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Staggered fermion matrix elements using smeared operators
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We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared
operators extend over a 44 hypercube, and tend to have smaller perturbative corrections than the corresponding
unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles
at b56.0, 6.2, and 6.4. Extrapolating to the continuum limit, we findBK(NDR,2 GeV)50.6260.02(stat)
60.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and con-
tinuum operators due to the truncation of perturbation theory at one loop. We do not include any estimate of
the errors due to quenching or to the use of degenerates and d quarks. For theDI 53/2 electromagnetic
penguin operators we findB7

(3/2)50.6260.0360.06 andB8
(3/2)50.7760.0460.04. We also use the ratio of

unsmeared to smeared operators to make a partially nonperturbative estimate of the renormalization of the
quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the
coupling is chosen to beaMS(q* 51/a). @S0556-2821~98!05201-1#

PACS number~s!: 12.38.Gc, 12.15.2y, 13.20.Eb, 14.65.Bt
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I. INTRODUCTION

An important goal of lattice QCD is to provide reliab
calculations of electroweak matrix elements. The ma
sources of error in present calculations are the use of fi
lattice spacing, the use of one-loop perturbation theory
match continuum and lattice operators, and the use of
quenched approximation@1#. In this paper we address th
first two errors for calculations using staggered fermions
particular, we test the efficacy of ‘‘smeared’’ operators@2#.
These extend over a 44 hypercube, and thus are larger th
the usual~‘‘unsmeared’’! operators which are confined to
24 hypercube. Nevertheless, in many cases they are clos
the continuum operators in the sense that the one-l
matching coefficients are closer to unity.

We apply these operators to the study of three quantit
The first is the kaonB parameterBK which we study using
both smeared and unsmeared operators. The initial mo
tion for introducing smeared operators was the discovery
large discretization errors in the results for unsmeared op
tors @3,4#. At the time, it was unclear whether the discretiz
tion errors were proportional to the lattice spacinga or to a2

~up to logarithmic corrections!. The smeared operators we
designed to reduce possibleO(a) errors—they match onto
continuum operators with no errors ofO(a) at tree level. It
was subsequently realized that theO(a) parts of the lattice
operators do not contribute toBK , and that the errors ar
automatically ofO(a2) for both the unsmeared and smear

*Email address: kilcup@physics.ohio-state.edu
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operators@5–7#. This theoretical argument has since be
tested numerically@7,8#. Thus the interest in using th
smeared operators is that they provide an estimate of
error in the matching of continuum and lattice operators. T
results from different operators should differ at finitea, but
agree upon extrapolation toa50, up to higher order pertur
bative corrections.

Preliminary results from this study ofBK were presented
in Ref. @5#, and one of our purposes here is to present fi
results. Although, by present standards, these come fro
small statistical sample, the errors are nevertheless s
enough to assess the impact of smeared operators. We
also improved our estimates of the error due to the trunca
of the perturbative matching factors, using the method int
duced in Ref.@9#.

Our second application is the calculation ofB7
3/2 andB8

3/2.
TheseB parameters, and in particularB8

3/2, determine the
size of the electromagnetic penguin contribution toe8. In
contrast toBK , the use of staggered fermions for these qu
tities offers no clear advantage over Wilson fermions. Ho
ever, since the systematic errors in the results with the
types of fermion are different, an important check of t
reliability of the lattice calculations is to show that the tw
formulations give consistent results in the continuum lim
To this end we compare the staggered data with the re
results obtained using Wilson fermions atb56/g256 in the
quenched approximation@9#.

The calculation ofB7
3/2 andB8

3/2 demonstrates the impor
tance of using several discretizations of continuum operat
It turns out that one cannot use the unsmeared operators
cause the one-loop correction to the matching coefficie
approaches 100%@10#. On the other hand, the one-loop co
rections are much smaller for the smeared opera
1654 © 1997 The American Physical Society
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57 1655STAGGERED FERMION MATRIX ELEMENTS USING . . .
(;25%), and we can use them to calculateB7
3/2 and B8

3/2.
The only way in which one could use the unsmeared op
tors would be to develop a non-perturbative method of
termining the matching coefficients~which is possible in
principle using external quark states@11#!.

Our final application concerns the calculation of t
matching relation between the lattice and continuum regu
ization schemes, particularly in cases where the reliability
perturbative estimates is questionable. The ratio of s
matching factors for two different discretizations of an o
erator can be estimated nonperturbatively by taking ratio
appropriate matrix elements. The nonperturbative result
obtained can be used to test the reliability of the one-lo
perturbative estimates. In particular, one can use the re
to fix the scaleq* at which to evaluate the coupling consta
entering into the perturbative expressions. For the pseu
scalar density we find thatq* '1/a. Our conclusions are
however, preliminary, since we do not have results at eno
values of lattice spacing to check the extrapolations we
to remove discretization errors.

We use this method to assess the reliability of the ma
ing factor Zm . Zm relates the bare lattice mass to the co
tinuum mass in, say, the modified minimal subtraction (MS)
scheme, and is a crucial ingredient in the calculation of c
tinuum light quark masses from the lattice. Recent work
suggested that continuum quark masses are smaller than
viously thought, but this is based on trusting one-loop p
turbation theory forZm @12#. For staggered fermions, th
one-loop contribution toZm is large, roughly a 60% correc
tion at b56, even after tadpole improvement@2#. This casts
doubt on the reliability of the perturbativeZm , and therefore
also on the extracted value of quark masses. We find, h
ever, that our partly nonperturbative estimate suggests
the one-loop evaluation is close to the correct answer.

The organization of this paper is as follows. In the follow
ing section we describe the method we use to match c
tinuum operators to lattice operators composed of stagg
fermions. In Sec. III we give a short description of the n
merical methods and data sample. The three subsequen
tions contain our analysis and results forBK , B7,8

3/2, and the
nonperturbative ratios of matching factors, respectively.
close with some conclusions.

II. THEORETICAL REVIEW

In this section we explain our method of calculatingB
parameters using staggered fermions. This requires com
ing a variety of results already in the literature, and we foc
here only on the essential details. For a more extensive
scription of the method see Ref.@13#.

The continuum operators of interest are

QK5 s̄ agm
L da s̄bgm

L db , ~1!

Q7
3/25 s̄ agm

L da@ ū bgm
Rub2 d̄ bgm

Rdb#1 s̄ agm
L uaūbgm

Rdb ,
~2!

Q8
3/25 s̄ agm

L db@ ū bgm
Rua2 d̄ bgm

Rda#1 s̄ agm
L ubūbgm

Rda .
~3!
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wherea,b are color indices andgm
R,L5gm(16g5). All op-

erators are in Euclidean space, and we use Hermitiang ma-
trices. The superscripts onQ7,8 indicate that these are theI
53/2 parts of the operatorsQ7,8, i.e., theI 51/2 component
has been removed. We make this restriction because the
culation of the matrix elements of theI 53/2 parts is much
simpler. In the limit of exact flavor SU~3!, which is the limit
we work in here, theI 53/2 parts give rise only to ‘‘eight’’
diagrams, i.e., those in which the quark fields in the opera
are contracted with fields in the external mesons. These
the same type of diagrams which contribute to the ma
element ofQK . The I 51/2 parts, by contrast, give rise als
to ‘‘penguin’’ or ‘‘eye’’ diagrams, which are much more
difficult to calculate. The restriction to theI 53/2 parts of
Q7,8 does not, however, diminish the phenomenological
terest in the results, becauseQ7,8

3/2 are the only operators
which give an imaginary part to theK1→p1p0 amplitude.

