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We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared
operators extend over & #iypercube, and tend to have smaller perturbative corrections than the corresponding
unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles
at 8=6.0, 6.2, and 6.4. Extrapolating to the continuum limit, we fBg(NDR,2 GeV)=0.62+0.02(stat)
+0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and con-
tinuum operators due to the truncation of perturbation theory at one loop. We do not include any estimate of
the errors due to quenching or to the use of degeneratad d quarks. For theAl =3/2 electromagnetic
penguin operators we finB{*?=0.62+0.03+0.06 andB{*?=0.77+0.04+0.04. We also use the ratio of
unsmeared to smeared operators to make a partially nonperturbative estimate of the renormalization of the
guark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the
coupling is chosen to beys(g* =1/a). [S0556-282(198)05201-1

PACS numbgs): 12.38.Gc, 12.15-y, 13.20.Eb, 14.65.Bt

[. INTRODUCTION operators[5—7]. This theoretical argument has since been
tested numerically{7,8]. Thus the interest in using the
An important goal of lattice QCD is to provide reliable smeared operators is that they provide an estimate of the
calculations of electroweak matrix elements. The majorerror in the matching of continuum and lattice operators. The
sources of error in present calculations are the use of finitéesults from different operators should differ at fingte but
lattice spacing, the use of one-loop perturbation theory t@gree upon extrapolation =0, up to higher order pertur-
match continuum and lattice operators, and the use of theative corrections.
quenched approximatiofi]. In this paper we address the  Preliminary results from this study &y were presented
first two errors for calculations using staggered fermions. Irin Ref. [5], and one of our purposes here is to present final
particular, we test the efficacy of “smeared” operatpes. results. Although, by present standards, these come from a
These extend over a*sypercube, and thus are larger thansmall statistical sample, the errors are nevertheless small
the usual(*unsmeared’) operators which are confined to a enough to assess the impact of smeared operators. We have
2% hypercube. Nevertheless, in many cases they are closer &so improved our estimates of the error due to the truncation
the continuum operators in the sense that the one-loopf the perturbative matching factors, using the method intro-
matching coefficients are closer to unity. duced in Ref[9].
We apply these operators to the study of three quantities. Our second application is the calculationB¥? andB32.
The first is the kaorB parameteBy which we study using TheseB parameters, and in particul&>?, determine the
both smeared and unsmeared operators. The initial motivasize of the electromagnetic penguin contributioneto In
tion for introducing smeared operators was the discovery o€ontrast toBy , the use of staggered fermions for these quan-
large discretization errors in the results for unsmeared operaities offers no clear advantage over Wilson fermions. How-
tors[3,4]. At the time, it was unclear whether the discretiza-ever, since the systematic errors in the results with the two
tion errors were proportional to the lattice spacingr toa®  types of fermion are different, an important check of the
(up to logarithmic corrections The smeared operators were reliability of the lattice calculations is to show that the two
designed to reduce possib(a) errors—they match onto formulations give consistent results in the continuum limit.
continuum operators with no errors @f(a) at tree level. It  To this end we compare the staggered data with the recent
was subsequently realized that t@¢a) parts of the lattice results obtained using Wilson fermions@t 6/g°=6 in the
operators do not contribute 8By, and that the errors are quenched approximatig®].
automatically ofO(a?) for both the unsmeared and smeared  The calculation oB3? and B3> demonstrates the impor-
tance of using several discretizations of continuum operators.
It turns out that one cannot use the unsmeared operators be-
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(~25%), and we can use them to calcul®§ andB}”.  wherea,b are color indices ang/i""=y,(1= ys). All op-
The only way in which one could use the unsmeared operaerators are in Euclidean space, and we use Hermitiara-
tors would be to develop a non-perturbative method of detrices. The superscripts o@; g indicate that these are the
termining the matching coefficient&vhich is possible in  =3/2 parts of the operator@, g, i.e., thel =1/2 component
principle using external quark statgkl]). has been removed. We make this restriction because the cal-
Our final application concerns the calculation of theculation of the matrix elements of tHe=3/2 parts is much
matching relation between the lattice and continuum regularsimpler. In the limit of exact flavor S(3), which is the limit
ization schemes, particularly in cases where the reliability ofve work in here, the =3/2 parts give rise only to “eight”
perturbative estimates is questionable. The ratio of suchliagrams, i.e., those in which the quark fields in the operator
matching factors for two different discretizations of an op-are contracted with fields in the external mesons. These are
erator can be estimated nonperturbatively by taking ratios othe same type of diagrams which contribute to the matrix
appropriate matrix elements. The nonperturbative results selement ofQ, . Thel=1/2 parts, by contrast, give rise also
obtained can be used to test the reliability of the one-loopo “penguin” or “eye” diagrams, which are much more
perturbative estimates. In particular, one can use the resultfifficult to calculate. The restriction to thie=3/2 parts of
to fix the scaleg* at which to evaluate the coupling constant Q7 g does not, however, diminish the phenomenological in-
entering into the perturbative expressions. For the pseudaerest in the results, becau@% are the only operators
scalar density we find thag* ~1/a. Our conclusions are, which give an imaginary part to the™ — 7+ 70 amplitude.

however, preliminary, since we do not have results at enough To form B parameters we also need the matrix elements
values of lattice spacing to check the extrapolations we usgf the axial and pseudoscalar densities:

to remove discretization errors.

We use this method to assess the reliability of the match-
ing factorZ,,. Z, relates the bare lattice mass to the con-
tinuum mass in, say, the modified minimal subtractibs] We can then define
scheme, and is a crucial ingredient in the calculation of con-
tinuum light quark masses from the lattice. Recent work has

A, =Sa¥u¥s0a, P=S5,¥s0,. (4)

0 0
suggested that continuum quark masses are smaller than pre- Bk= (K71 Qu[K?) , (5)
viously thought, but this is based on trusting one-loop per- (8/3)<K°|A4|0><0|A4|W>
turbation theory forZ,, [12]. For staggered fermions, the
one-loop contribution t&,, is large, roughly a 60% correc- (7] Qg/z|K+>
tion at =6, even after tadpole improvemdr®|. This casts B32= ! ,
doubt on the reliability of the perturbativ&, , and therefore (2/3)(K°|P|0)(0|P|KP®) — (K A4 0)(0| A4 KO)
also on the extracted value of quark masses. We find, how- (6)

ever, that our partly nonperturbative estimate suggests that

the one-loop evaluation is close to the correct answer. (] Q§/2|K+>
The organization of this paper is as follows. In the follow- B3/2= . — .

