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Light quarks, zero modes, and exceptional configurations
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In continuum QCD, nontrivial gauge topologies give rise to zero eigenvalues of the massless Dirac operator.
In lattice QCD with Wilson fermions, analogs of these zero modes appear as exactly real eigenvalues of the
Wilson-Dirac operator, leading to poles in the quark propagator in the vicinity of the critical hopping param-
eter. It is shown that ‘‘exceptional configurations,’’ which arise in the quenched approximation at small quark
mass, are the result of the fluctuation of the position of zero mode poles to subcritical values of hopping
parameter on particular gauge configurations. We describe a procedure for correcting these lattice artifacts by
first isolating the contribution of zero mode poles to the quark propagator and then shifting the subcritical poles
to the critical point. This procedure defines a modified quenched approximation in which accurate calculations
can be carried out for arbitrarily small quark masses.@S0556-2821~98!04303-3#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.65.Bt
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I. INTRODUCTION

The study of QCD in the light quark limit is essential fo
understanding the chiral structure of pions and implicatio
of theU(1) anomaly which governs the generation of theh8
mass as well as other applications involving the physics
light hadrons. In many previous studies using Wilson-Dir
fermions on the lattice, large statistical errors are enco
tered in calculations with light quarks and a small subse
the gauge configurations seem to play a dominant role in
final results. These ‘‘exceptional configurations’’ have p
vented reliable studies of processes involving very lig
quarks. Instead, one has been forced to infer the structur
light quark processes from extrapolations based on res
obtained for quark masses substantially larger than the ph
cal masses of the up and down quarks. In the quenched
proximation, the large fluctuations resulting from exceptio
configurations appear to be related to the structure of
small eigenvalues of the Wilson-Dirac operator which c
dominate the behavior of the quark propagators@1#. In this
paper we show that this behavior is related to a specific
tifact of the standard quenched lattice computations. We
troduce a modified quenched approximation~MQA! which
removes the dominant artifact associated with the Wils
Dirac formulation of light fermions. With this procedure, th
problem of exceptional configurations is removed and
noise associated with light fermion computations is grea
reduced. We also show that the same procedure mus
applied to the standardO(a) ‘‘improved’’ actions, such as
the Sheikholeslami-Wohlert~Clover! action @2#, and could
play an important role in improving full unquenched QC
calculations.

In the next section we review the basics of the eigenva
spectrum of the Wilson-Dirac operator and elucidate the
lationship between a pole in a quark propagator at finite m
~subcritical hopping parameterk,kc) and an exceptiona
gauge configuration. In Sec. III we show how to system
cally remove these lattice artifacts. This procedure define
570556-2821/98/57~3!/1633~9!/$15.00
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modified quenched approximation~MQA!. This MQA is
then contrasted and compared with the unmodified appro
using physical observables in Sec. IV. In particular, resu
for the pion mass versus quark mass are presented for
Wilson and Clover actions. The final section contains so
general remarks and possibilities for further study.

II. THE EIGENVALUE SPECTRUM AND ZERO MODES

In the quenched approximation, the fermion determin
is removed from the action functional during the Mon
Carlo generation of gauge field configurations, so that o
the contributions of valence fermions are included. This
proximation makes the quenched formulation of the the
particularly sensitive to infrared structure involving light fe
mions. This sensitivity depends on the particular formulat
used to describe fermions in lattice simulations. To und
stand this sensitivity, it is necessary to explore the struct
of the fermion propagators.

The fermion propagator in a background gauge fie
Am(x), may be written in terms of a sum over the eigenv
ues of the Dirac operator,

Df i5g* D f i5l i f i ~1!

and

S~x,y;$A%!5 (
eigenvalues

f i~x;A! ḡ i~y,A!

~l i1m0!
~2!

wheref i(x,A) and ḡ i(x,A) are the corresponding eigenfun
tions. The mass dependence of the propagator is determ
by the nature of the eigenvalue spectrum of the Dirac ope
tor. In the continuum, the Euclidean Dirac operator is sk
Hermitian and its eigenvalues are purely imaginary or ze
Hence, the fermion propagators only have singularities w
1633 © 1998 The American Physical Society
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1634 57BARDEEN, DUNCAN, EICHTEN, HOCKNEY, AND THACKER
the real part of the mass parameter vanishes. The behavior
the eigenvalue spectrum near zero determines the nature
dynamical chiral symmetry breaking@3#. The zero eigenval-
ues, or zero modes, are related to topological fluctuations
the background gauge field by the index theorem associat
with the chiral gauge anomaly@4–6#.

