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Low-energy constraints on new physics reexamined
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It is possible to place constraints on non-standard-model gauge-boson self-couplings and other new physics
by studying their one-loop contributions to precisely measured observables. We extend previous analyses
which constrain such nonstandard couplings, and we present the results in a compact and transparent form.
Particular attention is given to comparing results for the light-Higgs scenario, where nonstandard effects are
parametrized by an effective Lagrangian with a linear realization of the electroweak symmetry-breaking sector,
and the heavy-Higgs or strongly interacting scenario, described by the electroweak chiral Lagrangian. The
constraints on nonstandard gauge-boson self-couplings which are obtained from a global analysis of low-
energy data and CERN LEP or SLC measurements on theZ pole are updated and improved from previous
studies.@S0556-2821~97!01523-3#

PACS number~s!: 12.15.Lk, 12.39.Fe, 12.60.2i
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I. INTRODUCTION

Because of the extraordinary precision of electrowe
data at low energy and on theZ pole it is possible to place
constraints on models for physics beyond the standard m
~SM! by studying the loop-level contributions of the ne
physics to electroweak observables. Gauge-boson
interactions are a fascinating aspect of the SM, and the
ploration of this sector is still in its early stages. While th
sector is important in its own right, it is intimately related
the symmetry-breaking sector of the SM. Hence, we
strongly motivated to garner from the body of electrowe
precision data any and all available clues concerning th
heretofore more poorly understood sectors of the SM.

Currently all available precision data concerns proces
with four external light fermions~such ase1e2→Z*→ f f̄
at the CERNe1e2 collider LEP!. We follow the scheme of
Ref. @1# which organizes the calculation of these amplitud
in the following manner. First we calculatePT

gg(q2),
PT

gZ(q2), PT
ZZ(q2), andPT

WW(q2), i.e., the transverse com
ponents of thegg, gZ, ZZ, and WW two-point functions,
respectively. As well we must calculateG f f g(q2), G f f Z(q2) ,
and G f f 8W(q2), i.e., corrections to the gauge-boson-fermi
vertices. The two-point-functions and a portion of the ver
corrections are combinedvia the pinch technique@2–5# to
form the gauge-invariant effective charges,ē2(q2), s̄2(q2),
ḡ Z

2(q2), and ḡW
2 (q2). These effective charges contain th

major part of the higher-order corrections and are unive
to all four-fermion amplitudes.~Hence, this approach is es
pecially well suited to a global analysis of electroweak p
cision data.! The calculation of the four-fermion amplitude
570556-2821/98/57~3!/1577~14!/$15.00
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is then completed by adding the process-dependent ve
and box corrections. A more complete discussion is given
Sec. II. In fact, most of the technical details are provided
Sec. II, which allows us to be very much to the point in t
ensuing sections.

In the context of this paper all of the non-SM contrib
tions entervia the effective charges plus a form factor for th
Zb b̄ vertex. With the exception of this latter form factor, th
vertex and box corrections reduce to their SM values for
quantities we compute. This greatly simplifies the analys

In Sec. III the SM Lagrangian is extended by the additi
of energy-dimension-six@O(E6)# operators. The operator
are constructed from the fields of the low-energy spectr
including the usual SU~2! Higgs doublet of the SM; i.e.,
spontaneous symmetry breaking~SSB! is linearly realized.
The effective charges and theZbb-vertex form factor,d̄ b
@1#, are calculated in this scheme. In Sec. IV the electrow
chiral Lagrangian, in which there is no physical Higgs bos
and the symmetry breaking is nonlinearly realized@6#, is
discussed, and we repeat the calculation of the effec
charges andd̄ b . Then, in Sec. V, we specialize to a discu
sion of non-Abelian gauge boson couplings.

Numerical results are given in Sec. VI. We pay particu
attention to the uncertainties inherent in obtaining bounds
new physics from one-loop effects. First, the sensitivity
the data to the parameters of the effective Lagrangians
Sec. III and Sec. IV is estimated by considering the con
butions of only one new operator at a time. Then, bounds
non-SM contributions to gauge-boson self-couplings are p
sented accounting for limited correlations. Additionally w
consider some more complicated scenarios, and we com
the results from both the linear and the nonlinear mod
1577 © 1998 The American Physical Society
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1578 57S. ALAM, S. DAWSON, AND R. SZALAPSKI
II. LOW-ENERGY PARAMETERS
AND EFFECTIVE CHARGES

We begin by calculating the corrections to the gau
boson two-point functions as depicted by Fig. 1. Introduc
the transverse and longitudinal projection operators

PT
mn5gmn2

qmqn

q2
, PL

mn5
qmqn

q2
, ~1!

which possess the desirable properties

PT
mn1PL

mn5gmn, PTa
m PT

an5PT
mn ,

PLa
m PL

an5PL
mn , PTa

m PL
an505PLa

m PT
an , ~2!

we may write the result of the calculation of Fig. 1 as

2 iPV1V2

mn ~q2!52 iPT
V1V2~q2!PT

mn2 iPL
V1V2~q2!PL

mn ,

~3!

whereq2 is the four-momentum squared of the propagat
gauge bosons. Since we are considering processes whe
gauge-boson propagators are coupled to massless fer
currents, we need to consider only the transverse contr
tion, PT

V1V2(q2); the longitudinal contributions do not con
tribute by the Dirac equation for massless fermions. Equi
lently we can calculate2 iPV1V2

mn (q2) and retain only the

coefficient of2 igmn.
Next, we calculate vertex corrections as depicted in F

2. Using the pinch technique, a portion of the vertex corr
tions in Fig. 2~a! are combined with the two-point-functio
corrections. This standard technique@2–5# renders propaga
tor and vertex corrections separately gauge invariant. F
thermore, large cancellations which would occur between
propagator and vertex contributions are avoided.

For the SM contributions we use the results of Ref.@1#.
For the new-physics contributions which we consider in la
sections the discussion is very simple. All new-physics c
tributions are of the type depicted in Fig. 2~b!, where the
‘‘blob’’ denotes some nonstandard contribution to theWWg

FIG. 1. Higher-order contributions to theV1
mV2

n two-point func-
tions; V1V2 denotesgg, gZ, ZZ, or WW. Generically the ‘‘blob’’
may represent a contact term, a ‘‘bubble’’ or a ‘‘tadpole.’’

FIG. 2. Higher-order contributions to theV f1f 2 vertex where
V5g, Z, or W. Generically the ‘‘blob’’ in ~a! denotes a large va
riety of graphs. However, for the new-physics contributions wh
we discuss, all contributions arise from graphs of type~b!.
-
g

g
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-

.
-
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e

r
-

or WWZ vertex. These corrections can be divided into tw
pieces. One piece, which is independent of any ferm
masses, is purely a pinch term; the remaining contributio
which depend on the fermion masses, will remain as par
the vertex corrections. We will discuss these latter corr
tions later in this section.

For the moment we neglect the contributions of fermi
masses, and, following Ref.@7#, we write

2 iDGm
g f 1f 2~q!52 igm

1

2
~12g5!ĝI 3

f DGL
g~q2!, ~4a!

2 iDGm
Z f1f 2~q!52 igm

1

2
~12g5!ĝI 3

f DGL
Z~q2!, ~4b!