To form B parameters we also need the matrix eleme
of the axial and pseudoscalar densities:

Am5 s̄ agmg5da , P5 s̄ ag5da . ~4!

We can then define

BK5
^K0uQKuK̄0&

~8/3!^K0uA4u0&^0uA4uK̄0&
, ~5!

B7
3/25

^p1uQ7
3/2uK1&

~2/3!^K0uPu0&^0uPuK̄0&2^K0uA4u0&^0uA4uK̄0&
,

~6!

B8
3/25

^p1uQ8
3/2uK1&

2^K0uPu0&^0uPuK̄0&2~1/3!^K0uA4u0&^0uA4uK̄0&
.

~7!

All external particles have been assumed to be at rest.
brevity, we have used SU~3! flavor symmetry to rewrite all
the denominators in terms of kaon matrix elements. N
that, in general, both numerators and denominators of th
ratios depend upon the renormalization scalem and the
scheme used to define the operators. When quoting phy
values we use the naive dimensional regularization~NDR!
scheme, i.e.,MS renormalization combined with a particula
set of rules for treatingg5 away from four dimensions, and
choose the renormalization scale to bem52 GeV.

The extraction of the above matrix elements using st
gered fermions is complicated by the mixing between
spin and flavor degrees of freedom. As explained in Re
@10,13#, we proceed in two stages. We first match the co
tinuum matrix elements onto those in an ‘‘enlarged’’ co
tinuum theory, and then match from that theory onto t
lattice. The enlarged theory differs from QCD by havin
eight copies of each physical quark. The eight copies of
strange quark spinor are collected into two 434 matrices
Sb,b andSb,b8 , whereb is a spinor index, andb5124 is a
‘‘staggered-flavor’’ index. Similar fields are constructed f
the up and down quarks. The correspondence between m
elements in the continuum and in the enlarged theory is
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^0uA4uK̄0&5A 1

Nf
^0u S̄~g4g5^ j5!DuK̄G

0 &, ~8!

^K0uA4u0&5A 1

Nf
^KG8

0u S̄8~g4g5^ j5!D8u0&, ~9!

^0uPuK̄0&5A 1

Nf
^0u S̄~g5^ j5!DuK̄G

0 &, ~10!

^K0uPu0&5A 1

Nf
^KG8

0u S̄8~g5^ j5!D8u0&, ~11!

^K0uQKuK̄0&5
2

Nf
^KG8

0u@~V2A!3P# I

1@~V2A!3P# II uK̄G
0 &, ~12!

^p1uQ7
3/2uK1&5

1

Nf
^KG8

0u2@~P2S!3P# I

1@~V1A!3P# II uK̄G
0 &, ~13!

^p1uQ8
3/2uK1&5

1

Nf
^KG8

0u2@~P2S!3P# II

1@~V1A!3P# I uK̄G
0 &. ~14!

We have used flavor symmetry to rewrite all matrix eleme
in terms of those between external kaon states. The nota
for matrix elements in the enlarged theory is that of Refs.@2,
10#, and we give only a brief summary. The matrices appe
ing in bilinears are tensor products of spin and stagge
flavor matrices. For example, (g5^ j5) indicates a pseudo
scalar density with staggered-flavor matrixg5 . The states
uK̄G

0 & and uK̄G8
0& are those created from the vacuum

D̄(g53j5)S andD̄8(g53j5)S8, respectively. The states ar
normalized, which leads to the factors ofNf54, the usual
multiplicity factor for staggered fermions. The subscriptG
indicates that these states are the pseudo Goldstone bo
corresponding to the axial U~1! symmetry which is unbroken
when one discretizes the enlarged theory using staggered
mions and takes the chiral limit. The notation for fou
fermion operators is from Ref.@10#. For example,@(V2A)
3P# I represents the one color loop contraction of the fo
fermion operator with spin structuregm•gm2gmg5•g5gm ,
and in which both bilinears have staggered flavorg5 . Fi-
nally, the factor of 2 on the right-hand side~RHS! of Eq.
~12! arises from the difference in the number of Wick co
tractions in QCD and the enlarged theory due to the use
‘‘primed’’ quarks in the latter theory.

All these equalities hold identically between the quench
versions of the two theories. In the presence of internal
mion loops, they hold if, in the enlarged theory, each loop
multiplied by 1/8, i.e., the fermion determinant is taken
the power 1/8.

The next step is to relate the operators in the enlar
continuum theory to those in the corresponding latt
theory. The enlarged theory has been chosen so that it is
continuum limit of a discretized theory in which one uses
s
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r-
d-

ons
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-

of

d
r-
s

d
e
he

single staggered species for each 434 matrix field, e.g.,xS
for S and xS8 for S8. This means that the relation betwee
operators is simple at tree level. For example, using the
tation of Ref.@2#,

S̄~g5^ j5!D5 x̄ S~g5^ j5!xD@11O~a!1O~as!#.
~15!

Here (g5^ j5) is that matrix in the space of possible pos
tions in a 24 hypercube which corresponds to the continuu
spin-flavor matrix (g5^ j5). Similar relations hold for the
four fermion operators@10#.

In this paper we use one-loop perturbation theory
match operators in the enlarged continuum theory to those
the lattice. In other words, we include the terms ofO(as) in
equations such as Eq.~15!. More precisely, we use the
‘‘horizontal matching’’ procedure discussed in detail in Re
@9#. This consists of two steps. We first match the lattice a
continuum operators at an intermediate scaleq* ;1/a using

Oi
cont~q* !5Oi

lat1
aMS~q* !

4p (
j

@2g i j
~0! ln~q* a!1ci j #Oj

lat

1O~a2!1O~a!. ~16!

