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Nonperturbative g* p interaction in the diffractive regime
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One of the challenging aspects of electroproduction at high energy is the understanding of the transition
from real photons to virtual photons in the GeV2 region. We study inclusive electroproduction on the proton
at smallxB using a nonperturbative dipole-proton cross section calculated from the gauge-invariant gluon field
correlators as input. By quark-hadron duality, we construct a photon light cone wave function which links the
‘‘hadronic’’ behavior at smallQ2 to the ‘‘perturbative’’ behavior at largeQ2. It contains quark masses which
implement the transition from constituent quarks at lowQ2 to current quarks at highQ2. Our calculation gives
a good description of the structure function at fixed energy forQ2<10 GeV2. Indications for a chiral transition
may already have been seen in the photon-proton cross section.@S0556-2821~97!00223-3#

PACS number~s!: 12.38.Lg, 13.60.Hb
lli
g

a
tio
on
n,
ar

ss

ro
ar
.
in
n
m
in
es

t
io

th
ro
is
s
ro
ve
gl

ain

-
on
col-

f
car-
d
in

r is
ing
end

e
ten

al
on
c-
is

x-

nta-
by
I. INTRODUCTION

Since the late 1960s, multi-GeV electron and muon co
sions with protons have been intensively used in order to
information on theproton structure. For photon virtualities
Q far below theZ mass, the interaction is mediated by
virtual photon and the inclusive photon-proton cross sec
can be described by means of the proton structure functi
At large Q2, the leading unpolarized structure functio
F2(xB ,Q2), is to leading-log accuracy the well-known line
combination of partonic distributions,qf(xB ,Q2), weighted
by the square of the parton electromagnetic charge expre
in units of the proton charge:

F2~xB ,Q2!5(
f

êf
2xBqf~xB ,Q2!.

An illustrative partonic description emerges when the p
cess is envisaged in a frame where the proton has a l
momentump ~formally upu→`) and in a particular gauge
At small Q2, the above decomposition and the partonic
terpretation of the process get spoiled by power correctio

There is, yet, an alternative to the infinite momentu
frame description of the collision which is a description
the center of mass frame. In this frame, the photon acquir
structure and we have to deal with the interaction oftwo
structured objects. Although it may look as if we had no
gained anything by changing our point of view, the operat
is interesting if we focus on the high-energy fixedQ2 kine-
matical domain of the process. In this regime, the bulk of
photon-proton interaction ressembles that of hadron-had
i.e., diffractive scattering. In the Regge approach which
applicable in the kinematical region envisaged here, thi
understood as being due to the universality of the Pome
Implicitly, this assertion assumes that the photon has de
oped an internal structure due to its coupling to stron
570556-2821/97/57~3!/1666~14!/$15.00
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interacting quark fields and that this structure gives the m
contribution at smallxB to its interaction@1#, as compared to
the direct contribution from its ‘‘bare component.’’ There
fore a great deal of insight can be gained from a comm
understanding of both photon-hadron and hadron-hadron
lisions.

In Ref. @2#, the application to diffractive scatterings o
hadrons of the model of the stochastic vacuum has been
ried out. Recently, in Ref.@3#, the same approach was use
to describe diffractive leptoproduction of vector mesons
the rangeQ252 –10 GeV2, thus starting to implement the
program just mentioned. Our aim in the present pape
twofold: we want to pursue the comparison by consider
the total photon-proton cross section and we want to ext
the phenomenology toQ2→0.

In Ref. @3#, the interaction amplitude for the exclusiv
vector meson photoproduction off a proton has been writ
as

M~g* 1p→V1p!5 isE dzrdr

2
cV* cg~z,r ! Jp

~0!~z,r ,t !.

~1.1!

cV and cg are, respectively, the vector meson and virtu
photon light cone wave functions. If the final vector mes
wave function is replaced by the virtual photon wave fun
tion, one gets the forward Compton amplitude, that
issg* p

tot . The quantityJp
(0)(z,r ,t) represents the Pomeron e

change amplitude for scattering of aq q̄ dipole of sizer off
the proton target, where an average over the dipole orie
tions has been carried out. The light cone fraction carried
the quark in the photon is denoted byz. The Mandelstam
variables for the process ares5W2 and t. The photon is
characterized by its virtualityQ2 and polarization.
1666 © 1997 The American Physical Society



e

tu
ol
am

E
s

n
re
nd

-
at
.
is

ib
l
ti

th

s
in

D
t
c

-
on

on

r

be
tion

al-
o-

the
he-
e-
per-

,
ogy
ble
oid

ve

he
the
rk
ht

or
c.
cil-

of
rm

n

c-
pin
we

ark
on

he
nd
At

tio
g
v

he

57 1667NONPERTURBATIVEg* p INTERACTION IN THE . . .
The quantityJp
(0) has been derived in the model of th

stochastic vacuum@3# following the method of Ref.@2#. In
these references, the few parameters which fix the magni
and shape ofJp

(0) have been adjusted to fit the phenomen
ogy of proton-proton elastic cross section. We use the s
parametrization here and focus on the photon structure.

Let us discuss the photon wave function that enters in
~1.1!. There are two standard schemes. The first one i
expand the photon wave function in a hadronic basis@1#. The
wave function for a transversely polarized photon reads

cg~T!
had 5 (

r,v,f

e fVMV

MV
21Q2 cV~T!1re. st., ~1.2!

where we have explicitly written the low-lying vector meso
contribution. The symbol re. st. stands for a sum over
sidual 12 states, like higher radial and orbital excitations a
nonresonant multiparticle states. According to the vector m
son dominance~VMD ! hypothesis, the low-lying vector me
son states,r, v, f, dominate the photon wave function
smallQ2 making Eq.~1.2! a useful expansion in this regime
The wave function for a longitudinally polarized photon
obtained by changinge fVMV→e fVQ, cV(T)→cV(L) and the
re. st. term accordingly.

To assess the relative importance of the residual contr
tion re. st. at largeQ2, we examine first the experimenta
behavior of the inclusive cross section and the ra
Rtot5sL /sT in the rangeQ251 –10 GeV2 ~cf. left part of
Table I!. At large Q2, the success of the parton model wi
spin 1/2 quarks tells us that the structure functionF2(x)
}Q2s(Q2) scales, i.e., the total cross section decrease
Q22 and that it is dominated by transverse photon scatter
In VMD the contributions ofr, v, f alone would lead to a
g* -p total cross sectionsT}Q24 andsL}Q22, i.e., a domi-
nating longitudinal cross section. It means that in the VM
description the transverse inclusive cross section mus
built from the residual term re. st. in the photon wave fun
tion. Let us next consider vector meson production~cf. right
part of Table I!. In the rangeQ251 –10 GeV2 the experi-
mental cross section has aQ24 behavior and is predomi
nantly longitudinal. This dependence is overshot by the l
gitudinally dominated VMD cross section}Q22. It thus
turns out that the re. st. term in the photon wave functi
Eq. ~1.2!, is also needed to cancel ther,v,f contribution in
order to provide the rightQ24 behavior for the elastic vecto

TABLE I. Large Q2 behavior of the cross sections5sL1sT

and of the longitudinal to transverse ratioR5sL /sT for both total
photon-proton cross section and elastic vector meson produc
The first line shows the experimental results in the ran
Q251210 GeV2. The second line displays the asymptotic beha
ior expected from VMD. For comparison, the third line gives t

scaling behavior determined with a freeq q̄ wave function~up to
logarithms!.

s tot Rtot sel Rel

Expt Q22 <0.2 Q24 .1 and rising
VMD Q22 Q2 Q22 Q2

Freeq q̄ Q22 Const Q26 Q2
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meson production. This cancellation mechanism has to
implemented in a consistent way to get a unique descrip
of the photon in high-energy scattering.