2 iDGm
W f1f 2~q!52 igm

1

2
~12g5!

ĝ

A2
DGL

W~q2!, ~4c!

whereI 3
f 56 1

2 is the third component of weak isospin for th
external fermion. The notation on the left-hand side sho
be clear from the superscripts. Here and through the rem
der of the paper we separate various quantities accordin
X5XSM1DX. Hence, above,DG is the contribution of the
new physics to the vertex correction,G ~indices suppressed
for brevity!. All ‘‘hatted’’ couplings are the modified mini-
mal subtraction scheme (MS̄) couplings, and hence they sa
isfy the tree-level relationsê5ĝŝ5ĝZŝĉ and ê254pâ. In
particular,ĝ is the SU~2! coupling,ŝ and ĉ are the sine and
cosine of the weak mixing angle, and the strength of
photon coupling is given byê or â. Finally, the U~1! cou-
pling is given byĝ85ĝŝ/ ĉ.

Notice in Eq. ~4! that the corrections are purely le
handed due to the coupling of at least oneW boson to the
fermion line, hence we have extracted a factor of1

2 (12g5)
on the right-hand side. The appearance of the factorI 3

f in
Eqs. ~4a!–~4b! may be understood as follows. For corre
tions to theWWg or WWZ vertex due to the type of loop
graph depicted in Fig. 2~b!, there are two internalW bosons,
one of each charge, connected to an external photon oZ
boson through aWWg or WWZ vertex. If the external fer-
mion legs are up-type quarks, then the internal fermion i
down-type quark~andvice versa!. Interchanging the up-type
and down-type quarks interchanges theW1 andW2, which,
due to the properties of theWWg or WWZ vertex, leads to
an overall sign change. Of course the same argument ap
if the quarks are replaced by neutrinos and charged lept
An additional coupling factor is extracted for convenienc
leaving finally the process-independent scalar form fact
DGL

g(q2), DGL
Z(q2), and DGL

W(q2) on the right-hand side
Finally, we form the combinations

DP̄T
gg~q2!5DPT

gg~q2!22ŝq2DGL
g~q2!, ~5a!

DP̄T
gZ~q2!5DPT

gZ~q2!2 ŝq2DGL
Z~q2!

2 ĉ~q22mZ
2!DGL

g~q2!, ~5b!
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DP̄T
ZZ~q2!5DPT

ZZ~q2!22ĉ~q22mZ
2!DGL

Z~q2!, ~5c!

DP̄T
WW~q2!5DPT

WW~q2!22~q22mW
2 !DGL

W~q2!, ~5d!

where theP̄T
V1V2(q2)’s on the left-hand side are now gaug

invariant expressions.
The contributions of these two-point-functions to fou

fermion amplitudes is generally summarized by a set of
rameters such as theS, T, andU parameters of Ref.@8# or an
equivalent set@9#. Following Ref.@1# we define

aDS54ŝ2ĉ2H 2DP̄T,Z
ZZ ~0!1

ĉ22 ŝ2

ŝĉ
DP̄T,g

gZ ~mZ
2!

1DP̄T,g
gg ~mZ

2!J , ~6a!

aDT5
DP̄T

ZZ~0!

mZ
2

2
DP̄T

WW~0!

mW
2

, ~6b!

aDU54ŝ2$ĉ2DP̄T,Z
ZZ ~0!2DP̄T,W

WW~0!1 ŝ2DP̄T,g
gg ~mZ

2!

12ŝĉDP̄T,g
gZ ~mZ

2!%, ~6c!

where

P̄T,V3

V1V2~q2!5
P̄T

V1V2~q2!2P̄T
V1V2~mV3

2 !

q22mV3

2
. ~7!

Notice the different subscripts on the left-hand and rig
hand sides of Eq.~7!.

Several points concerning the usage ofDS, DT, andDU
should be made. First of all, we may expand theP̄ functions
in a power series inq2 according to

DP̄T
V1V2~q2!5AV1V21q2BV1V21~q2!2CV1V21•••. ~8!

If we include only theA andB coefficients in our expansion
then, considering all fourP̄ functions, there are a total o
eight constant coefficients. By a Ward identit
Agg5AgZ50. Using the three physical input parameters~for
which we choosea, mZ , and GF) eliminates three more
leaving three parameters, i.e.,DS, DT, andDU. In particular
we expect that all nondecoupling effects are absorbed
these three parameters.

Of course, as we go beyond theA and B coefficients in
Eq. ~8! we expect thatDS, DT, andDU are insufficient to
include all possible effects. In particular, if in Eq.~8! we
include theC terms, we expect an additional four param
eters. With each additional new term we expect four m
parameters. However, if we introduce four new form fact
that run withq2, thenS, T, andU plus these four are suffi
cient regardless of how many terms we retain in Eq.~8!.

For convenience in organizing our overall analysis
introduce four such running coefficients which may be e
pressed as linear combinations of theP̄ functions. While
-

-

in

e
s

-

these quantities are useful as a means of organizing our
culations, we will later replace them with something els
We write

aRgg~q2!5
1

q2
@P̄T,g

gg ~q2!2P̄T
gg~0!#, ~9a!

aRgZ~q2!5
1

q22mZ
2 @P̄T,g

gZ ~q2!2P̄T,g
gZ ~mZ

2!#, ~9b!

aRZZ~q2!5
1

q2
@P̄T,Z

ZZ ~q2!2P̄T,Z
ZZ ~0!#, ~9c!

aRWW~q2!5
1

q2
@P̄T,W

WW~q2!2P̄T,W
WW~0!#. ~9d!

These quantities are generated directly by energy-dimens
six operators or loop effects. In Ref.@10# three parameters
V, W, and X, were introduced. They are equivalent
RZZ(mZ

2), RWW(mW
2 ), and RgZ(0). Because current experi

ments are not sensitive to the fourth parameter, the autho
that work did not introduce a parameter equivalent toRgg .

Expressed in terms of the seven parametersDS, DT, DU,
DRgg , DRgZ , DRZZ , andDRWW, we introduce four effec-
tive charges@1# via

Dā~q2!52â2q2DRgg~q2!, ~10a!

D ḡ Z
2~q2!5âĝZ

2@DT2q2DRZZ~q2!#, ~10b!

D s̄2~q2!5
ŝ2ĉ2

ĉ22 ŝ2FDā~mZ
2!

â
2

ḡ Z
2~0!

ĝZ
2

1
âDS

4ŝ2ĉ2G
1â ŝĉ ~q22mZ

2!DRgZ~q2!, ~10c!

D ḡW
2 ~q2!52ĝ2

D s̄2~mZ
2!

ŝ2
1ĝ2

Dā~mZ
2!

â
1âĝ2

DS1DU

4ŝ2

2âĝ2q2DRWW~q2!. ~10d!

