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Vacuum polarization function to O(a?) accuracy near threshold and Darwin corrections
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The QED vacuum polarization function is calculated @¢a?) (next-to-leading ordéraccuracy in the
threshold regime by using the concept of effective field theories to resum diagrams with the instantaneous
Coulomb exchange of longitudinally polarized photons. It is shown thaOie?) contributions are of order
a? in size rather tham?/ 2. The vacuum polarization effects in the single photon annihilation contributions
to the O(a®) hyperfine splitting of the positronium ground state are recalculated and an error in an older
calculation is pointed out. The results are used to determir@ﬁai) (next-to-next-to-leading ordgDarwin
corrections to heavy-quark—antiquark bound stat® wave functions at the origin and to the heavy-quark—
antiquark production cross section @ e~ collisions in the threshold region. The absolute value of the
corrections amounts to 10%—-20% and 17%—34% in the modulus squared of the ground state wave functions
at the origin for thebb andcc systems, respectively. In the case of theproduction cross section in the
threshold region the absolute value of the corrections is between 2% and 6% arouriptbakland between
1% and 2% for higher energies. A critical comment on recent QCD sum rule calculations férsystem is
made.[S0556-282(98)01303-4

PACS numbgs): 12.38.Cy, 13.25.Gv, 13.65i, 13.85.Lg

. INTRODUCTION indicated by power (J3) or logarithmic (Ing) divergences

In recent years many sophisticated methods have bedR the velocity which blow up if evaluated very closne to the
developed to calculate higher ordémultiloop” ) QCD ra- threshold point. Some of these divergentesg. thea"/5",

diative corrections for high energy quantities for which it is ”>.t’. COtliI1|0m|b stingularitiet§ in the Dirabc fct)rmtfa(;:ttﬁ)g de-
believed that an expansion in terms of Feynman diagram§CrI Ing the electromagnetc ven)'etxa' N be trealed by using
well-known results from nonrelativistic quantum mechanics,

with a cgrtam number .of'loops represents an excellent.apbut a systematic way to calculate higher-order corrections in
proximation to the predictions of qu.antum chrom_ody+naim|csthe threshold regime seems to be far from obvious, at least
No”tgple examples ?rei the".Zadromc cross secuo:e 'ﬁ' from the point of view of covariant perturbation theory in the
collisions at CERNE_ e col er_LEP energies or t @ O nhumber of loops. This type of perturbation theory will be
tonic) vacuum polarization function. In the high energy “m'ti_r_eferred to as “conventional perturbation theory” from now
where the quarks can be treated as massless, these quantifigsin this work.

have been calculated up to three logfis-4]. However, fu- On the other hand, there are many examples of heavy-
ture experimentgNext Linear ColliderNLC), B factory and  qyark—antiquark bound state properties where complete
r-charm factory will test the vacuum polarization function nowledge of higher-order corrections would be extremely
and the hadronic cross section also in the kinematic regimgguable. Most of the present analyseee e.g[5] for a
close to heavy-quark—antiquark thresholds where bounghiew) are based on leading and next-to-leading order cal-
state effects become important. The threshold regime is chagy|ations. Here, higher-order corrections could significantly

acterized by the relation increase the precision of present theoretical calculations, but
could also serve as an instrument to test how trustworthy

/ M2 certain theoretical predictions are and to estimate the size of

|1Bl<=as, B= 1_4q2+Qie’ (1)  theoretical uncertainties. Further, they could contribute to-

ward a better understanding of the role of nonperturbative
effects(in the sense mentioned abgvia apparent discrep-
whereMg, is the heavy quark pole mass atld” denotes the ancies between the determination of the size of the strong
c.m. energy. In the process of heavy-quark—antiquark proeoupling from theY (1S) decay rate$6] and QCD sum rule
duction above the threshold;,2>4Mé, B is equal to the calculations for thé system{7],* on the one hand, and from
velocity of the quarks in the c.m. frame. We therefore gall the LEP experiments on the other.
the “velocity” in the remainder of this work, even if? The framework in which bound state properties and also
<4M%. In the threshold regime the accuracy of theoreticaldynamical quantities in the threshold regime can be calcu-
predictions to the hadronic cross section and to the vacuum
polarization function is much poorer than for high energies.
Aside from definitely nonperturbative effedis the sense of  1pyring completion of this paper we became aware of a new
“not calculable analytically from first principles in QCD;"  publication, where QCD sum rules for thé system are used to
the breakdown of the perturbative expansion in the numbegietermine the strong coupling and the bottom quark m@ksve
of loops makes any theoretical description in the thresholaill give a brief comment on this publication and fr at the end
region difficult. This breakdown of the perturbation series isof Sec. V.
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lated in a systematic way to in principle arbitrary order isO(Cﬁag) Darwin corrections is of orde€gMqas and we
nonrelativistic quantum chromodynami@SRQCD), as for-  gnajyze the size of the corrections for the, bb andcc
mulated in[9], which is based on the concept of effective gy stems assuming that the size of the Darwin corrections can
field theories. In the kinematic regime where bound statege taken as an order of magnitude estimate foryat un-
occur and slightly above the threshold, NRQCD is Superiol o) 0(a?) corrections. The sign of the latter corrections
:?orzotnhv:ntrlggtéiléallaergijlz??)tfl?/ri]e\;\r/]aelgtr)yt(l)ntr?ecgetﬁgmsﬁa;ter and their actual numerical values can, of course, only be
- . . . . 2
P P P determined by an explicit calculation of &l(«g) correc-

approach, because it allows for an easy and transparent S€hdns. Finally, we address the question of whether bound

ratlon of long- an(_j short-distance physics pontnbuﬂons. Thlsstate effects can lead to large corrections to the vacuum po-
is much more difficult and cumbersome with the former two

methods. However. we would like to emphasize that a”Iarization function in kinematic regions far from the actual
' ' P . .~ threshold regime. We come to the conclusion that such cor-
methods lead to the same results. As an effective fiel

; . . ections do not exist.
theory, NRQCD qeeds Input from s_hort-dlstance QC.:D N O™ At this point we want to emphasize that the approach
der to produce viable predictions in accordance with quan-

. : . presented in this work is not based on the Bodwin-Braaten-
Fum chromodynamlcs. This adjustment of NRQC.D to QCDLepage(BBL) factorization formalisni5] where bound state
is called thematching procedurand generally requires mul-

tiloop calculations in the framework of conventional pertur- and threshold quantities involving heavy-quark—antiquark

bation theory at the level of the intended accuracy. In thi$alrs are expressed as a sum of terms each of which consists

work we assume that the reader has some familiarity with th of a product of a short-distance coefficient and a matrix ele-
approach presented [0] Y Fhent which incorporates long-distance and nonperturbative
pproach p : - . effects. In the BBL factorization formalism the short-
In this work we demonstrate the efficient use of theoreti-

distance coefficients can be determined using the standard
cal m_ethpds from. NRQE[[)Q] to calculate j[he QE? vacuum matching procedure within NRQCD whereas the matrix ele-
polarization function in the threshold region @ «*) accu-

; . ments have t xtracted from experimental data or latti
racy. We would like to emphasize that our result for the ents have to be extracted from experimental data or lattice

L . . calculations. The spirit of this work is completely different.
QED vacuum polarization function ©(a?) accuracy in the P P Y

threshold region, although completely derived from a num We entirely rely on the perturbative methods developed for
ber of older results, has never been presented in the IiteratuNaRa?kIE_gn[t?’tﬂrkagdsgi?:f?r: thgsDe ;ecr‘g'?“;* S Dt(;eriaVy
before and therefore should be considered as new. In contras antiq yStel . QCD. TI@(Cras) .

to the standard matching procedure in NRQEI), where corrections presented in this vyork therefor_e contain pertur-
the renormalization coefficients to the operators of thebat've s_hort- as yvell as long-distance contributions and_ rep-
NRQED Lagrangian have to be determined explicitly, Weresent f|r_st principlesi.e. not dependent on any model-like
match the unrenormalized NRQED expression for theass_umptlon)sQCD ca!culauons. Of course, because we rely
vacuum polarization function to the corresponding QED re_entlrely on p.erturbatlve methods we cannot determine any
sults directly at the level of their analytical expressions. Thisnonperturbatlve effects. The' only assumptions our approach
“direct matching” approach considerably simplifies the cal- Is based on are tha) the mst_amtgneoué.e._ uncrossed
culations and leads to the same result as the standard math;n(—)ummb'IIke exchange of longitudinal gluogis Coulomb_

ing procedure. We use our result to recalculate the vacuu auge between the heavy quarks represents the dominant

o ; . I - effect in the threshold regime and is the main reason for
polarization effects in the single photon annihilation contri- 5 o . X
butions to theO(«®) hyperfine splitting of the positronium heavy-quark—antiquark bound state formation and(iheall

ground state energy level without referring back to thefurther interactions and effects can be treated as a perturba-

Bethe-Salpeter equation. An error in an older calculation " We believe that th? actual size of t.@é.%) p_orre_chons
[10,11 on the same subject is pointed out. We analyze th an '_[her_1 SErve as an |mportaf_mtposter|or|Jusyﬂcatlon or
vacuum polarization function at the bound state energies an 'S'f'ca“‘”.‘ of these assumptions for the different heavy-
above threshold and, in particular, concentrate on the size Gfu@rk—antiquark systems. Because we know that nonpertur-
the O(a?) contributions. It is shown that the size of the bative effects are much more important in the systems
O(a?) contributions in the threshold regime is of ordet  than in thebb andtt systems, a consequence of the “small-
rather thana?/ 7> which is a consequence of their long- ness” of the charm quark mass, we can expect that our per-
distance character. In a second step our results for the QEDrbative approach contains much less predictive power for
vacuum polarization function in the threshold regime are apc ¢ than forbb andtt. This is confirmed by the size of the
plied to calculateO(CEa?d) (next-to-next-to-leading order  O(C2a2) Darwin corrections for the different heavy-quark—
Darwin corrections to the heavy-quark—antiquark 0 antiquark systems.