A possible solution is to use a quark-gluon basis. At v
ues ofQ2 large enough, the hadronic component of the ph
ton is indeed a freeq q̄ pair, cg

had'cq q̄ , so that the quark-
gluon basis is more efficient than the hadron basis and
cancellation mechanism occurs automatically. It seems p
nomenologically possible to envisage a kind of hybrid d
scription where the photon state can be viewed as a su
position of a few low-lying resonances plus a freeq q̄ state.
We stress, however, that identifying the re. st. in Eq.~1.2!
with the freeq q̄ wave functioncq q̄ is not sufficient because
on the one hand, it would not reproduce the phenomenol
given in Table I, and, on the other hand, it leads to a dou
counting of some hadronic configurations. In order to av
these problems, one has schematically to modify Eq.~1.2! in
such a way that, for small values ofQ2, it agrees with the
vector-dominance-like form

cg
had5 (

r,v,f

e fVMV

MV
21Q2 cV ,

and, for largeQ2, it approaches the perturbative photon wa
function.

This is the problem for which we propose a solution in t
present paper. A central role in our parametrization of
photon wave function will be played by the effective qua
mass. With increasing resolution of the photon the lig
quarks experience a sort of chiral transition@4# with constitu-
ent masses at lowQ2 becoming current quark masses f
Q2>1 GeV2. The outline of the paper is as follows. In Se
II we demonstrate that the two-dimensional harmonic os
lator can be used to model our light cone parametrization
the photon wave function. In Sec. III the approximate fo
of the photon wave function is given at lowQ2. Section IV
deals with the calculation of the inclusive virtual photo
cross section for large energy and smallxB . In Sec. V we
discuss corrections from finite energy.

II. THE TWO-DIMENSIONAL HARMONIC OSCILLATOR
AS A MODEL FOR THE PHOTON WAVE FUNCTION

In light cone perturbation theory, the photon wave fun
tion is given by the light cone energy denominator and s
matrix elements. Leaving aside the spin complexities,
have the approximate form

cg~z,r !}E d2k

~2p!2

eikr

k21z~12z!Q21mf
2

}
1

2p
K0@Az~12z!Q21mf

2ur u#. ~2.1!

Heremf is the current quark mass of the quark and antiqu
with flavor f . The transverse extension of the wave functi
is given byr';«21, where«5Az(12z)Q21mf

2. For small
values of«, however, the confining gluonic forces and/or t
spontaneous chiral symmetry breaking will intervene a
limit the transverse extent of the photon wave function.
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e
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large energy, far away from the target, the perturbative w
function is certainly valid, but at finite smallQ2, there is
enough time for the photon to dress up like a bound stat

In quantum mechanics, the two-dimensional harmonic
cillator is a very reasonable testing ground for the behav
of the photon wave function in transversal space, since
harmonic oscillator has two essential features in comm
with the behavior of ourq q̄ dipole in QCD: on the one hand
large transverse distances are prohibited, because of the
monic potential~confinement!, and, on the other hand, th
potential vanishes at the origin which corresponds in
problem to the fact that, for short times and small relat
transverse distances of the quark and antiquark, the dyna
is entirely governed by the kinetic energy in the Hamiltoni
~asymptotic freedom!. The Green’s function of the two
dimensional harmonic oscillator

G~r ,0,M !5 (
n5~n1 ,n2!

cn~r !* cn~0!

~n11n211!v1M
~2.2!

shows the analogy to the photon wave function. The w
functioncn(0) stands for the hard process ofq q̄ production
and cn(r ) gives the transversal extension. The short ti
restriction can be included by looking at the dynamics
large negative values ofE52M , where largeM corre-
sponds to the deep Euclidean region of QCD. The harmo
oscillator Green’s function approaches for large negative
ues ofE52M the free two-dimensional Green’s function
quantum mechanics

Gfree~r ,0,M !5E d2k

~2p!2

eikr

k2/~2m!1M
5

m

p
K0~A2mMur u!.

~2.3!

When we put 2mM522mE5z(12z)Q21mf
2 , we see di-

rectly the similarity to the perturbative photon wave fun
tion. Since many exact results are available for the harmo
oscillator, we will be able to check several manipulations
the transverse wave functions. In the end, we will not ap
the results of the harmonic oscillator directly to QCD, but w
extract the essential features from the nonrelativistic mo
and transpose them into relativistic quantum field theory

To begin with, let us illustrate the point made in the I
troduction on the cancellation mechanism. In diffractive ve
tor meson production, we need the matrix element ofr 2 of
the q q̄ state with the vector meson state. In the harmo
oscillator case, this second moment,

^r 2&005E d2r r 2 G~r ,0,M ! c00~r !, ~2.4!

can be computed exactly for the full Green’s function. Usi
the spectral decomposition of the full Green’s function, E
~2.2!, and the one-dimensional harmonic oscillator prope

^nux2u0&5
A2dn21dn0

2vm
,

one gets
e
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^r 2&005
1

vm FA2c02~0!

3v1M
1

c00~0!

v1M G .
In the last equation, the contribution of the second exci
state and the ground state are shown separately. W
c00(0)5Avm/p andc02(0)52Avm/2p, they add up to

^r 2&005A v

pm

2

~3v1M !~v1M !
.

The free Green’s function gives, for the same moment,

^r 2&00 free5E d2r r 2
m

p
K0~A2mMr!c00~r !

;
2c00~0!

mM2
5A v

pm

2

M2 .

As expected, the largeM behavior of the full Green’s func-
tion moment is exactly reproduced by the free Green’s fu
tion. The important lesson of this simple exercise is the de
onstration that the largeM behavior follows from a delicate
cancellation between ground and excited state contributio
Note that the contribution of one single state is;1/M and
would overshoot the full result at large values ofM . This is
to be compared with the discussion we had in the Introd
tion.

Although the harmonic oscillator Green’s functio
G(r ,0,t), is known analytically, we know of no such repre
sentation for the Fourier transformedG(r ,0,M52E); there-
fore, we have obtained an ‘‘exact’’ expression by performi
the sum in Eq.~2.2! with the first 500 terms using the know
wave functions of the harmonic oscillator. A simple calcu
tion shows that even for moderate values ofM , say 5v, one
needs more than 20 intermediate terms in the representa
Eq. ~2.2! in order to obtain a better accuracy than the o
from the free Green’s function. In terms of vector dom
nance, this means that we need many intermediate ve
mesons in order to get an adequate description for mode
values of the photon virtuality. As we will show, a muc
more efficient procedure is to shift the argument 2mM in the
free Green’s function by anM dependent values0; it turns
out that this method gives, even forM50, a very decent
approximation to the full Green’s function.

