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S. Alam
Theory Group, KEK, Tsukuba, Ibaraki 305, Japan
and Physics Department, University of Peshawar, Peshawar, NWFP, Pakistan

S. Dawson
Physics Department, Brookhaven National Laboratory, Upton, New York 11973

R. Szalapski
Theory Group, KEK, Tsukuba, Ibaraki 305, Japan
(Received 1 July 1997; published 12 January 1998

It is possible to place constraints on non-standard-model gauge-boson self-couplings and other new physics
by studying their one-loop contributions to precisely measured observables. We extend previous analyses
which constrain such nonstandard couplings, and we present the results in a compact and transparent form.
Particular attention is given to comparing results for the light-Higgs scenario, where nonstandard effects are
parametrized by an effective Lagrangian with a linear realization of the electroweak symmetry-breaking sector,
and the heavy-Higgs or strongly interacting scenario, described by the electroweak chiral Lagrangian. The
constraints on nonstandard gauge-boson self-couplings which are obtained from a global analysis of low-
energy data and CERN LEP or SLC measurements orZthele are updated and improved from previous
studies[S0556-282(97)01523-3

PACS numbes): 12.15.Lk, 12.39.Fe, 12.66i

I. INTRODUCTION is then completed by adding the process-dependent vertex
and box corrections. A more complete discussion is given in
Because of the extraordinary precision of electroweakSec. Il In fact, most of the technical details are provided in
data at low energy and on tipole it is possible to place Sec. Il Whlch allows us to be very much to the point in the
constraints on models for physics beyond the standard mod&Msuing sectons. .
(SM) by studying the loop-level contributions of the new . In the context of this paper all of the non-SM contribu-
physics to electroweak observables. Gauge-boson Sel}l_orEentelvla the effective charges plus a form factor for the

interactions are a fascinating aspect of the SM, and the exX b b vertex. With the e_xception of this Iat'ger form factor, the
ploration of this sector is still in its early stages. While this Vertex and box corrections reduce to their SM values for the

sector is important in its own right, it is intimately related to duantities we compute. This greatly simplifies the analysis.
the symmetry-breaking sector of the SM. Hence, we are In Sec. lll the SM ngrangéan is extended by the addition
strongly motivated to garner from the body of electroweakOf energy-dimension-siO(E”)] operators. The operators
precision data any and all available clues concerning thes@® constructed from the fields of the low-energy spectrum
heretofore more poorly understood sectors of the SM. including the usual SI2) Higgs doublet of the SM; i.e.,
Currently all available precision data concerns processe¥POntaneous symmetry breakitgSB is linearly realized.
with four external light fermiongsuch aete —7* ff  The effective charges _and tiEb b-vertex form factor, 5y,
at the CERNe* e~ collider LEP. We follow the scheme of [1]_, are caIcngted in th|§ scheme.. In Sec. IV the e_:lectroweak
Ref. [1] which organizes the calculation of these amplitude<chira! Lagrangian, in which there is no physical Higgs boson
in the following manner. First we calculatélZ”(q?), and the symmetry breaking is nonlinearly realizdy, is .
M7(q?), T12%(q?), andTI¥Y(q?), i.e., the transverse com- discussed, and we repeat the calculation of the effective

ponents of theyy, ¥Z, ZZ, and WW two-point functions, charges anch. Then, in Sec. V, we specialize to a discus-

respectively. As well we must calculaid7(g?), T1Z(q?) , sion of nqn—AbeIian gauge bospn couplings. '
andrffrw(qz) i.e., corrections to the gauge-boson-fermion Numerical results are given in Sec. VI. We pay particular

. . . . ttention to the uncertainties inherent in obtainin n n
vertices. The two-point-functions and a portion of the verte atention to the uncertainties Innere obtaining bounds o

. . ; . B ew physics from one-loop effects. First, the sensitivity of
corrections are combineda the pinch techniqué2-9 to the data to the parameters of the effective Lagrangians of

form the gauge-invariant effective charges(q®), s*(d°),  sec. Il and Sec. IV is estimated by considering the contri-
ag(qz), and E\ZN(qZ). These effective charges contain the butions of only one new operator at a time. Then, bounds on
major part of the higher-order corrections and are universahon-SM contributions to gauge-boson self-couplings are pre-
to all four-fermion amplitudes(Hence, this approach is es- sented accounting for limited correlations. Additionally we
pecially well suited to a global analysis of electroweak pre-consider some more complicated scenarios, and we compare
cision datg. The calculation of the four-fermion amplitudes the results from both the linear and the nonlinear models.
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Vu VV or WWZ vertex. These corrections can be divided into two

1 2 pieces. One piece, which is independent of any fermion

"\’VV\’V\'WVVVV‘ masses, is purely a pinch term; the remaining contributions,

which depend on the fermion masses, will remain as part of

FIG. 1. Higher-order contributions to th&'V; two-point func-  the vertex corrections. We will discuss these latter correc-
tions; V1V, denotesyy, yZ, ZZ, or WW. Generically the “blob” tions later in this section.

may represent a contact term, a “bubble” or a “tadpole.” For the moment we neglect the contributions of fermion

masses, and, following Rdf7], we write
Il. LOW-ENERGY PARAMETERS

AND EFFECTIVE CHARGES

1
AT Yfaf — a1 f 2
We begin by calculating the corrections to the gauge- —IAL P H@)=—iy,5 (1= ys)glAT(Q%), (48
boson two-point functions as depicted by Fig. 1. Introducing
the transverse and longitudinal projection operators

. i 1 q
—IATE2(q)= 17,5 (1~ y5)Q1ATE(6?),  (4b)

Y . a*aq” . 9“q”
Pr'=g*"——-, Pl'=—, 1)
q A
: . . W f 1 9 w0
which possess the desirable properties —|AF}L 12(q)= —|yM§(1— yS)EAFL (g%, (40
PY"+PL=g",  PY,PF'=PH,
o , o o wherel f3= + 1is the third component of weak isospin for the
PEPIY=PL",  P{,PI"=0=P{,Pt", (2)  external fermion. The notation on the left-hand side should

be clear from the superscripts. Here and through the remain-
der of the paper we separate various quantities according to
X=XgutAX. Hence, aboveAT is the contribution of the
new physics to the vertex correctioh, (indices suppressed
@ for brevity). All “hatted” couplings are the modified mini-

