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In continuum QCD, nontrivial gauge topologies give rise to zero eigenvalues of the massless Dirac operator.
In lattice QCD with Wilson fermions, analogs of these zero modes appear as exactly real eigenvalues of the
Wilson-Dirac operator, leading to poles in the quark propagator in the vicinity of the critical hopping param-
eter. It is shown that “exceptional configurations,” which arise in the quenched approximation at small quark
mass, are the result of the fluctuation of the position of zero mode poles to subcritical values of hopping
parameter on particular gauge configurations. We describe a procedure for correcting these lattice artifacts by
first isolating the contribution of zero mode poles to the quark propagator and then shifting the subcritical poles
to the critical point. This procedure defines a modified quenched approximation in which accurate calculations
can be carried out for arbitrarily small quark mas$&0556-282(98)04303-3

PACS numbds): 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.65.Bt

[. INTRODUCTION modified quenched approximatiofMQA). This MQA is
then contrasted and compared with the unmodified approach

The study of QCD in the light quark limit is essential for using physical observables in Sec. IV. In particular, results
understanding the chiral structure of pions and implicationdor the pion mass versus quark mass are presented for both
of theU(1) anomaly which governs the generation of tfle ~ Wilson and Clover actions. The final section contains some
mass as well as other applications involving the physics ofieneral remarks and possibilities for further study.
light hadrons. In many previous studies using Wilson-Dirac
fermiqns on the_ Iattice_, Igrge statistical errors are encoun-|; THE EIGENVALUE SPECTRUM AND ZERO MODES
tered in calculations with light quarks and a small subset of
the gauge configurations seem to play a dominant role in the In the quenched approximation, the fermion determinant
final results. These “exceptional configurations” have pre-is removed from the action functional during the Monte
vented reliable studies of processes involving very lightCarlo generation of gauge field configurations, so that only
quarks. Instead, one has been forced to infer the structure tifie contributions of valence fermions are included. This ap-
light quark processes from extrapolations based on resulg@roximation makes the quenched formulation of the theory
obtained for quark masses substantially larger than the physparticularly sensitive to infrared structure involving light fer-
cal masses of the up and down quarks. In the quenched apiions. This sensitivity depends on the particular formulation
proximation, the large fluctuations resulting from exceptionalused to describe fermions in lattice simulations. To under-
configurations appear to be related to the structure of thetand this sensitivity, it is necessary to explore the structure
small eigenvalues of the Wilson-Dirac operator which canof the fermion propagators.
dominate the behavior of the quark propaga{drs In this The fermion propagator in a background gauge field,
paper we show that this behavior is related to a specific arA,(x), may be written in terms of a sum over the eigenval-
tifact of the standard quenched lattice computations. We inues of the Dirac operator,
troduce a modified quenched approximatidnQA) which
removes the dominant artifact associated with the Wilson- Df,=y*Df;=\;f; (1)
Dirac formulation of light fermions. With this procedure, the
problem of exceptional configurations is removed and the d
noise associated with light fermion computations is greatl n
reduced. We also show that the same procedure must be

applied to the standar@®(a) “improved” actions, such as fi(x;A)gi(y,A)

the Sheikholeslami-WohleriClover action [2], and could S(va?{A}):ei emamesw @
play an important role in improving full unquenched QCD ’ : 0
calculations.

In the next section we review the basics of the eigenvaluavheref;(x,A) andg;(x,A) are the corresponding eigenfunc-
spectrum of the Wilson-Dirac operator and elucidate the retions. The mass dependence of the propagator is determined
lationship between a pole in a quark propagator at finite masy the nature of the eigenvalue spectrum of the Dirac opera-
(subcritical hopping parametet<x.;) and an exceptional tor. In the continuum, the Euclidean Dirac operator is skew
gauge configuration. In Sec. Il we show how to systemati-Hermitian and its eigenvalues are purely imaginary or zero.
cally remove these lattice artifacts. This procedure defines Hence, the fermion propagators only have singularities when
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FIG. 1. Example of the eigenvalue spectrum for the Wilson- FIG. 2. Distribution of real eigenvalues in QED2 near zero fer-

Dirac operator for QED2 on a ¥212 lattice withB=4.5. mion mass for3=1.6,2.9,4.5 and 6.5 on a X212 lattice. Results
shown here are for a sample of 1000 independent gauge configura-

the real part of the mass parameter vanishes. The behavior tfns at eactB. Fermion mass bins were 0.012 wide.
the eigenvalue spectrum near zero determines the nature
dynamical chiral symmetry breakif&]. The zero eigenval-
ues, or zero modes, are related to topological fluctuations
the background gauge field by the index theorem associat
with the chiral gauge anomaly—6].