The lattice formulation of Wilson-Dirac fermions qualita-
tively modifies the nature of the eigenvalue spectrum. Th
Wilson-Dirac operator is usually written as

D[D2rW ~3!

DaamW ,bbnW5
1

2
~gm!abUab~mW m!dnW ,mW 1m̂

2
1

2
~gm!abUab

† ~nW m!dnW ,mW 2m̂ ~4!

WaamW ,bbnW5
1

2
dab~Uab~mW m!dnW ,mW 1m̂1Uab

† ~nW m!dnW ,mW 2m̂!

~5!

whereU(nW m) are the link matrices associated with the lattice
gauge fields, and the parameterr is usually taken to be 1.
The Wilson-Dirac operator is neither skew Hermitian~unless
r 50) nor Hermitian. The Wilson term explicitly breaks chi-
ral symmetry and lifts the doubling degeneracy of the pur
lattice Dirac action. As a result the eigenvalue spectrum o
the Wilson-Dirac operator is no longer purely imaginary bu
fills a region of the complex plane. The discrete symmetrie
of the Wilson-Dirac operator imply that the eigenvalues ap
pear in complex conjugate pairs, (l,l* ) and obey reflection
symmetries, (l,2l). In addition, there can be precisely real,
nondegenerate eigenvalues@7#.

Numerical studies of QED in two dimensions@8,9# and
QCD in four dimensions@10,11#, have confirmed the struc-
ture of the eigenvalue spectrum as well as the existence
isolated real eigenvalues. In two dimensions, it is possible t
study the spectrum of the Wilson-Dirac operator in grea
detail. The complex eigenvalue spectrum for a typical gaug
configuration of QED2 on a 12312 lattice is shown in Fig.
1. The left, right and central branches of the Wilson-Dirac
spectrum are clearly visible, as well as a pair of exactly rea

FIG. 1. Example of the eigenvalue spectrum for the Wilson
Dirac operator for QED2 on a 12312 lattice withb54.5.
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eigenvalues for each branch. The left branch is usually a
ciated with the spectrum of the continuum theory and
three other branches correspond to the spectrum of mas
doubler modes for QED2; there would be fifteen doub
branches expected for a similar plot of QCD4. The exac
real eigenvalues are the Wilson-Dirac analog of the c
tinuum zero modes. Unlike the situation in the continuu
these real eigenvalues do not all occur at the specific va
associated with the zero mass limit, even for real eigenva
of a given gauge configuration. Because of the fluctuation
the real part of the eigenvalue spectrum, the massless
can only be defined through an ensemble average in Mo
Carlo calculations. We will see that the fluctuations in t
position of the zero modes are the primary reason for in
bilities in calculations with light Wilson-Dirac fermions
@8,12–14#. These fluctuations are a direct result of the chi
symmetry breaking which occurs as an artifact of t
Wilson-Dirac fermion formulation. Shifts in the positions o
the real eigenvalues will cause spurious poles in the ferm
propagator for light fermion masses. These nearby poles
the cause of the exceptional configurations encountere
quenched calculations with Wilson-Dirac fermions.

The shifts in the real part of the Wilson-Dirac eigenval
spectrum are lattice artifacts, as the nonskew Hermitian
of the lattice Wilson-Dirac operator is associated with high
dimension operators. In the continuum limit, these artifa
are expected to disappear. In Fig. 2, we show the real eig
value distribution for our QED2 lattice as a function ofb.
For larger values ofb, the distribution becomes mor
sharply peaked as expected for the approach to the
tinuum limit. For any fixedb, the distribution maintains a
finite width and the naive massless limit remains undefin
Indeed the distribution of poles in the corresponding ferm
propagators leaves the naive quenched theory formally un
fined. For any fixed fermion mass the number of exceptio
configurations associated with the zero mode poles can
expected to decrease asb is increased, but the limit to infi-
nite Monte Carlo statistics at fixedb will not converge@9#.