whereq? is the four-momentum squared of the propagating™@! subtraction scheme (M$ouplings, and hence they sat-
gauge bosons. Since we are considering processes where 18# the tree-level relatione=gs=g,sc and e’=4ra. In
gauge-boson propagators are coupled to massless fermiparticular,g is the SU2) coupling,s andc are the sine and
currents, we need to consider only the transverse contribleosine of the weak mixing angle, and the strength of the
tion, H\Tllvz(qz); the longitudinal contributions do not con- photon coupling is given b or «. Finally, the U1) cou-
tribute by the Dirac equation for massless fermions. Equivapiing is given byg’ =gs/c.
lently we can calculate-iII{’, (g?) and retain only the Notice in Eq. (4) that the corrections are purely left
coefficient of —ig#”. handed due to the coupling of at least diveboson to the
Next, we calculate vertex corrections as depicted in Figfermion line, hence we have extracted a factos 6f — ys)
2. Using the pinch technique, a portion of the vertex correcon the right-hand side. The appearance of the fab&oin
tions in Fig. Za) are combined with the two-point-function Egs. (4a—(4b) may be understood as follows. For correc-
corrections. This standard technigl#-5] renders propaga- tions to theWWy or WWZ vertex due to the type of loop
tor and vertex corrections separately gauge invariant. Furgraph depicted in Fig.(®), there are two internalV bosons,
thermore, large cancellations which would occur between thene of each charge, connected to an external photan or
propagator and vertex contributions are avoided. boson through &V Wy or WWZ vertex. If the external fer-
For the SM contributions we use the results of H&l.  mion legs are up-type quarks, then the internal fermion is a
For the new-physics contributions which we consider in laterdown-type quarkandvice versa. Interchanging the up-type
sections the discussion is very simple. All new-physics conand down-type quarks interchanges thé andW~, which,
tributions are of the type depicted in Fig(b2 where the due to the properties of th& Wy or WWZ vertex, leads to
“blob” denotes some nonstandard contribution to W&y  an overall sign change. Of course the same argument applies
if the quarks are replaced by neutrinos and charged leptons.
(a) (b) —> An additional coupling factor is extracted for convenience,
leaving finally the process-independent scalar form factors
AT}(g?), ATE(g?), and AT Y(g?) on the right-hand side.
A Finally, we form the combinations

we may write the result of the calculation of Fig. 1 as

—iTI (q2) =—j H¥1V2(q2) Par—j H\L/lvz(qz)Pf_“’,

1V

ATIP(07)=AIP() - 25¢°ATY(0%), (59

FIG. 2. Higher-order contributions to théf,f, vertex where =57, 2 V2 2\ A2 A TZy 2
V=1, Z, or W. Generically the “blob” in(a) denotes a large va- ATIF (g =AII{(q%) —sq“AT'L(q7)
riety of graphs. However, for the new-physics contributions which A 5 Y2
we discuss, all contributions arise from graphs of tyjpe —c(q°—m2z)Al'/(g%), (5b)
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ATTZZ(02) = ATTZ%(g2) — 26( 02— m2)ATZ( g2 . (5¢ these quantities are useful as a means of organizing our cal-
(@) (@) (@ 2)ATL(@), (9 culations, we will later replace them with something else.

— We write
ATIY™(g?) =ATIYY(g?) - 2(q2—m3) AT (g?), (5d)

_ 1 — —

where thel;*"2(g?)’s on the left-hand side are now gauge- aR,,(q%) == [1177(q®) —[1}7(0)], (99

invariant expressions. g
The contributions of these two-point-functions to four-

fermion amplitudes is generally summarized by a set of pa- aRyz(q2)=

[172(q®) -7 (m2)],  (9b)

rameters such as tf& T, andU parameters of Ref8] or an q’— m%
equivalent sef9]. Following Ref.[1] we define
1 — —
s] - — aRz7(q%) = = [T75(0%) —T155(0)], (90
aAS=4s%c? — AlIF5(0) + —=—AII¥%(m3) q
sc
1 — —
_ 2y T i WWe 2y _ TTWW,
s AH{Vy(mg)}, ca aRu(@%)= ST - TR0, (99
o o These quantities are generated directly by energy-dimension-
ATI#%(0)  ATIY™0) six operators or loop effects. In Rdfl0] three parameters,
aAT=— 5~ 7 (6b) v, W, and X, were introduced. They are equivalent to
z W Rzz(m3), Rww(m&), andR,(0). Because current experi-
R — e ments are not sensitive to the fourth parameter, the authors of
aAU=4s%c?ATI5%(0) — ATIYW(0) + S?ATIY7 (m?) that work did not introduce a parameter equivalenRtg.
o Expressed in terms of the seven parameM8sAT, AU,
+2scAll¥(m2)}, 69 AR,,, AR,;, AR;7, andARyy, e introduce four effec-
tive chargeg1] via
where o
_ _ Aa(q®)=~a®’AR,(9%), (109
ViVo, 12\ 17ViVay m?2
_V1V2 2 HT (q ) HT (mv3) — any
ey (a%)= (7 Ag7(9%)=agl[AT—-q’ARzz(0?)], (10b)

2 2
q=—my,

§2¢? [Aa(m?)  g3(0)  aAs

Notice the different subscripts on the left-hand and right- Asz(qz)zA2 = R ~ =

hand sides of Eq(7). -5 a gz 4sc
Several points concerning the usageAd, AT, andAU ann 5 o )

should be made. First of all, we may expand Ehéunctions Tasc (4°~mz)AR,2(q%), (109

in a power series im? according to

L AsA(m2) . Aa(m2) .. AS+AU
T1V1V2( 42 ViVo o 2RViV 2\2(~V,V AE\Z/\/(QZ):_QZ A( Z)+92 E Z)+a92 =
AHTl z(q ):A12+q812+(q)012+..._ (8) S2 o 452

If we include only theA andB coefficients in our expansion, — ag’q* ARww(0?). (10d
then, considering all foukl functions, there are a total of
eight constant coefficients. By a Ward identity,
A?Y=A"?=0. Using the three physical input parametécs
which we choosex, m;, and Gg) eliminates three more,
leaving three parameters, i.AS, AT, andAU. In particular
we expect that all nondecoupling effects are absorbed i
these three parameters.

Of course, as we go beyond theand B coefficients in
Eq. (8) we expect thalS, AT, andAU are insufficient to

When going beyond effects which may be summarized by

AS, AT, andAU, we find that it is most pragmatic to simply
use the above effective charges. This avoids a proliferation
of new parameters, a subset of which must be allowed to run
nyway. Furthermore, the physical interpretation of the ef-

ective charges is straightforwarfdl1l]. Notice that Egs.