bound state wave functions at the origin and to the cross The program for this work is organized as follows: In Sec.
section of heavy-quark—antiquark productioneine” anni- || the calculation of the QED vacuum polarization function
hilation (via a virtual photon in the threshold region. The to O(a?) accuracy in the threshold region is presented. We
corresponding unperturbed quantities are the solutions of th@efine a renormalized version of the Coulomb Green func-
Schralinger equation for a stable quark-antiquark pair with ation for zero distances, which allows for the application of
Coulomb-like QCD potentialVocp(r) = — Cras/r, where  (textbook quantum mechanjicsime-independent perturba-
the scale in the strong coupling is fixed. It is demonstratedion theory to determine higher-order corrections to wave
that the size of the©(CZa3) Darwin corrections is also of functions and energy levels. For completeness we also give
ordera§ rather thami/wz. We present simple physical ar- an expression for the QED vacuum polarization function
guments that the scale of the strong coupling governing thealid for all energies withO(a?) accuracy. In Sec. Il the
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QED vacuum polarization function in the threshold region is d3%p, .- . M © m
analyzed with special emphasis on the size of @@?) GY(X,00= 5 elPoX — °© > TI
: A e . (27) Pi—M2B°—ie m=0 n=1
corrections, and th®(«®) vacuum polarization effects in 0
the single photon annihilation contributions to the positro- 3z
nium ground state hyperfine splitting are calculated. Section 3 —= — =3 5
IV is devoted to the determination and analysis of the (27)° (Pn-1—Pn)? Pr—M?B*—ie€
O(CZa?) Darwin corrections to the bound state wave func- 2
X s . . S M8 o
tions at the origin and the production cross section in the =—j——¢MBr| g2iMprt
threshold regime for the different heavy-quark—antiquark 2m 0
systems. In Sec. V we comment on the existence of threshold . .
effects far from threshold and on recent QCD sum rule calwherer=|x|. The reader should note that in H¢) we can
culations for theY system[7,8]. Section VI contains a sum- identify 8=\1—4M?/(q*+i€) with (E+i€)/M because
mary. we are only interested i®(a?) accuracy in the threshold
region.[For the same reason we replace the factqf il the
first line of Eq.(5) below by 1/(4M?) in the second line of
Il. DETERMINATION OF THE QED VACUUM Eq. (5).] It can be easily seen from the first line of Ed)
POLARIZATION FUNCT'ONZ'N THE THRESHOLD thatGg(0,0) represents the resummation of NRQED vacuum
REGION TO O(a®) ACCURACY polarization diagrams with nonrelativistic electron-positron

In this section we want to determine the QED vacuumPropagation and ladder-type instantaneous exchange of lon-
polarization function taO(a?) accuracy in the threshold re- gitudinal polarized photonécalled Coulomb photonsn the
gime where| 8|=<a. In the following we present the neces- fo_IIowmg) in the Coulomb gauge to all (_)rders in the cou-
sary steps of consideration in order to arrive at this result. A®!iNg a [14]. The latter two effects constitute the dominant
already mentioned in Sec. |, all analytical ingredients needegontributions contained in the NRQED Lagrangie) and
to achieve this aim, the Green function of the nonrelativisticar® accounted for in the Sclfinger equation, Eq3).” For
positronium Schidinger equation and the one- and two-loop later reference we call the NRQED vacuum polarization dia-
QED vacuum polarization function&lerived in the frame- grams resummed iG2(0,0) nonrelativistic vacuum polar-
work of conventional multiloop perturbation thegrgan be  ization diagramsin the threshold regime the proper relation
found the in older literature. Therefore no details concernind?etween the vacuum polarization functibh as defined in
the calculation of the latter three quantities are given hereEd. (2), and the Green function reafts3,14
The reader interested in the calculations of these results is

ial2B

dt, (4

1+t

t

referred to the references. 00(a?), -2\ _ Bam 0,=
We consider the QED vacuum polarization functibin i (0% = =2 rI'TOGE(X'O)
defined through the one-particle-irreducible current-current
correlator B 1 i o 1
= omy Y2B| Tz
@ 2 2 2B

®

where j#(x) =ieW(x) y*W¥(x) denotes the electromagnetic \,here.y is the Euler constant andt represents the digamma
current. W represents the Dirac field of the electron with ¢, 41

chargee. According to the standard subtraction procediire,

vanishes foilg?=0. It has been shown in a number of publi- oy
cations(see e.g[13,14) that in the nonrelativistic limit, i.e. y=lim|—In n+2 __} =0.5772156649.,
taking into account only the dominant effects in the threshold n—oo =11

region, the vacuum polarization functidhis directly related
to the Green functiomg(i,ﬁ) of the nonrelativistic positro-
nium Schrainger equation V(z)= d—ZIn I'(2).

1 .. « It is obvious that expressiofb) contains contributions of
[— = E} G2(X,y) =63 (x—y), (3 O(a) andO(a?). It can be easily checked that the two terms
IX] proportional toa and «B originate from the nonrelativistic
vacuum polarization diagram without any photon exchange
whereM is the electron(pole) mass,E denotes the energy Whereas the terms proportional 4G come from the sum of
relative to the threshold poinE= /g~ 2M, and« is the
fine structure constant. Explicit analytic expressions for the
Green function have been calculated in a number of classical2grom this point of view the use of the Schiinger equatior(3)
papers[15]. The analytic expression fdB2(X,0) is particu-  can be just regarded as a convenient tool to carry out the resumma-
larly simple and reads tion of the NRQED diagrams.
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all nonrelativistic vacuum polarization diagrams with oneduction vertex, on the other hand, are proportional to

and more photon exchanges. The reader might ask why thﬁ*nr_,ovaz/MzGCE’(ﬁ,O) and[via the equation of motio3)]
nonrelativistic vacuum polarization diagrams with two andg|sg lead t0O(e?®) and O(a*) contributions. The electron
more photon exchanges do not result in contributions of orang positron self-energy corrections, finally, lead to contri-
der «® and higher. This can be easily understood from theytions beyond th©(a?) level because they involve addi-
fact that those nonrelativistic vacuum polarization diagramsjonal powers ofa but no additional powers of B/ which
lead to terms proportional ta*(a/)", n being the number  can only be generated by an exchange of a Coulomb photon
of photons. The latter terms can be identified by expandingetween the electron and positron. As a consegieexe
Eq. (5) for small a. Because we consider the kinematic re-pression (5) represents the complete unrenormalized
gime |B[=<a, all those terms effectively contribute at the NRQED vacuum polarization function ©(a?) accuracy in
O(a®) accuracy level; i.e. we count powers fas powers  the threshold regime which we have indicated by using the
of a. We will come back to this point later. Expressit®)  syperscripD(a?). At this point it should be noted that in the
further contains short-distan¢elV) divergences for vanish- renormalized version of the vacuum polarization function
ing r in the O(«) andO(a?) contributions. The divergence [see Eq.(12)] the four relativistic effects mentioned above
in the O(a) term comes from the nonrelativistic vacuum |ead to constant.e. g-independentO(a) andO(a?) short-
polarization diagram without any photon and the divergencegjistance(i.e. high momentumcontributions. These effects,
in the O(a?) term originates from the nonrelativistic vacuum however, cannot be calculated within NRQED itself and will
polarization diagram with the exchange of one photon. Theye included properly by the matching procedure which fol-
diagrams with two and more exchanges of photons are finitdows.
The existence of these divergences comes from the fact that Let us now come to the question of renormalizing
NRQED (and also nonrelativistic quantum mechanias an H?ﬁ?(“z) and the matching procedure. In the common ap-
effective low energy theory is capable of describing |0”9'proach to NRQED[9] the matching procedure for the
distance physics close to the thresh@taracterized by mo- yacyum polarization function would be carried out as
menta below the scale of the electron malsst does not  follows: One considers the vacuum polarization contribu-
know per seany short-distance effects coming from mo- tion to the single photon annihilation scattering process
menta beyond the scale of the electron mass. This lack q;+e—ﬂ),ﬂe+e— in the kinematic regimex<pg<1. This
information is indicated in Eq(5) by short distanc&UV)  regime corresponds to the elastic scattering of free and on-
divergences and has to be cured by matching NRQED tQhe|| electrons and positrons, where the electron and positron
QED. In this light we have to regard expressi@ as un-  yelocity in the c.m. frame is much smaller than the speed of
renormalized, which we have indicated by using the supertignt put still much larger than the coupling. The reader
scripts 0. . ) . should note that the foundation of the matching procedure is
Before carrying out the matching and renormalizationi,g¢ for a<B<1 both NRQED and conventional multiloop
procedure it is very instructive to examine whether thereperturbation theory in QED are applicabland therefore
could be any relativistic effects in NRQE®e. from the low st lead to the same result. To achieve rela@fer?) ac-
momentum regimewhich might also contribute to the un- ¢yracy for the vacuum polarization contribution to the scat-
normalized vacuum polarization functioH3S(*” at the  tering process we have to expand the unrenormalized

O(a) or O(a?) accuracy level. There are several possibleNRQED vacuum polarization functioﬂgﬁ?(az)’ Eq. (5), for

sources of relativistic effects: relativistic corrections from thegm | a, identify the terms proportional ta, a8 anda? and
energy-momentum relatidine. corrections to the nonrelativ- getermine their contribution to the scattering amplitfide.
istic kinetic energy in the NRQED Lagrangiarthe Breit-  Then the corresponding scattering contributions of the same
Fermi 1M? corrections to the Coulomb interactidlike the
Darwin term, spin-orbit interaction or the exchange of trans
verse photons in the instantaneous approximaXjaelativ- .
istic corrections to the electron-positron production and an- 1€ crossed exchange of Coulomb photons also represents an

nihilation vertex and the self-energy corrections to theeffect beyond thé(«?) accuracy level because the instantaneous

electron and positron lines. Using textbook quantum me_character of the exchange of Coulomb photons requires the propa-

chanics time-independent perturbation theory one can shofftion of the small componetirom the Dirac spingrof either the
e . . . . electron or the positron in the NRQED diagram. The process of the
that the kinetic energy and Breit-Fermi corrections contribute d exch t Coulomb bh is theref q
t the O(a’g) and O(a4) accuracy Ieve‘f The relativistic Ccrossed exchange or Coulomb p otons Is therefore suppressed com-
a : f he el ! ) inilati d pared to the ladder-type exchange.
corrections irom the electron-positron annihilation and pro- SFor a<B<1 conventional perturbation theory in QED is valid

becausex represents the smallest parameter, whereas NRQED is
valid becauses is much smaller than the speed of light.
3In the threshold regime the dominant contribution from the ex- 'As already mentioned before, the termsa®(a/g)"(n=1)
change of transverse photons comes from the instantangeus which are contained iﬁl?ﬁ?(az) in the limit «<<8<1 are finite and,
energy independentomponent of the transverse photon propaga-therefore, do not need to be renormalized. The reader should further
tor in momentum spackl6). note that theD(a) contributions of the renormalization coefficient
“We would like to remind the reader that in the threshold regimemultiplying the lowest order effectivee( e™)(e*e™) four fermion
| B|=< a contributions ofO(a®) andO(a*) correspond to multiloop  interaction combined with th@(e) contribution of the unrenormal-
terms proportional ta" 8™ with n+m=3 and 4, respectively, be- ized NRQED vacuum polarization function also leadpe?) con-
cause forl 8|=<a we count powers of8 as powers ofx. tributions in the scattering amplitude.
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order (i.e. leading and next-to-leading terms from the QED |8l—0
one-loop vacuum polarization and leading terms from the It g?) = a
two-loop QED vacuum polarization for smas) have to be

calculated in QED multiloop perturbation theory. The differ-

+0(apB?), ®

8+i
or 2P

ence between the QED and the NRQED expressighirs- [72lo0p 2 lBl=0 11 3 21 113
dependentand infrared safeand uniquely determines the NG9 = «a A2 _353 T35 N
renormalization coefficient multiplying the NRQED L