ing section we describe the method we use to match con- 2(KOP|0)(0|P|K®%) — (1/3)(K°|A,|0)(0| A, K®)

tinuum operators to lattice operators composed of staggered (7)

fermions. In Sec. Il we give a short description of the nu-

merical methods and data sample. The three subsequent sédl external particles have been assumed to be at rest. For

tions contain our analysis and results &, BY3, and the brevity, we have used SB) flavor symmetry to rewrite all

nonperturbative ratios of matching factors, respectively. Wéhe denominators in terms of kaon matrix elements. Note
close with some conclusions. that, in general, both numerators and denominators of these

ratios depend upon the renormalization scaleand the
scheme used to define the operators. When quoting physical
Il. THEORETICAL REVIEW values we use the naive dimensional regularizatidBR)

In this section we explain our method of calculatiBg Scheme, i.eMS renormalization combined with a particular
parameters using staggered fermions. This requires combig€t of rules for treatings away from four dimensions, and

ing a variety of results already in the literature, and we focu$hoose the renormalization scale to pe-2 GeV.

here only on the essential details. For a more extensive de- The extraction of the above matrix elements using stag-
scription of the method see Ré1L3]. gered fermions is complicated by the mixing between the

The continuum operators of interest are spin and flavor degrees of freedom. As explained in Refs.
[10,13, we proceed in two stages. We first match the con-
— L — . tinuum matrix elements onto those in an “enlarged” con-
Q= Sa7,9aSp¥,0b. @D tinuum theory, and then match from that theory onto the
lattice. The enlarged theory differs from QCD by having
32_ "o LA AR, _ 7 R = L, TR eight copies of each physical quark. The eight copies of the
Q7= Say,dal Upy,Up— dpy, ol ¥ Say,Ualny, db'(z) strange quark spinor are collected into twex 4 matrices
Sg,p and S’ﬁ’b, whereg is a spinor index, anb=1—-4 is a
e o o o o “staggered-flavor” index. Similar fields are constructed for
03F%='s .75 dp[ Upyrua— dpyRdal+ Sa7v5up ULy, Rd, . the up and down quarks. The correspondence between matrix
(3 elements in the continuum and in the enlarged theory is
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. 1 _ single staggered species for eack 4 matrix field, e.g.,xs
(0]A4|K®) = N (0]S(7475®&5)D[KY), (8)  for Sandyg for S'. This means that the relation between
f operators is simple at tree level. For example, using the no-
1 tation of Ref.[2],
(KA 0) =\ (KIS (7475 E5)D'[0),  (9) — SR
Ni S(75®é5)D=xs(¥5® &5) xp[ 1+ 0(a) +O(ay)]. a5

_ [
(0|P|K®)= \/N:f (0 S(ys® £5)D[KQ), (10 Here (ys®&2) is that matrix in the space of possible posi-
tions in a 2 hypercube which corresponds to the continuum
1 o spin-flavor matrix s5® &s). Similar relations hold for the
(KOIP|0)= \/N: (KPS (ys®&5)D’|0),  (11)  four fermion operator§l0].
f In this paper we use one-loop perturbation theory to
5 match operators in the enlarged continuum theory to those on
(KO QKO = — (KL|[(V-A) X P], the lattice. In other words, we include the termsQifas) in
Ny equations such as Ed15). More precisely, we use the
“horizontal matching” procedure discussed in detail in Ref.
[9]. This consists of two steps. We first match the lattice and
continuum operators at an intermediate sagle-1/a using

+[(V—A)XP]|KZ), (12)

1
(7| QYK )= - (K| (P=9)x P, —_—
f OFa) =0t = 2 [ In(a*a) +¢JOF

4 ]
+[(VHAXP]KE), (13
+0(a?)+0(a). (16)
3/2) _ 10
(7] Qg |K+>—N—f<Ke [2[(P—S)xP]; Here O are bare lattice operators/®) is the one-loop
anomalous dimension matrix, and tog are the one-loop
+[(V+A)X P |KD). (14  matching coefficients. We give, below, numerical values for

the ¢;; of interest. The second step is to evolve the result
We have used flavor symmetry to rewrite all matrix elementsfrom g* to the final scaleu=2 GeV using the continuum
in terms of those between external kaon states. The notaticwo-loop anomalous dimension matrix. The two-loop
for matrix elements in the enlarged theory is that of REIs. anomalous dimensions for the continuum operators of inter-
10], and we give only a brief summary. The matrices appearest are collected in Ref9], and we do not repeat them here.
ing in bilinears are tensor products of spin and staggered- The point of this procedure is to account for the fact that
flavor matrices. For example;y{® &s) indicates a pseudo- there are two scales in the problem: the matching sg#le
scalar density with staggered-flavor matrx. The states ~1/a, and the final scal@. These can differ substantially—
|Eg> and |K_(’3°) are those created from the vacuum byindeed the ratiay*/u can be as large as 10 in our calcula-

D_(y5>< ¢)S andﬁ(ySX ¢5)S', respectively. The states are tion. The coupling popstant can thus be quite different at the
normalized, which leads to the factors Nf=4, the usual two scales, and it is important to make sure that the appro-

multiplicity factor for staggered fermions. The subscigpt  Priate coupling is used at each stage. Furthermore, it be-
; picry . ® gnes necessary to sum up the leading logarithns® ofe.

Both of these requirements are accomplished by horizontal

when one discretizes the enlarged theory using staggered fdpatching. The scale in_ thg coupling in the f_irst Step should be
mions and takes the chiral limit. The notation for four- 4" @nd the renormalization group evolution in the second

fermion operators is from Ref10]. For example[(V—A) step sums up the_ leading logarithms. Of course, since we
X P], represents the one color loop contraction of the four-fruncate pgrturbaﬂo_n theory, there are €rrors in both steps. In
fermion operator with Spin StUCHUIE, ¥, — ¥, V5" Y5V, the maitc?lng r_elatlon(16) the truncat_lon errors are of
and in which both bilinears have staggered flaygr Fi- OLas(q)"], while the eriorzs in the contzmuum evolution are
nally, the factor of 2 on the right-hand sidBHS) of Eq.  Proportional to botha(q*)” and as(u)”. We note, how-

(12) arises from the difference in the number of Wick con- €V€r: that the errors from the continuum evolution are the
tractions in QCD and the enlarged theory due to the use ofame for any choice of lattice discretization of the continuum
“orimed” quarks in the latter theory operator. This point will be important in our discussion of
All these equalities hold identically between the quenched€SUlts forE:]K using <Ij|ffere?1§ lattice operatoi‘sr.] he i
versions of the two theories. In the presence of internal fer- 10 US€ horizontal matching we need to choose the inter-

mion loops, they hold if, in the enlarged theory, each loop isediate matching scalg”. If one worked to all orders in
multiplied by 1/8, i.e., the fermion determinant is taken toPerturbation theory, the final result would be independent of
the power 1/8. g*. This is not true if one truncates perturbation theory:

The next step is to relate the operators in the enlarged
continuum theory to those in the corresponding lattice
theory. The enlarged theory has been chosen so that it is théFor further discussion of horizontal matching, and in particular of
continuum limit of a discretized theory in which one uses aits relation to the exact matching formula of[15], see Ref[9].

corresponding to the axial(l) symmetry which is unbroken
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different choices lead to results differing B[ a(q*)?]. cubes. The smeared operators have the same form as the
One should choosg* to be, roughly speaking, the average unsmeared, except for the replacement

momentum flowing through the quark-gluon vertices in the
matching calculatiorf16]. It is difficult, however, to make -
this into a precise prescription for matching calculations in- x(y+A)—7 2’1 x(y+A+2u[1-2A,0, (19
volving operators with nonzero anomalous dimensions. The a

only method we know of was proposed in RE], and in-  \yherey is the position of the origin of the®hypercube, and
volves applying the Brodsky-Lepage-Macken@ M) pre- A s the position within the hypercube. This definition makes
scription of Ref.[17] to the calculation of the two-loop lat-  the average position of the quark field lie at the center of the
tice anomalous dimension matrix. This calculation has NOhypercube, which is why there are @¢a) corrections when
been*don_e, and so we have chosen to use a range of valuggtching to the continuum operator at tree level. Both types
for g*. Since the lattice and continuum operators are conpf gperator are made gauge invariant by fixing to lattice Lan-
structed to have the same matrix elements at long distancegg, gauge. Both are also tadpole improved, using the mean
the dominant contributions to the matching calculation argj k determined from the plaquettef= 1.

from momenta near the lattice cutofs long as the con-  Ajihough the discretization errors in the matching equa-
tinuum renormalization point is also of this sjz&hus we 5 are, in general, 0B(a), it turns out that for the matrix
takeq* =K/a with K a constant. Since we use tadpole im- glements of interest the corrections are actuallyogh?).
proved operators we expect tHat=1 rather thartK~m, as s js because th®(a) parts have the wrong staggered
explained in Ref[16]. So we have choseq* =1/a for our  f3y0r[5,14], and by using staggered flavéy for the incom-
central values, and usegf =7/a in order to estimate the jng and outgoing states we project against them up to errors
unpertamty (_jue to the trun_catlon of pe_rturbatlon theory. of O(a?). For the same reason, we need only include in the
This is certainly a crude estimate, but it is the best that Wenatching equations those operators which have the correct
can do. staggered flavor. This is fortunate, since typically many op-

In our preliminary analysis dBy we did not use horizon- - grators of the wrong flavor are needed to match the con-
tal matching, but rather used the one-loop matching relatiog, ,um operators.

Eq. (16) connect directly from the lattice to the final scale The matching matrices;; for all continuum operators of

[5]- To estimate the truncation error we took the differencejterest, and for both smeared and unsmeared lattice opera-
between the results of using(x) andag(q™) inthe match- 45 can be determined from the results of &) When

ing equation. Our present methods both of matching and Ofjging this one must be careful to account for the following
estimating the truncation error are more reliable, although, agee issues. First, the numerical results for¢here quoted

we will see beloyv, the final answer is I|ttlle changed' in Ref.[10] for continuum operators defined in the BR,

_The MS coupling constant appearing in HQ6) is deter-  aiher than the NDR, scheme. Thus one must convert be-
mined using the method of Refl6], which incorporates yeen these schemes, and a recipe for doing so is given in
tadpole improvement. We first solve [10]. Second, tadpole improvement 0] is based on the

4 average trace of the link in Landau gauge, rather than on the
—InO= _Wav(3_4lb)[1_1_1851\/(3_413)] (17)  average plaquette yvhich we use here. This causes a small
3 change in the coefficients

4

for ay, where is the expectation value of the plaquette cij=cij(Ref. [10])+Ng(4/3)(7*—9.174795;;, (20)

normalized to be unity in the continuum limit. We then con-

vert to theMS scheme using whereNg=1 for bilinears andNg=2 for four fermion op-
erators. Third, the coefficient of the logarithm in the match-

owis(3.41/a) = ay(€%%3.41/a) (1+ 2 /7). (18 ing equation(16) has been changed fronf*a/7 to g*a.

This shifts thec;; of Ref. [10] by yi(jo) In 7. This change

This coupling is then run to other scales using the two-I8op allows one to see the size of the matching corrections for our

function. standard valug*a=1 directly from the size of the;; .

The lattice operators we use are of two types: the standard As the procedure for calculating the matching coefficients
operators, which are contained ifi Bypercubegand which s rather involved, we collect here the relevant parts of the
we refer to as “unsmeared” operatgreind the “smeared” final results. For the bilinears, the matching involves no mix-
operators introduced in Ref2], which live on 4' hyper-  ing, only multiplicative renormalization. The results are

ciN=0.9264, ciV=-1.0120, (21)

%Referencé16] advocates the use of a different coupling constant UN M
ay, rather thamys. ay is defined in terms of the quark-antiquark Cp =—39.1414, cp"=—28.8882. (22

potential. We prefer to useys because this is the scheme used in ] ) o
continuum calculations of coefficient functions, and the matchingH€re 4 is a shorthand for the diagonal coefficient for the

formulae are simpler if one uses the same coupling in the conaxial density, etc., and the superscript refers to whether or
tinuum and on the lattice. The two couplings are quite similar—ournot the quark fields are smeared. These coefficients are mul-
choice of g*=1/a in the MS scheme corresponds to using tiplied by ags(q*)/47, which, in our calculation, varies in
ay(1.6/A). This is indeed a typical value fay* for tadpole im-  the range 0.01-0.015. Thus these corrections are numerically
proved quantities. small for the axial currents~{1%) and of moderate size for
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TABLE |. Parameters of numerical simulations used in this analysis.