(109—-(10d must be calculated sequentially as presented.
Finally, we must consider process-dependent vertex and
include all possible effects. In particular, if in E¢8) we box correctio_ns. In general there could be a Iarge. number of
' : such corrections. However, for the current analysis, the only

include theC terms, we expect an additional four param- non-SM vertex correction with which we must be concerned
eters. With each additional new term we expect four more

parameters. However, if we introduce four new form factors!S the correction to th&bb vertex arising from the graph of

that run withg?, thenS, T, andU plus these four are suffi- F19- 2(b) with an internal top-quark line. We introduce a

cient regardless of how many terms we retain in ). form factor [1], 8,(q?), which changes the SM Feynman
For convenience in organizing our overall analysis werule for theZbb vertex to

introduce four such running coefficients which may be ex- o

pressed as linear combinations of the functions. While  —igzy“(—S?QuP, +{[1+ 8p(q?) 13— S?QpiP_),  (11)
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where the projection operators are defined byespecially important for their contributions at the tree level to
=(1*ys)/2, and Q,=—1/3 and I;=—1/2 are the the two-point functions of the electroweak gauge bosons
charge and weak- |sosp|n quantum numbers oftthguark.  [14-16, althoughOpy, and Ogyy, contribute to nonstandard
Using the decompositiom,= 5y, sy+A &y, the first term  WWy and WWZ couplings as well. Three operatoS,y,
contains the entire SM vertex correctiéminus the pinch Og, and Owww (With associated coefficientsy,, fg,
term) that multipliesl 5, and the ‘A” term is the contribution ~ fwww are significant because they contribute at the tree
of Fig. 2(b) (also minus the pinch term level to nonstandarWWy and WWZ interactions without
In the next two sections we discuss possible parametrize2h associated tree-level contribution to the two-point func-
tions of new physics effects and app|y the formalism deve|1i0ns. While the tree-level contributions to the gauge-boson

oped above to these scenarios. two-point functions of the two operato@,y andOgg (with
respective coefficients,y and fgg) may be removed by a
IIl. THE LIGHT-HIGGS SCENARIO trivial redefinition of fields and CouplindSIA,lSl, these op-

erators are still interesting for their contributionsHa/y and

Assuming the existence of a physical Higgs boson newHzy vertices[17]. The operatoOy, , makes a contribution
physics may be described by an @J<U(1) gauge- to theZZ andWW two-point functions, but the contributions
invariant effective Lagrangian of the form cancel in physical observables. Hend®y, ,, Og 3, and
Oy 4 contribute only to Higgs-boson self-interactions and are
of no further interest in the current context. Additional de-
tails may be found i14,16,18,1%

We will use the effective charges calculated to the leading
The first term is the usual SM Lagrangian which includes eorder in each operator. In other words, only the tree-level
complete set of gauge-invaria@ E*)operators and explic- contributions ofOpy, Opg, Ogw, and Og 1 Will be in-
itly includes operators involving the SM Higgs doubldt, cluded whileOyy,, Og, Owww: Oww, andOgg contribute
The second term constitutes a complete seéD¢E®) opera-  through loop diagrams. All calculations in this section were
tors; eachO(E®) operatorQ;, is multiplied by a dimension- performed in R¢ gauge. We calculate the loop graphs in
less numerical coefficient;, and is explicitly suppressed by d=4-—2¢ dimensions and identify the poles d&=4 with
inverse powers of the scale of new physids,such that the logarithmic divergences and make the identification
overall energy dimension equals four. In general a very large
number of new operators could contrib(il,13. However,
including only those purely bosonic operators which con-
serve CP, only 12C- and P-conserving operators remain
[14]. The explicit expressions for these operators are relwhereu is an arbitrary renormalization scale. We have re-
egated to Appendix A. tained only the logarithmic terms and terms which grow with

Four operator®pyy, Opg, Ogw, andOy, ; (with associ-  the mass of the Higgs bosom,, . Combining the results of
ated coefficient$pyy, fpg, fgw, andfy 1, respectivelyare  Refs.[14,16 we may write the solution as

Elmear £5M+ 2 . (12)

1 (AZ)
—(4m)T'(1+€)—In - (13
€ ®

AS sz L& 4 3(f f)m2 A
aAS=-e’— + — |+
BW ™ 6 16 W B ma

2

- - A?
e +2[(5¢%—2)fyy—(5¢%—23) ]—I (—2>
H

[(22c2—1)fy— (30c%+1)f ]mil A 24(C2f yyyy+ S )mil A* +3692f m$v| A* (143
- c— - —In| — | —24(c S —In| — w—Inl—= |,
W B A2 m% WWwW BB A2 ma ww A2 m%

AT 1sz 3 @ f mi‘l A* +1 +(Cfyy+ f )m§| i +[2¢%f\y+ (32— 1)f ]mél A*
aAT=—5—fo1—— ——1fe—|In| = | +5|F(c —In| = c c— —Inl — |,
272" 4c2 1672 PA2] \m2) 2 WA M W a2 m2

(14b)
AU =8¢ mzf L ets? (—4fy+5f )m2| A (2fy—5f )m§| A® (140
a e?s?—foy+o + + —5fg)—In| — |, v

A2 "Y' 3 1672 W A2\ mg R T
AR..(9%) 2Aez(f +fpp) L e (fw+ fa)l A (140

=— - nf—|,
andky,(q A2 owTios) T s s e TwT e m2

aAR (q2)=2ééz C2f pyy— S2f )+—1 9z (fg—fy)n A% —[(462—1)f\+ (42— 3)fg]In A* (140



262 . i 32
aARZZ(qZ)=A_Z(C4fDW+S4fDB)_ z

12A? 1642

2

292 1
AR () = =
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‘(csz+ stB)|n< —
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A2
mz

(149

2

+(62—§2)(62fw—§2f3)ln(
H

2 AZ 2
_ZfDW__Z g 2fW|In(—2>+In(—2)],
A 12A“ 16w mg mz

wherev =246 GeV is the vacuum expectation value of theWWZ couplings without making a tree-level contribution to
Higgs field. From these expressions we may immediatelyhe gauge-boson propagators. Unlike the light-Higgs sce-
calculate the effective charges of Eq$0). Everywhere we nario, several operatorg,,—£- and £,,, contribute only to
have made the assignment= m%. quartic vertices. Several operators violate the custodial sym-

Finally, we calculate th&@b b vertex form factor metry, SU2)c. They areCy, Lq, L7, Lg, Lo, andLyg. Ly IS
O(E?)in the energy expansion and violates the custodial

_ mf q® (62fw_ §2fB) SU(2) . symmetry even in the absence of gauge couplings.
ASy (@) =——= | =5 — 5 t3fw Finally, £, is special in the sense that it conser@® while
16ms™ A7 my it violates P. This operator contributes to the four-fermion
A2 matrix elements through a myriad of process-dependent ver-
% In( _2) ) (15)  texcorrections. For this reason it is not easily included in the
mz current analysis. Its contributions to low-energy ahbole

. , i data were discussed in R¢25].
This result agrees with Ref20], as discussed below. Such  gach operator in Eq¥B4) has a counterpart in the linear

effects have also been considered in fRet]. Recall thatwe  regjization of SSB[18,26]. Four of these counterparts are
began with operators composed only of bosonic fields. Ag(E6)gperators and appear in Eq&l1). We make the cor-
nonzero value forAéy, indicates that mixed bosonic- respondence

fermionic operators have been radiatively generated.

