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PadeZ, estimator of determinants
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We introduce the Padg, (P2) stochastic estimator for calculating determinants and determinant ratios. The
estimator is applied to the calculation of fermion determinants from the two ends of the hybrid Monte Carlo
trajectories with pseudofermions. Our results on the 82 lattice with Wilson action show that the statistical
errors from the stochastic estimator can be reduced by more than an order of magnitude by employing an
unbiased variational subtraction scheme which utilizes the off-diagonal matrices from the hopping expansion.
Having been able to reduce the error of the determinant ratios to about 20% with a relatively small number of
noise vectors, this may become a feasible algorithm for simulating dynamical fermions in full QCD. We also
discuss the application to the density of states in Hamiltonian sys{&8556-282198)05803-3

PACS numbds): 12.38.Gc, 11.15.Ha

[. INTRODUCTION ral log behaviors of these quantitifs,8], the »" mass, and
the phase transitiof®] depend crucially on the full inclusion
At present, lattice gauge Monte Carlo calculation is stillof dynamical fermions. Thus, solving full QCD with dy-
the only viable and practical means of solving QCD andnamical quarks remains a desirable and challenging ultimate
computing hadron masses and matrix elements nongoal.
perturbatively. As such, there is a perpetual need of sharpen- In view of the perceived difficulty of calculating determi-
ing the tools to tackle the numerically intensive aspects ohants accurately, all the existing working algorithms have
the computation, especially those pertaining to dynamicahvoided calculating them directly. Instead, pseudofermions
fermions. [10] and local boson$11] are introduced to bosonize the
The Euclidean functional integration formulation of the determinantal effects. For example, the current state of the
guantum field theory of gauge bosons and fermions has thart algorithm—the hybrid Monte CarléHMC) algorithm
generic partition function [12]—transforms the partition function in E€R) to the fol-
lowing one for 2 degenerate flavors:

z- [ [aulddTtage =, @ o
2= [ [aUlagidg e S (g

whereU is the gauge link variable ar; the gauge part of
the action. Given that the fermion part of the action is quawhered is a pseudofermion variable which can be generated
dratic in the Grassmann numbeEand , they can be for- Using a Gaussian heat bath. This gives rise to the pseudofer-
mally integrated out to give a fermion determinant, i.e. mion force which acts over the course of molecular dynam-
ics trajectories to update the gauge field and the fermion
B matrix M which in turn enables the updating of tigefield.
Z= f [dU]detM[U]e"Se. 2 On the other hand, it may be desirable to admit the deter-
minantal effects directly without resorting to the superfluous
Since numerically the computation of the fermion determi-degrees of freedom from pseudofermions. This can be done
nant is much more demanding a task than the updating df principle with the partition function in Eq2) rewritten as
gauge linkdJ, it is often approximated by a constant. This is
known as thequenched approximatiowhich has previously Z:J [dU]e Se*TriogM
been interpreted as tantamount to neglecting the internal '
guark loops. Recently, Sexton and Weingarfghhave ad-
vanced the view that it actually corresponds to the inclusiorand Tr logM which reflects the dynamical fermions is taken
of the leading terms in the loop expansion which are comas an additional part of the gauge action. It is showfilis
mensurate with the size of loops in the gauge action. Thishat a HMC-like algorithm based on the partition function in
leads to a shift in3 or the bare coupling constant. Although Eqg. (4) is valid provided that Tr log can be estimated
a number of low-energy quantities, such as hadron massesgthout bias. However, the task at first sight appears daunt-
[2], weak matrix elementE3,4], and hadron structurb, 6], ing. First of all, one needs an efficient algorithm to calculate
are reproduced reasonably wélithin 6%—-15% in many TrlogM. This is apparently much more intensive numeri-
case¥in the quenched approximation, we know that the chi-cally than calculating1™M) ¢ in the pseudofermion ap-
proach. In addition, the demands on the accuracy of
Tr log M are very stringent. Since the relative error of Met
*On leave from: Zhejiang Institute of Modern Physics, Zhejiangis the absolute error in Tr loll, a 20% error in deM for
University, China. example would require calculating Tr ldg (which is of the
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prderN) to within 02 Luckily, the Monte Carlo updat_ing %10~ Pade errors on real axis
involves only determinant ratios, and not the determinants S T ‘

themselves. One would expect that an accuracy~@.2 ' . dotted——5th order
should be somewhat easier to achieve for the difference dashed--7th order
Tr log M;—Tr log M, than for each term separately. ! *..solid——11th order

We shall present in this paper an efficient stochastic algo- K \
rithm to estimate Tr logVl which has the potential of achiev- N ]
ing the kind of accuracy0.2) in Tr log difference with . \
relatively small (-500) number of noise vectors. This new : ‘\
algorithm invokes the Padapproximation for the log/ and - \
uses compleX, noise to estimate the trace, as introduced in ; “
Sec. Il. We have tested it by calculating the determinants and _

error
o

determinant ratios of fermion matrices from both ends of -5 5 p '5
randomly chosen molecular dynamics trajectories generated '
by the hybrid Monte Carlo algorithm with pseudofermions. z(log scale)

