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Vacuum polarization function to O„a2
… accuracy near threshold and Darwin corrections
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Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 18 February 1997; published 30 December 1997!

The QED vacuum polarization function is calculated toO(a2) ~next-to-leading order! accuracy in the
threshold regime by using the concept of effective field theories to resum diagrams with the instantaneous
Coulomb exchange of longitudinally polarized photons. It is shown that theO(a2) contributions are of order
a2 in size rather thana2/p2. The vacuum polarization effects in the single photon annihilation contributions
to the O(a6) hyperfine splitting of the positronium ground state are recalculated and an error in an older
calculation is pointed out. The results are used to determineO(CF

2as
2) ~next-to-next-to-leading order! Darwin

corrections to heavy-quark–antiquark bound statel 50 wave functions at the origin and to the heavy-quark–
antiquark production cross section ine1e2 collisions in the threshold region. The absolute value of the
corrections amounts to 10%–20% and 17%–34% in the modulus squared of the ground state wave functions
at the origin for theb b̄ andc c̄ systems, respectively. In the case of thet t̄ production cross section in the
threshold region the absolute value of the corrections is between 2% and 6% around the 1S peak and between
1% and 2% for higher energies. A critical comment on recent QCD sum rule calculations for theY system is
made.@S0556-2821~98!01303-4#

PACS number~s!: 12.38.Cy, 13.25.Gv, 13.65.1i, 13.85.Lg
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I. INTRODUCTION

In recent years many sophisticated methods have b
developed to calculate higher order~‘‘multiloop’’ ! QCD ra-
diative corrections for high energy quantities for which it
believed that an expansion in terms of Feynman diagra
with a certain number of loops represents an excellent
proximation to the predictions of quantum chromodynami
Notable examples are the hadronic cross section ine1e2

collisions at CERNe1e2 collider LEP energies or the~pho-
tonic! vacuum polarization function. In the high energy lim
where the quarks can be treated as massless, these qua
have been calculated up to three loops@1–4#. However, fu-
ture experiments@Next Linear Collider~NLC!, B factory and
t-charm factory# will test the vacuum polarization functio
and the hadronic cross section also in the kinematic reg
close to heavy-quark–antiquark thresholds where bo
state effects become important. The threshold regime is c
acterized by the relation

ubu&as , b[A124
MQ

2

q21 i e
, ~1!

whereMQ is the heavy quark pole mass andAq2 denotes the
c.m. energy. In the process of heavy-quark–antiquark p
duction above the threshold,q2.4MQ

2 , b is equal to the
velocity of the quarks in the c.m. frame. We therefore calb
the ‘‘velocity’’ in the remainder of this work, even ifq2

,4MQ
2 . In the threshold regime the accuracy of theoreti

predictions to the hadronic cross section and to the vacu
polarization function is much poorer than for high energi
Aside from definitely nonperturbative effects~in the sense of
‘‘not calculable analytically from first principles in QCD’’!,
the breakdown of the perturbative expansion in the num
of loops makes any theoretical description in the thresh
region difficult. This breakdown of the perturbation series
570556-2821/97/57~3!/1615~18!/$15.00
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indicated by power (1/b) or logarithmic (lnb) divergences
in the velocity which blow up if evaluated very close to th
threshold point. Some of these divergences~e.g. thean/bn,
n.1, Coulomb singularities in the Dirac form factorF1 de-
scribing the electromagnetic vertex! can be treated by using
well-known results from nonrelativistic quantum mechani
but a systematic way to calculate higher-order correction
the threshold regime seems to be far from obvious, at le
from the point of view of covariant perturbation theory in th
number of loops. This type of perturbation theory will b
referred to as ‘‘conventional perturbation theory’’ from no
on in this work.

On the other hand, there are many examples of hea
quark–antiquark bound state properties where comp
knowledge of higher-order corrections would be extrem
valuable. Most of the present analyses~see e.g.@5# for a
review! are based on leading and next-to-leading order c
culations. Here, higher-order corrections could significan
increase the precision of present theoretical calculations,
could also serve as an instrument to test how trustwor
certain theoretical predictions are and to estimate the siz
theoretical uncertainties. Further, they could contribute
ward a better understanding of the role of nonperturba
effects ~in the sense mentioned above! in apparent discrep-
ancies between the determination of the size of the str
coupling from theY(1S) decay rates@6# and QCD sum rule
calculations for theY system@7#,1 on the one hand, and from
the LEP experiments on the other.

The framework in which bound state properties and a
dynamical quantities in the threshold regime can be ca

1During completion of this paper we became aware of a n
publication, where QCD sum rules for theY system are used to
determine the strong coupling and the bottom quark mass@8#. We
will give a brief comment on this publication and on@7# at the end
of Sec. V.
1615 © 1997 The American Physical Society
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1616 57A. H. HOANG
lated in a systematic way to in principle arbitrary order
nonrelativistic quantum chromodynamics~NRQCD!, as for-
mulated in@9#, which is based on the concept of effectiv
field theories. In the kinematic regime where bound sta
occur and slightly above the threshold, NRQCD is supe
to conventional perturbation theory in QCD and~at least
from the practical point of view! also to the Bethe-Salpete
approach, because it allows for an easy and transparent s
ration of long- and short-distance physics contributions. T
is much more difficult and cumbersome with the former tw
methods. However, we would like to emphasize that
methods lead to the same results. As an effective fi
theory, NRQCD needs input from short-distance QCD in
der to produce viable predictions in accordance with qu
tum chromodynamics. This adjustment of NRQCD to QC
is called thematching procedureand generally requires mul
tiloop calculations in the framework of conventional pertu
bation theory at the level of the intended accuracy. In t
work we assume that the reader has some familiarity with
approach presented in@9#.

In this work we demonstrate the efficient use of theore
cal methods from NRQED@9# to calculate the QED vacuum
polarization function in the threshold region toO(a2) accu-
racy. We would like to emphasize that our result for t
QED vacuum polarization function toO(a2) accuracy in the
threshold region, although completely derived from a nu
ber of older results, has never been presented in the litera
before and therefore should be considered as new. In con
to the standard matching procedure in NRQED@9#, where
the renormalization coefficients to the operators of
NRQED Lagrangian have to be determined explicitly, w
match the unrenormalized NRQED expression for
vacuum polarization function to the corresponding QED
sults directly at the level of their analytical expressions. T
‘‘direct matching’’ approach considerably simplifies the ca
culations and leads to the same result as the standard m
ing procedure. We use our result to recalculate the vacu
polarization effects in the single photon annihilation con
butions to theO(a6) hyperfine splitting of the positronium
ground state energy level without referring back to t
Bethe-Salpeter equation. An error in an older calculat
@10,11# on the same subject is pointed out. We analyze
vacuum polarization function at the bound state energies
above threshold and, in particular, concentrate on the siz
the O(a2) contributions. It is shown that the size of th
O(a2) contributions in the threshold regime is of ordera2

rather thana2/p2 which is a consequence of their long
distance character. In a second step our results for the Q
vacuum polarization function in the threshold regime are
plied to calculateO(CF

2as
2) ~next-to-next-to-leading order!

Darwin corrections to the heavy-quark–antiquarkl 50
bound state wave functions at the origin and to the cr
section of heavy-quark–antiquark production ine1e2 anni-
hilation ~via a virtual photon! in the threshold region. The
corresponding unperturbed quantities are the solutions o
Schrödinger equation for a stable quark-antiquark pair with
Coulomb-like QCD potential,VQCD(r )52CFas /r , where
the scale in the strong coupling is fixed. It is demonstra
that the size of theO(CF

2as
2) Darwin corrections is also o

orderas
2 rather thanas

2/p2. We present simple physical a
guments that the scale of the strong coupling governing
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O(CF
2as

2) Darwin corrections is of orderCFMQas and we

analyze the size of the corrections for thet t̄ , b b̄ and c c̄
systems assuming that the size of the Darwin corrections
be taken as an order of magnitude estimate for all~yet un-
known! O(as

2) corrections. The sign of the latter correction
and their actual numerical values can, of course, only
determined by an explicit calculation of allO(as

2) correc-
tions. Finally, we address the question of whether bou
state effects can lead to large corrections to the vacuum
larization function in kinematic regions far from the actu
threshold regime. We come to the conclusion that such c
rections do not exist.

At this point we want to emphasize that the approa
presented in this work is not based on the Bodwin-Braat
Lepage~BBL! factorization formalism@5# where bound state
and threshold quantities involving heavy-quark–antiqu
pairs are expressed as a sum of terms each of which con
of a product of a short-distance coefficient and a matrix e
ment which incorporates long-distance and nonperturba
effects. In the BBL factorization formalism the shor
distance coefficients can be determined using the stan
matching procedure within NRQCD whereas the matrix e
ments have to be extracted from experimental data or lat
calculations. The spirit of this work is completely differen
We entirely rely on the perturbative methods developed
NRQED @9,12# and transfer these techniques to heav
quark–antiquark systems in QCD. TheO(CF

2as
2) Darwin

corrections presented in this work therefore contain per
bative short- as well as long-distance contributions and r
resent first principles~i.e. not dependent on any model-lik
assumptions! QCD calculations. Of course, because we re
entirely on perturbative methods we cannot determine
nonperturbative effects. The only assumptions our appro
is based on are that~i! the instantaneous~i.e. uncrossed!
Coulomb-like exchange of longitudinal gluons~in Coulomb
gauge! between the heavy quarks represents the domin
effect in the threshold regime and is the main reason
heavy-quark–antiquark bound state formation and that~ii ! all
further interactions and effects can be treated as a pertu
tion. We believe that the actual size of theO(as

2) corrections
can then serve as an importanta posteriori justification or
falsification of these assumptions for the different hea
quark–antiquark systems. Because we know that nonpe
bative effects are much more important in thec c̄ systems
than in theb b̄ andt t̄ systems, a consequence of the ‘‘sma
ness’’ of the charm quark mass, we can expect that our
turbative approach contains much less predictive power
c c̄ than forb b̄ andt t̄ . This is confirmed by the size of th
O(CF

2as
2) Darwin corrections for the different heavy-quark

antiquark systems.
The program for this work is organized as follows: In Se

II the calculation of the QED vacuum polarization functio
to O(a2) accuracy in the threshold region is presented. W
define a renormalized version of the Coulomb Green fu
tion for zero distances, which allows for the application
~textbook quantum mechanics! time-independent perturba
tion theory to determine higher-order corrections to wa
functions and energy levels. For completeness we also
an expression for the QED vacuum polarization functi
valid for all energies withO(a2) accuracy. In Sec. III the
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57 1617VACUUM POLARIZATION FUNCTION TO O(a2) . . .
QED vacuum polarization function in the threshold region
analyzed with special emphasis on the size of theO(a2)
corrections, and theO(a6) vacuum polarization effects in
the single photon annihilation contributions to the posit
nium ground state hyperfine splitting are calculated. Sec
IV is devoted to the determination and analysis of t
O(CF

2as
2) Darwin corrections to the bound state wave fun

tions at the origin and the production cross section in
threshold regime for the different heavy-quark–antiqu
systems. In Sec. V we comment on the existence of thres
effects far from threshold and on recent QCD sum rule c
culations for theY system@7,8#. Section VI contains a sum
mary.