, 48,
IV. THE ELECTROWEAK CHIRAL LAGRANGIAN L=~ 704&1’ (173
Next we address the nonlinear realization of the symmetry
breaking sector. In the notation §22—24 we present the r 4oy (17h)
chiral Lagrangian, 17 2 TBW:
LO=LUW > Lt 16 8a
b= L3t 2 L (16) =20, 79
v
We use the superscript “nilr,” denoting “nonlinear realiza-
tion.” Again the first term is the SM Lagrangian, but in this 8ay
case no physical Higgs boson is included. Hemtd, is L3=—Ow (179

nonrenormalizable. The first non-SM terms are energy
O(E*and O(E*) operators which are not manifestly sup-  The two-point functions in the context of the chiral La-
pressed by explicit powers of some high scale. There are lgrangian were calculated in the unitary gauge by the authors
such operators which conser@P; 11 of these separately of Ref.[20]. Some contributions were also checked by ap-
conserveC andP. For explicit notation see Appendix B. plying Egs. (17) to the results of Ref[14] and carefully

Three of the operators};, £,, andLg, contribute at the removing all Higgs boson contributions. The contributions of
tree level to the gauge-boson two-point functiofg;andLg  those operators which contribute only to the quartic vertices
also contribute to nonstandaW!Wy and WWZ couplings.  were also obtained in Ref27].! We summarize our one-
Three operatorsf,, L3, and Lg, contribute toWWy and  loop results as

a A? - A?
aAS=-——log| —; | —4€%a;—
M

2
z

1—22c2 1+ 6¢2
a3+

3c2 3c2

577 1+ 3022
16m2| 3¢2

In

: (183

Qg

127

The purely quartic operators contribute only to fieparameter via Eq(18b). Our results disagree with those of RE27] for the
contributions ofL,, L5, and £, while we have differing conventions fat,,.
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3a 2 0°g3[35%(3¢2-1) ., 15%(c?+1)  38%(c+1)
aAT= |O +28,— — a,+35%a,+ ~ ag+ — o
Tone? 9| 72) 4P 16m2|  2¢2 2 s 42 Y 22 P
3(264+ 11) . 6(c*+1) . 3s? . 9 | A2 (185
= el = a7t —(5—agt+ 5 ap|inl — |,
4c? ° c? T2 T e m2
. g* 282 A2
aAU=—4e’ag+ —[—5%(2¢%+3) oy + 28%(25%+ ¢?) g+ (2¢*— 15¢%+ 1) arg | In| — (189
1672 3¢? m2)’
AR,.(g?) g’ 1 (ap+ az+ ag)l A* (180
o = o o ag)IN| — |,
4 16723m2, - o U \md
egzg 4c%-1 A?
aAR =— a,+ aztag)ln| — |, 18¢e
»z(a°%) 1672 12m2, 5 (axtaztag) (m% (
c?—¢? A?
AR, (%) = — gzgz (— Pay+ CCag+ Cag)in| — |, (18f)
1672 6my, m3
é4 A2
aARyw(g2) = — ———agIn| — |. 18

As before, we have computed only the divergent contributions and replacd@4 ) <I" (1+ €) — In(A%u?) and have dropped
all nonlogarithmic termé.Furthermore we have chosgif= m%. Even when all they; are zero, the expressions faiS and
AT are nonzero. This is because the nonlinear Lagrangian contains singularities which in the SM would be cancelled by the
contributions of the Higgs bosof28]. In these terms the renormalization scale,is appropriately taken to be the same
Higgs-boson mass we use to evaluate the SM contributions.

The next step is to use E(L0) to calculate the effective charges. However, the expressions become rather complicated, so
we will leave them in the above form. The nonzero expressions on the right-hand sides dqi&iys(18g) are a clear
indication thatO(E®)operators have been radiatively generated.

To complete this section we present the calculatiomﬁ in the nonlinear mod€120]:

— L, a M, 2 m3 A2
Adp(Q) =~ —=; 2gZ (—SPa,+claz+c ag)—+6a3 It —In| —|. (29

V. NON-ABELIAN GAUGE-BOSON VERTICES andgywz=g,C2 The field-strength tensors include only the

Much of the literature describes nonstandavWy and ~ APelian parts, i.e, W= g*W"—g"W# and V#"=g*V"

WW2Z vertices via the phenomenological effective Lagrang-—¢"V*: In Eq.(20) we have retained only the terms which
ian [29] separately consen@ andP (since that is all that we retain

in the previous sections
In the light-Higgs scenario, if we neglect those operators
Lovwv= —igwwv{ g\l/(W;VWf MVV_WZVVW* ) which contribute to gauge-boson two-point functions at the
tree level, we may writ¢7]

2

N
W W, VT %WZVW’ V(20 gf(0) =1+ % %fw, (21a
whereV=2Z,vy, the overall coupling constants agq,wy:é 1m2
k@) =15 5 5 (furt T, (21b
2The contributions of the S()c-conserving terms can be ob-
tainezd frzom the Appzendzix of Ref20] Ey rznaking the séubsztitutions 1 m% i i
Liw /A= aq, Lopv /A" —2as, L v/ A“—2az, Lov A — ay, Kz(qz):1+ __Z(CZfW_SZfB)y (210

Lw?A%2— as. 2 A
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3. m If we impose the custodial SB) c symmetry on the new
)\y(q2)=)\z(q2)=§ng—V2VfWWW. (21d  physics, then we may neglect tlag terms. In this case the

correlations which exist in the light-Higgs scenario exist here
as well. Again, these relations are violated by higher-order
effects. Equatiori22d) reflects our prejudice that the, cou-
rElings, being generated b®(E®)operators while the other

Hence, truncating the gauge-invariant expansion of(E®).

at the level ofO(E®)operators produces nontrivial relation-

ships between the nonstandard couplings. These relatio

ships are broken by the inclusion 6§ E®)operatorg7]. t
We present similar equations arising from the electroweak

chiral Lagrangian to O(E*in the energy expansion fe

[18,25,30Q:

ouplings are generated I6y(E*)operators, should be rela-
ively small.