When going beyond effects which may be summarized
DS, DT, andDU, we find that it is most pragmatic to simpl
use the above effective charges. This avoids a prolifera
of new parameters, a subset of which must be allowed to
anyway. Furthermore, the physical interpretation of the
fective charges is straightforward@11#. Notice that Eqs.
~10a!–~10d! must be calculated sequentially as presented

Finally, we must consider process-dependent vertex
box corrections. In general there could be a large numbe
such corrections. However, for the current analysis, the o
non-SM vertex correction with which we must be concern
is the correction to theZb b̄ vertex arising from the graph o
Fig. 2~b! with an internal top-quark line. We introduce
form factor @1#, d̄ b(q2), which changes the SM Feynma
rule for theZb b̄ vertex to

2 i ĝZgm
„2 ŝ2QbP11$@11 d̄ b~q2!#I 32 ŝ2Qb%P2…, ~11!



b

iz
e

e

s
-

y

rg

n
n
re

to
ns

ree

nc-
on

s

re
e-

ing
vel

re
in

re-
ith

1580 57S. ALAM, S. DAWSON, AND R. SZALAPSKI
where the projection operators are defined
P65(16g5)/2, and Qb521/3 and I 3521/2 are the
charge and weak-isospin quantum numbers of theb quark.
Using the decompositiond̄ b5 d̄ b SM1D d̄ b , the first term
contains the entire SM vertex correction~minus the pinch
term! that multipliesI 3, and the ‘‘D ’’ term is the contribution
of Fig. 2~b! ~also minus the pinch term!.

In the next two sections we discuss possible parametr
tions of new physics effects and apply the formalism dev
oped above to these scenarios.

III. THE LIGHT-HIGGS SCENARIO

Assuming the existence of a physical Higgs boson n
physics may be described by an SU~2!3U~1! gauge-
invariant effective Lagrangian of the form

Leff
linear5LSM1(

f i

L2
Oi1•••. ~12!

The first term is the usual SM Lagrangian which include
complete set of gauge-invariantO(E4)operators and explic
itly includes operators involving the SM Higgs doublet,F.
The second term constitutes a complete set ofO(E6) opera-
tors; eachO(E6) operator,Oi , is multiplied by a dimension-
less numerical coefficient,f i , and is explicitly suppressed b
inverse powers of the scale of new physics,L, such that the
overall energy dimension equals four. In general a very la
number of new operators could contribute@12,13#. However,
including only those purely bosonic operators which co
serve CP, only 12C- and P-conserving operators remai
@14#. The explicit expressions for these operators are
egated to Appendix A.

Four operatorsODW , ODB , OBW , andOF,1 ~with associ-
ated coefficientsf DW , f DB , f BW , andf F,1 , respectively! are
y

a-
l-

w

a

e

-

l-

especially important for their contributions at the tree level
the two-point functions of the electroweak gauge boso
@14–16#, althoughODW andOBW contribute to nonstandard
WWg and WWZ couplings as well. Three operators,OW ,
OB , and OWWW ~with associated coefficientsf W , f B ,
f WWW) are significant because they contribute at the t
level to nonstandardWWg and WWZ interactions without
an associated tree-level contribution to the two-point fu
tions. While the tree-level contributions to the gauge-bos
two-point functions of the two operatorsOWW andOBB ~with
respective coefficientsf WW and f BB) may be removed by a
trivial redefinition of fields and couplings@14,18#, these op-
erators are still interesting for their contributions toHgg and
HZg vertices@17#. The operatorOF,4 makes a contribution
to theZZ andWW two-point functions, but the contribution
cancel in physical observables. Hence,OF,2 , OF,3 , and
OF,4 contribute only to Higgs-boson self-interactions and a
of no further interest in the current context. Additional d
tails may be found in@14,16,18,19#.

We will use the effective charges calculated to the lead
order in each operator. In other words, only the tree-le
contributions ofODW , ODB , OBW , and OF,1 will be in-
cluded whileOW , OB , OWWW, OWW, andOBB contribute
through loop diagrams. All calculations in this section we
performed inRj gauge. We calculate the loop graphs
d5422e dimensions and identify the poles atd54 with
logarithmic divergences and make the identification

1

e
~4p!eG~11e!→ lnS L2

m2D , ~13!

wherem is an arbitrary renormalization scale. We have
tained only the logarithmic terms and terms which grow w
the mass of the Higgs boson,mH . Combining the results of
Refs.@14,16# we may write the solution as
aDS52ê2
v2

L2
f BW2

1

6

ê2

16p2H 3~ f W1 f B!
mH

2

L2F lnS L2

mH
2 D 1

1

2G12@~5ĉ222! f W2~5ĉ223! f B#
mZ

2

L2
lnS L2

mH
2 D

2@~22ĉ221! f W2~30ĉ211! f B#
mZ

2

L2
lnS L2

mZ
2D 224~ ĉ2f WW1 ŝ2f BB!

mZ
2

L2
lnS L2

mH
2 D 136ĝ2f WWW

mW
2

L2
lnS L2

mZ
2D J , ~14a!

aDT52
1

2

v2

L2
f F,12

3

4ĉ2

ê2

16p2H f B

mH
2

L2F lnS L2

mH
2 D 1

1

2G1~ ĉ2f W1 f B!
mZ

2

L2
lnS L2

mH
2 D 1@2ĉ2f W1~3ĉ221! f B#

mZ
2

L2
lnS L2

mZ
2D J ,

~14b!

aDU58ê2ŝ2
mZ

2

L2
f DW1

1

3

ê2ŝ2

16p2H ~24 f W15 f B!
mZ

2

L2
lnS L2

mH
2 D 1~2 f W25 f B!

mZ
2

L2
lnS L2

mZ
2D J , ~14c!

aDRgg~q2!5
2ê2

L2
~ f DW1 f DB!2

1

6L2

ê2

16p2
~ f W1 f B!lnS L2

mZ
2D , ~14d!

aDRgZ~q2!5
2êĝZ

L2
~ ĉ2f DW2 ŝ2f DB!1

1

24L2

êĝZ

16p2H ~ f B2 f W!lnS L2

mH
2 D 2@~4ĉ221! f W1~4ĉ223! f B# lnS L2

mZ
2D J , ~14e!
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aDRZZ~q2!5
2ĝZ

2

L2
~ ĉ4f DW1 ŝ4f DB!2

1

12L2

ĝZ
2

16p2H ~ ĉ2f W1 ŝ2f B!lnS L2

mH
2 D 1~ ĉ22 ŝ2!~ ĉ2f W2 ŝ2f B!lnS L2

mZ
2D J , ~14f!

aDRWW~q2!5
2ĝ2

L2
f DW2

1

12L2

ĝ2

16p2
f WH lnS L2

mH
2 D 1 lnS L2

mZ
2D J , ~14g!
he
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wherev5246 GeV is the vacuum expectation value of t
Higgs field. From these expressions we may immedia
calculate the effective charges of Eqs.~10!. Everywhere we
have made the assignmentm25mZ

2 .

Finally, we calculate theZb b̄ vertex form factor

D d̄ b~q2!52
â

16p ŝ2

mt
2

L2H q2

mW
2

~ ĉ2f W2 ŝ2f B!

2
13 f WJ

3 lnS L2

mZ
2D . ~15!

This result agrees with Ref.@20#, as discussed below. Suc
effects have also been considered in Ref.@21#. Recall that we
began with operators composed only of bosonic fields
nonzero value forD d̄ b indicates that mixed bosonic
fermionic operators have been radiatively generated.

