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Padé-Z2 estimator of determinants

C. Thron, S. J. Dong, K. F. Liu, and H. P. Ying*
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506

~Received 11 July 1997; published 30 December 1997!

We introduce the Pade´-Z2 ~PZ! stochastic estimator for calculating determinants and determinant ratios. The
estimator is applied to the calculation of fermion determinants from the two ends of the hybrid Monte Carlo
trajectories with pseudofermions. Our results on the 83312 lattice with Wilson action show that the statistical
errors from the stochastic estimator can be reduced by more than an order of magnitude by employing an
unbiased variational subtraction scheme which utilizes the off-diagonal matrices from the hopping expansion.
Having been able to reduce the error of the determinant ratios to about 20% with a relatively small number of
noise vectors, this may become a feasible algorithm for simulating dynamical fermions in full QCD. We also
discuss the application to the density of states in Hamiltonian systems.@S0556-2821~98!05803-2#

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

At present, lattice gauge Monte Carlo calculation is s
the only viable and practical means of solving QCD a
computing hadron masses and matrix elements n
perturbatively. As such, there is a perpetual need of shar
ing the tools to tackle the numerically intensive aspects
the computation, especially those pertaining to dynam
fermions.

The Euclidean functional integration formulation of th
quantum field theory of gauge bosons and fermions has
generic partition function

Z5E @dU#@dc̄ #@dc#e2SG2 c̄Mc, ~1!

whereU is the gauge link variable andSG the gauge part of
the action. Given that the fermion part of the action is qu
dratic in the Grassmann numbersc̄ andc, they can be for-
mally integrated out to give a fermion determinant, i.e.

Z5E @dU#det M @U#e2SG. ~2!

Since numerically the computation of the fermion determ
nant is much more demanding a task than the updating
gauge linksU, it is often approximated by a constant. This
known as thequenched approximationwhich has previously
been interpreted as tantamount to neglecting the inte
quark loops. Recently, Sexton and Weingarten@1# have ad-
vanced the view that it actually corresponds to the inclus
of the leading terms in the loop expansion which are co
mensurate with the size of loops in the gauge action. T
leads to a shift inb or the bare coupling constant. Althoug
a number of low-energy quantities, such as hadron ma
@2#, weak matrix elements@3,4#, and hadron structure@5,6#,
are reproduced reasonably well~within 6%–15% in many
cases! in the quenched approximation, we know that the c

*On leave from: Zhejiang Institute of Modern Physics, Zhejia
University, China.
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ral log behaviors of these quantities@7,8#, the h8 mass, and
the phase transition@9# depend crucially on the full inclusion
of dynamical fermions. Thus, solving full QCD with dy
namical quarks remains a desirable and challenging ultim
goal.

In view of the perceived difficulty of calculating determ
nants accurately, all the existing working algorithms ha
avoided calculating them directly. Instead, pseudofermi
@10# and local bosons@11# are introduced to bosonize th
determinantal effects. For example, the current state of
art algorithm—the hybrid Monte Carlo~HMC! algorithm
@12#—transforms the partition function in Eq.~2! to the fol-
lowing one for 2 degenerate flavors:

Z5E @dU#@df#@df!#e2SG2f!~M†M !21f, ~3!

wheref is a pseudofermion variable which can be genera
using a Gaussian heat bath. This gives rise to the pseud
mion force which acts over the course of molecular dyna
ics trajectories to update the gauge field and the ferm
matrix M which in turn enables the updating of thef field.

On the other hand, it may be desirable to admit the de
minantal effects directly without resorting to the superfluo
degrees of freedom from pseudofermions. This can be d
in principle with the partition function in Eq.~2! rewritten as

Z5E @dU#e2SG1Tr log M, ~4!

and Tr logM which reflects the dynamical fermions is take
as an additional part of the gauge action. It is shown in@13#
that a HMC-like algorithm based on the partition function
Eq. ~4! is valid provided that Tr logM can be estimated
without bias. However, the task at first sight appears dau
ing. First of all, one needs an efficient algorithm to calcula
Tr log M . This is apparently much more intensive nume
cally than calculating (M†M )21f in the pseudofermion ap
proach. In addition, the demands on the accuracy
Tr log M are very stringent. Since the relative error of detM
is the absolute error in Tr logM , a 20% error in detM for
example would require calculating Tr logM ~which is of the
1642 © 1997 The American Physical Society
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57 1643PADÉ-Z2 ESTIMATOR OF DETERMINANTS
order N! to within 0.2. Luckily, the Monte Carlo updating
involves only determinant ratios, and not the determina
themselves. One would expect that an accuracy of;0.2
should be somewhat easier to achieve for the differe
Tr log M12Tr log M2 than for each term separately.

We shall present in this paper an efficient stochastic a
rithm to estimate Tr logM which has the potential of achiev
ing the kind of accuracy (;0.2) in Tr log difference with
relatively small (;500) number of noise vectors. This ne
algorithm invokes the Pade´ approximation for the logM and
uses complexZ2 noise to estimate the trace, as introduced
Sec. II. We have tested it by calculating the determinants
determinant ratios of fermion matrices from both ends
randomly chosen molecular dynamics trajectories gener
by the hybrid Monte Carlo algorithm with pseudofermion
We also applied the method to Wilson fermions on
83312 lattice, and studied its dependence on the rank of
Padéexpansion and the number of noise vectors. In Sec
we introduce an unbiased variational subtraction sche
which is based on the subtraction of traceless terms in
hopping parameter expansion. We find that this can red
the statistical error by an order of magnitude, leading to
error in the range of 0.2–0.3 with 400–600 noise vecto
These results are presented in Sec. IV. We should men
that there exist other stochastic estimators for determina
Reference@1# uses the Chebyshev polynominal to expa
log M†M and Gaussian noise to estimate the trace. Re
ence@14# usesZ2 noise and the Riemann-Stieltjes integral
estimate the Tr logM . The subtraction scheme we introdu
here is applicable to both of these approaches. A discus
of application to density of states in Hermitian Hamiltoni
systems is presented in Sec. V. Section VI gives the con
sions and outlook.

