consider fixe@? and vary the energWV to see
the threshold effect. In Fig. 11 we show the variationFgf
for 9 GeV=W=25 GeV separately foQ?=1, 3, and 9
GeV?. (For convenience we shifted downward the first two
sets by, respectively, 0.25 and 0)18/e have checked that
for these values 002 the inclusion of the Reggeon contri-
bution given in Ref[8] only modifies weakly the trend of
our curves forW>10 GeV. In each case we present results
combining u, d, and s contributions for both schemeg:
dependent quark masses, E(&9) and (3.10, andz inde-
pendent quark masses, Ed8.6) and (3.7). The effect is

In Fig. 10, we see the transition from the logarithmic behav-relatively stronger for the latter scheme since the end point

ior given in casen=2 to a linear behavior at very small
The limit Z=0 is however approached as in the casel: it

contributions are clearly more important in this case. The
difference between the two schemes decreases at $thall

does not have the dramatic dependencerdrexhibited by  where only intermediate are taken into account. As antici-
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dure in order to calculate diffractive electroproduction of
vector mesons with very good results.

In the present work we have extented & range down
to Q?=0. In order to do that we have constructed nonper-
turbative photon wave functions essentially by introducing a
virtuality dependent constituent quark mass. We were en-
couraged to such a simple procedure by model investigations
of harmonic oscillator Green'’s functions. In our method we
adjusted the value of the momentum dependent quark mass
to reproduce the phenomenological two-point function of the
vector currents. The development of a quark mass at large
distances has been seen also in calculations with the instan-
. . ton liquid model[11]. We repeat that none of our input pa-
0.1 1 10 Q?(GeV?) rameters was in any way related or adjusted to electropro-
duction phenomenology.

Our approach differs in several ways from other investi-
gations. For the treatment of the soft exchanges, Nikolaev
) ) and Zakharov have adopted a phenomenological two-gluon-
pated the threshold effect is also more important at |@§e exchange moddl7]. Their treatment also gives importance
and atQ?=9 GeV? the suppression of the cross section is — . .
typically 10% atW=20 GeV and reaches 30% =10 to th.eqq phot(;n Wave.functlon and j[helr dipole-proton cross
GeV. At this highQ? the effective quark mass has practi- section has a behawor at short distance and_ saturates in

LJe r=1-2 fm region. To suppress the contribution from

cally gone to zero in both schemes and the large distanc : . .
y 4 g arge distance in the photon wave function they cut off the

are cut off by the threshold condition. X ! ;
To complete our study we give in Fig. 12 our result for 1ar9€ size component using a smooth Gaussian-exii)

F,(xa=Q2%W?2,Q?) at W=20 GeV including the threshold with a confinement size parametf~1.5 fm. In Re_f.[?], a
effect. The plot may be compared with Fig. 8 and we see thatUment quark mase, 4=10 MeV was used, but in a later
the qualitative aspect of the transition from low to higR sFudy of the same authors on the Ballt_sku-Fadm—Kuraev—
remains. In general the larg®? range is sensitive to the LiPatov (BFKL) Pomeron[12] a constant light quark mass

threshold effect whereas the sm@lf range tests more the Mu.d=150 MeV was considered. As we have seen in our
effective quark mass. study such a value can help to limit the extent of the photon