IV. THE ELECTROWEAK CHIRAL LAGRANGIAN

Next we address the nonlinear realization of the symme
breaking sector. In the notation of@22–24# we present the
chiral Lagrangian,

Leff
nlr5LSM

nlr 1( Li1•••. ~16!

We use the superscript ‘‘nlr,’’ denoting ‘‘nonlinear realiza
tion.’’ Again the first term is the SM Lagrangian, but in th
case no physical Higgs boson is included. HenceLSM

nlr is
nonrenormalizable. The first non-SM terms are ene
O(E2)and O(E4) operators which are not manifestly su
pressed by explicit powers of some high scale. There are
such operators which conserveCP; 11 of these separatel
conserveC andP. For explicit notation see Appendix B.

Three of the operators,L18 , L1, andL8, contribute at the
tree level to the gauge-boson two-point functions;L1 andL8
also contribute to nonstandardWWg and WWZ couplings.
Three operators,L2, L3, andL9, contribute toWWg and
ly

A

y

y

12

WWZcouplings without making a tree-level contribution
the gauge-boson propagators. Unlike the light-Higgs s
nario, several operators,L4–L7 andL10, contribute only to
quartic vertices. Several operators violate the custodial s
metry, SU~2! C . They areL18 , L6, L7, L8, L9, andL10. L18 is
O(E2)in the energy expansion and violates the custod
SU~2! C symmetry even in the absence of gauge couplin
Finally,L11 is special in the sense that it conservesCP while
it violates P. This operator contributes to the four-fermio
matrix elements through a myriad of process-dependent
tex corrections. For this reason it is not easily included in
current analysis. Its contributions to low-energy andZ-pole
data were discussed in Ref.@25#.

Each operator in Eqs.~B4! has a counterpart in the linea
realization of SSB@18,26#. Four of these counterparts ar
O(E6)operators and appear in Eqs.~A1!. We make the cor-
respondence

L1852
4b1

v2
OF,1 , ~17a!

L15
4a1

v2
OBW , ~17b!

L25
8a2

v2
OB , ~17c!

L35
8a3

v2
OW . ~17d!

The two-point functions in the context of the chiral La
grangian were calculated in the unitary gauge by the auth
of Ref. @20#. Some contributions were also checked by a
plying Eqs. ~17! to the results of Ref.@14# and carefully
removing all Higgs boson contributions. The contributions
those operators which contribute only to the quartic verti
were also obtained in Ref.@27#.1 We summarize our one
loop results as
aDS5
â

12p
logS L2

m̂2D 24ê2a12
ĝ2ê2

16p2F1130ĉ2

3ĉ2
a21

1222ĉ2

3ĉ2
a31

116ĉ2

3ĉ2
a9G lnS L2

mZ
2D , ~18a!

1The purely quartic operators contribute only to theT parameter via Eq.~18b!. Our results disagree with those of Ref.@27# for the
contributions ofL4, L5, andL7, while we have differing conventions forL10.
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aDT5
3â

16p ĉ2
logS L2

m̂2D 12b12
ĝ2ĝZ

2

16p2F3ŝ2~3ĉ221!

2ĉ2
a213ŝ2a31

15ŝ2~ ĉ211!

4ĉ2
a41

3ŝ2~ ĉ211!

2ĉ2
a5

1
3~2ĉ4111!

4ĉ2
a61

6~ ĉ411!

ĉ2
a71

3ŝ2

2
a91

9

ĉ2
a10G lnS L2

mZ
2D , ~18b!

aDU524ê2a81
ĝ4

16p2

2ŝ2

3ĉ2
@2 ŝ2~2ĉ213!a212ŝ2~2ŝ21 ĉ2!a31~2ĉ4215ĉ211!a9# lnS L2

mZ
2D , ~18c!

aDRgg~q2!52
ê2ĝ2

16p2

1

3mW
2 ~a21a31a9!lnS L2

mZ
2D , ~18d!

aDRgZ~q2!52
êĝZĝ2

16p2

4ĉ221

12mW
2 ~a21a31a9!lnS L2

mZ
2D , ~18e!

aDRZZ~q2!52
ĝZ

2ĝ2

16p2

ĉ22 ŝ2

6mW
2 ~2 ŝ2a21 ĉ2a31 ĉ2a9!lnS L2

mZ
2D , ~18f!

aDRWW~q2!52
ĝ4

16p2

1

6mW
2

a3lnS L2

mZ
2D . ~18g!

As before, we have computed only the divergent contributions and replaced (1/e)(4p)eG(11e)→ ln(L2/m2) and have dropped
all nonlogarithmic terms.2 Furthermore we have chosenm25mZ

2 . Even when all thea i are zero, the expressions forDS and
DT are nonzero. This is because the nonlinear Lagrangian contains singularities which in the SM would be cancelle
contributions of the Higgs boson@28#. In these terms the renormalization scale,m̂, is appropriately taken to be the sam
Higgs-boson mass we use to evaluate the SM contributions.

The next step is to use Eq.~10! to calculate the effective charges. However, the expressions become rather complica
we will leave them in the above form. The nonzero expressions on the right-hand sides of Eqs.~18d!–~18g! are a clear
indication thatO(E6)operators have been radiatively generated.

To complete this section we present the calculation ofD d̄ b in the nonlinear model@20#:

D d̄ b~q2!52
â

16p ŝ2

mt
2

mZ
2
ĝZ

2H ~2 ŝ2a21 ĉ2a31 ĉ2a9!
q2

mW
2

16a3J mZ
2

L2
lnS L2

mZ
2D . ~19!
g

e

h

ors
the

-

V. NON-ABELIAN GAUGE-BOSON VERTICES

Much of the literature describes nonstandardWWg and
WWZ vertices via the phenomenological effective Lagran
ian @29#

LWWV52 igWWVH g1
V~Wmn

1 W2 mVn2Wm
1VnW2 mn!

1kVWm
1Wn

2Vmn1
lV

mW
2

Wmn
1 W2nrVr

mJ , ~20!

whereV5Z,g, the overall coupling constants aregWWg5ê

2The contributions of the SU~2!C-conserving terms can be ob
tained from the Appendix of Ref.@20# by making the substitutions
L10v

2/L2→a1, L9Rv2/L2→2a2, L9Lv2/L2→2a3, L2v2/L2→a4,
L1v2/L2→a5.
-

andgWWZ5ĝZĉ2. The field-strength tensors include only th
Abelian parts, i.e.,Wmn5]mWn2]nWm and Vmn5]mVn

2]nVm. In Eq. ~20! we have retained only the terms whic
separately conserveC andP ~since that is all that we retain
in the previous sections!.

In the light-Higgs scenario, if we neglect those operat
which contribute to gauge-boson two-point functions at
tree level, we may write@7#

g1
Z~q2!511

1

2

mZ
2

L2
f W , ~21a!

kg~q2!511
1

2

mW
2

L2
~ f W1 f B!, ~21b!

kZ~q2!511
1

2

mZ
2

L2
~ ĉ2f W2 ŝ2f B!, ~21c!
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lg~q2!5lZ~q2!5
3

2
ĝ2

mW
2

L2
f WWW. ~21d!

Hence, truncating the gauge-invariant expansion of Eq.~12!
at the level ofO(E6)operators produces nontrivial relation
ships between the nonstandard couplings. These rela
ships are broken by the inclusion ofO(E8)operators@7#.