II. DETERMINATION OF THE QED VACUUM
POLARIZATION FUNCTION IN THE THRESHOLD

REGION TO O„a2
… ACCURACY

In this section we want to determine the QED vacuu
polarization function toO(a2) accuracy in the threshold re
gime whereubu&a. In the following we present the nece
sary steps of consideration in order to arrive at this result.
already mentioned in Sec. I, all analytical ingredients nee
to achieve this aim, the Green function of the nonrelativis
positronium Schro¨dinger equation and the one- and two-lo
QED vacuum polarization functions~derived in the frame-
work of conventional multiloop perturbation theory!, can be
found the in older literature. Therefore no details concern
the calculation of the latter three quantities are given he
The reader interested in the calculations of these resul
referred to the references.

We consider the QED vacuum polarization functionP
defined through the one-particle-irreducible current-curr
correlator

~q2gmn2qmqn!P~q2![1 i E d4xeiqx^0uT jm~x! j n~0!u0&,

~2!

where j m(x)5 ieC̄(x)gmC(x) denotes the electromagnet
current. C represents the Dirac field of the electron wi
chargee. According to the standard subtraction procedureP
vanishes forq250. It has been shown in a number of pub
cations~see e.g.@13,14#! that in the nonrelativistic limit, i.e.
taking into account only the dominant effects in the thresh
region, the vacuum polarization functionP is directly related
to the Green functionGE

0(xW ,yW ) of the nonrelativistic positro-
nium Schro¨dinger equation

F2
1

M
¹W xW

22
a

uxuW
2EGGE

0~xW ,yW !5d~3!~xW2yW !, ~3!

whereM is the electron~pole! mass,E denotes the energ
relative to the threshold point,E[Aq222M , and a is the
fine structure constant. Explicit analytic expressions for
Green function have been calculated in a number of class
papers@15#. The analytic expression forGE

0(xW ,0) is particu-
larly simple and reads
-
n

-
e
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GE
0~xW ,0!5E d 3pW 0

~2p!3 eipW 0xW
MQ

pW 0
22M2b22 i e (

m50

`

)
n51

m

3E d3pW n

~2p!3

4pa

~pW n212pW n!2

MQ

pW n
22M2b22 i e

52 i
M2b

2p
eiM brE

0

`

e2iM brt S 11t

t D ia/2b

dt, ~4!

wherer[uxW u. The reader should note that in Eq.~4! we can
identify b5A124M2/(q21 i e) with A(E1 i e)/M because
we are only interested inO(a2) accuracy in the threshold
region.@For the same reason we replace the factor 1/q2 in the
first line of Eq.~5! below by 1/(4M2) in the second line of
Eq. ~5!.# It can be easily seen from the first line of Eq.~4!
thatGE

0(0,0) represents the resummation of NRQED vacu
polarization diagrams with nonrelativistic electron-positr
propagation and ladder-type instantaneous exchange of
gitudinal polarized photons~called Coulomb photonsin the
following! in the Coulomb gauge to all orders in the co
pling a @14#. The latter two effects constitute the domina
contributions contained in the NRQED Lagrangian@9# and
are accounted for in the Schro¨dinger equation, Eq.~3!.2 For
later reference we call the NRQED vacuum polarization d
grams resummed inGE

0(0,0) nonrelativistic vacuum polar-
ization diagrams. In the threshold regime the proper relatio
between the vacuum polarization functionP, as defined in
Eq. ~2!, and the Green function reads@13,14#

P thr
0,O~a2!~q2!5

8ap

q2 lim
r→0

GE
0~xW ,0!

5aF 1

2Mr
1

i

2
b G1a2F1

2
2g

2
1

2
ln~22iMr b!2

1

2
CS 12 i

a

2b D G ,
~5!

whereg is the Euler constant andC represents the digamm
function,

g5 lim
n→`

F2 ln n1(
i 51

n
1

i G50.5772156649...,

C~z!5
d

dz
ln G~z!.

It is obvious that expression~5! contains contributions of
O(a) andO(a2). It can be easily checked that the two term
proportional toa and ab originate from the nonrelativistic
vacuum polarization diagram without any photon exchan
whereas the terms proportional toa2 come from the sum of

2From this point of view the use of the Schro¨dinger equation~3!
can be just regarded as a convenient tool to carry out the resum
tion of the NRQED diagrams.
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1618 57A. H. HOANG
all nonrelativistic vacuum polarization diagrams with o
and more photon exchanges. The reader might ask why
nonrelativistic vacuum polarization diagrams with two a
more photon exchanges do not result in contributions of
der a3 and higher. This can be easily understood from
fact that those nonrelativistic vacuum polarization diagra
lead to terms proportional toa2(a/b)n, n being the number
of photons. The latter terms can be identified by expand
Eq. ~5! for small a. Because we consider the kinematic r
gime ubu&a, all those terms effectively contribute at th
O(a2) accuracy level; i.e. we count powers ofb as powers
of a. We will come back to this point later. Expression~5!
further contains short-distance~UV! divergences for vanish
ing r in the O(a) andO(a2) contributions. The divergenc
in the O(a) term comes from the nonrelativistic vacuu
polarization diagram without any photon and the diverge
in theO(a2) term originates from the nonrelativistic vacuu
polarization diagram with the exchange of one photon. T
diagrams with two and more exchanges of photons are fin
The existence of these divergences comes from the fact
NRQED ~and also nonrelativistic quantum mechanics! as an
effective low energy theory is capable of describing lon
distance physics close to the threshold~characterized by mo
menta below the scale of the electron mass! but does not
know per se any short-distance effects coming from m
menta beyond the scale of the electron mass. This lac
information is indicated in Eq.~5! by short distance~UV!
divergences and has to be cured by matching NRQED
QED. In this light we have to regard expression~5! as un-
renormalized, which we have indicated by using the sup
scripts 0.

Before carrying out the matching and renormalizati
procedure it is very instructive to examine whether th
could be any relativistic effects in NRQED~i.e. from the low
momentum regime! which might also contribute to the un

normalized vacuum polarization functionP thr
0,O(a2) at the

O(a) or O(a2) accuracy level. There are several possi
sources of relativistic effects: relativistic corrections from t
energy-momentum relation~i.e. corrections to the nonrelativ
istic kinetic energy in the NRQED Lagrangian!, the Breit-
Fermi 1/M2 corrections to the Coulomb interaction~like the
Darwin term, spin-orbit interaction or the exchange of tra
verse photons in the instantaneous approximation3!, relativ-
istic corrections to the electron-positron production and
nihilation vertex and the self-energy corrections to t
electron and positron lines. Using textbook quantum m
chanics time-independent perturbation theory one can s
that the kinetic energy and Breit-Fermi corrections contrib
at the O(a3) and O(a4) accuracy level.4 The relativistic
corrections from the electron-positron annihilation and p

3In the threshold regime the dominant contribution from the
change of transverse photons comes from the instantaneous~i.e.
energy independent! component of the transverse photon propa
tor in momentum space@16#.

4We would like to remind the reader that in the threshold regi
ubu&a contributions ofO(a3) andO(a4) correspond to multiloop
terms proportional toanbm with n1m53 and 4, respectively, be
cause forubu&a we count powers ofb as powers ofa.
he
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duction vertex, on the other hand, are proportional

limr→0 ¹W 2/M2 GE
0(xW ,0) and@via the equation of motion~3!#

also lead toO(a3) and O(a4) contributions. The electron
and positron self-energy corrections, finally, lead to con
butions beyond theO(a2) level because they involve add
tional powers ofa but no additional powers of 1/b which
can only be generated by an exchange of a Coulomb ph
between the electron and positron. As a consequence5 ex-
pression ~5! represents the complete unrenormaliz
NRQED vacuum polarization function toO(a2) accuracy in
the threshold regime which we have indicated by using
superscriptO(a2). At this point it should be noted that in th
renormalized version of the vacuum polarization functi
@see Eq.~12!# the four relativistic effects mentioned abov
lead to constant~i.e. b-independent! O(a) andO(a2) short-
distance~i.e. high momentum! contributions. These effects
however, cannot be calculated within NRQED itself and w
be included properly by the matching procedure which f
lows.

Let us now come to the question of renormalizin

P thr
0,O(a2) and the matching procedure. In the common a

proach to NRQED@9# the matching procedure for th
vacuum polarization function would be carried out
follows: One considers the vacuum polarization contrib
tion to the single photon annihilation scattering proce
e1e2→g→e1e2 in the kinematic regimea!b!1. This
regime corresponds to the elastic scattering of free and
shell electrons and positrons, where the electron and pos
velocity in the c.m. frame is much smaller than the speed
light but still much larger than the couplinga. The reader
should note that the foundation of the matching procedur
that for a!b!1 both NRQED and conventional multiloo
perturbation theory in QED are applicable6 and therefore
must lead to the same result. To achieve relativeO(a2) ac-
curacy for the vacuum polarization contribution to the sc
tering process we have to expand the unrenormali

NRQED vacuum polarization functionP thr
0,O(a2) , Eq. ~5!, for

smalla, identify the terms proportional toa, ab anda2 and
determine their contribution to the scattering amplitud7

Then the corresponding scattering contributions of the sa

-

-

e

5The crossed exchange of Coulomb photons also represen
effect beyond theO(a2) accuracy level because the instantaneo
character of the exchange of Coulomb photons requires the pr
gation of the small component~from the Dirac spinor! of either the
electron or the positron in the NRQED diagram. The process of
crossed exchange of Coulomb photons is therefore suppressed
pared to the ladder-type exchange.

6For a!b!1 conventional perturbation theory in QED is val
becausea represents the smallest parameter, whereas NRQE
valid becauseb is much smaller than the speed of light.

7As already mentioned before, the terms}a2(a/b)n(n>1)

which are contained inP thr
0,O(a2) in the limit a!b!1 are finite and,

therefore, do not need to be renormalized. The reader should fu
note that theO~a! contributions of the renormalization coefficien
multiplying the lowest order effective (e1e2)(e1e2) four fermion
interaction combined with theO~a! contribution of the unrenormal-
ized NRQED vacuum polarization function also lead toO(a2) con-
tributions in the scattering amplitude.
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order ~i.e. leading and next-to-leading terms from the QE
one-loop vacuum polarization and leading terms from
two-loop QED vacuum polarization for smallb! have to be
calculated in QED multiloop perturbation theory. The diffe
ence between the QED and the NRQED expression isb in-
dependent~and infrared safe! and uniquely determines th
renormalization coefficient multiplying the NRQED
(e1e2)(e1e2) effective four fermion interaction describin
the lowest order single photon annihilation process. T
renormalization constant containsO(a) and O(a2) UV-
divergent and finite contributions which represent the sh
distance corrections mentioned above and which render
NRQED scattering amplitude equal to the QED one. T
renormalized and finite expression for the vacuum polar
tion function toO(a2) accuracy in the threshold region
then obtained by finally combining the scattering contrib
tions from the full unrenormalized vacuum polarization fun

tion P thr
0,O(a2) with the O(a) and O(a2) contributions from

the renormalization constant and dividing the result by
leading order scattering amplitude.