II. BASIC PADÉ -Z2 METHOD

A. Padéapproximation

The starting point for the current algorithm is the Pa´
approximation of the logarithm function@@15##. The Pade´
approximant to log(z) of order@K,K# at z0 is a rational func-
tion N(z)/D(z) where deg N(z)5degD(z)5K, whose
value and first 2K derivatives agree with logz at the speci-
fied point z0 . When the Pade´ approximantN(z)/D(z) is
expressed in partial fractions, we obtain

log z'b01 (
k51

K S bk

z1ck
D , ~5!

whence it follows

log detM5Tr log M'b0TrI1 (
k51

K

bkTr~M1ckI !
21.

~6!

For the purpose of Monte Carlo updating, only the ratio
determinants is needed. In this case, the log of the dete
nant ratio detM1 /detM2 is approximated as

log$det M1 /det M2%5Tr@ log M12 log M2#
ts
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bk@Tr~M11ckI !
21

2Tr~M21ckI !
21#, ~7!

whereM1 andM2 are matrices at the beginning and end o
HMC trajectory for example.

This approximation is accurate as long as the eigenva
of the matricesM1 andM2 all lie in the region in the com-
plex plane where the Pade´ approximation is accurate. If we
definee(z) to be the difference between the right- and le
hand sides of Eq.~5!, then the error in the approximation i
Eq. ~6! is

DTr log M5(
n

e~ln!, ~8!

where$ln% are the eigenvalues ofM .
The accuracy of the Pade´ approximation is graphically

illustrated in Figs. 1–6. In Fig. 1, we plote(z) for different
orders of the Pade´ approximation on the positive real axis
We see thate(z) for the 5th order Pade´ approximation
reaches quickly to the order of 1026 around the expansion
point z051, whereas that of the 7th order does not rea

FIG. 1. e(z) for the Pade´ approximation of logz on the positive
real axis for different orders of the Pade´ expansion atz051.0.

FIG. 2. Same as Fig. 1, on a larger domain.
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1644 57C. THRON, S. J. DONG, K. F. LIU, AND H. P. YING
1026 until z is smaller than 0.3 and greater than 3. For
11th order, the domain for whiche(z),1026 is extended to
between 0.1 and 10.

Figure 2 is the same plot on a larger domain ofz. It shows
that ue(z)u increases with increasing distance to the exp
sion point. The figure clearly depicts the inversion antisy
metry e(1/z)52e(z), which is due to the correspondin
antisymmetry of the logarithm. Hence, if the expansion po
is suitably chosen near the ‘‘center’’ of the eigenvalue d
tribution, we shall get error cancellation. The coefficients
the Pade´ approximationbk andck in Eq. ~5! for 5th, 7th, 9th,
and 11th orders used to produce Figs. 1 and 2 are tabu
in Table I.

In Figs. 1 and 2, the Pade´ expansion point is chosen a
z051. The error functionsez0

(z) for other expansion points
are identical, modulo a change of scale. This is due to
fact that logz5log(z/z0)1log(z0), and hence the Pade´ ap-
proximationPz0

(z) for log z aroundz0 is equal to

Pz0
~z!5P1~z/z0!1 log~z0!. ~9!

FIG. 3. Real parts of various orders of the Pade´ approximation
to logz on uzu51 as a function of arg(z). The Pade´ expansion point
is z051.

FIG. 4. Imaginary parts corresponding to the real parts show
Fig. 3.
e
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ted
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It follows that

ez0
~z!5P1~z/z0!2 log~z/z0!5e~z/z0!. ~10!

We see from these figures that as long as one has s
notion about the domain of the eigenvalues of the matrixM
and the desirable level of accuracy one needs for Tr logM ,
one can decide on an appropriate order of the Pade´ approxi-
mation and the expansion pointz0 .

The Pade´ approximation of the logarithm is not limited t
the real axis. It applies equally well to the complex plan
except near the branch cut. Pade´ approximation of the loga-
rithm about a positive realz0 corresponds to a branch cu
along the negative real axis, and the poles of the Pade´ func-
tions all lie on the negative real axis. Using coefficients fro
Table I which are obtained from expansion aboutz051, we
plot the Pade´ approximated logz along the unit circle as a
function of arg(z). The real part as shown in Fig. 3 revea
the pole atz521 for all the Pade´ functions with different
orders. Figure 4 shows the imaginary part. The imagin
part of the log function has a discontinuity fromp to 2p
across the negative real axis, while the Pade´ approximations
have discrete poles. Thus, the Pade´ approximation fails near

in

FIG. 5. Same as Fig. 3, foruzu510.