We present similar equations arising from the electrow
chiral Lagrangian to O(E4)in the energy expansion
@18,25,30#:

g1
Z~q2!511ĝZ

2a3 , ~22a!

kg~q2!511ĝ2~a21a31a9!, ~22b!

kZ~q2!511ĝZ
2~2 ŝ2a21 ĉ2a31 ĉ2a9!, ~22c!

lg~q2!5lZ~q2!'0. ~22d!
b

th

ls

th
gu
t

n-

k

If we impose the custodial SU~2! C symmetry on the new
physics, then we may neglect thea9 terms. In this case the
correlations which exist in the light-Higgs scenario exist he
as well. Again, these relations are violated by higher-or
effects. Equation~22d! reflects our prejudice that thelV cou-
plings, being generated byO(E6)operators while the othe
couplings are generated byO(E4)operators, should be rela
tively small.

Current data are sensitive to gauge-boson propagato
fects, but measurements ofWWg and WWZ couplings are
rather crude. Until the quality of the latter measureme
approaches the quality of the former, the approximations
this section are valid.

VI. NUMERICAL ANALYSIS AND DISCUSSION

We begin this section by summarizing the results o
recent global analysis@31#. For measurements on theZ pole,
ḡ Z
2~mZ

2!50.555 5720.000 42
as11.54d̄ b~mZ

2!20.1065

0.0038
60.000 61

s̄2~mZ
2!50.230 6510.000 03

as11.54d̄ b~mZ
2!20.1065

0.0038
60.000 246 , rcorr50.24. ~23!
is

e

ta
nt

ore
en
li-
the
-
nts

by
The correlation between the two measurements is given
rcorr @32#. Recall d̄ b(mZ

2)5 d̄ b SM(mZ
2)1D d̄ b(mZ

2). Combin-
ing the W-boson mass measurement (mW580.35660.125
GeV! with the input parameterGF ,

ḡW
2 ~0!50.423760.0013. ~24!

And finally, from the low-energy data,

ḡ Z
2~0!50.544160.0029

s̄2~0!50.236260.0044
J , rcorr50.70. ~25!

We combine these results with the analytical results of
previous sections to perform ax2 analysis and obtain limits
on the coefficients of both the linear and nonlinear mode

A. Results for the linear model

For those operators that contribute at the tree level
bounds which we obtain are straightforward and unambi
ous. For these operators we present the fits along with
complete one-s errors@18#:

f DW520.3210.0088xH20.55xt60.44 ,

f DB5214610,
~26!

f BW53.710.085xH62.4 ,

f F,150.3020.028xH10.32xt60.16,
y

e

.

e
-

he

and the full correlation matrix

rcorr5S 1 20.191 0.055 20.237

1 20.988 20.884

1 0.943

1

D , ~27!

where

xt5
mt2175 GeV

100 GeV
, xH5 ln

mH

100 GeV
, ~28!

andL51 TeV. The parametrization of the central values
good to a few percent of the one-s errors in the range 150
GeV,mt,190 GeV and 60 GeV,mH,800 GeV; for these
four parameters the dependencies uponmH andmt arise from
SM contributions only. These bounds will improve with th
analysis of LEP II data; the processe1e2→W1W2 is sen-
sitive to f BW even at the level of the current constraints@18#,
and all of the bounds improve significantly when LEP II da
for two-fermion final states are combined with the curre
analysis@16#.

The constraints on the remaining parameters are m
subject to interpretation. We make a distinction betwe
those operators which first contribute to four-fermion amp
tudes at the tree level and those which first contribute at
loop level. Without an explicit model from which to calcu
late, it is most natural to assume that all of the coefficie
are generated with similar magnitudes@19#. Generally the
contributions which first arise at one loop are suppressed
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TABLE I. One-s fits for the coefficients ofOWWW, OW , OB , OWW, andOBB for L51 TeV. In the
analysis only one coupling at a time is allowed to deviate from zero.

mH575 GeV mH5200 GeV mH5400 GeV mH5800 GeV

f WWW 221610 5610 24610 43610
f W 2.463.2 25.063.8 27.564.5 2.263.8
f B 25.069.8 7.167.5 0.7864.2 23.062.8
f WW 12.566.0 24.869.7 239617 2289670
f BB 42620 216632 2131657 29606233
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a factor of 1/16p2 relative to tree-level effects; hence th
contributions of operators first contributing at the loop lev
tend to be obscured. Furthermore, outside of a partic
model it is impossible to predict the interference betwe
tree-level and loop-level diagrams as well as possible can
lations among the various loop-level contributions. For
time being we will proceed by considering the effects of on
one operator at a time. The results are presented in Tab
In general we find consistency with the SM for a relative
light, 100–200 GeV Higgs boson. Forf WWW the central val-
ues depend uponmH only through SM contributions, and th
one-s error is independent ofmH . For f W , f B , f WW, and
f BB the dependence on the Higgs-boson mass is from b
SM and non-SM contributions, and both the central valu
and the errors are complicated functions ofmH .

It is also possible that there is a hierarchy among
coefficients, some being relatively large while others
relatively suppressed. In the current discussion it is es
cially interesting if all of the operators with non-negligib
coefficients contribute only at the loop level. Indeed suc
scenario is possible. Consider, for example, the simple mo
described by the Lagrangian@33#

L5LSM1~Dmf!†~Dmf!2m0
2f†f1l I~f†f!~F†F!

2l8~f†f!2, ~29!

whereF is the SM Higgs doublet,f is a new heavy scala
with isospin I and hyperchargeY. The self-coupling of the
new scalar is given byl8, and l I denotes the interaction
strength. The physical mass of the heavy scalar is given
m25m0

22lv2/2. The above Lagrangian generates the f
lowing nonzero couplings:

f DW

L2
5

1

16p2

1

m2

I ~ I 11!~2I 11!

180
, ~30a!

f DB

L2
5

1

16p2

1

m2

Y2~2I 11!

60
, ~30b!

f WW

L2
5

1

16p2

1

m2
l I

I ~ I 11!~2I 11!

9
520l I

f DW

L2
,

~30c!

f BB

L2
5

1

16p2

1

m2
l I

Y2~2I 11!

3
520l I

f DB

L2
. ~30d!
l
ar
n
el-
e

I.

th
s

e
e
e-

a
el

y
-

The remaining couplings remain explicitly zero. It is imm
diately apparent that, for large values ofl I , the couplings
f WW and f BB may be large relative tof DW and f DB . ~Of
course for largel I there may also be large corrections to t
above relations.! Unfortunately this scenario is numericall
problematic. If we are interested in the large coupling lim
where f DW , f DB! f WW, f BB it is impossible to obtain any
constraint at all. This may be seen from Eqs.~14!; the op-
erators OWW and OBB contribute only through the
( ĉ2f WW1 ŝ2f BB) term in DS of Eq. ~14a!. ~Notice also that
f WWW enters only throughDS.! In Fig. 3 the solid, dashed
and dotted curves representl I50.1, 1, and 5, respectively
For the weak coupling (l I50.1) the contributions off WW
and f BB are completely negligible. Forl I51 the effects of
f WW and f BB are competitive with those off DW and f DB .
Finally, whenl I55 the fit is dominated by the strong ant
correlation off WW and f BB . In the strong-coupling limit the
very eccentric ellipse approaches a line.