However, we want to emphasize that the general ma
ing procedure outlined above is only needed if the renorm
ization of the NRQED Lagrangian, i.e. an explicit determ
nation of the renormalization constants of the vario
NRQED operators, is intended. If we are only interested
the renormalized expression of the vacuum polarizat
function in the threshold region, this procedure represent
unnecessary complication because for that we can match
terms proportional toa, ab and a2 ~for a!b!1! in

P thr
0,O(a2) to the corresponding one- and two-loop QED resu

directly at the level of their analytical expressions. This ‘‘d
rect matching’’ method leads to the same result as the c
ventional matching procedure will be described explicitly
the following: As already described above, we first have
identify the terms proportional toa, ab and a2 from

P thr
0,O(a2) in the limit a!b!1,

P thr
0,O~a2!~q2! 5

a!b

aF 1

2Mr
1

i

2
bG1a2F1

2
2

1

2
g

2
1

2
ln~22iMr b!G1OS a3

b D . ~6!

Then the one- and two-loop contributions to the vacuum
larization function in multiloop QED have to be determin
in the same limit. The one- and two-loop contributions toP,
defined as

P~q2!5P1 loop~q2!1P2 loop~q2!1OXS a

p D 3C, ~7!

have been known for quite a long time for all energy a
mass assignments@17–19#. In the limit b!1 the one- and
two-loop expressions read8

8The reader should note that the two-loop QED vacuum polar
tion, Eq. ~9!, diverges logarithmically for vanishingb. This shows
that beyondO~a! accuracy level conventional multiloop perturb
tion theory is inadequate forubu&a indicating the need for the

resummation contained inP thr
0,O(a2) , Eq. ~6!.
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P1 loop~q2! 5
ubu→0

aF 8

9p
1

i

2
bG1O~ab2!, ~8!

P2 loop~q2! 5
ubu→0

a2F 1

4p2 S 32
21

2
z3D1

11

32
2

3

4
ln 2

2
1

2
ln~2 ib!G1O~a2b!, ~9!

where z351.202056903... . Comparing the contributio
proportional toa anda2 in expression~6! with Eqs.~8! and
~9! and demanding equality we arrive at the following r
placements for the divergences and constants in the unre

malized vacuum polarization functionP thr
0,O(a2) :

1

2Mr
→

8

9p
, ~10!

1

2
2

1

2
g2

1

2
ln~2Mr !→

1

4p2 S 32
21

2
z3D1

11

32
2

3

4
ln 2.

~11!

It should be noted that the expressions on the right-h
sides ~RHS’s! of Eqs. ~10! and ~11! represent the missing
short-distance~i.e. high momentum! O(a) andO(a2) con-
tributions mentioned above and that it is therefore a nec
sary condition for the consistency of our approach that
RHS’s of Eqs.~10! and~11! areb independent. In particular
the RHS of Eq.~10! represents the short-distance effec
coming from the relativistic propagation of the electro
positron pair and from the relativistic electron-positron pr
duction and annihilation vertex, whereas the RHS of Eq.~11!
represents short-distance contributions from the relativi
propagation of the electron-positron pair including the se
energy corrections, from the relativistic electron-positr
production and annihilation vertex and from relativistic e
fects in the photon exchange~like from the transverse com
ponent of the photon propagator!. At this point we would
like to mention that compared to the conventional match
procedure in NRQED the ‘‘direct matching’’ described he
has the advantage that the regularization of the UV div
gences in the NRQED calculation can be performed in
quite sloppy way@see Eqs.~4!, ~5! and ~6! where the regu-
larization has been carried out by evaluating the Green fu
tion at a finite distance from the origin!#. That this does still
lead to the correct renormalized result can be easily s
from the fact that the exact form of the constant terms on
LHS of the replacements~10! and ~11! is completely irrel-
evant for the final expression of the renormalized vacu
polarization function. However, because the ‘‘direct matc
ing’’ does not lead to a systematic determination of t
NRQED renormalization constants, it can only be applied
a multiloop result in full QED of the quantity of interest i
available. We would like to emphasize that the ‘‘dire
matching’’ only relies on the existence of NRQED as a co
sistent effective field theory and that ‘‘direct matching’’ ca
also be applied to quantities which have a more complica

structure of UV divergences thanP thr
0,O(a2) . Applying the

replacements~10! and ~11! to the unrenormalized NRQED

vacuum polarization functionP thr
0,O(a2) we finally arrive at

-
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the following result for the renormalized vacuum polariz
tion function toO(a2) accuracy in the threshold regionubu
&a:

P thr
O~a2!~q2!5aF 8

9p
1

i

2
bG1a2F 1

4p2 S 32
21

2
z3D1

11

32

2
3

4
ln 22

1

2
ln~2 ib!G1A~a,b!, ~12!

A~a,b![2
a2

2 Fg1CS 12 i
a

2b D G , ~13!

which represents the main result of this work.P thr
O(a2) is an

analytical function and contains all short- and long-distan
effects up to theO(a2) accuracy level. Although all neces

sary ingredients to deriveP thr
O(a2) have been calculated a lon

time ago,P thr
O(a2) has never been presented in this compl

form in the literature before. Using the optical theorem it c

be easily checked thatP thr
O(a2) correctly reproduces the well

known expression for the heavy lepton pair production cr
section ine1e2 annihilation in the nonrelativistic limit; see
Eq. ~36!.

It is an interesting fact that the result forP thr
O(a2) can be

obtained directly from the one- and two-loop results, Eqs.~8!
and ~9!, by the replacement

ln~2 ib!→H~a,b![g1 ln~2 ib!1CS 12 i
a

2b D
5 ln~2 ib!2

2

a2 A~a,b!. ~14!

The functionA resums the nonrelativistic vacuum polariz
tion diagrams with exchange of two and more photons
tween the electron-positron pair and therefore represents
sum of the leading contributions forb→0 of all vacuum
polarization diagrams with three and more loops in conv
tional QED perturbation theory. As we will see in Sec. I
the functionA contains terms of ordera3 and higher fora
!ubu, where conventional perturbation theory is valid. Ho
ever, if ubu&a, then A is of order a2. For 0,b!a the
function A develops a logarithmic singularity
-

e

e
n

s

-
he

-

A~a,b! 5
ubu!aa2

2 F lnS i
2b

a D2gG1O~ab!, ~15!

which cancels the lnb singularity from the two-loop expres
sion ~9!. At this point it is illustrative to examine the limits
a!b andb!a for the functionH, defined in Eq.~14!, for
real and positive values ofb:

H~a,b! 5
a!b

ln~2 ib!1OS a

b D , ~16!

H~a,b! 5
b!a

lnS a

2 D1g2 ip1OS b

a D . ~17!

It is evident that the functionH interpolates between a lnb
behavior in the region where conventional perturbat
theory is valid and a constant with a logarithm ofa for

b/a→0. This leads to a finite value forP thr
O(a2) at the thresh-

old point. As we will see in the next section,P thr
O(a2) has

singularities at the positronium energy levels, indicating t
the breakdown of conventional perturbation theory is direc
related to the formation of bound states of the virtuale1e2

pair @13#.
Based on result~12! and the relation~5! we are now able

to define a renormalized expression for the zero-dista
Green functionGE

0(0,0):

GE
R~0,0![

M2

2ap
P thr

O~a2!~q2!. ~18!

As we will show in Secs. III and IV, this renormalized zer
distance Green function can be used for the calculation
higher-order corrections in time-independent perturbat
theory.

For completeness we also present the QED vacuum
larization function withO(a2) accuracy for all energies,

PQED
O~a2!~q2!5P1 loop~q2!1P2 loop~q2!1A~a,b!. ~19!

For the convenience of the reader we give the expression
P1 loop andP2 loop valid for all energies@17–19#,
P1 loop~q2!5S a

p D H 823b2

9
1

b~32b2!

6
ln~2p!J , ~20!

P2 loop~q2!5S a

p D 2H 18213b2

24
1

b~523b2!

8
ln~2p!2

~12b!~33239b217b217b3!

96
ln~2p!2

1
b~231b2!

3
@2 ln~12p!ln~2p!1 ln~2p!ln~11p!1Li2~2p!12Li2~p!#

1
~32b2!~11b2!

12
@2 ln~12p!ln~2p!21 ln~2p!2ln~11p!14 ln~2p!Li2~2p!

18 ln~2p!Li2~p!26 Li3~2p!212 Li3~p!23z3#J , ~21!
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where

p[
12b

11b

and Li2, Li3 denote the di- and trilogarithms@20#. Expression

~19! can be easily derived fromP thr
O(a2) , Eq. ~12!, by replac-

ing its one- and two-loop QED contributions in the lim
b→0 @first line of Eq.~12!# by the corresponding one- an
two-loop expression for all energies, Eqs.~20! and ~21!.
Away from threshold, where conventional multiloop pertu

bation theory can be applied,PQED
O(a2) has O(a2) accuracy

because is contains the complete one- and two-loop Q
vacuum polarization contributions and because the func
A is of higher order; in the threshold region, on the oth

hand,PQED
O(a2) reduces toP thr

O(a2) plus one- and two-loop con
tributions}abn11 and}a2bn (n>1), respectively, which
represent terms beyondO(a2) accuracy forubu&a. The

reader should note thatPQED
O(a2) vanishes atq250 and is an

analytic function inq2 except at poles and branch cuts, a
satisfies the dispersion relation

PQED
O~a2!~q2!5

q2

p E
2`

` dq82

q82

1

q822q22 i e
Im PQED

O~a2!~q82!.

~22!

The explicit form of ImPQED
O(a2) in the threshold region will

be presented in Sec. III. For the use and interpretation
formula ~19! see also Sec. V.

III. EXAMINATION OF THE VACUUM POLARIZATION
FUNCTION IN THE THRESHOLD REGION

In this section we analyze the properties of the vacu
polarization function forubu!1 above and below the thresh
old pointq254M2. Compared to an older work on the sam

FIG. 1. The O(a2) corrections to the vacuum polarizatio
function in the threshold region with and without the contributio
contained in the functionA, Eq. ~13!, in the kinematic region
0,b,2a above the threshold. The solid line denot
p2/a2 Re@P2 loop1A#, the dashed linep2/a2 ReP2 loop, the
dashed-dotted linep2/a2 Im@P2 loop1A# and the dotted line
p2/a2 Im P2 loop. The value of the fine structure constant is tak
as a51/137. P2 loop represents the two-loop contribution to th
vacuum polarization function and is displayed in Eqs.~9!
and ~21!.
D
n
r

of

subject@13# we are not so much interested in general pro
erties of perturbation theory in the presence of bound s

formation, but in the explicit form and behavior ofP thr
O(a2) .