FIG. 6. Same as Fig. 4, foruzu510.
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TABLE I. The coefficientsbk andck of PadéexpansionsP@K,K# for log z at z051.0.

k bk ck bk ck

P@5,5#
(b054.566666667)

P@7,7#
(b055.185714286)

1 0.130408172495391 0.0492189449629343 0.06816753269 0.02611045152
2 0.404437841802115 0.299993435237384 0.1844456100 0.1484146919
3 1.13777777850000 1.00000000000000 0.3863893344 0.4226317870
4 4.49394268525114 3.33340630084376 0.8359183641 1.0000000000
5 53.8334305460671 20.3173813294693 2.163220583 2.3661258591
6 8.373644726 6.737877409
7 99.98821380 38.29883980

P@9,9#
(b055.65793650793651)

P@11,11#
(b056.03975468975469)

1 0.041962745788105575 0.01617742288114674 0.02845031368729848 0.01100547288
2 0.10717746225992 0.08930616263474539 0.07053085455625973 0.05984825317
3 0.20024123115789 0.2396401470008922 0.1244662250449701 0.155967795636
4 0.35622568741554 0.5102849384064862 0.2021047007456418 0.316572375866
5 0.6604787100025195 1.0000000000000000 0.3261128629248666 0.57536984120
6 1.36804295333940783 1.959689429836578 0.5458501735606061 1.00000000000
7 3.48685872889035930 4.172923495979481 0.9850850802286254 1.73801254146
8 13.4381848942707415 11.9743554641257 2.016649317776546 3.158835312972
9 160.340827693254954 61.81454285684810 5.116602053912441 6.41158000545

10 19.69138119799427 16.70892543916556
11 234.8927672230579 90.86388296216937
ro
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the branch cut. Nevertheless, it works for cases away f
the branch cut. In some cases, it may be desirable to p
the branch cut in a different location, say along the r
arg(z)5u. This is easily done by choosing the expansi
point z0 as e2 iu, as can be seen from Eq.~9!. As long as
there are no eigenvalues along the ray arg(z)5u for the ma-
trix M , one can apply the Pade´ approximation outlined above
to calculate determinants which are negative or comp
@15#.

It is worth mentioning that the Pade´ approximation fur-
nishes a much more accurate global approximation to
logarithm than that obtained from the ‘‘Green function
method@16#.

The Green function approximation makes use of the f
that

1

p
lim
e→0

1

l2l02ıe
5d~l2l0!, ~11!

whence it follows

Tr log M5E
lmin

lmax
logl r~l!dl ~12!

'(
i

logl i

Dl

p
Im E

lmin

lmax r~l!

l2l i2ıe
dl

~13!

5
1

p (
i

log l i Dl Im@Tr~M2l i2ıe!21#,

~14!
m
ce
y

x

e

t

wherel i are evenly spaced on@lmin ,lmax#, ande is a small
parameter.

This approximation may be rewritten as

E
lmin

lmax
logl r~l!dl'E

lmin

lmax
f e~l!r~l!dl, ~15!

where

f e~l!5
Dl

p (
i

e log l i

~l2l i !
21e2 . ~16!

Figure 7 shows that the functionf e(l) with 11 terms and
severale furnishes a very poor approximation to the log
rithm in the interval 1/60,l,60. By contrast, Fig. 2 shows

FIG. 7. Eleven-term Green function approximation to log w
variouse, compared to the log function itself.
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that an 11-term Pade´ expansion on the same interval appro
mates the logarithm to6.0005 at worst, and to much highe
accuracy on most of the interval. Also, the Green funct
method is only applicable if the eigenvalues of the matrix
real, while the Pade´ approximation also holds for matrice
with complexeigenvalues.

B. Complex Z2 noise trace estimation

Exact computation of the trace inverse forN3N matrices
is very time consuming for matrices of sizeN;106. How-
ever, the complexZ2 noise method has been shown to pr
vide an efficient stochastic estimation of the trace@17,6,18#.
In fact, it has been proved to be an optimal choice for
noise, producing aminimumvariance@19,20#.

The complexZ2 noise estimator can be briefly describ
as follows @17,19#. We construct L noise vectors
h1,h2,...,hL where each elementhn

j ,n51,...,N takes one of
the four values$61,6ı% chosen independently with equ
probability. It follows from the statistics ofhn

j that

E@^hm
! hn&#[EF 1

L (
j 51

L

hm
! jhn

j G5dmn . ~17!

The vectors can be used to construct an unbiased estim
for the trace inverse of a given matrixA as follows:

E@^h†A21h&#[EF 1

L (
j 51

L

(
m,n51

N

hm
! jAm,n

21 hn
j G

5
1

L (
j 51

L S (
n51

N

An,n
21DE@hn

! jhn
j #

1
1

L (
j

L S (
mÞn

N

Am,n
21 DE@hm

! jhn
j #

5(
n

N

An,n
211S (

mÞn

N

Am,n
21 DEF 1

L (
j

L

hm
! jhn

j G
5TrA21.

The variance of the estimator is shown to be@19#

sA
2[Var@^h†A21h&#5E@ u^h†A21h&2TrA21u2#

5
1

L (
mÞn

N

Am,n
21 ~Am,n

21 !!5
1

L (
mÞn

N

uAm,n
21 u2.

The stochastic error of the complexZ2 noise estimate
results only from the off-diagonal entries of the inverse m
trix ~the same is true forZn noise for anyn!. However, other
noises~such as Gaussian! have additional errors arising from
diagonal entries. This is why theZ2 noise has minimum
variance. For example, it has been demonstrated o
163324 lattice with b56.0 andk50.148 for the Wilson
action that theZ2 noise standard deviation is smaller th
that of the Gaussian noise by a factor of 1.54@17#.