(eTe7)(e*e™) effective four fermion interaction describing ot 2

the lowest order single photon annihilation process. This 2In( 18)|+0(a’p), ©)

renormalization constant contair®(a) and O(a?) UV-

divergent and finite contributions which represent the shortwhere {3=1.202056903... . Comparing the contributions
distance corrections mentioned above and which render theroportional toa and «” in expressior(6) with Egs.(8) and
NRQED scattering amplitude equal to the QED one. The9) and demanding equality we arrive at the following re-
renormalized and finite expression for the vacuum polarizaPlacements for the divergences and constants in the unrenor-
tion function to O(«?) accuracy in the threshold region is malized vacuum polarization functidﬁ?ﬁ?(“ )

then obtained by finally combining the scattering contribu-

tions from the full unrenormalized vacuum polarization func- 1 8 10
2 —_—
tion T15°(*) with the O(a) and O(a?) contributions from 2Mr 97
the renormalization constant and dividing the result by the 11 1 1 01 3
leading order scattering amplitude. -t i ( i i
However, we want to emphasize that the general match- 2 2 Y 2In(2Mr)e 47r? 8 2°3) " 32 4In 2
ing procedure outlined above is only needed if the renormal- (17

ization of the NRQED Lagrangian, i.e. an explicit determi-

nation of the renormalization constants of the various . s o
NRQED operators, is intended. If we are only interested m5|des(RHS 9 of Egs. (10) and (11) represent the missing

. . . 2

the renormalized expression of the vacuum polarizatior?h;r:.'d'Stance('t'.e' h'dgh t:noment(;JrR]Ot(c_f[).art]rc]iO(;v ) con-
function in the threshold region, this procedure represents afjibu |onsd_rpen :conei-h above "’tn af' IS there oreh "’;hnfctﬁs'
unnecessary cpmplication because for that we can mz_:ltch t é‘Hré,go(; IIEIOsn( 18)r ang (i(i)nZ'rsezr}%eo e%lcjjréﬁtprl)goaacrticuiar €
terms proportional toe, @B and o? (for a<B<1) in gs: P NP '

0.0(c?) _ the RHS of Eq.(10) represents the short-distance effects
[T 7 to the corresponding one- and two-loop QED ,reﬁu!tscoming from the relativistic propagation of the electron-
directly at the level of their analytical expressions. This “di- yositron pair and from the relativistic electron-positron pro-
rect matching” method leads to the same result as the coryction and annihilation vertex, whereas the RHS of Ea)
ventional .ma.tchmg procedure will be described explicitly in renresents short-distance contributions from the relativistic
the following: ~ As already described above, we f|2rst have toyropagation of the electron-positron pair including the self-
identify the terms proportional tay, «f and a® from  energy corrections, from the relativistic electron-positron

It should be noted that the expressions on the right-hand

119°(*) in the limit a< <1, production and annihilation vertex and from relativistic ef-
s 1 ] 11 fects in the photon exchangkke from t_he transverse com-
H?ﬁ?(“z)(qz) B I—,B I R ponent of the photon propagatot this point we would _
2Mr 2 2 2 like to mention that compared to the conventional matching
3 procedure in NRQED the “direct matching” described here
_ EIn(—ZiMrﬁ) +0 “_) 6) has the advantage that the regularization of the UV diver-
2 B gences in the NRQED calculation can be performed in a

o quite sloppy way[see Eqs(4), (5) and (6) where the regu-
Then the one- and two-loop contributions to the vacuum poiyrization has been carried out by evaluating the Green func-
larization function in multiloop QED have to be determined jon at a finite distance from the origin That this does still
in the same limit. The one- and two-loop contributiondko  |ead to the correct renormalized result can be easily seen
defined as from the fact that the exact form of the constant terms on the
2 1 l0oD 2 2 loony 2 3 LHS of the replacementél0) and (11) is completely irrel-
(g% =I1"""q") +11*Ng*) + O (1) evant for the final expression of the renormalized vacuum
polarization function. However, because the “direct match-
have been known for quite a long time for all energy anding” does not lead to a systematic determination of the
mass assignmenfd7-19. In the limit 8<1 the one- and NRQED renormalization constants, it can only be applied if
two-loop expressions reéd a multiloop result in full QED of the quantity of interest is
available. We would like to emphasize that the “direct
matching” only relies on the existence of NRQED as a con-

®The reader should note that the two-loop QED vacuum polariza-SIStent effective field theory and that “direct matching” can

tion, Eq.(9), diverges logarithmically for vanishing. This shows also be applied to guantltles which (t\g(\ig)a more ?ompllcated
that beyondO(a) accuracy level conventional multiloop perturba- Structure of UV divergences thal;."“ . Applying the

tion theory is inadequate fdiB|<a indicating the need for the replacementg10) and(11) to the unrenormalized NRQED

. . 2 o . 2 ) .
resummation contained H(*”) | Eq. (6). vacuum polarization functmrﬂ?ﬁ?(“) we finally arrive at

o
m
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the following result for the renormalized vacuum polariza- |Bl<ag? 28
ion function toO(a?) accuracy in the threshold regidpg| Ala,B) = - |n(i7) —y|+0(ap), (15)
=a:
0(a?), .2 8 i ) 21 11 which cancels the I singularity from the two-loop expres-
i (@) =a|g-+5B|ta 7= (3= 5 {3+ 35 sion (9). At this point it is illustrative to examine the limits
a<<B and <« for the functionH, defined in Eq(14), for
3 1 ) real and positive values ¢:
—zIn2-3In(=ip)|+A(a.p), (12
a<f a
) H(a,B) = In(—i,6’)+O(IE), (16
Ala,B)=— o |y | 1-i o (13
1 2 ')’ ZB L
. . . o 2 B<a a ﬁ
which represents the main result of this woFk3{*") is an H(a,B) = In > +y—im+0 e (17)

analytical function and contains all short- and long-distance

effects up to theD(a?) accuracy level. Although all neces- . . . .
. P ) (a ), 0(a?) y 9 It is evident that the functioi interpolates between a B
sary mgredl(()a(ntz? to derivl " have been calculated along penhayvior in the region where conventional perturbation

a

time ago Il ’ has never been presented in this completeheory is valid and a constant with a logarithm effor

form in the literature before. Using the optical theorem it cang;, .0, This leads to a finite value fd’[%(raz) at the thresh-

. 2
be easily checked thal g correctly reproduces the well- oiq point. As we will see in the next sectioflS(™ has

known expression for the heavy lepton pair production crosgjngylarities at the positronium energy levels, indicating that
section ine”e" annihilation in the nonrelativistic limit; see  the breakdown of conventional perturbation theory is directly

Eq. (36). 5 related to the formation of bound states of the virteae™

It is an interesting fact that the result fbEQ(*” can be  pair [13].
obtained directly from the one- and two-loop results, Egp. Based on resulfl2) and the relatior{5) we are now able
and(9), by the replacement to define a renormalized expression for the zero-distance

Green functionG2(0,0):

. N . L
In(—iB)—H(a,B)=vy+In( |,8)+\If(l IZ,B) i M2 ot
, GE(0,0=5— TG (c?). (18)

=In(-ig)- —>A@pB). (14

As we will show in Secs. lll and IV, this renormalized zero-

The functionA resums the nonrelativistic vacuum polariza- distance Green function can be used for the calculation of
tion diagrams with exchange of two and more photons pehigher-order corrections in time-independent perturbation
tween the electron-positron pair and therefore represents trfgeory.
sum of the leading contributions fg8—0 of all vacuum For completeness we azlso present the QED vacuum po-
polarization diagrams with three and more loops in convenlarization function withO(«“) accuracy for all energies,
tional QED perturbation theory. As we will see in Sec. I, )
the functionA contains terms of ordex® and higher fora I9LL ) (g?) =TI g?) + I121°°% ¢) + A(a, B). (19)
<|B|, where conventional perturbation theory is valid. How-
ever, if |B|<a, thenA is of ordera®. For 0<gB<a the  For the convenience of the reader we give the expressions for

function A develops a logarithmic singularity I11'°%P and 12 '°°P valid for all energieg§17-19,
|
14 loorg2) = | = 8_3B2+B(3_32)|n(— ) (20)
q - T 9 6 p ’
2 2 2 2 3
2too 2| @|°[18-136% B(5-36%) (1-p)(83-39—-17p°+7°)
I177°°Nq%) (W) ( 2t g —n(=p) 56 In(—p)

B(—3+B?) . .
R a— [2In(1—p)In(—p)+In(—p)In(1+p)+Li(—p)+2Liy(p)]

2 2
+ W[Z IN(1—p)In(—p)2+In(—p)2In(1+p)+4 In(—p)Lir(—p)

+8In(—p)Lip(p)—6 Lig(—p)—12 Liz(p) —3¢3] ¢, (21)
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subject[13] we are not so much interested in general prop-
erties of perturbation theory in the presence of bound state
formation, but in the explicit form and behavior BO(*").
In particular, we focus on the size of ti@(a?) contribu-
tions. We also would like to mention that the vacuum polar-
ization function has been studied in a similar way10]. In
the latter publication, however, a different definition for the
vacuum polarization is employed; only the positronium
g g ground state energy is considered and the contribution pro-
"""""""""""""""""""""""""""""""" portional toaB is missing. We will come back to this point
later. Comparing the methods used 19] with the effective
field theoretical approach employed in this work makes the
elegance of the latter technique obvious.