Here Oi
lat are bare lattice operators,g (0) is the one-loop

anomalous dimension matrix, and theci j are the one-loop
matching coefficients. We give, below, numerical values
the ci j of interest. The second step is to evolve the res
from q* to the final scalem52 GeV using the continuum
two-loop anomalous dimension matrix. The two-loo
anomalous dimensions for the continuum operators of in
est are collected in Ref.@9#, and we do not repeat them her

The point of this procedure is to account for the fact th
there are two scales in the problem: the matching scaleq*
;1/a, and the final scalem. These can differ substantially—
indeed the ratioq* /m can be as large as 10 in our calcul
tion. The coupling constant can thus be quite different at
two scales, and it is important to make sure that the app
priate coupling is used at each stage. Furthermore, it
comes necessary to sum up the leading logarithms ofq* /m.
Both of these requirements are accomplished by horizo
matching. The scale in the coupling in the first step should
q* , and the renormalization group evolution in the seco
step sums up the leading logarithms. Of course, since
truncate perturbation theory, there are errors in both step
the matching relation~16! the truncation errors are o
O@as(q* )2#, while the errors in the continuum evolution a
proportional to bothas(q* )2 and as(m)2. We note, how-
ever, that the errors from the continuum evolution are
same for any choice of lattice discretization of the continu
operator. This point will be important in our discussion
results forBK using different lattice operators.1

To use horizontal matching we need to choose the in
mediate matching scaleq* . If one worked to all orders in
perturbation theory, the final result would be independen
q* . This is not true if one truncates perturbation theo

1For further discussion of horizontal matching, and in particular
its relation to the exact matching formula of Ji@15#, see Ref.@9#.
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different choices lead to results differing byO@a(q* )2#.
One should chooseq* to be, roughly speaking, the averag
momentum flowing through the quark-gluon vertices in t
matching calculation@16#. It is difficult, however, to make
this into a precise prescription for matching calculations
volving operators with nonzero anomalous dimensions. T
only method we know of was proposed in Ref.@9#, and in-
volves applying the Brodsky-Lepage-Mackenzie~BLM ! pre-
scription of Ref.@17# to the calculation of the two-loop lat
tice anomalous dimension matrix. This calculation has
been done, and so we have chosen to use a range of v
for q* . Since the lattice and continuum operators are c
structed to have the same matrix elements at long distan
the dominant contributions to the matching calculation
from momenta near the lattice cutoff~as long as the con
tinuum renormalization point is also of this size!. Thus we
takeq* 5K/a with K a constant. Since we use tadpole im
proved operators we expect thatK'1 rather thanK'p, as
explained in Ref.@16#. So we have chosenq* 51/a for our
central values, and usedq* 5p/a in order to estimate the
uncertainty due to the truncation of perturbation theor2

This is certainly a crude estimate, but it is the best that
can do.

In our preliminary analysis ofBK we did not use horizon-
tal matching, but rather used the one-loop matching rela
Eq. ~16! connect directly from the lattice to the final scalem
@5#. To estimate the truncation error we took the differen
between the results of usingas(m) andas(q* ) in the match-
ing equation. Our present methods both of matching and
estimating the truncation error are more reliable, although
we will see below, the final answer is little changed.

The MS coupling constant appearing in Eq.~16! is deter-
mined using the method of Ref.@16#, which incorporates
tadpole improvement. We first solve

2 ln h5
4p

3
aV~3.41/a!@121.185aV~3.41/a!# ~17!

for aV , whereh is the expectation value of the plaquet
normalized to be unity in the continuum limit. We then co
vert to theMS scheme using

aMS~3.41/a!5aV~e5/63.41/a!~112aV /p!. ~18!

This coupling is then run to other scales using the two-loob
function.

The lattice operators we use are of two types: the stand
operators, which are contained in 24 hypercubes~and which
we refer to as ‘‘unsmeared’’ operators!; and the ‘‘smeared’’
operators introduced in Ref.@2#, which live on 44 hyper-

2Reference@16# advocates the use of a different coupling const
aV , rather thanaMS . aV is defined in terms of the quark-antiqua
potential. We prefer to useaMS because this is the scheme used
continuum calculations of coefficient functions, and the match
formulae are simpler if one uses the same coupling in the c
tinuum and on the lattice. The two couplings are quite similar—
choice of q* 51/a in the MS scheme corresponds to usin
aV(1.6/a). This is indeed a typical value forq* for tadpole im-
proved quantities.
-
e

t
ues
-

es,
e

e

n

e

of
s

rd

cubes. The smeared operators have the same form a
unsmeared, except for the replacement

x~y1A!→
1

4 (
m51

4

x~y1A12m̂@122Am#!, ~19!

wherey is the position of the origin of the 24 hypercube, and
A is the position within the hypercube. This definition mak
the average position of the quark field lie at the center of
hypercube, which is why there are noO(a) corrections when
matching to the continuum operator at tree level. Both typ
of operator are made gauge invariant by fixing to lattice La
dau gauge. Both are also tadpole improved, using the m
link determined from the plaquetteu0

45h.
Although the discretization errors in the matching equ

tion are, in general, ofO(a), it turns out that for the matrix
elements of interest the corrections are actually ofO(a2).
This is because theO(a) parts have the wrong staggere
flavor @5,14#, and by using staggered flavorj5 for the incom-
ing and outgoing states we project against them up to er
of O(a2). For the same reason, we need only include in
matching equations those operators which have the cor
staggered flavor. This is fortunate, since typically many o
erators of the wrong flavor are needed to match the c
tinuum operators.

The matching matricesci j for all continuum operators o
interest, and for both smeared and unsmeared lattice op
tors, can be determined from the results of Ref.@10#. When
doing this one must be careful to account for the followi
three issues. First, the numerical results for theci j are quoted
in Ref. @10# for continuum operators defined in the DREZ8,
rather than the NDR, scheme. Thus one must convert
tween these schemes, and a recipe for doing so is give
@10#. Second, tadpole improvement in@10# is based on the
average trace of the link in Landau gauge, rather than on
average plaquette which we use here. This causes a s
change in the coefficients

ci j 5ci j ~Ref. @10# !1NB~4/3!~p229.17479!d i j , ~20!

whereNB51 for bilinears andNB52 for four fermion op-
erators. Third, the coefficient of the logarithm in the matc
ing equation~16! has been changed fromq* a/p to q* a.
This shifts theci j of Ref. @10# by g i j

(0) ln p. This change
allows one to see the size of the matching corrections for
standard valueq* a51 directly from the size of theci j .

As the procedure for calculating the matching coefficie
is rather involved, we collect here the relevant parts of
final results. For the bilinears, the matching involves no m
ing, only multiplicative renormalization. The results are

cA
UN50.9264, cA

SM521.0120, ~21!

cP
UN5239.1414, cP

SM528.8882. ~22!

Here cA is a shorthand for the diagonal coefficient for th
axial density, etc., and the superscript refers to whethe
not the quark fields are smeared. These coefficients are
tiplied by aMS(q* )/4p, which, in our calculation, varies in
the range 0.01–0.015. Thus these corrections are numeri
small for the axial currents (;1%) and of moderate size fo

t

g
n-
r
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TABLE I. Parameters of numerical simulations used in this analysis.

b 6.0 6.2 6.4

Lattice size 243340 323348 323348
Number of lattices 13 23 24
Samples per lattice 1 2 2
Quark masses 0.01, 0.02, 0.03 0.005, 0.01, 0.015 0.005, 0.01, 0
1/a in GeV from mr 1.9 2.6 3.45
Minimum Mp in GeV 0.454 0.376 0.414
Average plaquette 0.5937 0.6137 0.6306
aMS(p/a) 0.134 0.125 0.117
aMS(1/a) 0.192 0.173 0.158
aMS~2 GeV! 0.188 0.190 0.191
1/a for aMS~2 GeV!50.190 1.94 2.6 3.4
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the smeared pseudoscalar density (;10%). For the un-
smeared pseudoscalar density, however, they are l
(;50%), suggesting that two-loop terms will be importa
This is an example of the advantage of using smeared op
tors.