V\ée also {_:lpplled the _met_hOd to Wilson fermions on an FIG. 1. e(2) for the Padeapproximation of log on the positive
8°X 12 lattice, and studied its dependence on the rank of thg,,| axis for different orders of the Padgpansion ary=1.0.
Padeexpansion and the number of noise vectors. In Sec. I

we introduce an unbiased variational subtraction scheme

which is based on the subtraction of traceless terms in the

. ! . . ~2 b Tr(My+c )~

hopping parameter expansion. We find that this can reduce K

the statistical error by an order of magnitude, leading to an 1

error in the range of 0.2—0.3 with 400—600 noise vectors. —Tr(Mz+ed) 7], ™

These results are presented in Sec. IV. We should mention

that there exist other stochastic estimators for determinantgshereM,; andM, are matrices at the beginning and end of a
Reference{1] uses the Chebyshev polynominal to expandHMC trajectory for example.

logM'™ and Gaussian noise to estimate the trace. Refer- This approximation is accurate as long as the eigenvalues
ence[14] usesZ, noise and the Riemann-Stieltjes integral to of the matricesM; andM, all lie in the region in the com-
estimate the Tr logl. The subtraction scheme we introduce plex plane where the Paggproximation is accurate. If we
here is applicable to both of these approaches. A discussiafefinee(z) to be the difference between the right- and left-

of application to density of states in Hermitian Hamiltonian hand sides of Eq5), then the error in the approximation in
systems is presented in Sec. V. Section VI gives the conclugq. (6) is
sions and outlook.

Il. BASIC PADE -Z, METHOD Ar IogM:; €(\n), (8)

A. Pade approximation

The starting point for the current algorithm is the Padewhere{\,} are the eigenvalues of.
approximation of the logarithm functiof15]]. The Pade The accuracy of the Padapproximation is graphically
approximant to logd) of order[K,K] atz, is a rational func- illustrated in Figs. 1-6. In Fig. 1, we pleiz) for different
tion N(z)/D(z) where degN(z)=degD(z)=K, whose orders of the Padapproximation on the positive real axis.
value and first K derivatives agree with logat the speci- We see thate(z) for the 5th order Padapproximation
fied point zy. When the PadepproximantN(z)/D(z) is  reaches quickly to the order of 10 around the expansion
expressed in partial fractions, we obtain point zo=1, whereas that of the 7th order does not reach

K bk

Z+Cy

, (5) 5X 107 Pade errors on real axis

log z=by+ p

=1

'\‘ : dotted—5th order
. . dashed—--7th order
whence it follows '

Vo solid——11th order
K N

S 0 AN
log detM =Tr log M~b,Trl+ >, b Tr(M+c,l) "% 5 E
k=1 Y
®) )
\
For the purpose of Monte Carlo updating, only the ratio of
determinants is needed. In this case, the log of the determi- -5 : - L
nant ratio deM , /detM, is approximated as 1 1 10

z(log scale)

log{detM; /detM,}=Tr[log M;—log M;] FIG. 2. Same as Fig. 1, on a larger domain.
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FIG. 3. Real parts of various orders of the Pagi@roximation FIG. 5. Same as Fig. 3, fge|=10.
to logzon|z|=1 as a function of argj. The Padeexpansion point
is zg=1. It follows that
108 until z is smaller than 0.3 and greater than 3. For the €,,(2) = P1(2/2g) —log(2/2p) = €(2/ 2). (10
11th order, the domain for whick(z) <10 © is extended to
between 0.1 and 10. We see from these figures that as long as one has some

Figure 2 is the same plot on a larger domaizoft shows  notion about the domain of the eigenvalues of the maitix
that |e(z)| increases with increasing distance to the expanand the desirable level of accuracy one needs for TMog
sion point. The figure clearly depicts the inversion antisym-one can decide on an appropriate order of the” Raieoxi-
metry e(1/z)=—€(z), which is due to the corresponding mation and the expansion poir§.
antisymmetry of the logarithm. Hence, if the expansion point The Padeapproximation of the logarithm is not limited to
is suitably chosen near the “center” of the eigenvalue dis-the real axis. It applies equally well to the complex plane,
tribution, we shall get error cancellation. The coefficients ofexcept near the branch cut. Paajgproximation of the loga-
the Padeapproximatiorb, andc, in Eq. (5) for 5th, 7th, 9th,  rithm about a positive reat, corresponds to a branch cut
and 11th orders used to produce Figs. 1 and 2 are tabulategong the negative real axis, and the poles of the Pade-
in Table I. tions all lie on the negative real axis. Using coefficients from

In Figs. 1 and 2, the Padexpansion point is chosen as Table | which are obtained from expansion abogt 1, we
zo=1. The error functions, (z) for other expansion points plot the Padeapproximated log along the unit circle as a
are identical, modulo a change of scale. This is due to th&unction of argg). The real part as shown in Fig. 3 reveals
fact that logz=log(z/z;)+log(z,), and hence the Padap- the pole atz=—1 for all the Paddunctions with different

proximationP, (z) for log z aroundz, is equal to orders. Figure 4 shows the imaginary part. The imaginary
part of the log function has a discontinuity from to —r
on(z) =P4(2/zp) +log(zp). 9 across the negative real axis, while the Pagproximations

have discrete poles. Thus, the Paggroximation fails near

Imaginary part of Pade[K,K](z) for ABS(z)=1.0
' j TTE ! ! ' ' Imaginary part of Pade[K,K] for ABS(z)=10.0

, , . iR , . . 4 r 1
0 50 100 150 200 250 300 350 . . . ‘) . . .
arg(z) (degree) 0 50 100 150 200 250 300 350

] arg(z) (degree)
FIG. 4. Imaginary parts corresponding to the real parts shown in