In four dimensions, it is more difficult to study the eige
value spectrum, even if we restrict our attention to just
small eigenvalues. The zero modes appear as poles in
fermion propagator

- FIG. 2. Distribution of real eigenvalues in QED2 near zero f
mion mass forb51.6,2.9,4.5 and 6.5 on a 12312 lattice. Results
shown here are for a sample of 1000 independent gauge config
tions at eachb. Fermion mass bins were 0.012 wide.
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57 1635LIGHT QUARKS, ZERO MODES, AND EXCEPTIONAL . . .
~D2rW! f i5l i f i ~6!

S~x,y;$U~A!%!AB5 (
eigenvalues

f iA~x;U ! ḡ iB~y,U !

l i11/2k
~7!

mf ermion51/2k21/2kc ~8!

wherek is the hopping parameter, with the critical valuekc
determined from the ensemble average pion mass. For m
with l i,21/2kc , the propagator has poles corresponding
positive mass values. The position of these poles can be
tablished by studying any smooth projection of the ferm
propagator as a function ofk. In our computations, we us
the integrated pseudoscalar charge to probe for the sh
real eigenvalues

Q~k!5E d4x^ c̄~x!g5c~x!&. ~9!

We employ the same method that was used by Kuram
et al. @15# to study hairpin diagrams and theh8 mass. A
fermion propagator,G(n,k), is computed using a unit sourc
at every site for each color and spin. The result is traced o
color and spin and summed over the lattice:

Q~k!→TrF ig5(
n

G~n,k!G . ~10!

The color averaging over the lattice volume reproduces
integrated charge. This is a global quantity which samp
the full lattice volume. By computing its value for a range
kappa values we can search for poles in the fermion pro
gator. Near a pole, we should find

Q~k!→
R

1/k21/kpole

. ~11!

In the continuum, the residueR would be directly propor-
tional to the global winding number of the gauge field co
figuration @8#.

In the present calculations we have used eighteen ka
values and a Pade´ method for fitting the pole structure. Thi
procedure works well if the poles are in the visible regio
k,kmax,kc . Although we had originally hoped to dete
mine the complete spectrum of real eigenvalues using
method, it was only found to be reliable if the poles were
the ‘‘visible’’ region. There we could determine the po
es
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positions and the relevant eigenvalues to great precision
example of these scans is shown in Fig. 3 for Wilson ferm
ons. The existence of isolated poles is obvious from t
figure. The value of the integrated pseudoscalar charge
be computed, with no appreciable slowdown in convergen
for values of the hopping parameter arbitrarily close to
pole position.

For the computations in this paper, we use a sample o
gauge configurations available from the ACPMAPS libra
the e-lattice set@17#. These configurations were generated
a 123324 lattice at b55.9 and are separated by 200
sweeps. We determine pole eigenvalues for both the stan
Wilson-Dirac action and a Clover action with a clover coe
ficient of CSW51.91 corresponding to the value suggest
by the results of Lu¨scheret al. @18#. We find six configura-
tions with visible poles for each choice of fermion actio
These results are shown in Table I. It is important to n
that only one gauge configuration is in common between
two sets of visible poles. This emphasizes the point that
existence of visible poles for a particular gauge configurat
is a sensitive artifact of the particular choice of fermion a
tion. As the fermion action is varied, the real eigenvalu
move, some to smaller values of kappa where they may
come visible and some to larger values of kappa where t
may not be observed as visible poles. Therefore, the vis

FIG. 3. uQ(k) is shown as a function of kappa for Wilso
action configuration 114000. Hereu is twice the bare quark mas
andQ(k) is the ~space-time! average pseudoscalar charge dens
The unshifted charge~denoted by solid dots! has a pole atk
50.1588539. In contrast the charge in the modified quenched
proximation~denoted by open circles! shows only smooth behavior
TABLE I. Visible poles for a set of 50 gauge configurations~102000–200000 step 2000!.

Wilson action Clover action, CSW51.91
Conf. kpole PS residue Conf. kpole PS residue

114000 0.1588539 22.1463 122000 0.1331519 13.3366
132000 0.1594870 22.4800 150000 0.1339044 14.8900
148000 0.1593216 23.6325 160000 0.1334519 22.0718
160000 0.1593803 22.8494 162000 0.1335898 22.5609
182000 0.1593803 12.5036 178000 0.1334681 223.4917
194000 0.1595557 25.3055 178000 0.1337479 122.7462

198000 0.1337620 11.5828
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1636 57BARDEEN, DUNCAN, EICHTEN, HOCKNEY, AND THACKER
poles, and the corresponding identification of exceptio
configurations is a sensitive property of the fermion act
and not a property unique to the particular gauge configu
tion. In the same vein, a small change in the clover coe
cient may remove a visible pole for one configuration a
add a visible pole for another configuration, complete
changing identification of the exceptional configuration
Since only a collision of two real modes allows the pairi
required to move off the real axis, small changes in the
rameters of the fermion action should not change the num
of isolated real modes but only their visibility.