Applying the complexZ2 estimator to the expression fo
the determinant ratio in Eq.~7!, we find
n
e

-

e

tor

-

a

(
k

bk$Tr~M11ckI !
212Tr~M21ckI !

21%

'
1

L (
k

K

(
j

L

bkhj †@~M11ckI !
212~M21ckI !

21#h j

5
1

L (
j

L

(
k51

K

bkh
j †~j1

k, j2j2
k, j !, ~18!

whereji
k, j5(M i1ckI )

21h j are the solutions of

~M11ckI !j1
k, j5h j , ~19!

~M21ckI !j2
k, j5h j , k, j 51,2,... . ~20!

Since M i1ckI are shifted matrices with constant diagon
matrix elements, Eqs.~19! and ~20! can be solved collec-
tively for all values ofck within one iterative process by
several algorithms, including the quasi-minimum residu
~QMR! @21#, multiple-mass minimum residual (M3R) @22#,
and generalized minimum residual~GMRES! @23# algo-
rithms. We have adopted the M3R algorithm, which has been
shown to be about 2 times faster than the conjugate grad
algorithm, and the overhead for the multipleck is only 8%
@24#. The only price to pay is memory: For eachck , a
single solution vector needs to be stored. Furthermore, s
ck.0 ~see Table I! and the eigenvalues ofM have positive
real parts, the conditioning of (M1ckI ) is improved and we
should expect faster convergence for the column inversi
in Eqs.~19! and ~20!.

In the HMC algorithm, ifM1 and M2 denote quark ma-
trices at the beginning and end of a molecular dynamics
jectory, we have Tr logM12Tr log M25;O(1). Hence,
we need to reduce the error of theZ2 noise estimate of the
trace log difference to below;O(1). However, in practice
we find that;319 000 noise vectors are required to redu
the stochastic error to 0.2. In the next section, we describ
method which significantly reduces the stochastic error.

III. IMPROVED PZ ESTIMATION
WITH UNBIASED SUBTRACTION

In order to reduce the variance of the estimate, we int
duce a suitably chosen set of tracelessN3N matricesQ(p),
i.e. which satisfy(n51

N Qn,n
(p)50, p51,...,P. The expected

value and variance for the modified trace estima
^h†(A212(p51

P lpQ(p))h& are given by

EF K h†S A212 (
p51

P

lpQ~p!D hL G5TrA21, ~21!

sA
2~l![VarF K h†S A212 (

p51

P

lpQ~p!D hL G
5

1

L (
mÞn

UAm,n
21 2 (

p51

P

lpQm,n
~p! U2

, ~22!

for any values of the real parameterslp . In other words,
introducing the matricesQ(p) into the estimator produces n
bias, but may reduce the error bars if theQ(p) are chosen
judiciously. Since the estimatêh†A21h& actually denotes
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TABLE II. Unimproved and improved PZ estimates for log@detM1# with 100 complexZ2 noise vectors.k50.150.

P@K,K#(z) K5 5 7 9 11

z050.1 Original 473~10! 774~10! 796~10! 798~10!

Improved 487.25~62! 788.17~62! 810.83~62! 812.33~62!

z051.0 Original 798~10! 798~10! 798~10! 799~10!

Improved 812.60~62! 812.37~62! 812.36~62! 812.37~62!
o

tio

es

of
l
w

e

are
an average of the independent, identically distributed rand
variablesh j †A21h j , j 51,...,L, we may minimize the vari-
ancesA

2(l) in Eq. ~22! by choosingl to minimize the varia-
tion of the numbersh j †(A212(p51

P lpQ(p))h j , j 51,...,L.
This corresponds to a simple least-squares fit to the func
h†A21h using the functions$1,h†Q(p)h%, p51,...,P, based
on samples at pointsh j , j 51,...,L, Making the definition
Q(0)[I , the usual least-squares equations then yield

l5C21a,

where

l[~l0 ,l1 ,...,lP!T,

Cpq[(
j 51

L

~h j †Q~p!h j !~h j †Q~q!h j !,

aq[(
j 51

L

~h j †Q~q!h j !~h j †A21h j !,

and the trace estimate is given byNl0 .
We now turn to the question of choosing suitable tracel

matricesQ(p) to use in the modified estimator. Equation~22!
indicates that the matrices used should match the
diagonal behavior of the matrixA, so that they can cance
out the off-diagonal contributions to the variance. Since
m

n

s

f-

e

are using matrices of the formA5M1ckI , where
M5I2kD is the Wilson fermion matrix, one possibl
choice is suggested by the hopping parameter—k expansion
of the inverse matrix,

~M1ckI !
215

1

M1ckI
5

1

~11ck!S I2
k

~11ck!
DD

5
I

11ck
1

k

~11ck!
2 D1

k2

~11ck!
3 D2

1
k3

~11ck!
4 D31••• . ~23!

This suggests choosing the matricesQ(p) from among those
matrices in the hopping parameter expansion which
traceless:

Q~1!5
k

~11ck!
2 D,

Q~2!5
k2

~11ck!
3 D2,

Q~3!5
k3

~11ck!
4 D3,
TABLE III. The variational parameters$l%opt in Eq. ~26! for different subtraction data set listed above and variousZ2 noise lengthL for
M1 .