Fig. 3. FIG. 6. Same as Fig. 4, fde|= 10.
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TABLE I. The coefficientsb, andc, of PadeexpansionP[K,K] for log z at z,=1.0.
k b, Ck by Cy
P[5,5] P[7.7]
(by=4.566666667) (by=5.185714286)
1 0.130408172495391 0.0492189449629343 0.06816753269 0.02611045152
2 0.404437841802115 0.299993435237384 0.1844456100 0.1484146919
3 1.13777777850000 1.00000000000000 0.3863893344 0.4226317870
4 4.49394268525114 3.33340630084376 0.8359183641 1.0000000000
5 53.8334305460671 20.3173813294693 2.163220583 2.3661258591
6 8.373644726 6.737877409
7 99.98821380 38.29883980
P[9,9] P[11,17
(bp=5.65793650793651) (bg=6.03975468975469)
1 0.041962745788105575 0.01617742288114674 0.02845031368729848 0.01100547288317344
2 0.10717746225992 0.08930616263474539 0.07053085455625973 0.05984825317707202
3 0.20024123115789 0.2396401470008922 0.1244662250449701 0.1559677956367871
4 0.35622568741554 0.5102849384064862 0.2021047007456418 0.3165723758668845
5 0.6604787100025195 1.0000000000000000 0.3261128629248666 0.5753698412085129
6 1.36804295333940783 1.959689429836578 0.5458501735606061 1.000000000000000
7 3.48685872889035930 4.172923495979481 0.9850850802286254 1.738012541463052
8 13.4381848942707415 11.9743554641257 2.016649317776546 3.158835312972759
9 160.340827693254954 61.81454285684810 5.116602053912441 6.411580005456822
10 19.69138119799427 16.70892543916556
11 234.8927672230579 90.86388296216937

the branch cut. Nevertheless, it works for cases away fromvhere\; are evenly spaced di\ min,Amax], @nde is a small
the branch cut. In some cases, it may be desirable to plagearameter.
the branch cut in a different location, say along the ray This approximation may be rewritten as
arg@=46. This is easily done by choosing the expansion

point z, ase™

19 as can be seen from E(P). As long as

there are no eigenvalues along the ray 3rgf for the ma-
trix M, one can apply the Pad@proximation outlined above
to calculate determinants which are negative or complexvhere

min min

)‘max )\max
f Iogkp(A)dA~J f.0)p(N)dN,  (15)

[15].
It is worth mentioning that the Padgpproximation fur- f.\)= A_A 2 ﬂ_ (16)
nishes a much more accurate global approximation to the ¢ T G (NN tE

logarithm than that obtained from the “Green function”
method[16].

Figure 7 shows that the functidn(\) with 11 terms and

The Green function approximation makes use of the facgeverale furnishes a very poor approximation to the loga-

that rithm in the interval 1/66c\ <60. By contrast, Fig. 2 shows
_ log & Green function approximations
7 M X homre AR D
whence it follows
A
Nmax : solid —— logarithm
Trlog M= f logh p(N)d\ (12 oh dotted —— epsilon = 3

min

dash-dot — epsilon = 2.5

AN Amax  p(N) dashed —- epsilon = 2
NZ Iog)\i?lm J'}\min md)\

13

1 % 10 20 30 40 50 60
== log \{ AN IM[Tr(M—X\;—1¢€) 1], , o ,

m FIG. 7. Eleven-term Green function approximation to log with
(14)  variouse, compared to the log function itself.
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that an 11-term Padexpansion on the same interval approxi-
mates the logarithm ta-.0005 at worst, and to much higher

C. THRON, S. J. DONG, K.

F. LIU, AND H. P. YING

> bdTr(M +c, ) "I =Tr(My+c )~ 1}

accuracy on most of the interval. Also, the Green function

method is only applicable if the eigenvalues of the matrix are

real, while the Padeapproximation also holds for matrices
with complexeigenvalues.

B. Complex Z, noise trace estimation

Exact computation of the trace inverse fdK N matrices
is very time consuming for matrices of sidé~10°. How-

ever, the compleX, noise method has been shown to pro-

vide an efficient stochastic estimation of the trgt&,6,19.

In fact, it has been proved to be an optimal choice for the

noise, producing aninimumvariance[19,20.

K L
1 :
~T 2 2 b Myt ed) H=(Mpted) !
ko
1 L K
=02 2 b T(E -8, (18)
j k=1
Whereff’j=(Mi+ckl)‘177j are the solutions of
(My+ed) =7, (19
(Mate) & =nl, kj=12.... (20

The complexZ, noise estimator can be briefly described Since M; +c,| are shifted matrices with constant diagonal

as follows [17,19. We construct L noise vectors
7, 17,...,n- where each elemeng, ,n=1,...N takes one of
the four values{*= 1,1} chosen independently with equal
probability. It follows from the statistics ofy}, that

17

mn

E[<77:n77n>]EE[ E k| =

The vectors can be used to construct an unbiased estima

for the trace inverse of a given matrix as follows:

L N

52,

j=1 mn=1

*JA

1
E[(n'A"'n)]=E|

mnnn

>

n=1

>

=1

ALt IEL 7]

1
L

E[ 75l 7h]

E ik

The variance of the estimator is shown to[l8)]
sa=Var(y'A" )= E[|<nTA*1n>—TrA*1|2]

1 N
_':S Amn(Amn ES |AmnF

The stochastic error of the complek noise estimate

results only from the off-diagonal entries of the inverse ma-

trix (the same is true fa£, noise for anyn). However, other
noises(such as Gaussiahave additional errors arising from
diagonal entries. This is why th&, noise has minimum
variance. For example, it has been demonstrated on
16> 24 lattice with 3=6.0 andx=0.148 for the Wilson

matrix elements, Eq919) and (20) can be solved collec-
tively for all values ofc, within one iterative process by
several algorithms, including the quasi-minimum residual
(QMR) [21], multiple-mass minimum residual (R) [22],

and generalized minimum residudGMRES [23] algo-
rithms. We have adopted the®R algorithm, which has been
shown to be about 2 times faster than the conjugate gradient
algorithm, and the overhead for the multiglg is only 8%
&%4] The only price to pay is memory: For each, a
single solution vector needs to be stored. Furthermore, since
¢,>0 (see Table)land the eigenvalues &fl have positive

real parts, the conditioning oM +c,l) is improved and we
should expect faster convergence for the column inversions
in Egs.(19) and(20).