Current data are sensitive to gauge-boson propagator ef-
cts, but measurements WWy and WWZ couplings are
rather crude. Until the quality of the latter measurements
approaches the quality of the former, the approximations of

Zr N2\ 22
91(q%) =1+ gzas, (229 this section are valid.
Kk )(G%)=1+g%(as+ agt ag), (22
) "3 ap n s VI. NUMERICAL ANALYSIS AND DISCUSSION
Kz(q ):1+gz(_5 a2+C a3+C a’g), (22(;)
We begin this section by summarizing the results of a
)\y(qz)z)\z(qzwo. (220 recent global analysi81]. For measurements on tlepole,

ag+1.545,(m2) —0.1065

_2 2 —_ n
g2(m2)=0.555 57-0.000 42 0.0038 +0.000 6 o -
— v Pcorr— V.24
's2(m2)=0.230 65+ 0.000 035+ 1.545,(m3) ~0.1085, 0.000 24
/= ' v 0.0038 -

The correlation between the two measurements is given bgnd the full correlation matrix
peor [32]. Recall ,(m32) = 6, su(m3) + A 6,(m2). Combin-

ing the W-boson mass measurememh{=80.356+0.125 1 -0191 0055 -023

GeV) with the input parameteG, 1 —0.988 —0.884
Pcorr= 1 0.943 |’ (27)
— .
g4,(0)=0.4237-0.0013. (24) L
And finally, from the low-energy data, where
g2(0)=0.5441+0.002 o070 o5 m—175 GeV o -
$2(0)=0.2362-0.0044 ' " %~"100 Gev © "Moo Gev %P

We combine these results with the analytical results of théndA =1 TeV. The parametrization of the central values is

previous sections to perform & analysis and obtain limits 900d to a few percent of the ore-errors in the range 150
on the coefficients of both the linear and nonlinear models.GeV<m<190 GeV and 60 Ge¥ m, <800 GeV; for these

four parameters the dependencies upgpandm; arise from
SM contributions only. These bounds will improve with the
analysis of LEP |l data; the processe” —W*'W™ is sen-

For those operators that contribute at the tree level theitive to fg,, even at the level of the current constraifis],
bounds which we obtain are straightforward and unambiguand all of the bounds improve significantly when LEP |l data
ous. For these operators we present the fits along with thyr two-fermion final states are combined with the current
complete oner errors[18]: analysis[16].

The constraints on the remaining parameters are more
subject to interpretation. We make a distinction between
those operators which first contribute to four-fermion ampli-

A. Results for the linear model

fow= — 0.32+0.008&,— 0.55, = 0.44,

fog=—14=10, (26  tudes at the tree level and those which first contribute at the
loop level. Without an explicit model from which to calcu-
fgw=3.7+0.08%y*+2.4, late, it is most natural to assume that all of the coefficients

are generated with similar magnitudek9]. Generally the
fe 1=0.30-0.02&,+0.3%;*+0.16, contributions which first arise at one loop are suppressed by
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TABLE I. One-s fits for the coefficients oDwww, Ow, Og, Oww andOgg for A=1 TeV. In the
analysis only one coupling at a time is allowed to deviate from zero.

my=75 GeV my =200 GeV my =400 GeV m, =800 GeV
fwww —21*+10 5+10 24+10 43+ 10
fw 2.4+3.2 —5.0£3.8 —7.5£45 2.2:3.8
fg —5.0£9.8 7.1+x75 0.78:4.2 —-3.0x2.8
fiww 12.5+6.0 —4.8£9.7 —39+17 —289+70
feg 42+20 —16x32 —131£57 —960*+ 233

a factor of 1/16r? relative to tree-level effects; hence the The remaining couplings remain explicitly zero. It is imme-
contributions of operators first contributing at the loop leveldiately apparent that, for large values xf, the couplings
tend to be obscured. Furthermore, outside of a particulafy,, and fgg may be large relative tdp,, and fpg. (Of
model it is impossible to predict the interference betweercourse for large\, there may also be large corrections to the
tree-level and loop-level diagrams as well as possible cancekbove relation$.Unfortunately this scenario is numerically
lations among the various loop-level contributions. For theproblematic. If we are interested in the large coupling limit
time being we will proceed by considering the effects of onlywhere fpy,fog<fww.feg it is impossible to obtain any
one operator at a time. The results are presented in Table ¢onstraint at all. This may be seen from E{b4); the op-

In general we find consistency with the SM for a relatively erators Oy, and Ogg contribute only through the
light, 100—200 GeV Higgs boson. Féywwthe central val- — (¢2f, \ +§2f,5) term in AS of Eq. (14a. (Notice also that
ues depend upomy; only through SM contributions, and the ¢, enters only througi\S.) In Fig. 3 the solid, dashed,
onewo error is independent ahy, . Forfy, fg, fww, @and  and dotted curves represent=0.1, 1, and 5, respectively.
fgp the dependence on the Higgs-boson mass is from bothor the weak couplingX;=0.1) the contributions of
SM and non-SM contributions, and both the central valuegng f,; are completely negligible. Fox,=1 the effects of
and the errors are complicated functionsmuf . fww and fgg are competitive with those dfpy and fpg.

It is also possible that there is a hierarchy among therinally, when\,=5 the fit is dominated by the strong anti-
coefficients, some being relatively large while others aregrelation off,y,, andfgg. In the strong-coupling limit the
relatively suppressed. In the current discussion it is espeyery eccentric ellipse approaches a line.
cially interesting if all of the operators with non-negligible  Fq studying non-Abelian gauge-boson self-interactions
coefficients contribute only at the loop level. Indeed such gye gre especially interested in the operat®gww, Ow,
scenario is possible. Consider, for example, the simple modej,q o, . without presenting an explicit model we assume

described by the LagrangidB3] that these are the only relevant couplings and that the cou-
plings with tree-level contributions are suppressed. The re-

L=Lsy+(D,) (D*¢)—mip -+ (dT)(DTD) sults are summarized by Fig. 4. For a lighi,=75 GeV
N (6T )2 29 Higgs boson the constraints are rather weak; the graphs
' which contain propagating Higgs bosons tend to cancel

) _ ) against the remaining graphs yielding a rather large contour.
where® is the SM Higgs doublets is a new heavy scalar The ellipsoid displays a strong correlatitanticorrelation in
with isospinl and hyperchargd. The self-coupling of the the f,, \w~fw (FwwwTs) plane. Notice also that this sce-
new scalar is given by', and A, denotes the interaction pnarig prefers rather large deviations from the SM; the center
strength. The physical mass of the heavy scalar is given byt the ellipsoid is at fypww, fw,fe) = (— 74— 9,40). As we
m?=m3— \v?/2. The above Lagrangian generates the fol-

lowing nonzero couplings: N N
6f .\ S =S
f 1 1 10+1)(21+1 af . )
fow_ 1 1l10+D@l+l) 30 R
A% 167% m? 180 2 N _

a
(=)
fog 1 1 YX21+1) - =,
A2 I6mmE 60 G- oo
-4 N . \\
faw 1 1 1(1+1)(21+1) fow -6 * iR
N 1o M 9 =2 2 -1 ~0.5 0 0.5 1

f
(300 bW

FIG. 3. Constraints at the 95% confidence level infthg—fpg
f 1 1 Y2(2I+1) £ plane with fy=20\,fpy and fgg=20N,fpg for A=1 TeV,
_BB_ —N\ =20\, _bB. (30d) m;=175 GeV, andmy=200 GeV. The solid, dashed, and dotted
A?  16m° m? 3 A? curves correspond t9,=0.1, 1, and 5, respectively.
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(@) o = - (b)o.