The lattice formulation of Wilson-Dirac fermions qualita-
tively modifies the nature of the eigenvalue spectrum. Th
Wilson-Dirac operator is usually written as

8|fgenvalues for each branch. The left branch is usually asso-
iated with the spectrum of the continuum theory and the
%Jee other branches correspond to the spectrum of massive
ubler modes for QED2; there would be fifteen doubler
branches expected for a similar plot of QCD4. The exactly
real eigenvalues are the Wilson-Dirac analog of the con-
Rinuum zero modes. Unlike the situation in the continuum,
these real eigenvalues do not all occur at the specific value
D=D—rW 3) associated with the zero mass limit, even for real eigenvalues
of a given gauge configuration. Because of the fluctuations in
1 the real part of the eigenvalue spectrum, the massless limit
e — T - - can only be defined through an ensemble average in Monte
Daarpps Z(YM)abU ol ML) i Carlo cglculations. We wi(i:‘ll see that the fluctuations in the
1 ) position of the zero modes are the primary reason for insta-
_g(YM)abUZﬁ(nM)5‘,n3—,1 (4) bilities in calculations Wlth light Wllson-D|rac ferm|on§
[8,12—14. These fluctuations are a direct result of the chiral
symmetry breaking which occurs as an artifact of the
Wilson-Dirac fermion formulation. Shifts in the positions of
the real eigenvalues will cause spurious poles in the fermion
(5)  propagator for light fermion masses. These nearby poles are
. the cause of the exceptional configurations encountered in
whereU (nu) are the link matrices associated with the latticequenched calculations with Wilson-Dirac fermions.
gauge fields, and the parameters usually taken to be 1. The shifts in the real part of the Wilson-Dirac eigenvalue
The Wilson-Dirac operator is neither skew Hermiti@mless  spectrum are lattice artifacts, as the nonskew Hermitian part
r=0) nor Hermitian. The Wilson term explicitly breaks chi- of the lattice Wilson-Dirac operator is associated with higher
ral symmetry and lifts the doubling degeneracy of the puredimension operators. In the continuum limit, these artifacts
lattice Dirac action. As a result the eigenvalue spectrum ofire expected to disappear. In Fig. 2, we show the real eigen-
the Wilson-Dirac operator is no longer purely imaginary butvalue distribution for our QED2 lattice as a function 8f
fills a region of the complex plane. The discrete symmetried-or larger values of3, the distribution becomes more
of the Wilson-Dirac operator imply that the eigenvalues ap-sharply peaked as expected for the approach to the con-
pear in complex conjugate pairs,,0*) and obey reflection tinuum limit. For any fixedg, the distribution maintains a
symmetries, X,—\). In addition, there can be precisely real, finite width and the naive massless limit remains undefined.
nondegenerate eigenvaluey. Indeed the distribution of poles in the corresponding fermion
Numerical studies of QED in two dimensiofi8,9] and  propagators leaves the naive quenched theory formally unde-
QCD in four dimension$10,11], have confirmed the struc- fined. For any fixed fermion mass the number of exceptional
ture of the eigenvalue spectrum as well as the existence aonfigurations associated with the zero mode poles can be
isolated real eigenvalues. In two dimensions, it is possible t@xpected to decrease Asis increased, but the limit to infi-
study the spectrum of the Wilson-Dirac operator in greatite Monte Carlo statistics at fixeél will not converge[9].
detail. The complex eigenvalue spectrum for a typical gauge In four dimensions, it is more difficult to study the eigen-
configuration of QED2 on a 1212 lattice is shown in Fig. value spectrum, even if we restrict our attention to just the
1. The left, right and central branches of the Wilson-Diracsmall eigenvalues. The zero modes appear as poles in the
spectrum are clearly visible, as well as a pair of exactly reafermion propagator
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wherex is the hopping parameter, with the critical valdg * d e & 3
determined from the ensemble average pion mass. For mode
with \;<—1/2«., the propagator has poles corresponding to
positive mass values. The position of these poles can be e
tablished by studying any smooth projection of the fermion .4 |
propagator as a function of. In our computations, we use
the integrated pseudoscalar charge to probe for the shifte
real eigenvalues
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FIG. 3. uQ(«) is shown as a function of kappa for Wilson
Q(K)zj d4x( W(X) ysth(X)). (9) action conflguratlon 114000. Hereis twice the bare quark mass
andQ(«) is the (space-timgaverage pseudoscalar charge density.