Since the exact Green’s function is available for the h
monic oscillator, the shift parameter can be calculated
comparing the modified free Green’s function with the ex
one. This procedure cannot be, however, carried over to
light cone wave function of the photon. We consider, the
fore, the ‘‘two-point’’ function,P(M ), and its derivatives

P~n!~M !:5~21!n
dn

dMn
P~M !:5~21!n

dn

dMn
G~0,0,M !,

~2.5!

instead of the ‘‘three-point’’ functionsG(r ,0,M ). For con-
vergence, we need at least one derivative. The two-p
functions have been extensively studied in QCD, especi
with sum rule techniques@5#. From this, we know that in an
asymptotically free theory the ansatz ‘‘one resonance p
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FIG. 1. Green’s functions~in
units of m) of an harmonic oscil-
lator as function ofr ~in units of
1/Avm) for different values of
M /v. Solid line, exact Green’s
function G(r ,0,M ); long dashes,
our approximationGa(r ,0,M ,s0),
i.e., the shifted free Green’s func
tion Eq. ~2.7! with the shift s0

from Eq. ~2.10!; short dashes, ap
proximation with two resonances
dots, free Green’s function.
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perturbative continuum’’ is a very good phenomenologi
representation for the two-point function in the Euclide
region. Our method is then to make for the two-point fun
tion, P (n)(M ), the model ‘‘one resonance plus perturbati
continuum’’ and to use for the three-point function an a
proximate form which can be parametrized easily and
justed in such a way that the two-point function obtain
from it agrees with the model two-point function.

For the derivatives ofP(M ), the ansatz ‘‘one resonanc
plus perturbative continuum’’ reads, to lowest order,

Pph
~n!~M !5

n! uc00~0!u2

~v1M !n11
1

m

2p

~n21!!

~st/2m1M !n
, ~2.6!

wherec00 is the ground state wave function andst the con-
tinuum threshold above which we use the perturbat
Green’s function. Duality states that the integral from 0 tost
over the imaginary part of the free~i.e., perturbative! two-
point function accounts forp times the residue at the reso
nance pole:

E
0

st
dk2ImP free~k2!5puc00~0!u2.

Thereby, we obtain the continuum threshold

st54puc00~0!u254vm.

As a simple approximate Green’s function, we consid
the free Green’s function with a shifted argument

Ga~r ,0,M ,s0!5
m

p
K0~A2mM1s0 r !. ~2.7!

The derivatives of the correponding approximate two-po
function have the form
l

-

-
-

e

r

t

Pa
~n!~M ,s0!5~21!n

]n

]Mn
Ga~0,0,M ,s0!

5
m

2p

~n21!!

~s0/2m1M !n
. ~2.8!

~Notice that on the left-hand side the relation involves t
partial derivative and not the total derivative.! By equating
the approximation Eq.~2.8! to the phenomenological func
tion Eq. ~2.6!

Pa
~n!~M ,s0!5Pph

~n!~M !, ~2.9!

we can determine the only free parameter of the approxi
tion, namelys0(M ), and obtain

s0/2m5~v1M !~n11!/n~2v1M !@2nv~2v1M !n

1~v1M !n11#21/n2M . ~2.10!

The exact form of the shift depends on the number of diff
entiations assumed. Yet, atM50, s0/2m is aroundv/2 and
decreases to become a small correction toM , i.e., less than
5%, for M larger than 3v.

In Fig. 1, we display the approximated Green’s functi
obtained with ann53 shift ~long dashes! and the full
Green’s function~full line!, for M /v50, 0.5, 1, and 4. For
the first two values, we also show for comparison a tw
resonance approximation to Eq.~2.2!. For the last two val-
ues, the short dashes represent the free Green’s function
M /v54 the approximated Green’s function can hardly
distinguished from the free one.

We estimate the quality of our approximation by formin
the moments

^r n&:5E d2r r n G2~r ,0,M !,
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which can be evaluated easily, both for the full and the
proximate Green’s function. Since in electroproduction,
high virtualities, theq q̄-proton cross section behaves a
proximately liker 2 and, in the hadronic region, liker 1.5 @3#,
we pay special attention to the moment^r 2&. In Table II, we
give the relative differences of the exact and approxima
moments

D2 :5~^r 2&2^r 2&a!/^r 2&,

D0 :5~^r 0&2^r 0&a!/^r 0&,

for different values ofM and numbers of differentiationsn.
As can be expected, the lowern value,n51, yields a good
approximation for the zeroth moment, whereas the sec
moment is well reproduced withn53. The maximal error
for ^r 2& turns out to be 11%~at M50!.

We also compare the overlap of the exact Green’s fu
tion and the ground state wave function, i.e.,^r 2&00 defined
in Eq. ~2.4!, with the respective overlap including the a
proximated Green’s function

^r 2&00a5E d2r r 2 Ga~r ,0,M !c00~r !.

This is shown in Fig. 2 and Table III. One sees that
shifted free Green’s function gives a good estimate of
exact matrix element, the relative error being at most 10

In Table IV, we compare the shiftss0 obtained from Eq.
~2.10! with n52, 3, and 4 differentiations, with the one
needed to get exact agreement for the second momen
reproduce the second moment, the displacements0 is quite

TABLE II. Differences of the exact and approximated momen
D2 :5(^r 2&2^r 2&a)/^r 2& andD0 :5(^r 0&2^r 0&a)/^r 0&.

M /v n51 n53 n55

D2 D0 D2 D0 D2 D0

0 1.09 0.01 0.11 20.26 20.16 20.35
0.5 0.51 0.02 0.05 20.14 20.13 20.23
1 0.28 0.02 0.02 20.09 20.11 20.15

FIG. 2. Overlap Eq.~2.4! of the Green’s function of a two-
dimensional harmonic oscillator with the ground state: solid li
exact result; dashes, calculated with our approximated Gre
function from Eq.~2.7! ~in units m5v51).
-
r

d

d

-

e
e
.

To

different from the value ofs0 which one obtains from Eq
~2.9!. Our method underestimates the shifts considerably
largeM , but the overall errors on the matrix elements rem
small as shown in Table III and Fig. 2. Indeed we alrea
noticed that forM@v the full Green’s function Eq.~2.2! is
well approximated by the free one Eq.~2.3!, i.e., s0 can be
safely set equal to 0 in this region.

III. APPROXIMATE PHOTON WAVE FUNCTION
EXTENDED TO LOW VALUES OF Q2

We now want to apply the approximation methods dev
oped for the harmonic oscillator to the photon wave functio
For this purpose, we consider first the polarization tensor
the vector currentJm5 c̄gmc of a quark of massm:

Pmn~q,m2!5E d4x eiqx^0uT@Jm~x!Jn~0!#u0&

5~qmqn2gmnq2! P~q2,m2!.

At large q2, the imaginary part of the polarization functio
P(q2,m2) is obtained to lowest order in perturbation theo
from the free quark-antiquark propagation. One has

Im P~q2,m2!5
Nc

12p

q212m2

q2
A12

4m2

q2
. ~3.1!