In particular, we focus on the size of theO(a2) contribu-
tions. We also would like to mention that the vacuum pol
ization function has been studied in a similar way in@10#. In
the latter publication, however, a different definition for th
vacuum polarization is employed; only the positroniu
ground state energy is considered and the contribution
portional toab is missing. We will come back to this poin
later. Comparing the methods used in@10# with the effective
field theoretical approach employed in this work makes
elegance of the latter technique obvious.

We start in the kinematic region above threshold wh
a!b!1. Here, as mentioned in the previous section,
one- and two-loop results, Eqs.~7!–~9!, are reliable. This is
consistent with the fact that the functionA contains only
contributions of ordera3 and higher,

A~a,b! 5
a!b a2

2 (
n52

`

znS i
a

2b D n21

5a3F i

24

p2

b G2a4F z3

8b2G1OS a5

b3D . ~23!

Thus, for practical applications in this kinematic region t
contributions of the functionA can be neglected.~See also
the discussion in Sec. V.! One might think that fora'b the
one- and two-loop expressions should still represent an
propriateO(a2) prediction, because the radius of conve
gence of the series on the RHS of Eq.~23! is ubu5a/2 @21#.
However, as illustrated in Fig. 1, fora'b the contributions
coming from the functionA are already of ordera2/p2 and
thus should be included ifO(a2) accuracy is intended. Fo
even smaller velocities, of course, the contributions fromA
are essential because they cancel the divergent lnb term
from the two-loop expressionP2 loop; see Eqs.~9! and ~15!.

Therefore the value ofP thr
O(a2) at the threshold point is finite

and reads9 (a51/137)

P thr
O~a2!~q2→4M21 !

5S a

p D 8

9
1a2F2

1

2
ln a2

1

2
g

1
1

4 p2 S 32
21

2
z3D1

11

32
2

1

4
ln 21 i

p

2 G
50.89S a

p D1S 20.362
1

2
ln a1 i

p

2 Da2

50.89S a

p D1S 2.101 i
p

2 Da2. ~24!

9The plus sign in the argument ofP thr
O(a2) , Eq. ~24!, indicates that

the expression on the RHS of Eq.~24! represents only a right-side
limit on the realq2 axis.
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It is evident from Eq.~24! and Fig. 1 that the size of th
O(a2) corrections in the threshold region is of ordera2

rather thana2/p2, whereas theO(a) contribution is of order
a/p. This can be understood from the fact that theO(a)

contribution inP thr
O(a2) comes entirely from the one-loop re

sult P1 loop, Eq. ~8!, and therefore originates from momen
beyond the scale of the electron mass. High momenta c
tributions are expected to be of ordera/p if no ‘‘large loga-

rithms’’ occur.10 The largeO(a2) contributions toP thr
O(a2) ,

on the other hand, arise from the interplay of the logarit
of the velocity inP2 loop, Eq. ~9!, and the contributions from
the instantaneous Coulomb exchange of two and more
gitudinal photons between the virtual electron-positron p
For small velocities the latter effects generate a logarithm
the velocity with an opposite sign, which cancels the log
rithm in P2 loop. We therefore conclude that the largeO(a2)
contributions are of long-distance origin. This is particula
obvious for the lna term which could never be generated
short distances.11 At this point it is mandatory to mention
that the phenomenon that the perturbative series for thr
old and bound state quantities is often an expansion ia
rather thana/p can be observed throughout the literature a
the textbooks on this subject. A well-known example is t
perturbative series describing the energy levels of the Hyd
gen atom. Nevertheless, we find it important to emphas
this phenomenon here in order to illustrate the different
havior of perturbation theory for bound state and thresh
quantities compared to high energy processes and to pre
for the large numerical size of theO(as

2) corrections calcu-
lated in Sec. IV.

The situation fora!ubu!1 below threshold is similar to
the one above threshold. Here, the one- and two-loop co
butions from conventional perturbation theory, Eqs.~7!–~9!,
provide a viable prediction, because the contributions fr
the functionA are of ordera3 and higher. They are beyon
the intended accuracy and can be neglected.~See also the
discussion in Sec. V.! On the other hand, it is obvious tha
the one- and two-loop results are not sufficient for energ
close to the positronium bound state energies,

b5 i
a

2n
⇔E52

Ma2

4n2 ~n51,2,3,...!, ~25!

because the vacuum polarization function is expected to h
poles at those energy values. Therefore the full expres

10For comparison the reader might consider the well-known o
and two-loop contributions to the anomalous magnetic momen
the electron @18,22#, ge225(a/p)20.66(a/p)21O„(a/p)3

….
Here, long-distance effects from thee1e2 threshold do not play
any role. Thereforege22 can be regarded as a typical sho
distance quantity with no ‘‘large logarithms.’’

11As explained during the matching procedure carried out in S

II, the O(a2) contributions ofP thr
O(a2) actually contain short- and

long-distance effects. Although a separation between both type
effects is in general scheme dependent, it is fair to say that
long-distance contributions are dominating in size compared to
short-distance ones for a reasonable separation scheme. It is
fore justified to regard theO(a2) contributions as long-distanc
dominated as far as their numerical size is concerned.
n-

n-
r.
f
-

t

h-

d
e
o-
e
-
d
are

ri-

s

ve
on

for P thr
O(a2) , Eq.~12!, must be employed. It is straightforwar

to check thatP thr
O(a2) indeed has poles at the positroniu

energy levels@13#, leading to the following Laurent expan
sion at the bound state energiesEn52 Ma2/4n2 (n
51,2,3,...),

lim
E→En

P thr
O~a2!~q2!5

Ma4

4n3

1

En2E2 i e
1S a

p D 8

9
1a2@an#

1O~En2E!, ~26!

where

an[2
1

2
ln a1

1

2 F1

n
1 ln n2 (

i 51

n21
1

i G1
1

4p2 S 32
21

2
z3D

1
11

32
2

1

4
ln 2. ~27!

For completeness we also present the corresponding Lau
expansion for the renormalized zero-distance Green func
based on definition~18!,

lim
E→En

GE
R~0,0!5

uCn~0!u2

En2E2 i e
1

4

9

M2

p2 1
M2a

2p
@an#

1O~En2E!. ~28!

As expected, the residues at the bound state energies
equal to the moduli squared of the normalizedl 50 Coulomb
Schrödinger wave functions at the origin,

uCn~0!u25
M3a3

8pn3 . ~29!

In Eqs.~26!–~28! we have also displayed the constant ter
of the Laurent expansion. These constants are relevan
higher-order corrections to the positronium energy levels
to the wave functions at the origin. The size of theO(a2)
corrections in these constant terms is@similar to theO(a2)
contributions above threshold# of order a2 rather than
a2/p2, indicating again the long-distance character of t
O(a2) corrections. In Table I we have displayed the nume
cal values of an for the radial quantum numbersn
51,2,3,4,5. It is an interesting fact that then→` limit of an
exists,

lim
n→`

a2@an#5a2F2
1

2
ln a2

1

2
g1

1

4p2 S 32
21

2
z3D

1
11

32
2

1

4
ln 2G , ~30!

-
of

c.

of
e
e
re-

TABLE I. The numerical value for the constantsan for the
radial quantum numbersn51, 2, 3, 4, 5 and forn→` with a
51/137.

n 1 2 3 4 5 `

an 2.89 2.48 2.35 2.29 2.25 2.10
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and coincides with theO(a2) contributions of RePthr
O(a2)(q2

→4M21), Eq. ~24!. The numerical value for limn→` an is
also presented in Table I.

To illustrate the importance of the constantsan in time-
independent perturbation theory~TIPT!, we recalculate the
O(a6) vacuum polarization effects in the single photon a
nihilation contributions to the ground state triplet-singlet h
perfine splitting~HFS! of the positronium, which were, to
our knowledge, considered for the first time in@10,11#.
These vacuum polarization contributions to the HFS in
energy levels of the positronium system arise from the ef
that the bound triplet (3S1 , JPC5122! e1e2 pair can anni-
hilate into a virtual photon for a time period of order 1/M ,
whereas the singlet (1S0 , JPC5021! cannot. If the virtual
photon energy is approximated byAq252M , this annihila-
tion process leads to ad-function kernel in the configuration
space representation~corresponding to a constant kernel
momentum space! with the form

Hann~xW !5
2ap

M2 d~3!~xW !, ~31!

which represents a relativistic correction to the nonrelativ
tic Hamiltonian in Eq.~3!. Hann(xW ) can now be used in

TIPT. Taking into account thatP thr
O(a2) containsO(a) as

well as O(a2) contributions we have to apply second- a
third-order TIPT to obtain all relevantO(a6) contributions
to the HFS. The formal result for theO(a6) energy shift for
the triplet states with radial quantum numbersn and with l
50 due toHann reads

dEann,n
a6

5H (
lÞn

E ^nuHann

u l &^ l u
En2El

Hannun&

1 (
mÞn

E (
kÞn

E ^nuHann

um&^mu
En2Em

Hann

uk&^ku
En2Ek

3Hannun&J
O~a6!

, ~32!

where u i &, i 5 l ,m,n,k, represent normalized~bound state
and free scattering! eigenfunctions to the positronium Schr¨-
dinger equation with the eigenvaluesEi . The symbol$%O(a6)
indicates that onlyO(a6) contributions are taken into ac
count. It is evident from the form ofHann(xW ) that only the

zero-distance Green function is relevant fordEann,n
a6

,

(
lÞn

E ^0u
u l &^ l u

El2En
u0&5(

lÞn

E uC l~0!u2

El2En

5 lim
E→En

FGE
0~0,0!2

uCn~0!u2

En2E2 i eG . ~33!

However, relation~33! still contains divergences@see Eq.
~5!#. As we have pointed out in Sec. II, these divergen
indicate that nonrelativistic quantum mechanics is not
pable of describing physics if the relative distance of
-
-

e
ct

-

s
-

e

electron-positron pair is smaller than the inverse elect
mass. Therefore, we have to replaceGE

0(0,0) in relation~33!
by its renormalized versionGE

R(0,0), Eq. ~18! @using Eq.
~12!#, which describes short-distance physics properly. T

final expression fordEann,n
a6

then reads

dEann,n
a6

5uCn~0!u2H F2ap

M2 G2S 2
M2a

2p
anD

1F2ap

M2 G3S 2
4

9

M2

p2 D 2J
5

Ma6

4n3 H 1

2
ln a2

1

2 S 1

n
1 ln n2 (

i 51

n21
1

i D
1

1

4p2 S 13

81
1

21

2
z3D2

11

32
1

1

4
ln 2J . ~34!

For the ground state (n51) theO(a6) vacuum polarization
contribution to the HFS then reads

dEann,1
a6

5
Ma6

4 H 1

2
ln a1

1

4p2 S 13

81
1

21

2
z3D2

27

32
1

1

4
ln 2J .