The unshifted chargédenoted by solid dojshas a pole atx
We employ the same method that was used by Kuramashi 1588539. In contrast the charge in the modified quenched ap-

et al. [15] to study hairpin diagrams and the’ mass. A proximation(denoted by open circleshows only smooth behavior.
fermion propagatoiG3(n, «), is computed using a unit source

at every site for each color and spin. The resultis traced ov&gssitions and the relevant eigenvalues to great precision. An

color and spin and summed over the lattice: example of these scans is shown in Fig. 3 for Wilson fermi-
ons. The existence of isolated poles is obvious from this

) (10 figure. The value of the integrated pseudoscalar charge can
be computed, with no appreciable slowdown in convergence,

_ . for values of the hopping parameter arbitrarily close to the
The color averaging over the lattice volume reproduces th‘foole position.

integrated charge. This is a global quantity which samples gq; the computations in this paper, we use a sample of 50

the full lattice volume. By computing its yalue for arange of gauge configurations available from the ACPMAPS library,
kappa values we can search for poles in the fermion propgne e-|attice seftl 7]. These configurations were generated on
gator. Near a pole, we should find a 12x24 lattice at3=5.9 and are separated by 2000
sweeps. We determine pole eigenvalues for both the standard
' (11) Wilson-Dirac action and a Clover action with a clover coef-
Uk —1Urpole ficient of Cg,=1.91 corresponding to the value suggested
by the results of Lacheret al.[18]. We find six configura-
In the continuum, the residu@ would be directly propor- tions with visible poles for each choice of fermion action.
tional to the global winding number of the gauge field con-These results are shown in Table I. It is important to note
figuration[8]. that only one gauge configuration is in common between the
In the present calculations we have used eighteen kappavo sets of visible poles. This emphasizes the point that the
values and a Padmethod for fitting the pole structure. This existence of visible poles for a particular gauge configuration
procedure works well if the poles are in the visible region,is a sensitive artifact of the particular choice of fermion ac-
Kk<Kmax<Kc. Although we had originally hoped to deter- tion. As the fermion action is varied, the real eigenvalues
mine the complete spectrum of real eigenvalues using thismove, some to smaller values of kappa where they may be-
method, it was only found to be reliable if the poles were income visible and some to larger values of kappa where they
the “visible” region. There we could determine the pole may not be observed as visible poles. Therefore, the visible

Q(k)—Tr

iy5; G(n,k)

Q(x)—

TABLE |. Visible poles for a set of 50 gauge configuratiad©2000—-200000 step 2000

Wilson action Clover action, CSW1.91
Conf. Kpole PS residue Conf. Kpole PS residue
114000 0.1588539 —2.1463 122000 0.1331519 +3.3366
132000 0.1594870 —2.4800 150000 0.1339044 +4.8900
148000 0.1593216 —3.6325 160000 0.1334519 —2.0718
160000 0.1593803 —2.8494 162000 0.1335898 —2.5609
182000 0.1593803 +2.5036 178000 0.1334681 —23.4917
194000 0.1595557 —5.3055 178000 0.1337479 +22.7462

198000 0.1337620 +1.5828
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are shifted to positive mass which causes singular behavior
for the fermion propagators computed for a mass near a
. o visile pole shifted_e_igenvalue. Because_of these shifts, there is no com-
o e novisible pole mon critical value of the fermion mass or hopping parameter,
60 [ even for a specific gauge configuration. The critical value of
the hopping parameter is normally defined by the chiral limit
o as determined by the ensemble average of the pseudoscalar
meson mass over all configurations. In general, these eigen-
° value shifts would be averaged to zero in the ensemble av-
0 erage and no specific corrections would be needed. However,
in the quenched approximation, the shifts cause poles in the
fermion propagators which are not properly averaged. This
effect corresponds to similar situations in degenerate pertur-
10 15 20 bation theory where small perturbative shifts can cause large
t effects due to small energy denominators. In this case it is
) ) ) known that it is essential to expand around the exact eigen-
FIG. 4. Pion propagator fok=0.1595 showing all 50 configu- y51yes and compensate the perturbation expansion with
rations. Propagators for configurations with visible poles are d's'counterterms in each order. In the present case, we argue that
played with open circles and labeled by their sequence numbeé similar compensation must be made when L'lsing Wilson-
when appropriate. Dirac fermions. Fortunately, we know that the correct posi-

ion for the real poles is a common critical value of the

poles, and the corresponding identification of exceptionaI10 ing parametek. associated with the massless fermion
configurations is a sensitive property of the fermion action"m?tp gp e

and not a property unique to the particular gauge configura- . .