B 6.0 6.2 6.4

Lattice size 23x 40 32x48 32x48

Number of lattices 13 23 24

Samples per lattice 1 2 2

Quark masses 0.01, 0.02, 0.03 0.005, 0.01, 0.015 0.005, 0.01, 0.015

1/a in GeV fromm, 1.9 2.6 3.45

Minimum M _ in GeV 0.454 0.376 0.414

Average plaquette 0.5937 0.6137 0.6306

ays(7/a) 0.134 0.125 0.117

ays(1/a) 0.192 0.173 0.158

amps(2 GeV) 0.188 0.190 0.191

1/a for aps(2 GeV)=0.190 1.94 2.6 34
the smeared pseudoscalar density10%). For the un- N 0.7562 —14.7309 5.3559 —16.067
smeared pseudoscalar density, however, they are large =\ _3 344364 0 _42.8464°
(~50%), suggesting that two-loop terms will be important. 28)
This is an example of the advantage of using smeared opera-
tors. , , ~2.8862 —3.1611 1.6759 —5.0277

For the four-fermion operators of interest here, we can SM_ )

decompose the matrices of matching coefficients into two -3 —3.3692 0 —13.407
parts. The first is a square matrix with indices running over (29

operators

Li=([(V=A)XP],[(V=-A)XP];,[(V+A) XP],[(V

+A)XP]y), (23
for which we find
~43079 04611  0.2638-0.791
L | ~1.0002 00761 0  -2.1102
Si 7| 02638 —0.7913 —8.9740 —1.5387|"
0 — 21102 —4.9998  1.409
(29
~21376 —5.4068  0.0850 —0.255
., | ~5.8701 —0.7474 0 —0.6802
“i"7| 00850 —02551 4.5595 —2.5366|"
0 ~0.6802 —0.1299 —2.660
(25

These coefficients are needed for all thBeparameters, and

These results are needed &}2 andB?, and it is here that
the use of smeared operators is most important. In particular,
the numbers in the second row in E§9) are much smaller
than in the corresponding row in E¢28). Much of this
reduction can be traced back to the similarly large difference
in the coefficientsc, shown in Eq.(22). For the range of
couplings we study, it turns out that the one-loop matching
correction for the operators appearing in the numerator of
B3 and B3 actually exceeds 100% if one uses the un-
smeared operators witl* ~1/a. Our results for these quan-
tities are, therefore, obtained exclusively with smeared op-
erators.

Ill. NUMERICAL DETAILS

Our results are based on ensembles of lattices at three
different lattice spacings. A summary of the important pa-
rameters is given in Table |. The lattices@t 6 are part of
a sample previously used to study the hadron spectrum, and
a complete description of how we generated the lattices and
calculated quark propagators can be found in RE8]. The
lattices atB=6.2 and 6.4 have been discussed previously in

the corrections are of moderate size for both smeared arndefs.[3, 19]. They were generated using overrelaxed and
unsmeared operators. The second matrix we need is rectabletropolis sweeps in a 4:1 ratio, and separated by 1000

gular, having indices

i={[(P=S)XP],,[(P=8XP]y},

(26)

J={[(P=8XP],[(P=8XP]y,[(P+S)XP],[(P+T)

X PJy}.

For this we find

(27)

3Note that, at one-loop, tensor operators do not appear.

sweeps. They were divided roughly equally into two inde-
pendent streams g8=6.2, and three a{8=6.4. Quark
propagators were calculated using the conjugate gradient al-
gorithm.

We consider here only pions composed of two degenerate
quarks. For the quark masses that we use, the masses of the
lattice pions bracket that of the physical kaon at egcfio
illustrate this we include in the table the mass of the lightest
pion, converted to physical units usingaldetermined from
m,. These scales, also listed in the table, have been previ-
ously reported by one of us from a fit to the hadron spectrum
[19]. We refer to these below as then, scales.”
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We also give the values afys needed in the one-loop This method has several positive features. First, it in-
matching between lattice and continuum operators. These amlves no fitting. Second, statistical errors are reduced by
obtained using Eqg17) and (18) from the plaquette values directly calculatingB parameters rather than the matrix ele-
listed in the table. Since in the end we run our results to 2nents themselves. Third, the ability to average over all the
GeV, a consistency check on the applicability of tadpole im-spatial points and over a number of time slices improves the
proved perturbation theory is that the valuesogfs(2 GeV)  statistics. This is possible because we know the propagator
agree for different3. The table shows that they are in rea- from the wall sources to all points in the lattice. For the same
sonable agreement, although there is a small systematic imeason, we can calculate matrix elements of nonlocal opera-
crease as decreases. tors without additional quark propagators. And, finally, we

This systematic dependence arsuggests using a differ- can use the same set of quark propagators to calculate matrix
ent set of scales, defined so thajs(2 GeV) is independent elements with different choices of lattice operator. The latter
of a. We chooseays(2 GeV)=0.190, and the resulting two features are particularly important for staggered fermi-
scales are listed in the last row of the table. We refer to thesens where most operators are nonlocal. If we placed the
below as the ‘& scales.” We use these scales to determinesource of the propagators at the position of the operators we
our central values for matrix elements, and usethiescales  would need 2 sources for unsmeared operataqest for
to estimate the error introduced by the uncertainty in detersmeared operators
mining a. To calculate statistical errors, we use single elimination

Our method for calculatin@ parameters was developed jackknife in the following manner. On each jackknife
for calculatingBy with staggered fermiong20]. It has also  sample, we first match at the scaf€, then linearly interpo-
been used for Wilson fermiori21]. A detailed description late the results to physical kaon mass, and then evolve to the
of the latter application, and the extension to other operatorinal scaleuw=2 GeV, and, finally, take the ratio which de-
is given in Ref.[9]. Here we confine ourselves to a brief fines theB parameter. The error is then obtained from the
description of the features which are special to the presentariation between samples.
work. We end this section with some details specific to our par-

The essential feature of the method is the use of walticular lattices.
sources(i.e., sources confined to a single time-slice and ex- At 8=6, we use wall sources in Coulomb gauge, while
tended over the entire timeslicavhich are designed to cre- on the other lattices the sources are in Landau gauge. The
ate particles with specific quantum numbers. In the currenthoice of gauge should have no impact on the final reasit
applications we want to create only the lattice pseudo Goldlong as the nonlocality introduced by the gauge fixing does
stone pion at rest, and this can be accomplished using mot extend from the source to the operdtd8]) but might
linear combination of two wall sources, as explained in Refaffect the statistical errors.

[18]. The only other states created are rho mesons and ex- At 8=6, we use periodic boundary conditio®BCS in
cited pions ¢r'). Both of these are, however, considerably space, and Dirichlet bounday conditions in time. We place
more massive than the pseudo Goldstone pion, and their cothe wall sources next to the boundary, i.e.tat0 andt,
tribution can be largely removed by moving far enough away=39. The merits of this procedure have been discussed in
from the source in Euclidean time. Ref.[18]. We only note here that we use a plateau region of
The basic method is then to calculate ratios such as  t=10-29.
. The lattices a3=6.2 and 6.4 have too short an extent in
3 BVy(W(t1) 2y Qx(y, 1) W(t,)) time to follow the method adopted @=6. Instead we use
Br(t)= 8(W(t1)2y‘,A4(>7’,t)}(Ey‘uA4()7”,t)W(t2)>' PBCs i|_"| aII_ fou_r directions, having first periodically doubled
the lattice in time. We place wall sourcestat=0 andt,
=72, and use the plateau regivr 32—40. Note that the
Here the operators are the lattice versions of the continuurpropagator with source &=0 (t,=72) is, due to the PBCs
operators obtained after the matching explained in the previand doubling of the lattice, the same as if the source was at
ous section has been carried out. The wall sources are der=48 (t,=24). Because of this, and the fact that each
noted byW and are located at timeg andt,. The operators source produces pions propagating in both forward and back-
are placed at an intermediate timeatisfyingt, <t<t,, and  ward directions, we can make a second measurement with
are summed over th¥, spatial hypercubes. Finally, the ex- the plateau region at times=8-16. We treat these two
pectation values in Eq30) are averages over quenched con-results as independent in our jackknife error analysis.
figurations. To study possible sources of systematic errors due to con-