The polarization function itself is only determined up to
subtraction constant, but its derivatives

:

,
’s

TABLE III. Comparison of exact and approximated overla
with ground state~in units m5v51).

M Approx. Exact Error

0 0.400 0.376 0.06
1 0.155 0.141 0.10
2 0.0819 0.0752 0.09
3 0.0504 0.0470 0.07
4 0.0342 0.0322 0.06
5 0.0247 0.0235 0.05
6 0.0186 0.0179 0.04
7 0.0146 0.0141 0.03
8 0.0117 0.0114 0.03
9 0.0096 0.0094 0.03
10 0.0081 0.0079 0.02

TABLE IV. s0/2m determined by the sum rule method forn52,
3, 4 subtractions and adjusted to give exact overlap.

M /v n52 n53 n54 Exact

0 0.485 0.547 0.593 0.585
1 0.279 0.344 0.397 0.455
2 0.179 0.234 0.283 0.385
3 0.123 0.168 0.211 0.325
4 0.090 0.127 0.162 0.27
5 0.068 0.099 0.129 0.255
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P~n!~Q252q2,m2!:5
]n

]~q2!n
P~q2,m2! ~3.2!

can be written forn>1 by dispersion relations:

P~n!~Q2,m2!5
n!

p E
4m2

`

ds
ImP~s,m2!

~s1Q2!n11
. ~3.3!

Due to asymptotic freedom, the polarization tensor ha
very good representation in the Euclidean region consis
of the ground state vector meson with massmV and residue
FV and perturbativeq q̄ continuum calculated with curren
quark masses:

Pph
~n!~Q2!5

n! FV
2

~Q21mV
2 !n11

1
n!

p E
st

`

ds
ImP~s,mf

2!

~s1Q2!n11
.

V is the lowest-lying vector meson in the flavor chann
considered, i.e.,r,v5(u ū7d d̄)/A2 andf5s s̄. FV is the
decay constant of this vector meson defined through

FVmV«m~q,l!5^0uJm~0!uV~q,l!&.
nc

tio
m
y

rre
-
F

t

t
lit
p

a
g

l

The continuum thresholdst can be related to the decay co
stantFV by local duality:

FV
25

1

pE4mf
2

st
ds ImP~s,mf

2!.

We copy now the procedure from the discussion of
harmonic oscillator. The photon wave function plays the r
of the three-point function which we want to approxima
As in Eq.~2.7!, we take as approximate Green’s function t
free Green’s function but shift the variableQ2. The structure
of the perturbative photon wave function is of the form@see
Eq. ~2.1!#:

cg}K0@Az~12z!Q21mf
2 r #.

A Q2 dependent shift thus corresponds to a replacemen
the current massmf by an effective massmeff(Q

2). Here
some improvement is still possible, since in reality the vir
ality Q2 appears in combination with the light cone mome
tum fraction through the termz(12z). We leave this diffi-
culty aside for the moment and shall return to it later. Fro
Eqs.~3.1!–~3.3!, we form the derivatives of the approxima
polarization function
Pa
~n!~Q2,meff

2 !:5
]n

]~2Q2!n Pa~Q2,meff
2 !5

Nc

12p2

]n

]~2Q2!n F2
4meff

2

Q2
2S 12

2meff
2

Q2 DA11
4meff

2

Q2
ln
A114meff

2 /Q211

A114meff
2 /Q221

G .

~3.4!
to
e

e

ro-
the

the
t

art
lue
its
Next, in complete analogy to Eq.~2.9!, we determine the
effective mass in such a way that the shifted two-point fu
tion, Pa

(n) , is equal to the model two-point functionPph
(n) :

Pa
~n!~Q2,meff

2 !5
n! FV

2

~Q21mV
2 !n11

1
n!

p E
st

`

ds
ImP~s,mf

2!

~s1Q2!n11
.

~3.5!

The method gives the effective quark mass as a func
of Q2 on the left-hand side from the purely hadronic para
etersFV andmV on the right-hand side. In Fig. 3, we displa
the resulting effective quark massesmeff(Q

2), puttingn52,
for massless current quarks and strange quarks with a cu
massms5150 MeV. As for the harmonic oscillator, the re
sult depends on the number of differentiation assumed.
mq50, the effective mass starts atQ250 at 220 MeV for
n52 and 245 MeV forn53 which are typical constituen
quark mass values. The effective mass drops to 0
Q0

2'1.5–2mr
2 . Beyond this value ofQ2, it formally be-

comes imaginary. We have seen in the harmonic oscilla
that the method underestimates the shift at large virtua
but the errors introduced are less than 5%. We therefore
the effective mass equal to zero aboveQ0

2. To be specific, we
use the simple linear parametrization
-

n
-

nt

or

at

or
y,
ut

meff~Q2!50.22~12Q2/Q0
2! in GeV

for Q2<Q0
251.05 GeV2,

meff~Q2!50 for Q2>Q0
2 . ~3.6!

To support our point to set the effective light quark mass
zero for largeQ2, we display in Fig. 4 the second derivativ
of the model Green’s function together with the free one. W
see that the two agree at largeQ2 values where our effective
mass formally would become imaginary. A more refined p
cedure would be to make a smooth connection between
smallQ2 behavior obtained with the present method and
behavior obtained around 1 GeV2 using operator produc
expansion@4#. We shall not dwell on this possibility in the
following. For the strange quark, we refer to the second p
of Fig. 3, which shows that the corresponding starting va
for the constituent strange mass is 310 MeV. It reaches
asymptotic value in the rangeQ251.5–2 GeV2. A simple
parametrization for the strange quark mass is

mseff~Q2!50.1510.16~12Q2/Q0
2! in GeV

for Q2<Q0
251.6 GeV2, ~3.7!
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mseff~Q2!50.15 GeV for Q2>Q0
2 .

As mentioned before, in the photon wave function,Q2

appears together with the factorz(12z). We reanalyzed the
polarization functionPa

(n) including an effective quark mas

FIG. 3. Effective quark masses which reproduce the model
larization function, see Eq.~3.5!. ~a! The Q2 behavior for light
quarks and~b! strange quarks.

FIG. 4. Second derivative of the polarization function: dash
model functionPph(Q

2), i.e., one resonance plus continuum; sol
lowest-order perturbative expression with zero mass. Note
Q2.1 GeV2 the perturbative expression becomes indistinguisha
from the perturbative one.
as a function ofQeff
2 54z(12z) Q2. This modifies the treat-

ment that leads to Eq.~3.4! along the following lines. The
imaginary part of the polarization functionP(q2,m2) of the
vector two-point functionPmn can be written as

ImP~q2,m2!5
Nc

12pE0

1

dz
q212m2

q2
Q@z~12z!q22m2#.

Upon integration overz, it yields to the familiar result given
in Eq. ~3.1!. We then obtain the derivatives by dispersio
relations:

P~n!~Q2,m2!5
Nc

12p2E0

1

dz E
m2/[z~12z!]

`

3ds
s12m2

s

n!

~s1Q2!n11
. ~3.8!