The connection between the visible poles and the exc
tional configurations is made clear if we plot the time dep
dence of a pseudoscalar meson propagator for a kappa v
associated with a light quark, e.g.,k50.1595. In Fig. 4, we
plot all fifty configurations where the configurations wi
visible poles have been labeled with open circles. It is cle
that all of the distorted propagators associated with the
ceptional configurations can be uniquely identified with t
presence of nearby visible poles.

III. THE MODIFIED QUENCHED APPROXIMATION

In the standard quenched approximation, only the vale
fermion contributions are calculated explicitly from the fe
mion propagators and the effects of the fermion loop de
minant are ignored. This approximation is very sensitive
singularities of the fermion propagator which may be e
countered in particular formulations of lattice fermions.
this section, we identify those singularities which are due
artifacts of Wilson-Dirac fermions in quenched lattice calc
lations. We give a simple prescription which corrects for t
principal artifacts encountered when using the Wilson-Di
fermion formulation for light quark masses.

As noted in the previous section, the eigenvalue spect
of Wilson-Dirac fermions generally contains a number
isolated real eigenvalues. In the continuum limit, these
genvalues are identified as zero modes and occur at prec
zero fermion mass. In the Wilson-Dirac formulation, the
eigenvalues shift due to the chiral symmetry breaking gen
ated by the Wilson-Dirac action. Some of these eigenval

FIG. 4. Pion propagator fork50.1595 showing all 50 configu
rations. Propagators for configurations with visible poles are
played with open circles and labeled by their sequence num
when appropriate.
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are shifted to positive mass which causes singular beha
for the fermion propagators computed for a mass nea
shifted eigenvalue. Because of these shifts, there is no c
mon critical value of the fermion mass or hopping parame
even for a specific gauge configuration. The critical value
the hopping parameter is normally defined by the chiral lim
as determined by the ensemble average of the pseudos
meson mass over all configurations. In general, these ei
value shifts would be averaged to zero in the ensemble
erage and no specific corrections would be needed. Howe
in the quenched approximation, the shifts cause poles in
fermion propagators which are not properly averaged. T
effect corresponds to similar situations in degenerate per
bation theory where small perturbative shifts can cause la
effects due to small energy denominators. In this case
known that it is essential to expand around the exact eig
values and compensate the perturbation expansion
counterterms in each order. In the present case, we argue
a similar compensation must be made when using Wils
Dirac fermions. Fortunately, we know that the correct po
tion for the real poles is a common critical value of th
hopping parameter,kc associated with the massless fermi
limit.

We are now able to devise a procedure for correcting
fermion propagators for the artifact of the visible shifte
poles. As before, we write the fermion propagator as a s
over the eigenvalues of the Wilson-Dirac operator,

S„x,y;$U~A!%…AB5 (
eigenvalues

f iA~x;U ! ḡ iB~y,U !

l i11/2k
.

~12!

The shifted real eigenvalues cause poles at particular va
of the hopping parameter. The residue of the visible po
can be determined by computing the propagator for a ra
of kappa values close to the pole position and extracting
residue for the full propagator. It is convenient to have fi
determined the pole position very accurately from a glo
quantity such as the integrated pseudoscalar charge be
extracting the propagator residue. With this residue we
define a modified quenched approximation by shifting
visible poles tok5kc and adding terms to compensate f
this shift when the hopping parameter is not near the posi
of the visible poles. We are able to apply this procedu
because it removes a specific lattice artifact, and we kn
the correct continuum position of all real eigenvalues.

As an example we can apply this procedure to the in
grated pseudoscalar charge. In Eq.~11! we determined the
visible pole position and residue by studying thek depen-
dence ofQ(k). Once this has been determined we cou
define a modified quenched approximation by moving
visible pole to kappa critical. The naive result would be

Q~k!→Q~k!2
R

~1/k21/kpole!
1

R

~1/k21/kc!
. ~13!