wave function, but at larg€? there is no reason that the
light quarks have masses different from the current quark
masses. In the region of transverse distance probed, we have
We have computed the total photon proton cross sectioseen that the nonperturbative features of the gluon correlators
in a model of nonperturbative QCD. For values of the virtualare important and we think that a perturbative two-gluon
photon mas€?>2 GeV? our input is the treatment of two exchange model cannot be trusted.
Wilson loops in Minkowski space-time within a special ~ Concerning the transition to sma&)?, we have shown an
model of nonperturbative QCD which approximates the in-approach different from vector meson dominar®D)
frared behavior by a Gaussian stochastic process determinégquently used in the lowQ? range. We claim that with
by a nonlocal gauge-invariant gluon field correlator. The latincreasingQ? one would have to put a rapidly growing num-
ter one is essentially given by the local gluon condensate anlder of resonances into the VMD model which thereby be-
the correlation length. In order to fix the size distribution of comes untractable. Our scheme of quark-hadron duality ex-
one loop a proton valence quark wave function has to beloits the knowledge about the residue and the mass of the
introduced. In principle all parameters of the model can bdowest vector meson state contributing to the vector current
determined by sources other than high-energy scatteringywo-point function.
namely lattice gauge calculations and low-energy phenom- Based on the transition between a VMD descriptiof of
enology. In practice the errors in the parameters still necesat smallQ? and the partonic one at larg@? Badelek and
sitate some adjustment to high-energy scattering data. In ou¢wiecinski have proposed to represent the proton structure
case we have chosen the determination of R¥fbased on function via dispersion relation13]. The construction
the proton-proton total cross section and the logarithmiadopted here shares similarities with their approach although
slope of the elastipp cross section at zero momentum trans-the latter makes no connection to the notion of wave function
fer. Although the parameters turn out to be rather stable therehich we need for the microscopic description of diffractive
remains still a certain variation in a range of a few percentscatterings. In their approach the partonic contributioR o
for the correlation length and 20—30 % for the gluon condenis extracted from structure function analysis at la@feand
sate and the proton radius. The model gives energy indepethus naturally fulfills perturbative QCD evolution at large
dent cross sections, contrary to the slight® energy depen- virtualities where this evolution is experimentally observed.
dence seen in loW? experiments. Since the parameters areSuch perturbative corrections are not implemented in our
related to the ISR energie¥y/~20 GeV, we also compare approach.
the photon cross sections calculated here with experimental Our results are encouraging. Without any adjustment they
values around that energy. We have already used this procagree with experiments over the fi@? range from 0 to 20

FIG. 12. Contribution ofl, d, ands to F, as a function ofQ?,
for W=20 GeV. Curves and data are as in Fig. 8.

VI. DISCUSSION AND CONCLUSIONS
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F2%0.9 . . if we adjust the normalization by-10% (which would
amount, e.g., to a 5% reduction of the gluon condensate
rescaling of the curve in Fig. 8 by 15% shows the same
pattern. We describe almost perfectly 98 dependence of
the data in the whol@®? range examined. This points toward
the possibility that the chiral transition is already seen in
present data, the kink in the data@f=1 GeV? being re-
lated to the vanishing of the quark mass at that valu®of
(chiral restoration The photon-proton cross section could
also be easily adjusted by a slight decrease of the constituent
quark mass.

Because of the fundamental importance of chiral symme-
try breaking for hadron physics, the question of chiral sym-
. . metry restoration with increasing virtuali9? of the photon
0.1 1 10 Q*(GeVY)  deserves to be studied in more detail. More systematic data
for F,(xg,Q% andF (xg,Q?) at fixedW and varyingQ?
would help in deciding whether a marked change occurs be-
Q2 dependent quark masses of E@s6) and(3.7) (dashed curve in tween the low momentum domain and the perturbative do-

Fig. 12 multiplied by 0.9. This rescaling would correspond to a 5% main in inelastic G_)Iect_ron scattering. It may be that chiral
decrease of the gluon condensate. Data are as in previous figureSyMmetry restoration is Seen more easily in electroproduc-
tion at a given virtualityQg than in heavy ion collisions at a

GeV? within 10-20 %. For the highQ? range we have finite temperature 2T=Qo.

shown how finite energy corrections may account for at least

a part of the discrepancy without changing any of the model ACKNOWLEDGMENTS
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FIG. 13. Contribution ofl, d, ands to F, as a function ofQ?,
for W=20 GeV. The curve is the result shown in Fig. 12 and for the
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