0'2“.__ . 0.15) #

; 0.1 Lt \ ;Ovl’
4

~

0.
-0.
-0.

N oo

0 . -
1 -0.06 -0.02 0 ©0.02 0.06

-0.1  -0.05 0 0.05

FIG. 6. Constraints in thé& x,—\ plane at the 95% confidence
level assuming the relations of Eg6.21) with A=1 TeV and
m,=175 GeV.(a) corresponds tan,=200 GeV while(b) corre-
sponds tomy =400 GeV. The solid, dashed, and dotted contours
correspond tAA k=0, —0.1, and 0.1, respectively.

WZ events are rare. Therefore, at the Tevatron we are pri-
. ~ marily interested in a two-dimensional plot in thec,—\

FIG. 4. Constraints orfyww, fw, andfg at the 95% confi-  plane with a fixed value oA, . Figure &a) is a fit in the
dence level forA=1 TeV andm,=175 GeV. Ak,—\ plane formy=200 GeV, and Fig. ®) is the same
plot for my;=400 GeV. The solid, dashed, and dotted con-
Yours correspond ta\k,=0, —0.1, and 0.1, respectively.
Notice that themy =200 GeV contour witlA k,=0 is very
consistent with the SM while all of theyy =400 GeV con-
tours barely cross the=0 axis. Clearly there is much more
sensitivity to the assumed value daf«, when the Higgs
boson is light.

increasemy, the contour becomes smaller and less eccentri
especially for my=200 GeV or my=400 GeV. The
my =800 GeV contour shows flattening in thguww—fw
plane. Themy=200 GeV andmy=400 GeV contours are
consistent with the SM while the, =75 GeV andny =800
GeV contours are disfavored.

Recall that, by Eq921), fywww. fw, andfg are related to
the standard parameters for nonstandéfVy and WwWZ
couplings. The 95% confidence-level contours treafing, ,
Axz andA=\,=\; as the free parameters are presented in In order to perform the fits in the nonlinear case we cal-
Fig. 5 formy=200 GeV andn,=400 GeV. Both contours culate the SM values using,=1 TeV. Correspondingly we

are consistent with the SM, though the,; =200 GeV con-  take ;=1 TeV in Egs.(18a and(18b), effectively subtract-
tour just barely includes the SM value ©%0. Formy=200  jng off the Higgs-boson contributions. This method of sub-
GeV we observe a stronfy«z—\ correlation which is im-  tracting off the SM Higgs-boson contributions is approxi-
portant when considering the measurement of these coynate, and in principle we should also subtract off all of the
plings at the Fermilab Tevatron. The Tevatron is sensitive t&mall finite my-dependent terms, or we should repeat the
the WWy vertex primarily through the observation Wy  calculation of the higher-order effects excluding the Higgs
pairs, but due to a limited center-of-mass eneWyyV and  poson from the beginning. The nonzero expression&igr,
R,z, Rzz, andRyy in Egs.(18) is a clear signal that the
one-loop calculations includingd(E*)operators have in-
ducedO(E®)effects. Therefore, to be completely consistent
through O(E®), we should add to Eq918) the two-loop
contributions of theO(E?)operator £; and the tree-level
contributions of a complete set @(E®)chiral operators.
Excluding these effects is an approximation, and in order to
proceed we must assume that the excluded effects do not
significantly interfere with the contributions @f;-L,.

First we analyze the numerical constraintsen 84, and
ag (which correspond ta S, AT andAU, respectively, and
we present the best-fit central values with enerrors,

B. Results for the nonlinear model

a;=(4.7+2.6)xX10 3,
B1=(0.30+0.57)x 103, (31)
ag=(—0.9:7.6) X103,

and the full correlation matrix,

1 -0.871 —-0.121
FIG. 5. Constraints oAk, Axz, andA=\,=\; at the 95% _
confidence level assuming the relations of Eq21) with A=1 Peorr™ 1 0.221 . (32
TeV andm,=175 GeV. 1
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TABLE II. 95% confidence-level constraints ¢h, «,, andag
for m=175 GeV. These results are independenAoin this table

only one coupling at a time is allowed to deviate from zero. (a)
B1 oy ag
(1.2-1.0%x10°3 (6.0:4.9%x10°3 (—7+28x10°3

These tree-level contributions are nondecoupling effects,
hence the bounds derived are insensitive to the sdale
These constraints are sufficiently strong that there is no sen-
sitivity to these three parameters at LEF16,18. Observe
that a positive value fot; is favored. If we insist that either have reparametrized the fit in terms &fc., Ax,, and Ag? ac-
a;=0 or 8;=0, then thea;—B; anticorrelation forces the cording to the relations of Eq&22). v ' !
other parameter towards a more positive central value. Ac-

. ) 0 . )
cordingly, in Table I, we present the 95% confidence Ievelparameters from the séﬂxy,sz,Agf}, and once again

limits where only one ofy,, B or ag is allowed to deviate . .
from zero. Indeed we see that a more positive value for boti S US€ the relations of Eqé&22). Recalling thate, and s

. , . are related tofg and fy, by Egs.(17) we can perform the
a1 andﬂl_ IS preferred, and the fitted value 8 now devi analogous fit in the linear realization of SSB which is shown
ates significantly from the SM.

Next we place constraints on the remainind parameters bin Fig. 8. The solid, dashed, and dotted curves correspond to
P 9p thy=100 GeV, m,,=300 GeV, andmy=700 GeV: these

considering the effects of only one operator at a time. Th(—f. !
. . . . irst three curves use Eg&1). The my=100 GeV is very
results are summarized in Table lll. First of all, notice thatconsistent with the SM while then,—300 GeV and

a,—a; and aqp enter into the analysis only through their - )

contribution toAT as shown in Eq(18b), hence only the my =700 GeV con.tours.prefer nonzero yalues foez thg

linear combination of these five coefficients shown in the lasf S’ and the orientations of these ellipses are complicated
unctions ofmy, but the contours clearly become smaller

column may be constrained. Furthermors, is anticorre- with increasing Higgs-boson mass. The dot-dashed curve
lated with this linear combination in the same fashion as Withcorres onds togthe%%nlinear realizafion of SSB and therefore
B1. Notice that in the first row of the table, whem =0, P

only a4 is consistent with SM at the 95% confidence Ievel.employs Eqs(22). It clearly does not include the SM, but its