For the four-fermion operators of interest here, we c
decompose the matrices of matching coefficients into
parts. The first is a square matrix with indices running o
operators

i , j 5~@~V2A!3P# I ,@~V2A!3P# II ,@~V1A!3P# I ,@~V

1A!3P# II !, ~23!

for which we find

ci j
UN5S 24.3079 0.4611 0.263820.7913

21.0002 0.0761 0 22.1102

0.2638 20.7913 28.9740 21.5387

0 2 2.1102 24.9998 1.4093

D ,

~24!

ci j
SM5S 22.1376 25.4068 0.0850 20.2551

25.8701 20.7474 0 20.6802

0.0850 20.2551 4.5595 22.5366

0 20.6802 20.1299 22.6608

D .

~25!

These coefficients are needed for all threeB parameters, and
the corrections are of moderate size for both smeared
unsmeared operators. The second matrix we need is re
gular, having indices3

i 5$@~P2S!3P# I ,@~P2S!3P# II%, ~26!

j 5$@~P2S!3P# I ,@~P2S!3P# II ,@~P1S!3P# I ,@~P1S!

3P# II%. ~27!

For this we find

3Note that, at one-loop, tensor operators do not appear.
ge
.
ra-
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r
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ci j
UN5S 0.7562 214.7309 5.3559 216.0674

23 234.4364 0 242.8464D ,

~28!

ci j
SM5S 22.8862 23.1611 1.6759 25.0277

23 23.3692 0 213.4072D .

~29!

These results are needed forB7
3/2 andB8

3/2, and it is here that
the use of smeared operators is most important. In particu
the numbers in the second row in Eq.~29! are much smaller
than in the corresponding row in Eq.~28!. Much of this
reduction can be traced back to the similarly large differen
in the coefficientscP shown in Eq.~22!. For the range of
couplings we study, it turns out that the one-loop match
correction for the operators appearing in the numerator
B7

3/2 and B8
3/2 actually exceeds 100% if one uses the u

smeared operators withq* '1/a. Our results for these quan
tities are, therefore, obtained exclusively with smeared
erators.

III. NUMERICAL DETAILS

Our results are based on ensembles of lattices at t
different lattice spacings. A summary of the important p
rameters is given in Table I. The lattices atb56 are part of
a sample previously used to study the hadron spectrum,
a complete description of how we generated the lattices
calculated quark propagators can be found in Ref.@18#. The
lattices atb56.2 and 6.4 have been discussed previously
Refs. @3, 19#. They were generated using overrelaxed a
Metropolis sweeps in a 4:1 ratio, and separated by 1
sweeps. They were divided roughly equally into two ind
pendent streams atb56.2, and three atb56.4. Quark
propagators were calculated using the conjugate gradien
gorithm.

We consider here only pions composed of two degene
quarks. For the quark masses that we use, the masses o
lattice pions bracket that of the physical kaon at eachb. To
illustrate this we include in the table the mass of the light
pion, converted to physical units using 1/a determined from
mr . These scales, also listed in the table, have been pr
ously reported by one of us from a fit to the hadron spectr
@19#. We refer to these below as the ‘‘mr scales.’’
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We also give the values ofaMS needed in the one-loop
matching between lattice and continuum operators. These
obtained using Eqs.~17! and ~18! from the plaquette value
listed in the table. Since in the end we run our results t
GeV, a consistency check on the applicability of tadpole i
proved perturbation theory is that the values ofaMS~2 GeV!
agree for differentb. The table shows that they are in re
sonable agreement, although there is a small systemati
crease asa decreases.

This systematic dependence ona suggests using a differ
ent set of scales, defined so thataMS~2 GeV! is independent
of a. We chooseaMS~2 GeV!50.190, and the resulting
scales are listed in the last row of the table. We refer to th
below as the ‘‘a scales.’’ We use these scales to determ
our central values for matrix elements, and use themr scales
to estimate the error introduced by the uncertainty in de
mining a.

Our method for calculatingB parameters was develope
for calculatingBK with staggered fermions@20#. It has also
been used for Wilson fermions@21#. A detailed description
of the latter application, and the extension to other opera
is given in Ref.@9#. Here we confine ourselves to a bri
description of the features which are special to the pres
work.

The essential feature of the method is the use of w
sources~i.e., sources confined to a single time-slice and
tended over the entire timeslice!, which are designed to cre
ate particles with specific quantum numbers. In the curr
applications we want to create only the lattice pseudo Go
stone pion at rest, and this can be accomplished usin
linear combination of two wall sources, as explained in R
@18#. The only other states created are rho mesons and
cited pions (p8). Both of these are, however, considerab
more massive than the pseudo Goldstone pion, and their
tribution can be largely removed by moving far enough aw
from the source in Euclidean time.

The basic method is then to calculate ratios such as

BK~ t !5
3Vy^W~ t1!(yWQK~yW ,t !W~ t2!&

8^W~ t1!(yW8A4~yW 8,t !&^(yW9A4~yW 9,t !W~ t2!&
.

~30!

Here the operators are the lattice versions of the continu
operators obtained after the matching explained in the pr
ous section has been carried out. The wall sources are
noted byW and are located at timest1 andt2 . The operators
are placed at an intermediate timet satisfyingt1!t!t2 , and
are summed over theVy spatial hypercubes. Finally, the ex
pectation values in Eq.~30! are averages over quenched co
figurations.

The expression in Eq.~30! is designed so that for larg
enought2t1 and t22t it is independent oft, and givesBK
directly. The point is that the exponential factors from E
clidean time evolution cancel if only a single state, here
pseudo Goldstone pion, contributes. This has to be true s
rately for the numerator and denominator, i.e., both m
exhibit a ‘‘plateau’’ over intermediate times in which the
are independent oft. Thus the signal can be improved b
averaging the numerator and denominator over the t
slices in this plateau. This is what we do in practice, us
the same range of times for both numerator and denomina
re
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This method has several positive features. First, it
volves no fitting. Second, statistical errors are reduced
directly calculatingB parameters rather than the matrix el
ments themselves. Third, the ability to average over all
spatial points and over a number of time slices improves
statistics. This is possible because we know the propag
from the wall sources to all points in the lattice. For the sa
reason, we can calculate matrix elements of nonlocal op
tors without additional quark propagators. And, finally, w
can use the same set of quark propagators to calculate m
elements with different choices of lattice operator. The lat
two features are particularly important for staggered ferm
ons where most operators are nonlocal. If we placed
source of the propagators at the position of the operators
would need 24 sources for unsmeared operators~44 for
smeared operators!.

To calculate statistical errors, we use single eliminat
jackknife in the following manner. On each jackknif
sample, we first match at the scaleq* , then linearly interpo-
late the results to physical kaon mass, and then evolve to
final scalem52 GeV, and, finally, take the ratio which de
fines theB parameter. The error is then obtained from t
variation between samples.

