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1/Nc expansion for excited baryons
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We derive consistency conditions which constrain the possible form of the strong couplings of the excited
baryons to the pions. The consistency conditions follow from requiring the pion-excited baryon scattering
amplitudes to satisfy the large-Nc Witten counting rules and are analogous to consistency conditions used by
Dashen, Jenkins, and Manohar and others fors-wave baryons. The consistency conditions are explicitly solved,
giving the most general allowed form of the strong vertices for excited baryons in the large-Nc limit. We show
that the solutions to the large-Nc consistency conditions coincide with the predictions of the nonrelativistic
quark model for these states, extending the results previously obtained for thes-wave baryons. The 1/Nc

corrections to these predictions are studied in the quark model with arbitrary number of colorsNc .
@S0556-2821~98!06701-0#

PACS number~s!: 11.15.Pg, 13.75.Gx, 14.20.2c
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I. INTRODUCTION

The successes of the nonrelativistic quark model~NRQM!
in describing baryon spectroscopy and couplings@1# have
remained for a long time something of a mystery. Rec
work by several groups@2–9#, most notably by Dashen, Jen
kins, and Manohar~see also earlier related work in@10#!
helped to shed light on this problem and clarify the relat
of the NRQM to QCD. These works showed that the pred
tions of the NRQM for low-lying s-wave baryons follow
from QCD in the large-Nc limit @11# as a consequence of th
counting rules of Witten@12–14# for pion-baryon scattering
amplitudes. In this way they have been able to derive c
sistency conditions which constrain the mass splittings, p
couplings, and magnetic moments of ground-state bary
up to orderO(1/Nc) in the 1/Nc expansion.

The nonrelativistic quark model has been used to desc
also the properties of the orbitally excited baryons. The
alization of the fact that these states can be accounted fo
the quark model has been one of the first significant ar
ments in its favor@15#. Later works applied the quark mode
to explaining the phenomenology of the strong decays of
L51 baryons to the ground state baryons. The measu
decay widths have been found to be well described by a fi
the quark model predictions@16–18#. When supplemented
with dynamic assumptions, the quark model can be also u
to make more detailed predictions about the mass spec
and decay properties of these states@19–21#.

In addition to the quark model, various other approac
have been employed to describe the orbital excitations
baryons. Among them the Skyrme model, which is clos
related to the large-Nc approximation, has been used to co
struct these states as bound states of a soliton and a m
@22–26#. A bag model description of these states has b
given in @27#. The properties of the negative parity baryo
have been investigated also with the help of the QCD s
rules in @28–30#. More recently, in@31# the structure of the
mass spectrum of the excited baryons has been studied u
an effective Hamiltonian motivated by large-Nc arguments.
570556-2821/97/57~3!/1449~38!/$15.00
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Following the recent progress in understanding the p
dictions of the quark model for ground state baryons, so
effort has been also directed into explaining the analog
predictions for the excited baryons sector. Thus, in@18# the
data on the strong decays of these states have been us
test the idea that the large-Nc limit might provide an expla-
nation for the validity of the quark model description. Th
authors of@18# adopted a Hartree description with the num
ber of quarks in the baryon fixed to its physical valueNc

53. The large-Nc expansion has been implemented at t
level of operators mediating the strong decays, which can
classified according to their order in 1/Nc . A fit to the ex-
perimental data on strong decays of theL51 baryons in the
70 of SU~6! gave the result that the naive quark model, co
taining only one-body operators, reproduces the experim
tal data to a good precision. On the other hand, two-bo
operators which could contribute to same order in 1/Nc as
those kept in the quark model, appear to be suppresse
Nature for reasons seemingly unrelated to the large-Nc ex-
pansion. From this, the authors of@18# concluded that there
might be more than large-Nc to the success of the quar
model relations.

In this paper we study the strong pion couplings of t
orbitally excited baryons, both light and heavy, in the larg
Nc limit using as input constraints on pion-baryon scatter
amplitudes following from the counting rules of Witten. Th
approach is closer in spirit to the one used in@2,3# by
Dashen, Jenkins, and Manohar. We derive in this way c
sistency conditions which constrain the possible form of
strong coupling vertices, which are then solved explicit
Our final conclusion is that the model-independent res
obtained from solving the consistency conditions are
same as those following from the quark model in the lar
Nc limit, thus extending the statements of@2–6# to the ex-
cited baryons’ sector. We stress that our results do not c
flict with the conclusions of@18#. A detailed discussion of
our results in the language of@18# can be found in Appendix
B. Rather, the findings of@18# can be formulated in the ligh
1449 © 1997 The American Physical Society
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1450 57DAN PIRJOL AND TUNG-MOW YAN
of our results as a new puzzle: why does the quark mo
work better than it should?

Our paper is structured as follows. We begin by introdu
ing in Sec. II the spectrum of the orbital excitations a
constructing its generalization to the large-Nc limit. The
structure of these states is more complex than for the cas
the s-wave baryons. We introduce the concept ofP-spin to
deal with the mixed symmetry spin-flavor states and po
out an additional problem connected with the appearanc
spurious unphysical states in theNc.3 case. Section III con-
tains the derivation of the consistency conditions for stro
coupling vertices. These arise from a mismatch between
scaling power withNc of the meson-baryon vertices and th
Witten scaling law for the meson-baryon scattering am
tudes. The consistency conditions are explicitly solved
Sec. III giving the most general solution forS-, P-, and
D-wave pion couplings in the large-Nc limit. We show in
Sec. IV that the solutions to the consistency conditions a
ally coincide with the predictions of the constituent qua
model in the large-Nc limit. The orbital excitations are firs
explicitly constructed in the quark model withu and d
quarks only and arbitrary number of colorsNc . Armed with
these wave functions, we develop the machinery necessa
compute the strong coupling vertices of these states. A
product of this quark model calculation is a determination
the large-Nc scaling law of the decay vertices, which exhib
a surprising dependence on the symmetry type of the exc
state involved. Section V contains an exact calculation in
quark model of the strong coupling vertices for an arbitra
value ofNc . These results are used to examine the struc
of the 1/Nc corrections to the large-Nc relations obtained in
Sec. III. We conclude in Sec. VI with a summary and o
look on our results. Appendix A presents the quark mo
calculation of the strong couplings among excited sta
transforming under the mixed symmetry representation
SU~4! and Appendix B gives an interpretation of our resu
in the language of quark operators.

II. SPIN-FLAVOR STRUCTURE
OF THE EXCITED BARYONS

In the large-Nc limit, the s-wave baryons containing onl
u,d quarks formI 5J towers of degenerate states. Both po
sibilities I 5J51/2,3/2, . . . andI 5J50,1, . . . are ofphysi-
cal significance, the former corresponding to the light ba
ons and the latter to baryons with one heavy quark~in this
caseJ is to be interpreted as the angular momentum of
light degrees of freedom!. Baryons with strangeness can b
also incorporated in the large-Nc limit as separate towers o
states, each labeled by a quantum numberK related to the

number of strange quarks asK5 1
2 ns . For eachK tower, the

spin J and isospinI take values restricted by the conditio
uI 2Ju<K.

FIG. 1. Young tableaux for the SU~4! representation of the s
wave baryons forNc53 and in the large-Nc limit.
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This picture is precisely the same as the one predicted
the NRQM with SU~4! spin-flavor symmetry. In NRQM lan-
guage the s-wave baryons have orbital wave functions wh
are completely symmetrical under permutations of t
quarks. This constrains their spin-isospin wave function
transform also under the completely symmetric represe
tion of SU~4!, which contains theI ,J values given above
Spin and flavor independence of the interquark forces in
NRQM is responsible for the degeneracy of all these sta
Figure 1 shows the Young diagram of the totally symmet
representation of SU~4! for Nc53 and its extension to the
case of arbitraryNc .

The spectrum of the p-wave baryons has a more com
cated structure. The spin-flavor wave function of the lig
baryons has mixed symmetry, transforming forNc53 as a
70 under SU~6! and as a20 under SU~4!. To keep our results
as general as possible and to avoid some ambiguities
nected with the identification of the large-Nc states with
physical states, we will not assume SU~3! symmetry. Just as
in the case of the s-wave baryons, we will divide the p-wa
states into sectors with well-defined strangeness and ass
only isospin symmetry. We extrapolate the mixed symme
representation fromNc53 to the large-Nc case as shown in
Fig. 2.

Under the isospin-spin SU~2!3SU~2! group this represen
tation splits into (I ,S) representations which satisfyuI 2Su
<1 ~except forI 5S5Nc/2 which is only contained in the
totally symmetric representation!.

This can be proven by considering the product of SU~4!
representations shown in Fig. 3 and its decomposition i
irreducible representations ofSU(2)spin3SU(2)isospin. For
definiteness we will takeNc to be odd, although the argu
ment is equally valid also for even values ofNc . The
isospin-spin (I ,S) content of the product of representatio
on the left-hand side~LHS! can be obtained from the corre
sponding product

H ~0,0!,~1,1!, . . . S Nc21

2
,
Nc21

2 D J ^ S 1

2
,
1

2D ~2.1!

and includes all representations of the form (i 6 1
2 ,i 6 1

2 ) with
i 51,...,(Nc21)/2. All the representations withIÞS occur
with multiplicity 1. The representations with (I ,S)5( i

1 1
2 ,i 1 1

2 ),(i 2 1
2 ,i 2 1

2 ) appear twice, except for (I ,S)

FIG. 2. SU~4! representations for light p-wave baryons, forNc

53 and in the large-Nc limit.

FIG. 3. Product of SU~4! representations used in the text for th
determination of the (I ,S) content of the mixed symmetry represe
tation.
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57 14511/Nc EXPANSION FOR EXCITED BARYONS
5(Nc/2,Nc/2) which appears only once. On the other ha
the symmetric representation on the right-hand side~RHS! of
Fig. 3 contains only theI 5S representations describe
above, but with unit multiplicity. Subtracting them from th
(I ,S) representations on the LHS of Fig. 3 we are left w
the representation content mentioned above for the m
symmetry SU~4! representation. This can be further check
by comparing the dimensionality of the SU~4! representation
given by the Young diagram in Fig. 2 for arbitraryNc with
the sum of the dimensions of the (I ,S) representations de
scribed above

dim5
1

2
~Nc21!~Nc11!~Nc12!5 (

n52

Nc21

@n212n~n12!#.

~2.2!

The total baryon spinJ is given byJW5SW 1LW with L51.
The lowest-lying observed p-wave light baryons contain
only u,d quarks are listed in Table I together with the
quantum numbers in the quark model@32#. Note that the
states (I ,S)5(3/2,3/2) which would be present in the larg
Nc limit are forbidden in theNc53 case for the reason men
tioned above.

It is not difficult to introduce also strangeness in this p
ture. Because the strange quark is now different from
other Nc21 quarks in the baryon, the Pauli principle co
strains only the symmetry properties of the wave function
the latter. In this case both SU~4! representations shown i
Figs. 1 and 2 are possible. We show in Table II the lowe
lying observed and expected p-wave hyperons with
strange quark together with their quark model quantum nu
bers. For example, the states with (I ,S)5(1,3/2) in Table II
are completely symmetric under a permutation of theu,d
quarks, whereas the states (I ,S)5(0,3/2) are antisymmetric
under the same transformation~for Nc53 the mixed symme-
try state is in fact antisymmetric!. The symmetric represen
tation corresponds to10 and the antisymmetric one to6 of
SU~4!. The other states in Table II are mixtures of both re
resentations.

To construct the analogs of these states in the largeNc

limit, it is convenient to introduce two vectorsKW and PW ,
which will be calledK-spin andP-spin, respectively. The
K-spin counts the number of strange quarks as descr
above and takes the value 1/2 for hyperons with ones quark
@5#. TheP-spin labels the type of permutational symmetry

TABLE I. The p-wave light baryons containing onlyu,d quarks
and their quantum numbers.

State (I ,JP) L2I ,2J (I ,S) „SU~3!,SU~2!…

N~1535! ( 1
2 , 1

2
2) S11 ( 1

2 , 1
2 ) (8,2)

N~1520! ( 1
2 , 3

2
2) D13

N~1650! ( 1
2 , 1

2
2) S11 ( 1

2 , 3
2 ) (8,4)

N~1700! ( 1
2 , 3

2
2) D13

N~1675! ( 1
2 , 5

2
2) D15

D(1620) ( 3
2 , 1

2
2) S31 ( 3

2 , 1
2 ) (10,2)

D(1700) ( 3
2 , 3

2
2) D33
,
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the u,d quarks’ wave function in the baryon and is equal
0 for the symmetric representation and to 1 for the mix
symmetric representation.

With these definitions the total quark spinS of a p-wave
baryon takes all the values compatible with

SW 5 IW1KW 1PW . ~2.3!

In addition to this, an exclusion rule must be imposed
P51, forbidding the following symmetric states

uSW 2KW u5I 5
Nc

2
2K. ~2.4!

This exclusion rule is operative only at the top of the larg
Nc towers and therefore can be neglected in the largeNc
limit. One should keep however in mind the fact that ne
unphysical states are introduced in the large-Nc limit which
would be otherwise forbidden by this rule.

The classification of the states into symmetric and mix
representations is even more transparent for the p-wave b
ons with one heavy quark. In the heavy mass limit the s
and parity of the light degrees of freedom become go
quantum numbers. Furthermore, in the NRQM the total s
of the light quarksSl is also conserved and can be us
together with the isospin to identify the permutational sy
metry of the state.

Thus, in the large-Nc limit the symmetric representatio
will give rise to anI 5Sl tower of states, in analogy to th
situation for the light s-wave baryons~with the total spin of
the light quarksSl taking the place of the total spinJ). The
mixed symmetry representation will generate also a tow
with uI 2Sl u<1, as in the case of the light p-wave baryon
From this the states withI 5Sl 5(Nc21)/2 will have to be
excluded. The total heavy baryon spinJ will be given in the
general case including also strangeness by

TABLE II. The p-wave hyperons containing one strange qua
and their quantum numbers.

State (I ,JP) (I ,S) „SU~3!,SU~2!…

L(1405) (0,1
2

2) (0,1
2 ) (1,2)

L(1520) (0,3
2

2)
L(1670) (0,1

2
2) (0,1

2 ) (8,2)

L(1690) (0,3
2

2)
S(1620) (1,1

2
2) (1,1

2 )
S(1670) (1,3

2
2)

L(1800) (0,1
2

2) (0,3
2 ) (8,4)

L(?) (0,3
2

2)
L(1830) (0,5

2
2)

S(1750) (1,1
2

2) (1,3
2 )

S(?) (1,3
2

2)
S(1775) (1,5

2
2)

S(?) (1,1
2

2) (1,1
2 ) (10,2)

S(?) (1,3
2

2)
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JW5 IW1SW l 1SW Q1KW 1PW 1LW ~2.5!

with SQ51/2 the heavy quark spin.
We emphasize that the use of quark model quantum n

bers such asS,Sl ,SQ , etc., does not imply any dynamica
assumption on our part and is made with the sole purpos
counting states. All our main results below will be obtain
without any assumption of whether these quantities are c
served or not. We use the NRQM just as a convenient
guage which serves to guide our intuition about the spin
flavor structure of the states of interest.

In the next section we will study the strong couplings
the excited baryons in the large-Nc limit.

III. CONSISTENCY CONDITIONS
FOR EXCITED BARYONS

We will obtain constraints on the pion couplings of th
excited baryons by studying both elastic pion scattering
these states and inelastic scattering among s-wave and
cited states. The results will follow from a set of consisten
conditions, derived by requiring the total scattering amp
tude to satisfy large-Nc counting rules@12–14#. We start by
reviewing the large-Nc scaling properties of the differen
couplings which will be needed.

Pions couple to baryons with a strength proportional
the matrix element of the axial current taken between
corresponding states. In the case of the s-wave baryons
matrix element was parametrized in@2,3,5# as

^J8,m8,a8u q̄g ig5
1
2 taquJ,m,a&

5Ncg~X!^J8,m8,a8uXiauJ,m,a& ~3.1!

with Xia an irreducible tensor operator of spin and isospin
andg(X) a reduced matrix element of order 1 in the large-Nc
limit. Xia has a large-Nc expansion of the form
Xia5X0

ia1X1
ia/Nc1•••. The matrix element~3.1! grows lin-

early withNc because the axial current couples to each of
Nc quarks in the baryon.

We will use a similar parametrization for the matrix el
ment of the axial current taken between two excited bary

^J8,I 8;m8,a8u q̄g ig5
1
2 taquJ,I ;m,a&

5Ncg~Z!^J8,I 8;m8,a8uZiauJ,I ;m,a&, ~3.2!

whereZia is again an irreducible tensor operator withJ5I
51. This matrix element grows also withNc for the same
reason as in the preceding case.

On the other hand, the axial current matrix elements ta
between s-wave and p-wave baryons grow slower thanNc .
We parametrize the matrix elements of the time and sp
components of the axial current as

^J8,m8,a8u q̄g0g5
1
2 taquJ,I ;m,a&

5Nc
kg~Y!^J8,m8,a8uYauJ,I ;m,a&, ~3.3!