. center could be shifted by including nonzero central values
However, in the second row where we have chosen the cen- :
. : or a4 and B, according to Eq(31).
tral value ofa4 according to the best-fit value of E@1), all - : .
: : . In any realistic scenario there will be a set of nonzero
of the central values are easily consistent with the zero,

While the central values easily move around as we includ nd it is possibldindeed likely that there will be large in-

additional operators in the analysis, the errors are much morg rference between the effegts of t_he various c_:oefﬁmen.ts. In
robust. order to see the types of limits which might arise in various

- . scenarios of SSB we consider a strongly interacting scalar
Three of the coefficientsy,, a3, andag, contribute at the ;
. : and a degenerate doublet of heavy fermions, and we get an
tree level to nonstandard/Wy and WWZ vertices without .~ = — . o .
making a tree-level contribution to low-energy afepole indication of the sensitivity of our results to the underlying
observables. In Fig.(@ we plot 95% confidence-level limits dynamics. Using the effective-Lagrangian approach, we can

obtained by fittin and There is a verv stron estimate the coefficients in a consistent way.
y Ttingay, as, @o- y 9 We first consider a model with three Goldstone bosons
ay,—as correlation and moderately stromg—ag and az—ag

. ; : . corresponding to the longitudinal components of Wé and
anilcorrela:ctfns. Zhen, us:jnAg Equ_'I_Z%' we ml?y reca(ljs_t tTe f'td Z and bosons coupled to a scalar isoscalar resonance like the
IN1erms olAk,, Kz, andagy. The resulls are displayed ;. hoson. We assume that the(?) are dominated by
in Fig. 7(b). In this basis the correlations are not as strong

> tree-level exchange of the scalar boson. Integrating out the
there are moderately strodgyc,~A«z andA«,—~Agy COMMe-  geaiar and matching the coefficients at the soalegives the
lations. In Fig. Ta) the pointa3=0 [equivalently, in Fig. predictions[6,34—317
7(b), the pointAgs=0] lies near the edge of the contour.

FIG. 7. 95% confidence level contours fa&c=1 TeV and
m,=175 GeV. In(a) we show the fit ina,, a3, andag. In (b) we

If we require any new physics to conserve the(3y 11 m2
symmetry, thereg=0. In this case there are only two free ay(pu?)= _|n(_H) (339
parametersq, and a3; equivalently we can choose any two 1672 12 2

TABLE lll. 95% confidence-level constraints an—a-, ag, anda g for m;=175 GeV andA =1 TeV.
Only the linear combination of,—«a; and ;o shown in the last column may be constrained. In the first row
all other coefficients are set to zero. In the second sqw5.5x 10”2 is chosen according to Eq.31).

a, g ag Zay+ as+14.906+ 15.607+ 14. 704

a;=0 0.25-0.20 —0.12£0.09 0.27#0.61 —0.44+0.35
@, =5.5x10"3 0.03£0.20 —0.05+0.09 —0.28£0.61 —0.09+0.37
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point where both curves intersect the horizontal axis; as this
figure is drawn the entire plane is excluded by LEP. We can,
by changingA andu, drive the upper bound above 100 GeV
or greater, but the positive central value®f indicates that
a heavy scalar resonance is disfavored.

The previous example conserves the custodial254)
- symmetry. The simplest example of dynamics which violates
the custodial symmetry is a heavy doublet of nondegenerate
. fermions. Referencg24] considers the case of a heavy dou-

= 700Gev

N
\ e

my = 100Gev

T\ — | — /A — noTE blet with charge* 3, a mass splitting\m, and an average
" - Ay = 2006ev massM with (Am<M). Then assuming the fermions are in
N — R s T a color triplet and retaining terms ©(62), (6=Am/2M),
“r they find
FIG. 8. 95% confidence level contours fdr=1 TeV and
m,=175 GeV. The solid, dashed, and dotted curves correspond to 2 1 (Am)z
my =100 GeV,my= 300 GeV, andn, =700 GeV; these first three Ba(mz) = 872 m2 (343
curves use Eqg21). The dot-dashed curve corresponds to the non- W
linear realization of SSB and therefore employs HGQ).
2y _ 2y _
20D =2as(wd) = —ar(wd), (33 alm)=elm) =" (34D
1|1 ([mi| 64m3 Tt 1 2
as(p?)= o2 ﬂln(?> 3 | (330 ag(m3)=— 32772(1—552), (3490
whereT'y, is the width of the scalar into Goldstone bosons. 1 16
All of the othera; are zero in this scenario. It is important to ag(m2)=— — 5 (340
note that only the logarithmic terms are uniquely specified. 3272 5
The constant terms depend on the renormalization scheme
[37,38. (We use the renormalization scheme of R&8].) 1 14
In Fig. 9 we plotas(u?) vs a;(u?) with the pattern typi- ag(m3)=— 5 352. (34e
cal of a theory dominated by a heavy scalar given in Eq. 32m
(33), — a1(u?) =2a,(u?) =2a3(n?) = as(un?). First of all,
notice that the contour obtained depends rather strongly upon 2
our choice of the renormalization scale, especially with a(Mz) = @5 (34

regard to thexs axis. Everything to the right of,=0 cor-

responds tan,<u. Furthermore, since we require thBf,  gecause of the heavy fermion masses in the loopsg{taee
be non-negative, we may approximately exclude everythmgmite and there are no logarithms of in Egs. (34). The

below theas=0 axis. The allowed region to the upper right .,siodial S©2) . violation can be clearly seen in the terms

of the figure corresponds to a Higgs bosc_)n With_a mass in thBroportionaI tos. As in the case of the heavy Higgs boson,
MeV range and an extremely narrow width; this portion of ;.o ote that the coefficients are naturaly1/1672). (For a

the figure is already excluded by experiment. An approXi-yisession where the mass splitting is arbitrary, see Ref.
mate upper bound omy can be obtained from the leftmost [39])

This model generates a nonzero value fgr, but we
have not includedrq; in our analysis. This is not a problem
since we expect the analysis to be dominated by the tree-
level contributions ofB;, a4, and ag; we will neglect the
contributions of the other coefficients. In Fig. 10 we show
the 95% confidence-level limits in the\(n)2-5% plane. We
have excluded the unphysicaf<0 portion of the ellipse.
However, the calculation is not valid for a portion of the
region shown. We have explicitly assumed thah<M. If
we choose a very loose cut-off dfim<<0.4M, then we
should restrict the figure t6°<0.04, and only a narrow strip
-2t 1 along the bottom of the figure is relevant. R=0, M —x,

' o9 and we cannot obtain an upper bound lh We cannot
obtain a lower bound oM because the contour extends into

1F

=m,

5
'
o
&

W=500 GeV

0.004 0.006 2.008 0.