In the HMC algorithm, ifM; and M, denote quark ma-
trices at the beginning and end of a molecular dynamics tra-
jectory, we have Tr logM,—Tr logM,=~O(1). Hence,
we need to reduce the error of tEg noise estimate of the
trace log difference to below O(1). However, in practice
we find that~319 000 noise vectors are required to reduce
the stochastic error to 0.2. In the next section, we describe a
method which significantly reduces the stochastic error.

lll. IMPROVED PZ ESTIMATION
WITH UNBIASED SUBTRACTION

In order to reduce the variance of the estimate, we intro-
duce a suitably chosen set of traceldéss N matricesQ(P,
i.e. which satisfy=)_;QP)=0, p=1,..P. The expected

value and variance for the modified trace estimator

(n"(A~1==7_ 1\ ,QP) ) are given by
P
E <rf -2 ApQ<P>)n> =TrA™%, (29
p=1
P
oa(N)=Var <n* -2 QP n>
p=1
1 P 2
_ _ (p)
a =T 2, Ann 2 NeQn (22

action that theZ, noise standard deviation is smaller thanfor any values of the real parametexg. In other words,

that of the Gaussian noise by a factor of 1[8%].
Applying the complexZ, estimator to the expression for
the determinant ratio in Eq7), we find

introducing the matrice®(® into the estimator produces no
bias, but may reduce the error bars if t9") are chosen
judiciously. Since the estimatép'A~1#) actually denotes
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TABLE Il. Unimproved and improved PZ estimates for [dgtM;] with 100 complexZ, noise vectorsx=0.150.

PIK.K](2) K= 5 7 9 11

2,=0.1 Original 47310) 774(10) 796(10) 798(10)
Improved 487.2862) 788.1762) 810.8362) 812.3362)

2,=1.0 Original 79810) 798(10) 798(10) 799(10)
Improved 812.6(62) 812.3762) 812.3662) 812.3762)

an average of the independent, identically distributed randorare using matrices of the formA=M +cl, where
variablesp ITA~1»J, j=1,..L, we may minimize the vari- M=|—«D is the Wilson fermion matrix, one possible
anceci(\) in Eq. (22 by choosing\ to minimize the varia-  choice is suggested by the hopping parameterexpansion
tion of the numbersy I"(A™1==7_ N Q) 5!, j=1,..L.  of the inverse matrix,

This corresponds to a simple least-squares fit to the function

7'A~ 15y using the functiong1,7"Q® 4}, p=1,..P, based (M4 l)~ 1= 1 1
on samples at pointg;, j=1,...l, Making the definition K M+l K
Q®=1, the usual least-squares equations then yield (I+ec| - (1+cy) D
A=C lq, _ | N K D+ K2 D2
where N 1+Ck (1+Ck)2 (1+Ck)3
K3
34...
A=(Ag A1, hp)T, T aFe)tP T (23
L
. L . This suggests choosing the matric@¥) from among those
= toP) o . ) h . .
Cpq—jzl (7"'QP ) ("' Q V7)), matrices in the hopping parameter expansion which are
traceless:
L
aq=2, (P1QVn)(7ITA1y)), W
T A =12
and the trace estimate is given By, . 2
We now turn to the question of choosing suitable traceless Q(Z)ZTDZ’
matricesQ(P to use in the modified estimator. Equati¢?) (1+cw)
indicates that the matrices used should match the off- 3
diagonal behavior of the matrik, so that they can cancel Q<3)=K_4D3,
out the off-diagonal contributions to the variance. Since we (1+cy)

TABLE lIl. The variational parametef\ },,; in Eg. (26) for different subtraction data set listed above and varibusoise lengttL for
M 1 .

Improved Z, length N1 N, N3 Na N5
1st L=200 0.960 — — — —
L=600 0.968 — — — —
2nd L=200 0.960 0.919 — — —
L=600 0.972 0.982 — — —
3rd L=200 0.968 0.942 0.908 — —
L=600 0.972 0.969 0.919 — —
4th L=200 0.973 0.921 0.903 1.23 —
L=600 0.976 0.924 0.967 1.21 —
5th L=200 0.990 0.926 0.908 1.21 1.27
L=600 0.992 0.924 0.910 1.19 1.26
11th L=50 0.998 0.913 0.968 1.20 1.06
L=100 0.992 0.890 0.953 1.17 1.48
L=150 0.995 0.886 0.939 1.17 1.18
L=200 0.999 0.923 0.951 1.16 1.09
L=300 0.997 0.924 0.934 1.19 1.06
L=400 0.998 0.925 0.959 1.20 1.07

L=600 1.001 0.923 0.964 1.16 1.00
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TABLE IV. Central values for improved stochastic estimation of{ttlefM ;] andrth-order-improved jackknife error§ are given for
different numbers oZ, noise vectorsk is 0.150 in this case.