For studying non-Abelian gauge-boson self-interactio
we are especially interested in the operatorsOWWW, OW ,
and OB . Without presenting an explicit model we assum
that these are the only relevant couplings and that the c
plings with tree-level contributions are suppressed. The
sults are summarized by Fig. 4. For a lightmH575 GeV
Higgs boson the constraints are rather weak; the gra
which contain propagating Higgs bosons tend to can
against the remaining graphs yielding a rather large cont
The ellipsoid displays a strong correlation~anticorrelation! in
the f WWW–f W ( f WWW–f B) plane. Notice also that this sce
nario prefers rather large deviations from the SM; the cen
of the ellipsoid is at (f WWW, f W , f B)5(274,29,40). As we

FIG. 3. Constraints at the 95% confidence level in thef DW–f DB

plane with f WW520l I f DW and f BB520l I f DB for L51 TeV,
mt5175 GeV, andmH5200 GeV. The solid, dashed, and dotte
curves correspond tol I50.1, 1, and 5, respectively.
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increasemH the contour becomes smaller and less eccen
especially for mH5200 GeV or mH5400 GeV. The
mH5800 GeV contour shows flattening in thef WWW–f W
plane. ThemH5200 GeV andmH5400 GeV contours are
consistent with the SM while themH575 GeV andmH5800
GeV contours are disfavored.

Recall that, by Eqs.~21!, f WWW, f W , andf B are related to
the standard parameters for nonstandardWWg and WWZ
couplings. The 95% confidence-level contours treatingDkg ,
DkZ andl5lg5lZ as the free parameters are presented
Fig. 5 for mH5200 GeV andmH5400 GeV. Both contours
are consistent with the SM, though themH5200 GeV con-
tour just barely includes the SM value ofl50. FormH5200
GeV we observe a strongDkZ–l correlation which is im-
portant when considering the measurement of these
plings at the Fermilab Tevatron. The Tevatron is sensitive
the WWg vertex primarily through the observation ofWg
pairs, but due to a limited center-of-mass energyWW and

FIG. 4. Constraints onf WWW, f W , and f B at the 95% confi-
dence level forL51 TeV andmt5175 GeV.

FIG. 5. Constraints onDkg , DkZ , andl5lg5lZ at the 95%
confidence level assuming the relations of Eqs.~ 21! with L51
TeV andmt5175 GeV.
c,

n

u-
o

WZ events are rare. Therefore, at the Tevatron we are
marily interested in a two-dimensional plot in theDkg –l
plane with a fixed value ofDkZ . Figure 6~a! is a fit in the
Dkg –l plane formH5200 GeV, and Fig. 6~b! is the same
plot for mH5400 GeV. The solid, dashed, and dotted co
tours correspond toDkZ50, 20.1, and 0.1, respectively
Notice that themH5200 GeV contour withDkZ50 is very
consistent with the SM while all of themH5400 GeV con-
tours barely cross thel50 axis. Clearly there is much mor
sensitivity to the assumed value ofDkZ when the Higgs
boson is light.

B. Results for the nonlinear model

In order to perform the fits in the nonlinear case we c
culate the SM values usingmH51 TeV. Correspondingly we
takem̂51 TeV in Eqs.~18a! and~18b!, effectively subtract-
ing off the Higgs-boson contributions. This method of su
tracting off the SM Higgs-boson contributions is approx
mate, and in principle we should also subtract off all of t
small finite mH-dependent terms, or we should repeat t
calculation of the higher-order effects excluding the Hig
boson from the beginning. The nonzero expressions forRgg ,
RgZ , RZZ , and RWW in Eqs. ~18! is a clear signal that the
one-loop calculations includingO(E4)operators have in-
ducedO(E6)effects. Therefore, to be completely consiste
through O(E6), we should add to Eqs.~18! the two-loop
contributions of theO(E2)operatorL18 and the tree-level
contributions of a complete set ofO(E6)chiral operators.
Excluding these effects is an approximation, and in orde
proceed we must assume that the excluded effects do
significantly interfere with the contributions ofL18-L10.

First we analyze the numerical constraints ona1, b1, and
a8 ~which correspond toDS, DT andDU, respectively!, and
we present the best-fit central values with one-s errors,

a15~4.762.6!31023,

b15~0.3060.57!31023, ~31!

a85~20.967.6!31023,

and the full correlation matrix,

rcorr5S 1 20.871 20.121

1 0.221

1
D . ~32!

FIG. 6. Constraints in theDkg –l plane at the 95% confidenc
level assuming the relations of Eqs.~ 21! with L51 TeV and
mt5175 GeV.~a! corresponds tomH5200 GeV while~b! corre-
sponds tomH5400 GeV. The solid, dashed, and dotted conto
correspond toDkZ50, 20.1, and 0.1, respectively.
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These tree-level contributions are nondecoupling effe
hence the bounds derived are insensitive to the scaleL.
These constraints are sufficiently strong that there is no
sitivity to these three parameters at LEP II@16,18#. Observe
that a positive value fora1 is favored. If we insist that eithe
a150 or b150, then thea1–b1 anticorrelation forces the
other parameter towards a more positive central value.
cordingly, in Table II, we present the 95% confidence-le
limits where only one ofa1, b1 or a8 is allowed to deviate
from zero. Indeed we see that a more positive value for b
a1 andb1 is preferred, and the fitted value ofb1 now devi-
ates significantly from the SM.

Next we place constraints on the remaining parameter
considering the effects of only one operator at a time. T
results are summarized in Table III. First of all, notice th
a4–a7 and a10 enter into the analysis only through the
contribution toDT as shown in Eq.~18b!, hence only the
linear combination of these five coefficients shown in the l
column may be constrained. Furthermore,a1 is anticorre-
lated with this linear combination in the same fashion as w
b1. Notice that in the first row of the table, whena150,
only a9 is consistent with SM at the 95% confidence lev
However, in the second row where we have chosen the
tral value ofa1 according to the best-fit value of Eq.~31!, all
of the central values are easily consistent with the ze
While the central values easily move around as we incl
additional operators in the analysis, the errors are much m
robust.