Improved Z2 length l1 l2 l3 l4 l5

1st L5200 0.960 — — — —
L5600 0.968 — — — —

2nd L5200 0.960 0.919 — — —
L5600 0.972 0.982 — — —

3rd L5200 0.968 0.942 0.908 — —
L5600 0.972 0.969 0.919 — —

4th L5200 0.973 0.921 0.903 1.23 —
L5600 0.976 0.924 0.967 1.21 —

5th L5200 0.990 0.926 0.908 1.21 1.27
L5600 0.992 0.924 0.910 1.19 1.26

11th L550 0.998 0.913 0.968 1.20 1.06
L5100 0.992 0.890 0.953 1.17 1.48
L5150 0.995 0.886 0.939 1.17 1.18
L5200 0.999 0.923 0.951 1.16 1.09
L5300 0.997 0.924 0.934 1.19 1.06
L5400 0.998 0.925 0.959 1.20 1.07
L5600 1.001 0.923 0.964 1.16 1.00
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TABLE IV. Central values for improved stochastic estimation of log@detM1# and r th-order-improved jackknife errorsd r are given for
different numbers ofZ2 noise vectors.k is 0.150 in this case.

Z2 No. 50 100 200 400 600 800 1000 3000 10000

0th 802.98 797.98 810.97 816.78 815.89 813.10 816.53 813.15 812
d0 614.0 69.81 67.95 65.54 64.47 63.83 63.41 61.97 61.08
1st 807.89 811.21 814.13 815.11 814.01 814.62 814.97 — —
d1 64.65 63.28 62.48 61.84 61.50 61.29 61.12 - -
2nd 813.03 812.50 811.99 812.86 811.87 812.89 813.04 — —
d2 62.46 61.65 61.34 61.01 60.83 60.72 60.64 - -
3rd 812.07 812.01 811.79 812.44 812.18 812.99 813.03 — —
d3 61.88 61.31 61.01 60.74 60.58 60.51 60.44 - -
4th 812.28 812.52 812.57 812.86 812.85 813.25 813.40 — —
d4 61.20 60.94 60.68 60.48 60.39 60.35 60.30 - -
5th 813.50 813.07 813.36 813.70 813.47 813.54 813.50 — —
d5 60.82 60.62 60.47 60.34 60.29 60.25 60.22 - -
6th 813.54 813.23 813.22 813.28 813.20 813.37 813.26 — —
d6 60.67 60.49 60.35 60.25 60.21 60.18 60.16 - -
7th 814.18 813.74 813.44 813.42 813.39 — — — —
d7 60.44 60.36 60.26 60.19 60.16 - - - -
9th 813.77 813.62 813.49 813.40 813.43 — — — —
d9 60.40 60.30 60.22 60.16 60.14 - - - -
11th 813.54 813.41 813.45 813.44 813.43 — — — —
d11 60.38 60.27 60.21 60.15 60.13 - - - -
4 2r 11

. In
ails
Q~4!5
k

~11ck!
5 ~D42TrD4!,

Q~5!5
k5

~11ck!
6 D5,

Q~6!5
k6

~11ck!
7 ~D62TrD6!,
Q~2r 11!5
k

~11ck!
2r 12 D2r 11, r 53,4,5,... .

It may be verified that all of these matrices are traceless
principle, one can include all the even powers, which ent
the explicit calculation of all the allowed loops in TrD2r . In
this paper we have only includedQ(4), Q(6), and Q(2r 11).
Note that TrD4 in Q(4) can be evaluated from
9.54
TABLE V. The same as in Table IV for log@detM2#.

Z2 No. 50 100 200 400 600 800 1000 3000 10000

0th 788.96 793.87 809.08 813.03 813.06 811.14 815.29 811.48 80
d0 615.8 610.7 68.27 65.89 64.66 63.94 63.46 61.99 61.09
1st 808.94 814.00 811.94 811.85 811.73 811.77 812.22 — —
d1 65.00 63.69 62.69 61.91 61.53 61.39 61.25 - -
2nd 810.75 811.11 810.29 810.21 810.15 810.43 811.05 — —
d2 62.67 61.94 61.40 61.03 60.84 60.73 60.66 - -
3rd 806.65 808.13 809.28 809.58 810.06 810.56 810.52 — —
d3 61.79 61.36 61.01 60.69 60.56 60.48 60.43 - -
4th 807.80 808.89 810.02 809.76 810.06 810.32 810.40 — —
d4 61.17 60.97 60.69 60.49 60.39 60.33 60.30 - -
5th 809.92 809.80 810.55 810.68 810.82 810.85 810.79 — —
d5 60.89 60.69 60.52 60.37 60.29 60.25 60.22 - -
7th 810.47 809.93 810.65 810.58 810.74 — — — —
d7 60.75 60.62 60.46 60.32 60.25 - - - -
9th 809.04 809.90 810.70 810.71 810.80 — — — —
d9 60.66 60.59 60.43 60.29 60.23 - - - -
11th 810.02 809.73 810.65 810.71 810.81 — — — —
d11 60.65 60.56 60.42 60.29 60.23 - - - -
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TrD45232(
p

TrUp , ~24!

where TrUp is the plaquette and232 comes from the trace
of the product of 16gm in the the Wilson action. Similarly
TrD6 in Q(6) can be evaluated from 3 classes of 6-link loop

TrD652128 (
L1PR

UL1
264 (

L2PP
UL2

264 (
L3PC

UL3
,

~25!

FIG. 8. The improved PZ estimate of Tr logM1 with 50 noises
as a function of the order of subtraction and compared to tha
unimproved estimate with 10 000 noises. The dashed lines
drawn with a distance of 1s away from the central value of th
unimproved estimate.
,

whereL1 stands for the sum over rectangles,L2 over paral-
lelograms, andL3 over chairs.