Z, No. 50 100 200 400 600 800 1000 3000 10000
Oth 802.98 797.98 810.97 816.78 815.89 813.10 816.53 813.15 812.81
o +14.0 +9.81 *+7.95 +5.54 *+4.47 +3.83 +3.41 +1.97 +1.08
1st 807.89 811.21 814.13 815.11 814.01 814.62 814.97 — —
o1 +4.65 +3.28 +2.48 +1.84 +1.50 +1.29 +1.12 - -
2nd 813.03 812.50 811.99 812.86 811.87 812.89 813.04 — —
6, +2.46 +1.65 +1.34 +1.01 +0.83 +0.72 *+0.64 - -
3rd 812.07 812.01 811.79 812.44 812.18 812.99 813.03 — —
O3 +1.88 +1.31 +1.01 +0.74 +0.58 +0.51 +0.44 - -
4th 812.28 812.52 812.57 812.86 812.85 813.25 813.40 — —
04 +1.20 +0.94 +0.68 +0.48 +0.39 +0.35 +0.30 - -
5th 813.50 813.07 813.36 813.70 813.47 813.54 813.50 — —
S5 +0.82 +0.62 +0.47 +0.34 +0.29 +0.25 +0.22 - -
6th 813.54 813.23 813.22 813.28 813.20 813.37 813.26 — —
Os +0.67 +0.49 +0.35 +0.25 +0.21 +0.18 +0.16 - -
7th 814.18 813.74 813.44 813.42 813.39 — — — —
67 +0.44 *+0.36 +0.26 +0.19 +0.16 - - - -
9th 813.77 813.62 813.49 813.40 81343 — — — —
O9 +0.40 +0.30 +0.22 +0.16 +0.14 - - - -
11th 813.54 813.41 813.45 813.44 813.43 — — — —
011 +0.38 +0.27 +0.21 +0.15 +0.13 - - - -
() ! 4 4 (2r+1) K2 2r+1
Q —W(D —TrD ), Q —mmD y I'—3,4,5,... .
K5
Q<5>:—6D5, It may be verified that all of these matrices are traceless. In
(1+cy) principle, one can include all the even powers, which entails
6 the explicit calculation of all the allowed loops inO¥". In
Qo= K (DS~ TrD®) this paper we have only include@®, Q(®), and Q1)
(1+cy)’ ' Note that TD* in Q) can be evaluated from
TABLE V. The same as in Table IV for I¢detM,].

Z, No. 50 100 200 400 600 800 1000 3000 10000
Oth 788.96 793.87 809.08 813.03 813.06 811.14 815.29 811.48 809.54
8o +15.8 +10.7 +8.27 +5.89 +4.66 +3.94 +3.46 +1.99 +1.09
1st 808.94 814.00 811.94 811.85 811.73 811.77 812.22 — —
o1 +5.00 +3.69 *+2.69 +1.91 +1.53 +1.39 +1.25 - -
2nd 810.75 811.11 810.29 810.21 810.15 810.43 811.05 — —
6, +2.67 +1.94 +1.40 +1.03 +0.84 *+0.73 +0.66 - -
3rd 806.65 808.13 809.28 809.58 810.06 810.56 810.52 — —
O3 +1.79 +1.36 +1.01 +0.69 +0.56 +0.48 +0.43 - -
4th 807.80 808.89 810.02 809.76 810.06 810.32 810.40 — —
N +1.17 +0.97 +0.69 +0.49 +0.39 +0.33 +0.30 - -
5th 809.92 809.80 810.55 810.68 810.82 810.85 810.79 — —
S5 +0.89 +0.69 +0.52 +0.37 +0.29 +0.25 +0.22 - -
7th 810.47 809.93 810.65 810.58 810.74 — — — —
67 +0.75 +0.62 +0.46 +0.32 +0.25 - - - -
9th 809.04 809.90 810.70 810.71 810.80 — — — —
O9 +0.66 +0.59 +0.43 +0.29 +0.23 - - - -
11th 810.02 809.73 810.65 810.71 810.81 — — — —
011 +0.65 +0.56 +0.42 +0.29 +0.23 - - - -
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825 Improved estimates for Tr log M_1 Improved estimates for Tr[log M_1 - log M_2]
Improved at kappa=.150 +~o— Improved at kappa=.150 +——
Unimproved: 812.8 +/- 1.1 - Unﬁ)mproved: 3p§ 11 —
820 r J
10 1
815 H fogd . ? ]
! !
810 | . St 1
I 1 ¢ ! i
805 | . ol 1
800 1 L L 1 L 1
0 2 4 6 8 10 12

-5 L L 1 L L L 1
0 2 4 6 8 10 12
order of subtraction

order of subtraction

FIG. 8. The improved PZ estimate of Tr ldg; with 50 noises
as a function of the order of subtraction and compared to that of |G, 9. Same as Fig. 8, for log M, —log M,] with x=0.150.
unimproved estimate with 10 000 noises. The dashed lines are
drawn with a distance ofd away from the central value of the

unimproved estimate. wherel ; stands for the sum over rectanglés, over paral-

lelograms, and_; over chairs.
We then set

TrD*=—32>, TrU,, (29)
i QN =M QM+XQP+ 1 3Q%+ A, QW+ X5Q1 +16Q®
. RN @r+1)y ... 26
where TtJ, is the plaquette and- 32 comes from the trace 2r+1Q ’ (26)
of the product of 1+ y, in the the Wilson action. Similarly,
TrD% in Q® can be evaluated from 3 classes of 6-link loops,and perform the variation process to get an optimal choice of
{N1 N2, oA or i1, Jopt- The additional computational cost
incurred by the modified estimator B additional matrix
TrD6= — 128 U, —64 U, —64 u, . vector mglt|pllcat|ons per noise vector. . SmtEé is small
2R b LZEEP L2 Lszec Ls (~9), this overhead is essentially negligible compared to
(25 solving Eqgs.(19) and (20).