~35!

Our result differs from the one presented in@10,11#12 by the
amountMa6/16. The discrepancy comes from the fact th
in @10,11# the contribution proportional toab in the one-loop
vacuum polarization has not been taken into account.13

Before we turn to applications of our results in the conte
of QCD, we do not want to leave unmentioned that the le
ing contributions to the normalized cross section for prod
tion of a heavy-lepton–antilepton pair~with lepton massM !
in e1e2 collisions ~via a virtual photon! in the threshold

region can be recovered fromP thr
O(a2) by means of the optica

theorem@14,23#,

Rthr
L1L2

5
s~e2e1→g*→L1L2!

spt

5
3

a
Im P thr

O~a2!~q2!5
6p

M2 Im GE
R~0,0!

5
6p2

M2 (
n51

`

uCn~0!u2d~E2En!

1Q~E!
3

2

ap

12expS 2
ap

b D , ~36!

12In @11# the authors corrected an error in the result presente
@10#. In our comparison we refer to the corrected result from@11#.

13This can be easily seen by comparing Eq.~33! of @10# with Eq.
~8! in this work for

qn51
2 5S2M2

Ma2

4 D 2

⇔bn515 i
a

2
1O~a3!.

This shows that at bound state energies the one-loop contributio
the vacuum polarization function also contains terms of ordera2.
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wherespt represents the point cross section and only fin
state interactions are taken into account.

IV. DARWIN CORRECTIONS IN QCD

In the previous section we have shown that the size of
O(a2) corrections to the QED vacuum polarization functi
in the threshold region is of ordera2 rather thana2/p2.
Although this fact is important for precision tests of QED14

it does not lead to theoretical concerns about the con
gence of the perturbative series because of the smallne
the fine structure constanta and because QED is not asym
totically free.

In the framework of QCD, however, the situation is com
pletely different: The coupling is much larger and even b
comes of order one for scales much lower than 1 G
Therefore, the fact that the size of theO(as

2) ~next-to-next-
to-leading order! corrections in the threshold region might b
of order as

2 rather thanas
2/p2 is an extremely importan

theoretical issue because this would lead to correction
order 1%–25% rather than 0.1%–2.5% foras50.1– 0.5.
Here, two natural questions arise: What scale should
used in the strong coupling, and for which heavy-quar
antiquark systems do theO(as

2) corrections represent contr
butions to the asymptotic perturbation series in the conv
gent regime? These questions will be addressed in
following section.

To be more specific we will calculate theO(CF
2as

2) Dar-
win corrections to the~S-wave, l 50! wave functions of a
bound heavy-quark–antiquark pair at the origin and to
heavy-quark–antiquark pair production cross section
e1e2 annihilation~via a virtual photon! in the threshold re-
gion. A presentation of allO(CF

2as
2) corrections including

all kinematic and relativistic effects will given in a subs
quent publication. The corresponding uncorrected quant
are the well-known exact solutions to a pure Coulomb-l
nonrelativistic quark-antiquark system described by a Sch¨-
dinger equation with the QCD potentialVQCD(r )
52CF as /r , whereCF5(Nc

221)/2Nc54/3.
The Darwin interaction is generated in the nonrelativis

expansion of the Dirac equation. In the configuration-sp
representation it is proportional to ad function and reads15
l-

e

r-
of

-
.

of

e
–

r-
e

e
n

s

o

e

HDar~xW !5
CFasp

MQ
2 d~3!~xW !. ~37!

A practical application for the corrections to the bound st
wave functions at the origin is the leptonic decay rate of
J/c and theY(1S) and ~maybe! of the first few excited
states of theY family, whereas the corrections to the cro
section would be relevant fort t̄ production at the NLC. We
explicitly mention those applications in this context becau
it is believed that for them nonperturbative~in the sense ‘‘not
calculable analytically from first principles in QCD’’! effects
are either well under control or even negligible@25,14#. But,
of course, these corrections can be applied to other he
quark–antiquark systems as well, at least in order to ch
their size. At this point we want to emphasize that we do
intend to present a thorough phenomenological analysi
this work. The primary aim is to use theO(CF

2as
2) Darwin

corrections to illustrate the typical size of the complete~and
yet unknown! O(as

2) corrections for thet t̄ , b b̄ and c c̄
systems. Their actual numerical value and even their s
cannot, of course, be predicted at the present stage.

To keep our analysis transparent we ignore allO(as) cor-
rections, the effects from the running of the strong coupl
and also nonperturbative contributions like the gluon co
densate. The latter effects are well known and have b
treated in a large number of earlier publications. We furth
neglect the width of the quarks and treat them as stable
ticles for the most part in the following analysis. From th
technical point of view the calculations of theO(CF

2as
2) Dar-

win corrections are identical to the corresponding QED c
culations, which means that we use time-independent pe
bation theory. However, we have to take care about
correct implementation of the number of colors,Nc53, and
the group theoretical factorCF . In the following the super-
script ‘‘QCD’’ indicates that the corresponding quantity
obtained from the QED expression by the replacem
a→CFas . It is then straightforward to determine th
O(CF

2as
2) Darwin corrections to the modulus squared of t

l 50 bound state wave functions at the origin (n
51,2,3,...),
he O

e

duCn
QCD~0!uDar

2 522uCn
QCD~0!u H CFasp

MQ
2 lim

E→En
QCD

FGE
R,QCD~0,0!2

uCn
QCD~0!u2

En
QCD2E2 i eG J

O~C
F
2a

s
2!

52uCn
QCD~0!u2CF

2as
2an

QCD,

~38!

14As far as tests of QED in thet1t2 system in the threshold region are concerned the present experiments do not even reach t~a!
~next-to-leading order! accuracy level. This can be easily seen from the fact that the complete threshold region for thet1t2 system,ubu
&a⇔uAq222mtu&mta

250.1 MeV, still lies within the limits on the tau mass itself,mt51777.0020.27
10.30 MeV @24#. Thus only experiments

on electron and muon systems can be regarded as precision tests of QED in the threshold regime.
15Compared to the Darwin interaction known from the hydrogen atom the expression on the RHS of Eq.~37! is a factor of 2 larger becaus

both quark-antiquark-gluon vertices involved in the gluon exchange contribute.
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where the symbol$%O(C
F
2a

s
2) indicates that onlyO(CF

2as
2)

corrections are taken into account.16 The calculation of the
O(CF

2as
2) Darwin corrections to the quark-antiquark cro

section in the threshold region is more involved. Here,
apply the optical theorem, Eq.~36!, to the corrections of the
zero-distance Green function themselves:

dGE,Dar
R,QCD~0,0!52

CFasp

MQ
2 @GE

R,QCD~0,0!#2. ~39!

TheO(CF
2as

2) Darwin corrections to the cross section abo
threshold then read

dRthr,Dar
QQ̄ 5NceQ

2 6p

MQ
2 Im GE

R,QCD~0,0!

3H 2
2CFasp

MQ
2 Re GE

R,QCD~0,0!J
O~C

F
2a

s
2 ,CFasb!

5Rthr
QQ̄$2Re P

thr

O~CF
2as

2
!,QCD

~q2!%O~C
F
2a

s
2 ,CFasb! ,

~40!

whereRthr
QQ̄ represents the ‘‘Sommerfeld factor’’~sometimes

also called the ‘‘Fermi factor’’!,

Rthr
QQ̄5NceQ

2 6p

MQ
2 Im GE

R,QCD~0,0!

5NceQ
2 3

2

CFasp

12expS 2
CFasp

b D
5NceQ

2 3

2
b expS CFasp

2b DGS 11 i
CFas

2b DGS 12 i
CFas

2b D
~41!

andeQ denotes the electric charge of the heavy quark. Be
threshold we have to determine the corrections to the r
dues ofGE

R,QCD(0,0) at the bound state energies, where
shown above the corresponding bound state poles have
subtracted. This calculation is straightforward and leads
the corrections to thel 50 bound state wave functions at th
origin presented in Eq.~38!. It is an interesting fact that Eq
~40! allows for the calculation of the shifts of theQQ̄ bound
state energies due to the Darwin interaction. To show this
rewrite the sum of the Sommerfeld factor, Eq.~41!, and the
contribution involving the digamma function of th
O(CF

2as
2) Darwin corrections above threshold@see Eqs.~13!,

~12! and ~40!# as

16Equation~38! also generatesO(CFas) corrections which differ
from the well-knownO(CFas) corrections generated by the~1
24CFas /p) correction factor@26#. Adding up all theO(CFas)
corrections and the corresponding renormalization constants w
course yield the correct result. The same remark holds for the re
for the cross section above threshold, Eq.~40!.
e

w
i-
s
be

to

e

Rthr
QQ̄H 11

CF
2as

2

4 FCS 11 i
CFas

2b D1CS 12 i
CFas

2b D G J
→NceQ

2 3

2
b expS CFasp

2b DGS CF
2as

2

4
111 i

CFas

2b D
3GS CF

2as
2

4
112 i

CFas

2b D . ~42!

It can be easily checked that the functionG(CF
2as

2/411
2 i CFas /2b) develops poles at the energies17

Ẽn
QCD[En

QCD1dEn,Dar
QCD ~n51,2,3,...!, ~43!

where thedEn,Dar
QCD represent the energy shift of thel 50

Coulomb energy levels with the radial quantum numben
generated by the Darwin interaction,

dEn,Dar
QCD 5^nQCDuHDarunQCD&

5uCn
QCD~0!u2

CFasp

MQ
2 5

MQCF
4as

4

8n3 . ~44!

At this point we also want to emphasize that the ln(CFas) and
digamma contributions occurring in Eqs.~38! and ~40! are
not related to the running of the strong coupling. These te
arise because two scales are relevant in the threshold re
the heavy quark massMQ and the relative momentum of th
quark-antiquark pair}CFasMQ @27#. So far no renormaliza-
tion group argument has been found to determine these l
rithmic terms to all orders ina in the sense of a leading
logarithmic resummation. It should also be noted that th
also exist ln(CFas) contributions induced by the running o
the strong coupling. The determination of these contributio
to theO(as

2) corrections to the wave functions and the cro
section in the threshold region is beyond the scope of
work and will be addressed in a future publication. T
ln(CFas) contributions to theO(as) corrections induced by
the running of the strong coupling have been discussed
@28,25#.