^J8,m8,a8u q̄g ig5
1
2 taquJ,I ;m,a&

5Nc
kg~Q!qj^J8,m8,a8uQi j ,auJ,I ;m,a& ~3.4!
-
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with qm the momentum of the current. In the quark model t
scaling powerk is equal to 1/2 for p-wave baryons tran
forming under the completely symmetric representation
SU~4! and 0 for baryons transforming according to the mix
symmetry representation of SU~4!. This will be proved in
Sec. IV.Ya is a tensor operator with spin 0 and isospin 1 a
Qi j ,a has spin 2 and isospin 1 (Qi j ,a5Qji ,a, Qii ,a50). The
operatorsZ,Y,Q have expansions in powers of 1/Nc of the
same form asX.

The pion coupling to the states appearing in~3.1!–~3.4! is
obtained by dividing these matrix elements by the pion de
constantf p5O(ANc) @2,3,5,10#. The consistency condition
of Dashen, Jenkins, and Manohar~DJM! were obtained by
considering pion scattering on s-wave baryonspa(q)
1B→pb(p)1B8 @2,3,5#. The leading contribution to this
amplitude arises from two tree graphs with the pions c
pling in either order and is given by

T5
Nc

2g2~X!

f p
2

qipj

E~qW !
~X0

jb†X0
ia2X0

iaX0
jb†!. ~3.5!

This scattering amplitude is of orderNc , in apparent contra-
diction with the large-Nc counting rules of Witten according
to which it should be of order 1. One concludes therefo
that one has

@X0
jb† ,X0

ia#50. ~3.6!

This is the leading order consistency condition of DJ
@2,3,5,10#.

Taking as target a p-wave baryon, the above reason
can be extended immediately to the couplingsZ, for which
one obtains the analogous condition

@Z0
jb† ,Z0

ia#50. ~3.7!

The operatorsZia act only on the space of the p-wave stat
which are degenerate among themselves and have vanis
matrix elements between p-wave states of different mass

We would like next to derive consistency conditions i
volving the couplingsY andQ. In order to do so we conside
the scattering amplitude for the processpa(q)1~p-wave!
→pb(p)1~s-wave!. The mass splitting between s-wave a
p-wave states is of order 1 in the large-Nc limit, so that the
initial and final pions will not have the same energy. Addi
together the contributions of the diagrams with intermedi
s-wave and p-wave baryons we obtain, for this case,

T5
Nc

11kg~Y!

f p
2 H 2

piE~qW !

E~pW !
„g~X!XiaYb†2g~Z!Yb†Zia

…

1
qiE~pW !

E~qW !
„g~X!Xib†Ya2g~Z!YaZib†

…J 1
Nc

11kg~Q!

f p
2

3H 2
piqjqk

E~pW !
„g~X!XiaQjk,b†2g~Z!Qjk,b†Zia

…

1
qkpipj

E~qW !
„g~X!Xkb†Qi j ,a2g~Z!Qi j ,aZkb†

…J . ~3.8!
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57 14531/Nc EXPANSION FOR EXCITED BARYONS
This scattering amplitude is apparently of orderNc
k with k>0

which again violates the counting rules of Witten, accord
to which it should be at most of orderNc

21/2 @13#. This re-
quires all the independent kinematical structures to vanis
leading order:

g~X!X0
iaY0

b†2g~Z!Y0
b†Z0

ia50,

g~X!X0
ib†Y0

a2g~Z!Y0
aZ0

ib†50, ~3.9!

g~X!X0
iaQ0

jk,b†2g~Z!Q0
jk,b†Z0

ia50,

g~X!X0
kb†Q0

i j ,a2g~Z!Q0
i j ,aZ0

kb†50. ~3.10!

All of our conclusions about the pion couplings of the e
cited baryons in the large-Nc limit will follow from the set of
consistency conditions~3.7!,~3.9!,~3.10!. In the present pape
we restrict ourselves to the leading order in the largeNc
expansion. Therefore, to simplify the notation, we will dro
the index 0 on the coupling operators throughout in the
lowing.

A. Consistency condition forZ

The consistency condition forZia ~3.7! is completely
identical in form to the one forXia ~3.6! which has been
studied in detail in@2,5#. These authors showed thatXia

forms, together with the generators of the spin-isospin SU~2!
3SU~2! groupJi ,I a a contracted SU~4! algebra. Every pos-
sible solution forXia corresponds to a particular irreducib
representation of this algebra. The most general irreduc
representation can be labeled by a spin vectorDW , in terms of
which the basis states of the representation are construct
JW5 IW1DW .

In principle it would be possible to take over the results
@5# for Xia and write down directly the matrix elements
Zia. We will prefer however to construct the solution forZia

by using a NRQM-inspired ansatz. Besides reproducing
result of@5#, this approach has the advantage of suggestin
method for obtaining the solution of the consistency con
tions ~3.9!,~3.10!. In retrospect, this will furnish also a proo
of the validity of the NRQM predictions for excited baryon
in the large-Nc limit.

We begin by parametrizing the matrix elements ofZia

taken between states belonging toD andD8 towers, respec-
tively, as

^J8,I 8;m8,a8uZiauJ,I ;m,a&

5~21!J1I 2DA~2I 11!~2J11!Z~J8,I 8;J,I !

3^J8,m8uJ,1;m,i &^I 8,a8uI ,1;a,a&. ~3.11!

The notation adopted anticipates a result to be proven be
according to whichZ only connects towers withD5D8. The
reduced matrix elementZ(J8,I 8;J,I ) depends on the com
mon value ofD, although for the sake of simplicity this i
not made explicit. The normalization coefficient is chos
such that the reduced matrix element is symmetric und
permutation of the initial and final indicesZ(J8,I 8;J,I )
5Z(J,I ;J8,I 8).
g

to

l-

le

as

f

e
a

i-

w,

n
a

The consistency condition~3.7! can be used to obtain con
straints on the reduced matrix elementsZ(J8,I 8;J,I ). For
this it will be sandwiched between two general sta
^J8,I 8;m8,a8u•••uJ,I ;m,a& and a complete set of interme
diate states is inserted. We obtain

(
J1I 1m1a1

^J8,I 8;m8,a8uZjb†uJ1 ,I 1 ;m1 ,a1&

3^J1 ,I 1 ;m1 ,a1uZiauJ,I ;m,a&2~Zjb†↔Zia!50.

~3.12!

This equation can be projected, as in@2#, onto the channel
with total angular momentumH and isospinK by multiply-
ing it with

^H8,h8uJ8,1;m8, j &^H,huJ,1;m,i &^K8,h8uI 8,1;a8,b&

3^K,huI ,1;a,a& ~3.13!

and summing overm,m8,i , j ,a,a8,a,b. The resulting con-
sistency condition takes the form

(
J1 ,I 1

~2J111!~2I 111!H J 1 H

J8 1 J1
J

3H I 1 K

I 8 1 I 1
J Z~J8,I 8;J1 ,I 1!Z~J1 ,I 1 ;J,I !

5~2 !2~J81I 8!Z~H,K;J8,I 8!Z~H,K;J,I !. ~3.14!

We will try to guess the solution of this consistency co
dition by using as guidance the nonrelativistic quark mod
Once found, the solution will be seen to be unique by us
for example numerical solution of the consistency condit
~3.14! or the method of the induced representations@5#.

Let us consider for simplicity the case of baryons witho
strange quarks. Also, let us first assume that the total bar
spin is given byJW5 IW1LW , which is to say that the baryon wil
be regarded as containing a ‘‘core’’ ofu,d quarks transform-
ing under the symmetric representation of SU~4!. The
‘‘core’’ spin S is therefore equal to its isospinI . In addition
to this, the orbital angular momentumLW is added to make up
the total spinJW . This corresponds to the case of a hea
baryon transforming under the symmetric representation
SU~4!, provided thatJ is interpreted as the angular mome
tum of the light degrees of freedom.

The basis states can be easily constructed and are g
by

uI ,L;J,m,a&5 (
mSmL

uI ,L;mS ,mL ,a&^J,muI ,L;mS ,mL&.

~3.15!

The currentZia becomes in the quark model

Zia→s i
^ ta, ~3.16!

wheres i acts only on the spin of theu,d quarksSW and ta

acts only on the isospinIW.
Therefore the matrix element ofZia between the state

~3.15! can be expressed as
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^I 8,L8;J8,m8,a8uZiauI ,L;J,m,a&5 (
mSmLmS8mL8

^I 8,L8;mS8 ,mL8 ,a8us i
^ tauI ,L;mS ,mL ,a&^J8,m8uI 8,L8;mS8 ,mL8&

3^J,muI ,L;mS ,mL&. ~3.17!

The matrix element in the basisuI ,L;mS ,mL ,a& can be parametrized with the help of the Wigner-Eckart theorem in term
a new reduced matrix elementZ(I 8,I )

^I 8,L8;mS8 ,mL8 ,a8us i
^ tauI ,L;mS ,mL ,a&5

1

2I 811
Z~ I 8,I !^I 8,mS8uI ,1;mS ,i &dLL8dmLmL8

^I 8,a8uI ,1;a,a&. ~3.18!

With this normalization the reduced matrix element is symmetricZ(I 8,I )5Z(I ,I 8).
Inserting this expression in~3.17! it is possible to compute the matrix element ofZia taken betweenuI ,L;J,m,a& states.

Comparing with the parametrization~3.11! we obtain the following connection betweenZ(J8I 8,JI) andZ(I 8,I )

~2 !J1I 2DA~2J11!~2I 11!Z~J8I 8,JI !5Z~ I 8,I !dLL8dLD~2 !2J81J2I 82D11A2J11

2I 811
H I 8 1 I

J L J8
J . ~3.19!

We can find a consistency condition forZ(I 8,I ) by inserting this expression into~3.14!. The sum overJ1 can be performed
explicitly and we find

~2K11!(
I 1

~2 !22I 1H I 1 I 1

I 8 1 K J H I 1 I 1

D J8 I 8

J H 1
J Z~ I 8,I 1!Z~ I 1 ,I !5~2 !2I 822KH K 1 I 8

J8 D HJ H K 1 I

J D HJ Z~K,I 8!Z~K,I !.

~3.20!

It is easy to see, by making use of the relation@Eq. ~6.4.8! in @33# #

(
m

~2m11!H j 11 j 12 m

j 23 j 33 l J H j 11 j 12 m

j 21 j 22 j 23

j 31 j 32 j 33

J 5~2 !2lH j 21 j 22 j 23

j 12 l j 32
J H j 31 j 32 j 33

l j 11 j 21
J , ~3.21!

that this equation is satisfied by the solutionZ(I 8,I )5A(2I 11)(2I 811) @up to a constant which can be absorbed intog(Z)#.
We obtain in this way the result

Z~J8,I 8;J,I !5~2 !2I 1I 811H I 8 1 I

J L J8
J dDD8dLD . ~3.22!

We consider next the slightly more complicated case of the baryons transforming under the mixed symmetry repres
of SU~4!. This is relevant for the light baryons containing onlyu,d quarks. In this case, the total spin of the excited baryo
given byJW5 IW1PW 1LW . There is an important difference in the application of the quark model to this situation, connecte
the fact thats i in ~3.16! acts on the spins of theu,d quarks. The total spin of theu,d quarksSW 5 IW1PW is not equal toI as
before. Therefore the natural set of states for doing the quark model calculation isu(IP)S,L;J,m,a&.

On the other hand, we would like to classify the states in~3.11! according to the value of the spin vectorDW , such thatIW

1DW 5JW . This requires a different coupling of the vectorsIW,PW ,LW : uI ,(PL)D;J,m,a&. The connection between these two sets
states is a well-known recoupling problem in the theory of angular momentum and is given by Eq.~6.1.5! in @33#

uI ,~PL!D;J,m,a&5~2 !2I 2P2L2J(
S

A~2S11!~2D11!H I P S

L J DJ u~ IP !S,L;J,m,a&. ~3.23!

The matrix element ofZia taken between theu(IP)S,L;J,m& states can be written as

^~ I 8P8!S8,L8;J8,m8,a8uZiau~ IP !S,L;J,m,a&5 (
mSmLmS8mL8

^I 8S8L8;mS8 ,mL8 ,a8us i
^ tauISL;mS ,mL ,a&

3^J8,m8uS8,L8;mS8 ,mL8&^J,muS,L;mS ,mL&. ~3.24!

An application of the Wigner-Eckart theorem gives
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^S8I 8L8;mS8 ,mL8 ,a8us i
^ tauSIL;mS ,mL ,a&5

1

A~2S811!~2I 811!
Z~S8I 8,SI!dLL8dmLm

L8
^S8,mS8uS,1;mS ,i &^I 8,a8uI ,1;a,a&,

~3.25!

with Z(S8I 8,SI) a new reduced matrix element. With this choice for the normalization factor, it transforms under a p
tation of the initial and final indices as

Z~S8I 8,SI!5~2 !S1I 2S82I 8Z~SI,S8I 8!. ~3.26!

It is easy to compute now the matrix element ofZia between theuI ,(PL)D;J,m,a& states by inserting~3.25! into ~3.24! and
using the expansion~3.23!. We obtain

^I 8,~P8L8!D8;J8,m8,a8uZiauI ,~PL!D;J,m,a&

5~2 !2I 82P82L82J82I 2P2L2J(
SS8
A~2S11!~2D11!~2D811!

2I 811
dLL8H I 8 P8 S8

L8 J8 D8
J H I P S

L J DJ Z~S8I 8,SI!

3 (
mSmLmS8

^S8,mS8uS,1;mS ,i &^J8,m8uS8,L;mS8 ,mL&^J,muS,L;mS ,mL&^I 8,a8uI ,1;a,a&. ~3.27!

Let us pause for one moment and compare this expression with~3.11!. One can see that the isospin CG coefficient is the sa
on the RHS of these two relations. We extractZ(J8I 8,JI) by multiplying both equations witĥJ8,m8uJ,1;m,i & and summing
over (m,i ). The resulting sum over 4 CG coefficients can be expressed as a 6j symbol. We obtain finally

~2 !J1I 2DA~2J11!~2I 11!Z~J8,I 8;J,I !5~2 !2I 81J82I 2P82P2L11A~2J11!~2D11!~2D811!

2I 811

3(
SS8

~2 !2S8A~2S11!~2S811!H I 8 P8 S8

L J8 D8
J H I P S

L J DJ
3H S8 1 S

J L J8
J Z~S8I 8,SI!. ~3.28!

We insert the following ansatz for the reduced matrix elementZ(S8I 8,SI) @inspired by ~3.22! with the identification
(ILJ)→(IPS)#

Z~S8I 8,SI!5~2 !2S2I 8A~2S11!~2S811!~2I 11!~2I 811!H I P S

S8 1 I 8J , ~3.29!
the
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which has the required symmetry property~3.26!.
If we assume thatP5P8 we can perform the sums overS

andS8 in ~3.28! with the help of the identity@Eq. ~C.35e! in
@34# #

(
x

~2 !f~2x11!H a b x

c d gJ H c d x

e f hJ H e f x

b a jJ
5H g h j

e a dJ H g h j

f b cJ , ~3.30!

with f5a1b1c1d1e1 f 1g1h1x1 j .
The final result forZ(J8I 8,JI) is

Z~J8,I 8;J,I !5~2 ! I 22J1I 81PH I 8 1 I

J D J8
J dDD8dPP8.

~3.31!
For PÞP8 this reduced matrix element vanishes because
operator~3.16! is totally symmetric and the initial and fina
states have different permutational symmetry in the sp
flavor of theNc quarks.1

One can see that, in spite of their quite different detai
structure, both cases considered lead to the same an
~3.22! and ~3.31!, which also coincides with the result ob
tained by@5# for the case ofXia. The two most important
properties of this solution are now apparent.

The excited states can be classified in towers of sta
labeled by a spin vectorD such thatuJ2I u<D. To enforce
the cancellation of the leadingNc dependence among th

1In the quark model this matrix element receives a nonvanish
contribution starting at order (v/c)2 in the nonrelativistic expansion
@38#. However, a study of these effects would take us beyond
model-independent framework of the present work.
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different intermediate states, expressed by the consiste
condition, all the members of aD tower must be degenerat
among themselves.

Pions do not couple towers of excited states with differ
values ofD, as the corresponding nondiagonal matrix e
ments ofZia vanish.

The second property will be useful in the study of t
consistency conditions forY andQ ~3.9!,~3.10!, as it allows
ve

x-

o

-
. T
e

in
n-

tri

n

cy

t
-

us to consider the couplings of eachD tower of excited bary-
ons at a time. We turn now to the first of them, the coupli
Y responsible for S-wave pion couplings between p- a
s-wave baryons.

B. Consistency condition forY

We parametrize the matrix elements of theYa operator as
^J8,I 8;m8,a8uYauJ,I ;m,a&5~2 ! I 1I 8A2I 11Y~J8I 8,JI !dJJ8dmm8^I 8,a8uI ,1;a,a&, ~3.32!