Lye

TABLE VI. The same as in Table IV for IdgetM, /detM,].

L 50 100 200 400 600 800 1000 3000 10000
Oth 14.0 412 1.90 3.75 2.84 1.96 1.24 1.67 3.28
do +154 *+115 +8.20 +5.59 +4.68 *+4.01 +3.54 +2.06 *+1.13
1st 4.46 2.39 2.30 3.23 2.24 2.85 2.75 3.16 —
01 +4.40 +3.56 +2.75 +1.99 +1.67 *+1.45 +1.31 +0.75 -

2nd 1.81 1.49 1.72 2.62 1.75 2.45 1.99 3.05 —
6, +2.43 +1.98 +1.49 +1.11 +0.95 +0.82 +0.73 +0.42 -

3rd 3.85 2.72 2.45 2.78 2.16 2.43 2.48 3.04 —
O3 +2.04 +1.45 +1.05 +0.76 +0.63 +0.54 +0.48 +0.27 -

4th 341 2.77 251 3.04 281 2.92 2.99 — —
04 +1.34 *0.97 +0.70 *0.51 +0.42 +0.36 +0.33 - -

5th 2.84 2.84 2.75 2.95 2.62 2.68 2.70 — —
Og +0.91 +0.65 +0.51 +0.38 +0.32 +0.27 +0.24 - -

6th 2.75 2.80 2.65 2.65 2.49 2.54 251 — —
O +0.74 +0.52 +0.39 +0.29 +0.24 +0.20 +0.18 - -

7th 3.18 3.27 2.77 2.90 2.77 — — — —

67 +0.51 +0.35 +0.27 +0.21 +0.18 - - - -

9th 3.15 3.39 2.78 2.81 2.76 — — — —

O9 +0.47 +0.32 +0.25 +0.19 +0.16 - - - -

11th 3.04 3.33 2.76 2.83 2.72 — — — —

011 +0.44 +0.29 +0.23 *0.17 +0.14 - - - -
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TABLE VII. Same as Table VI for the IdgletM , /detM,] at k=.154 instead ok =.150.

Z, No. 50 100 200 400 600 800 1000 3000 10000
Oth 12.6 2.66 2.32 4.86 3.84 2.68 1.92 3.35 431
So +16.3 +12.0 +8.53 +5.83 +4.86 +4.18 +3.68 +2.15 +1.19
1st —0.45 —1.60 3.56 4.67 3.27 4.11 4.04 — —
01 +5.09 +3.88 +2.96 +2.16 *1.79 *1.55 +1.39 - -
2nd 3.54 3.21 3.17 4.14 2.88 3.70 3.32 — —
0 +2.81 +2.27 +1.66 +1.26 +1.08 +0.93 +0.69 - -
3rd 6.27 5.07 3.90 4.32 3.58 3.84 3.94 — —
O3 +2.30 +1.65 +1.20 +0.89 +0.74 +0.64 +0.57 - -
4th 5.49 5.22 4.28 4.73 4.46 4.49 4.49 — —
04 +1.58 +1.13 +0.54 +0.64 +0.52 +0.45 +0.41 - -
5th 4.55 4.72 4.30 4.35 4.01 4.10 4.08 — —
Og *1.07 *0.77 +0.63 +0.49 *0.41 +0.35 +0.32 - -
6th 4.51 4.72 412 4.03 3.83 3.91 3.88 — —
Og +0.91 +0.68 +0.54 +0.42 +0.34 +0.29 +0.26 - -
7th 5.13 5.52 4.35 4.43 4.24 4.16 4.02 — —
o7 +0.77 +0.55 +0.44 +0.35 +0.28 +0.24 +0.22 - -
9th 4.98 5.60 4.33 4.27 4.21 4.16 4.08 — —
b9 +0.67 +0.52 +0.43 +0.32 +0.26 +0.22 +0.20 - -
11th 4.80 5.60 4.32 4.31 4.19 4.21 4.13 — —
011 +0.64 +0.49 +0.42 +0.31 +0.25 +0.21 +0.19 - -

In actual practice, we generatecomplex % noise vec-  the fermion matrixM, after the plaquette becomes stable.
tors, and obtain basic Padg (P2) estimates using the 8  The trajectories are traced with=0.01 and 30 molecular
matrix inversion algorithm. The auxiliary data used in thedynamics steps using=0.150. M, is then obtained from
improved PZ estimates may be computed via a few matrixM1 by an accepted trajectory run. Hendd; and M,
vector multiplications: _ differ by a  continuum  perturbation,  and

Ummprca\{ed _ estimates {01,0,,...,0.}, with log[detM ; /detM 5]~ O(1).
0= 2y &, 1=1.2,..L. (1) (D) W _ We first calculate log del; with different orders of the

First - auxiliary data set{D;",D3",...D{"}, With  padeexpansion around,=0.1 andzy=1.0. We see from