The impact of this modification is shown in Fig. 3 fo
Wilson-Dirac fermions. The same behavior is observed
the case of the SW improved Clover action. The shift
moves the spurious pole and allows a smooth extrapola
to zero fermion mass,k→kc .

-
er
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57 1637LIGHT QUARKS, ZERO MODES, AND EXCEPTIONAL . . .
The above procedure corrects for the leading effects
may distort an ensemble average by only shifting visi
poles and not compensating for poles beyond the vis
range. Therefore we chose to define the modified quenc
approximation~MQA! using a compensated shift of the vi
ible poles which moves the visible poles while preserving
ensemble averages at large mass. Introducing a mass pa
eter, u, relative to a common critical value of the hoppin
parameter,kc ,

u51/k21/kc52mfa ~14!

the visible real pole may be replaced as follows:

1

u2upole

→
2

u
2

1

~u1upole!
. ~15!

At large mass the first two terms in the expansion in 1/u are
not modified and terms linear in the shifts should average
zero. Since we are only able to identify poles with positi
mass shifts, we have compensated a visible pole with
shifted to negative mass. These negative shifts do not ge
ate singularities in the fermion propagators computed
positive mass values and are expected to cancel against
with negative shifts generated by other configurations in
ensemble. With this procedure, we do not expect any la
renormalization ofkc due to the shifting procedure.

The full MQA fermion propagator may be simply com
puted by adding a term to the naive fermion propaga
which incorporates a compensated shift of the visible po
The modified propagator is given by

SMQA
„x,y;$U~A!%…[S„x,y;$U~A!%…

1apole~k!*respole~x,y! ~16!

where

apole~k![2
1

u2upole

1
2

u
2

1

~u1upole!
~17!

and

respole~x,y![ f pole~x,U ! ḡ pole~y,U !

5 lim
u→upole

~u2upole!* S~x,y,$U%!. ~18!

As noted above, the propagator residue can be determine
computing the fermion propagator at values arbitrarily clo
to the pole position. The residue of each pole is extracted
calculating the propagator atupole2D and upole1D with
D'1025 where the pole position,upole , has been accuratel
determined from the integrated pseudoscalar charge m
surement. These calculations generate only a modest o
head for the computations as only the configurations w
visible poles need to be corrected. For our sample ab
55.9 (123324), about 10 to 15% of the configurations ne
to be corrected for visible poles. At larger physical volum
for fixed b, a larger percentage of configurations should
affected; while at higherb for fixed physical volume, a
smaller percentage of configurations should be affected.
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The MQA propagator may now be used to evaluate a
correlation functions involving Wilson-Dirac fermions. W
have simply removed an obvious lattice artifact from t
fermion propagator which distorts the usual quenched
proximation. It is important to note that the artifact is th
appearance of visible poles at positive mass, not the e
tence of small or real eigenvalues. It is only the visibility th
we have corrected by appealing to the correct behavior in
continuum limit. We proceed to discuss some applications
the modified quenched approximation in the next section

IV. APPLICATIONS

The MQA quark propagators defined in the previous s
tion may be used in place of the usual quenched propaga
to compute any hadron physics properties accessible in
quenched approximation. We expect that the suppressio
the large fluctuations normally associated with the exc
tional configurations should greatly reduce the errors ass
ated with the propagation of light quarks. The most sensit
quantities are those associated with the chiral limit. Pri
examples are the pion propagator, the hairpin calculation

FIG. 5. Pion propagators versus lattice time for Wilson act
with naive quark propagators atk50.1580,0.1585,0.1590,0.159
and 0.1595.mq5mq̄ .

FIG. 6. Pion propagators versus lattice time for Wilson act
with MQA quark propagators atk50.1580,0.1585,0.1590,0.159
and 0.1595.mq5mq̄ .
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1638 57BARDEEN, DUNCAN, EICHTEN, HOCKNEY, AND THACKER
the h8 mass, meson decay constants and the light had
spectrum.