tion. In the same vein, a small change in the clover coeffi—f V\/_e are how ai)le t?c de;/rllse ataro?edfurt're] for _cpbrlrectlhngt tze
cient may remove a visible pole for one configuration and ermion propagators for the artitact ot the Vvisible shitte
add a visible pole for another configuration, completely
changing identification of the exceptional configurations.
Since only a collision of two real modes allows the pairing Fa(x:U)gia(y,U)
required to move off the real axis, small changes in the pa-  S(x,y;{U(A)})ag= LA A St
rameters of the fermion action should not change the number eigervalues \i+1/2x

of isolated real modes but only their visibility. (12

The connection between the visible poles and the excep- . . .
tional configurations is made clear if we plot the time depenF-lrhe shifted real eigenvalues cause poles at particular values

dence of a pseudoscalar meson propagator for a kappa vall% the hoppingl parameter. Th? residue of the visible poles
associated with a light quark, e.g=0.1595. In Fig. 4, we can be determined by computing the propagator for arange
plot all fifty configurations where the configurations with of kappa values close to the pole position and extracting the

visible poles have been labeled with open circles. It is clearreSidue for the full propagator. It is convenient to have first

that all of the distorted propagators associated with the ex(_jetermmed the pole position very accurately from a global

ceptional configurations can be uniquely identified with thequtam'i.y Slf[ﬁh as the |?tegrat%d pswt?]o?ﬁalar c_(rjlarge before
presence of nearby visible poles. extracting the propagator residue. Wi is residue we can

define a modified quenched approximation by shifting the
visible poles tok= k., and adding terms to compensate for
IIl. THE MODIFIED QUENCHED APPROXIMATION this shift when the hopping parameter is not near the position

In the standard quenched approximation, only the valenc8f the visible poles. We are able to apply this procedure
fermion contributions are calculated explicitly from the fer- P€cause it removes a specific lattice artifact, and we know
mion propagators and the effects of the fermion loop deterth® correct continuum position of all real eigenvalues.
minant are ignored. This approximation is very sensitive to S a@n eéxample we can apply this procedure to the inte-
singularities of the fermion propagator which may be en-9rated pseudoscalar charge. In Efjl) we determined the
countered in particular formulations of lattice fermions. In ViSible pole position and residue by studying thedepen-
this section, we identify those singularities which are due tdi€nce ofQ(«x). Once this has been determined we could
artifacts of Wilson-Dirac fermions in quenched lattice calcu-d€fine a modified quenched approximation by moving the
lations. We give a simple prescription which corrects for theViSiPle pole to kappa critical. The naive result would be
principal artifacts encountered when using the Wilson-Dirac
fermion formulation for light quark masses. Q(k)—Q(k)—

As noted in the previous section, the eigenvalue spectrum
of Wilson-Dirac fermions generally contains a number of
isolated real eigenvalues. In the continuum limit, these ei-The impact of this modification is shown in Fig. 3 for
genvalues are identified as zero modes and occur at preciséfifilson-Dirac fermions. The same behavior is observed in
zero fermion mass. In the Wilson-Dirac formulation, thesethe case of the SW improved Clover action. The shift re-
eigenvalues shift due to the chiral symmetry breaking genermoves the spurious pole and allows a smooth extrapolation
ated by the Wilson-Dirac action. Some of these eigenvaluet® zero fermion masss— k..

130 © Wilson B=5.9 123x24
80 |- o e —
o ° Kgq=Kg=-1595 50 confs
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poles. As before, we write the fermion propagator as a sum
over the eigenvalues of the Wilson-Dirac operator,
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The above procedure corrects for the leading effects bur 10
may distort an ensemble average by only shifting visible Wilson - QA
poles and not compensating for poles beyond the visible

range. Therefore we chose to define the modified quenche: 103 i i i i
approximation(MQA) using a compensated shift of the vis- 5
ible poles which moves the visible poles while preserving the g, 5 % ? % % ? ? § 0 2
ensemble averages at large mass. Introducing a mass parar§ 12} & : 52
eter, u, relative to a common critical value of the hopping 2 | @ g % A % 13 X 3 i g @
parameterx., 2 $o3 { 111 i o 2 ¥
=1k— 1= 0} o werss Ty f9 f§§§§§gv

u=1/k—1lk.=2m;a (14 : g E:iggé ?9fggv?