Settingm5meff(Qeff
2 ) on the right-hand side of this equatio

gives a new expression forPa
(n) . We numerically find that

the phenomenological two-point function can be reprodu
with an accuracy better than 10%~see Fig. 5! with param-
etrizations similar to that given above, provided we chan
the value ofQ0

2. We get, for light quarks,

-

,

r
le

FIG. 5. Second derivative of the polarization function for vec
current of light and strange quarks. Solid, model functionPph(Q

2);
dashes, approximate expressionPa(Q

2,meff) with the quark mass
depending onQeff

2 54z(12z)Q2. Note that for the quark mass de
pending onQ2 alone we get exact agreement by construction.
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meff~Qeff
2 !50.22~12Qeff

2 /Q08
2! in GeV

for Qeff
2 <Q08

250.69 GeV2,

meff~Qeff
2 !50 for Qeff

2 >Q08
2 . ~3.9!

The lower scaleQ08
2 is due to the difference between th

average inz occurring in Eq.~3.8! and the value at the av
eragez51/2. For the strange quark, the result is

mseff~Qeff
2 !50.1510.16~12Qeff

2 /Q08
2! in GeV

for Qeff
2 <Q08

251.16 GeV2,

mseff~Qeff
2 !50.15 GeV forQeff

2 >Q08
2 . ~3.10!

IV. INCLUSIVE PHOTON-PROTON CROSS SECTION

Let us now consider the forward Compton amplitude, i
the amplitude in Eq.~1.1!, with the replacementcV*→cg* , at
t50:

M~g* p→g* p!5 isE dzrdr

2
ucg~z,r !u2 Jp~z,r !,

where we use the notationJp(z,r )5Jp
(0)(z,r ,t50) for short.

We employ the same dipole-proton cross section as in
previous work on exclusive vector meson production@3#,
which is based on the evaluation of gluon field strength c
relators between Wilson areas mapped out by the color n
tral dipole and the proton. The absolute size andz,r depen-
dences of the cross sectionJp(z,r ) are determined by the
gluon condensatê g2FF&52.49 GeV4, the correlation
length a50.346 fm and the transverse radius of the pro
R'p50.52 fm, together with the form of the correlators a
sumed there.

We compute the square of the photon wave function us
the expression given in Ref.@3#. This leads to the longitudi-
nal and transverse cross sections
r

.,

ur

r-
u-

n
-

g

sL/T5(
f

s f L/T5(
f

ef
2E

0

1

dzE
0

`

rdrIL/T~z,r ! ~4.1!

with the integrands

IL~z,r !5
Nc

4p2 4z2~12z!2Q2K0~«r !2 Jp~z,r !, ~4.2!

IT~z,r !5
Nc

4p2 $@z21~12z!2#«2K1~«r !2

1mf
2K0~«r !2%Jp~z,r !. ~4.3!

The extension parameter of the photon
«25z(12z)Q21mf

2 . It depends on the quark flavor throug
the quark mass and thus each flavor contributes in a diffe
way to the above sums.K0, K1 are modified Bessel func
tions. They arise from the perturbative light cone wave fun
tion of the photon when one takes into account all the s
complexities ignored in Sec. II. For a general dipole-prot
cross section,Jp , these expressions are identical to tho
given in Refs.@6,7#. Our dipole-proton cross sectionJp(z,r )
calculated from gluon-gluon correlators describes the sca
ing on a proton of a loop with transverse sizer and infinite
extension along the light cone. It depends only very wea
on the longitudinal momentum fractionz and shows for val-
ues ofr smaller than approximately 2a'0.7 fm the dipole
behavior

Jp~z,r !'Cr2 with C54.3. ~4.4!

For very large values ofr it increases linearly and around
fm it goes approximately liker 1.5 .

One can get a rough idea on theQ2 dependence of the
cross sections if one assumes the dipole behavior give
Eq. ~4.4!. Then one obtains analytical expressions for t
cross sections for each flavor channel, settingu54m2/Q2:
s f L5aemêf
2 Nc C

3pQ2 F42
u~413u!

~11u!3/2
ln

~11A11u!2

u
1

2u

11uG ,

s f T5aemêf
2 Nc C

3pQ2 F241
2

11u
1

1

A11u
S 412u1

u

11uD ln
~11A11u!2

u G .
From these expressions, we deduce easily the behavio
large and smallQ2.

~1! LargeQ2:

s f L5aemêf
2 4Nc C

3pQ2 F12
4m2

Q2
ln

Q2

m2
1OS m2

Q2D G ,

~4.5!

s f T5aemêf
2 4Nc C

3pQ2 F ln
Q2

m2
2

1

2
1OS m2

Q2
ln

Q2

m2D G ,
for ~2! Small Q2:

s f L5aemêf
2 2Nc C

45pm2

Q2

m2
@11O~Q2/m2!#,

~4.6!

s f T5aemêf
2 7Nc C

9pm2 @11O~Q2/m2!#.
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For large values ofQ2 and longitudinal photons the sma
dipole sizes are dominant and the use of a purely pertu
tive photon wave function is justified. We see indeed that
limit of the longitudinal cross section for large values ofQ2

is unproblematic. For transversal photons however small
ues of the longitudinal momentum fractionsz and (12z)
become more important and large dipole sizes may play
important role even if the value ofQ2 is large. Ar 2 behavior
of Jp(z,r ) thus leads to a logarithmic divergence in the qua
mass, as can be seen from Eq.~4.5!. For large values ofr
such a behavior is however unrealistic, and any reduced
crease of the formr 22e with e.0 leads to a finite cross
section even for a perturbative photon wave function an
quark mass equal to zero. This feature stresses the im
tance of a realistic model both for the long distance part
the photon wave function and the dipole cross sections
good q q̄ wave function and a realistic dipole-proton cro
section become even more relevant for low values ofQ2.
Our model for the hadronic scattering part is inherently n
perturbative. For the photon we absorb the nonperturba
effects in a virtuality dependent constituent mass. We st
that all input to these models is taken from sources outs
the realm of electroproduction.

A. Photoproduction

Let us compare our computed cross section with d
starting with photoproduction. In the following we consid
data at a center of mass energyW520 GeV. We choose this
value because it is the one where the model parameters
adjusted to fit the corresponding proton-proton elastic s
tering data. At this center of mass energy, the photon-pro
total cross section is 118mb. The Pomeron part of the
Donnachie-Landshoff fit@8# gives sPom5110 mb, the re-
maining part being attributed to other Regge trajectories.
model of the stochastic vacuum accounts for the Pome
part of the cross section. The Reggeon contribution
strange~and heavier! quark interaction is much suppress
~Zweig suppression! and can be neglected. The charm qua
contribution is measured independently and is rather sma
mb. In the present study, we focus onu, d, ands which give
the bulk of the cross section. According to Donnachie a
Landshoff, the strange quark contribution to the total cr
section is 8.3mb.

Our theoretical results for the light,u andd, and strange
quark contributions are

su1d584 mb,

ss59.4 mb.