We illustrate the impact of the modified quenched a
proximation by computing the pseudoscalar propagator fo
range of quark masses including values appropriate to ph
cal light quarks. As mentioned in Sec. II, we use a sample
50 gauge configurations generated on a 123324 lattice at
b55.9, the ACPMAPS e-lattice set@17#. We computed the
two-point pion correlation function,Gpp(t), for smeared
source and sink using an approximation to the pion wa
function in Coulomb gauge. In Fig. 5, we show the tim
dependence of the resulting pion propagators using the u
quark propagators obtained for the Wilson-Dirac action fo
range of hopping parameter values. The errors shown
highly correlated. For the larger values of the hopping
rameter, corresponding to the lighter quark masses, the l
fluctuations do not permit a sensible fit to a pion propaga
In Fig. 6, we show the same plot where the quark propa
tors have been replaced by the MQA propagators. Of the
configurations, six were found to have visible poles with t
pole positions as given in Table I. The MQA propagato
were computed using the procedures of Sec. III withkc
50.15972. We find the fluctuations are greatly suppres
allowing a measurement of the pion mass even for the lar
hopping parameter value.~This value of kappa correspond
to a light quark mass not much larger than the average ph
cal up and down masses.! Even for heavier masses, the erro
appear to be greatly reduced by using the MQA propagat

The same analysis has been applied to the case of fe
ons defined through the improved Clover action. Again
find that there are large fluctuations for the hopping para
eter values corresponding to the light quark limit. The pi
propagators computed using the MQA quark propaga
show greatly reduced fluctuations. In Table I, there are
configurations with visible poles for the Clover action a
though one configuration exhibits two visible poles. On
one gauge configuration has visible poles for both Wils
Dirac and Clover actions. Again, the MQA analysis is se
to greatly reduce the fluctuations of the pion propaga
Here we have usedkc50.13425 for the critical hopping pa
rameter. It is clear that clover improvement does not mitig
the problem of visible poles although the MQA analysis
equally effective for the Wilson-Dirac and Clover actions

The pion propagators we have shown are computed w
the limited statistics of 50 gauge configurations. For
lighter quark masses, it is clear that the normal analy
would not be limited by statistics but by the frequency
exceptional configurations associated with visible pol
However, we believe that the MQA analysis cures this pr
lem and higher statistics would now greatly improve the
curacy of computations with light mass quarks.

We can also isolate the effect of a real pole by extract
its residue from a fit to a series of pion propagators in wh
only one quark mass is varied. The results of that proced
for a particular configuration~148000! with a pole in the
visible region is shown in Fig. 7.

Another way to see the effects of using the MQA analy
employs a bootstrap procedure. We create 200 bootstrap
of 50 configurations each randomly selected from the full
of 50 gauge configurations. We simultaneously fit the th
pion two-point correlators LS~local-smeared!, SL ~smeared-
on
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local! and SS~smeared-smeared! to a common pion mass
Each correlator has the form:

Gpp~ t !5uAu22cosh~mpt !. ~19!

We determine fits to the pion mass,mp , and coupling
amplitudes,uALu anduASu, for each of the 200 bootstrap se
for particular values of the hopping parameter. In Fig.
scatter plots compare the fluctuations and correlations
Wilson-Dirac fermions before and after using the MQ
analysis. It is clear that the MQA analysis greatly reduces
fluctuations and produces a more tightly correlated fit for
mass and decay constant. Again, we would expect even m
dramatic improvement with a larger statistics sample
gauge configurations.

Using the full bootstrap set, we have made an unco
lated fit for the pion mass and decay constants where
quark masses range over all eight values of the hopping
rameter considered in this paper. We use data on correla
functions for smeared and local pseudoscalar sources an

FIG. 7. Real mode pole residue atk50.1593216 for configura-
tion 148000 with Wilson action. The residue is computed using
ratio of heavy-light pion propagator normalized by the square r
of the heavy-heavy propagator. Here the heavy quark isk
50.1570 and the light quarks used havek50.1595–0.1590.

FIG. 8. Pion mass,mp , and coupling amplitude,uASu, extracted
from the pseudoscalar-pseudoscalar correlator using smeared s
and sink operators. The results for 200 bootstrap samples are
played with naive~open circles! and MQA shifted~solid dots! Wil-
son action quark propagators.
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local axial vector charge density for our analysis. In Fig.
we plot the square of the measured values of the pion m
for Wilson-Dirac fermions against the average of the qu
masses,m[(mq11mq2)/25(0.5/kq110.5/kq221/kc)/~2a!,
for the naive and MQA analysis, respectively. The large fl
tuations in the naive analysis come when one or both of
quarks are light. We show a simple best fit for the pion m
squared as a function of the average bare quark massesml ,
assuming the general power law form:

mp
2 5A~m2B!C. ~20!