0y

FIG. 9. 95% confidence level contours far=1 TeV and
m=175 GeV in the as-a; plane subject to
—ay(u?)=2a(u?) =2a3(n?) =ay(u?. The larger (smalle)
contour corresponds ta=500 GeV (w=m,).

a region where our calculation is not valid. If we insist that
the new fermions are heavier than approximately 200 GeV,
thenAM~70-90 GeV is the preferred region for the mass
splitting.
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5000 6000 7000 8000

(Am) 2

FIG. 10. 95% confidence level contours for in th&nf)?-62

than 200-300 GeV, we find that a mass splitting of 70-90
GeV is preferred.
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VII. CONCLUSIONS

APPENDIX A: OPERATORS IN THE LINEAR
REALIZATION OF SSB

Parametrizing the contributions of new physics at low en-_ In this appendix we explicitly enumerate the operators of
ergies with an effective Lagrangian we have studied the conEd- (12), i.e., the effective Lagrangian with the linear real-
tributions of new physics to electroweak observables; everyization of SSB. The 12 operators discussed in Sec. Ill are

where we have treated the linear and nonlinear realizations
of electroweak symmetry breaking in parallel, allowing us to
make direct comparisons which had not previously been
studied. The complete contributions of the new physics to
low-energy andZ-pole observables may be completely sum-

marized_by expressions for the running charg?eqz),
92(9?), s2(9?), andg2,(g?) plus a form factor for th&bb

vertex, 8,(q%). We present explicit expressions for these
guantities in both realizations of symmetry breaking.

The above approach is ideally suited to performing a glo-
bal analysis using all available electroweak precision data.
We perform many such fits. We study the bounds which may
be obtained on the various effective-Lagrangian parameters
and the bounds on nonstandaktiWy and WW Z couplings.

For the case of nonstandavdWy and WWZ couplings we
are able to investigate the role of the Higgs mass as com-
pared to having no Higgs boson at all. See Fig. 8.

The coefficients of some operators in the effective La-
grangian contribute to four-fermion amplitudes at the tree
level while the coefficients of others first contribute at the
loop level. A topic of great interest is whether the former can
be suppressed relative to the latter. We discuss one toy
model where such a hierarchy is realized. If such a hierarchy
could be realized among the operators that contribute to
WWy and WWZ couplings, then, even allowing for some
correlations, the low-energy bounds are in some cases on par
with or even superior to the bounds that can be obtained at
LEP 1.

We then use our global analysis to examine some explicit
models. For the case of a strongly interacting model with a
scalar Higgs boson, a light scalar is strongly preferred, while
much of the light region has already been ruled out by LEP.
We confirm that a positive value far; is preferred, which is
known to strongly disfavor the simplest models that include

a strongly interacting vectorlike Higgs boson. Finally wewherew,,,=T2W3,, . The field strength tensors are given by

consider the contributions of a heavy pair of new fermions.
While our analysis is only valid if their masses are heavier

Opw=—g°Tr[(9,W,,)(#“W"*)], (Ala)
ér 2
Ops=—~ 5 (9,B,,)(#"B"), (Alb)
99’
Ogw=— chf B, W*'D, (Alc)
O¢=[(D,®)'®][®T(D*D)], (Ald)
P 3'\3 + \\/— VPN 1
OWWW_ —I1 Eg W,LLVW Wp ) (Ale)
Ow=ig(D,®)'W*"(D,®), (A1f)
i.
OBzzg’(D#(I))TB’”(DV(D), (Alg)
(:3]2
Oww=— Z(chep)w' HWL (A1h)
é/ 2
Ogg=— T(<1>T<D)B“”BW, (ALi)
_1 t widt .
Oy 2=5 Iu(P' @) (P D), (A1))
1
O¢,3:§(¢T¢’)3. (A1K)
Op4=(®'®)[(D,®)(D*D)], (ALl)

B,,=d,B,—d,B,,

(A2a)
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where 1l is the 2<2 identity matrix, the Pauli matrices are
denoted by 7;, and T;=r/2 with the normalization
where eqp. is the totally antisymmetric tensor in three di- Ty(T.T)=14,. The right-pointing arrow indicates the
mensions withe;,3=1. The covariant derivative is given by ypjtary-gauge form of each expression. The lowest-order ef-

W,uV: a;LWV_ aVW;/,_ geabcwzwi ) (AZb)

_ . - fective Lagrangian for the symmetry-breaking sector of the
DM—0M+|gTanL+|g YB,, (A3)

theory is
and® is the SM Higgs doublet: 02
RN ESM=ZTr[DMUTD”U] (B3)
X TX
=— . . A4
\/E v+H—|X3) (Ad) The non-SM operators with four or fewer derivatives

which conserveCP are[23,24]

APPENDIX B: OPERATORS IN THE ELECTROWEAK
CHIRAL LAGRANGIAN

In this appendix we present explicitly the operators of the
electroweak chiral Lagrangian. In the notation[22—-24,

Lo=LW+ D L+ (BY)
We use the superscript “nilr,” denoting “nonlinear realiza-
tion.” The first term is the SM Lagrangian, but in this case

no physical Higgs boson is included. Heri(’;g(,I is nonrenor-
malizable. The first non-SM terms are energy dimension-two

and -four operators which are not manifestly suppressed by

explicit powers of some high scale.

While the physical Higgs boson has not been employed,
the Goldstone bosong; for i=1,2,3, are included through
the unitary unimodular field) introduced below. Following

Ref. [24],
U= ex;{ ) —1,

D,U=4,U+igT*WAU—ig'UT®B,—igT*W2

2ixi(x) 7 (824

v

—ig'T®B,,, (B2b)
T=2UT3UT-2T8, (B20)
vV,=(D,U)u'-D,U, (B2d)

,c’—E ITHTV,)]? (B4a)
1_4610 [ r( /,L)] ’
1 ..
/Jl:zalgg’Tr(BM,,TW“”), (B4b)
Lzzlzazg’ B, Tr(T[V#,V"]), (B4c)
L3=iasgTr(W,,[V&V"]), (B4d)
L4=ay[Tr(V,V,) 1%, (B4e)
Ls=as[Tr(V, V412, (B4f)
Lo=agTr(V,V,)Tr(TVA)Tr(TV"), (B4g)
L7=a7Tr(V VA TH(TV,) Tr(TV?), (B4h)
1 2 2 H
£s=Zasg [Tr(TW,,)]1%, (B4i)
£9=|§agéTr(TWW)Tr(T[V”,V”]), (B4j)
1
510:5 ard TH(TV,)Tr(TV,) 1, (B4k)
L11= a9 Tr(TV,)Tr(V,W,,,). (B4l)
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