Some comments are called for. To illustrate our purpo
it is again useful to stick to the approximate amplitudes
rived by assuming the short distance behavior Eq.~4.4!. In
Eq. ~4.4! the magnitude of the cross section, given
C'4.3, is determined by the properties of the QCD vacuu
namely the gluon condensate and the correlation length
gluon field strength correlators, and the proton radius. As
have seen in the beginning of this section, the transve
extension of the photon is bounded by the value of the qu
mass,r<1/meff , therefore ther 2 dependence of the cros
a-
e
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section is certainly correct if the quark mass is large enou
otherwise it gives a first approximation. The limit of sma
Q2 was given in Eq.~4.6!:

s f5aemêf
2 7NcC

9pmf
2 . ~4.7!

This means that the photoproduction cross section depe
crucially on the value of the constituent quark mass. T
reproduction of the cross section within 15% is encourag
especially taking into account the fact that we have de
mined the effective quark mass, Eq.~3.6!, without any re-
course to electroproduction phenomenology. If we attribu
the remaining 15% difference between the experimen
value of the cross section and our theoretical one to the v
of meff , we would get an 8% decrease of the effective qu
mass value. Because of other sources of uncertainty,
refinement does not make sense here. We also notice th
the approximate cross section, 40% come from the sec
term in Eq. ~4.3! which is proportional to the quark mas
squared. Within the present determination ofmeff , this sup-
ports the interpretation of the modification of the photon e
tension parameter as being due to the generation of the
fective quark mass rather than being just a shift in
argument ofK1 in Eq. ~4.3!. For the strange quark, the com
parison with the extracted cross section is correct wit
10%. As an indication, we note that our amplitudes with
current strange quark mass of 150 MeV would produc
much too big cross section of 31mb.

B. Electroproduction

We now consider virtual photon,Q2Þ0, scattering off a
proton. We form the structure functions

F2~Q2!5
Q2

pe2
~sT1sL!, ~4.8!

FL~Q2!5
Q2

pe2
sL . ~4.9!

Since the light and strange quarks contribute in a differ
way, we first calculate the corresponding quantities se
rately. Special attention will be paid to theQ2 dependence of
the structure functions at fixedW520 GeV, which corre-
sponds to the energy where we determined our input dip
proton cross section. We want to investigate the ques
whether the chiral transition from the constituent quark to
parton can be seen in the inclusive electron scattering d
In our theoretical calculation the effective quark ma
meff(Q

2) evolves with the photon virtualityQ2. A priori it is
not clear whether the photon virtuality or the combination
light cone momenta andQ2, namely Qeff

2 54z(12z)Q2,
should be used in the running of the quark mass for l
virtualities. In the second case the integration over the li
cone momentum fractionz may wash out the chiral transitio
effect.

In Fig. 6, we show the theoretical results fo
F2

u1d(xB5Q2/W2,Q2) and F2
s(xB5Q2/W2,Q2) at a fixed
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energy W520 GeV. At this energy and in theQ2 range
considered, the Reggeon contribution toF2 is less than 5%
@8#.

The calculation in Fig. 6 with fixed light quark massm0
shows a dependence similar to the logarithmic depende
ln(Q2/m0

2) expected for ther 2 dipole-proton cross section
This agreement is also quantitatively good. The sliding qu
massm5meff(Q

2) produces a steeper variation ofF2 for 0.1
GeV2<Q2<1 GeV2, in agreement with the variation of th
mass in the logarithm. AboveQ251.05 GeV2 where its
value has gone to zero, the finiteness ofF2 is connected with
the long distance behavior of the dipole-nucleon cross s
tion. In this region ofQ2 the z averaged integrand in Eq
~4.3! has a maximum inr in the regionr 50.2–0.8 fm and it
extends to very large values ofr , being only damped becaus
of the change of the quadratic behavior ofJp5Cr2 at small
distances to a power 1.5–1.8. The maxima of the integra
for the transverse and longitudinal cross sections inr are not
so different but the profile is much faster decreasing in
longitudinal case. In the case of a dependence ofmeff on
Qeff

2 54z(12z)Q2 the resulting structure functionF2 in Fig.

FIG. 6. ~a! Theoretical calculation ofF2 as a function ofQ2.
The long-dashed curve is the light quark contribution with the
fective quark mass given in Eq.~3.6!. The solid curve is with the
effective quark mass given in Eq.~3.9!. The short-dashed curve i
with a fixed constituent quark massm050.22 GeV. The strange
quark contribution with the effective mass given by Eq.~3.7! is
shown as a dash-dotted curve. The dotted curve is with the effec
strange mass of Eq.~3.10!. ~b! Same study for the longitudina
structure functionFL .
ce

k

c-

ds

e

6 interpolates smoothly the case ofmeff(Q
2) between the

minimal and maximal values ofQ2. It lies about 10–20 %
above the curve with constantm0 for Q2>0.2 GeV2. The
strange quark structure function reaches at the maximumQ2

the asymptotic rate of 20% of the light quark structure fun
tion. The difference between the contribution given by t
effective mass of Eq.~3.7! and the one of Eq.~3.10! is quali-
tatively the same as in the light quark case.

The longitudinal scattering is suppressed compared w
the transverse scattering in agreement with ther 2 estimates.
Here the difference between thez dependent effective quar
mass and the onlyQ2 dependent quark mass is very sma
since the longitudinal photon wave function suppresses
end points in thez integration. Conversely the differenc
with the fixedm0 mass reaches about 30% atQ251 GeV2

and is more visible than inF2.
At the photoproduction point the ratioR5sL /sT van-

ishes, it then increases untilQ251 GeV2. For the quark
mass depending on the virtualityQ2 its behavior is more flat
than when the quark mass depends onQeff

2 . A computation
with a fixed mass,m0, and the short distance behaviorJp
}r 2 leads to a ratio similar in shape with a maximum inQ2

around 40m0
2. This result was already obtained in the clas

paper of Bjorken, Kogut, and Soper on the electroproduct
of lepton pairs in a slowly varying external field@6#. Note
that in this case a constant quark massm050.22 GeV would
give a maximum inR5sL /sT at Q2'2 GeV2. The precise
behavior of the ratioR5sL /sT gives another signal for the
chiral transition in the experimental deep inelastic scatter
data. We show in Fig. 7 the ratio we get in our computatio
combining light and strange contributions. We compare t
ratio to NMC results. Unfortunately experiments do n
reach the smallQ2 transition region.

We next combine the light and strange contribution
form the structure functionF25F2

u1d1F2
s as a function of

Q2 and for fixed energyW520 GeV. In Fig. 8, we compare
our results with data from both the E665 Collaboration a
New Muon Collaboration~NMC! at energies 18.5 GeV
<W<21.5 GeV. The transition region is correctly describ
and the scheme with thez dependent effective mass seems

-

ve

FIG. 7. R5sL /sT as a function ofQ2. The solid curve is our
expectation withz dependent quark masses for light and stran
quarks, Eq.~3.9! and Eq.~3.10!, respectively. The dashed curve
the result with the effective quark masses given in Eq.~3.6! and Eq.
~3.7!. Data are from NMC@9#.
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be preferred. At largeQ2 region, our result overshoot data b
10–20 %. As we now show finite energy corrections m
reduce cross sections in this largeQ2 region.