The expression in Eq30) is designed so that for large tamination from excited states or “off-shell” matrix ele-
enought—t; andt,—t it is independent of, and givesBy ments we have also made the following measurements. Tak-
directly. The point is that the exponential factors from Eu-ing the same two wall sources to lietat=0 andt,=24 we
clidean time evolution cancel if only a single state, here theuse the regiori=32—-40 to obtain an estimate of the “off-
pseudo Goldstone pion, contributes. This has to be true sepakell” matrix elements, i.e., those in which both of the pions
rately for the numerator and denominator, i.e., both musapproach the operator from the same side. Placing the
exhibit a “plateau” over intermediate times in which they sources at;=0 andt,=48, and considering the plateau
are independent df. Thus the signal can be improved by region att=23-24, we get an estimate of the on-shell ma-
averaging the numerator and denominator over the timérix elements having a greater contamination from excited
slices in this plateau. This is what we do in practice, usingstates, but a smaller contribution from off-shell matrix ele-
the same range of times for both numerator and denominatoments. Further discussion of these constructions and the as-
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TABLE II. Results forBx(NDR,2 GeV) at the physical kaon
mass, using thex scales. UN and SM refer to unsmeared and
smeared operators, respectively.

Operator

q*

8=6.0

$=6.2

B=6.4 a=0

UN
UN

SM
SM

1l/a
mla

1l/a
mla

0.7289)
0.7259)

0.681(6)
0.6946)

0.6779)
0.6699)

0.6476)
0.6556)

0.68524) 0.62820)
0.67724) 0.61420)

0.60415)
0.60615)

0.75 T T T T T T T T T T T T T

0.7

0.65 =~

Bi(NDR, 2 GeV)

Ratio UN/SM 1A
Ratio UN/SM  #/a

1.06911) 1.04613)
1.04411) 1.02114)

1.01832)
0.991(34)

08 . X Unsmeared —
- ¢ Smeared .

0 0.1 0.2
a® (Gev®)

sociated systematic errors is given in H&f. In practice, we
find that the various methods yield very similar results for
the B parameters we consider, and that these sources of error
are considerably smaller than others as discussed'lataus
we give no further details.

0.3

FIG. 1. Results foBg including extrapolation to the continuum
limit.

We can use our results to estimate the systematic errors
IV. RESULTS FOR By arising from the choice of lattice spacings, the truncation of
Using the methods described in the previous two sectionB€rturbation theory in the matching factors, and the contami-
we extract the continuurBy at =2 GeV for each lattice nation from excited states and off-shell matrix elements. We
spacing. The only feature of the analysis not discussed aboWRegin with the dependence on the choice of lattice spacings.
is the interpolation to the physical kaon mass. This we do byl hiS e estimate by comparing the results usingdreeales
fitting By itself (for our three mass pointso a linear func- (listed in Table 1) to those obtained using the scales deter-
tion of the squared lattice kaon masg ;. This is reason- mined fromm, . The values ofBy at each lattice spacing

able for staggered fermions because chiral symmetry corfEN@nge by no more than 0.002, and the maximum change in

strainsBy to have the same form as in the continuum and inthe extrapolated value is 0.004. Thus we tak@.004 for our

particular to be finite in the chiral limitL3,22. For degen- estimatt_a Qf this systematic error. This is much smaller than
erate quarks, the explicit form is the statistical errors. , _ _
The error due to the truncation of perturbation theory in
the matching factors can be estimated in two ways. The first,
discussed in Sec. Il, uses tlgg dependence of the result.
wherey=m2/(4f,)? is the usual chiral expansion param- We take the error to be the difference between the extrapo-
K “ lated results witlg* a=1 andg* a= 7. The table shows that

eter. For our range of . the y Iny contribution is well this is comparable to the statistical errors. The largest differ-

represented by a linear function. We note in passing that fogce i that for the unsmeared operators, and we take this for
Wilson fermions there is, in general, an additional term pro

g . - P our estimate, yielding= 0.014. This 3% error is a reasonable
portional toaly in Eq. (31) because of the explicit breaking ggtimate for a two-loop correction given that the one-loop
of chiral symmetry. , . matching corrections for unsmeared and smeared operators

We present results only for the scales, i.e., the lattice

. . . o are ~5-15%. Our estimate of this error turns out to be the
spacings determined by requiring thajs(2 GeV)=0.190.  game a5 that quoted in our preliminary red@l, although

These r_esults are collected in Table II, and Qisplayed N Figthe method we use here is more reliable, as explained in Sec.
1. We include the results of an extrapolation to the cony,
tinuum limit assuming quadratic dependenceaoNote that The second way of estimating the perturbative error is to

we do not have results for smeared operatoi8=a6.4. Our  compare the results using the two types of operator. If the
results are not extensive enough either to test whether theaiching factors were correct then they should yield the
dependence oa is indeed quadratic, or whether terms of 5me result in the continuum limit. We estimate the error as
higher order than quadratic are needed for our range of lag4if the difference between the smeared and unsmeared re-
tice spacings. The best confirmation of the validity of theg ;5 atg*a=1, and thus obtaint0.012. In fact, this is
quadratic dependence comes from the work of the JLQCIjely to be an overestimate of the difference in the results
Collaboration, who have more extensive results than ours fof.om the two operators. This is because there is an extra data

both the unsmeared operator and its gauge-invariant VerSi%int at 8=6.4 for the unsmeared operators, and, as can be

(7). seen from Fig. 1, this shifts the extrapolated result away
from that of the smeared operator. Perhaps a better way of
estimating the error is to take the ratio of the results using the
two operators, and extrapolate this to the continuum limit.
This removes the data point #&=6.4 (since we have no
smeared result thexeand also accounts for the correlations

Bx=B[1—3y In y+by+0(y?], (31

“The same is not true for the auxiliary parametgs and By
defined in Ref.[22]. For these we have no useful results @t
=6.2 and 6.4.
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between the results for the two operators. The results for thigith our result ofBx=0.62+.03 is gratifying, since the op-
ratio are given in Table Il, and show that although the result®rators we use have entirely different perturbative and power
from the two operators are significantly different at firiie  corrections.