We end this section with some details specific to our p
ticular lattices.

At b56, we use wall sources in Coulomb gauge, wh
on the other lattices the sources are in Landau gauge.
choice of gauge should have no impact on the final result~as
long as the nonlocality introduced by the gauge fixing do
not extend from the source to the operator@18#! but might
affect the statistical errors.

At b56, we use periodic boundary conditions~PBCs! in
space, and Dirichlet bounday conditions in time. We pla
the wall sources next to the boundary, i.e., att150 and t2
539. The merits of this procedure have been discusse
Ref. @18#. We only note here that we use a plateau region
t510– 29.

The lattices atb56.2 and 6.4 have too short an extent
time to follow the method adopted atb56. Instead we use
PBCs in all four directions, having first periodically double
the lattice in time. We place wall sources att150 and t2
572, and use the plateau regiont532– 40. Note that the
propagator with source att150 (t2572) is, due to the PBCs
and doubling of the lattice, the same as if the source wa
t1548 (t2524). Because of this, and the fact that ea
source produces pions propagating in both forward and ba
ward directions, we can make a second measurement
the plateau region at timest58 – 16. We treat these two
results as independent in our jackknife error analysis.

To study possible sources of systematic errors due to c
tamination from excited states or ‘‘off-shell’’ matrix ele
ments we have also made the following measurements. T
ing the same two wall sources to lie att150 andt2524 we
use the regiont532– 40 to obtain an estimate of the ‘‘off
shell’’ matrix elements, i.e., those in which both of the pio
approach the operator from the same side. Placing
sources att150 and t2548, and considering the platea
region att523– 24, we get an estimate of the on-shell m
trix elements having a greater contamination from exci
states, but a smaller contribution from off-shell matrix e
ments. Further discussion of these constructions and the
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1660 57GREG KILCUP, RAJAN GUPTA, AND STEPHEN R. SHARPE
sociated systematic errors is given in Ref.@3#. In practice, we
find that the various methods yield very similar results
theB parameters we consider, and that these sources of
are considerably smaller than others as discussed later.4 Thus
we give no further details.

IV. RESULTS FOR BK

Using the methods described in the previous two secti
we extract the continuumBK at m52 GeV for each lattice
spacing. The only feature of the analysis not discussed ab
is the interpolation to the physical kaon mass. This we do
fitting BK itself ~for our three mass points! to a linear func-
tion of the squared lattice kaon massmK, lat

2 . This is reason-
able for staggered fermions because chiral symmetry c
strainsBK to have the same form as in the continuum and
particular to be finite in the chiral limit@13,22#. For degen-
erate quarks, the explicit form is

BK5B@123y ln y1by1O~y2!#, ~31!

wherey5mK
2 /(4p f p)2 is the usual chiral expansion param

eter. For our range ofmK, lat
2 the y ln y contribution is well

represented by a linear function. We note in passing that
Wilson fermions there is, in general, an additional term p
portional toa/y in Eq. ~31! because of the explicit breakin
of chiral symmetry.

We present results only for thea scales, i.e., the lattice
spacings determined by requiring thataMS~2 GeV!50.190.
These results are collected in Table II, and displayed in F
1. We include the results of an extrapolation to the co
tinuum limit assuming quadratic dependence ona. Note that
we do not have results for smeared operators atb56.4. Our
results are not extensive enough either to test whether
dependence ona is indeed quadratic, or whether terms
higher order than quadratic are needed for our range of
tice spacings. The best confirmation of the validity of t
quadratic dependence comes from the work of the JLQ
Collaboration, who have more extensive results than ours
both the unsmeared operator and its gauge-invariant ver
@7#.

4The same is not true for the auxiliary parametersBA and BV

defined in Ref.@22#. For these we have no useful results atb
56.2 and 6.4.

TABLE II. Results for BK(NDR,2 GeV) at the physical kaon
mass, using thea scales. UN and SM refer to unsmeared a
smeared operators, respectively.

Operator q* b56.0 b56.2 b56.4 a50

UN 1/a 0.728~9! 0.677~9! 0.685~24! 0.628~20!

UN p/a 0.725~9! 0.669~9! 0.677~24! 0.614~20!

SM 1/a 0.681~6! 0.647~6! 0.604~15!

SM p/a 0.694~6! 0.655~6! 0.606~15!

Ratio UN/SM 1/a 1.069~11! 1.046~13! 1.018~32!

Ratio UN/SM p/a 1.044~11! 1.021~14! 0.991~34!
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We can use our results to estimate the systematic er
arising from the choice of lattice spacings, the truncation
perturbation theory in the matching factors, and the conta
nation from excited states and off-shell matrix elements.
begin with the dependence on the choice of lattice spacin
This we estimate by comparing the results using thea scales
~listed in Table II! to those obtained using the scales det
mined from mr . The values ofBK at each lattice spacing
change by no more than 0.002, and the maximum chang
the extrapolated value is 0.004. Thus we take60.004 for our
estimate of this systematic error. This is much smaller th
the statistical errors.

The error due to the truncation of perturbation theory
the matching factors can be estimated in two ways. The fi
discussed in Sec. II, uses theq* dependence of the resul
We take the error to be the difference between the extra
lated results withq* a51 andq* a5p. The table shows tha
this is comparable to the statistical errors. The largest dif
ence is that for the unsmeared operators, and we take thi
our estimate, yielding60.014. This 3% error is a reasonab
estimate for a two-loop correction given that the one-lo
matching corrections for unsmeared and smeared opera
are;5 – 15%. Our estimate of this error turns out to be t
same as that quoted in our preliminary result@5#, although
the method we use here is more reliable, as explained in
II.

The second way of estimating the perturbative error is
compare the results using the two types of operator. If
matching factors were correct then they should yield
same result in the continuum limit. We estimate the error
half the difference between the smeared and unsmeare
sults at q* a51, and thus obtain60.012. In fact, this is
likely to be an overestimate of the difference in the resu
from the two operators. This is because there is an extra
point atb56.4 for the unsmeared operators, and, as can
seen from Fig. 1, this shifts the extrapolated result aw
from that of the smeared operator. Perhaps a better wa
estimating the error is to take the ratio of the results using
two operators, and extrapolate this to the continuum lim
This removes the data point atb56.4 ~since we have no
smeared result there!, and also accounts for the correlation

FIG. 1. Results forBK including extrapolation to the continuum
limit.
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57 1661STAGGERED FERMION MATRIX ELEMENTS USING . . .
between the results for the two operators. The results for
ratio are given in Table II, and show that although the res
from the two operators are significantly different at finitea,
they are consistent in the continuum limit. Because of th
we take our estimate of the perturbative error from the
pendence onq* .