Dj(l):Ek[ka/(1+ck)2] (7''D7). ) (2 ) Table I that the 5th order Padgproximation does not give
Second auxiliary data sefD{?),D%),...D{}, with  the same answer for two different expansion points, suggest-
D{?=3, [bx? (1+c)] (7' 'D?7)). ing that its accuracy is not sufficient for the range of eigen-
Third auxiliary data set{D{®,D$,...D{®}, with  values ofM,, whereas the 11th order Padpproximation
D® =3, [bex®(1+c)*] (71 TD3p)). gives the same answer within errors. Thus, we shall choose
Fourth auxiliary data set{D{? ,D$,...D*}, with  P[11,11)(z) with z,=0.1 to perform the calculations from
D=3, [byx*(1+c,)®] (71 TD* '~ TrD?). this point on.
Fifth auxiliary data set {D{® ,DY,...D®)}, with Table Il shows the optimal choice of parameters,
DJ(S):Ek[ka5/(1+Ck)6] (711D 7). i=1,5, with different subtraction sets and various nbise
Sixth auxiliary data set{D(ls),D(ZG),...,D(L6)}, with  lengths. The fact tha}tif_vl.o, i=1,2,3,4,5 gives furt_her evi-
DJ(G):Ek[kaG/(lJer)?] (7' 1D® %! —TrDY). Qence t_hat the fluctuations dug to the com_pif@xnmse are
Higher odd terms{D(lzr”),D(zzr“),.__,D(Lz”l)}, with indeed introduced by the off_—d|agonal matrix glements.
DJ(zr+1):Ek[kaer/(lJer)zru] (7 TDZ 150 In Tables IV and V, we give the results of improved es-

Using these data, a least squares fit is performed to yielmations for Tr logM, and Tr logvl,, respectively. We see
a set 0f{Ao.A 1,2 M3.0 4, N5, X6 X 2r 1 1y}opt» WhiCh mini- that the variational technique described above can reduce the

mizes the variance Eq22) of the improved estimator over data fluctuations by more than an order of magnitude. For
the{L} noise vectors. example, the unimproved errép=5.54 in Table IV for 400
Z, noises is reduced té;;=0.15 for the subtraction which
includes up to th&*! matrix. This is 37 times smaller. Com-
IV. COMPUTATIONS OF DETERMINANTS AND paring the central values in the last rdiae., the 11th order
DETERMINANT RATIOS improved with that of unimproved estimate with 10 0GQ
Our numerical computations were carried out with the0iS€S, we see that they are the same within errors. This
Wilson action on the 8x12 (N=73728) lattice with verifies that the \_/arlatlonal §ubtract|on schem_e that we em-
B=5.6. We use the HMC algorithm with pseudofermions toPloyed does not introduce biased errors. The improved esti-
generate gauge configurations. With a cold start, we obtaiffates of Tr lo§/, from 50 Z, noises with errorss; from
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Improved estimates for Tr{log M_1 - log M_2] TABLE VIII. A breakdown of the energy chang&H in 10
] I e s [Tt e T e
Unimproved: 4.3 +/-1.2 - ergy (A?rlg;‘.’ P Also listed are pst;ug , estimates  of
A(TrlogM)=Tr logM,—Tr logM, using 600Z, noises with
10 1 subtraction. Thec is 0.150 in this case.
Group AH(old-new) A(Tr logM)
> I I . . | Pair1 AU p1aq ~188.238
7 1t 1 L I MM, AU pseudo 15.636 —0.21(.24)
ol | Ar? 172.514
Pair 2 AUpjaq 437.556
My, M, AU pseudo 15.518 —3.58(.26)
5 L . . . . . . Ax? —453.023
0 2 4 6 8 10 12 Pair 3 AU 5 —120.857
order of subtraction My, M, AUpseudo 6505 0.56.25
FIG. 10. Same as Fig. 9, for [logM,;—logM,] with Ax? 127.331
x=0.154. Pair 4 AU pjag —40.862
M,,M5 AU pseudo —28.189 2.08249)
Table IV are plotted in comparison with the central value of Ax? 69.085
the unimproved estimate from 10 000 noises in Fig. 8. Pair 5 AUpjaq —110.674
We note in passing that our unimproved results have thés,Mg AU pseudo —70.823 —0.06(.24)
similar size errors as those obtained by the Chebyshev poly- Aw? 181.516
nomial expansion of lo¢) "M [1], and thus one can simi- pgajr 6 AU pjaq 241.814
larly improve its estimation with the variational subtraction Mg, M, AU peudo 67.498 —3.69(.25)
scheme introduced here. _ An? —309.213
Results for Trlog M;—log M,] are shown in Table VI. _
Pair 7 AU 82.339

We see that again the errors are reduced by a fae8#. 5, plag

for 50 Z, noise vectors is even smaller than the unimproved¥7-Ms AUpseudo —70.015 —0.98(.24)
error 8, with L =10 000. To achieve the same level of accu- Ax? —12.315
racy for the unimproved estimation, it would require Pair 8 AU pjaq —692.873
~65 955 noise vectors. This is 1319 times more than the 5014,M, AU pseudo —27.643 6.5124)
noise case which employs subtraction. Again, to show that A2 720.243
the subtraction does not introduce biased errors, we plot ip,;, g AU piaq 260.435
Fi.g. 9 the improved RZ estimates of[Tag Ml—log M5] Mg.M 1o AU, coudo 2186 —1.14(.25)
with errors from 50 noise vectors as a function of the order Ap 5 262529
of subtraction and verify that they agree with that of the 7 '
unimproved estimate with 10 000 noises. Pair 10 AUpiaq —613.121

As for the quark mass dependence, one expects that tiéio.M1; AU pseudo 110.997 6.4029)
errors will go up as the quark mass becomes smaller. We Am? 501.946
have made an attempt to study this by considering the case ehir 11
x=0.154 which corresponds to the strange quark mass ang, m,, 5.85.30)

yields a w/p mass ratio of ~0.8. The results of
Tr[logM—log M,] are listed in Table VII. The PZ esti-
mates and their errors in Table VII for=0.154 are simi- ; ; 4 X
larly plotted as a function of the order of subtraction in Fig'space. This remains to be tested in future studies.