FIG. 1. The O(a?) corrections to the vacuum polarization We start in the kinematic region above threshold where
function in the threshold region with and without the contributions w<< 8<1. Here, as mentioned in the previous section, the
contained in the functiom, Eqg. (13), in the kinematic region one- and two-loop results, Eq&)—(9), are reliable. This is

0<B<2a above the threshold. The solid line denotes consistent with the fact that the functioh contains only
m’/a® RYIZPPHA], the dashed linew?/a® Rell?™, the  contributions of order® and higher,

dashed-dotted linew?/a? Im[I12'°°P+ A] and the dotted line
2l a? Im T12'°°P. The value of the fine structure constant is taken

by
<
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as a=1/137. I1?'°°° represents the two-loop contribution to the Ala B)“jﬁ a_z 2 ¢ (ii)n '
vacuum polarization function and is displayed in EJ®) ' 2 =°" 28
and(21). o, 5
—d T o[ 29
where 24 8 8p° B3
p= 1__B Thus, for practical applications in this kinematic region the
1+p contributions of the functiorA can be neglectedSee also

the discussion in Sec. YOne might think that fow~ 8 the
and L, Liz denote the di- and trilogarithni20]. Expression  one- and two-loop expressions should still represent an ap-
(19) can be easily derived frorﬂﬁf,‘” ), Eq.(12), by replac-  propriate O(a?) prediction, because the radius of conver-
ing its one- and two-loop QED contributions in the limit gence of the series on the RHS of Eg3) is | 8| = /2 [21].
B—0 [first line of Eqg.(12)] by the corresponding one- and However, as illustrated in Fig. 1, far~ 8 the contributions
two-loop expression for all energies, Eq20) and (21). coming from the functiorA are already of ordew?/ 72 and
Away from threshold, where conventional multiloop pertur- thus should be included (a?) accuracy is intended. For

bation theory can be appliedllg.(;%z) has O(a?) accuracy €ven smaller velocities, of course, the contributions frdam

because is contains the compiete one- and two-loop QEBre essential because they %?orc],cel the divergept term
vacuum polarization contributions and because the functioffom the two-loop expressioll“°*; see Egs(9) and (15).

A is of higher order; in the threshold region, on the otherTherefore the value dflt?](r"z) at the threshold point is finite

hand,Hg(Eﬁgz) reduces td19(*” plus one- and two-loop con- and readd(a=1/137)
tributions < 8" 1 and « o?B" (n=1), respectively, which
represent terms beyon@(a?) accuracy for|8|<a. The H3]<raz>(q2_>4|v|2+)

2 . .
reader should note thaf () vanishes ay?=0 and is an

analytic function ing? except at poles and branch cuts, and  _[ & §+a2 — lm a— ly
satisfies the dispersion relation w9 2 2
2 2 1 21 1 T
o? q° [~ dg 1 a®) (1 +—|3——=l3|+=——In2+i-
TI3Es (9% = — ﬁw a7 =i M S (q'2). 12237 78 Ty gin2ti;
(22 o 1 T
, =0.89| —|+| ~036-5Ina+iz a?
The explicit form of ImIIQLE in the threshold region will
be presented in Sec. Ill. For the use and interpretation of a T,
formula (19) see also Sec. V. =0.89| —|+| 2.10+i 5 a”. (24)

Il1l. EXAMINATION OF THE VACUUM POLARIZATION
FUNCTION IN THE THRESHOLD REGION
In 'thisl section'we analyze the properties of the vacuum 9The plus sign in the argument B[fﬂ(r‘yz), Eq.(24), indicates that
polarization function fot 3|<1 above and below the thresh- the expression on the RHS of E@4) represents only a right-sided
old pointg?=4M?2. Compared to an older work on the same limit on the realg? axis.
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It is evident from Eq.(24) and Fig. 1 that the size of the TABLE I. The numerical value for the constangs for the
O(a?) corrections in the threshold region is of ordef  radial quantum numbers=1, 2, 3, 4, 5 and fom—= with «
rather tharw?/ w2, whereas th@©(«) contribution is of order ~=1/137.

al. This can be understood from the fact that héx)

T 2 . 1 2 3 4 5
contribution inII{*”) comes entirely from the one-loop re- n ”
sult IT11'°°P Eq. (8), and therefore originates from momenta a,, 2.89 2.48 2.35 2.29 2.25 2.10

beyond the scale of the electron mass. High momenta con=
tributions are expected to be of ordef if no “large loga- ,
rithms” occur® The largeO(a?) contributions tolIQ(*?,  for IIR{™), Eq.(12), must be employed. Itis straightforward
on the other hand, arise from the interplay of the logarithmo check thatH%(raz) indeed has poles at the positronium
of the velocity inIT1?'°°", Eq.(9), and the contributions from energy levelg13], leading to the following Laurent expan-
the instantaneous Coulomb exchange of two and more lorsion at the bound state energids,=— Ma?/4n®> (n
gitudinal photons between the virtual electron-positron pair=1 2,3, ..),

For small velocities the latter effects generate a logarithm of

the velocity with an opposite sign, which cancels the loga- 0(a?), .2 Ma? 1 a)8
rithm in T12'°°P. We therefore conclude that the larG¢a?) im in (0= 23 E g Tl 7] g Telanl
. . . .. .. . E—E, n
contributions are of long-distance origin. This is particularly n
obvious for the Ine term which could never be generated at +O(E,—E), (26)

short distance$t At this point it is mandatory to mention

that the phenomenon that the perturbative series for threshkvhere

old and bound state quantities is often an expansiom in

rather tharm/7 can be observed throughout the literature and 1

the textbooks on this subject. A well-known example is the &n=— 5'” aty
perturbative series describing the energy levels of the Hydro-

gen atom. Nevertheless, we find it important to emphasize 11 1
this phenomenon here in order to illustrate the different be- + 32 Z'” 2. (27)
havior of perturbation theory for bound state and threshold

quantities compared to high energy processes and to prepatgy completeness we also present the corresponding Laurent
for the large numerical size of th@(a2) corrections calcu-  expansion for the renormalized zero-distance Green function
lated in Sec. IV. based on definitiori18),

The situation fora<|8|<1 below threshold is similar to

n—-1

1 I 2 1 1 (3 21
ptinn=2 71t gz |3 26

i=1

the one above threshold. Here, the one- and two-loop contri- _ 5 [¥,(0)]2 4M2 M2a
butions from conventional perturbation theory, EGB—(9), lim Ge(0.0=c—F—_+tg 21 5, [l
. . oL . . E-E n
provide a viable prediction, because the contributions from n
the functionA are of ordera® and higher. They are beyond +O(E,—E). (28)

the intended accuracy and can be neglect8ge also the
discussion in Sec. ¥.On the other hand, it is obvious that As expected, the residues at the bound state energies are
the one- and two-loop results are not sufficient for energiegqual to the moduli squared of the normalizedd Coulomb

close to the positronium bound state energies, Schralinger wave functions at the origin,
L« a? 3,3
Arign B~ gz (171230, (29 Vo(0)P=g 5. 29

because the vacuum polarization function is expected to h"?“ﬁ% Eqgs.(26)—(28) we have also displayed the constant terms

poles at those energy values. Therefore the full expression :
of the Laurent expansion. These constants are relevant for
higher-order corrections to the positronium energy levels and
to the wave functions at the origin. The size of B¢a?)

10For comparison the reader might consider the well-known onecorrections in these constant termd s@milar to theO(az)

and two-loop contributions to the anomalous magnetic moment ogontributions above threshdldof order «? rather than

the electron [18,22, ge—2=(a/m)—0.66(a/m)?+0((a/m)®). 4272, indicating again the long-distance character of the

Here, long-distance effects from thef e~ threshold do not play O(az) corrections. In Table | we have displayed the numeri-

any role. Thereforeg.—2 can be regarded as a typical short- cal values ofa, for the radial quantum numbers

dilsltance quantity with no “large logarithms.” . ) =1,2,3,4,5. It is an interesting fact that the» o limit of a,
As explained during the matching procedure carried out in Secexists

Il, the O(a?) contributions off1%**) actually contain short- and
long-distance effects. Although a separation between both types of

effects is in general scheme dependent, it is fair to say that the lim a?[a,]=a?
long-distance contributions are dominating in size compared to the n—=
short-distance ones for a reasonable separation scheme. It is there-

fore justified to regard th@(«?) contributions as long-distance +==_ZIn2
dominated as far as their numerical size is concerned. 32 4

1I 1 1 3 21
B A RO AR

: (30
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and coincides with th©(a?) contributions of Rd]t‘ﬁ(,"‘z)(qz electron-positron pair is smaller than the inverse electron
—4M?2+), Eq. (24). The numerical value for lig... a,is  mass. Therefore, we have to repla@§(0,0) in relation(33)
also presented in Table I. by its renormalized versioGE(0,0), Eq.(18) [using Eq.

To illustrate the importance of the constaatsin time-  (12)], which describes Short-distance physics properly. The
mdependent perturbation theo(yIPT), we recalculate the final expression for‘sEannn then reads
O(a®) vacuum polarization effects in the single photon an-
nihilation contributions to the ground state triplet-singlet hy-
perfine splitting(HFS) of the positronium, which were, to 5E§nnn |‘1’n(0)|2[
our knowledge, considered for the first time [t0,11.

a1

2 M2
an

e

These vacuum polarization contributions to the HFS in the 273 4 M?\?
energy levels of the positronium system arise from the effect + ™MZI\ T 92
that the bound triplet3s,;, JP¢=1"") e*e™ pair can anni-
hilate into a virtual photon for a time period of ordeML/ Ma® |1 1/1 "l
whereas the singlet'§,, JP=0"") cannot. If the virtual =7 |ahe- 5|, Finn- 21 T
photon energy is approximated hig?=2M, this annihila-
tion process leads to &function kernel in the configuration- 1 /13 21 11
space representatigieorresponding to a constant kernel in F(8_1+ 753) 32 Z'” ZJ (34
momentum spagewith the form
. 2am ) For the ground staten=1) the O(a®) vacuum polarization
Hann(X) = Wﬁ(g)(x), (31)  contribution to the HFS then reads
Ma® (1 1 (13 21 27 1

which represents a relativistic correction to the nonrelativis- 6E - [ In a+ —s yp (81 5 §3) - 4In 2]

tic Hamiltonian in Eq.(3). Hann(x) can now be used in
TIPT. Taking into account thafI%(**) containsO() as
well as O(a?) contributions we have to apply second- andQur result differs from the one presented 9,112 by the

third-order TIPT to obtain all relevar®(a®) contributions  amountM «®/16. The discrepancy comes from the fact that
to the HFS. The formal result for tf@(a®) energy shift for  in[10,11 the contribution proportional ta in the one-loop

(39

the triplet states with radial quantum numbersnd withl  vacuum polarization has not been taken into accétint.
=0 due toH,,, reads Before we turn to applications of our results in the context
of QCD, we do not want to leave unmentioned that the lead-
1] ing contributions to the normalized cross section for produc-
5E§nnn i( [Hanng —g HandM) tion of a heavy-lepton—antilepton pdiwith lepton masv)
1%n no =l in ete™ collisions (via a virtual thotom in the threshold
O(a*)

region can be recovered frohh

m k)(k thr
+ Ef $< |HannE ><E| annE| >_<E|k theorem[14,23_|,
n

by means of the optical

#n k#
m#n n L+ - U(efeJr_},y*_)L+L*)
thr  — o
pt
X Hann|N) : (32 3 6
O(ab o2 T
- == Im I3 (6%)= 17 Im GE(0,0
where |i), i=1,m,n,k, represent normalizebound state
and free scatteringeigenfunctions to the positronium Schro 72 =
dinger equation with the eigenvaluEs. The symbok} o 45 =Mz Z |Wn(0)|[*8(E~Ey)
indicates that onlyO(a®) contributions are taken into ac- n=1
count. It is evident from the form df-lann(x) that only the 3 am
6 +O(E) 5 —————, (36)
zero-distance Green function is relevant &, ,, 2 1 p( am
i“" | L g)- [W,(0)2 p
EI - En
I#n I#n
9 12In [11] the authors corrected an error in the result presented in
= Iim O(O 0— |\Pn(0)| (33) [10]. In our comparison we refer to the corrected result fidr].
EE, E E,—E—i B3This can be easily seen by comparing E2g) of [10] with Eq.