they are consistent in the continuum limit. Because of this, We note that both calculations are systematics limited,
we take our estimate of the perturbative error from the deand that of the systematic errors, the most important one
pendence omj*. guoted by JLQCD is estimated by comparing results for dif-

Finally, we discuss the errors due to contamination in theferent operators. In their preliminary rep¢23], JLQCD as-
matrix elements from excited states and off-shell contribucribes such differences to terms of ordegs(u)?, where
tions. The only excited state which is allowed to contributex=2 GeV is the conventional scale at which the answer is
by the symmetries is the’, i.e., the radially excited pion. quoted. On this point we disagree in principle. We certainly
There are no contributions from mesonga point not real- agree that errors of orderys(u)" are introduced when one
ized in Ref[5]). As mentioned in Sec. lll, the size of the first usesn-loop evolution to the final scale, but these corrections
effect can be estimated by comparing the results with the tware universal and should not appear as differences between
sets of sourcest; =0, t,=72 versust;=0, t,=48), while lattice operators. If, for example, we compare our one-loop
off-shell contamination can be estimated by studyBqt) corrected smeared and unsmeared operators, the connection
in regions where the off-shell contributions dominate. Webetween the two is
find that the combined shift iBy , after averaging the results
from the two operators, and extrapolating to the continuum M) = RMw) {1+ Ol aws(q*)4]+0(ad)}, (33
limit, is =—0.003. Since this estimate is approximate and
small, we do not include this shift in our final result, but where we have taken the samg=K/a in renormalizing
instead include it as part of the above overall systematidoth operator§.Sinceays(K/a)? vanishes aa— 0, we con-
error. clude that when correctly extrapolated, the operators should

Putting this all together, we can now quote our final re-give the same result @=0. Of course one would need
sult. For the central value we usgf =1/a, and take the rather precise data to make a fit including thgs(K/a)?
average of the results from the two operators. We use thterm, but in principle it could be done if more precision were
larger of the statistical errorghat for the unsmeared opera- required. If one uses a simpé& extrapolation, however, the
tors). And we estimate the overall systematic error by com-a? term in Eq.(33) will not extrapolate to zero, but instead
bining linearly those from the choice of lattice scal@€04,  to an artifact of sizevys(q*)?.
from the truncation of perturbation theo(®.014, and from
the contamination$0.003. Thus we quote V. RESULTS FOR B32 AND B2

B (NDR,2 GeVj=0.62+-0.02stay+0.02sysd. (32) We have evaluate®3? and B3 using almost the same
method as foBy . The only difference concerns the extrapo-
This result is consistent with our preliminary number quotedation to the physical kaon mass. This we have done sepa-
in Ref. [5] (0.616+0.020=0.017), although the precise rately for matrix elements appearing in the numerator and
agreement is somewhat fortuitous given that our method oflenominator of the definitions Eq&) and(7), prior to the
matching has been improved. evolution fromg* to u=2 GeV.

Our results for the unsmeared operator can be checked by Our results are summarized in Table Ill. The most striking
comparing them to those from the JLQCD Collaborafigh ~ feature is the very strong* dependence of the results for
They have results g8=6.0, 6.2, and 6.4, on lattices of the unsmeared operators. Indeed, as one goes ffom=/a to
same spatial sizes as ours, but with statistical errors two ol/a, which causesiys(q*) to increase by roughly 40%53%
three times smaller. They also have results on larger latticeshange sign because the negative one-loop matching contri-
at =6 and 6.4, and at smaller values gf A direct com-  bution exceeds the tree-level contribution. Clearly, we can-
parison is possible because they use a method of matchimpt use one-loop matching for the unsmeared operators. We
and determiningyirs Which is very close to ours if we set stress that the large perturbative corrections for unsmeared
g*=1/a. At =6 and 6.2, our results are larger by aboutoperators do not invalidate the results for smeared operators.
0.025, a two standard deviation difference. A=6.4 our  There will always be choices of discretization procedure for
number is consistent with theirs from a®38patial lattice. ~ which the perturbative series is poorly convergent at the lat-
They find, however, thaBy decreases on larger lattices, sug-tice spacing one is working.

gesting that our number @= 6.4 may be afflicted by finite For completeness we mention that we expect a similar
size errors. Nevertheless, our extrapolated value is only 1.Broblem to render the gauge-;/r;varlant unsmeared operators

standard deviationg.e., 0.03 above theirs. This comparison unsuitable for a calculation @7 3. The dominant contribu-
gives us confidence that our results are correct within the
quoted errors, and in particular that our procedure of dou-

bling the lattice in the time direction has not introduced ad- syq can improve the agreement by dropping our unsmeared data

ditional systematic errors. . point at B=6.4, which, as noted above, might be afflicted with
The JLQCD Collaboration has also used the gaugefinite size errors.

invariant version of the unsmeared operator. Averaging this éysing a different choice off* for the two operators would lead
with the Landau gauge operator, they quote a preliminaryo an additional factor coming from the evolution between the two
result Bx(NDR,2 Ge\)=0.587+0.001sta)+=0.0174sysb, or scales. However, since this factor tends to unity in the continuum
adding errors in quadratur8&,=0.59+.02. The agreement limit, our conclusion is unaltered.
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TABLE Il Results for B3%NDR,2GeV) and the PP matrix element, with no particular constraint from
BF*(NDR,2 GeV), at the physical kaon mass, usingcales. chiral symmetry, presumably yielding more moderéxg)
errors.
Operator q* B=6.0 B=6.2 a=0
/.
B3” VI. NONPERTURBATIVE RESULTS
Unsmeared ~ ® —1.951(09) -—1.097(15) FOR MATCHING CONSTANTS
Unsmeared  7/a 0.60606) 0.64506) It is clear from the results of the previous two sections
Smeared o 0.98905) 0.82316)  0.61530) that using finite order pert_urbatic_)n theory to match lattice
Smeared nla 1.08506) 0.90314)  0.67432) and continuum operators is an important source of uncer-
tainty in results for matrix elements. In this section we in-
B2 vestigate the accuracy of perturbative matching factors by