Finally, we discuss the errors due to contamination in
matrix elements from excited states and off-shell contri
tions. The only excited state which is allowed to contribu
by the symmetries is thep8, i.e., the radially excited pion
There are no contributions fromr mesons~a point not real-
ized in Ref.@5#!. As mentioned in Sec. III, the size of the fir
effect can be estimated by comparing the results with the
sets of sources~t150, t2572 versust150, t2548!, while
off-shell contamination can be estimated by studyingBK(t)
in regions where the off-shell contributions dominate. W
find that the combined shift inBK , after averaging the result
from the two operators, and extrapolating to the continu
limit, is '20.003. Since this estimate is approximate a
small, we do not include this shift in our final result, b
instead include it as part of the above overall system
error.

Putting this all together, we can now quote our final
sult. For the central value we useq* 51/a, and take the
average of the results from the two operators. We use
larger of the statistical errors~that for the unsmeared opera
tors!. And we estimate the overall systematic error by co
bining linearly those from the choice of lattice scales~0.004!,
from the truncation of perturbation theory~0.014!, and from
the contaminations~0.003!. Thus we quote

BK~NDR,2 GeV!50.6260.02~stat!60.02~syst!. ~32!

This result is consistent with our preliminary number quo
in Ref. @5# (0.61660.02060.017), although the precis
agreement is somewhat fortuitous given that our method
matching has been improved.

Our results for the unsmeared operator can be checke
comparing them to those from the JLQCD Collaboration@7#.
They have results atb56.0, 6.2, and 6.4, on lattices of th
same spatial sizes as ours, but with statistical errors tw
three times smaller. They also have results on larger latt
at b56 and 6.4, and at smaller values ofb. A direct com-
parison is possible because they use a method of matc
and determiningaMS which is very close to ours if we se
q* 51/a. At b56 and 6.2, our results are larger by abo
0.025, a two standard deviation difference. Atb56.4 our
number is consistent with theirs from a 323 spatial lattice.
They find, however, thatBK decreases on larger lattices, su
gesting that our number atb56.4 may be afflicted by finite
size errors. Nevertheless, our extrapolated value is only
standard deviations~i.e., 0.03! above theirs. This compariso
gives us confidence that our results are correct within
quoted errors, and in particular that our procedure of d
bling the lattice in the time direction has not introduced a
ditional systematic errors.

The JLQCD Collaboration has also used the gau
invariant version of the unsmeared operator. Averaging
with the Landau gauge operator, they quote a prelimin
result BK~NDR,2 GeV!50.58760.007~stat!60.017~syst!, or
adding errors in quadrature:BK50.596.02. The agreemen
is
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with our result ofBK50.626.03 is gratifying, since the op
erators we use have entirely different perturbative and po
corrections.5

We note that both calculations are systematics limit
and that of the systematic errors, the most important
quoted by JLQCD is estimated by comparing results for d
ferent operators. In their preliminary report@23#, JLQCD as-
cribes such differences to terms of orderaMS(m)2, where
m52 GeV is the conventional scale at which the answe
quoted. On this point we disagree in principle. We certai
agree that errors of orderaMS(m)n are introduced when one
usesn-loop evolution to the final scale, but these correctio
are universal and should not appear as differences betw
lattice operators. If, for example, we compare our one-lo
corrected smeared and unsmeared operators, the conne
between the two is

QK
UN~m!5QK

SM~m!$11O@aMS~q* !2#1O~a2!%, ~33!

where we have taken the sameq* 5K/a in renormalizing
both operators.6 SinceaMS(K/a)2 vanishes asa→0, we con-
clude that when correctly extrapolated, the operators sho
give the same result ata50. Of course one would nee
rather precise data to make a fit including theaMS(K/a)2

term, but in principle it could be done if more precision we
required. If one uses a simplea2 extrapolation, however, the
a2 term in Eq.~33! will not extrapolate to zero, but instea
to an artifact of sizeaMS(q* )2.

V. RESULTS FOR B7
3/2 AND B8

3/2

We have evaluatedB7
3/2 and B8

3/2 using almost the same
method as forBK . The only difference concerns the extrap
lation to the physical kaon mass. This we have done se
rately for matrix elements appearing in the numerator a
denominator of the definitions Eqs.~6! and ~7!, prior to the
evolution fromq* to m52 GeV.

Our results are summarized in Table III. The most striki
feature is the very strongq* dependence of the results fo
unsmeared operators. Indeed, as one goes fromq* 5p/a to
1/a, which causesaMS(q* ) to increase by roughly 40%,B7,8

3/2

change sign because the negative one-loop matching co
bution exceeds the tree-level contribution. Clearly, we c
not use one-loop matching for the unsmeared operators.
stress that the large perturbative corrections for unsme
operators do not invalidate the results for smeared opera
There will always be choices of discretization procedure
which the perturbative series is poorly convergent at the
tice spacing one is working.

For completeness we mention that we expect a sim
problem to render the gauge-invariant unsmeared opera
unsuitable for a calculation ofB7,8

3/2. The dominant contribu-

5We can improve the agreement by dropping our unsmeared
point at b56.4, which, as noted above, might be afflicted wi
finite size errors.

6Using a different choice ofq* for the two operators would lead
to an additional factor coming from the evolution between the t
scales. However, since this factor tends to unity in the continu
limit, our conclusion is unaltered.
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1662 57GREG KILCUP, RAJAN GUPTA, AND STEPHEN R. SHARPE
tion to the matrix elements comes from thePP part of the
operator. Since this part of the operator is local, and does
require gauge links, it is the same as the corresponding
of the unsmeared operator. But it is this part of the u
smeared operator which leads to the bulk of the large o
loop matching corrections seen in Sec. II. Although in pr
ciple it is possible these large corrections will be canceled
the as yet uncalculated contributions from the other part
the gauge-invariant operator, this seems unlikely in pract

The situation is much improved for the smear
operators—theq* dependence, while more significant tha
for BK , is only at the 10% level. This is a much larg
uncertainty than the statistical errors or that due to the ch
of lattice spacings, or that from the contamination by exci
states or off-shell matrix elements. Thus we do not give
tails concerning these other uncertainties. For our final
sults, we quote

B7
3/2~NDR,2 GeV!50.6260.03~stat!60.06~syst!, ~34!

B8
3/2~NDR,2 GeV!50.7760.04~stat!60.04~syst!, ~35!

where the systematic error is our estimate~based on theq*
variation! of the uncertainty due to the truncation of pertu
bation theory.

It is interesting to compare our staggered results w
those from Wilson fermions. While a continuum extrapo
tion is not yet available, the results atb56.0 @9# are

B7
3/2~NDR,2 GeV,Wilson!50.5860.0260.07, ~36!

B8
3/2~NDR,2 GeV,Wilson!50.8160.0360.03. ~37!

The central values and error bars have been determine
the same way as in this paper. Obviously the agreemen
already rather good, and indicates indirectly that theO(a)
errors in the Wilson case are not particularly large. This is
contrast to the case ofBK , where the explicit breaking o
chiral symmetry disrupts the delicate cancellation betw
the VV and AA matrix elements, and gives dramatical
largeO(a) errors. ForB7 andB8 the result is dominated by

TABLE III. Results for B7
3/2(NDR,2 GeV) and

B8
3/2(NDR,2 GeV), at the physical kaon mass, usinga scales.