The masses determined from the MQA analysis seem to
a good fit to a nearly linear behavior with little evidence f
a modified power law~C51.05!. The slope determined b
our fit is mp

2 /m54.30 which is in good agreement with pre
vious measurements@17#. The fit also yields a new critica
value for the hopping parameter,kc50.159725, which
should be compared with the value ofkc50.15972 obtained
from the standard analysis. The small shift inkc reflects our
use of a compensated shift for the visible poles and the
earity observed in our mass fits. If uncompensated sh
were used for the visible poles, or if the value of the critic
hopping parameter were varied slightly, a modest renorm
ization ofkc would be expected for the MQA analysis com
pared to the normal procedure. In extreme cases, it ma
necessary to iterate the shift process to determine a co
tent value ofkc .

FIG. 9. Pion mass plots for Wilson action with~a! naive quark
propagators in the kappa range, kappa50.1550 to 0.1590~open
circles! and ~b! MQA propagators in the full kappa range, kapp
50.1550 to 0.1595~dots!. A power law fit @Eq. ~20!# to the MQA
masses is also shown.
,
ss
k
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e
s

ve

-
ts
l
l-
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is-

We also show plots of the fits for the Clover action wi
and without MQA analysis in Fig. 10. Of course, the slo
mp

2 /m here will differ significantly from the previous cas
~using naive Wilson action atb55.9). Using the clover co-
efficient CSW51.91, we findmp

2 /m57.45. Otherwise, the
general conclusions are the same in the Clover case as i
Wilson case.

Another quantity with considerable infrared sensitivity
the hairpin contribution to the singlet pseudoscalar m
term which is thought to be responsible for the largeh8
meson mass in quenched QCD. We follow the analysis
Kuramashiet al. @15# and use the all-source propagators d
cussed previously in computing the pseudoscalar densi
The hairpin contribution to theh8 propagator can be isolate
using appropriate color projections of the two point corre
tion function of the all-source propagators@16#. As in the
case of the pion propagator, the large fluctuations obser
for lighter quark masses in the naive analysis are sha
reduced by the MQA analysis. A detailed study of the ha
pin propagator with high statistics is underway and resu
will be presented elsewhere.

In this paper, with our low statistics, we restrict our atte
tion to the pseudoscalar charge squared,Q(k)2. The
weighted average of the square of this charge,^(u* Q(k))2&,
ask approacheskc is the average of square of the windin
number and therefore a measure of the topological susc
bility of QCD. In Fig. 11, we show our results for th
^(u* Q(k))2& as a function of kappa the MQA analysis a

FIG. 10. Pion mass plots for SW Clover action with~a! naive
quark propagators in the kappa range, kappa50.1290 to 0.1335
~open circles! and ~b! MQA propagators in the full kappa range
kappa50.1290 to 0.1337~dots!. A power law fit @Eq. ~20!# to the
MQA masses is also shown.
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well as for the naive analysis~with and without exceptiona
configurations excluded!. As shown in Fig. 11, the results fo
naive quenched analysis including all configurations is
even smooth ask→kc . The full MQA analysis produces a
smooth and nearly flat result. If we had simply excluded
expectional configurations the result is smooth but differs
detail from the MQA analysis. In particular, the value ofkc
needed to obtain flat behavior is shifted.

V. DISCUSSION AND CONCLUSIONS

We have seen that the Wilson-Dirac operator has ex
real modes in its eigenvalue spectrum. In the quenched
proximation, these real modes can generate unphysical p
in the valence quark propagators for physical values of
quark mass. These poles can produce large lattice artif
and are the source of the exceptional configurations obse
in attempts to directly study QCD in the light quark limi
Indeed, we have observed poles corresponding to qu
masses as large as 20–30 MeV which is much larger than
physical light quark masses.

We have shown that a simple procedure can be devise
completely remove this artifact in realistic calculations. T
modified quenched approximation identifies and replaces
visible poles in the quark propagator by the proper z
mode contribution, compensated to preserve the proper
semble averages at large mass. The MQA propagator
then be used to compute all physical quantities normally
cessible in the quenched approximation. Since only a sm
number of configurations require modification~10% for our
lattice atb55.9), there is only a modest overhead cost
quired to apply the full MQA analysis. As presented he
the only potentially time-consuming part of using the MQ
analysis is the initial identification of the configuration
which have visible poles. In this paper, we used a scan
volving the integrated pseudoscalar charge and 18k values
to determine the visible pole positions. Subsequently,
have also found that inverting only one color-spin comp
nent of the all source quark propagator and using 12 rea
ably spacedk values nearkc works well and the computa
tional cost is quite modest. For larger values ofb, a smaller
number of configurations should be affected at fixed phys
volume.