Unsmeared B —1486(11) —0.689(15) calcula}tlng some of trr:em nonpertu;b?]nvely. In partlcular, Wh§
Unsmeared  m/a 0.82305) 0.86405) are able to assess the accuracy of the _perturbatl\_/e matching
factor for the quark masag,,, which is an important ingredi-
Smeared H 1.24006) 1.03q16) 0.76637) ent in determining continuum quark masses.
Smeared wla 1.28806) 1.07617)  0.81Q39) The basic idea is simple, and has been applied extensively
with Wilson fermions. A given continuum operator can be
discretized in different ways, each discretization having an
tion to the matrix elements comes from tRé® part of the associated matching factor. Only if these matching factors
operator. Since this part of the operator is local, and does natre chosen correctly will the different choices yield the same
require gauge links, it is the same as the corresponding pamatrix elements. This allows a nonperturbative determina-
of the unsmeared operator. But it is this part of the un-ion of the ratio of matching factors. Note that in such ratios
smeared operator which leads to the bulk of the large onethe anomalous dimension factors cancel, implying that the
loop matching corrections seen in Sec. Il. Although in prin-ratios are finite functions of the lattice coupling.
ciple it is possible these large corrections will be canceled by In this section, we apply this idea to the pseudoscalar and
the as yet uncalculated contributions from the other parts ofixial densities. It could, in principle, be applied also to four-
the gauge-invariant operator, this seems unlikely in practicefermion operators such &gy, but this requires studying a
The situation is much improved for the smearedmatrix mixing problem, and thus using several external
operators—they* dependence, while more significant than states, and is beyond the scope of the present work. We only
for Bk, is only at the 10% level. This is a much larger consider operators for which the matching is diagonal.
uncertainty than the statistical errors or that due to the choice Our notation in this section differs from that used above.
of lattice spacings, or that from the contamination by excited/Ve useP"N, for example, to refer to the bare lattice operator
states or off-shell matrix elements. Thus we do not give deconstructed of unsmeared fields:
tails concerning these other uncertainties. For our final re-
sults, we quote

PUN= (1N x2¥(75® £5) xp" - (39)

B3¥%(NDR,2 Ge\)=0.62+0.03stad+0.06sys), (34)
In other words, we do not include the matching factor in the
BI2NDR,2 GeVj=0.77+0.04sta)=0.04sys), (35) ?fg;g““on of PP, The matching equation becomss. Eq.

where the systematic error is our estimétased on the*
variation) of the uncertainty due to the truncation of pertur- peont=zaNpUN[1 + O(a?)], (39
bation theory.
It is interesting to compare our staggered results with ()
those from Wilson fermions. While a continuum extrapola- UN_ ams _ (0 * UN 2
tion is not yet available, the results At=6.0[9] are Zp =1+ 47 [=ve" In(g"a)+cpT]+O(a”).
(40)
B2%(NDR,2 GeV,Wilson=0.58+0.02+0.07, (36)
Here we have used the fact that for the matrix elements of
Bg’Z(NDR,Z GeV,Wilson=0.81+0.03+0.03. (37 interest the corrections are quadratic in the lattice spacing.
Similar definitions apply tPS¥, AYN and ASM. We also
The central values and error bars have been determined eed to introduce the gauge-invariant version of the axial
the same way as in this paper. Obviously the agreement ieurrentA®' | which is the unsmeared current with appropriate
already rather good, and indicates indirectly that @@)  gauge links included. Note tha@®'=PYN, ie., the un-
errors in the Wilson case are not particularly large. This is insmeared pseudoscalar density is already gauge invariant
contrast to the case @y, where the explicit breaking of since it is local.
chiral symmetry disrupts the delicate cancellation between The quantites we determine nonperturbatively are
the VV and AA matrix elements, and gives dramatically Zp"/zp", Z3¥/ZaN, andZg{N. The first we obtain starting
largeO(a) errors. ForB; andBg the result is dominated by from the result
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(O|P°°“1W>=(O|ZHNPUN|EOG>[1+O(az)] TABLE IV. Nonperturbative and perturbatlye results for ratios
of matching constants. Quadratic extrapolationsate0 use «

:<0|Z§MPSM|R?3>[1+ O(az)] (41) scales.

from which we find the nonperturbative estimate Quantity Method p=60  p=62  a=0
Nonpert 1.1315) 1.0601) 0.9726)
s
Zg" _ (0|PUMKg) (14 0(8D)] “2 ZSVizUN  Pert@*=1/a)  0.970 0973 0977
29 L o[PMKY : Pertq*=m/a)  0.979 0.981  0.983
_ o , Nonpert 224611 1.8616) 1.38019)
The equations foZx"/Zy" are identical except tha s ZswzUN  pergr=1/) 1462 1416 1.359
replaced byA4. The one-loop perturbative results for the Pertq* = m/a)  1.323 1.301 1.272
relevant ratios are
z3" aws(9¥) . .
Son =| 1+ —,——(c3"—cp" Ro(t)= W TPy D)5 PNy DW(L)
P p(t)= = = :
i (W(t) 2Py, 1)(2 Py HW(t2))
aws(9”) (4
=1+ == x30.2532, (43)

For t;<t<t, this should be independent bfand gives di-
—r— rectly (Za¥/zpV)? aside fromO(a?) corrections. We aver-
P x1.9384. ageRP(t_) over th_e same plateau regions as for Bﬁ_param-
(44) eters. Similar ratios are used for the other quantities.
The resulting data fozz"/zpN and Z3V/zyN are well

The determination oz proceeds slightly differently. represented by a linear function wf; . This dependence on
We note that the gauge-invariant axial current is partiallymﬁ is anO(p?a?) discretization error, because any physical
conserved on the lattice, implying th&@5'=1. Thus we dependence cancels in the ratio of matrix elements, We re-
could determineZy" by taking ratios of matrix elements of move this error by EthaPOlJ'E}ting to the chiral limit. We do a
A% to those ofA}™. While we have not calculated matrix S|g1|!ar extrapolation for ", although the dependence on
elements using\;;', we do have available the matrix ele- Mk iS much weaker, presumably because of the sih(
ments of its divergence,A%'=2mP®'=2mpPW. This is  factorin Eq.(45. _
sufficient as long as the matrix element involves nonzero ©Our nonperturbative results for the ratio of smeared to
momentum transfer. Note that the lattice partial conservatiofnSmeared matching factors after chiral extrapolation are

equation is exact as long as we use the appropriate latticgPllected in Table IV. What is most striking is the substantial
derivative[24]. Putting this all together we arrive at dependence on lattice spacing, particularly for the ratio of
Zp's. This is due to a combination dd(a?) discretization

errors and the variation of the perturbative matching factors
[1+0(a%], (45  which depend omm?(a). To analyze these results we assume