~s-wave! ~p-wave!

^J8,I 8;m8,a8uYauJ,I ;m,a&5~2 !2IA2I 11Ȳ~J8I 8,JI !dJJ8dmm8^I 8,a8uI ,1;a,a&, ~3.33!

~p-wave! ~s-wave!.
y

ng

ark

ns-

the
With this choice for the normalization coefficients we ha
Y(J8I 8,JI)5 Ȳ(JI,J8I 8). The same definitions~3.32! and
~3.32! will be used for transitions between other orbital e
citations.

We proceed next in complete analogy to the derivation
the consistency condition forZia ~3.14!. The relation~3.7! is
sandwiched between states belonging toD8 and D towers,
respectively,

^J8,I 8;m8,a8~s-wave!urXiaYb†

2Yb†ZiauJ,I ;m,a~p-wave!&50. ~3.34!

We denoted herer 5g(X)/g(Z). Then a complete set of in
termediate states is inserted between each two operators
necessary matrix elements ofX andZ are expressed with th
help of the general result~3.22!. The resulting equation is
finally projected onto the particular channel with total sp
isospin (H,K). We obtain in this way the consistency co
dition

r(
I 1

~2I 111!H I 1 K

I 8 1 I 1
J H I 1 1 I 8

H D8 J J Y~JI1 ,JI !

5~2 !2I 2K1D82DH I 1 K

H D J J Y~HI 8,HK !. ~3.35!

In addition to determining the structure of the reduced ma
elementY(J8I 8,JI), this relation will fix also the value of
the ratior .

It is straightforward to check that the solution of the co
sistency condition~3.35! is given by
f

he

x

-

Y~JI8,JI !5~2 ! I 81J1D8H I 8 1 I

D J D8
J , ~3.36!

provided thatr 51. After substituting this solution in~3.35!
the sum overI 1 can be done with the help of the identit
~3.30!.

In particular, for decays into s-wave baryons containi
only u,d quarks, we obtain the solution

Y~J,JI !5~2 !2JH J 1 I

D J 0J 5~2 !12J1IdD1

1

A3~2J11!
.

~3.37!

Let us trace again how the same result arises in the qu
model. The quark model counterpart of the operatorYa is

Ya→(
i , j

^0u1,1;j ,i &s j r i
^ ta5

1

A3
(

j
~2 !12 js j r 2 j

^ ta,

~3.38!

where the light quark operators j acts only on the spins,r i

acts on the orbital degrees of freedom, andta acts on the
isospins.

We consider first the coupling of a p-wave state tra
forming under the symmetric representation of SU~4!. The
matrix element~3.32! is written in the quark model as

^J;m,a8uYauJ,I ;m,a&5 (
mSmL

^J;m,a8uYauI ,L;mS ,mL ,a&

3^J,muI ,L;mS ,mL&. ~3.39!

The Wigner-Eckart theorem can be used to parametrize
matrix element of the operator on the RHS of~3.38! in terms
of a new reduced matrix elementT(J,I )
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^J;m,a8us j r i
^ tauI ,L;mS ,mL ,a&5

1

2J11
T~J,I !^J,muI ,1;mS , j &^0uL,1;mL ,i &^J,a8uI ,1;a,a&. ~3.40!

Inserting this expression into~3.39! we obtain the result

^J;m,a8uYauJ,I ;m,a&5
1

3~2J11!
T~J,I ! (

mSmL

^J,muI ,1;mS ,mL&^J,muI ,L;mS ,mL&^J,a8uI ,1;a,a&dL1

5
1

3~2J11!
T~J,I !^J,a8uI ,1;a,a&dL1 , ~3.41!

which can be compared with the defining matrix element ofYa ~3.32!. Taking into account the fact that for the quark mod
states consideredD5L, we find the following expression forY(J,JI) in terms of the quark model reduced matrix eleme
T(J,I ):

Y~J,JI !5~2 !2J2I
1

3~2J11!A2I 11
dD1T~J,I !. ~3.42!

It will be shown in Sec. IV D by an explicit calculation in the quark model that the reduced matrixT(J,I ) is given in the large-
Nc limit, up to a numerical factor, by

T~J,I !5~2 !2I 11A3~2J11!~2I 11!. ~3.43!

This leads to the same expression~3.37! for Y(J,JI) as the model-independent approach based on the consistency cond
It is possible to generalize this argument by keeping the orbital angular momentum of the quark model state arbitraL,L8.

They are only constrained by the requirement of parity conservationp(2)L5p8(2)L8. The relevant quark model matri
element can be parametrized in this case as

^I 8,L8;mS8 ,mL8 ,a8us j r i
^ tauI ,L;mS ,mL ,a&5

1

~2I 811!A2L811
T~ I 8L8,IL !^I 8,mS8uI ,1;mS , j &^L8,mL8 uL,1;mL ,i &

3^I 8,a8uI ,1;a,a&, ~3.44!

with T(I 8L8,IL ) another reduced matrix element. We assumed again that the spin-flavor wave function of theu,d quarks in
the baryon is completely symmetric.

With the help of this relation it is possible to compute the matrix element ofYa between eigenstates of the total spin

^J,I 8;m,a8uYauJ,I ;m,a&5
1

~2I 811!A2L811
T~ I 8L8,IL !( ^0u1,1;j ,i &^J,muI 8,L8;mS8 ,mL8&^J,muI ,L;mS ,mL&

3^I 8,mS8uI ,1;mS , j &^L8,mL8 uL,1;mL ,i &^I 8,a8uI ,1;a,a&

5
1

A3~2I 811!
T~ I 8L8,IL !~2 !12I 2J2L8H I L J

L8 I 8 1J ^I 8,a8uI ,1;a,a&. ~3.45!

This has the same structure as the model-independent solution~3.36!, which is reproduced provided one takes

T~ I 8L8,IL !5~2 !112I 8A3~2I 11!~2I 811!. ~3.46!

The phase can be equivalently rewritten as 112I 85112I which gives an expression identical to~3.43!.
A similar result is obtained also for the case of the excited baryons whose spin-flavor wave function transforms ac

to the mixed representation of SU~4!. The relevant matrix element ofYa can be expressed, with the help of the recoupl
relation ~3.23! in terms of the matrix element

^J8I 8L8;m8,a8uYau~ IP !S,L;J,m,a&5 (
mSmLmS8mL8

^I 8,L8;mS8 ,mL8 ,a8uYau~ IP !S,L;mS ,mL ,a&^J,muS,L;mS ,mL&

3^J8,m8uI 8,L8;mS8 ,mL8&. ~3.47!

The matrix element on the RHS can be expressed with the help of~3.38! in terms of a new reduced matrix eleme
T(I 8L8,SIL) defined by
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^I 8,L8;mS8 ,mL8 ,a8us j r i
^ tau~ IP !S,L;mS ,mL ,a&5

1

~2I 811!A2L811
T~ I 8L8,SIL!^I 8,mS8uS,1;mS , j &^L8,mL8 uL,1;mL ,i &

3^I 8,a8uI ,1;a,a&. ~3.48!
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Inserting this relation into~3.47! we find for the matrix
element ofYa in the u(IP)S,L;J,m,a& basis

^J8I 8L8;m8,a8uYau~ IP !S,L;J,m,a&

5dJJ8dmm8^I 8a8uI1;a,a&

3
1

A3~2I 811!
~2 !11L82S2J

3H L L8 1

I 8 S JJ T~ I 8L8,SIL!. ~3.49!

Next we transform to theuI ,(PL)D;J,m,a& basis with
the help of the recoupling relation~3.23!. We adopt the fol-
lowing ansatz for the quark model matrix eleme
T(I 8L8,SIL)

T~ I 8L8,SIL!5~2 !2I 1I 8A~2I 11!~2I 811!~2S11!

3H I 1 S

1 I 8 1J I~L8,L !, ~3.50!

with I(L8,L) an arbitrary function of its arguments.2 This
will be derived in Sec. IV D by explicit calculation in th
quark model in the large-Nc limit. Inserting~3.50! into ~3.23!
we can perform the sum overS with the help of~3.30!. The
final result for the matrix element ofYa has the form, with
P51,

Y~J8I 8,JI !5dJJ8c~LL8D!~2 ! I 81J1D8H D 1 D8

I 8 J I J dD8L8,

~3.51!

with c(LL8D) a numerical coefficient given by

c~LL8D!5
1

A3
A2D11~2 !2D2L821H D 1 L8

1 L 1 J .

~3.52!

The result~3.51! can be seen to coincide with the gene
solution of the consistency condition forY ~3.36!.

C. Consistency condition forQ

The operatorQi j ,a parametrizes pion coupling in a D
wave. It will prove convenient to define a modified opera
Qka with only one indexk522,21,0,1,2, by

Qka5(
i j

^2,ku1,1;i , j &Qi j ,a. ~3.53!

2For simplicity we will omitI(L8,L) throughout in the following.
t

l

r

It is easy to see thatQka satisfies the same consistency co
dition ~3.10! asQi j ,a.

We introduce reduced matrix elements associated w
this operator, defined by

^J8,I 8;m8,a8~s-wave!uQkauJ,I ;m,a~p-wave!&

5~2 !J1I 1J81I 8A~2J11!~2I 11!Q~J8I 8,JI !

3^J8,m8uJ,2;m,k&^I 8,a8uI ,1;a,a&, ~3.54!

^J8,I 8;m8,a8~p-wave!uQkauJ,I ;m,a~s-wave!&

5~2 !2J12IA~2J11!~2I 11!Q̄~J8I 8,JI !

3^J8,m8uJ,2;m,k&^I 8,a8uI ,1;a,a&. ~3.55!

As usual, the choice for the normalization coefficients
made such thatQ(J8I 8,JI)5Q̄(JI,J8I 8). The same defini-
tions ~3.54! and ~3.55! apply to transitions between othe
orbital excitations.

We derive a consistency condition forQ(JI,J8I 8) by tak-
ing the following matrix element of the relation~3.10!:

^J8,I 8;m8,a8~s-wave!urXiaQjb†

2Qjb†ZiauJ,I ;m,a~p-wave!&50. ~3.56!

We insert a complete set of intermediate states between
two operators and project this relation onto the particu
channel with total spin-isospin (H,K) by multiplication with

^H8,h8uJ8,2;m8, j &^H,huJ,1;m,i &^K8,h8uI 8,1;a8,b&

3^K,huI ,1;a,a&. ~3.57!

We obtain finally the set of constraints

r (
J1I 1

~2 !2J81J1~2J111!~2I 111!H I 8 1 I 1

J1 D8 J8
J

3H J 1 H

J8 2 J1
J H I 1 K

I 8 1 I 1
J Q~J1I 1 ,JI !

5~2 !2H2I 2K1D82D11H K 1 I

J D HJ Q~J8I 8,HK !.

~3.58!

We quote directly the solution of this consistency con
tion. We will attempt later to make it plausible using a qua
model construction. The most general solution can be writ
as a sum of 9j symbols of the form
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Q~J8I 8,JI !5 (
y51,2,3

cyH D8 I 8 J8

D I J

y 1 2
J , ~3.59!

which satisfies~3.58! provided thatr 51. In particular, for
final s-wave states containing onlyu,d quarks one hasD8
50, J85I 8 and the 9j symbols reduce to 6j symbols

Q~J8,JI !5c1

~2 !J1J8

A3~2J811!
H 2 J J8

I 1 1 J dD1

1c2

~2 !J1J811

A5~2J811!
H 2 J J8

I 1 2 J dD2 .

~3.60!

It is not completely straightforward to check that~3.58! is
indeed satisfied by~3.59!. Therefore it might be useful to
sketch the steps of this derivation. First, the 9j symbols on
the LHS are written as a sum over 3 6j symbols with the
help of Eq.~6.4.3! in @33#

H D8 I 1 J1

D I J

y 1 2
J 5(

x
~2 !2x~2x11!H D8 D y

1 2 xJ
3H I 1 I 1

D x JJ H J1 J 2

x D8 I 1
J .

~3.61!

This allows the sum overJ1 to be performed with the help o
~3.30!

(
J1

~2 !2J81J1~2J111!H J8 1 J1

I 1 D8 I 8 J H I 1 D8 J1

2 J x J
3H 2 J J1

1 J8 H J 5~2 !f1H I 8 x H

2 J8 D8
J H I 8 x H

J 1 I 1
J ,

~3.62!

with f1522J8111I 11I 82D82J2x2H. Next, the sum
over I 1 can be done, also with the help of~3.30!. As a result,
the LHS of ~3.58! takes the form

r ~2 !f2(
x

~2 !2~x1D8!~2x11!H D8 D y

1 2 xJ H I 8 K 1

D x HJ
3H J8 H 2

x D8 I 8J H K H D

J I 1 J , ~3.63!

with f252H2D2D82K2I 11. We added a phase facto
identically equal to 1 under the summation sign, which
lows thex sum to be performed with the help of a relatio
analogous to~3.61!. The result is a 9j symbol identical to the
one on the RHS of~3.58!. It is easy to check that also th
total phase factor and the remaining 6j symbol are the same
as the ones on the RHS of~3.58!, which proves the validity
of ~3.59!. The solution~3.59! satisfies the consistency cond
-

tion for Q regardless of the value ofy, which can take there-
fore all values compatible with the nonvanishing of thej
symbol in which it appears.

We will try now to make the result~3.59! plausible, by
examining the structure of this coupling in the quark mod
The operatorQka is given in the quark model by

Qka→(
i j

^2,ku1,1;j ,i &s j r i
^ ta, ~3.64!

with the sames j ,r i ,ta as in ~3.38!. Let us consider first
baryons containing onlyu,d quarks and whose flavor-spi
wave function transforms under the symmetric represe
tion of SU~4!. We will keep the orbital angular momenta o
the initial and final statesL,L8 completely general, subjec
only to the requirement of parity conservationp(2)L

5p8(2)L8.
The matrix element of the quark model operators on

RHS of ~3.64! between eigenstates ofSW and LW has been
already parametrized in~3.44! in terms of the reduced matrix
elementT(I 8L8,IL ). The matrix element ofQka between
eigenstates ofJW5 IW1LW can be easily obtained as

^J8,I 8;m8,a8uQkauJ,I ;m,a&

5 (
i jmSmLmS8mL8

^2,ku1,1;j ,i &

3^J8,m8uI 8,L8;mS8 ,mL8&^J,muI ,L;mS ,mL&

3^I 8,L8;mS8 ,mL8 ,a8us j r i
^ tauI ,L;mS ,mL ,a&.

~3.65!

Comparing with~3.54! we see that it is possible to extra
Q(J8I 8,JI) by multiplying the RHS with^J8,m8uJ,2;m,k&
and summing overm,k. The resulting sum over 6 Clebsch
Gordan ~CG! coefficients can be written in terms of a 9j
symbol by using Eq.~6.4.4! in @33#. We obtain finally

~2 !J1I 1J81I 8Q~J8I 8,JI !A~2J11!~2I 11!

5~2 !2I 2J1I 81J81L1L8A5
2J11

2I 811
T~ I 8L8,IL !

3H L8 I 8 J8

L I J

1 1 2
J . ~3.66!

For the quark model states considered one hasD5L, so that
the 9j symbol corresponds toy51 in ~3.59!. Requiring
equality with the model-independent solution~3.59! of the
consistency condition forQ gives for the quark model re
duced matrix elementT(I 8L8,IL ) the expression

T~ I 8L8,IL !5~2 !L1L8
1

A5
A~2I 811!~2I 11!. ~3.67!
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This agrees, up to an unimportant overall coefficient, w
the result~3.46! obtained from considering the matrix ele
ment of the s-wave operatorYa.

The 9j -symbol with y52 in ~3.59! arises when con-
sidering initial states transforming under the mix
symmetry representation of SU~4!. The calculation for
this case proceeds in close analogy to the one for
Ya operator. First we compute the matrix element
Qka in the u(IP)S,L;J,m,a& basis with the help of the rela
tion
r 4
^J8I 8L8;m8,a8uQkau~ IP !S,L;J,m,a&5 (
mSmLmS8mL8

^I 8,L8;mS8 ,mL8 ,a8uQkau~ IP !S,L;mS ,mL ,a&^J,muS,L;mS ,mL&

3^J8,m8uI 8,L8;mS8 ,mL8& ~3.68!

followed by the application of~3.64!,~3.48!. We obtain

^J8I 8L8;m8,a8uQkau~ IP !S,L;J,m,a&5^J8m8uJ2;mk&^I 8a8uI1;aa&A5
2J11

2I 811H S 1 I 8

L 1 L8

J 2 J8
J T~ I 8L8,SIL!. ~3.69!