FIG. 11. ^(u* Q(k))2& as a function of kappa for Wilson action
Results are shown for the MQA analysis as well as the naive an
sis ~with and without exceptional configurations!.
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The MQA analysis allows stable quenched calculatio
with very light quark masses and reduces the errors eve
the case of heavier quark mass. In the normal analysis,
presence of exceptional configurations limits the usefuln
of large statistical samples in many problems. The numbe
exceptional configurations simply grows with the statistic
sample. With the MQA analysis the exceptional configu
tions are eliminated and the errors can be meaningfully
duced by using larger statistical samples.

We have examined both Wilson-Dirac and the improv
Clover actions. The Clover action is designed to remo
O~a! lattice artifacts in the Wilson action. However, we ha
found that this form of improvement does not remove t
problem of visible poles and exceptional configurations.
deed, we seem to find the same size spread of the real e
values for both Wilson-Dirac and Clover actions. A simil
conclusion concerning the frequency of exceptional confi
rations was reached in a different context by Lu¨scher@18#.

In some applications, the use of improved actions h
been combined with coarse lattices to avoid the large
merical overhead associated with very fine grained simu
tions. The MQA analysis may be an essential ingredien
realistic applications of these methods.

The complete unquenched theory does not suffer exp
itly from singularities associated with the problem of shift
poles. The fermion determinant is formally the product of t
eigenvalues of the Wilson-Dirac operator, (l i11/2k). When
multiplied by the fermion determinant, all of the poles in th
sum of the valence fermion propagators and hairpin te
are canceled. There are now no singularities associated
the real eigenvalues and their shifts are simply avera
when summed over the ensemble of configurations. For
cancellation to occur, it is essential that the zeros of
fermion determinant match exactly the poles of the ferm
propagators and hairpin contributions. Without this prec
cancellation, the shifted real eigenvalues still introduce s
gular terms. For example, if the mass used in the ferm
determinant is not exactly the same as the mass used in
propagators, the cancellation fails. Hence, it may still be n
essary to use the MQA analysis in conjunction with an a
proximate evaluation of the fermion determinant in realis
unquenched simulations. In this case, the sensitive poles
shifted to a common mass value and the remaining avera
involve insensitive contributions or terms which have be
effectively moved to the numerator. Here it is essential
realize that the shifted real eigenvalues are artifacts of
specific lattice fermion action employed in the calculati
and are not to be associated with real physical effects of
unquenched theory.

In principle, complex eigenmodes of the Wilson-Dira
operator might lead to problems in the implementation of
MQA approach if they arose in the ‘‘visible’’ region. Indeed
in our paper on QED2@9#, we have observed cases whe
real poles collide and then move off into the complex pla
producing complex poles arbitrarily close to the real ax
However, these effects have only been observed in the re
between the ‘‘physical’’ left branch and the central branch
of the eigenvalue spectrum~i.e., in the interior of the spectra
oval of Fig. 1!, far from the eigenvalues associated with t
visible poles which spread to the left of the physical bran
The complex eigenvalues close to the left critical line are

y-
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course also affected by shifts in the real part of the eigen
ues as is clear from the way the doubler states are remo
from the physical spectrum. However, artifacts associa
with these shifts may be suppressed by finite volume effe
in realistic simulations where there are very few eigenval
with small imaginary parts except for the purely real eige
values we have previously discussed. In particular, our
merical results show that very smooth and non-noisy me
correlators are obtained once the real visible poles
shifted, strongly suggesting that dangerous nearby com
modes are extremely scarce, at least for lattices at the va
of b and physical volume so far studied. In summary,
suggest that the MQA method should suffice to remove
singular terms encountered in realistic calculations us
Wilson-Dirac fermions or similar improved actions. We ha
r,
.
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not examined other formulations of lattice fermions, such
Kogut-Susskind fermions, which do not suffer directly fro
lattice artifacts associated with the real eigenvalue spectr
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