(8) in this work for
2

M a2 L«
1:»,8”:1=|§+O(a3).

However, relation(33) still contains divergencepsee Eq. 5
(5)]. As we have pointed out in Sec. Il, these divergences -1~
indicate that nonrelativistic quantum mechanics is not caThis shows that at bound state energies the one-loop contribution to

pable of describing physics if the relative distance of thethe vacuum polarization function also contains terms of oeder

2M—
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where o,; represents the point cross section and only final- . Cragm .
. . . — (3)
state interactions are taken into account. Hpar(X)= vz ¢ (x). (37
Q

IV. DARWIN CORRECTIONS IN QCD

In the previous section we have shown that the size of thé practical application for the corrections to the bound state
O(a?) corrections to the QED vacuum polarization function Wave functions at the origin is the leptonic decay rate of the
in the threshold region is of orde#? rather thana?/=2.  J/# and theY(1S) and (maybe of the first few excited
Although this fact is important for precision tests of QED, Sstates of theY' family, whereas the corrections to the cross
it does not lead to theoretical concerns about the conversection would be relevant fart production at the NLC. We
gence of the perturbative series because of the smallness @xkplicitly mention those applications in this context because
the fine structure constantand because QED is not asymp- it is believed that for them nonperturbatigia the sense “not
totically free. calculable analytically from first principles in QCD'effects

In the framework of QCD, however, the situation is com- are either well under control or even negligih5,14]. But,
pletely different: The coupling is much larger and even be-of course, these corrections can be applied to other heavy-
comes of order one for scales much lower than 1 GeVqguark—antiquark systems as well, at least in order to check
Therefore, the fact that the size of th{«?) (next-to-next-  their size. At this point we want to emphasize that we do not
to-leading ordercorrections in the threshold region might be intend to present a thorough phenomenological analysis in

of order a2 rather thana?/=?2 is an extremely important this work. The primary aim is to use tf@(CZa3) Darwin

S

theoretical issue because this would lead to corrections oforrections to illustrate the typical size of the completed
order 1%-25% rather than 0.1%-2.5% fag=0.1-0.5. yet unknown O(a?) corrections for thett, bb andcc
Here, two natural questions arise: What scale should bgystems. Their actual numerical value and even their sign
used in the strong coupling, and for which heavy-quark—cannot, of course, be predicted at the present stage.
antiquark systems do th®(a?) corrections represent contri-  To keep our analysis transparent we ignore{llv;) cor-
butions to the asymptotic perturbation series in the converrections, the effects from the running of the strong coupling
gent regime? These questions will be addressed in thand also nonperturbative contributions like the gluon con-
following section. densate. The latter effects are well known and have been

To be more specific we will calculate tf@(C2a?) Dar-  treated in a large number of earlier publications. We further
win corrections to thgS-wave,|=0) wave functions of a neglect the width of the quarks and treat them as stable par-
bound heavy-quark—antiquark pair at the origin and to thdicles for the most part in the following analysis. From the
heavy-quark—antiquark pair production cross section irtechnical point of view the calculations of tma(Cﬁaﬁ) Dar-
e’ e annihilation(via a virtual photohin the threshold re- win corrections are identical to the corresponding QED cal-
gion. A presentation of aID(CEai) corrections including culations, which means that we use time-independent pertur-
all kinematic and relativistic effects will given in a subse- bation theory. However, we have to take care about the
quent publication. The corresponding uncorrected quantitiesorrect implementation of the number of colokg,= 3, and
are the well-known exact solutions to a pure Coulomb-likethe group theoretical factdZr . In the following the super-
nonrelativistic quark-antiquark system described by a Schroscript “QCD” indicates that the corresponding quantity is
dinger equation with the QCD potentiaMqocp(r) — obtained from the QED expression by the replacement
=—Ck a/r, whereCg=(N2—1)/2N =4/3. a—Crag. It is then straightforward to determine the

The Darwin interaction is generated in the nonrelativisticO(CZa?2) Darwin corrections to the modulus squared of the
expansion of the Dirac equation. In the configuration-spacé=0 bound state wave functions at the origim (

representation it is proportional to&function and reads =1,2,3,..),
Cragm [WR0)/?
S| R0)|Bar =~ 2 ¥RO)| [ vz~ m |GEUN0.0~ zoco— g, =—[WRP(0)[*CEagai™,
Q ggQcP n 5 2
n O(CZad)

(38)

1As far as tests of QED in the™ 7~ system in the threshold region are concerned the present experiments do not even redeh the O
(next-to-leading orderaccuracy level. This can be easily seen from the fact that the complete threshold region f&r-theystem,| 8|
<ae|Vg?-2m,|=m,a?=0.1 MeV, still lies within the limits on the tau mass itseffi, = 1777.00 539 MeV [24]. Thus only experiments
on electron and muon systems can be regarded as precision tests of QED in the threshold regime.

15Compared to the Darwin interaction known from the hydrogen atom the expression on the RH$3¥) fxja factor of 2 larger because
both quark-antiquark-gluon vertices involved in the gluon exchange contribute.
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where the symbol{}o(cz 2 indicates that onlyO(CZa?2) Cia
Rthr 1+ ——

corrections are taken into accodftThe calculation of the
O(Cﬁag) Darwin corrections to the quark-antiquark cross
section in the threshold region is more involved. Here, we )3 Crasm CFas Cras
apply the optical theorem, E36), to the corrections of the HNCGQE'B ex 2B 4 i 2B
zero-distance Green function themselves:

Fa .
7 +1—i . (42

8GEBar (0.0 = Mz “[GEOM00 2. (39
It can be easily checked that the functiéi(CZa2/4+1

The O(CZ«?2) Darwin corrections to the cross section above | Cras/2p) develops poles at the enerdis

threshold then read

EQP=EQ°P+ EQRD, (n=1,2,3,..), (43)
= 6
5R8}?Dar:NceéW Im GE'?°%(0,0 where the SEQZ>, represent the energy shift of tHe=0
Q Coulomb energy levels with the radial quantum number
2Cra generated by the Darwin interaction,
F&sT R,QCD
X —Mz— Re GE' (0,0)
Q 0(C2a2 Coa pB)
s e SEQER,= (NPl Hp | n9D)

o(c2a?),QcD, 5
thr{ Rell (99)}o(c2a2 ,Crap)
thr % '“F%s |\ITQCD(O)|2

,:as MQCéag
- 3
(40) 8n

(44)

whereR$Q represents the “Sommerfeld factofsometimes At this point we also want to emphz_isize that theCdy) and
also called the “Fermi factor}, digamma contributions occurring in Eq$8) and (40) are

not related to the running of the strong coupling. These terms
arise because two scales are relevant in the threshold region,
RQ6: N_.e2 6_77 Im GRQCP(0,0) the heavy quark masd 5 and the relative momentum of the
thr = 7e7Q Mg F ’ quark-antiquark paix CeasM g [27]. So far no renormaliza-
tion group argument has been found to determine these loga-
Nced rithmic terms to all orders inx in the sense of a leading
2 1- ex;{ CFasTr) logarithmic resummation. It should also be noted that there
B also exist InCgag) contributions induced by the running of
the strong coupling. The determination of these contributions
=N e2 E,B ex;{ Cragm ( Cra s) F( i CF“S) to theO(ai) corrections to the wave functions and the cross
€=Q2 28 section in the threshold region is beyond the scope of this
(41) work and will be addressed in a future publication. The
In(Cray) contributions to theD(as) corrections induced by
andeq denotes the electric charge of the heavy quark. Belowhe running of the strong coupling have been discussed in
threshold we have to determine the corrections to the resi28,25.
dues OfGRQCD(O 0) at the bound state energ|es where as Before we turn to the discussion on the size of the
shown above the corresponding bound state poles have to & CEa2) Darwin corrections we have to address the ques-
subtracted. This calculation is straightforward and leads tdion of which scale one should use in the strong coupling.
the corrections to the=0 bound state wave functions at the Strictly speaking, a final answer to this problem would re-
origin presented in Eq:38). It is an interesting fact that Eq. quire anO(«3) analysis, which is beyond the scope of this
(40) allows for the calculation of the shifts of tf@Q bound ~ Work. However, one can find simple arguments that the scale
state energies due to the Darwin interaction. To show this wé the strong couplings of expressio(&8) and (40) should
rewrite the sum of the Sommerfeld factor, E41), and the D€ Of the orderCraMq, which will be called “the soft
contribution involving the digamma function of the Scale” in the remainder of this work. We would like to re-
O(Cpas) Darwin corrections above threshdlsee Eqs(13), mind the reader that the scale of the strong coupling in the
(12) and(40)] as unperturbedpure Coulombquantities] ¥ 2°°(0)|2 and R}
is of the order of the soft scale. This is obvious for the wave
functions of the ground state and the first few excited states