We are eventually interested in the matrix elements ofQka in the basisuI ,(PL)D;J,m,a&. Using the recoupling relation
~3.23! we get

^J8I 8L8;m8,a8uQkauI ,~PL!D;J,m,a&5^J8m8uJ2;mk&^I 8a8uI1;aa&A5~2D11!~2I 11!~2J11!~2 !2L2J12J82I 811

3(
S

~2 !22S~2S11!H I 1 S

L J DJ H 1 1 1

I I 8 SJ H S 1 I 8

L 1 L8

J 2 J8
J , ~3.70!

where we used the ansatz~3.50! for T(I 8L8,SIL). To do the sum overS we first combine the two 6j symbols with the help
of ~3.30! such thatS appears only in one 6j symbol

H I 1 S

1 I 8 1J H I 1 S

L J DJ 5(
x

~2 !f~2x11!H I 8 J x

D 1 I J H D 1 x

1 L 1J H 1 L x

J I8 SJ , ~3.71!

with f5I 81J1D1L1I 1S111x. Now the sum overS can be performed using~3.21!

(
S

~2S11!H 1 I 8 S

J L xJ H 1 I 8 S

2 J8 J

1 L8 L
J 5~2 !2xH 2 J8 J

I 8 x L8
J H 1 L8 L

x 1 2J . ~3.72!

We obtain for the matrix element ofQka in the uI ,(PL)D;J,m,a& basis the following expression containing a sum ove
6j symbols

^J8I 8L8;m8,a8uQkauI ,~PL!D;J,m,a&5^J8m8uJ2;mk&^I 8a8uI1;aa&A5~2D11!~2I 11!~2J11!~2 !2I 2J82I 81D1J1L81L

3(
x

~2 !2x~2x11!H I 8 J x

D 1 I J H D 1 x

1 L 1J H 2 L8 x

I 8 J J8
J H 2 L8 x

L 1 1J . ~3.73!

This can be put in a form resembling~3.59! by first combining the second and fourth 6j symbols with~3.30!

H 1 L x

D 1 1J H 1 L x

L8 2 1J 5 (
y51,2

~2 !f8~2y11!H 1 2 y

1 1 1J H 1 1 y

D L8 LJ H D L8 y

2 1 xJ , ~3.74!

with f85D1L2L82x1y. The sum overx can be now done in terms of a 9j symbol similar to those in~3.59!

(
x

~2 !2x~2x11!H I 8 J x

D 1 I J H D 1 x

2 L8 yJ H L8 2 x

J I8 J8
J 5H L8 I 8 J8

D I J

y 1 2
J . ~3.75!
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When inserted into~3.73! this gives a result for the reduced matrix elementQ(J8I 8,JI) of the same form as~3.59!

Q~J8I 8,JI !5 (
y51,2

cy~LL8D!H L8 I 8 J8

D I J

y 1 2
J ~3.76!

with coefficientscy given by

cy~LL8D!5A5~2D11!~2 !22J81y~2y11!H 1 2 y

1 1 1J H 1 1 y

D L8 LJ . ~3.77!

Finally, the most general solution forQ(J8I 8,JI) containing also 9j symbols withy53 is obtained if one consider
transitions among two states with mixed symmetry. This situation is not very relevant from a phenomenological point
so that its discussion is relegated to Appendix A.

IV. QUARK MODEL MATRIX ELEMENTS

A. Symmetric states

In this section we compute the reduced matrix elements of the operators i
^ ta on quark model states with arbitrary numb

of colors. It will be seen that in the limitNc→` these reduced matrix elements coincide with those required by the consis
conditions discussed in Sec. III.

We start by computing the reduced matrix elementZ(I 8,I ) defined by

^I 8,L8;mS8 ,mL8 ,a8us i
^ tauI ,L;mS ,mL ,a&5

1

2I 811
Z~ I 8,I !^I 8,mS8uI ,1;mS ,i &dLL8dmLmL8

^I 8,a8uI ,1;a,a&. ~4.1!

The states on the LHS transform under the completely symmetric representation of SU~4!. For simplicity we will take them to
contain onlyu- andd-type quarks, although additional quark flavors can be included in a straightforward way. In the
model withNc colors they are given by

uI ,m,a&5(
i

^I ,mu
Nu

2
,
Nd

2
; i ,m2 i &Su

Nu

2
,i &uu

Nd

2
,m2 i &d

5(
i

^I ,mu
Nu

2
,
Nd

2
; i ,m2 i &S~u↑ !Nu/21 i~u↓ !Nu/22 i~d↑ !Nd/21m2 i~d↓ !Nd/22m1 i , ~4.2!

with

Nu5
Nc

2
1a, Nd5

Nc

2
2a ~4.3!

the numbers ofu and d quarks, respectively, in the baryon state. The symbolS means complete symmetrization und
permutation of all quarks. The explicit form of the wave function~4.2! has been given without proof in@35# and a particular
case was previously considered in@36#. For a simple method of computing matrix elements in the quark model withNc colors
see@37#. In the following, for completeness of the presentation we give a detailed derivation of~4.2!.

Proof. Any completely symmetric state ofNc quarks can be constructed as a linear combination of symmetrized pro
of one-quark states

S~n1 ,n2 ,n3 ,n4!5
1

AN
„~u↑ !n1~u↓ !n2~d↑ !n3~d↓ !n41permutations…, ~4.4!

with

N5
~n11n21n31n4!!

n1!n2!n3!n4!
. ~4.5!

It is easy to see that the action of spin and isospin operators on these states is given by
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(
i

s1
i S~n1 ,n2 ,n3 ,n4!5An2~n111!S~n111,n221,n3 ,n4!1An4~n311!S~n1 ,n2 ,n311,n421!, ~4.6!

(
i

s2
i S~n1 ,n2 ,n3 ,n4!5An1~n211!S~n121,n211,n3 ,n4!1An3~n411!S~n1 ,n2 ,n321,n411!, ~4.7!

(
i

sz
iS~n1 ,n2 ,n3 ,n4!5~n12n21n32n4!S~n1 ,n2 ,n3 ,n4!, ~4.8!

(
i

t1
i S~n1 ,n2 ,n3 ,n4!5An3~n111!S~n111,n2 ,n321,n4!1An4~n211!S~n1 ,n211,n3 ,n421!, ~4.9!

(
i

t2
i S~n1 ,n2 ,n3 ,n4!5An1~n311!S~n121,n2 ,n311,n4!1An2~n411!S~n1 ,n221,n3 ,n411!, ~4.10!

(
i

tz
iS~n1 ,n2 ,n3 ,n4!5~n11n22n32n4!S~n1 ,n2 ,n3 ,n4!. ~4.11!

It will prove more convenient to express the arguments of the symmetrized products of one-quark states in terms
angular-momentum-like variables defined as

n15 j 11m1 , ~4.12!

n25 j 12m1 , ~4.13!

n35 j 21m2 , ~4.14!

n45 j 22m2 . ~4.15!

In terms of these variables, the action of the spin and isospin operators can be expressed as

(
i

s1
i S~ j 1 , j 2 ,m1 ,m2!5A~ j 12m1!~ j 11m111!S~ j 1 , j 2 ,m111,m2!1A~ j 22m2!~ j 21m211!S~ j 1 , j 2 ,m1 ,m211!,

~4.16!

(
i

s2
i S~ j 1 , j 2 ,m1 ,m2!5A~ j 11m1!~ j 12m111!S~ j 1 , j 2 ,m121,m2!1A~ j 21m2!~ j 22m211!S~ j 1 , j 2 ,m1 ,m221!,

~4.17!

(
i

sz
iS~ j 1 , j 2 ,m1 ,m2!52~m11m2!S~ j 1 , j 2 ,m1 ,m2!, ~4.18!

(
i

t1
i S~ j 1 , j 2 ,m1 ,m2!5A~ j 21m2!~ j 11m111!SS j 11

1

2
, j 22

1

2
,m11

1

2
,m22

1

2D
1A~ j 22m2!~ j 12m111!SS j 11

1

2
, j 22

1

2
,m12

1

2
,m21

1

2D , ~4.19!

(
i

t2
i S~ j 1 , j 2 ,m1 ,m2!5A~ j 11m1!~ j 21m211!SS j 12

1

2
, j 21

1

2
,m12

1

2
,m21

1

2D
1A~ j 12m1!~ j 22m211!SS j 12

1

2
, j 21

1

2
,m11

1

2
,m22

1

2D , ~4.20!

(
i

tz
iS~ j 1 , j 2 ,m1 ,m2!52~ j 12 j 2!S~ j 1 , j 2 ,m1 ,m2!. ~4.21!

A state of well-defined spin is constructed by taking appropriate linear combinations of symmetrized products
particle states
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uI ,m,a&5 (
m1 ,m2

c~m1 ,m2 ,m, j 1 , j 2!S~ j 1 , j 2 ,m1 ,m2! ~4.22!

with m11m25m. The quantum numbers of the state fixj 1 and j 2 through the conditions

a5 j 12 j 2 , ~4.23!

Nc52~ j 11 j 2!, ~4.24!

which give ~4.3! with j 15Nu/2 and j 25Nd/2.
The coefficientsc in ~4.22! can be determined by requiring the statesuI ,m,a& to satisfy the relations

J6uI ,m,a&5A~ I 7m!~ I 6m11!uI ,m61,a&. ~4.25!

Inserting the expansion~4.22! one finds, with the help of~4.16!–~4.21!, the following recursion relations among the coef
cientsc:

A~ I 2m!~ I 1m11!c~m1 ,m2 ,m11,j 1 , j 2!5A~ j 11m1!~ j 12m111!c~m121,m2 ,m, j 1 , j 2!

1A~ j 21m2!~ j 22m211!c~m1 ,m221,m, j 1 , j 2!, ~4.26!

A~ I 1m!~ I 2m11!c~m1 ,m2 ,m21,j 1 , j 2!5A~ j 12m1!~ j 11m111!c~m111,m2 ,m, j 1 , j 2!

1A~ j 22m2!~ j 21m211!c~m1 ,m211,m, j 1 , j 2!. ~4.27!

These relations can be seen to coincide with the familiar recursion relations for the Clebsch-Gordan coefficients,
identification

c~m1 ,m2 ,m, j 1 , j 2!5^I ,mu j 1 , j 2 ;m1 ,m2&. ~4.28!

It is known that these recursion relations fix uniquely the CG coefficients up to an overall phase. To complete our p
~4.2! we still have to show that this state is also an eigenstate ofIW2, with the same eigenvalue asJW2. This can be done by
comparing the action ofJW 2 on the state~4.2! with that of IW2. We obtain

JW2uI ,m,a&5S 1

2
J1J21

1

2
J2J11Jz

2D uI ,m,a&

5 (
m1 ,m2

c~m1 ,m2 ,m, j 1 , j 2!$„j 1~ j 111!1 j 2~ j 211!12m1m2…S~ j 1 , j 2 ,m1 ,m2!

1A~ j 11m1!~ j 12m111!~ j 22m2!~ j 21m211!S~ j 1 , j 2 ,m121,m211!

1A~ j 12m1!~ j 11m111!~ j 21m2!~ j 22m211!S~ j 1 , j 2 ,m111,m221!% ~4.29!

which also coincides with the result of applyingIW2 on the same state.
The knowledge of the states~4.2! can be used to calculate the matrix element~4.1!. We will choose for this calculation the

spherical component (i ,a)5(0,0) of the current in~4.1!. The corresponding quark model operator can be written as a sum
Nc one-quark operators

s0
^ t05(

i 51

Nc

s3
i t3

i . ~4.30!

Because of the symmetry property ofZ(I 8,I ), there are only two independent quantities to calculate:Z(I ,I ) and Z(I ,I
21). We obtain for them the results

Z~ I ,I !5~2I 11!~Nc12!, ~4.31!

Z~ I ,I 21!5A~2I 21!~2I 11!A~Nc1212I !~Nc1222I !. ~4.32!

In order to obtainZ(I ,I ) we consider the following matrix element of the type~4.1!

^I ,I ,I u(
i 51

Nc

s3
i t3

i uI ,I ,I &5
I

~ I 11!~2I 11!
Z~ I ,I !. ~4.33!
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The quark model matrix element on the LHS can be computed with the help of the wave function~4.2! with the result

^I ,I ,I u(
i 51

Nc

s3
i t3

i uI ,I ,I &5(
m

u^I ,I u
Nu

2
,
Nd

2
;m,I 2m&u2~4m22I !5

Nu~Nu12!2Nd~Nd12!

2~ I 11!
. ~4.34!

Nu ,Nd are given by~4.3!. Inserting this expression into~4.33! one obtains the result~4.31! for Z(I ,I ).
For Z(I ,I 21) we consider the matrix element

^I ,I 21,I 21u(
i 51

Nc

s3
i t3

i uI 21,I 21,I 21&5
1

I ~2I 11!
Z~ I ,I 21!. ~4.35!

The quark model matrix element can be computed with the result

^I ,I 21,I 21u(
i 51

Nc

s3
i t3

i uI 21,I 21,I 21&54(
m

m^I ,I 21u
Nu

2
,
Nd

2
;m,I 212m&^I 21,I 21u

Nu

2
,
Nd

2
;m,I 212m&

5
2

I
A2I 21

2I 11S Nc

2
111I D S Nc

2
112I D . ~4.36!

Comparing with~4.35! gives immediately the result~4.32!.
The results~4.31!,~4.32! can be put into a common form

Z~ I 8,I !5A~2I 811!~2I 11!A~Nc12!22~ I 82I !2~ I 81I 11!25~Nc12!A~2I 811!~2I 11!1O~1/Nc!. ~4.37!
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We have made apparent here the fact that the correction
the lowest-order result come only at sub-subleading orde
1/Nc . This is an illustration, on the example of the qua
model, of a model-independent result obtained by Das
and Manohar@2# using the counting rules for pion-baryo
scattering.

B. Mixed symmetry states

In this section we construct quark model states wh
spin-flavor wave functions transform under the mixed sy
metry representation of SU~4! shown in Fig. 2. They can be
built using the procedure described in Sec. II, by adding
extra quark to a symmetric state ofNc21 quarks. We write
the state obtained by adding thej th quark to a symmetric
state ofNc21 quarks with spin and isospini , as

uSI,m,a& j5 (
m1m2a1a2

^S,mu i ,
1

2
;m1 ,m2&

3^I ,au i ,
1

2
;a1 ,a2&u i ,m1 ,a1&

^ u
1

2
,m2 ,a2& j . ~4.38!

The states of mixed symmetry under SU~4! must be anti-
symmetric under permutations of the two quarks correspo
ing to the first column of the Young diagram. There a
Nc(Nc21)/2 ways to choose such a pair of quarks, but
all the states obtained in this way will be linearly indepe
dent. In fact there are onlyNc21 independent states wit
mixed symmetry, and we will choose them such that they
antisymmetric under a permutation of the first quark w
to
in

n

e
-

e

d-

t
-

re

any of the remainingNc21 quarks in the baryon. The cor
responding spin-flavor wave function will be denoted as

uSI,m,a&@ j ,1#5
1

A2
~ uSI,m,a& j2uSI,m,a&1),

j 52,3, . . . ,Nc . ~4.39!

The space part of the wave function must transform a
under the mixed symmetry representation of the permuta
group, corresponding to the same Young diagram as in
2. There are againNc21 linearly independent wave func
tions, which can be chosen to be antisymmetric under a
mutation of thej th and 1st quarks. Their generic form is

uL,mL&@ j ,1#5
1

A2
„c~r j !YLmL

~ r̂ j !f~r 1!

2c~r 1!YLmL
~ r̂ 1!f~r j !…

3fS~r 2 , . . . ,r j 21 ,r j 11 , . . . ,r Nc
!,

~4.40!

with fS(r 2 , . . . ,r j 21 ,r j 11 , . . . ,r Nc
) a symmetric function

of its arguments. In~4.40!, we have assumed that the orbit
angular momentum is carried by a single quark. This
strictly true only for the lowest orbital excitations.

It is easy to combine now the spatial and the spin-fla
parts into a completely symmetric wave function of we
defined spin and isospin. Our final result for such a qu
model state is
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uJI,m,a&5 (
mS ,mL

^J,muS,L;mS ,mL&uSIL,mS ,mL ,a&,

~4.41!

with

uSIL,mS ,mL ,a&5~2 !c~SIi!
1

ANc21
(
j 52

Nc

uSI,mS ,a&@ j ,1#

^ uL,mL&@ j ,1# . ~4.42!

The phase of these statesc(SIi) will be chosen later for
convenience.
These states have a peculiar normalization, due to the
that the spatial wave functions~4.40! with j Þ j 8 are not or-
thogonal. They satisfy instead

@ j 8,1#^L,mL8 uL,mL&@ j ,1#5
1

2
~d j j 811!dmLm

L8
I, ~4.43!

with I an overlap integral. Using this expression we obta
the following exact result for the norm of the states~4.42!
ith the
^S8I 81,mS8 ,mL8 ,a8uSI1,mS ,mL ,a&5dSS8dmSm
S8
dmLm

L8
d II 8daa8

Nc12

4
IH 3~2i 11!H S I 1

1
2

1
2 i J 2

2
2~2i 11!

Nc21 H S I 0

1
2

1
2 i J 2

1
1

2~Nc21!F5

2
12i ~ i 11!2S~S11!2I ~ I 11!G J . ~4.44!