Three of the coefficients,a2, a3, anda9, contribute at the
tree level to nonstandardWWg and WWZ vertices without
making a tree-level contribution to low-energy andZ-pole
observables. In Fig. 7~a! we plot 95% confidence-level limits
obtained by fittinga2, a3, and a9. There is a very strong
a2–a3 correlation and moderately stronga2–a9 anda3–a9
anticorrelations. Then, using Eqs.~22!, we may recast the fi
in terms ofDkg , DkZ , andDg1

Z . The results are displaye
in Fig. 7~b!. In this basis the correlations are not as stro
there are moderately strongDkg –DkZ andDkg –Dg1

Z corre-
lations. In Fig. 7~a! the point a350 @equivalently, in Fig.
7~b!, the pointDg1

Z50# lies near the edge of the contour.
If we require any new physics to conserve the SU~2! C

symmetry, thena950. In this case there are only two fre
parameters,a2 anda3; equivalently we can choose any tw

TABLE II. 95% confidence-level constraints onb1, a1, anda8

for mt5175 GeV. These results are independent ofL. In this table
only one coupling at a time is allowed to deviate from zero.

b1 a1 a8

~1.261.0!31023 ~6.064.9!31023 ~27628!31023
s,

n-

c-
l

th

y
e
t

t

h

.
n-

o.
e
re

;

parameters from the set$Dkg ,DkZ ,Dg1
Z%, and once again

we use the relations of Eqs.~22!. Recalling thata2 anda3
are related tof B and f W by Eqs. ~17! we can perform the
analogous fit in the linear realization of SSB which is sho
in Fig. 8. The solid, dashed, and dotted curves correspon
mH5100 GeV, mH5300 GeV, andmH5700 GeV; these
first three curves use Eqs.~21!. The mH5100 GeV is very
consistent with the SM while themH5300 GeV and
mH5700 GeV contours prefer nonzero values forDkZ ; the
centers and the orientations of these ellipses are complic
functions of mH , but the contours clearly become small
with increasing Higgs-boson mass. The dot-dashed cu
corresponds to the nonlinear realization of SSB and there
employs Eqs.~22!. It clearly does not include the SM, but it
center could be shifted by including nonzero central valu
for a1 andb1 according to Eq.~31!.

In any realistic scenario there will be a set of nonzeroa i ,
and it is possible~indeed likely! that there will be large in-
terference between the effects of the various coefficients
order to see the types of limits which might arise in vario
scenarios of SSB we consider a strongly interacting sc
and a degenerate doublet of heavy fermions, and we ge
indication of the sensitivity of our results to the underlyin
dynamics. Using the effective-Lagrangian approach, we
estimate the coefficients in a consistent way.

We first consider a model with three Goldstone boso
corresponding to the longitudinal components of theW6 and
Z and bosons coupled to a scalar isoscalar resonance lik
Higgs boson. We assume that thea i(m

2) are dominated by
tree-level exchange of the scalar boson. Integrating out
scalar and matching the coefficients at the scalemH gives the
predictions@6,34–37#

a4~m2!5
1

16p2

1

12
lnS mH

2

m2 D ~33a!

FIG. 7. 95% confidence level contours forL51 TeV and
mt5175 GeV. In~a! we show the fit ina2, a3, anda9. In ~b! we
have reparametrized the fit in terms ofDkg , DkZ , and Dg1

Z ac-
cording to the relations of Eqs.~22!.
ow

TABLE III. 95% confidence-level constraints ona2–a7, a9, anda10 for mt5175 GeV andL51 TeV.

Only the linear combination ofa4–a7 anda10 shown in the last column may be constrained. In the first r
all other coefficients are set to zero. In the second rowa155.531023 is chosen according to Eq.~ 31!.

a2 a3 a9
2
5 a41a5114.9a6115.6a7114.7a10

a150 0.2560.20 20.1260.09 0.2760.61 20.4460.35
a155.531023 0.0360.20 20.0560.09 20.2860.61 20.0960.37
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52a2~m2!52a3~m2!52a1~m2!, ~33b!

a5~m2!5
1

16p2F 1

24
lnS mH

2

m2 D 1
64p3

3

Ghv4

mH
5 G , ~33c!

whereGh is the width of the scalar into Goldstone boson
All of the othera i are zero in this scenario. It is important
note that only the logarithmic terms are uniquely specifi
The constant terms depend on the renormalization sch
@37,38#. ~We use the renormalization scheme of Ref.@38#.!

In Fig. 9 we plota5(m2) vsa1(m2) with the pattern typi-
cal of a theory dominated by a heavy scalar given in E
~33!, 2a1(m2)52a2(m2)52a3(m2)5a4(m2). First of all,
notice that the contour obtained depends rather strongly u
our choice of the renormalization scale,m, especially with
regard to thea5 axis. Everything to the right ofa150 cor-
responds tomH,m. Furthermore, since we require thatGh
be non-negative, we may approximately exclude everyth
below thea550 axis. The allowed region to the upper rig
of the figure corresponds to a Higgs boson with a mass in
MeV range and an extremely narrow width; this portion
the figure is already excluded by experiment. An appro
mate upper bound onmH can be obtained from the leftmos

FIG. 8. 95% confidence level contours forL51 TeV and
mt5175 GeV. The solid, dashed, and dotted curves correspon
mH5100 GeV,mH5300 GeV, andmH5700 GeV; these first three
curves use Eqs.~21!. The dot-dashed curve corresponds to the n
linear realization of SSB and therefore employs Eqs.~22!.

FIG. 9. 95% confidence level contours forL51 TeV and
mt5175 GeV in the a5-a1 plane subject to
2a1(m2)52a2(m2)52a3(m2)5a4(m2). The larger ~smaller!
contour corresponds tom5500 GeV (m5mZ).
.

.
e

.

on

g

e
f
i-

point where both curves intersect the horizontal axis; as
figure is drawn the entire plane is excluded by LEP. We c
by changingL andm, drive the upper bound above 100 Ge
or greater, but the positive central value ofa1 indicates that
a heavy scalar resonance is disfavored.

The previous example conserves the custodial SU~2! C
symmetry. The simplest example of dynamics which viola
the custodial symmetry is a heavy doublet of nondegene
fermions. Reference@24# considers the case of a heavy do
blet with charge6 1

2, a mass splittingDm, and an average
massM with (Dm!M ). Then assuming the fermions are
a color triplet and retaining terms toO(d2), (d[Dm/2M ),
they find

b1~mZ
2!5

1

8p2

~Dm!2

mW
2

, ~34a!

a1~mZ
2!5a2~mZ

2!52
1

32p2
, ~34b!

a3~mZ
2!52

1

32p2S 12
2

5
d2D , ~34c!

a8~mZ
2!52

1

32p2

16

5
d2, ~34d!

a9~mZ
2!52

1

32p2

14

5
d2, ~34e!

a11~mZ
2!5

1

32p2
d. ~34f!

Because of the heavy fermion masses in the loops, thea i are
finite and there are no logarithms ofL in Eqs. ~34!. The
custodial SU~2! C violation can be clearly seen in the term
proportional tod. As in the case of the heavy Higgs boso
we note that the coefficients are naturallyO(1/16p2). ~For a
discussion where the mass splitting is arbitrary, see R
@39#.!

This model generates a nonzero value fora11, but we
have not includeda11 in our analysis. This is not a problem
since we expect the analysis to be dominated by the t
level contributions ofb1, a1, and a8; we will neglect the
contributions of the other coefficients. In Fig. 10 we sho
the 95% confidence-level limits in the (Dm)2-d2 plane. We
have excluded the unphysicald2,0 portion of the ellipse.
However, the calculation is not valid for a portion of th
region shown. We have explicitly assumed thatDm!M . If
we choose a very loose cut-off ofDm,0.4M , then we
should restrict the figure tod2,0.04, and only a narrow strip
along the bottom of the figure is relevant. Ford250, M→`,
and we cannot obtain an upper bound onM . We cannot
obtain a lower bound onM because the contour extends in
a region where our calculation is not valid. If we insist th
the new fermions are heavier than approximately 200 G
thenDM;70–90 GeV is the preferred region for the ma
splitting.

to
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VII. CONCLUSIONS

Parametrizing the contributions of new physics at low e
ergies with an effective Lagrangian we have studied the c
tributions of new physics to electroweak observables; eve
where we have treated the linear and nonlinear realizat
of electroweak symmetry breaking in parallel, allowing us
make direct comparisons which had not previously be
studied. The complete contributions of the new physics
low-energy andZ-pole observables may be completely su
marized by expressions for the running chargesā (q2),
ḡ Z

2(q2), s̄2(q2), and ḡW
2 (q2) plus a form factor for theZbb

vertex, d̄ b(q2). We present explicit expressions for the
quantities in both realizations of symmetry breaking.