the visible real pole may be replaced as follows: [V x-1580

1 2 1 t
——— . (15
U—Upole u (U+upole)

FIG. 5. Pion propagators versus lattice time for Wilson action
with naive quark propagators at=0.1580,0.1585,0.1590,0.1593

At large mass the first two terms in the expansion in drve e
=mg.

not modified and terms linear in the shifts should average tg"d 0-1595mq
zero. Since we are only able to identify poles with positive
mass shifts, we have compensated a visible pole with one The MQA propagator may now be used to evaluate any
shifted to negative mass. These negative shifts do not geneforrelation functions involving Wilson-Dirac fermions. We
ate singularities in the fermion propagators computed fof@ve simply removed an obvious lattice artifact from the
positive mass values and are expected to cancel against poié§mion propagator which distorts the usual quenched ap-
with negative shifts generated by other configurations in thé®foximation. It is important to note that the artifact is the
ensemble. With this procedure, we do not expect any larg@PPearance of visible poles at positive mass, not the exis-
renormalization ofc. due to the shifting procedure. tence of small or real elgenvqlues. Itis only the VISIbI!Ity .that
The full MQA fermion propagator may be simply com- We have corre.cted by appealing to the correct behr_:mo_r in the
puted by adding a term to the naive fermion propagatofCntinuum limit. We proceed to_d|sgus§ some appllcatlpns of
which incorporates a compensated shift of the visible polesthe modified quenched approximation in the next section.
The modified propagator is given by

SYRA(X, Y {U(A)}=S(x,y;{U(A)})
+apo|e(K)*reSpo|e(X,y) (16)

IV. APPLICATIONS

The MQA quark propagators defined in the previous sec-
tion may be used in place of the usual quenched propagators
to compute any hadron physics properties accessible in the
quenched approximation. We expect that the suppression of

1 2 1 t_he large fluctuz_altions normally associated with the excep-

Apole( K)=— +—— (17)  tional configurations should greatly reduce the errors associ-

U=Upogre Y (UtUpore) ated with the propagation of light quarks. The most sensitive

quantities are those associated with the chiral limit. Prime

and examples are the pion propagator, the hairpin calculation for

where

re%ole(xay)zfpole(X-U)g_poIe(%U)

. Wilson - MQA
= lim (u—up0|e)*S(x,y,{U}). (18

U—Upole

1] i
As noted above, the propagator residue can be determined kg 10? | & % % % % %; % % % % % % %
computing the fermion propagator at values arbitrarily cIose% i § 5 @ I % % % % % % § g
to the pole position. The residue of each pole is extracted bye ¢ g A % % % % % % % i 3
calculating the propagator at,,—A and Uyt A with §§§ i §§
A~10"% where the pole positiony,qe, has been accurately 3%¢

§§yy

g ¥

pion p!
14

Kl K
H>

H>

>

H>

H>

H>

determined from the integrated pseudoscalar charge mee ' 3 =155 ¥ o %5 $3553
surement. These calculations generate only a modest ovel Py K=15%0 ? v ¢ v
head for the computations as only the configurations with V k=1580 Toy

visible poles need to be corrected. For our sample3at N
=5.9 (12 24), about 10 to 15% of the configurations need o 2 4 6 8 10 12 14 16 18 20 22 24

to be corrected for visible poles. At larger physical volumes

for fixed B8, a larger percentage of configurations should be FIG. 6. Pion propagators versus lattice time for Wilson action

affected; while at higherg for fixed physical volume, a with MQA quark propagators ak=0.1580,0.1585,0.1590,0.1593
smaller percentage of configurations should be affected. and 0.1595m,=mj.
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the ' mass, meson decay constants and the light hadror [ Wilson action
spectrum. 0.015 L conf 148000 0 ©
We illustrate the impact of the modified quenched ap- [
proximation by computing the pseudoscalar propagator for €5 [ o
range of quark masses including values appropriate to physi
cal light quarks. As mentioned in Sec. Il, we use a sample of [ °
50 gauge configurations generated on dX124 lattice at [
B=5.9, the ACPMAPS e-lattice s¢17]. We computed the
two-point pion correlation function . .(t), for smeared
source and sink using an approximation to the pion wave-. [
function in Coulomb gauge. In Fig. 5, we show the time or ° e o
dependence of the resulting pion propagators using the usu : ! ! . . .
qguark propagators obtained for the Wilson-Dirac action for a 0 4 8 12 16 20 24
range of hopping parameter values. The errors shown are t