The derivation of this relation will be presented in some detail, as it illustrates a few techniques useful in dealing w
mixed symmetry states. We start by computing the scalar product of two direct product states

j 8^S8I 8,m8,a8uSI,m,a& j5( ^S8,m8u i 8, 1
2 ;m18 ,m28&^I 8,a8u i 8, 1

2 ;a18 ,a28&^S,mu i , 1
2 ;m1 ,m2&

3^I ,au i , 1
2 ;a1 ,a2& j 8^

1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18u i ,m1 ,a1& ^ u 1

2 ,m2 ,a2& j . ~4.45!

The matrix element on the RHS can be written as

j 8^
1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18u i ,m1 ,a1& ^ u 1

2 ,m2 ,a2& j5 j^
1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18uPj j 8u i ,m1 ,a1& ^ u 1

2 ,m2 ,a2& j , ~4.46!

where

Pj j 85
1

4
~11sW j•sW j 8!~11tW j•tW j 8! ~4.47!

is an operator which exchanges the spins and isospins of thej , j 8 quarks. We obtain in this way

j 8^
1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18u i ,m1 ,a1& ^ u 1

2 ,m2 ,a2& j

5
1

4 j^
1
2 ,m28 ,a28u

1
2 ,m2 ,a2& j^ i 8,m18 ,a18u i ,m1 ,a1&

1
1

4(k
(2)k

j^
1
2 ,m28 ,a28us j

2ku 1
2 ,m2 ,a2& j^ i 8,m18 ,a18us j 8

k u i ,m1 ,a1&

1
1

4(b
~2 !b

j^
1
2 ,m28 ,a28ut j

2bu 1
2 ,m2 ,a2& j^ i 8,m18 ,a18ut j 8

b u i ,m1 ,a1&

1
1

4(k,b
(2)k1b

j^
1
2 ,m28 ,a28us j

2kt j
2bu 1

2 ,m2 ,a2& j^ i 8,m18 ,a18us j 8
k t j 8

b u i ,m1 ,a1&. ~4.48!

The matrix elements on the one-quark states are computed easily with the results

j^
1
2 ,m28 ,a28u

1
2 ,m2 ,a2& j5dm2m

28
da2a

28
, ~4.49!

j^
1
2 ,m28 ,a28us j

ku 1
2 ,m2 ,a2& j5A3^ 1

2 ,m28u
1
2 ,1;m2 ,k&da2a

28
, ~4.50!
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j^
1
2 ,m28 ,a28ut j

bu 1
2 ,m2 ,a2& j5A3^ 1

2 ,a28u
1
2 ,1;a2 ,b&dm2m

28
, ~4.51!

j^
1
2 ,m28 ,a28us j

kt j
bu 1

2 ,m2 ,a2& j53^ 1
2 ,m28u

1
2,1;m2 ,k&^ 1

2 ,a28u
1
2 ,1;a2 ,b&. ~4.52!

The matrix elements of the one-quark operators taken on symmetric states containingNc21 quarks can be obtained wit
the help of the wave function~4.2! of these states. For example, the matrix element ofs j

k is parametrized as

^ i 8,m8,a8us j
ku i ,m,a&5F~ i !d i i 8daa8^ i ,m8u i ,1;m,k&. ~4.53!

The stateu i ,m,a& has the explicit form

u i ,m,a&5(
k

^ i ,mu j 1 , j 2 ;k,m2k&SNc21~ j 11k, j 12k, j 21m2k, j 22m1k!, ~4.54!

with j 15Nu/2, j 25Nd/2, andNu,d5(Nc21)/26a. Next, we single out the quarkj by using the relation

SNc
~n1 ,n2 ,n3 ,n4!5An1

Nc
~u↑ ! jSNc21~n121,n2 ,n3 ,n4!1An2

Nc
~u↓ ! jSNc21~n1 ,n221,n3 ,n4!

1An3

Nc
~d↑ ! jSNc21~n1 ,n2 ,n321,n4!1An4

Nc
~d↓ ! jSNc21~n1 ,n2 ,n3 ,n421!. ~4.55!

The reduced matrix elementF( i ) can be computed by taking the spherical componentk50 in ~4.53!. The matrix element on
the LHS of this relation can be written with the help of~4.55! as

^ i ,m,aus j
0u i ,m,a&5(

k
u^ i ,mu j 1 , j 2 ;k,m2k&u2H j 11k

Nc21
2

j 12k

Nc21
1

j 21m2k

Nc21
2

j 22m1k

Nc21 J 5
2m

Nc21
. ~4.56!

Comparing with~4.53! we obtain

F~ i !5
2

Nc21
Ai ~ i 11!. ~4.57!

In a completely analogous way we write the other needed matrix elements as

^ i 8,m8,a8ut j
au i ,m,a&5G~ i !d i i 8dmm8^ i ,a8u i ,1;a,a&, ~4.58!

^ i 8,m8,a8us j
kt j

au i ,m,a&5A 2i 11

2i 811
H~ i 8,i !^ i 8,m8u i ,1;m,k&^ i 8,a8u i ,1;a,a&. ~4.59!

The corresponding reduced matrix elements can be computed with the results

G~ i !5
2

Nc21
Ai ~ i 11!, ~4.60!

H~ i ,i !5
Nc11

Nc21
, ~4.61!

H~ i ,i 21!5
2

Nc21
AS Nc21

2
1 i 11D S Nc21

2
2 i 11D ~4.62!

H~ i 8,i !511
2

Nc
1O~1/Nc

2!. ~4.63!

We note from these results that only the unit operator 1 ands j
kt j

a give leading contributions to~4.45! in the large-Nc limit.
Inserting the individual expressions for the matrix elements into~4.45! we obtain



try.
the

57 14671/Nc EXPANSION FOR EXCITED BARYONS
j 8^S8I 8i ,m8a8uSIi,ma& j5dSS8dmm8d II 8daa8

1

4F11A6~2i 11!F~ i !~2 ! i 11/21SH 1
2 i S

i 1
2 1

J
1A6~2i 11!G~ i !~2 ! i 11/21IH 1

2 i I

i 1
2 1

J 16~2 !2i 111S1I~2i 11!H~ i ,i !

3H S i 1
2

1 1
2 i

J H I i 1
2

1 1
2 i

J G . ~4.64!

The product of two 6j symbols can be transformed with the help of the identity~3.30! into the form

H S i 1
2

1 1
2 i

J H I i 1
2

1 1
2 i

J 5
1

2
~2 !S1I 1112iF H S I 0

1
2

1
2 i J 2

2H S I 1

1
2

1
2 i J 2G . ~4.65!

Furthermore, the second 6j -symbol on the RHS can be eliminated by using the relation

(
x50,1

~2x11!H I S x

1
2

1
2 i J 2

5
1

2i 11
. ~4.66!

We obtain finally for the scalar product of tensor product states~4.64! the simple result

j 8^S8I 8,m8,a8uSI,m,a& j5dSS8dmm8d II 8daa8H ~2i 11!
Nc11

Nc21H S I 0

1
2

1
2 i J 2

2
1

2~Nc21!F5

2
12i ~ i 11!2S~S11!2I ~ I 11!G J . ~4.67!

This result only holds if the two external quarks are differentj Þ j 8. If they are identical, only the first term in~4.48!
contributes~without the factor 1/4!. This gives

j^S8I 8,m8,a8uSI,m,a& j5dSS8dmm8d II 8daa8. ~4.68!

We can use~4.68! and~4.67! to compute the norm of the statesuSIL,mS ,mL ,a&. With the help of the definition~4.42!, it
can be written as

^S8I 81,mS8 ,mL8 ,a8uSI1,mS ,mL ,a&5
1

Nc21 (
j , j 852

Nc

@ j 8,1#^S8I 8,mS8 ,a8uSI,mS ,a&@ j ,1# @ j 8,1#^1,mL8 u1,mL&@ j ,1#

5
Nc12

4
dmLm

L8
I~ j^S8I 8,m8,a8uSI,m,a& j2 j 8^S8I 8,m8,a8uSI,m,a& j !, ~4.69!

where we used~4.39! and ~4.43!. To bring this into the final form~4.44! we only need to insert the expressions~4.68! and
~4.67! for the scalar products on the RHS and simplify the resulting expression with the help of~4.66!.

C. Matrix elements of Zka on mixed symmetry states

In this section we will compute the matrix element~3.25! of Zka taken between quark model states with mixed symme
It will be shown that the ansatz forZ(S8I 8,SI) introduced in Sec. III A can in fact be obtained by an explicit calculation in
quark model.

We parametrize the matrix element ofZka between the quark model states~4.42! as

^S8I 81;mS8 ,mL8 ,a8u (
n51

Nc

sn
ktn

auSI1;mS ,mL ,a&5
1

A~2S811!~2I 811!
Z~S8I 8,SI!dmLm

L8
^S8,mS8uS,1;mS ,k&^I 8,a8uI ,1;a,a&.

~4.70!

We obtain for the reduced matrix element the following result:
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Z~S8I 8,SI!5
3

4
Nc~Nc12!A~2i 11!~2i 811!A~2S11!~2S811!~2I 11!~2I 811!~2 ! i 82 i 1S81I 81c~SIi!1c~S8I 8 i 8!

3H 1 S8 S

1 I I 8
J H i S 1

2

1 1
2 I

J H i 8 S8 1
2

1 1
2 I 8

J I. ~4.71!

This has to be divided with the square roots of the norms of the initial and final states~4.44!. To leading order inNc the result
takes exactly the form~3.29! provided the phasec(SIi) of the quark model states~4.42! is chosen as

c~SIi!5 i 1I 1
1

2
. ~4.72!

The derivation of~4.71! proceeds in close analogy to the computation of the norm of the mixed symmetry states. Fi
express the matrix element~4.70! of Zka in terms of matrix elements on direct product states as

^S8I 81;mS8 ,mL8 ,a8u (
n51

Nc

sn
ktn

auSI1;mS ,mL ,a&5~2 !c~SIi!1c~S8I 8 i 8!
1

Nc21 (
j , j 852

Nc

3 @ j 8,1#^S8I 8,mS8 ,a8u (
n51

Nc

sn
j tn

auSI,mS ,a& @ j ,1# @ j 8,1#^1,mL8 u1,mL&@ j ,1#

5~2 !c~SIi!1c~S8I 8 i 8!
Nc12

4
dmLm

L8
I~Z12Z2!, ~4.73!

where we denoted the diagonal and nondiagonal matrix elements ofZia on direct product states by

Z15 j^S8I 8,m8,a8u (
n51

Nc

sn
ktn

auSI,m,a& j , ~4.74!

Z25 j 8^S8I 8,m8,a8u (
n51

Nc

sn
ktn

auSI,m,a& j . ~4.75!

The nondiagonal matrix element on direct product states (j 8Þ j ) can be transformed into a diagonal one with the help of
exchange operator~4.47!

j 8^
1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18u (

n51

Nc

sn
ktn

au i ,m1 ,a1& ^ u 1
2 ,m2 ,a2& j5 j^

1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18uPj j 8(

n51

Nc

sn
ktn

au i ,m1 ,a1&

^ u 1
2 ,m2 ,a2& j . ~4.76!

This expression can be computed by expanding thePj j 8 operator and inserting a complete set of intermediate states:

j 8^
1
2 ,m28 ,a28u ^ ^ i 8,m18 ,a18u (

n51

Nc

sn
ktn

au i ,m1 ,a1& ^ u 1
2 ,m2 ,a2& j

5
1

4 j^
1
2 ,m28 ,a28u

1
2 ,m2 ,a2& j^ i 8,m18 ,a18u (

n51

Nc

sn
ktn

au i ,m1 ,a1&1
1

4(l
~2 ! l

j^
1
2 ,m28 ,a28us j

2 l u 1
2 ,m2 ,a2& j

3(
m19

^ i 8,m18 ,a18us j 8
l u i 8,m19 ,a18&^ i 8,m19 ,a18u (

n51

Nc

sn
ktn

au i ,m1 ,a1&

1
1

4(b
~2 !b

j^
1
2 ,m28 ,a28ut j

2bu 1
2 ,m2 ,a2& j(

a19
^ i 8,m18 ,a18ut j 8

b u i 8,m18 ,a19&^ i 8,m18 ,a19u (
n51

Nc

sn
ktn

au i ,m1 ,a1&

1
1

4(l ,b ~2 ! l 1b
j^

1
2 ,m28 ,a28us j

2 lt j
2bu 1

2 ,m2 ,a2& j (
i 9,m19 ,a19

^ i 8,m18 ,a18us j 8
l t j 8

b u i 9,m19 ,a19&

3^ i 9,m19 ,a19u (
n51

Nc

sn
ktn

au i ,m1 ,a1&. ~4.77!
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Only completely symmetric states ofNc21 quarks contribute to the sum over intermediate states since both the operat
the initial state in the last matrix elements of each term are symmetric under permutations of any quarks. One n
keeping only the first and the last term in this relation is sufficient to obtain the large-Nc limit of this matrix element.3

Furthermore, in the sum over quarks inZka one can omit the term acting on thej 8th quark, as this will only change the resu
by an amount nonleading inNc . This allows us to compute these matrix elements by using the results of Sec. IV A. P
all pieces together one obtains for the matrix element ofZka between quark-model states with well-defined spin and isos
(S,I ) the following result:

j 8^S8I 8,mS8 ,a8uZkauSI,mS ,a& j5NcA~2i 11!~2i 811!A~2S11!~2I 11!^S8,mS8uS,1;mS ,k&^I 8,a8uI ,1;a,a&

3F1

4
~2 !22i 81I 1S21H 1 S S8

1
2 i 8 i J H 1 I I 8

1
2 i 8 i J 1

3

2
~2 ! I 1I 81S1S8(

i 9
~2i 911!

3H i 9 1
2 S8

1
2 i 8 1

J H S 1 S8

i 9 1
2 i J H i 9 1

2 I 8

1
2 i 8 1

J H I 1 I 8

i 9 1
2 i J G . ~4.78!

Each of the two terms corresponds to the contributions of the first and fourth terms in~4.77!, respectively. They can be
transformed into the following form by a repeated application of~3.30!:

H 1 S S8
1
2 i 8 i J H 1 I I 8

1
2 i 8 i J 5~2 ! i 1 i 81I 1S1I 81S8F H S8 S 1

I I 8 0J H S i 1
2

1
2 0 I

J H S8 1
2 i 8

1
2 I 8 0

J
23H S8 S 1

I I 8 1J H S i 1
2

1
2 1 I

J H S8 1
2 i 8

1
2 I 8 1

J G , ~4.79!

(
i 9

~2i 911!H i 9 1
2 S8

1
2 i 8 1

J H S 1 S8

i 9 1
2 i J H i 9 1

2 I 8

1
2 i 8 1

J H I 1 I 8

i 9 1
2 i J

5~2 !11 i 82 i 1S1I
1

2F H S8 S 1

I I 8 0J H S i 1
2

1
2 0 I

J H S8 1
2 i 8

1
2 I 8 0

J
1H S8 S 1

I I 8 1J H S i 1
2

1
2 1 I

J H S8 1
2 i 8

1
2 I 8 1

J G . ~4.80!

Inserting these expressions into~4.78! we obtain the following result for the nondiagonal matrix element ofZka between direct
product states:

Z25NcA~2i 11!~2i 811!A~2S11!~2I 11!^S8,mS8uS,1;mS ,k&^I 8,a8uI ,1;a,a&~2 !11 i 82 i 1S81I 8

3H S8 S 1

I I 8 0J H S i 1
2

1
2 0 I

J H S8 1
2 i 8

1
2 I 8 0

J . ~4.81!

For the diagonal case, only the first term in~4.77! survives~without the factor of 1/4!. Using~4.79! we can write for this case

Z15~2 !12 i 81 i 1S81I 8NcA~2i 11!~2i 811!A~2S11!~2I 11!^S8,mS8uS,1;mS ,k&^I 8,a8uI ,1;a,a&

3F H S8 S 1

I I 8 0J H S i 1
2

1
2 0 I

J H S8 1
2 i 8

1
2 I 8 0

J 23H S8 S 1

I I 8 1J H S i 1
2

1
2 1 I

J H S8 1
2 i 8

1
2 I 8 1

J G . ~4.82!

Inserting~4.81! and ~4.82! into ~4.73! and using the definition ofZ(S8I 8,SI) ~4.70! gives the final result for the matrix
element ofZ ~4.71!.

We will present in the following an alternative method of calculating the matrix element of a current between stat
mixed symmetry. Besides reproducing the result~4.71!, this method has the advantage of simplifying very much the com

3The exact result for arbitraryNc is presented in the Sec. V.
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tation of transition matrix elements between excited and ground state baryons, to be discussed in the next section. W
writing the matrix element of the currentZka taken between two states~4.42! as

^S8I 8uZkauSI&5~2 !c~SIi!1c~S8I 8 i 8!
1

2~Nc21!H (
j j 852

Nc

@ j 8,1#^S8I 8uZkauSI&@ j ,1#1(
j 52

Nc

@ j ,1#^S8I 8uZkauSI&@ j ,1#J I. ~4.83!
rs

l-
u

in

n

h

op

on
g

u-

-
of

fore
We consider the two terms of this relation in turn. The fi
sum can be written as

(
j j 852

Nc

@ j 8,1#^S8I 8uZkauSI&@ j ,1#

5 1^S8I 8u (
j 852

Nc

A@ j 8,1#Zka(
j 52

Nc

A@ j ,1#uSI&1 , ~4.84!

where

A@ j ,1#5
1

A2
~12Pj 1! ~4.85!

is the antisymmetrization operator for quarks@ j ,1# and Pj 1
has been defined in~4.47!. The spin states defined in~4.39!
can be written in terms of it asuSI&@ i ,1#52A@ i ,1#uSI&1.