Before we turn to the discussion on the size of t
O(CF

2as
2) Darwin corrections we have to address the qu

tion of which scale one should use in the strong coupli
Strictly speaking, a final answer to this problem would r
quire anO(as

3) analysis, which is beyond the scope of th
work. However, one can find simple arguments that the sc
in the strong couplings of expressions~38! and ~40! should
be of the orderCFasMQ , which will be called ‘‘the soft
scale’’ in the remainder of this work. We would like to re
mind the reader that the scale of the strong coupling in

unperturbed~pure Coulomb! quantitiesuCn
QCD(0)u2 andRthr

QQ̄

is of the order of the soft scale. This is obvious for the wa
functions of the ground state and the first few excited sta

of
ult

17It should be noted that the (124CFas /p) correction factor of
the cross section is irrelevant for shifts of the bound state ener
because the former represents a global multiplicative short-dista
factor.
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TABLE II. The relativeO(CF
2as

2) Darwin corrections to the moduli squared of thel 50 bound state wave
functionsDC,n are given for thet t̄, bb̄ andcc̄ systems, respectively. Displayed are the smallest and lar
values for the range ofas values given below Eq.~45! for the radial quantum numbersn51, 2, 3, 4 and for
n→`.

n 1 2 3 4 `

DC,n
t t̄ 20.05/20.04 20.04/20.03 20.03/20.02 20.03/20.02 20.02/20.02

DC,n
b b̄ 20.20/20.11 20.09/20.06 20.06/20.05 20.05/20.04 20.02/10.01

DC,n
c c̄ 20.34/20.17 20.10/20.09 20.06/20.01 20.05/10.03 20.01/10.15
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the
and for the cross section in the kinematic regionb'CFas
because they describe bound quark-antiquark pairs with r
tive momentum of orderCFasMQ . But it is also true for
highly excited states (n@1) and the cross section right at th
threshold due to ‘‘saturation’’ effects@28,25#; i.e. the scale of
the strong coupling is of orderCFasMQ although the kine-
matic relative momentum of the quark pair vanishes.18 To
understand that the scale of theO(CF

2as
2) Darwin corrections

should also be of order of the soft scale, let us have a clo
look at the origin of the strong couplings governing the
corrections: One power ofas comes from the Darwin in-
teractionHDar , and the other power ofas ~including the
ln(CFas) terms! originates from theO(as

2) contribution of

the vacuum polarization functionP
thr

O(CF
2as

2),QCD
. As men-

tioned in the previous section, the latter contribution
mainly of long-distance origin and therefore governed by
soft scale. In contrast to the pure Coulomb interaction, 1/pW 2,
the Darwin interaction is a constant in momentum space
consequently sensitive to both low and high momenta.
based on our previous observations of the domination
long-distance effects, we can assume that the scale of
strong coupling in the Darwin interaction should also be
soft scale rather than the heavy quark mass. The size o
strong coupling governing theO(CF

2as
2) Darwin corrections

of Eqs.~38! and~40! can therefore be estimated via the se
consistency equation

as5as~CFasMQ!, ~45!

which leads toas50.13– 0.16, 0.25–0.38 and 0.34–0.59 f
the top, bottom and charm quark systems, respectively.
latter ranges are obtained by using the modified minim
subtraction scheme (MS̄) definition for the strong coupling
the one-loop QCD beta function andas(Mz591.187 GeV)
50.125 and by taking twice and half the argument of t

18In @28,25# a proof for saturation is only given for the cros
section above the threshold point. An analogous proof for a hig
excited state or the cross section slightly below the threshold p
does, to our knowledge, not exist in the literature. Such a proo
however, much more more difficult due to the breakdown of tim
independent perturbation theory for the logarithmic kerneldV(r )
; ln(r)/r for high radial excitations~see e.g.@25#!. Nevertheless, we
find it plausible that saturation also takes place slightly below
threshold point because the cross section at the threshold poiq2

54MQ
2 should be well defined.
la-

er
e

e

d
t
f

he
e
he

he
l

e

strong coupling on the RHS of relation~45!. Further, the
mass values in Eq.~45! have been taken to be the pole va
ues. For the quark~pole! masses we have chosenMt

5175 GeV, Mb55 GeV and Mc51.7 GeV. The reader
should note that the prescription given above to calculate
size of the strong coupling is far from being unique. Depen
ing on the choice of the definition of the strong coupling, t
quark mass values or the number of loops in the QCD b
function, larger or smaller values foras might result. This
dependence on the prescription is particularly strong for
charm system.19 As a consequence the theoretical uncerta
ties quoted in this work should be more understood as g
guesses rather than strict theoretical limits. However,
think that the ranges of the strong coupling given above
good enough in order to illustrate the impact of theO(CF

2as
2)

Darwin corrections in particular fort t̄ production in the
threshold region. We also want to emphasize that our c
clusions for the perturbativity of the different heavy qua
systems do not depend on different prescriptions for
strong coupling.

In Table II the smallest and largest values for the relat
O(CF

2as
2) Darwin corrections to the moduli square

of the l 50 bound state wave functionsDC,n

[duCn
QCD(0)uDar

2 /uCn
QCD(0)u2 for the different heavy

quark systems are displayed for the ground states (n51)
and the first three radial excited states (n52,3,4), employ-
ing the ranges for the strong coupling as given bel
Eq. ~45!. For illustration the corresponding value for (n→`)
is also presented. The absolute values of the correction
the ground states amount to 4%–5% for thet t̄ , 11%–20%
for b b̄ and 17%–34% for thec c̄ system. It is an interesting
fact that for theb b̄ andc c̄ systems the size of the correc
tions is rapidly decreasing for higher excited states. In p
ticular, the sensitivity of the corrections to the different va
ues ofas seems to be surprisingly small for the excited sta
in the b b̄ andc c̄ systems. We will come back to this poin
later.

In Fig. 2a and 3a,b the relativeO(CF
2as

2) Darwin correc-
tions to the~stable! quark-antiquark production cross sectioly

nt
s,
-

e

19As an example, using the two-loop QCD beta function results
as50.13– 0.17, 0.27–0.44 and 0.38–0.76 for the top, bottom
charm systems, respectively. At this point it is clearly obvious t
the situation for the charm system is rather hopeless as far as
question of perturbativity is concerned.
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DRQQ̄[dRthr,Dar
QQ̄ /Rthr

QQ̄ are displayed above the thresho
point for the three heavy quark systems in the range 0,b

,CFas . @For t t̄ production this corresponds to the ener
range 0,E,5 ~8! GeV for as50.13 ~0.16!.# The solid
~dashed! lines correspond to the lower~upper! as value
given below Eq.~45!. For the t t̄ system the size of the
relative corrections is quite stable between21.9% and
21.0% with the tendency to decrease in magnitude for lar
velocities. It is striking that the dependence of the corr
tions on the changes in theas value is weaker for large
velocities~0.3% forb50 and 0.05% forb5CFas!. For the
b b̄ system the corrections vary between22% ~lower value!
and 15% ~upper value! where the larger values occu
for larger velocities. In contrast to the top system the
pendence of the corrections on the changes in theas value
~3% for b50 and 5% forb5CFas! increases for large
velocities. This indicates that the perturbative approa
employed in this work works better for thet t̄ than for
the b b̄ system. For thec c̄ system, on the other hand, th
dependence on the changes inas is tremendous. Dependin
on the size of the coupling the corrections vary from21%
to 115% for b50 up to 13% to 126% for b5CFas ,
drawing a rather uncomfortable picture for the perturb
tivity in the charm system. For the case oft t̄ production
we have also plotted the corrections for a finite widthG t
51.5 GeV ~see Fig. 2b! in the energy range210 GeV,E
,110 GeV in order to demonstrate the impact of the la
top quark width on theO(CF

2as
2) Darwin corrections. This

has been achieved by the naive replacementE→E1 iG t in
Eqs.~40! and~41!. We want to mention that the inclusion o
a finite width by this naive procedure does not represen
consistent treatment at theO(as

2) accuracy level. However

FIG. 2. The relativeO(CF
2as

2) Darwin corrections to thet t̄
production cross section in the threshold region for the casesas

50.13 ~solid lines! and 0.16~dashed lines! for stable~a! and un-
stable~b! top quarks. The circles in~b! indicate the location of the
1S Coulomb energy level.
er
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h

-

e

a

we find that this approach is justified here in order to de
onstrate that the typical size of theO(CF

2as
2) Darwin correc-

tions is not altered if the top quark width is taken into a
count. In this case the relativeO(CF

2as
2) Darwin corrections

amount to26% to22% around the 1S peak and to22% to
21% for higher energies. For a more rigorous treatmen
the corrections due to the off shellness of the top quark
refer the reader to@29# and references therein.

Although the O(CF
2as

2) Darwin corrections discusse
above represent only a small part of the fullO(as

2) correc-
tions, we believe that their size can be taken as an orde
magnitude estimate for the sum of allO(as

2) corrections. We
therefore have to face the questions of whether or how fa
perturbative expansion in the strong coupling in the thre
old regime makes sense. Because we take the position
one should not automatically reject the possibility of a p
turbative treatment of long-distance effects, we think that
O(CF

2as
2) Darwin corrections determined in this work pro

vide us with important hints toward an acceptable answe
this fundamental question from the point of view of pertu
bation theory itself. There is no doubt that perturbati
theory in the strong coupling is still viable for thet t̄ system.
It has been shown in@14# by using more general argumen
that the large top quark mass and width serve as a scree
device which protects thet t̄ properties in the threshold re
gion from the influence of nonperturbative effects, maki
the t t̄ system the ‘‘hydrogen atom of the strong intera
tion.’’ Thus a perturbative treatment of thet t̄ system should
exhibit an excellent convergence. This is consistent with
observations from the previous discussions showing that
O(CF

2as
2) Darwin corrections for the top system are at t

FIG. 3. The relativeO(CF
2as

2) Darwin corrections to theb b̄ ~a!

andc c̄ ~b! production cross section in the kinematic region 0,b
,CFas above threshold. The solid line corresponds toas50.25

(0.34) and the dashed line toas50.38 (0.59) for the case ofb b̄

(c c̄) production.
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1628 57A. H. HOANG
level of a few percent for the most of the threshold region20

This, on the other hand, allows us to conclude that the th

retical uncertainty of all present analyses for the totalt t̄
cross section in the threshold region is at the few perc
level, because no fullO(as

2) treatment has ever been accom
plished there. Further, the theoretical uncertainty of suc
complete analysis would then be roughly 1%–2% around
1S peak and below several per mille for higher energi
This can be estimated by taking theas values presented be
low Eq. ~45! cubed @assuming that no scales lower tha
CFasMQ are relevant for the corrections beyond theO(as

2)
accuracy level# and by observing the sensitivity of th
O(CF

2as
2) Darwin corrections to changes in the values of t

strong coupling~see Fig. 2b!. To achieve an accuracy muc
below the percent level at the 1S peak a more rigorous trea
ment of the scale in the strong coupling governing theO(as

2)
corrections would be needed, i.e. anO(as

3) calculation.