highly correlated. For the larger values of the hopping pa- G, 7. Real mode pole residue at 0.1593216 for configura-
rameter, corresponding to the lighter quark masses, the larg@n 148000 with Wilson action. The residue is computed using the
fluctuations do not permit a sensible fit to a pion propagatoryatio of heavy-light pion propagator normalized by the square root
In Fig. 6, we show the same plot where the quark propagaof the heavy-heavy propagator. Here the heavy quarkxis
tors have been replaced by the MQA propagators. Of the 5@:0.1570 and the light quarks used hawve 0.1595-0.1590.
configurations, six were found to have visible poles with the
pole positions as given in Table I. The MQA propagatorsiocal) and SS(smeared-smeargdo a common pion mass.
were computed using the procedures of Sec. Ill with  Each correlator has the form:
=0.15972. We find the fluctuations are greatly suppressed
allowing a measurement of the pion mass even for the largest G,.(t)=|A|?2coskim,t). (19
hopping parameter valu€This value of kappa corresponds
to a light quark mass not much larger than the average physi- We determine fits to the pion mass,,, and coupling
cal up and down massg&ven for heavier masses, the errors amplitudes|A, | and|Ag, for each of the 200 bootstrap sets
appear to be greatly reduced by using the MQA propagatorsor particular values of the hopping parameter. In Fig. 8,
The same analysis has been applied to the case of fermgcatter plots compare the fluctuations and correlations for
ons defined through the improved Clover action. Again wewilson-Dirac fermions before and after using the MQA
find that there are large fluctuations for the hopping paramanalysis. It is clear that the MQA analysis greatly reduces the
eter values corresponding to the light quark limit. The pionfluctuations and produces a more tightly correlated fit for the
propagators computed using the MQA quark propagatorsnass and decay constant. Again, we would expect even more
show greatly reduced fluctuations. In Table I, there are sixiramatic improvement with a larger statistics sample of
configurations with visible poles for the Clover action al- gauge configurations.
though one configuration exhibits two visible poles. Only  Using the full bootstrap set, we have made an uncorre-
one gauge configuration has visible poles for both Wilson{ated fit for the pion mass and decay constants where the
Dirac and Clover actions. Again, the MQA analysis is seenquark masses range over all eight values of the hopping pa-
to greatly reduce the fluctuations of the pion propagatorrameter considered in this paper. We use data on correlation
Here we have used.=0.13425 for the critical hopping pa- functions for smeared and local pseudoscalar sources and the
rameter. It is clear that clover improvement does not mitigate
the problem of visible poles although the MQA analysis is

io HLA(HH)
o
(-]
1

tor
(-]

0.005 |

pion propaga

Wilson B=5.9 12°x24

equally effective for the Wilson-Dirac and Clover actions. 14 50 confs

The pion propagators we have shown are computed witt _ o °
the limited statistics of 50 gauge configurations. For the o[ o  Srened ° .
lighter quark masses, it is clear that the normal analysis ° R 0% &
would not be limited by statistics but by the frequency of ol , %%’ o 0% o e
exceptional configurations associated with visible poles. 2 ,29° op0%° 0 Soo% Y
However, we believe that the MQA analysis cures this prob- o °° 8 Q}gso o og2e -

. = . sl °© g0 o PHIEB o @ () *o
lem and higher statistics would now greatly improve the ac- o o B 2 LT Y
: S 0% o° ° oo %8

curacy of computations with light mass quarks. R o 88 "‘..:",'2:" o

We can also isolate the effect of a real pole by extracting 6 000 o "..

its residue from a fit to a series of pion propagators in which
only one quark mass is varied. The results of that procedure 4 . . . .
for a particular configuratior{14800Q with a pole in the 0 0.05 01 0.15 0-2 0.25
visible region is shown in Fig. 7. M