An important relation we will use extensively in the fo
lowing expresses the result of symmetrizing a direct prod
stateuSI&1 under a permutation of any two quarks:

PuSI,ma&15~11P121•••1P1Nc
!uSI,ma&1

5dSIB~ I i !uI ,m,a&, ~4.86!

with uI ,m,a& the completely symmetric state constructed
Sec. IV A. The normalization constantB(I i ) can be com-
puted by taking the norm of the both sides of this relatio
We obtain

dSIB
2~ I i !5 (

nn851

Nc

n8^SI,mauSI,ma&n

5Nc1Nc~Nc21!n8^SI,mauSI,ma&n

~nÞn8!. ~4.87!

The nondiagonal matrix element appearing on the RHS
been calculated previously and is given by~4.67!. We obtain
finally

B2~ I i !5Nc~Nc11!~2i 11!H 1
2

1
2 0

I S i
J 2

2
Nc

2 F1

2
12i ~ i 11!22I ~ I 11!G . ~4.88!

It will be shown below that the phase ofB(I i ) can be chosen
such that the leading term inNc is positive.

The sums over the antisymmetrization operators in~4.84!
can be written in terms of the complete symmetrization
eratorP as
t

ct

.

as

-

(
j 52

Nc

A@ j ,1#5
1

A2
~Nc2P!. ~4.89!

We will need also the following matrix element:

Nc 1^S8I 8uPZkauSI&15 1^S8I 8uPZka@11P12
2 1•••

1P1Nc

2 #uSI&1

51^S8I 8uPZkaPuSI&1 . ~4.90!

We used in the first line the property of the permutati
operatorPi j

2 51. The second equality is obtained by writin
PZkaP1 j

2 5PP1 jZ
kaP1 j . When acting to the left on1^S8I 8u,

this gives

1^S8I 8uPP1 j5 1^S8I 8uP ~4.91!

since 1^S8I 8uP is completely symmetric under any perm
tation of theNc quarks. This completes the proof of~4.90!.

The relations~4.89! and ~4.90! allow us to express the
sum of matrix elements~4.84! as

(
j j 852

Nc

@ j 8,1#^S8I 8uZkauSI&@ j ,1#5
1

2
Nc

2
1^S8I 8uZkauSI&1

2
1

2 1^S8I 8uPZkaPuSI&1

5
1

2
Nc

2
1^S8I 8uZkauSI&1

2
1

2
dSIdS8I 8B~ I i !B~ I 8i 8!

3^S85I 8uZkauS5I &.

~4.92!

The second term in~4.83! can be computed in an analo
gous way. We note for this the following useful properties
the antisymmetrization operatorA@ j ,1#.

~1! A@ j ,1# commutes withZka

@A@ j ,1#,Zka#50. ~4.93!

This follows from the fact thatZka is completely symmetric
under a permutation of two quarks and commutes there
with the P operator~4.47!.

~2! The square ofA@ j ,1# is given by

A@ j ,1#25A2A@ j ,1#. ~4.94!

With the help of these relations and~4.89! we can write
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(
j 52

Nc

@ j ,1#^S8I 8uZkauSI&@ j ,1#

5(
j 52

Nc

1^S8I 8uA@ j ,1#ZkaA@ j ,1#uSI&1

5 1K S8I 8UZka(
j 52

Nc

A@ j ,1#2USIL
1

51^S8I 8uZka~Nc2P!uSI&1 . ~4.95!

Using a relation similar to~4.90! for the second term, this
equation can be put into the form
(
j 52

Nc

@ j ,1#^S8I 8uZkauSI&@ j ,1#5Nc 1^S8I 8uZkauSI&1

2
1

Nc
dSIdS8I 8B~ I i !B~ I 8i 8!

3^S85I 8uZkauS5I &.
~4.96!

Combining the two results~4.92! and ~4.96! gives the
following general expression for the matrix element of t
currentZka taken between two mixed symmetry states
o

to
es of

SU
arbitrary

rk at a
ion for
^S8I 8uZkauSI&5~2 !c~SIi!1c~S8I 8 i 8!
Nc~Nc12!

4~Nc21!
IH 1^S8I 8uZkauSI&12

1

Nc
2
dSIdS8I 8B~ I i !B~ I 8i 8!^S85I 8uZkauS5I &J .

~4.97!

We are now in a position to compute the phase of the normalization constantB(I i ). This can be done by comparing the tw
expressions~4.73! and ~4.97! for the matrix element̂Zia&. We obtain in this way the following exact relation:

1

Nc
2
dSIdS8I 8B~ I i !B~ I 8i 8!^S85I 8uZkauS5I &5Z21

1

Nc
~Z12Z2!. ~4.98!

Using ~4.81! for Z2 one finds to leading order inNc

~Nc12!A 2I 11

2I 811
B~ I i !B~ I 8i 8!5Nc

3A~2i 11!~2i 811!A~2S11!~2I 11!~2 !11 i 82 i 1S81I 8

3H S8 S 1

I I 8 0J H S i 1
2

1
2 0 I

J H S8 1
2 i 8

1
2 I 8 0

J
5Nc

3
A~2i 11!~2i 811!

2~2I 811!
d ISd I 8S8. ~4.99!

From this follows thatB(I i ) can be chosen to be positive for all values of its arguments.
It is easy to see now with the help of~4.82! and ~4.99! that ~4.97! gives, to leading order inNc , the same result for

^S8I 8uZkauSI& as ~4.71!.

D. Matrix elements of Ya and Qka in the quark model

As already mentioned in Sec. III, the matrix elements of the operatorsYa andQka in the quark model can be reduced
those of the operator(n51

Nc r n
i sn

j tn
a . Here r n ,sn ,tn are vector operators acting on the orbital, spin, and isospin degre

freedom of thenth quark, respectively. In this section we prove that the quark model reproduces, in the large-Nc limit, the
results~3.43! and ~3.50! expected from the model-independent treatment of Secs. III B and III C.

We consider first the transitions from an excited baryon state transforming under the symmetric representation of~4! to
another symmetric baryon state. For generality we leave the orbital momenta of the initial and final states completely
L,L8. The dependence on the spin-isospin quantum numbers is contained in the reduced matrix elementT(I 8,I ) defined by

^I 8L8,mS8mL8a8u (
n51

Nc

r n
i sn

j tn
auIL ,mSmLa&5

1

~2I 811!A2L811
T~ I 8,I !I~L8,L !^I 8,mS8uI ,1;mS , j &^I 8,a8uI ,1;a,a&

3^L8,mL8 uL,1;mL ,i &. ~4.100!

We will restrict our considerations to baryon states for which all the orbital angular momentum is carried by one qua
time. This is strictly true only for the lowest orbital excitations. In Hartree language the spatial part of the wave funct
these states has the form
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uL,mL&5
1

ANc
(
p51

Nc

f~r 1 !f~r 2 !•••cL,mL
~rWp !•••f~r Nc

!, ~4.101!

wheref(r ) is a s-wave one-particle wave function andcL,mL
(rW ) carries angular momentum (L,mL). The spatial part of the

matrix element~4.100! can be written in terms of the matrix element

^L8,mL8 ur n
i uL,mL&5

1

Nc

1

A2L811
I~L8,L !^L8,mL8 uL,1;mL ,i &, ~4.102!

with I(L8,L) an overlap integral of orderNc
0 . The caseL850 of a s-wave baryon in the final state is special, as the sca

law with Nc is different

^0ur n
i uL,mL&5

1

ANc

IdL1^0uL,1;mL ,i &. ~4.103!

For both these cases the matrix element ofr n
i is independent ofn due to the symmetry of the wave function under a

permutation of two quarks. Therefore the spin-isospin part of the matrix element~4.100! decouples completely from the spati
part and is given exactly by the formula~4.37! for the ground state baryons. We obtain in this way for the reduced m
elementT(I 8,I )

T~ I 8,I !55
Nc12

Nc
A~2I 11!~2I 811!, L8Þ0,

Nc12

ANc

A~2I 11!~2I 811!, L850,

~4.104!

which can be seen to coincide, up to an unimportant phase and numerical factor, with the result~3.43! anticipated in Sec. III.
We consider next the case of an excited baryon transforming under the mixed symmetry representation of SU~4! in the

initial state. The final state corresponds to the completely symmetric representation. We write the matrix element rele
this case as

^I 8L8,m8mL8a8u (
n51

Nc

r n
i sn

j tn
auSIL,mSmLa&5

1

~2I 811!A2L811
T~ I 8,SI!I~L8,L !^I 8,m8uS,1;mS , j &^I 8,a8uI ,1;a,a&

3^L8,mL8 uL,1;mL ,i &. ~4.105!

The scaling law withNc of the spatial part of this matrix element is again different, depending on whetherL8Þ0 or L850.
Both cases can be considered together by writing it as

^L8,mL8 ur n
i uSIL,mSmLa&5

Nc
k~2 !c~SIi!

A2Nc~Nc21!
(

k,k851

Nc

~dk8ndnk2dk8ndn1!
1

A2L811
I~L8,L !^L8,mL8 uL1,mL ,i &uSI,mSa&@k,1#

5
Nc

k~2 !c~SIi!

A2Nc~Nc21!

1

A2L811
I~L8,L !^L8,mL8 uL1,mL ,i &H uSI,mSa&@n,1#2dn1(

k52

Nc

uSI,mSa&@k,1#J .

~4.106!

Herek51/2 for L850 andk50 for L8Þ0. Adding the spin-isospin part of the operator and summing over theNc quarks in
the baryon gives

^I 8L8,m8mL8a8u (
n51

Nc

r n
i sn

j tn
auSIL,mSmLa&5

Nc
k~2 !c~SIi!

A2Nc~Nc21!

1

A2L811
I~L8,L !^L8,mL8 uL1,mL ,i &

3H (
n51

Nc

^I 8,m8a8usn
j tn

auSI,mSa&@n,1#2^I 8,m8a8us1
j t1

a(
k52

Nc

uSI,mSa&@k,1#J .

~4.107!

The first term in the braces can be written as
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(
n51

Nc

^I 8,m8a8usn
j tn

auSI,mSa&@n,1#5
1

A2
S (

n51

Nc

^I 8,m8a8usn
j tn

auSI,mSa&n2^I 8,m8a8u (
n51

Nc

sn
j tn

auSI,mSa&1D
5

1

A2
S Nc^I 8,m8a8us1

j t1
auSI,mSa&12

1

Nc
dSIB~ I i !^I 8,m8a8u (

n51

Nc

sn
j tn

auI ,mSa& D .

~4.108!

In the second line we used the identity

Nc^I 8,m8a8u (
n51

Nc

sn
j tn

auSI,mSa&15^I 8,m8a8u (
n51

Nc

sn
j tn

a~11P12
2 1•••1P1Nc

2 !uSI,mSa&1

5 (
k51

Nc

^I 8,m8a8uP1k(
n51

Nc

sn
j tn

aP1kuSI,mSa&15^I 8,m8a8u (
n51

Nc

sn
j tn

aPuSI,mSa&1

~4.109!

followed by the application of the relation~4.86!. In ~4.109! we have definedP1151.
The second term in~4.107! can be put into the following form through an application of~4.89! and ~4.86!:

^I 8,m8a8us1
j t1

a(
k52

Nc

uSI,mSa&@k,1#5
1

A2
„dSIB~ I i !^I 8,m8a8us1

j t1
auI ,mS ,a&2Nc^I 8,m8a8us1

j t1
auSI,mSa&1…. ~4.110!

Combining~4.108! and ~4.110! together we obtain the following general formula for the matrix element~4.105!:

^I 8L8,m8mL8a8u (
n51

Nc

r n
i sn

j tn
auSIL,mSmLa&5

Nc
k~2 !c~SIi!

ANc~Nc21!

1

A2L811
I~L8,L !^L8,mL8 uL1,mL ,i &H Nc^I 8,m8a8us1

j t1
auSI,mSa&1

2
1

Nc
dSIB~ I i !^I 8,m8a8u (

n51

Nc

sn
j tn

auI ,mS ,a&J . ~4.111!

The second term in~4.111! is already known from our analysis of the symmetric states in Sec. IV A. The first matrix ele
is new. In the following we present the details of its calculation.

Using ~4.86! one can write

^I 8,m8a8us1
j t1

auSI,ma&15
1

B~ I 8i 8!
1^I 8I 8,m8a8u(

k51

Nc

P1ks1
j t1

auSI,ma&1 . ~4.112!

A typical term of the sum overk has the form

1^I 8I 8,m8a8uP1ks1
j t1

auSI,ma&15
1

4 1^I 8I 8,m8a8us1
j t1

auSI,ma&11
1

4 1^I 8I 8,m8a8u~sW 1•sW k !~tW1•tW k !s1
j t1

auSI,ma&1

1O~1/Nc!, ~4.113!

where we used the definition of theP operator~4.47! and the fact thatF( i ) andG( i ) computed in Sec. IV B are nonleadin
in 1/Nc . The first matrix element is easily calculated with the result

1^I 8I 8,m8a8us1
j t1

auSI,ma&15^I 8,m8uS,1;m, j &^I 8,a8uI ,1;a,a&6d i i 8A~2S11!~2I 11!H 1 S I8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J .

~4.114!

The second matrix element can be reduced to quantities already known by simplifying the products of two spin and
Pauli matrices with the help of the identity

sasb52A3^0u11;ab& 12A2(
c

^1cu11;ab&sc . ~4.115!

We obtain in this way
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1^I 8I 8,m8a8u~sW 1•sW k!~tW1•tW k !s1
j t1

auSI,ma&15^I 8,m8uS,1;m, j &^I 8,a8uI ,1;a,a&A~2i 11!~2i 811!~2S11!~2I 11!

3F ~2 !2 i 1
1
2 1SH S 1 I 8

i 8 1
2 i J 16~2 !2S2I 8H 1

2 1 1
2

i 1 i 8

S 1 I 8
J G

3F ~2 !2 i 11/21IH I 1 I 8

i 8 1
2 i J 16~2 !2I 2I 8H 1

2 1 1
2

i 1 i 8

I 1 I 8
J G

536̂ I 8,m8uS,1;m, j &^I 8,a8uI ,1;a,a&A~2i 11!~2i 811!~2S11!~2I 11!

3H i i 8 1

1
2

1
2 I 8J

2H S I8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J . ~4.116!

We used in the second equality the identity

H 1
2

1
2 1

i i 8 1

S I8 1
J 5H i i 8 1

1
2

1
2 I 8J H S I8 1

1
2

1
2 i J 1

1

6
~2 ! i 81S13/2H i i 8 1

I 8 S 1
2
J ~4.117!

and a similar one withS→I , which can be obtained from~3.21! by takingl51/2 and thej ’s are the same as in the 9j symbol
on the LHS.

Combining~4.114! and ~4.116! we find the following result for the matrix element~4.113!:

1^I 8I 8,m8a8uP1ks1
j t1

auSI,ma&15A~2i 11!~2i 811!~2I 11!~2S11!^I 8,m8uS,1;m, j &^I 8,a8uI ,1;a,a&

33
1

2I 811
H S I8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J , ~4.118!

where we have rewritten thed i i 8 symbol in ~4.114! as

d i i 852A~2i 11!~2i 811!H i i 8 0

1
2

1
2 I 8J

2

~4.119!

and added the two terms with the help of the identity

(
x50,1

~2x11!H i i 8 x

1
2

1
2 I 8J

2

5
1

2I 811
. ~4.120!

Next we use~3.30! to write the product of 2 6j symbols in~4.118! as

H 1
2 I 8 i

S 1
2 1

J H 1
2 I 8 i

I 1
2 1

J 5
dSI

6A~2S11!~2I 11!
1~2 !21/21S1I 1I 81 i H 1 1 1

S I I8J H S I 1

1
2

1
2 i J . ~4.121!

The sum overk in ~4.112! is dominated by the terms withkÞ1, of which there areNc21. Neglecting the contribution of the
k51 term, we obtain for the matrix element~4.112! to leading order inNc

^I 8,m8a8us1
j t1

auSI,ma&153A2~2i 11!A~2S11!~2I 11!

2I 811
^I 8,m8uS,1;m, j &^I 8,a8uI ,1;a,a&

3H dSI

6A~2S11!~2I 11!
1~2 !21/21S1I 1I 81 i H 1 1 1

S I I8J H S I 1

1
2

1
2 i J J . ~4.122!