We then set

Q~l!5l1Q~1!1l2Q~2!1l3Q~3!1l4Q~4!1l5Q~5!1l6Q~6!

1•••1l2r 11Q~2r 11!1••• , ~26!

and perform the variation process to get an optimal choice
$l1 ,l2 ,...,l2r 11 ,...%opt . The additional computational cos
incurred by the modified estimator isP additional matrix
vector multiplications per noise vector. SinceP is small
(;9), this overhead is essentially negligible compared
solving Eqs.~19! and ~20!.

of
re

FIG. 9. Same as Fig. 8, for Tr@ log M12 log M2# with k50.150.
0

28
TABLE VI. The same as in Table IV for log@detM1 /detM2#.

L 50 100 200 400 600 800 1000 3000 1000

0th 14.0 4.12 1.90 3.75 2.84 1.96 1.24 1.67 3.
d0 615.4 611.5 68.20 65.59 64.68 64.01 63.54 62.06 61.13
1st 4.46 2.39 2.30 3.23 2.24 2.85 2.75 3.16 —
d1 64.40 63.56 62.75 61.99 61.67 61.45 61.31 60.75 -
2nd 1.81 1.49 1.72 2.62 1.75 2.45 1.99 3.05 —
d2 62.43 61.98 61.49 61.11 60.95 60.82 60.73 60.42 -
3rd 3.85 2.72 2.45 2.78 2.16 2.43 2.48 3.04 —
d3 62.04 61.45 61.05 60.76 60.63 60.54 60.48 60.27 -
4th 3.41 2.77 2.51 3.04 2.81 2.92 2.99 — —
d4 61.34 60.97 60.70 60.51 60.42 60.36 60.33 - -
5th 2.84 2.84 2.75 2.95 2.62 2.68 2.70 — —
d5 60.91 60.65 60.51 60.38 60.32 60.27 60.24 - -
6th 2.75 2.80 2.65 2.65 2.49 2.54 2.51 — —
d6 60.74 60.52 60.39 60.29 60.24 60.20 60.18 - -
7th 3.18 3.27 2.77 2.90 2.77 — — — —
d7 60.51 60.35 60.27 60.21 60.18 - - - -
9th 3.15 3.39 2.78 2.81 2.76 — — — —
d9 60.47 60.32 60.25 60.19 60.16 - - - -
11th 3.04 3.33 2.76 2.83 2.72 — — — —
d11 60.44 60.29 60.23 60.17 60.14 - - - -
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TABLE VII. Same as Table VI for the log@detM1 /detM2# at k5.154 instead ofk5.150.

Z2 No. 50 100 200 400 600 800 1000 3000 1000

0th 12.6 2.66 2.32 4.86 3.84 2.68 1.92 3.35 4.
d0 616.3 612.0 68.53 65.83 64.86 64.18 63.68 62.15 61.19
1st 20.45 21.60 3.56 4.67 3.27 4.11 4.04 — —
d1 65.09 63.88 62.96 62.16 61.79 61.55 61.39 - -
2nd 3.54 3.21 3.17 4.14 2.88 3.70 3.32 — —
d2 62.81 62.27 61.66 61.26 61.08 60.93 60.69 - -
3rd 6.27 5.07 3.90 4.32 3.58 3.84 3.94 — —
d3 62.30 61.65 61.20 60.89 60.74 60.64 60.57 - -
4th 5.49 5.22 4.28 4.73 4.46 4.49 4.49 — —
d4 61.58 61.13 60.54 60.64 60.52 60.45 60.41 - -
5th 4.55 4.72 4.30 4.35 4.01 4.10 4.08 — —
d5 61.07 60.77 60.63 60.49 60.41 60.35 60.32 - -
6th 4.51 4.72 4.12 4.03 3.83 3.91 3.88 — —
d6 60.91 60.68 60.54 60.42 60.34 60.29 60.26 - -
7th 5.13 5.52 4.35 4.43 4.24 4.16 4.02 — —
d7 60.77 60.55 60.44 60.35 60.28 60.24 60.22 - -
9th 4.98 5.60 4.33 4.27 4.21 4.16 4.08 — —
d9 60.67 60.52 60.43 60.32 60.26 60.22 60.20 - -
11th 4.80 5.60 4.32 4.31 4.19 4.21 4.13 — —
d11 60.64 60.49 60.42 60.31 60.25 60.21 60.19 - -
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In actual practice, we generateL complex Z2 noise vec-
tors, and obtain basic Pade´-Z2 ~PZ! estimates using the M3R
matrix inversion algorithm. The auxiliary data used in t
improved PZ estimates may be computed via a few mat
vector multiplications:

Unimproved estimates $O1 ,O2 ,...,OL%, with
Oj5(kbkh

j †jk, j , j 51,2,...,L.
First auxiliary data set $D1

(1) ,D2
(1) ,...,DL

(1)%, with
D j

(1)5(k @bkk/(11ck)
2# (h j †Dh j ).

Second auxiliary data set$D1
(2) ,D2

(2) ,...,DL
(2)%, with

D j
(2)5(k @bkk

2/(11ck)
3# (h j †D2h j ).

Third auxiliary data set $D1
(3) ,D2

(3) ,...,DL
(3)%, with

D j
(3)5(k @bkk

3/(11ck)
4# (h j †D3h j ).

Fourth auxiliary data set$D1
(4) ,D2

(4) ,...,DL
(4)%, with

D j
(4)5(k @bkk

4/(11ck)
5# (h j †D4h j2TrD4).