The above approach is ideally suited to performing a g
bal analysis using all available electroweak precision d
We perform many such fits. We study the bounds which m
be obtained on the various effective-Lagrangian parame
and the bounds on nonstandardWWg andWWZcouplings.
For the case of nonstandardWWg andWWZ couplings we
are able to investigate the role of the Higgs mass as c
pared to having no Higgs boson at all. See Fig. 8.

The coefficients of some operators in the effective L
grangian contribute to four-fermion amplitudes at the t
level while the coefficients of others first contribute at t
loop level. A topic of great interest is whether the former c
be suppressed relative to the latter. We discuss one
model where such a hierarchy is realized. If such a hierar
could be realized among the operators that contribute
WWg and WWZ couplings, then, even allowing for som
correlations, the low-energy bounds are in some cases on
with or even superior to the bounds that can be obtaine
LEP II.

We then use our global analysis to examine some exp
models. For the case of a strongly interacting model wit
scalar Higgs boson, a light scalar is strongly preferred, w
much of the light region has already been ruled out by LE
We confirm that a positive value fora1 is preferred, which is
known to strongly disfavor the simplest models that inclu
a strongly interacting vectorlike Higgs boson. Finally w
consider the contributions of a heavy pair of new fermio
While our analysis is only valid if their masses are heav

FIG. 10. 95% confidence level contours for in the (Dm)2-d2

using the parameters of Eq.~34!. Numerically there is an allowed
region for d2,0. However,d2,0 is unphysical, and we do no
show it. All numbers are in GeV2.
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than 200–300 GeV, we find that a mass splitting of 70–
GeV is preferred.

ACKNOWLEDGMENTS

Special thanks to Seiji Matsumoto for prior collaboratio
on related works and for providing us with an updated ana
sis of the electroweak data. We are grateful to Cliff Burge
and Dieter Zeppenfeld for stimulating discussions. The c
tributions of Rob Szalapski were supported in part by
National Science Foundation through Grant N
INT9600243 and in part by the Japan Society for the Prom
tion of Science~JSPS!. The work of S. Dawson supported b
U.S. Department of Energy under Contract No. DE-AC0
76CH00016. The work of S. Alam was supported in part
the COE through the Japanese Ministry of Education a
Culture and in part by JSPS.

APPENDIX A: OPERATORS IN THE LINEAR
REALIZATION OF SSB

In this appendix we explicitly enumerate the operators
Eq. ~12!, i.e., the effective Lagrangian with the linear rea
ization of SSB. The 12 operators discussed in Sec. III ar

ODW52ĝ2Tr@~]mWnr!~]mWnr!#, ~A1a!

ODB52
ĝ8 2

2
~]mBnr!~]mBnr!, ~A1b!

OBW52
ĝĝ8

2
F†BmnWmnF, ~A1c!

OF,15@~DmF!†F#@F†~DmF!#, ~A1d!

OWWW52 i
3

2
ĝ3Wmn

1 W2nrWr
3 m , ~A1e!

OW5 i ĝ~DmF!†Wmn~DnF!, ~A1f!

OB5
i

2
ĝ8~DmF!†Bmn~DnF!, ~A1g!

OWW52
ĝ2

4
~F†F!WI mnWmn

I , ~A1h!

OBB52
ĝ8 2

4
~F†F!BmnBmn , ~A1i!

OF,25
1

2
]m~F†F!]m~F†F!, ~A1j!

OF,35
1

3
~F†F!3, ~A1k!

OF,45~F†F!@~DmF!†~DmF!#, ~A1l!

whereWmn5TaWmn
a . The field strength tensors are given b

Bmn5]mBn2]nBm , ~A2a!
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Wmn5]mWn2]nWm2geabcWm
b Wn

c , ~A2b!

where eabc is the totally antisymmetric tensor in three d
mensions withe12351. The covariant derivative is given b

Dm5]m1 igTaWm
a 1 ig8YBm , ~A3!

andF is the SM Higgs doublet:

F5
1

A2
S ix11x2

v1H2 ix3D . ~A4!

APPENDIX B: OPERATORS IN THE ELECTROWEAK
CHIRAL LAGRANGIAN

In this appendix we present explicitly the operators of
electroweak chiral Lagrangian. In the notation of@22–24#,

Leff
nlr5LSM

nlr 1( Li1•••. ~B1!

We use the superscript ‘‘nlr,’’ denoting ‘‘nonlinear realiza
tion.’’ The first term is the SM Lagrangian, but in this ca
no physical Higgs boson is included. HenceLSM

nlr is nonrenor-
malizable. The first non-SM terms are energy dimension-
and -four operators which are not manifestly suppressed
explicit powers of some high scale.

While the physical Higgs boson has not been employ
the Goldstone bosons,x i for i 51,2,3, are included through
the unitary unimodular fieldU introduced below. Following
Ref. @24#,

U[expS 2ix i~x!t i

v D→1, ~B2a!

DmU[]mU1 igTaWm
a U2 ig8UT3Bm→ igTaWm

a

2 ig8T3Bm , ~B2b!

T[2UT3U†→2T3, ~B2c!

Vm[~DmU !U†→DmU, ~B2d!
s

.

.

u

e

o
y

d,

where1 is the 232 identity matrix, the Pauli matrices ar
denoted by t i , and Ti5t i /2 with the normalization

Tr(TiTj )5 1
2 d i j . The right-pointing arrow indicates th

unitary-gauge form of each expression. The lowest-order
fective Lagrangian for the symmetry-breaking sector of
theory is

LSM5
v2

4
Tr@DmU†DmU# . ~B3!

The non-SM operators with four or fewer derivative
which conserveCP are @23,24#

L185
1

4
b1v2@Tr~TVm!#2, ~B4a!

L15
1

2
a1ĝĝ8Tr~BmnTWmn!, ~B4b!

L25
i

2
a2ĝ8BmnTr~T@Vm,Vn#!, ~B4c!

L35 ia3ĝTr~Wmn@Vm,Vn#!, ~B4d!

L45a4@Tr~VmVn!#2, ~B4e!

L55a5@Tr~VmVm!#2, ~B4f!

L65a6Tr~VmVn!Tr~TVm!Tr~TVn!, ~B4g!

L75a7Tr~VmVm!Tr~TVn!Tr~TVn!, ~B4h!

L85
1

4
a8ĝ2@Tr~TWmn!#2, ~B4i!

L95
i

2
a9ĝTr~TWmn!Tr~T@Vm,Vn#!, ~B4j!

L105
1

2
a10@Tr~TVm!Tr~TVn!#2, ~B4k!

L115a11ĝemnrsTr~TVm!Tr~VnWrs!. ~B4l!
ett.
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