When inserted into~4.111!, the term proportional todSI will be canceled exactly by the second term in~4.111!. As a result,
we obtain for the reduced matrix elementT(I 8,SI) taken between the unnormalized quark model states
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T~ I 8,SI!5Nc
k3A2~2i 11!A~2S11!~2I 11!~2I 811!~2 !21/21S1I 1I 81 i~2 !c~SIi!H 1 1 1

S I I8J H S I 1

1
2

1
2 i J . ~4.123!

The physical value of this reduced matrix element is obtained by dividing with the square root of the norm of the initia
~4.44!. This gives

@T~ I 8,SI!#norm5Nc
k21/22A6A~2S11!~2I 11!~2I 811!~2 !21/21S1I 1I 81 i~2 !f~SIi!1c~SIi!H 1 1 1

S I I8J . ~4.124!
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Finally we insert heref(SIi)511I 1S the phase of the 6j
symbol appearing in the formula for the norm~4.44! and

c(SIi)5 i 1I 1 1
2 the phase of the mixed symmetry sta

which gives for the total phase (2)2I 1I 8. Thus~4.124! can
be seen to coincide exactly, up to a numerical factor, with
expression ~3.50! expected from the model-independe
treatment of Sec. III B.

An important by-product of this calculation is the larg
Nc scaling law of the transition matrix elements into fin
states in an s wave. We obtain that the matrix elements oYa

and Qka from an initial state with mixed symmetry scale
like Nc

0 . On the other hand, the same matrix elements wit
symmetric excited state in the initial state scale asNc

1/2. This
dependence of the scaling law on the symmetry type of
excited state is a new feature, unnoticed previously. As
cussed in Sec. III, for both cases the scaling law for the t
scattering amplitude is sufficiently restrictive to allow th
derivation of useful consistency conditions. In spite of th
different Nc scaling, the solutions for these matrix elemen
have the same dependence on spin and flavor quantum
bers.

The quark model computations in the next section illu
trate another important asymmetry between the symme
and the mixed symmetry states. The 1/Nc corrections to the
large-Nc results for coupling ratios vanish for the former@2#
but not for the latter. Such dependence on the symm
properties of these states raises the question of how to
tinguish states with different permutational symmetry b
yond the framework of the quark model.

The exact large-Nc scaling law for matrix elements ofY
and Q following from the calculations of this section i
strictly correct only for the case of the baryons made
heavy quarks, for which the constituent quark picture
known to be exactly valid. Our results following from th
consistency conditions discussed in Sec. III rest on the
sumption that no important changes occur as the quarks
come light and that the modified scaling law correspond
to this situation still allows the derivation of consistency co
ditions. While this assumption seems plausible and is sim
to smoothness arguments commonly used in other largeNc
studies@12,9#, it is important to keep it in mind as one of th
vulnerable points of an analysis of this type.

V. QUARK MODEL MATRIX ELEMENTS
FOR ARBITRARY Nc

In this section we compute the full expressions for
duced matrix elements in the quark model with arbitra
,

e

a

e
s-
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r
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m-

-
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is-
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f
s

s-
e-
g
-
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number of colorsNc . The results presented in the precedi
section are obtained from these expressions by keeping
the leading terms inNc . We take advantage of our ability t
derive exact relations for the quark model matrix elements
study the 1/Nc corrections to the large-Nc predictions. By
examining a few simple particular cases we conclude that
results obtained in Sec. III in the large-Nc limit will receive,
in general, 1/Nc corrections.

A. Z„S8I 8,SI…

We begin by giving the result for the matrix eleme
Z(S8I 8,SI) defined by

^S8I 8L8;mS8 ,mL8 ,a8u (
n51

Nc

sn
ktn

auSIL;mS ,mL ,a&

5
1

A~2S811!~2I 811!
Z~S8I 8,SI!dLL8dmLm

L8

3^S8,mS8uS,1;mS ,k&^I 8,a8uI ,1;a,a&. ~5.1!

According to~4.73! this matrix element is completely dete
mined in terms of the diagonal and the nondiagonal ma
elements of the current on direct product states. These
be characterized by two quantitiesz1 ,z2 defined by

Z15 j^S8I 8,m8,a8u (
n51

Nc

sn
ktn

auSI,m,a& j

5A~2S11!~2I 11!z1^S8,m8uS,1;m,k&^I 8,a8uI ,1;a,a&,

~5.2!

Z25 j 8^S8I 8,m8,a8u (
n51

Nc

sn
ktn

auSI,m,a& j

5A~2S11!~2I 11!z2^S8,m8uS,1;m,k&^I 8,a8uI ,1;a,a&.

~5.3!

The reduced matrix elementZ(S8I 8,SI) ~taken between un-
normalized quark model states! is expressed in terms ofz1
andz2 as
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Z~S8I 8,SI!5~2 !c~S8I 8 i 8!1c~SIi!A~2S11!~2I 11!~2S811!~2I 811!
Nc12

4
~z12z2!. ~5.4!

We obtain for the diagonal matrix element the simple result

z15A~2i 11!~2i 811!z~ i 8,i !~2 !2112i 81S1IH 1 S S8
1
2 i 8 i J H 1 I I 8

1
2 i 8 i J

16d i i 8~2 !122i 2S82I 8H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J , ~5.5!

with

z~ i 8,i !5A~Nc11!22~ i 82 i !2~ i 81 i 11!25Nc111O~1/Nc!. ~5.6!

The nondiagonal matrix elementz2 can be written as a sum over the four terms into which it can be decomposed wi
help of ~4.77!

z25
1

4
~T11T21T31T4!. ~5.7!

We find

T15z1 , ~5.8!

T25A6~2i 11!~2i 811!2F~ i 8!z~ i 8,i !~2 !21/212i 1 i 81I 1S1S8H i 8 1
2 S8

1
2 i 8 1

J H 1 S S8
1
2 i 8 i J H 1 I I 8

1
2 i 8 i J

26A6F~ i !d i i 8A2i 811~2 !1/22 i 2I 8H i i 8 1

1
2

1
2 S8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J , ~5.9!

T35A6~2i 11!~2i 811!2F~ i 8!z~ i 8,i !~2 !21/212i 1 i 81I 1S1I 8H i 8 1
2 I 8

1
2 i 8 1

J H 1 S S8
1
2 i 8 i J H 1 I I 8

1
2 i 8 i J

26A6F~ i !d i i 8A2i 811~2 !1/22 i 2S8H i i 8 1

1
2

1
2 I 8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J , ~5.10!

T456A~2i 11!~2i 811!~2 !S1I 1S81I 8(
i 9

z~ i 8,i 9!z~ i 9,i !

Nc21
~2i 911!H i 9 1

2 S8

1
2 i 8 1

J H S 1 S8

i 9 1
2 i J H i 9 1

2 I 8

1
2 i 8 1

J H I 1 I 8

i 9 1
2 i J

136
z~ i 8,i !

Nc21
A~2i 11!~2i 811!H i i 8 1

1
2

1
2 S8J H i i 8 1

1
2

1
2 I 8J H S S8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J . ~5.11!

The expression forz2 greatly simplifies if only terms of order 1 are kept, in addition to the leading ones of orderNc , due
to the fact that in this approximation thez( i 8,i ) factors are constants. This allows the sum overi 9 to be performed with the
help of ~4.80!. We obtain

z1

A~2i 11!~2i 811!
5~Nc11!~2 !f0@$6 j 0%

323$6 j 1%
3#112H i i 8 0

1
2

1
2 S8J H i i 8 0

1
2

1
2 I 8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J 1O~Nc

21!,

~5.12!

z2

A~2i 11!~2i 811!
5~Nc12!~2 !f0$6 j 0%

313~2 !f0$6 j 1%
313

dS8I 8

2I 811
H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J

2
1

2
~2 !f0@ 1

2 12i 8~ i 811!2S8~S811!2I 8~ I 811!#@$6 j 0%
323$6 j 1%

3#1O~Nc
21!, ~5.13!
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with f0511 i 2 i 81I 81S8. We denoted here the products of 6j symbols encountered in Sec. III

$6 j 0~1!%
35H S8 S 1

I I 8 0~1!
J H S i 1

2

1
2 0~1! I

J H S8 1
2 i 8

1
2 I 8 0~1!

J . ~5.14!

The difference ofz1 andz2 can be finally written as

z12z2

A~2i 11!~2i 811!
523~Nc12!~2 !f0$6 j 1%

32~2 !f0$6 j 0%
31

1

2
~2 !f0@ 1

2 12i 8~ i 811!2S8~S811!

2I 8~ I 811!#@$6 j 0%
323$6 j 1%

3#218~2 ! i 1 i 81I 81S8

3H S8 I 8 1

1
2

1
2 i J H S8 I 8 1

1
2

1
2 i 8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J 1O~Nc

21!. ~5.15!

The alternative method presented in Sec. IV C can be also used to give an exact expression for the reduced matri
of Zia. We find from~4.97! the following result:

Z~S8I 8,SI!5~2 !c~S8I 8 i 8!1c~SIi!A~2S11!~2I 11!~2S811!~2I 811!
Nc~Nc12!

4~Nc21!

3S z12
1

Nc
2

B~ I i !B~ I 8i 8!
Z~ I 8,I !

~2I 11!~2I 811!
dSIdS8I 8D , ~5.16!

whereZ(I 8,I ) has been defined in~4.37! andB(I i ) is given by~4.88!. We have checked explicitly that both methods lead
the same answer forZ(S8I 8,SI) up to the next-to-leading order in 1/Nc . We notice that~5.16! does not involve any summatio
over intermediate state quantum numbers.

The leading order term in~5.15! is written as proportional toNc12, which was seen to give the correct result to two ord
in the 1/Nc expansion for the case of the symmetric baryons. It is natural to ask whether a similar result holds also
reduced matrix elementZ(S8I 8,SI). In the following we will argue that no result of comparable simplicity can be obtained
the 1/Nc corrections to this quantity. Strictly speaking this still does not prove that there are nonvanishing 1/Nc corrections to
Z(J8I 8,JI) ~which is the true physical coupling with a meaning beyond the quark model! which is related toZ(S8I 8,SI) by
~3.28!. We have checked, however, on a few particular cases that this is indeed the case.

We will consider for simplicity the case when the quantum numbers of the initial and final states satisfy

SÞI ,S8ÞI 8 ~5.17!

and examine the structure of the 1/Nc corrections in the following two particular cases:~a! S5S8,I 5I 8 and ~b! S5I 8,I
5S8. This constrainsi ,i 8 to be equal:i 5 i 8.

The norm of a state satisfying~5.17! can be obtained from~4.44! and is given exactly by

^SIuSI&5
Nc12

4

Nc

Nc21
. ~5.18!

This will have to be divided out from the quantity on the RHS of~5.15!. We obtain

1

A^SIiuSIi&^S8I 8i 8uS8I 8i 8&

Nc12

4
~z12z2!5A~2i 11!~2i 811!H 23~Nc12!~2 !f0$6 j 1%

3218~2 ! i 1 i 81I 81S8

3H S8 I 8 1

1
2

1
2 i J H S8 I 8 1

1
2

1
2 i 8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J

13~2 !f0$6 j 1%
3J . ~5.19!

Next, we note that in the limit~5.17! the product of 4 6j symbols on the RHS can be written as
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~2 ! i 1 i 81I 81S8H S8 I 8 1

1
2

1
2 i J H S8 I 8 1

1
2

1
2 i 8J H 1 S S8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J 55

1

36~2i 11!2
A~2i 21!~2i 13!

i ~ i 11!
case~a!

1

9~2i 11!2
case~b!.

~5.20!

On the other hand, the leading order term is proportional to$6 j 1%
3. From ~4.79! we obtain, in the limit~5.17!,

$6 j 1%
35~2 !112i

1

3H 1 S S8
1
2 i 8 i J H 1 I I 8

1
2 i 8 i J 55 ~2 !2i

1

3~2i 11!2
A~2i 21!~2i 13!

2i ~2i 12!
case~a!

~2 !112i
1

6~2i 11!2i ~ i 11!
case~b!.

~5.21!

One can see that for case~b! the terms of order 1 in~5.19! do not have the same structure as the leading term of orderNc and
therefore cannot be generally absorbed into a rescaling of the latter.

B. T„I 8,SI…

Next we present the exact calculation of the reduced matrix elementT(I 8,SI) defined by

^I 8L8,m8mL8a8u (
n51

Nc

r n
i sn

j tn
auSIL,mSmLa&5

1

~2I 811!A2L811
T~ I 8,SI!I~L8,L !^I 8,m8uS,1;mS , j &^I 8,a8uI ,1;a,a&

3^L8,mL8 uL,1;mL ,i &, ~5.22!

relevant for the transitions from orbital excitations with mixed symmetry to symmetric states. We calculate this matrix e
starting from the general formula~4.111! and proceeding along the same steps as in Sec. IV D. The first term in~4.111! can
be expressed with the help of~4.112! in terms of the two matrix elements (kÞ1)

1^I 8I 8,m8a8us1
j t1

auSI,ma&15A~2S11!~2I 11!t1^I 8,m8uS1;m, j &^I 8,a8uI1;a,a&, ~5.23!

1^I 8I 8,m8a8uP1ks1
j t1

auSI,ma&15A~2S11!~2I 11!t2^I 8,m8uS1;m, j &^I 8,a8uI1;a,a&. ~5.24!

Expanding the permutation operatorP1k and evaluating the resulting matrix elements with the help of the results of
IV B we obtain the following exact expressions for the coefficientst1 ,t2:

t156d i i 8H 1 S I8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J , ~5.25!

t25
3

2
d i i 8H 1 S I8

i 1
2

1
2
J H 1 I I 8

i 1
2

1
2
J 23A3

2
F~ i !d i i 8A2i 811~2 ! I 821/21 iH i i 8 1

1
2

1
2 I 8J H S I8 1

1
2

1
2 i J H 1 I I 8

i 1
2

1
2
J

23A3

2
G~ i !d i i 8A2i 811~2 ! I 821/21 iH i i 8 1

1
2

1
2 I 8J H S I8 1

1
2

1
2 i J H 1 I I 8

i 1
2

1
2
J 19H~ i 8,i !A~2i 11!~2i 811!

3H i i 8 1

1
2

1
2 I 8J

2H S I8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J . ~5.26!

The result fort2 simplifies considerably when only the terms of order 1 and 1/Nc are kept

t2

A~2i 11!~2i 811!
5H 3

2I 811
1

1

Nc

6

2I 811
2

6

Nc
F5

2
12i 8~ i 811!22I 8~ I 811!G H i i 8 0

1
2

1
2 I 8J

2J H S I8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J

1O~Nc
22!. ~5.27!

The matrix element on the RHS of~4.112! is proportional to the combination
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t11~Nc21!t25A~2i 11!~2i 811!F 3

2I 811
Nc1

3

2I 811
26F1

2
12i 8~ i 811!22I 8~ I 811!G H i i 8 0

1
2

1
2 I 8J

2G H S I8 1

1
2

1
2 i J

3H I I 8 1

1
2

1
2 i J 1O~Nc

21!. ~5.28!

After dividing this expression withB(I 8i 8) we find for the first matrix element in~4.111! the following result:

^I 8,m8a8us1
j t1

auSI,mSa&15A~2S11!~2I 11!^I 8,m8uS1;m, j &^I 8,a8uI1;a,a&3A2A 2i 11

2I 811

3H11
1

2Nc
1

2I 811

3Nc
F1

2
12i 8~ i 811!22I 8~ I 811!G S 3

2~2i 811!
26H i i 8 0

1
2

1
2 I 8J

2D J
3H S I8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J 1O~Nc

21!. ~5.29!

The second matrix element in~4.111! is given by

dSIB~ I i !^I 8,m8a8u (
n51

Nc

sn
j tn

auI ,mS ,a&5dSINc
2A~2S11!~2I 11!^I 8,m8uS1;m, j &^I 8,a8uI1;a,a&3A2A 2i 11

2I 811

1

6~2I 11!

3H 11
5

2Nc
2

2I 11

2Nc~2i 11!F1

2
12i ~ i 11!22I ~ I 11!G J . ~5.30!

The result for the reduced matrix elementT(I 8,SI) valid to next-to-leading order in 1/Nc is obtained by inserting~5.29! and
~5.30! into ~4.111! and making use of~4.121! for the product of 6j symbols in~5.29!.

Let us examine closer the structure of the 1/Nc corrections to the leading order result forT(I 8,SI) on the simple particular
case whenSÞI . After dividing with the norm of the initial state~5.18! we find for this case

T~ I 8,SI!5Nc
k21/22A6A~2S11!~2I 11!~2I 811!~2 !2I 1I 8H 1 1 1

S I I8J H 12
1

2Nc
1

2I 811

3Nc
F1

2
12i 8~ i 811!22I 8~ I 811!G

3S 3

2~2i 811!
26H i i 8 0

1
2

1
2 I 8J

2D J . ~5.31!