2 E Cragm

Equation(38) also generate®(Crag) corrections which differ
from the well-knownO(Cras) corrections generated by th@
—4Crag/m) correction factor{26]. Adding up all theO(Cray) 1t should be noted that the (44Cra/7) correction factor of
corrections and the corresponding renormalization constants will ofhe cross section is irrelevant for shifts of the bound state energies
course yield the correct result. The same remark holds for the resuliecause the former represents a global multiplicative short-distance
for the cross section above threshold, E). factor.
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TABLE Il. The relativeO(C2«Z) Darwin corrections to the moduli squared of ire0 bound state wave
functionsAy , are given for thet, bb andcc systems, respectively. Displayed are the smallest and largest
values for the range aof values given below Eq45) for the radial quantum numbers=1, 2, 3, 4 and for

n—oo,
n 1 2 3 4 ©

AEI}_n —0.05/-0.04 —0.04/-0.03 —0.03/~0.02 —0.03/~0.02 —0.02/-0.02
Agfﬂ —0.20/~0.11 —0.09/~0.06 —0.06/-0.05 —0.05+0.04 —0.02+-0.01
ASS, —0.34/-0.17 —0.10~0.09 —0.06/~-0.01 —0.05+0.03 —0.01~0.15

and for the cross section in the kinematic regj@s Cras  strong coupling on the RHS of relatio@5). Further, the
because they describe bound quark-antiquark pairs with relanass values in Eq45) have been taken to be the pole val-
tive momentum of ordeCrasMq. But it is also true for ues. For the quarkpole) masses we have chosevi,
highly excited statesn>1) and the cross section right at the =175 GeV, M,=5GeV and M.=1.7 GeV. The reader
threshold due to “saturation” effecf{8,25; i.e. the scale of  should note that the prescription given above to calculate the
the strong coupling is of ordeéfrasMq although the kine-  sjze of the strong coupling is far from being unique. Depend-
matic relative momentum of the quark pair vaniste30  ing on the choice of the definition of the strong coupling, the
understand that the scale of t¢CZa?) Darwin corrections  quark mass values or the number of loops in the QCD beta
should also be of order of the soft scale, let us have a closq(inction, larger or smaller values far, might result. This
look at the origin of the strong couplings governing thesegependence on the prescription is particularly strong for the
corrections:  One power aks comes from the Darwin in-  charm systen® As a consequence the theoretical uncertain-
teractionHp,,, and the other power 02&5 (including the  ieq quoted in this work should be more understood as good
IN(Cray terms originates from theO(as) contribution of 4 eqses rather than strict theoretical limits. However, we

2 2
the vacuum polarization functioﬁ[ta(rcF“S)'QCD. As men- think that the ranges of the strong coupling given above are

tioned in the previous section, the latter contribution isgood enough in order to illustrate the impact of ®ECE o
mainly of long-distance origin and therefore governed by theDarwin corrections in particular fott production in the
soft scale. In contrast to the pure Coulomb interactiop?l/ threshold region. We also want to emphasize that our con-
the Darwin interaction is a constant in momentum space andlusions for the perturbativity of the different heavy quark
consequently sensitive to both low and high momenta. Busystems do not depend on different prescriptions for the
based on our previous observations of the domination oftrong coupling.

long-distance effects, we can assume that the scale of the In Table Il the smallest and largest values for the relative
strong coupling in the Darwin interaction should also be theo(Cgag) Darwin corrections to the moduli squared
soft scale rather than the heavy quark mass. The size of th§ the 1=0 bound state wave functionsAy, ,,
strong coupling governing th®(CZa?) Darwin corrections = | w02 /|w9°P(0)2 for the different heavy

of Egs.(38) and(40) can therefore be estimated via the self- quark systems are displayed for the ground states 1)

consistency equation and the first three radial excited states=2,3,4), employ-
ing the ranges for the strong coupling as given below
as= as(CrasMq), (45 Eq.(45). For illustration the corresponding value far-( )

. is also presented. The absolute values of the corrections to
which leads tox,=0.13-0.16, 0.25-0.38 and 0.34—.0.59 for ihe ground states amount to 4%—5% for the 11%—20%
the top, bottom and charm quark systems, respectively. Th
latter ranges are obtained by using the modified minima

subtraction scheme (MSiefinition for the strong coupling, tions is rapidly decreasing for higher excited states. In par-
the one-loop QCD beta function and(M,=91.187 GeV) ticular, the sensitivity of the corrections to the different val-

=0.125 and by taking twice and half the argument of theues ofas seems to be surprisingly small for the excited states

in thebb andc c systems. We will come back to this point
later.
18 N i ;
In [28,25 a proof for saturation is only given for the cross In Fig. 2a and 3a,b the relati\@(C,Z:ag) Darwin correc-

section above the threshold point. An analogous proof for a highly. . : ti
. . . : - ion
excited state or the cross section slightly below the threshold pow%llons to the(stablg quark-antiquark production cross sectio

does, to our knowledge, not exist in the literature. Such a proof is
however, much more more difficult due to the breakdown of time-
independent perturbation theory for the logarithmic ker&eé(r) 1%As an example, using the two-loop QCD beta function results in
~In(r)/r for high radial excitationgsee e.g[25]). Nevertheless, we  «,=0.13-0.17, 0.27-0.44 and 0.38-0.76 for the top, bottom and
find it plausible that saturation also takes place slightly below thecharm systems, respectively. At this point it is clearly obvious that
threshold point because the cross section at the threshold ggoint the situation for the charm system is rather hopeless as far as the
:4Mé should be well defined. question of perturbativity is concerned.

or bb and 17%-34% for the ¢ system. It is an interesting
fact that for thebb andcc systems the size of the correc-
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FIG. 2. The relativeO(Cgag) Darwin corrections to the t FIG. 3. The relativeD(C2a?2) Darwin corrections to the b (a)

production cross section in the threshold region for the cases
=0.13 (solid lineg and 0.16(dashed linesfor stable(a) and un-
stable(b) top quarks. The circles itb) indicate the location of the
1S Coulomb energy level.

andcc (b) production cross section in the kinematic region 8
<Crag above threshold. The solid line correspondsatg=0.25
(0.34) and the dashed line t8,=0.38 (0.59) for the case dfb
(cc) production.

ARgo= 5R81§Dar/R81§ are displayed above the threshold

point for the three heavy quark systems in the rangg80 we find that this approach is justified here in order to dem-

<Cras. [Fortt production this corresponds to the energyOnstrate that the typical size of tk@CZa?3) Darwin correc-

range 0<E<5 (8) GeV for a;=0.13 (0.16.] The solid tions is not altered if the top quark width is taken into ac-
(dashedl lines correspond to the loweuppe) ag value  count. In this case the relati\fe(Cﬁaﬁ) Darwin corrections
given below Eq.(45). For thett system the size of the amountto—6% to—2% around the $ peak and to-2% to
relative corrections is quite stable betweerl.9% and —1% for higher energies. For a more rigorous treatment of
—1.0% with the tendency to decrease in magnitude for largethe corrections due to the off shellness of the top quark we
velocities. It is striking that the dependence of the correctefer the reader t929] and references therein.

tions on the changes in theg value is weaker for larger Although the O(CEaZ) Darwin corrections discussed
velocities(0.3% for =0 and 0.05% foiB=Cra,). For the above represent only a small part of the fOI(ag) correc-
bb—system the corrections vary betwee®2% (lower valug tions, we believe that their size can be taken as an order of
and +5% (upper valug where the larger values occur magnitude estimate for the sum of @l{ «?) corrections. We

for larger velocities. In contrast to the top system the detherefore have to face the questions of whether or how far a
pendence of the corrections on the changes inathealue  perturbative expansion in the strong coupling in the thresh-
(3% for B=0 and 5% for3=Cras) increases for larger old regime makes sense. Because we take the position that
velocities. This indicates that the perturbative approact®ne should not automatically reject the possibility of a per-
employed in this work works better for thet than for turbative treatment of long-distance effects, we think that the
O(CZa?) Darwin corrections determined in this work pro-
vide us with important hints toward an acceptable answer to

on the size of the coupling the corrections vary frem% Lh'f. fun?hamentfatll qllfjeﬁ_t'r?n frqm the de'Ett ciLVf[eW Otf pgrttl.”'
to +15% for B=0 up to +3% to +26% for f=Crag, o o O TISEH. TNhere 1s no coubt that_periurbation
drawing a rather uncomfortable picture for the perturbaLh€ory in the strong coupling is still viable for thé system.
tivity in the charm system. For the case tf production ![thgtatshgelzp shtown 'mi] by using qu(;(tahgeneral arguments
we have also plotted the corrections for a finite width i .ge Op quark mass an YV' i SErve as a screening
—1.5 GeV (see Fig. 2bin the energy range-10 Ge\wE  device which protects thet properties in the threshold re-
<+10 GeV in order to demonstrate the impact of the largedion from the influence of nonperturbative effects, making
top quark width on thedD(C2«?2) Darwin corrections. This the tt system the “hydrogen atom of the strong interac-
has been achieved by the naive replacententE+il’; in  tion.” Thus a perturbative treatment of thé¢ system should
Egs.(40) and(41). We want to mention that the inclusion of exhibit an excellent convergence. This is consistent with the
a finite width by this naive procedure does not represent abservations from the previous discussions showing that the
consistent treatment at tf@(aﬁ) accuracy level. However, O(Céag) Darwin corrections for the top system are at the

the bb_system. For the:c_system, on the other hand, the
dependence on the changesdpis tremendous. Depending
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level of a few percent for the most of the threshold redibn. tainties of order=5% coming from the ignorance of the
This, on the other hand, allows us to conclude that the theaactual scale of the strong coupling and other corrections be-

retical uncertainty of all present analyses for the tatal yond the O(e?) level. This does not represent an over-
cross section in the threshold region is at the few percentvhelming convergence, but it is acceptable compared to the
level, because no fulD(e?) treatment has ever been accom- precision of experimental measuremefi@S] and it indicates
plished there. Further, the theoretical uncertainty of such &hat an actual determination of ali(«2) corrections would
complete analysis would then be roughly 1%—2% around théead to a considerable improvement of the precision of the
1S peak and below several per mille for higher energiestheoretical description. It is remarkable that tO¢CZa?
This can be estimated by taking the values presented be- Darwin corrections seem to indicate that the size of the
low Eq. (45) cubed[assuming that no scales lower than O(ag) corrections including their sensitivity to changes in
CrasMq are relevant for the corrections beyond th(aaﬁ) the value of the strong coupling is much smaller for higher
accuracy levdl and by observing the sensitivity of the excited state¢see Table I\. Here, however, nonperturbative
O(CZa?) Darwin corrections to changes in the values of thecontributions get more and more out of confr8,34 and a
strong couplingsee Fig. 2h To achieve an accuracy much completeO(a3) analysis is therefore necessary to give a
below the percent level at theSlpeak a more rigorous treat- trustworthy interpretation_of this phenomenon. The latter re-
ment of the scale in the strong coupling governing@{e?)  mark is also true for the c system.
corrections would be needed, i.e. @r@aﬁ) calculation. Finally, we also want to mention thec system. In view

As far as thebb system is concerned, the situation is Of the O(CZaZ) Darwin corrections, we can expect the size
worse than for the t_system. It has been shown in a number©f the completed(as) corrections to the modulus squared of

; ; . the ground state wave function at the origin to be at least at
of classical paperg32—34 that a proper theoretical descrip- X . . .
tion of the k?otl?omggsystg]m can gnh? be achieved by takl?ngthe level of 15%—35% with theoretical errors which might be