As far as theb b̄ system is concerned, the situation

worse than for thet t̄ system. It has been shown in a numb
of classical papers@32–34# that a proper theoretical descrip
tion of the bottom system can only be achieved by tak
into account nonperturbative corrections, which cannot
calculated analytically from first principles in QCD. On th
other hand, it has been demonstrated in@25# that a quite
acceptable ‘‘parameter-free’’ description of the~S-wave, l

50! b b̄ bound states with low radial excitation is possib
by using perturbative calculations supplemented by non
turbative contributions in the form of the quark or the glu
condensates. However, the latter analyses~as far as correc-
tions to the moduli squared of the wave functions at
origin and to the cross section above threshold are c
cerned! were essentially based on formulas including on
the effects of the one-loop running of the strong coupl
and the globalO(as) correction factor (124CFas /p). The
question of whether theO(as

2) perturbative corrections lea
to a still converging series was not addressed explici
Equipped with the results for theO(CF

2as
2) Darwin correc-

tions, we are able to draw a rough picture concerning
latter question for the case of the moduli squared of thl
50 bound state wave functions at the origin. For the grou
state theO(as

2) corrections should be between 10% and 20
@where the actual sign of the corrections can only be de
mined by a completeO(as

2) analysis# with theoretical uncer-

20A comparison of the size of theO(CF
2as

2) Darwin corrections
with the O(CFas) corrections from the (124CFas /p) suppres-
sion factor is slightly misleading in this context because the la
represents a pure short-distance contribution. Therefore
O(CFas) correction should not be included in a discussion on
convergence in the perturbative description of long-distance cor
tions. However, for the convenience of the reader, the size of
largeO(CFas) corrections shall also be given. It has been shown
@7,30,31# in a two-loop analysis that the scale in the strong coupl
of theO(CFas) suppression factor ise211/24MQ in theMS scheme.
This results in24CFas /p5220%, 241% and264% for the
top, bottom and charm systems, respectively, using the one-
QCD beta function, the pole mass values given below Eq.~45! and
as(Mz591.187 GeV)50.125.
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tainties of order65% coming from the ignorance of th
actual scale of the strong coupling and other corrections
yond the O(as

2) level. This does not represent an ove
whelming convergence, but it is acceptable compared to
precision of experimental measurements@35# and it indicates
that an actual determination of allO(as

2) corrections would
lead to a considerable improvement of the precision of
theoretical description. It is remarkable that theO(CF

2as
2)

Darwin corrections seem to indicate that the size of
O(as

2) corrections including their sensitivity to changes
the value of the strong coupling is much smaller for high
excited states~see Table II!. Here, however, nonperturbativ
contributions get more and more out of control@33,34# and a
completeO(as

2) analysis is therefore necessary to give
trustworthy interpretation of this phenomenon. The latter
mark is also true for thec c̄ system.

Finally, we also want to mention thec c̄ system. In view
of the O(CF

2as
2) Darwin corrections, we can expect the si

of the completeO(as
2) corrections to the modulus squared

the ground state wave function at the origin to be at leas
the level of 15%–35% with theoretical errors which might
almost as large as the size of theO(as

2) corrections them-
selves.@Again we can estimate the size of the correctio
beyond theO(as

2) level by taking the long-distanceas val-
ues given below Eq.~45! cubed.# It is evident that in the case
of the c c̄ system the limits of perturbation theory a
reached or even exceeded. Even with a complete determ
tion of all O(as

2) corrections the theoretical uncertaintie
would not decrease considerably, which is obviously a c
sequence of the large size of the strong coupling. We th
fore conclude that it will be extremely difficult~if not impos-
sible! to achieve a perturbation theory based theoret
description for the charm system with uncertainties low
than several times 10% if there is no~unforeseen! cancella-
tion among different types of corrections.

To conclude this section there is a remark in order: F
the calculations of theO(CF

2as
2) Darwin corrections we used

the renormalized Green function at zero distances, Eq.~18!,
without any further explanation. This is slightly misleadin
because it implies that theO(CF

2as
2) Darwin corrections to

wave functions and cross sections can be uniquely separ
from all the otherO(CF

2as
2) corrections. As far as the lnas

contribution and the digamma term are concerned this
definitely true, but this is not the case for the constant ter
This is a consequence of the divergences which arise du
the calculations and which have to be renormalized. The
of our renormalized zero-distance Green function repres
one possible way to achieve this renormalization. Nevert
less, we think that our approach is justified in order to illu
trate the possible size of the completeO(as

2) corrections.
This view is also supported by the explicit results for
O(CF

2as
2) corrections to thel 50 wave functions at the ori-

gin and the cross section, which will be published shor
However, we want to emphasize that the latter considerat
do not affect the validity of the expressions for the vacuu
polarization function presented in Secs. II and III. There,
constants are correct due to proper matching to the well
tablished one- and two-loop expressionsP1 loop andP2 loop,
Eqs.~8! and ~9!.
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V. COMMENT ON THRESHOLD EFFECTS
FAR FROM THE THRESHOLD REGION

In this section we want to comment on the use and
interpretation of the expression of the QED vacuum po
ization function valid for all energies toO(a2) accuracy, Eq.
~19!.

We have shown in Sec. III that the functionA, which
represents the resummed expression for diagrams with
instantaneous Coulomb exchange of two and more long
dinal polarized photons~in Coulomb gauge! @see Eq.~13!#,
essentially has to be added to the one- and two-loop exp
sions for the vacuum polarization function in order
achieveO(a2) accuracy in the threshold regionubu&a. Far
from the threshold regime, however,A represents contribu
tions of ordera3 and higher and therefore is irrelevant. Th
is what we mean by using the term ‘‘valid for all energies
O(a2) accuracy,’’ but not more.

At this point the reader might be tempted to apply formu
~19!, as it stands, for an energy regime far from the thresh
in the belief A would represent higher-order informatio
which should improve the accuracy of the one- and two-lo
expressions calculated in the framework of conventional p
turbation theory. Let us illustrate such a scenario for
energy regime whereq2 is close to zero. In this kinemati
region, formula~19! can be expanded in terms of smallq2.
Taking into account only the first nonvanishing contributio
in q2/M2 and including only contribution up toO(a3) the
result reads

PQED
O~a2!~q2! 5

q2→0S a

p D 1

15

q2

M2 1S a

p D 2 41

162

q2

M2

1a3
p2

48
A q2

M21O~a4!, ~46!

where the numerical coefficient of theO(a3) coefficient is
p2/4850.21. The corresponding multiloop expression
cluding also the real first nonvanishing three-loop coeffici
~see@4# for details of the three-loop calculation! reads

PQED
3 loop~q2! 5

q2→0S a

p D 1

15

q2

M2 1S a

p D 2 41

162

q2

M2

1S a

p D 3F2
8687

13824
1

p2

3 S 1

8
2

1

5
ln 2D

1
22781

27648
z3G q2

M2 1O~a4!. ~47!

The numerical value of the constant term in the bracket
0.32. It is evident that theO(a3) contributions which come

from PQED
O(a2) and therefore contain information on the form

tion of positronium bound states are much larger than
real three-loop contributions. The ratio between the form
O(a3) contributions and the real three-loop result even
verges forq2→0. The overall conclusion of this scenar
would be that threshold~and therefore long-distance! effects
dominate not only in the threshold regime but also the
ergy region uq2u!4M2. This is obviously wrong. The
‘‘threshold effects’’ in Eq.~46! contradict the Appelquist-
e
-

he
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-

Carrazone theorem@36# and even represent contribution
nonanalytic atq250. The solution to this apparent parado

is thatPQED
O(a2) only describes the vacuum polarization fun

tion to O(a2) accuracy. All contributions of ordera3 or
higher have to ignored and do not represent proper hig
order contributions. This means that the contributions of
function A are necessary to achieveO(a2) accuracy in the
threshold region, but should be neglected if the vacuum
larization function has to evaluated far from the thresh
point.

To make the latter point more explicit, let us imagine th
the analytical form of the complete three-loop contributio
to the vacuum polarization function were known for all e
ergies~in the same sense as they are known for the one-
two-loop contributions,P1 loop and P2 loop!. We then could
try to determine the expression for the vacuum polarizat
function valid toO(a3) accuracy for all energies in the sam

way as we have determinedPQED
O(a2) , which is valid toO(a2)

accuracy for all energies. This would be achieved by mat
ing the three-loop expression for the vacuum polarizat
function to the correspondingO(a3) formula calculated in
NRQED in the same way as presented in Sec. II. T
vacuum polarization function valid toO(a3) accuracy for all
energies would then have the form21

PQED
O~a3!~q2!5P1 loop~q2!1P2 loop~q2!1P3 loop~q2!

1A~a,b!2a3F i
p2

24b G1D~a,b!. ~48!

In the second line of Eq.~48! the contributiona3@ i p2/24b#
has to be subtracted in order to avoid double counting in
threshold regime since

P3 loop~q2! 5
ubu!1

a3F i
p2

24b G1O~a3b0!. ~49!

It is therefore clear that far from threshold the second line
Eq. ~48! only contains contributions of ordera4 and higher

@see Eq.~23!#. Expanding nowPQED
O(a3) for small values ofq2

would give a result identical to the three-loop expression,
~47!. The large nonanalyticalO(a3) contribution which ap-
peared in Eq.~46! would be gone. It is obvious that this larg
contribution originates from the leading nonvanishing te
of P (3) in an expansion forubu!1 evaluated for smallq2.

These contributions survive inPQED
O(a2) , Eq.~19!, but are can-

celed inPQED
O(a3) , Eq. ~48!. Using the same line of argumen

it can easily be shown that all contributions of the functionA
would be canceled if formulas for the vacuum polarizati
function with successively higher accuracy would be det
mined.

21In Eq. ~48! D~a,b! denotes theO(a3) NRQED contributions,
including the necessary subtractions in order to avoid double co
ing. The actual form of these contributions is irrelevant here
cause we only want to discuss the largeO(a3) contributions in Eq.
~46!. However, it is straightforward to see thatD contains terms of
order a3 in the threshold regime, but is of ordera4 far from the
threshold point.
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The physical picture behind this cancellation can
drawn as follows: The contributions in functionA are gen-
erated by vacuum polarization diagrams with the instan
neous Coulomb exchange of two and more longitudinal p
tons, where the latter are defined in the Coulomb gauge
the threshold region the exchange of these longitudinal p
tons represents the dominant effect, whereas all the o
interactions, for simplicity reasons called ‘‘transverse’’ in t
following, can be neglected in a first approximation. A
though this approach is obviously not gauge invariant fr
the point of view of full quantum electrodynamics, the vi
lation of gauge invariance is vanishing in the nonrelativis
limit. This is not true, however, far from the threshold poin
There, contributions from longitudinal and transverse p
tons are equally important. Their individual sizes are extra
dinarily large but with different signs. Therefore, adding t
transverse contributions to the contributions of the funct
A the greater part of the large corrections will be cance
off, leaving the results which can be obtained from conv
tional ~multiloop! perturbation theory. This remains true
any level of accuracy. From this picture it should be cle
that neither effects from the formation ofe1e2 bound states
nor from the Coulomb rescattering, if the relative velocity
the e1e2 pair is much smaller than the speed of light, c
ever lead to large corrections of the vacuum polarizat
function far from the threshold region. There, the contrib
tions of the functionA represent unphysical~and gauge non-
invariant! contributions which cannot even be used to e
mate the size of the real higher-order corrections.22

We would like to remind the reader that the previous
guments are not applicable if a high number of derivatives
the vacuum polarization function below the threshold reg
is considered, (d/dq2)nP(q2), n@1. In the latter case
threshold effects are essential. This can be easily unders
from the relation

Mn~q2![S d

dq2D n

P~q2!;E dq82

q82

Im P~q82!