V. MODIFICATION AT FINITE ENERGY

A. Slow quarks

In the forward Compton amplitude, we integrate ov
configurations with quark light cone fractions varying from
to 1. For the transverse cross section, there is a large co
bution from aligned jet configurations, where one quark c
ries most of the momentum and the other one a minute f
tion. At large butfinite energy, however, the slow quark ma
not carry enough energy to generate ahadronic final state.
Formally, the photon-proton total cross section is related
the imaginary part of the forward elastic amplitude via t
optical theorem. In this amplitude we must sum only over
accessible channels, i.e., we have to take into account en
conservation at finite energies. To be more precise we h
to care about how the energy is distributed in the phys
color neutral final states. We require that the intermed
quark-antiquark and quark-diquark states~see Fig. 9! both
have an invariant mass bigger than a typical mesonic
baryonic state with massM M5(M r ,MK* ) or MB
5(MN ,ML), respectively:

~k1p2 l !2'z1~12z2!W2>MB
2 , ~5.1!

FIG. 8. Contribution ofu, d, ands to F2 as a function ofQ2.
Curves are as in Fig. 7. Squares are NMC results@9# and diamonds
are E665@10#.

FIG. 9. The intermediate rearrangement for light quarks is
termined by the momenta of the collision partners as calculate
Eq. ~5.1!.
y
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~q2k1 l !2'~12z1!z2W2>M M
2 .

For the present discussion, we restore the internal deg
of freedom of the proton, i.e., the cross section envisa
here is written as in Ref.@3# with the full dependence on
transverse and light cone coordinates of the quarks in b
the photon and the proton:

sg* p52E d2bE dz1d2r1

4p
ucg~z1 ,r1!u2E dz2d2r2

4p

3ucp~z2 ,r2!u2 J~x1 ,x1̄ ,x2 ,x2̄ !Q~z1 ,z2 ,W!,

~5.2!

where 1 and 2 refer to the photon and nucleon sides, res
tively. The proton is considered in a simple quark-diqua
picture which has proved to be a good approximation in
framework of the stochastic vacuum model. In Eq.~5.2!, we
have inserted the threshold factorQ which realizes the re-
quirement of Eq.~5.1!:

Q~z1 ,z2 ,W!5u@z1~12z2!W22MB
2 #

3u@~12z1!z2W22M M
2 #. ~5.3!

In the integrand of Eq.~4.1!, the effect of the threshold
factor is to generate az[z1 dependent phase space factor

F~z!5E
0

1

dz2 f ~z2! Q~z,z2 ,W!.

In the integral,f (z2) represents thez2 dependence as it re
sults for the various term in Eq.~5.2!. Indeed, since thez2
dependence of the quantityJ is rather weak,f (z2) turns out
to be given essentially by the square of the proton wa
function, for which we usef (z2)5252z2

2(12z2)6. For large
energies,W@M M1MB , F(z)51 for intermediatez and
rapidly decreases to 0 whenz approaches the boundarie
which at large enoughW read

MB
2

W2 <z<12
M M

2

W2 .

For MB5M p , M M5M r , andW520 GeV, the boundaries
are approximately 0.0022<z<0.9985.

The threshold factor is therefore important in case wh
the end point contribution is sizable. Usual hadron wa
functions suppress this region in both hadron-hadron co
sions and vector meson production, thus rendering this ef
unimportant at large energy,s>100 GeV2. In inclusive
photon-hadron scattering, however, this end point reg
cannot be overlooked. The importance of the various reg
in z, in the full integral Eq.~4.1!, may be studied by varying
the lower limit Z of the integration over quark light con
momenta in the photon wave function. Recall that the thre
old condition for light quarks gives a lower limitz>0.0022
for W520 GeV as calculated above and that this lower lim
goes like 1/W2. Since the integrand is symmetric inz, the
upper integration limit can be restricted toz<0.5. The result-
ing function I T(Z),

-
in
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I T~Z!5E
Z

0.5

dzE
0

`

rdrIT ~z,r !,

is shown in Fig. 10 for the transverse cross section.
In order to understand what happens in the end point

gion, it is instructive to study the behavior of the amplitu
for a simplifiedJp(z,r ) behaving likeCrn with n51 or 2.
Our actualJp is in some sense interpolating between tho
two choices, the powern52 corresponding to the short dis
tance dipole behavior already mentioned in Eq.~4.4!. With
such a simple dependence, one can perform ther integral
analytically:

E rdr IL5K
4z2~12z!2Q2

@z~12z!Q21m2#11n/2
, ~5.4!

E rdr IT5K
~112/n!@z21~12z!2#

@z~12z!Q21m2#n/2

1K
m2

@z~12z!Q21m2#11n/2
, ~5.5!

where the overall constant is

K5
NcC

4p22n21
G4~11n/2!

~n11!!
.

For m2!Q2, one can focus on the first term in Eq.~5.5!. At
Z→0, the quantityQnI T(Z) behaves, forn52, like

Q2I T~Z!}const2 ln@Z1m2/Q2#,

and, forn51, like

Q IT~Z!}const2AZ1m2/Q2.

In Fig. 10, we see the transition from the logarithmic beh
ior given in casen52 to a linear behavior at very smallZ.
The limit Z50 is however approached as in the casen51: it
does not have the dramatic dependence onm2 exhibited by

FIG. 10. Interaction amplitude,I T(Z)/I T(0), atQ253 GeV2 as
a function of the cutoffZ limiting the momentum fraction of quark
in the photon. The effective mass used in this computation is
one given in Eq.~3.9!.
e-

e

-

then52 case. ForQ2<4m2, the integrands become more o
less flat inz and theZ behavior is linear in the whole range

Because the photon size parameter,«25z(12z)Q21m2,
is the important scale inI, the behavior changes in the neig
borhood ofZ5m2/Q2. The region where the threshold su
pression in photon-proton collisions is sizable is theref
given by

m2/Q2&M2/W2,

i.e.,

m2/M2&xB .

For M5M p andW510 GeV, this shows that the effect be
comes sizable whenQ2>0.5 GeV2, for an effective quark
mass;0.1 GeV. If we were to consider a current quark ma
below this value ofQ2, the effect would show up at even
much smaller value ofQ2.

B. Threshold effect in the cross section

We now compare with data our computed cross sec
modified by the threshold effects from slow quarks. For ph
toproduction, the change is negligible. For electroproducti
it is best to consider fixedQ2 and vary the energyW to see
the threshold effect. In Fig. 11 we show the variation ofF2
for 9 GeV<W<25 GeV separately forQ251, 3, and 9
GeV2. ~For convenience we shifted downward the first tw
sets by, respectively, 0.25 and 0.15.! We have checked tha
for these values ofQ2 the inclusion of the Reggeon contr
bution given in Ref.@8# only modifies weakly the trend o
our curves forW.10 GeV. In each case we present resu
combining u, d, and s contributions for both schemes:z
dependent quark masses, Eqs.~3.9! and ~3.10!, andz inde-
pendent quark masses, Eqs.~3.6! and ~3.7!. The effect is
relatively stronger for the latter scheme since the end p
contributions are clearly more important in this case. T
difference between the two schemes decreases at smaW
where only intermediatez are taken into account. As antic

e

FIG. 11. Contribution ofu, d, ands to F2 as a function ofW,
for Q251, 3, and 9 GeV2, from bottom to top (0.25 has bee
subtracted to the first set and 0.15 to the second!. The solid lines
represent our result forz dependent effective masses and the das
lines correspond toQ2 dependent effective masses. Squares
NMC results@9# and diamonds are E665@10#.
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pated the threshold effect is also more important at largeQ2

and atQ259 GeV2 the suppression of the cross section
typically 10% atW520 GeV and reaches 30% atW510
GeV. At this highQ2 the effective quark mass has prac
cally gone to zero in both schemes and the large distan
are cut off by the threshold condition.