Fifth auxiliary data set $D1
(5) ,D2

(5) ,...,DL
(5)%, with

D j
(5)5(k @bkk

5/(11ck)
6# (h j †D5h j ).

Sixth auxiliary data set $D1
(6) ,D2

(6) ,...,DL
(6)%, with

D j
(6)5(k @bkk

6/(11ck)
7# (h j †D6h j2TrD6).

Higher odd terms$D1
(2r 11) ,D2

(2r 11) ,...,DL
(2r 11)%, with

D j
(2r 11)5(k @bkk

2r 11/(11ck)
2r 12# (h j †D2r 11h j ).

Using these data, a least squares fit is performed to y
a set of$l0 ,l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l (2r 11)%opt , which mini-
mizes the variance Eq.~22! of the improved estimator ove
the $L% noise vectors.

IV. COMPUTATIONS OF DETERMINANTS AND
DETERMINANT RATIOS

Our numerical computations were carried out with t
Wilson action on the 83312 (N573 728) lattice with
b55.6. We use the HMC algorithm with pseudofermions
generate gauge configurations. With a cold start, we ob
-

ld

in

the fermion matrixM1 after the plaquette becomes stab
The trajectories are traced witht50.01 and 30 molecular
dynamics steps usingk50.150. M2 is then obtained from
M1 by an accepted trajectory run. HenceM1 and M2

differ by a continuum perturbation, an
log@detM1 /detM2#;O(1).

We first calculate log detM1 with different orders of the
Padéexpansion aroundz050.1 andz051.0. We see from
Table II that the 5th order Pade´ approximation does not give
the same answer for two different expansion points, sugg
ing that its accuracy is not sufficient for the range of eige
values ofM1 , whereas the 11th order Pade´ approximation
gives the same answer within errors. Thus, we shall cho
P@11,11#(z) with z050.1 to perform the calculations from
this point on.

Table III shows the optimal choice of parametersl i ,
i 51,5, with different subtraction sets and various Z2 noise
lengths. The fact thatl i;1.0, i 51,2,3,4,5 gives further evi-
dence that the fluctuations due to the complexZ2 noise are
indeed introduced by the off-diagonal matrix elements.

In Tables IV and V, we give the results of improved e
timations for Tr logM1 and Tr logM2, respectively. We see
that the variational technique described above can reduce
data fluctuations by more than an order of magnitude.
example, the unimproved errord055.54 in Table IV for 400
Z2 noises is reduced tod1150.15 for the subtraction which
includes up to theQ11 matrix. This is 37 times smaller. Com
paring the central values in the last row~i.e., the 11th order
improved! with that of unimproved estimate with 10 000Z2

noises, we see that they are the same within errors. T
verifies that the variational subtraction scheme that we e
ployed does not introduce biased errors. The improved e
mates of Tr logM1 from 50 Z2 noises with errorsd r from
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Table IV are plotted in comparison with the central value
the unimproved estimate from 10 000 noises in Fig. 8.

We note in passing that our unimproved results have
similar size errors as those obtained by the Chebyshev p
nomial expansion of logM†M @1#, and thus one can simi
larly improve its estimation with the variational subtractio
scheme introduced here.

Results for Tr@ log M12 log M2# are shown in Table VI.
We see that again the errors are reduced by a factor;34. d11
for 50 Z2 noise vectors is even smaller than the unimprov
errord0 with L510 000. To achieve the same level of acc
racy for the unimproved estimation, it would requi
;65 955 noise vectors. This is 1319 times more than the
noise case which employs subtraction. Again, to show
the subtraction does not introduce biased errors, we plo
Fig. 9 the improved PZ estimates of Tr@ log M12 log M2#
with errors from 50 noise vectors as a function of the or
of subtraction and verify that they agree with that of t
unimproved estimate with 10 000 noises.

As for the quark mass dependence, one expects tha
errors will go up as the quark mass becomes smaller.
have made an attempt to study this by considering the cas
k50.154 which corresponds to the strange quark mass
yields a p/r mass ratio of ;0.8. The results of
Tr@ log M12 log M2# are listed in Table VII. The PZ esti
mates and their errors in Table VII fork50.154 are simi-
larly plotted as a function of the order of subtraction in F
10. We see that their errors are indeed larger than thos
Table VI for the case ofk50.150 which gives ap/r mass
ratio of ;0.9. For example, the error with 400 noises a
11th order subtraction fork50.154 is 0.31 which is 82%
larger than the corresponding error fork50.150 at 0.17.
Thus, this would require;1325 noises~3.31 times of 400!
for it to reach the same level of error as in the case
k50.150. For still smaller quark mass, e.g. that correspo
ing to a p/r mass ratio of;0.6, it may need tens of thou
sands of noises to reach an error at the same 17% le
Although this would account for an overhead of several t
jectories at the accept-reject step if used in the hybrid Mo
Carlo algorithm with determinant ratio@13#, one hopes this

FIG. 10. Same as Fig. 9, for Tr@ log M12 log M2# with
k50.154.
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can be offset by a faster mapping of the topological cha
space. This remains to be tested in future studies.

We have also generated a sequence of configurat
through HMC updating with pseudofermions. In Table VI
we list the change of the gauge, the pseudofermion, and
kinetic energy parts of the action from 10 molecular dyna
ics trajectories. The total change in energyDH is ;O(1).
Also listed are the change of Tr logM , i.e.
D(Tr log M )5Tr log M12Tr log M2 . It is somewhat sur-
prising to see that the absolute values ofD(Tr log M ) are an
order of magnitude smaller that those ofDUpseudo ~the
pseudofermion part of the action!, and their signs can be
different. This may be related to the observation that it ta
very long to decorrelate the global topological charge in
HMC algorithm with pseudofermions@25#. This will be in-
vestigated further in the future.