. . . We have also generated a sequence of configurations
10. We see that their errors are indeed larger than those in ; . X
Table VI for the case ok=0.150 which gives ar/p mass through HMC updating with pseudofermions. In Table VIl

ratio of ~0.9. For example, the error with 400 noises andWe list the change of the gauge, the pseudofermion, and the

i i Z kinetic energy parts of the action from 10 molecular dynam-
11th order subtraction fok=0.154 is 0.31 which is 82% . trajectories. The total change in enedyi is ~O(1).
larger than the corresponding error fe=0.150 at 0.17.  A|so Jisted are the change of Trldd, i.e.

Thus, this would require-1325 noise<3.31 times of 40D A(TrlogM)=Tr logM;—Tr logM,. It is somewhat sur-
for it to reach the same level of error as in the case Ofprising to see that the absolute values\gfir log M) are an
x=0.150. For still smaller quark mass, e.g. that correspondorder of magnitude smaller that those A pseudo (the

ing to aw/p mass ratio of~0.6, it may need tens of thou- pseudofermion part of the actipnand their signs can be
sands of noises to reach an error at the same 17% levalifferent. This may be related to the observation that it takes
Although this would account for an overhead of several trawvery long to decorrelate the global topological charge in the
jectories at the accept-reject step if used in the hybrid MontéiMC algorithm with pseudofermiong5]. This will be in-
Carlo algorithm with determinant ratid 3], one hopes this vestigated further in the future.

can be offset by a faster mapping of the topological charge
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V. APPLICATION TO GLOBAL DENSITY OF STATES time required to calculate a single term, albeit with addi-
FOR HERMITIAN HAMILTONIAN SYSTEMS tional memory (one lengthN vector for each additional
term). Hence, a higher order Pa@spansion requires more
memory, but essentially the same computation ti@part
from the matrix conditioning effects to be mentioned below
The entire method can be applied to non-Hermitian ma-
N trices: So determinants of non-Hermitian matrices may
> 8(z—\y), (27)  also be found directly, without recourse to the Hermitian
n=1 matrix M. Negative and complex determinants can also
be calculated in principle.
where{\,} are the eigenvalues ®f. Thec;’s in the Padeexpansion in Eq(5) turn out to be
In Ref.[16], p(2) for realz is calculated for Hermitiatd  real and positive, which improves the conditioning of the
as follows: matricesM +¢;I and hence expedites the column inversions
in Egs.(19), (20). However, this effect diminishes for higher
1 order Padeapproximations, because the minimuep de-
p(z)=— lim Im Tr[H—(z+1e)l]" ™. (28)  creases as the order increases.
T o+ The PZ method also holds promise of being useful in the
case where different quark flavors are present, in which case
Choosing a smalk in Eq. (28) yields a smoothed version of it iS necessary to compute multiple determinant ratios for
p(2). matrices with different but constant diagonal terms. Using
We have shown above that the trace in E2f) may be  the IV_I3R algorithm, this takes essentially the same computa-
estimated for several different values pfsimultaneously tion time as a single determinant ratio. _
using complex Z noise and the BR algorithm. Thus, we The unbiased variational subtraction scheme works quite
may estimate the global density of states for a Hermitiar?Vell in reducing the stochastic error from thg @oise. The
matrix H at essentially the same computational desbdulo  Principle is general enough to be applied to other cases with
additional memoryas estimating the local density of states Stochastic estimates.

The density of stateg(z) for a Hamiltonian system with
Hamiltonian matrixH is

p(z)=

Zl

at a single point. In conclusion, we have demonstrated the efficiency of the
PadeZz, algorithm in estimating determinants and determi-
VI. CONCLUSION AND SUMMARY OF ADVANTAGES nant ratios to high accuracy for lattice QCD. It is certainly
OF THE PZ ALGORITHM applicable to other systems with large sparse matrices. For

example, we have been able to reduce the error of the deter-

The PZ method takes advantage of proven, effective numinant ratio from 559% to 17% with the unbiased subtrac-
merical approximation techniques. The advantages of the Pon scheme and a relatively smak-@00) number of the
method are summarized as follows: noise vectorgsee Table V). It is rather encouraging as far as

The Padeapproximation uses rational functions, which the feasibility of using this algorithm to simulate dynamical
are known to be very efficient in the uniform approximation fermions in full QCD is concerned. We shall pursue this in
of analytic functions. In finding determinant ratios, the Padethe future.
approximation to the logarithm only needs to be accurate on
the region in the complex plane where the spectril gfand
M, differ.

The complexZ, random vectors have been shown to be This work is partially supported by U.S. DOE grant No.
superior to the Gaussidii7,6,1§ noise in computing traces DE-FG05-84ER40154. The authors would like to thank Z.
of inverse matrices. Bai, P. deForcrand, A. Frommer, G. Golub, A. Kennedy, and

The PZ method also takes advantage of the recently dd3. Weingarten for helpful discussions. They would also like
veloped MR algorithm to calculate all terms in the Pade to thank C. Liu for lending us his HMC code and W. C. Kuo
expansion in Eq(7) in essentially the same computational and J. Sloan for providing results on the 6-link loops.
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