Another way to see the effects of using the MQA analysis |G 8. Pion massn,,, and coupling amplituddAg|, extracted
employs a bootstrap procedure. We create 200 bootstrap sefsm the pseudoscalar-pseudoscalar correlator using smeared source
of 50 configurations each randomly selected from the full sebind sink operators. The results for 200 bootstrap samples are dis-
of 50 gauge configurations. We simultaneously fit the threglayed with naivelopen circles and MQA shifted(solid dot$ Wil-
pion two-point correlators LHocal-smeareq SL (smeared- son action quark propagators.
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FIG. 9. Pion mass plots for Wilson action with) naive quark . ) .
propagators in the kappa range, kappal550 to 0.1590(0pen FIG. 10. Pion mass plots for SW Clover action wiy naive

circles and (b) MQA propagators in the full kappa range, kappa duark propagators in the kappa range, kappa290 to 0.1335
=0.1550 to 0.1595dots. A power law fit[Eq. (20)] to the MQA (open circleg and (b) MQA propagators in the full kappa range,
masses is also shown. kappa=0.1290 to 0.1337doty. A power law fit[Eq. (20)] to the

MQA masses is also shown.

local axial vector charge density for our analysis. In Fig. 9, e also show plots of the fits for the Clover action with
we plot the square of the measured values of the pion masgd without MQA analysis in Fig. 10. Of course, the slope
for Wilson-Dirac fermions against the average of the quarkn2/m here will differ significantly from the previous case
masses, m=(Mq; + Mg)/2=(0.5Kq1 +0.5kgo— 1)/ (28),  (ysing naive Wilson action g8=5.9). Using the clover co-
for the naive and MQA analysis, respectively. The large ﬂuc'efficient Cew=1.91, we find mf,/m=7.45. Otherwise, the

tuations in t_he naive analysis come when one or bc_)th of th eneral conclusions are the same in the Clover case as in the
quarks are light. We show a simple best fit for the pion mas ilson case

squared as a function of the average bare quark masses, — Apother quantity with considerable infrared sensitivity is

assuming the general power law form: the hairpin contribution to the singlet pseudoscalar mass
term which is thought to be responsible for the large
m2=A(m-B)¢ (20) : :

™ : meson mass in quenched QCD. We follow the analysis of

Kuramashiet al.[15] and use the all-source propagators dis-
The masses determined from the MQA analysis seem to giveussed previously in computing the pseudoscalar densities.
a good fit to a nearly linear behavior with little evidence for The hairpin contribution to they’ propagator can be isolated
a modified power law(C=1.05). The slope determined by using appropriate color projections of the two point correla-
our fit is m2/m=4.30 which is in good agreement with pre- tion function of the all-source propagatdrs6]. As in the
vious measuremenfd 7]. The fit also yields a new critical case of the pion propagator, the large fluctuations observed
value for the hopping parametek.=0.159725, which for lighter quark masses in the naive analysis are sharply
should be compared with the value of=0.15972 obtained reduced by the MQA analysis. A detailed study of the hair-
from the standard analysis. The small shiftdpreflects our  pin propagator with high statistics is underway and results
use of a compensated shift for the visible poles and the linwill be presented elsewhere.
earity observed in our mass fits. If uncompensated shifts In this paper, with our low statistics, we restrict our atten-
were used for the visible poles, or if the value of the criticaltion to the pseudoscalar charge squar&(x)2. The
hopping parameter were varied slightly, a modest renormaiweighted average of the square of this chatge* Q(«))?),
ization of x; would be expected for the MQA analysis com- as k approaches. is the average of square of the winding
pared to the normal procedure. In extreme cases, it may beumber and therefore a measure of the topological suscepti-
necessary to iterate the shift process to determine a consibility of QCD. In Fig. 11, we show our results for the
tent value ofk,. {(u*Q(«))?) as a function of kappa the MQA analysis as
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° The MQA analysis allows stable quenched calculations

with very light quark masses and reduces the errors even in
the case of heavier quark mass. In the normal analysis, the
naive - unshifted poles presence of_ excepnonal cqnflguratlons limits the usefulness
naive - visible pole configurations removed of large statistical samples in many problems. The number of

Wilson B=5.9 123x24
150 - 50 confs

¢ o

A . o N
500 MQAanabeis-visblo polos shied exceptional configurations simply grows with the statistical
g o° sample. With the MQA analysis the exceptional configura-
v . tions are eliminated and the errors can be meaningfully re-
50 [ . duced by using larger statistical samples.
We have examined both Wilson-Dirac and the improved
o s s 8 8 33;88885;;: Clover actions. The Clover action is designed to remove

O(a) lattice artifacts in the Wilson action. However, we have
0155 150 157 158 0159 found that this form of improvement does not remove the
X problem of visible poles and exceptional configurations. In-
. 5 ) i ) deed, we seem to find the same size spread of the real eigen-
FIG. 11.((u*Q(«))") as a function of kappa for Wilson action. ,ajyes for both Wilson-Dirac and Clover actions. A similar
Results are shown for the MQA analysis as well as the naive analyz,c1ysion concerning the frequency of exceptional configu-
sis (with and without exceptional configuratigns rations was reached in a different context bysther{18].