TABLE VIII. A breakdown of the energy changeDH in 10
molecular dynamics trajectories in terms of the change in ga
action (DUplaq), pseudofermion action (DUpseudo), and kinetic en-
ergy (Dp2). Also listed are the estimates o
D(Tr log M )5Tr log M12Tr log M2 using 600Z2 noises with
subtraction. Thek is 0.150 in this case.

Group DH(old-new) D(Tr log M )

Pair 1 DUplaq 2188.238

M1 ,M2 DUpseudo 15.636 20.21(.24)

Dp2 172.514

Pair 2 DUplaq 437.556

M2 ,M3 DUpseudo 15.518 23.58(.26)

Dp2 2453.023

Pair 3 DUplaq 2120.857

M3 ,M4 DUpseudo 26.505 0.56~.25!

Dp2 127.331

Pair 4 DUplaq 240.862

M4 ,M5 DUpseudo 228.189 2.03~.24!

Dp2 69.085

Pair 5 DUplaq 2110.674

M5 ,M6 DUpseudo 270.823 20.06(.24)

Dp2 181.516

Pair 6 DUplaq 241.814

M6 ,M7 DUpseudo 67.498 23.69(.25)

Dp2 2309.213

Pair 7 DUplaq 82.339

M7 ,M8 DUpseudo 270.015 20.98(.24)

Dp2 212.315

Pair 8 DUplaq 2692.873

M8 ,M9 DUpseudo 227.643 6.51~.24!

Dp2 720.243

Pair 9 DUplaq 260.435

M9 ,M10 DUpseudo 2.186 21.14(.25)

Dp2 2262.522

Pair 10 DUplaq 2613.121

M10,M11 DUpseudo 110.997 6.40~.24!

Dp2 501.946

Pair 11

M1 ,M11 5.85~.30!
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V. APPLICATION TO GLOBAL DENSITY OF STATES
FOR HERMITIAN HAMILTONIAN SYSTEMS

The density of statesr(z) for a Hamiltonian system with
Hamiltonian matrixH is

r~z!5
1

N (
n51

N

d~z2ln!, ~27!

where$ln% are the eigenvalues ofH.
In Ref. @16#, r(z) for realz is calculated for HermitianH

as follows:

r~z!5
1

p
lim

e→01

Im Tr@H2~z1ıe!I #21. ~28!

Choosing a smalle in Eq. ~28! yields a smoothed version o
r(z).

We have shown above that the trace in Eq.~28! may be
estimated for several different values ofz simultaneously
using complex Z2 noise and the M3R algorithm. Thus, we
may estimate the global density of states for a Hermit
matrix H at essentially the same computational cost~modulo
additional memory! as estimating the local density of stat
at a single point.

VI. CONCLUSION AND SUMMARY OF ADVANTAGES
OF THE PZ ALGORITHM

The PZ method takes advantage of proven, effective
merical approximation techniques. The advantages of the
method are summarized as follows:

The Pade´ approximation uses rational functions, whic
are known to be very efficient in the uniform approximati
of analytic functions. In finding determinant ratios, the Pa´
approximation to the logarithm only needs to be accurate
the region in the complex plane where the spectra ofM1 and
M2 differ.

The complexZ2 random vectors have been shown to
superior to the Gaussian@17,6,18# noise in computing trace
of inverse matrices.

The PZ method also takes advantage of the recently
veloped M3R algorithm to calculate all terms in the Pad´
expansion in Eq.~7! in essentially the same computation
ar

J
o-

rix

,

n

u-
Z

e
n

e-

time required to calculate a single term, albeit with ad
tional memory ~one lengthN vector for each additiona
term!. Hence, a higher order Pade´ expansion requires mor
memory, but essentially the same computation time~apart
from the matrix conditioning effects to be mentioned below!.

The entire method can be applied to non-Hermitian m
trices: So determinants of non-Hermitian matrices m
also be found directly, without recourse to the Hermiti
matrix M†M . Negative and complex determinants can a
be calculated in principle.

The cj ’s in the Pade´ expansion in Eq.~5! turn out to be
real and positive, which improves the conditioning of t
matricesM1cj I and hence expedites the column inversio
in Eqs.~19!, ~20!. However, this effect diminishes for highe
order Pade´ approximations, because the minimumcj de-
creases as the order increases.

The PZ method also holds promise of being useful in
case where different quark flavors are present, in which c
it is necessary to compute multiple determinant ratios
matrices with different but constant diagonal terms. Us
the M3R algorithm, this takes essentially the same compu
tion time as a single determinant ratio.

The unbiased variational subtraction scheme works q
well in reducing the stochastic error from the Z2 noise. The
principle is general enough to be applied to other cases w
stochastic estimates.

In conclusion, we have demonstrated the efficiency of
Padé-Z2 algorithm in estimating determinants and determ
nant ratios to high accuracy for lattice QCD. It is certain
applicable to other systems with large sparse matrices.
example, we have been able to reduce the error of the de
minant ratio from 559% to 17% with the unbiased subtra
tion scheme and a relatively small (;400) number of the
noise vectors~see Table VI!. It is rather encouraging as far a
the feasibility of using this algorithm to simulate dynamic
fermions in full QCD is concerned. We shall pursue this
the future.
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