~q822q2!n . ~50!

For largen and uq2u!4M2 the high-energy contributions in
the dispersion integration are strongly suppressed, wh
leads to the domination of effects coming from the thresh
region. This fact is the foundation of QCD sum rule calc
lations. At this point we would like to take the opportunity
comment on a recent publication where QCD sum rules h
been applied to extractas and the bottom quark mass from
experimental data on theY resonances@8#. In this publica-
tion it is claimed thatO(as

2) corrections to the moment
Mn

QCD(0) have been calculated because~conventional! two-

loop QCD corrections to theb b̄ production cross section
have been included in the analysis. It should be clear fr
the discussions of Sec. IV that a two-loop calculation of
cross section is not sufficient to describe theO(as

2) correc-
tions to the cross section in the threshold region. In

22If applied to QCD our conclusion is essentially equivalent

arguments employed in@37,38# where the large effects of thet t̄
threshold on electroweak parameters proposed in@39# have been
criticized.
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analysis of@8# this can be easily seen from the fact that t
removal of the two-loop contributions~after subtraction of
the corresponding leading and next-to-leading threshold c
tributions! essentially has no effect on the results~see Table
4 in @8#!. The latter observation is taken as a ‘‘final test
the importance of higher-order corrections.’’ However,
shown in Sec. IV, theO(as

2) corrections to the cross sectio
in the threshold region, which contain a resummation of c
tributions to all orders in the number of loops, are expec
to be at the 10%–20% level and will therefore have a la
impact on QCD sum rule calculations in the largen limit.
The mistake in the arguments of@8# is that it is implicitly
assumed that the Sommerfeld factor, Eq.~41!, accounts for
the resummation of all long-distance effects. Therefore
corrections to expression~41! should be calculable by fixed
order loop calculations alone. This is true for theO(as)
short-distance correction factor (124CFas /p), which can
be extracted from a pure one-loop calculation, but this is
the case for higher-order corrections like theO(CF

2as
2) Dar-

win corrections calculated in Sec. IV. This fact will be dem
onstrated explicitly in a future publication, where a
O(CF

2as
2) corrections to the cross section will be present

In @8# it is also assumed that the effects of the running of
strong coupling in the Sommerfeld factor can be determin
by insertion of the effective running couplingaV , which
effectively incorporates the short-distance corrections of
QCD potential@40,41#, at the scaleMbb into the Sommer-
feld factor. We would like to emphasize that this approach
not justified for largen QCD sum rule calculations becaus
the important saturation effects are neglected in this pro
dure.@See the discussion below Eq.~44!.# As a consequence
the calculations presented in@8# are not only not at the
O(as

2) accuracy level but also include a systematic error
orderas and therefore contain much larger uncertainties th
presented there. The authors of@8# finally criticize an older
QCD sum rule calculation by Voloshin@7# on the same sub
ject, claiming that in@7# the magnitude of higher-order cor
rections was underestimated. In this point we agree with
authors of@8# because in@7# it is assumed thatO(as

2) cor-
rections have ‘‘no enhancement’’ in the largen limit. The
author of@7# therefore concludes that the entireO(as

2) cor-
rections can be parametrized by multiplying the express
containing the leading and next-to-leading@O(as)# effects
for Mn

QCD(0) @see Eqs.~6!, ~11! and ~24! of @7#, respec-
tively# with the global factor (11c/n), where the constantc
has to be determined from fitting the resulting formula to t
Y family data. The results of the fitting procedure a
as(Mz)50.10960.001, Mb5482767 MeV and c520.59
60.19, whereMb is the bottom quark pole mass andas is
the strong coupling in the MS̄scheme. The errors quoted i
@7# for as(Mz) andMb were derived by a combination of th
statistical errors with the difference in the central values
performing the fits, takingc50 and leavingc as a fit param-
eter. The error inc is statistical. The reason for the sma
errors@dMb /Mb50.1% anddas(Mz)/as(Mz) 51%# is the
strong dependence of the fitting formula@Eq. ~24! of @7## on
the parametersas „through terms proportional to (asAn)3

and exp@(asAn)2#… and Mb ~through a term proportional to
Mb

2n! and the assumptions that allO(as
2) corrections can be

parametrized in form of the global factor (11c/n), wherec
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is of order one. In the following we give some argumen
why the latter assumption is wrong and why the real error
the values ofas(Mz) andMb are much bigger than claime
in @7#: ~i! In @7# the range 8<n<20 is considered. According
to the fitted value forc this would correspond to relativ
O(as

2) corrections of about 10% and 5% forn58 and 20,
respectively, which shows that in@7# O(as

2) corrections be-
come smaller when the value ofn is increased. Because th
QCD sum rules are more and more sensitive to the (JPC

5122) b b̄ ground state for larger values ofn, this would

implicitly mean that theO(as
2) corrections to theb b̄ ground

state@Y(1S)# would be extremely small. We have explicitl
shown in this work that this assumption is not true by cal
lating the O(CF

2as
2) Darwin corrections. The latter correc

tions amount to 10%–20% for the modulus squared of

ground state wave function at the origin for a boundb b̄ pair
and are far from being small. We therefore conclude that
O(as

2) corrections to the formulas presented in@7# cannot be
parametrized in terms of a global factor with the form
1c/n). ~ii ! In @7# theO(as) corrections induced by the run
ning of the strong coupling have been included by tak
into account the logarithmic terms in the QCD potent
@40,41# using time-independent perturbation theory. This d
termines the effective scale of the strong coupling in
leading order contributions toMn

QCD(0). However, because
the O(as

2) corrections from the running of the strong co
pling have not been taken into account, there is still a rela
error of orderas in the actual value of this scale. Therefor
although the value ofas can be determined with high accu
racy in the fitting process, the actual value of the scale ofas
is still subject to higher order uncertainties.23 It can be easily
checked that this uncertainty results in a relative error
orderdas(Mz)/as(Mz);as(Mz);10% for the value of the
strong coupling at the scaleMz . ~iii ! Because in@7# only
O(as) corrections are included, the masses of theb b̄ bound
states~i.e. their bound state energies! are only taken into
account up to orderas

3 . O(as
4) contributions to the bound

state masses@corresponding to theO(as
2) corrections to the

leading order expressions forMn
QCD(0)# have not been taken

into account. It can be easily seen that thoseO(as
4) contri-

butions to the bound state masses would cause the fi
formula to depend on@Mb1terms of orderO(as

4)#2n rather
than justMb

2n . As a consequence the value ofMb extracted
in @7# really contains a relative error of order24 dMb /Mb

;as
4;0.5% – 2%. Taking into account the arguments~i!–

~iii ! we have to conclude that the real~theoretical! uncertain-
ties of theas(MZ) andMb values presented in@7# are about
an order of magnitude larger than claimed there. Only a co

23In @7# the value of the strong coupling at the scale of orde
GeV was determined asas(1 GeV)50.33660.011. However, the
scale 1 GeV is subject to unknown higher order corrections of o
as~1 GeV!'30% itself, i.e.as~160.3 GeV!50.33660.011.

24The scale of the strong coupling in the perturbative series for
bound state masses is of orderMbas rather thanMb . We therefore
have used the range of valuesas(CFasMb)50.25– 0.38 presented
below Eq.~45! for our estimate ofdMb /Mb .
s
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plete determination of allO(as
2) corrections toMn

QCD(0)
will lead to a reduction of these uncertainties.

VI. SUMMARY

In this work we have used the concept of effective fie
theories to calculate theO(a2) contributions to the QED
vacuum polarization function in the threshold region and
define a renormalized~i.e. finite! version of the zero-distanc
Coulomb Green function which can be used for higher or
calculations in textbook quantum mechanics tim
independent perturbation theory. In the framework wh
nonrelativistic quantum mechanics is part of an effective l
energy field theory~NRQED!, long-distance effects~coming
from typical momentum scales below the electron mass! are
determined completely by employing textbook quantum m
chanics calculations, whereas short-distance contribut
~coming from momentum scales beyond the electron ma!
are included via the matching procedure. For the latter c
tributions multiloop techniques~in conventional covariant
perturbation theory! have to be employed. We have demo
strated that the approach employed in this work represent
efficient method to merge sophisticated multiloop metho
with well-known textbook quantum mechanics tim
independent perturbation theory. From the physical poin
view this is achieved because the effective field theory c
cept allows for a systematic separation of long- and sh
distance physics at any level of precision. For our calcu
tions we have used the ‘‘direct matching’’ procedure whi
can be applied if the multiloop results to the quantity
interest are at hand. The direct matching allows for a qu
sloppy treatment of UV divergences in the effective fie
theory and, therefore, can be carried out with much less
fort compared to the conventional matching procedure. Ho
ever, the direct matching is of no value if quantities shall
calculated for which no multiloop expressions are availab

We have demonstrated the efficiency of our approach
calculating theO(a6) vacuum polarization effects in th
single photon annihilation contributions to the positroniu
ground state hyperfine splitting without referring back to t
Bethe-Salpeter equation. We found an error in an older
culation on the same subject. We have determined
O(CF

2as
2) ~next-to-next-to-leading order! Darwin corrections

to heavy-quark–antiquark bound state wave functions at
origin and to the heavy-quark–antiquark production cro
section ine1e2 annihilation ~into a virtual photon!. If the
O(CF

2as
2) Darwin corrections are taken as an order-o

magnitude estimate for the complete~yet unknown! O(as
2)

corrections, the typicalO(as
2) corrections for thet t̄ produc-

tion cross section can be expected at the few percent leve
most of the threshold region. Around the 1S peak they might
even amount to 5%. For the modulus squared of the gro
state wave function of a boundb b̄ pair @applicable to
Y(1S)#, theO(CF

2as
2) Darwin corrections are between 10%

and 20%, whereas the corresponding corrections for thec c̄
system are between 15% and 35%. The uncertainties a
from the ignorance of higher-order corrections, in particu
from the ignorance of the exact scale in the strong coup

er
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governing theO(as
2) corrections. We conclude that the d

termination of allO(as
2) corrections would represent a co

siderable improvement of the present precision of theoret
calculations to thet t̄ andb b̄ system in the threshold region
For thec c̄ system, on the other hand, this seems to be do
ful, a consequence of the large size of the strong coup
and the resulting bad convergence of the corresponding
turbative series.

Finally, we have also discussed whether the format
of positronium states can lead to large corrections of
QED vacuum polarization function far from the thresho
tt.
tt.

B

s.

s.
al

t-
g

er-

n
e

region and came to the conclusion that such correcti
do not exist.
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