well as for the naive analysisvith and without exceptional In some applications, the use of improved actions has
configurations excludedAs shown in Fig. 11, the results for P€€n combined with coarse lattices to avoid the large nu-

naive quenched analysis including all configurations is nofnerical overhead associated with very fine grained simula-
even smooth ag— k.. The full MQA analysis produces a tions. _The M.QA_ analysis may be an essential ingredient in
smooth and nearly flat result. If we had simply excluded the'€2listic applications of these methods. _

expectional configurations the result is smooth but differs in "€ complete unquenched theory does not suffer explic-

detail from the MQA analysis. In particular, the value f itly from singularities associated with the problem of shifted
needed to obtain flat behavior is shifted. ' poles. The fermion determinant is formally the product of the

eigenvalues of the Wilson-Dirac operatox, ¢ 1/2«). When
multiplied by the fermion determinant, all of the poles in the
sum of the valence fermion propagators and hairpin terms
We have seen that the Wilson-Dirac operator has exadre canceled. There are now no singularities associated with
real modes in its eigenvalue spectrum. In the quenched aphe real eigenvalues and their shifts are simply averaged
proximation, these real modes can generate unphysical poleghen summed over the ensemble of configurations. For this
in the valence quark propagators for physical values of theancellation to occur, it is essential that the zeros of the
guark mass. These poles can produce large lattice artifacfermion determinant match exactly the poles of the fermion
and are the source of the exceptional configurations observatzfopagators and hairpin contributions. Without this precise
in attempts to directly study QCD in the light quark limit. cancellation, the shifted real eigenvalues still introduce sin-
Indeed, we have observed poles corresponding to quarular terms. For example, if the mass used in the fermion
masses as large as 20—30 MeV which is much larger than thgeterminant is not exactly the same as the mass used in the
physical light quark masses. propagators, the cancellation fails. Hence, it may still be nec-
We have shown that a simple procedure can be devised @ssary to use the MQA analysis in conjunction with an ap-
completely remove this artifact in realistic calculations. Theproximate evaluation of the fermion determinant in realistic
modified quenched approximation identifies and replaces thenquenched simulations. In this case, the sensitive poles are
visible poles in the quark propagator by the proper zercshifted to a common mass value and the remaining averages
mode contribution, compensated to preserve the proper etnvolve insensitive contributions or terms which have been
semble averages at large mass. The MQA propagator caffectively moved to the numerator. Here it is essential to
then be used to compute all physical quantities normally acrealize that the shifted real eigenvalues are artifacts of the
cessible in the quenched approximation. Since only a sma#ipecific lattice fermion action employed in the calculation
number of configurations require modificati¢h0% for our  and are not to be associated with real physical effects of the
lattice at3=5.9), there is only a modest overhead cost re-unquenched theory.
quired to apply the full MQA analysis. As presented here, In principle, complex eigenmodes of the Wilson-Dirac
the only potentially time-consuming part of using the MQA operator might lead to problems in the implementation of the
analysis is the initial identification of the configurations MQA approach if they arose in the “visible” region. Indeed,
which have visible poles. In this paper, we used a scan inin our paper on QEDZ29], we have observed cases where
volving the integrated pseudoscalar charge andc Malues  real poles collide and then move off into the complex plane,
to determine the visible pole positions. Subsequently, weroducing complex poles arbitrarily close to the real axis.
have also found that inverting only one color-spin compo-However, these effects have only been observed in the region
nent of the all source quark propagator and using 12 reasometween the “physical” left branch and the central branches
ably spacedk values near. works well and the computa- of the eigenvalue spectrufhe., in the interior of the spectral
tional cost is quite modest. For larger values@fa smaller oval of Fig. ), far from the eigenvalues associated with the
number of configurations should be affected at fixed physicavisible poles which spread to the left of the physical branch.
volume. The complex eigenvalues close to the left critical line are of

V. DISCUSSION AND CONCLUSIONS
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course also affected by shifts in the real part of the eigenvalnot examined other formulations of lattice fermions, such as
ues as is clear from the way the doubler states are removeatbgut-Susskind fermions, which do not suffer directly from
from the physical spectrum. However, artifacts associatethttice artifacts associated with the real eigenvalue spectrum.
with these shifts may be suppressed by finite volume effects

in realistic simulations where there are very few eigenvalues
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