. 2 .

into account nonperturbative corrections, which cannot b@most as large as the size of W «;) corrections them-
calculated analytically from first principles in QCD. On the Sélves.[Again we can estimate the size of the corrections
other hand, it has been demonstrated[25] that a quite Peyond theO(«s) level by taking the long-distances val-
acceptable “parameter-free” description of ti&wave,|  Ues given below Eq45) cubed] It is evident that in the case

=0) bb bound states with low radial excitation is possible Of the cc system the limits of perturbation theory are
by using perturbative calculations supplemented by nonpeIr_eached or even exceeded. Even with a complete determina-
turbative contributions in the form of the quark or the gluontion of all O(a3) corrections the theoretical uncertainties
condensates. However, the latter analy@ssfar as correc- Would not decrease considerably, which is obviously a con-
tions to the moduli squared of the wave functions at thesequence of the large size of the strong coupling. We there-
origin and to the cross section above threshold are corfore conclude that it will be extremely difficulif not impos-
cerned were essentially based on formulas including onlysible) to achieve a perturbation theory based theoretical
the effects of the one-loop running of the strong couplingdescription for the charm system with uncertainties lower
and the globaD(ay) correction factor (+ 4Crag/ ). The t_han several Fimes 10% if there is mnforeseehcancella-
question of whether th®(a?) perturbative corrections lead tion among different types of corrections.

to a still converging series was not addressed explicitly. TO conclude this section there is a remark in order:  For
Equipped with the results for th@(C2a2) Darwin correc- the calculations of th®(Cgas) Darwin corrections we used
tions, we are able to draw a rough picture concerning théhe renormalized Green function at zero distances,(Eg),
latter question for the case of the moduli squared oflthe Without any further explanation. This is slightly misleading
=0 bound state wave functions at the origin. For the ground®&cause it implies that th®(Cras) Darwin corrections to
state theO( ag) corrections should be between 10% and 20%sWave functions and crzoszs sectlons_ can be uniquely separated
[where the actual sign of the corrections can only be deterfom all the otherO(Cgas) corrections. As far as the I

mined by a complet®(a?) analysi§ with theoretical uncer-  contribution and the digamma term are concerned this is
definitely true, but this is not the case for the constant terms.

This is a consequence of the divergences which arise during
20 _ _ - _ _ the calculations and which have to be renormalized. The use
~A comparison of the size of th®(Cgas) Darwin corrections  of oyr renormalized zero-distance Green function represents
with the O(Cray) corrections from the (+4Cgas/m) suppres-  one possible way to achieve this renormalization. Neverthe-
sion factor is slightly misleading in this context because the Iatterless we think that our approach is justified in order to illus-
represents a pure short-distance contribution. Therefore th{a ' h ible si f1h | 2 .
rate the possible size of the comple®¥ «g) corrections.

O(Cras) correction should not be included in a discussion on the.

convergence in the perturbative description of long-distance correcThls view is also supported by the explicit results for all

2 2 ; _ ; ;
tions. However, for the convenience of the reader, the size of th(Cras) corrections to thé=0 wave functions at the ori-
largeO(Cra) corrections shall also be given. It has been shown indin and the cross section, W_h|Ch will be publlshed' shorFIy.
[7,30,3] in a two-loop analysis that the scale in the strong couplingHowever, we want to emphasize that the latter considerations

of the O(Cra) suppression factor is” 124V, in the MS scheme. do not affect the validity of the expressions for the vacuum
This results in—4Cga/m=—20%, —41% and—64% for the  Polarization function presented in Secs. Il and Ill. There, all
top, bottom and charm systems, respectively, using the one-looponstants are correct due to proper matching to the well es-
QCD beta function, the pole mass values given below(&§.and  tablished one- and two-loop expressidi$'° and I12!°°P,
ay(M,=91.187 GeV)}=0.125. Egs.(8) and(9).
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V. COMMENT ON THRESHOLD EFFECTS Carrazone theoremi36] and even represent contributions

FAR FROM THE THRESHOLD REGION nonanalytic ag>=0. The solution to this apparent paradox

. . : 0(a? - o
In this section we want to comment on the use and théS thatlIgi5 only describes the vacuum polarization func-

interpretation of the expression of the QED vacuum polardion to O(a?) accuracy. All contributions of ordew® or
ization function valid for all energies #©(a?) accuracy, Eq. higher have to ignored and do not represent proper higher-
(19). order contributions. This means that the contributions of the
We have shown in Sec. Il that the functigk, which  function A are necessary to achie@(«?) accuracy in the
represents the resummed expression for diagrams with tHEreshold region, but should be neglected if the vacuum po-
instantaneous Cou|0mb exchange of two and more |Ongitular!zat|0n function has to evaluated far from the threshold
dinal polarized photon§in Coulomb gauge[see Eq.(13)], point. . o _ .
essentially has to be added to the one- and two-loop expres- T0 make the latter point more explicit, let us imagine that
sions for the vacuum polarization function in order to the analytical form of the complete three-loop contributions
achieveO(a?) accuracy in the threshold regig|=<a. Far to t_he vacuum polarization function were known for all en-
from the threshold regime, howevek, represents contribu- €rgies(in the same Sense as they are known for the one- and
tions of ordera® and higher and therefore is irrelevant. This tWo-loop contributionsIT* " and I1< °°F). We then could
is what we mean by using the term “valid for all energies tol'y 10 determlne the expression for the vacuum polarization
O(a?) accuracy,” but not more. function valid toO(a®) accuracg for all energies in the same
At this point the reader might be tempted to apply formulaway as we have determin@ﬁg(gg) , which is valid toO(a?)
(19), as it stands, for an energy regime far from the thresholdccuracy for all energies. This would be achieved by match-
in the belief A would represent higher-order information ing the three-loop expression for the vacuum polarization
which should improve the accuracy of the one- and two-loodunction to the correspondin@(«?) formula calculated in
expressions calculated in the framework of conventional perNRQED in the same way as presented in Sec. Il. The
turbation theory. Let us illustrate such a scenario for thevacuum polarization function valid 10(a>) accuracy for all
energy regime wherg? is close to zero. In this kinematic energies would then have the fofm
region, formula(19) can be expanded in terms of smafl.
_Takizng ig\to aC(_:ount _only the first n_onv_anishing contributions Hg(EaDs)(qZ)znl looR 2) + T12'9° 2) + 12 °°P( )
in g2/M? and including only contribution up t®(«®) the

2
result reads FA@B)~aigs| FA@p). (48
0(a?) 42 P0la) 1 [a)|?41 ¢
Heeo (@) = |\ 2| vz |\ 7 Te2m2 In the second line of Eq48) the contributiona®[i 7% 248]
has to be subtracted in order to avoid double counting in the
3172 q 4 threshold regime since
+a 78 W+O(a )s (46) 2
3o ) 0 03i Tl o(a®p). (49
2483 '

where the numerical coefficient of tf@(a°) coefficient is

2149 . : 7
7°/48=0.21. The corresponding multiloop expression in- ¢ iherefore clear that far from threshold the second line of
cluding also the real first nonvanishing three-loop coeff|C|entEq (48) only contains contributions of order* and higher

see[4] for details of the three-loop calculatipneads
(seel4] P b [see Eq(23)]. Expanding now 12 for small values of?
QED

=0/ g\ 1 9 a\2 41 g? would give a result identical to the three-loop expression, Eq.
e 0?) = (—) & M2 (—) Too M2 (47). The large nonanalyticaD(«°) contribution which ap-
™ m peared in Eq46) would be gone. It is obvious that this large
a\3 8687 w21 1 contribution originates from the leading nonvanishing term
+ (— ——t = (—— —In 2) of II® in an expansion fotB|<1 evaluated for smal?.
™ 13824 3 |8 5 o P
) These contributions survive IHQ(E%) , EQ.(19), but are can-
" @53 q—2+O(a4). (47  celed inHS(E‘ES), Eq. (48). Using the same line of arguments
27648°°| M it can easily be shown that all contributions of the functfon

would be canceled if formulas for the vacuum polarization

The numerical value of the constant term in the brackets igunction with successively higher accuracy would be deter-
0.32. It is evident that th®(«®) contributions which come mined.
2 .. .
from HS(E‘E,) and therefore contain information on the forma-
tion of positronium bound states are much larger than thé

real three-loop contributions. The ratio between the former 2y, Eq. (48) A(a,8) denotes theD(o®) NRQED contributions,

O(a®) contributions and the real three-loop result even di-jncjyding the necessary subtractions in order to avoid double count-
verges forq’—0. The overall conclusion of this scenario ing. The actual form of these contributions is irrelevant here be-
would be that thresholtand therefore long-distanceffects  cause we only want to discuss the la@éx3) contributions in Eg.
dominate not only in the threshold regime but also the en¢46). However, it is straightforward to see thatcontains terms of
ergy region |g?|<4M2. This is obviously wrong. The ordere? in the threshold regime, but is of ordef* far from the
“threshold effects” in Eq.(46) contradict the Appelquist- threshold point.
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The physical picture behind this cancellation can beanalysis of{8] this can be easily seen from the fact that the
drawn as follows: The contributions in functiénare gen- removal of the two-loop contribution&fter subtraction of
erated by vacuum polarization diagrams with the instantathe corresponding leading and next-to-leading threshold con-
neous Coulomb exchange of two and more longitudinal photributions essentially has no effect on the resulise Table
tons, where the latter are defined in the Coulomb gauge. 14 in [8]). The latter observation is taken as a “final test on
the threshold region the exchange of these longitudinal phahe importance of higher-order corrections.” However, as
tons represents the dominant effect, whereas all the othghown in Sec. IV, th@(ai) corrections to the cross section
interactions, for Slmp|ICIty reasons called “transverse” in the in the threshold region, which contain a resummation of con-
following, can be neglected in a first approximation. Al- tributions to all orders in the number of loops, are expected
though this approach is obviously not gauge invariant fromyg pe at the 10%—20% level and will therefore have a large
the point of view of full quantum electrodynamics, the Vvio- impact on QCD sum rule calculations in the langdimit.
lation of gauge invariance is vanishing in the nonrelativisticThe mistake in the arguments 8] is that it is implicitly
limit. This is not true, however, far from the threshold pOint. assumed that the Sommerfeld factor, E@ﬂ)' accounts for
There, contributions from longitudinal and transverse phothe resummation of all long-distance effects. Therefore all
tons are equa”y important. Their individual sizes are eXtraorcorrectionS to expressidnl) should be calculable by fixed-
dinarily large but with different signs. Therefore, adding thegrder loop calculations alone. This is true for tdag)
transverse contributions to the contributions of the functionghort-distance correction factor {MUCra/ ), which can