Operator q* b56.0 b56.2 a50

B7
3/2

Unsmeared 1/a 21.951(09) 21.097(15)
Unsmeared p/a 0.606~06! 0.645~06!

Smeared 1/a 0.989~05! 0.823~16! 0.615~30!

Smeared p/a 1.085~06! 0.903~14! 0.674~32!

B8
3/2

Unsmeared 1/a 21.486(11) 20.689(15)
Unsmeared p/a 0.822~05! 0.864~05!

Smeared 1/a 1.240~06! 1.030~16! 0.766~37!

Smeared p/a 1.288~06! 1.076~17! 0.810~39!
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the PP matrix element, with no particular constraint from
chiral symmetry, presumably yielding more moderateO(a)
errors.

VI. NONPERTURBATIVE RESULTS
FOR MATCHING CONSTANTS

It is clear from the results of the previous two sectio
that using finite order perturbation theory to match latt
and continuum operators is an important source of unc
tainty in results for matrix elements. In this section we i
vestigate the accuracy of perturbative matching factors
calculating some of them nonperturbatively. In particular,
are able to assess the accuracy of the perturbative matc
factor for the quark massZm which is an important ingredi-
ent in determining continuum quark masses.

The basic idea is simple, and has been applied extensi
with Wilson fermions. A given continuum operator can b
discretized in different ways, each discretization having
associated matching factor. Only if these matching fact
are chosen correctly will the different choices yield the sa
matrix elements. This allows a nonperturbative determi
tion of the ratio of matching factors. Note that in such rati
the anomalous dimension factors cancel, implying that
ratios are finite functions of the lattice coupling.

In this section, we apply this idea to the pseudoscalar
axial densities. It could, in principle, be applied also to fou
fermion operators such asQK , but this requires studying a
matrix mixing problem, and thus using several extern
states, and is beyond the scope of the present work. We
consider operators for which the matching is diagonal.

Our notation in this section differs from that used abov
We usePUN, for example, to refer to the bare lattice opera
constructed of unsmeared fields:

PUN5~1/ANf ! x̄ S
UN~g5^ j5!xD

UN . ~38!

In other words, we do not include the matching factor in t
definition of PUN. The matching equation becomes@cf. Eq.
~16!#

Pcont5ZP
UNPUN@11O~a2!#, ~39!

ZP
UN511

aMS~q* !

4p
@2gP

~0! ln~q* a!1cP
UN#1O~a2!.

~40!

Here we have used the fact that for the matrix elements
interest the corrections are quadratic in the lattice spac
Similar definitions apply toPSM, Am

UN , and Am
SM. We also

need to introduce the gauge-invariant version of the a
currentAm

GI , which is the unsmeared current with appropria
gauge links included. Note thatPGI5PUN, i.e., the un-
smeared pseudoscalar density is already gauge inva
since it is local.

The quantities we determine nonperturbatively a
ZP

SM/ZP
UN , ZA

SM/ZA
UN , andZA

UN . The first we obtain starting
from the result
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^0uPcontuK̄0&5^0uZP
UNPUNuK̄G

0 &@11O~a2!#

5^0uZP
SMPSMuK̄G

0 &@11O~a2!# ~41!

from which we find the nonperturbative estimate

ZP
SM

ZP
UN

5
^0uPUNuK̄G

0 &

^0uPSMuK̄G
0 &

@11O~a2!#. ~42!

The equations forZA
SM/ZA

UN are identical except thatP is
replaced byA4 . The one-loop perturbative results for th
relevant ratios are

ZP
SM

ZP
UN 5F11

aMS~q* !

4p
~cP

SM2cP
UN!G

511
aMS~q* !

4p
330.2532, ~43!

ZA
SM

ZA
UN 5F11

aMS~q* !

4p
~cA

SM2cA
UN!G512

aMS~q* !

4p
31.9384.

~44!

The determination ofZA
UN proceeds slightly differently.

We note that the gauge-invariant axial current is partia
conserved on the lattice, implying thatZA

GI51. Thus we
could determineZA

UN by taking ratios of matrix elements o
Am

GI to those ofAm
UN . While we have not calculated matri

elements usingAm
GI , we do have available the matrix ele

ments of its divergence]mAm
GI52mPGI52mPUN. This is

sufficient as long as the matrix element involves nonz
momentum transfer. Note that the lattice partial conserva
equation is exact as long as we use the appropriate la
derivative@24#. Putting this all together we arrive at

1

ZA
UN

5S 2sinh~mK!^0uA4
UNuK̄G

0 &

2~mq /u0!^0uPUNuK̄G
0 &

D @11O~a2!#, ~45!

wheremq /u0 is tadpole improved quark mass, andmK is the
mass of theKG

0 . All quantities on the RHS of this equatio
are in lattice units. We have used sinh(mK) on the RHS,
rather thanmK itself, because if we replaceA4

UN by A4
GI then

the ratio on the RHS is exactly equal to unity. In oth
words, sinh(mK) is the appropriate kinematical factor for th
exactly conserved current. We choose to keep it for the
smeared current in the hope that it will reduce the size of
O(a2) terms. The perturbative expression to which Eq.~45!
should be compared is

1

ZA
UN 5F11

aMS~q* !

4p

4

3
~p229.17479!G . ~46!

Note that if we had used the average link in Landau gaug
determineu0 , rather than the average plaquette, thenZA

UN

51 at one-loop order.
We determine the required ratios of matrix elements us

the quantities previously used to determine the vacuum s
ration approximants appearing in theB parameters. For ex
ample, consider the ratio
y

o
n
ce

r

n-
e

to

g
u-

RP~ t !5
^W~ t1!(yWP

UN~yW ,t !&^(yW8P
UN~yW 8,t !W~ t2!&

^W~ t1!(yWP
SM~yW ,t !&^(yW8P

SM~yW 8,t !W~ t2!&
.

~47!

For t1!t!t2 this should be independent oft and gives di-
rectly (ZP

SM/ZP
UN)2 aside fromO(a2) corrections. We aver-

ageRP(t) over the same plateau regions as for theB param-
eters. Similar ratios are used for the other quantities.

The resulting data forZP
SM/ZP

UN and ZA
SM/ZA

UN are well
represented by a linear function ofmK

2 . This dependence on
mK

2 is anO(p2a2) discretization error, because any physic
dependence cancels in the ratio of matrix elements, We
move this error by extrapolating to the chiral limit. We do
similar extrapolation for 1/ZA

UN , although the dependence o
mK

2 is much weaker, presumably because of the sinh(mK)
factor in Eq.~45!.