To complete our study we give in Fig. 12 our result f
F2(xB5Q2/W2,Q2) at W520 GeV including the threshold
effect. The plot may be compared with Fig. 8 and we see
the qualitative aspect of the transition from low to highQ2

remains. In general the largeQ2 range is sensitive to the
threshold effect whereas the smallQ2 range tests more th
effective quark mass.

VI. DISCUSSION AND CONCLUSIONS

We have computed the total photon proton cross sec
in a model of nonperturbative QCD. For values of the virtu
photon massQ2.2 GeV2 our input is the treatment of two
Wilson loops in Minkowski space-time within a speci
model of nonperturbative QCD which approximates the
frared behavior by a Gaussian stochastic process determ
by a nonlocal gauge-invariant gluon field correlator. The l
ter one is essentially given by the local gluon condensate
the correlation length. In order to fix the size distribution
one loop a proton valence quark wave function has to
introduced. In principle all parameters of the model can
determined by sources other than high-energy scatter
namely lattice gauge calculations and low-energy phen
enology. In practice the errors in the parameters still nec
sitate some adjustment to high-energy scattering data. In
case we have chosen the determination of Ref.@3# based on
the proton-proton total cross section and the logarithm
slope of the elasticpp cross section at zero momentum tran
fer. Although the parameters turn out to be rather stable th
remains still a certain variation in a range of a few perc
for the correlation length and 20–30 % for the gluon cond
sate and the proton radius. The model gives energy inde
dent cross sections, contrary to the slights0.08 energy depen-
dence seen in lowQ2 experiments. Since the parameters a
related to the ISR energies,W'20 GeV, we also compare
the photon cross sections calculated here with experime
values around that energy. We have already used this pr

FIG. 12. Contribution ofu, d, ands to F2 as a function ofQ2,
for W520 GeV. Curves and data are as in Fig. 8.
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dure in order to calculate diffractive electroproduction
vector mesons with very good results.

In the present work we have extented theQ2 range down
to Q250. In order to do that we have constructed nonp
turbative photon wave functions essentially by introducing
virtuality dependent constituent quark mass. We were
couraged to such a simple procedure by model investigat
of harmonic oscillator Green’s functions. In our method w
adjusted the value of the momentum dependent quark m
to reproduce the phenomenological two-point function of
vector currents. The development of a quark mass at la
distances has been seen also in calculations with the ins
ton liquid model@11#. We repeat that none of our input pa
rameters was in any way related or adjusted to electrop
duction phenomenology.

Our approach differs in several ways from other inves
gations. For the treatment of the soft exchanges, Nikol
and Zakharov have adopted a phenomenological two-glu
exchange model@7#. Their treatment also gives importanc

to theq q̄ photon wave function and their dipole-proton cro
section has ar 2 behavior at short distance and saturates
the r 51 –2 fm region. To suppress the contribution fro
large distance in the photon wave function they cut off t
large size component using a smooth Gaussian exp(2r2/Rc

2)
with a confinement size parameterRc'1.5 fm. In Ref.@7#, a
current quark massmu,d510 MeV was used, but in a late
study of the same authors on the Balitskii-Fadin-Kurae
Lipatov ~BFKL! Pomeron@12# a constant light quark mas
mu,d5150 MeV was considered. As we have seen in o
study such a value can help to limit the extent of the pho
wave function, but at largeQ2 there is no reason that th
light quarks have masses different from the current qu
masses. In the region of transverse distance probed, we
seen that the nonperturbative features of the gluon correla
are important and we think that a perturbative two-glu
exchange model cannot be trusted.

Concerning the transition to smallQ2, we have shown an
approach different from vector meson dominance~VMD !
frequently used in the lowQ2 range. We claim that with
increasingQ2 one would have to put a rapidly growing num
ber of resonances into the VMD model which thereby b
comes untractable. Our scheme of quark-hadron duality
ploits the knowledge about the residue and the mass of
lowest vector meson state contributing to the vector curr
two-point function.

Based on the transition between a VMD description ofF2
at smallQ2 and the partonic one at largeQ2 Badelek and
Kwieciński have proposed to represent the proton struct
function via dispersion relation@13#. The construction
adopted here shares similarities with their approach altho
the latter makes no connection to the notion of wave funct
which we need for the microscopic description of diffracti
scatterings. In their approach the partonic contribution toF2
is extracted from structure function analysis at largeQ2 and
thus naturally fulfills perturbative QCD evolution at larg
virtualities where this evolution is experimentally observe
Such perturbative corrections are not implemented in
approach.

Our results are encouraging. Without any adjustment t
agree with experiments over the fullQ2 range from 0 to 20
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GeV2 within 10–20 %. For the highQ2 range we have
shown how finite energy corrections may account for at le
a part of the discrepancy without changing any of the mo
parameter and without affecting the good description of
transition region where the modification of the perturbat
q q̄ wave function is at work. It is rather difficult to decid
with present data what is the best scheme in our appro
i.e., whether or not the effective mass depends on the q
light cone fraction. In order to put our result in a larg
perspective, we show in Fig. 13 the curve one deduces f
Fig. 12 with thez independent masses, Eqs.~3.6! and ~3.7!,

FIG. 13. Contribution ofu, d, ands to F2 as a function ofQ2,
for W520 GeV. The curve is the result shown in Fig. 12 and for
Q2 dependent quark masses of Eqs.~3.6! and~3.7! ~dashed curve in
Fig. 12! multiplied by 0.9. This rescaling would correspond to a 5
decrease of the gluon condensate. Data are as in previous figu
v.
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if we adjust the normalization by210% ~which would
amount, e.g., to a 5% reduction of the gluon condensate!. A
rescaling of the curve in Fig. 8 by215% shows the same
pattern. We describe almost perfectly theQ2 dependence of
the data in the wholeQ2 range examined. This points towar
the possibility that the chiral transition is already seen
present data, the kink in the data atQ251 GeV2 being re-
lated to the vanishing of the quark mass at that value ofQ2

~chiral restoration!. The photon-proton cross section cou
also be easily adjusted by a slight decrease of the constit
quark mass.

Because of the fundamental importance of chiral symm
try breaking for hadron physics, the question of chiral sy
metry restoration with increasing virtualityQ2 of the photon
deserves to be studied in more detail. More systematic d
for F2(xB ,Q2) and FL(xB ,Q2) at fixed W and varyingQ2

would help in deciding whether a marked change occurs
tween the low momentum domain and the perturbative
main in inelastic electron scattering. It may be that chi
symmetry restoration is seen more easily in electroprod
tion at a given virtualityQ0

2 than in heavy ion collisions at a
finite temperature 2pT5Q0.
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