A the greater part of the large corrections will be cancelegye extracted from a pure one-loop calculation, but this is not

off, leaving the results which can be obtained from convenyne case for higher-order corrections like tD(eCﬁaﬁ) Dar-
tional (multiloop) perturbation theory. This remains true atyin corrections calculated in Sec. IV. This fact will be dem-

any level of accuracy. From this picture it should be cleargngirated explicitly in a future publication, where all
that neither effects from the formation ef e~ bound states O(Cﬁag) corrections to the cross section will be presented.

nor fr+orr1 the.C.oqumb rescattering, if the relative vglocity oI [8] it is also assumed that the effects of the running of the
thee’ e pair is much Sm"’!”er than the speed of I'gh,t’ C‘."mstrong coupling in the Sommerfeld factor can be determined
ever lead to large corrections of the vacuum polarlza'uorby insertion of the effective running couplingy,, which

f_unction far from. the threshold region..There, the Contribu'effectively incorporates the short-distance corrections of the
Flons.of the funptlom repre;ent unphysicénd gauge non- . QCD potential[40,41], at the scaleM 3 into the Sommer-
mvanar?b c_ontrlt;uﬂons V\Ilr;:'Chh Cann(;’t even be_621r115ed to estitg|q factor. We would like to emphasize that this approach is
mate the size of the real higher-order corrections. not justified for largen QCD sum rule calculations because

We would like to f?”“”d .the rgader that the prt_avio.us athe important saturation effects are neglected in this proce-
guments are not applicable if a high number of derivatives o ure.[See the discussion below E@4).] As a consequence

the vacuum polarization function below the threshold region[he calculations presented [i8] are not only not at the

H H 2\n 2 >
is _considered, q/dq7)"1I(q .)’ n>_1. In_ the Ia_tter case o ag) accuracy level but also include a systematic error at
threshold effe_cts are essential. This can be easily understo%qdems and therefore contain much larger uncertainties than
from the relation presented there. The authors[8] finally criticize an older
g \n da'2 Im TI(q’2 QCD sum rule calculation by VoloshifY] on the same sub-
MA(a2)=| — | TI(g?)~ iw 50) ject, claiming that in 7] the magnitude of higher-order cor-
n(Q) d 2 (q) 12 12_~n2\N" ( . . . . .

q q’c (a"°—q°) rections was underestimated. In this point we agree with the

) X . o ~authors of[ 8] because if7] it is assumed thaO(ag) cor-
For largen and|q<|<4M* the high-energy contributions in rections have “no enhancement” in the largelimit. The
the dispersion integration are strongly suppressed, whicBythor of[7] therefore concludes that the entitéa?2) cor-
Ieac_js to th_e doml_natlon of effec_ts coming from the thresholdections can be parametrized by multiplying the expression
region. This _fact is the founda_tlon of QCD sum rule C_alcu'containing the leading and next-to-leadip@(«y)] effects
lations. At this point we would like to take the opportunity to ¢, MCD(0) [see Eqgsi(6), (11) and (24) of [7], respec-

. . n . L] 1

comment on a recent publication where QCD sum rules havaeM with the global factor (% c¢/n), where the constarnt
been applied to extraets and the bottom quark mass from 1 a5'tg pe determined from fitting the resulting formula to the
experimental data on the resonanceg8]. In this publica- v ¢amijly data. The results of the fitting procedure are
tion it is claimed thatO(a?2) corrections to the moments ay(M,)=0.108 0.001, M, = 4827+ 7 MeV andc=—0.59
MRP(0) have been calculated becausenventional two-  +( 19, whereM, is the bottom quark pole mass and is

loop QCD corrections to théb production cross section the strong coupling in the MScheme. The errors quoted in
have been included in the analysis. It should be clear fronﬂﬂ for ag(M,) andM, were derived by a combination of the
the discussions of Sec. IV that a two-loop calculation of thestatistical errors with the difference in the central values by
cross section is not sufficient to describe meag) correc-  performing the fits, taking=0 and leaving: as a fit param-
tions to the cross section in the threshold region. In thester. The error irc is statistical. The reason for the small
errors[6M,/M,=0.1% andday(M,)/as(M,) =1%)] is the
strong dependence of the fitting formuyE&g. (24) of [7]] on
22f gpplied to QCD our conclusion is essentially equivalent tothe parametersys (through terms proportional toa\/n)?
arguments employed if87,38 where the large effects of thet ~ and exip(as\n)?]) and My, (through a term proportional to
threshold on electroweak parameters proposefB@) have been MZ") and the assumptions that &i(«2) corrections can be
criticized. parametrized in form of the global factor {ic/n), wherec
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is of order one. In the following we give some argumentsplete determination of alD(a?) corrections toMZ°(0)
why the latter assumption is wrong and \_/vhy the real eITOrS iRyl lead to a reduction of these uncertainties.

the values ofxg(M,) andM, are much bigger than claimed
in [7]: (i) In[7] the range &n<20 is considered. According
to the fitted value forc this would correspond to relative
O(ag) corrections of about 10% and 5% far=8 and 20,
respectively, which shows that [7] 0(a§) corrections be- In this work we have used the concept of effective field
come smaller when the value ofis increased. Because the theories to calculate th®(a?) contributions to the QED
QCD sum rules are more and more sensitive to tfeC( vacuum polarization function in the threshold region and to
define a renormalize(.e. finite) version of the zero-distance

imolicit hat the( a? , héb q Coulomb Green function which can be used for higher order
implicitly mean that thed(a;) corrections to t groun calculations in textbook quantum mechanics time-

state[ Y (15)] would be extremely small. We have explicitly jqjependent perturbation theory. In the framework where

shown in this work that this assumption is not true by calcu+gnreativistic quantum mechanics is part of an effective low

Igting the O(Cﬁag) Darwin corrections. The latter correc- energy field theoryNRQED), long-distance effect&coming
tions amount to 10%—-20% for the modulus squared of thgrom typical momentum scales below the electron mass
ground state wave function at the origin for a bouriol pair ~ determined completely by employing textbook quantum me-
and are far from being small. We therefore conclude that thehanics calculations, whereas short-distance contributions
O(aﬁ) corrections to the formulas presented T cannot be  (coming from momentum scales beyond the electron jnass
parametrized in terms of a global factor with the form (1 are included via the matching procedure. For the latter con-
+c/n). (i) In [7] the O(ay) corrections induced by the run- tributions multiloop techniquegin conventional covariant
ning of the strong coupling have been included by takingperturbation theogyhave to be employed. We have demon-
into account the logarithmic terms in the QCD potentialstrated that the approach employed in this work represents an
[40,41] using time-independent perturbation theory. This de-efficient method to merge sophisticated multiloop methods
termines the effective scale of the strong coupling in thewith well-known textbook quantum mechanics time-
leading order contributions t813°%(0). However, because independent perturbation theory. From the physical point of
the o(ai) corrections from the running of the strong cou- view this is achieved because the effective field theory con-
pling have not been taken into account, there is still a relativéept allows for a systematic separation of long- and short-
error of ordera in the actual value of this scale. Therefore, distance physics at any level of precision. For our calcula-
although the value of: can be determined with high accu- tions we have used the “direct matching” procedure which
racy in the fitting process, the actual value of the scaleof can be applied if the multiloop results to the quantity of
is still subject to higher order uncertainti&dt can be easily interest are at hand. The direct matching allows for a quite
checked that this uncertainty results in a relative error ofsloppy treatment of UV divergences in the effective field
order sag(M,)/ ay(M,)~ as(M,)~10% for the value of the theory and, therefore, can be carried out with much less ef-
strong coupling at the scalel,. (i) Because if7] only  fort compared to the cpnvgntional match_ing proc;gdure. How-
O(ay) corrections are included, the masses oftitebound  €Ver, the direct m_atchlng is Qf no value if quantltles sh.all be
states(i.e. their bound state energjeare only taken into calculated for which no multiloop expressions are available.
account up to order. O(a?) contributions to the bound W€ have demongtrated the efficiency of our approach by
state massecorresponding to thé)(ag) corrections to the calcrlatlﬂg theO(qh)I vacuum pglarlzatlon (r-:;ffects n the
leading order expressions f8rS°%(0)] have not been taken single photon annihilation contributions to the positronium

. i hat th 4 ) ground state hyperfine splitting without referring back to the
into account. It can be easily seen that thaxer;) contri- Bethe-Salpeter equation. We found an error in an older cal-

butions to the bound state masses would cause the fittingation on the same subject. We have determined the
formula to depend ofiM,+ terms of ordeO(«¢) 1" rather O(CZa?) (next-to-next-to-leading ordebarwin corrections
than justMg". As a consequence the valueldf, extracted g heavy-quark—antiquark bound state wave functions at the
in [Z] really contains a relative error of ord&réM,/My,  origin and to the heavy-quark—antiquark production cross
~ag~0.5%-2%. Taking into account the argumefits-  section ine*e~ annihilation (into a virtual photon If the

(|||) we have to conclude that the rd&heoretica) uncertain- O(C|2:a§) Darwin corrections are taken as an order-of-
ties of theag(M,) andM,, values presented if7] are about magnitude estimate for the completget unknown O(a?)

an order of magnitude larger than claimed there. Only a Coméorrections, the typicaD(ag) corrections for thet_produc-

tion cross section can be expected at the few percent level for
_ most of the threshold region. Around th& peak they might

#In [7] the value of the strong coupling at the scale of order leven amount to 5%. For the modulus squared of the ground
GeV was determined ag (1 GeV)=0.336-0.011. However, the state wave function of a bountib pair [applicable to

scale 1 GeV is subject to unknown higher order corrections of orde 2 2 . . o
(1 GeV)~30% itself, i.e.a(1+0.3 GeM=0.336+0.011. 5{(18)], the O(Cgag) Darwin corrections are between 10%

24The scale of the strong coupling in the perturbative series for th@nd 20%, whereas the corresponding corrections focthe
bound state masses is of ordéy e, rather tharM, . We therefore ~ System are between 15% and 35%. The uncertainties arise
have used the range of valuag(CraM,)=0.25-0.38 presented from the ignorance of higher-order corrections, in particular
below Eq.(45) for our estimate oM, /M. from the ignorance of the exact scale in the strong coupling

VI. SUMMARY

=1"") bb ground state for larger values of this would
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governing theO(aﬁ) corrections. We conclude that the de-

termination of aIIO(ag) corrections would represent a con-

A. H. HOANG
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region and came to the conclusion that such corrections
do not exist.

siderable improvement of the present precision of theoretical

calculations to thét andbb system in the threshold region.
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