SM
ZA

Zn _ ams(a*) oy
zZN

i¥y A =1

UN

UN
Zp

1 — sinh(my)(0|AYNK2)
the following form for the ratios

2(mg/ug){0|PUNIKZ)

wherem, /U, is tadpole improved quark mass, amg is the Ratiolnonperj=Ratio one loopg*)+a®A?,  (48)
mass of theKoe. All quantities on the RHS of this equation

are in lattice units. We have used simij on the RHS, Where the one-loop results are given above, ands an
rather tharmy itself, because if we replao@ef” by A4GI then u_nknown constant. In other words we ignore completely
the ratio on the RHS is exactly equal to unity. In other higher powers of, and assume that higher powerscoére
words, sinhin) is the appropriate kinematical factor for the Well represented by the appropriate choicebf=K/a. The
exactly conserved current. We choose to keep it for the undifference ratiénonperj—ratiolone loop should then, for
smeared current in the hope that it will reduce the size of théhe right choice ofy*, extrapolate to zero in the continuum

O(a?) terms. The perturbative expression to which E) limit. Conversely, one could regard this procedure as provid-
should be compared is ing an approximate nonperturbative definition g@f. To

show the individual variations in the perturbativand non-
1 aws(g*) 4 ) perturbative results we give, in Table IV, the continuum
Z_,LAJN =1+ " an §(T’ —9.17479|. (46)  value for each obtained by linear extrapolatiorafn We do
this for our two standard choiceg*a=1 and w. What we
Note that if we had used the average link in Landau gauge t§nd remarkable is that, modulo the simplifying assumption
determineu,, rather than the average plaquette, tfi’éf* of Eq. (48), the nonperturbative and perturbative predictions
=1 at one-loop order.
We determine the required ratios of matrix elements using
the quantities previously used to determine the vacuum satu-"Note that we are here making use of the fact that our extrapola-
ration approximants appearing in tBeparameters. For ex- tion to the continuum limit does not remove terms which vary loga-
ample, consider the ratio rithmically. This is an example of the problem discussed in Sec. IV.
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TABLE V. Results for 1ZN. accept this result then we obtain the partly nonperturbative
estimaté Z,,=1.462<1.136=1.66. The point we wish to
Method B=6.0 B=6.2 B=6.4 stress is that this is not very different from the one-loop
Nonperturbative 0.9789) 1.01009) 0.99820) estimate of 1_.60. In_partlcular, the difference is much sn21aller
. than the naive estimate of the two-loop contribution<0.6
Pert @ =1/a) 0.986 0.987 0.988 =0.36 based on the assumption of geometric growth. This
Pert (* = mr/a) 0.990 0.991 0.991 ' P 9 9 :

analysis thus suggests that the one-loop perturbative value of
Z., used in the analysis of quark masses is good to about 5%
for 3=6.0 provided one usesys(q* ~1/a).

agree if we us@* ~1/a but not forq* ~a/a. The discrep-
ancy forgq* = /a is particularly significant foz3"/zpN . VIl CONCLUSIONS

The results for 5", given in Table V, behave very
differently. There is very little dependence on the lattice N this paper we have presented a variety of results for
spacing—presumably because the unsmeared current is vef§fak matrix elements using staggered fermions. Our major
similar to the gauge-invariant current for which all the num-0CUS has been on the importance of using a variety of dis-

bers in the table would be unity independent of lattice spacSrélizations of continuum operators. There are two reasons
ing. In fact, the errors are such that an extrapolatiora to for doing so. First, comparing results with different lattice

2 operators gives an estimate of the uncertainty in the match-
=0 is not useful, and so we compare our results to pertur: . :

: . . ing factors between continuum and lattice operators.Byor
bation theory at each lattice spacing. The results are reaso

. o . this may be the dominant source of error in future calcula-
ably consistent, but we cannot distinguish between dlfferenﬁons aside from that due to quenching. Second, for some

values ofqg™ in this case. _ _operators the perturbative matching factors are not conver-
An important application of the above results is to esti-gen; at present couplings, and so one must use different dis-
mate the reliability of the one-loop result for the matching cretizations. It turns out that the smeared operators have uni-
factor Z,,. This factor converts the lattice results for quark formly moderate perturbative corrections. Using them we are
masses to a continuum scheme suctM& as discussed in able to obtain the first results f@>? and By using stag-
Ref.[12]. The perturbative result after tadpole improvementgered fermions.
is Our results for theB parameters confirm and extend ex-
isting lattice results. In particular, foBx we find that
smeared operators give results consistent with those from
1 unsmeared and gauge-invariant operators. We confirm the
low value found in our preliminary study], a result which
has been improved and extended by the JLQCD Collabora-
EC T N tion [7]. For B3? and B3? we find results consistent with
=1-— [ In(@*a)+cp7], (49 those using Wilson fermions. All these numbers are impor-
tant inputs into analyses attempting to constrain the Cabibbo-
Kobayashi-MaskawdCKM) matrix. It is encouraging that

where for simplicity we have chosen to consider the caséhe errors we are considering are at the few percent level. It

where the final scale. equals the matching scate. The Is important to stress, however, that we are still using the
one-loop correction t&,, is large at typical lattice spacings. quenched approximation, and also working with a kaon com-

_ Ol — . posed of degenerate quarks. For a discussion of the impor-
e e o o oo, ECE ftese approimations see REELY
can. however rewnitd.. as ' As an offshc_)ot of our study, we haye calculated sgveral
' ' m ratios of matching factors nonperturbatively. These ratios are
finite functions of the lattice coupling, and thus allow a test
of tadpole improved perturbation theory. We find that one-
7 | 1 loop perturbation theory works well if we set the scale in the
Zm=<i) (_) (50) one-loop qoypllngaM—S(q*) to beg*=1/a, b_ut not forg*
Z =/a. This is consistent with the expectations of Hd)].
This conclusion is, however, preliminary because we have
results only at two lattice spacings. To convincingly disen-
The results of Table IV show that the bulk of the perturbativetangle discretization errors from perturbative corrections will
correction lies in the first factoZp"/ZpN. At g=6 it is ~ require precise results at several lattice spacings.
1.462, while the second factor is 1.188gain for u=q* We have used the results for ratios of matching factors to
=1/a). Thus, one would expect that the dominant source offake a partly nonperturbative estimate of the size of the
higher order terms iz, is the first factor, and that the un-
certainty which they introduce could be substantially reduced
by obtaining a nonperturbative estimate of this factor. We 8t js not advantageous to directly use the nonperturbative results,
have attempted such an estimate above, with the preliminary.g., z5M/z9N=2.245 at 3=6. Doing so introduces additional
conclusion that perturbation theory witf = 1/a works to  O(a?) errors which one would then have to remove by extrapola-
within a few percent, aside from discretization errors. If wetion.

Z(=0%)= —gg————
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matching factor for the quark mag&s,. Our result is~5%  lattice spacings, it may be necessary to improve the stag-

higher than the one-loop perturbative result. This is a smalfered fermion action.

enough change that it does not alter the essential conclusion

of Ref.[12], namely that light quark masses are considerably ACKNOWLEDGMENTS
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