Our nonperturbative results for the ratio of smeared
unsmeared matching factors after chiral extrapolation
collected in Table IV. What is most striking is the substant
dependence on lattice spacing, particularly for the ratio
ZP’s. This is due to a combination ofO(a2) discretization
errors and the variation of the perturbative matching fact
which depend ong2(a). To analyze these results we assum
the following form for the ratios

Ratio~nonpert!5Ratio~one loop;q* !1a2L2, ~48!

where the one-loop results are given above, andL is an
unknown constant. In other words we ignore complet
higher powers ofa, and assume that higher powers ofa are
well represented by the appropriate choice ofq* 5K/a. The
difference ratio~nonpert!2ratio~one loop! should then, for
the right choice ofq* , extrapolate to zero in the continuum
limit. Conversely, one could regard this procedure as prov
ing an approximate nonperturbative definition ofq* . To
show the individual variations in the perturbative7 and non-
perturbative results we give, in Table IV, the continuu
value for each obtained by linear extrapolation ina2. We do
this for our two standard choicesq* a51 andp. What we
find remarkable is that, modulo the simplifying assumpti
of Eq. ~48!, the nonperturbative and perturbative predictio

7Note that we are here making use of the fact that our extrap
tion to the continuum limit does not remove terms which vary log
rithmically. This is an example of the problem discussed in Sec.

TABLE IV. Nonperturbative and perturbative results for ratio
of matching constants. Quadratic extrapolations toa50 use a
scales.

Quantity Method b56.0 b56.2 a50

Nonpert 1.131~5! 1.060~1! 0.972~6!

ZA
SM/ZA

UN Pert(q* 51/a) 0.970 0.973 0.977
Pert(q* 5p/a) 0.979 0.981 0.983

Nonpert 2.245~11! 1.861~6! 1.380~19!

ZP
SM/ZP

UN Pert(q* 51/a) 1.462 1.416 1.359
Pert(q* 5p/a) 1.323 1.301 1.272
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agree if we useq* '1/a but not forq* 'p/a. The discrep-
ancy forq* 5p/a is particularly significant forZP

SM/ZP
UN .

The results for 1/ZA
UN , given in Table V, behave very

differently. There is very little dependence on the latti
spacing—presumably because the unsmeared current is
similar to the gauge-invariant current for which all the nu
bers in the table would be unity independent of lattice sp
ing. In fact, the errors are such that an extrapolation toa
50 is not useful, and so we compare our results to per
bation theory at each lattice spacing. The results are rea
ably consistent, but we cannot distinguish between differ
values ofq* in this case.

An important application of the above results is to es
mate the reliability of the one-loop result for the matchi
factor Zm . This factor converts the lattice results for qua
masses to a continuum scheme such asMS, as discussed in
Ref. @12#. The perturbative result after tadpole improveme
is

Zm~m5q* !5
1

ZP
UN~m5q* !

512
aMS~q* !

4p
@2gP

~0! ln~q* a!1cP
UN#, ~49!

where for simplicity we have chosen to consider the c
where the final scalem equals the matching scaleq* . The
one-loop correction toZm is large at typical lattice spacings
For example, atb56, and takingq* 51/a, Zm51.598. This
suggests that higher order corrections may be important.
can, however, rewriteZm as

Zm5S ZP
SM

ZP
UND S 1

ZP
SMD . ~50!

The results of Table IV show that the bulk of the perturbat
correction lies in the first factorZP

SM/ZP
UN . At b56 it is

1.462, while the second factor is 1.136~again for m5q*
51/a!. Thus, one would expect that the dominant source
higher order terms inZm is the first factor, and that the un
certainty which they introduce could be substantially redu
by obtaining a nonperturbative estimate of this factor. W
have attempted such an estimate above, with the prelimin
conclusion that perturbation theory withq* 51/a works to
within a few percent, aside from discretization errors. If w

TABLE V. Results for 1/ZA
UN .

Method b56.0 b56.2 b56.4

Nonperturbative 0.978~09! 1.010~09! 0.998~20!

Pert (q* 51/a) 0.986 0.987 0.988
Pert (q* 5p/a) 0.990 0.991 0.991
ery
-
c-
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nt

-

t

e

e

f

d
e
ry

accept this result then we obtain the partly nonperturba
estimate8 Zm51.46231.13651.66. The point we wish to
stress is that this is not very different from the one-lo
estimate of 1.60. In particular, the difference is much sma
than the naive estimate of the two-loop contribution 02

50.36 based on the assumption of geometric growth. T
analysis thus suggests that the one-loop perturbative valu
Zm used in the analysis of quark masses is good to about
for b>6.0 provided one usesaMS(q* '1/a).

VII. CONCLUSIONS

In this paper we have presented a variety of results
weak matrix elements using staggered fermions. Our m
focus has been on the importance of using a variety of
cretizations of continuum operators. There are two reas
for doing so. First, comparing results with different lattic
operators gives an estimate of the uncertainty in the ma
ing factors between continuum and lattice operators. ForBK
this may be the dominant source of error in future calcu
tions, aside from that due to quenching. Second, for so
operators the perturbative matching factors are not con
gent at present couplings, and so one must use different
cretizations. It turns out that the smeared operators have
formly moderate perturbative corrections. Using them we
able to obtain the first results forB7

3/2 and B8
3/2 using stag-

gered fermions.
Our results for theB parameters confirm and extend e

isting lattice results. In particular, forBK we find that
smeared operators give results consistent with those f
unsmeared and gauge-invariant operators. We confirm
low value found in our preliminary study@5#, a result which
has been improved and extended by the JLQCD Collab
tion @7#. For B7

3/2 and B8
3/2 we find results consistent with

those using Wilson fermions. All these numbers are imp
tant inputs into analyses attempting to constrain the Cabib
Kobayashi-Maskawa~CKM! matrix. It is encouraging tha
the errors we are considering are at the few percent leve
is important to stress, however, that we are still using
quenched approximation, and also working with a kaon co
posed of degenerate quarks. For a discussion of the im
tance of these approximations see Refs.@1,13#.

As an offshoot of our study, we have calculated seve
ratios of matching factors nonperturbatively. These ratios
finite functions of the lattice coupling, and thus allow a te
of tadpole improved perturbation theory. We find that on
loop perturbation theory works well if we set the scale in t
one-loop couplingaMS(q* ) to be q* 51/a, but not forq*
5p/a. This is consistent with the expectations of Ref.@16#.
This conclusion is, however, preliminary because we h
results only at two lattice spacings. To convincingly dise
tangle discretization errors from perturbative corrections w
require precise results at several lattice spacings.

We have used the results for ratios of matching factors
make a partly nonperturbative estimate of the size of

8It is not advantageous to directly use the nonperturbative res
e.g., ZP

SM/ZP
UN52.245 at b56. Doing so introduces additiona

O(a2) errors which one would then have to remove by extrapo
tion.
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matching factor for the quark massZm . Our result is;5%
higher than the one-loop perturbative result. This is a sm
enough change that it does not alter the essential conclu
of Ref. @12#, namely that light quark masses are considera
smaller than previously thought.

Finally, we note that our results show many examples
significant discretization errors. To make progress w
simulations of full QCD, where one is restricted to larg
by

l

l

l

i,
,

A.
ll
on
ly

f
h
r

lattice spacings, it may be necessary to improve the s
gered fermion action.
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