The last term in the braces has the explicit expression

2I 811

3Nc
F1

2
12i 8~ i 811!22I 8~ I 811!G S 3

2~2i 811!
26H i i 8 0

1
2

1
2 I 8J

2D 5
2I 811

2Nc
~2 !1/22 i 81I 8~122d i i 8!, ~5.32!
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which shows that it cannot be absorbed into a rescaling
the leading order term. This quark model calculation s
gests therefore that the ratios of theY andQ couplings of the
mixed symmetry states predicted by the consistency co
tions in the large-Nc limit will receive nontrivial 1/Nc cor-
rections.

VI. CONCLUSIONS AND OUTLOOK

We have studied the strong couplings of the excited ba
ons in the large-Nc limit with the help of consistency condi
tions on pion-baryon scattering amplitudes. This method
similar to the one used by Dashen, Jenkins, and Mano
@2,3,5,6# in their analysis of the strong couplings of the
of
-

i-

-

is
ar

wave baryons. In extending their analysis to the exci
baryons’ sector one has to deal with additional compli
tions, related to the more complex structure of the spectr
of these states.

The consistency conditions are very effective in co
straining the large-Nc spin-isospin dependence of the stro
vertices of these states, especially for theS-wave pion cou-
pling, which is completely determined in terms of just o
unknown constant. The allowed form of the strong vertic
turns out to be exactly the same as the one following fr
the constituent quark model. In addition to constraining
structure of the strong vertex, the consistency conditions p
dict also the equality of the pion couplings to excited and
s-wave baryons, respectively. This is again what is expec
from the constituent quark model.
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Our findings extend therefore the results obtained
@2,3,5,6# for the strong couplings of thes-wave baryons and
give a natural explanation for the successes of the qu
model when applied to strong decays of the excited bary
@1,16–18# in terms of the large-Nc expansion. For example
this lends additional support to some predictions made
cently for strong decays of excited heavy baryons@38,39#
with the help of the quark model. However, as discussed
Sec. V, the quark model predictions for ratios of strong c
plings for these states cannot be expected to hold to the s
accuracy as in the s-wave sector, as these ratios are n
general protected against 1/Nc corrections. The exact result
in Sec. V provide a specific framework to study quanti
tively how good the large-Nc approximation is by examining
their completeNc dependence asNc varies from the physica
valueNc53 to infinity.

The results of the present paper can be expanded
number of directions. We recall that our analysis has o
assumed isospin symmetry. Thus, one can attempt to in
porate SU~3! with some amount of symmetry breaking, b
studying consistency conditions following from large-Nc
counting rules for kaon-baryon scattering amplitudes@5,6#.
In this way one should be able to relate the strong coupli
of different towers of states with different strangeness qu
tum numbers, which in our present analysis are left co
pletely unrelated. Second, we have only discussed exc
states transforming under the symmetric and mixed symm
ric representations of SU~4!. It is known that excited state
exist which transform also under the antisymmetric repres
n

rk
s

e-

in
-
me
in

-

a
y
r-

s
-
-

ed
t-

n-

tation. Extending our analysis to this case should be co
pletely straightforward. Finally, a similar analysis could
performed for the electromagnetic couplings of the exci
baryons, with the help of consistency conditions for photo
baryon scattering amplitudes. For the s-wave baryons s
constraints on the magnetic moments have been worked
in @4#. We plan to return to some of these problems in
future publication.

ACKNOWLEDGMENTS

The research of D.P. was supported by the Ministry
Science and the Arts of Israel. The work of T.M.Y. wa
supported in part by the National Science Foundation.

APPENDIX A: TRANSITION MATRIX ELEMENTS
BETWEEN STATES WITH MIXED SYMMETRY

We present in this Appendix the computation in the qua
model of the matrix elements ofYa andQka between excited
baryon states with mixed symmetry. This quantity is ph
nomenologically relevant for strong decays of positive-par
excited baryons into negative-parity states in the70. We in-
clude this calculation here merely for the sake of comple
ness and because the result provides an explicit realiza
for the most general solution of the consistency condition
Q(J8I 8,JI) ~3.59!.

We start by computing the quark model reduced ma
elementT(S8I 8,SI) defined by
art

sion

d by
^S8I 8L8,mS8mL8a8u (
n51

Nc

r n
i sn

j tn
auSIL,mSmLa&5

1

A~2S811!~2I 811!~2L811!
T~S8I 8,SI!I~L8,L !^S8,mS8uS1;mS , j &

3^L8,mL8 uL1;mL ,i &^I 8,a8uI1;a,a&. ~A1!

We proceed in close analogy to the calculation ofT(I 8,SI) in Sec. IV D. First we take the matrix element of the spatial p
of the operator, which is parametrized by the overlap integralI(L8,L):

^S8I 8L8,mS8mL8a8ur n
i sn

j tn
auSIL,mSmLa&5

~2 !c~S8I 8 i 8!1c~SIi!

2~Nc21! (
k,k852

Nc

@k8,1#^S8I 8,mS8a8usn
j tn

auSI,mSa&@k,1#

3
1

A2L811
^L8,mL8 uL1;mL ,i &I~L8,L !@dkndkk81dn1#. ~A2!

After summing over the contributions of theNc quarks to the transition operator we obtain the following general expres
for the reduced matrix elementT(S8I 8,SI):

1

A~2S811!~2I 811!
T~S8I 8,SI!^S8,mS8uS1;mS , j &^I 8,a8uI1;a,a&

5
~2 !c~S8I 8 i 8!1c~SIi!

2~Nc21! H (
n51

Nc

@n,1#^S8I 8,mS8a8usn
j tn

auSI,mSa&@n,1#1 (
k852

Nc

@k8,1#^S8I 8,mS8a8us1
j t1

a(
k52

Nc

uSI,mSa&@k,1#J .

~A3!

The first term in the braces is of orderNc and is therefore suppressed relative to the second one, which is of orderNc
2 . In this

section we work only to leading order inNc so we keep only the contribution of the second term. It can be compute
expressing the sums overk,k8 with the help of~4.89!:



element

st

nitial

57 14811/Nc EXPANSION FOR EXCITED BARYONS
(
k852

Nc

@k8,1#^S8I 8,mS8a8us1
j t1

a(
k52

Nc

uSI,mSa&@k,1#5
1

2
$dSIdS8I 8B~ I i !B~ I 8i 8!^I 8,mS8 ,a8us1

j t1
auI ,mS ,a&

2Nc
2

1^S8I 8;mS8 ,a8uP1ks1
j t1

auSI;mS ,a&1

2Nc
2

1^S8I 8;mS8 ,a8us1
j t1

aP1kuSI;mS ,a&1

1Nc
2

1^S8I 8;mS8 ,a8us1
j t1

auSI;mS ,a&1%1O~Nc!. ~A4!

Each of the terms on the RHS can be evaluated using the methods of Sec. IV D. We obtain, for the reduced matrix
T(S8I 8,SI),

1

A~2S811!~2I 811!
T~S8I 8,SI!5~2 !c~S8I 8 i 8!1c~SIi!

Nc
2

4~Nc21!
A~2i 11!~2i 811!~2S11!~2I 11!H dSIdS8I 8

2~2I 11!~2I 811!

23
dS8I 8

2I 811
H S S8 1

1
2

1
2 i J H I I 8 1

1
2

1
2 i J 23~2 !2I 2S2I 82S8

dSI

2I 11H S S8 1

1
2

1
2 i 8J H I I 8 1

1
2

1
2 i 8J

112~2 !2I 2S2I 82S8H i i 8 0

1
2

1
2 I J H i i 8 0

1
2

1
2 SJ H S S8 1

1
2

1
2 i 8J H I I 8 1

1
2

1
2 i 8J J. ~A5!

The first two terms can be combined together by using~4.121! for the product of two 6j symbols in the second term. The la
two terms can be also written together such that we obtain, for the total sum of the four terms in the curly brackets,

$•••%5H S I 1

1
2

1
2 i J F23~2 !21/21S1I 1I 81 i

dS8I 8

2I 811
H 1 1 1

S I I8J 118~2 !11 i 1 i 82I 82S8H S I 1

1
2

1
2 i 8J H S S8 1

1
2

1
2 i 8J

3H I I 8 1

1
2

1
2 i 8J G . ~A6!

The product of three 6j symbols on the RHS can be transformed into the following form by repeated application of~4.121!:

H S I 1

1
2

1
2 i 8J H S S8 1

1
2

1
2 i 8J H I I 8 1

1
2

1
2 i 8J 5H S8 I 8 1

1
2

1
2 i 8J F dSI8

6~2I 811!
1~2 !2S1S81I H 1 1 1

S I8 I J H 1 1 1

I 8 S8 SJ G
1

dS8I 8

6~2I 811!
~2 !21/21S1S81I 1 i 8H 1 1 1

S I8 I J . ~A7!

When inserted into~A6!, the last term in this relation exactly cancels the first term in~A6!. We obtain in this way the following
expression for the reduced matrix elementT(S8I 8,SI) taken between unnormalized mixed symmetry states:

T~S8I 8,SI!5
9

2
Nc~2 !c~S8I 8 i 8!1c~SIi!A~2i 11!~2i 811!~2S11!~2I 11!~2S811!~2I 811!~2 !11 i 1 i 82I 82S8H S I 1

1
2

1
2 i J

3H S8 I 8 1

1
2

1
2 i 8J F dSI8

6~2I 811!
1~2 !2S1S81IH 1 1 1

S I8 I J H 1 1 1

I 8 S8 SJ G . ~A8!

The physical value ofT(S8I 8,SI) is obtained after dividing this expression with the squared roots of the norms for the i

and final states~4.44!. Inserting the appropriate phases of the mixed symmetry statesc(SIi)5 1
2 1I 1 i we obtain our final

result:

@T~S8I 8,SI!#norm56~2 !S12I 1I 8A~2S11!~2I 11!~2S811!~2I 811!F dSI8

6~2I 811!
1~2 !2S1S81I H 1 1 1

S I8 I J H 1 1 1

I 8 S8 SJ G .

~A9!

This will be used in the following to compute the matrix elements ofYa andQka between states with mixed symmetry.
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1. Matrix elements of Ya

The matrix element ofYa takes its simplest form in theu(IP)S,L;J,m,a& basis, where it is directly proportional t
T(S8I 8,SI):

^~ I 8P!S8,L8;J8,m8,a8uYau~ IP !S,L;J,m,a&5A2J11

2I 811
T~S8I 8,SI!dJJ8dmm8H S 1 S8

L 1 L8

J 0 J8
J ^I 8,auI1;a,a&. ~A10!

The 9j symbol with one value of 0 can be reduced to a 6j symbol. We decided to write it in this form, as it allows us to re
off the results from the corresponding expressions forQka given below by making the replacement 2→0 in the Wigner
symbols.

We are interested finally in the matrix elements ofYa in the uI ,(PL)D;J,m,a& basis, which is reached through th
recoupling relation~3.23!. With P5P851, we have

^I 8,~P8L8!D8;J8,m8,a8uYauI ,~PL!D;J,m,a&5~2 !2I 2L2J2I 82L82J8A2J11

2I 811
dJJ8dmm8^I 8,auI1;a,a&

3(
SS8

A~2S11!~2S811!~2D11!~2D811!H I 1 S

L J DJ H I 8 1 S8

L8 J8 D8
J

3H S 1 S8

L 1 L8

J 0 J8
J T~S8I 8,SI!. ~A11!

All that is left to do is insert here the result of the quark model calculation ofT(S8I 8,SI) ~A9! and perform the summation
over S,S8.

We write the total result for the reduced matrix elementY(JI8,JI) as

Y~JI8,JI !5@Y~JI8,JI !#11@Y~JI8,JI !#2 , ~A12!

where@Y(JI8,JI)#1,2 stand for the contributions of the two terms inT(S8I 8,SI) ~A9!. We find

@Y~JI8,JI !#15~2 !112JA2D11dD8LH L D8 0

1 1 L8
J ~2 !J1I 81D8H I 1 I 8

D8 J D J , ~A13!

@Y~JI8,JI !#252A3~2 !2J1D1D8A~2D11!~2D811!H 1 1 1

L D8 L8
J H 1 1 1

D8 D LJ ~2 !J1I 81D8H I 1 I 8

D8 J D J . ~A14!

Their sum can be seen to have the same form as the model-independent solution of the corresponding consistency
~3.36!.

2. Matrix elements of Qka

The matrix element ofQka is given, in theu(IP)S,L;J,m,a& basis, by an expression similar to~A10!

^~ I 8P!S8,L8;J8,m8,a8uQkau~ IP !S,L;J,m,a&5A5
2J11

2I 811
T~S8I 8,SI!H S 1 S8

L 1 L8

J 2 J8
J ^J8,m8uJ2;m,k&^I 8,auI1;a,a&.

~A15!

This can be transformed to theuI ,(PL)D;J,m,a& basis with the help of the recoupling relation~3.23!. Again with P5P8
51, we have
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^I 8,~P8L8!D8;J8,m8,a8uQkauI ,~PL!D;J,m,a&5~2 !2I 2L2J2I 82L82J8A5
2J11

2I 811
^J8,m8uJ2;m,k&

3^I 8,auI1;a,a&(
SS8

A~2S11!~2S811!~2D11!~2D811!H I 1 S

L J DJ
3H I 8 1 S8

L8 J8 D8
J H S 1 S8

L 1 L8

J 2 J8
J T~S8I 8,SI!. ~A16!

In the following we consider the contributions of the two terms inT(S8I 8,SI) ~A9! to this relation in turn. For the first term
the summation overS is trivial and amounts to the substitutionS→I 8. The remaining sum overS8 can be readily done by
using ~3.21!, which gives for the contribution of this term toQ(J8I 8,JI):

@Q~J8I 8,JI !#15~2 !112D8A5~2D11!~2D811!H I 1 I 8

L J D J H L D8 2

1 1 L8
J H J J8 2

D8 L I 8J . ~A17!

This can be put into a form similar to~3.59! by expressing the product of the first and last 6j symbols with the help of~3.21!:

H I 1 I 8

L J D J H J J8 2

D8 L I 8J 5 (
y51,2,3

~2y11!H 1 2 y

D8 D LJ H D8 I 8 J8

D I J

y 1 2
J . ~A18!

The contribution of the second term is proportional to the double sum overS,S8:

I SS85(
SS8

~2 !S1S81I 1I 8~2S11!~2S811!H I 1 S

L J DJ H I 8 1 S8

L8 J8 D8
J H 1 1 1

S I8 I J H 1 1 1

I 8 S8 SJ H S 1 S8

L 1 L8

J 2 J8
J .

~A19!

The summations overS and S8 are analogous to the sum overS encountered in Sec. III C in Eq.~3.70! and can be
performed along similar lines. A slight generalization of the sum overS in ~3.70! gives the identity

(
S

~2 !2S~2S11!H I 1 S

L J DJ H 1 1 1

I I 8 SJ H S 1 I 8

L y L8

J 2 J8
J 5~2 ! I 1J81L11 (

z51,2,3
~2 !z~2z11!H y 1 z

1 2 1J H y 1 z

D L8 LJ

3H L8 I 8 J8

D I J

z 1 2
J , ~A20!

wherey can take the valuesy51,2,3. Applying~A20! twice we obtain

I SS85 (
z51,2,3

~2 !z~2z11! (
y51,2

~2 !y~2y11!H 1 1 y

1 2 1J H 1 1 y

D8 L L8
J H y 1 z

1 2 1J H y 1 z

D D8 LJ H D8 I 8 J8

D I J

z 1 2
J .

~A21!

The contribution of the second term in~A9! to the reduced matrix elementQ(J8I 8,JI) is given, in terms ofI SS8, by

@Q~J8I 8,JI !#256~2 !L1L8A5~2D11!~2D811!I SS8. ~A22!

The total expression forQ(J8I 8,JI) is given by

Q~J8I 8,JI !5@Q~J8I 8,JI !#11@Q~J8I 8,JI !#2 , ~A23!
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which can be seen to have the form of the general solu
~3.59!.

APPENDIX B: QUARK OPERATORS
FOR PION COUPLINGS OF EXCITED STATES

There exists an alternative description of the baryon st
and of their couplings in the large-Nc expansion, based o
the use of quark operators@5,7,9,18#. Compared to the
method of the consistency conditions used in the main t
this approach has the advantage of making a direct con
tion with the quark structure of the baryons. This connect
is obvious for the case of baryons containing heavy qua
but the validity of the method is not restricted to this ca
and extends also to baryons made up of light quarks.

In this Appendix we give a partial proof of the equiv
lence of the method of the consistency conditions as use
the main text with the method of the quark operators. M
precisely, we show that the two-body operators introduce
@18# to parametrize the pion couplings of theL51 excited
baryons to the ground state baryons, give the same cont
tion as the one-body operators in the large-Nc limit. This
clarifies the relation of our results to those of@18#. This proof
can probably be made complete along the lines of@5# to
include the contributions of alln-body quark operators.

We begin by briefly describing the basic idea of the 1/Nc
expansion expressed in the language of quark operators.
QCD operatorO, such as the axial current or the pion co
pling to baryons, can be expanded as@5#

O5(
n,k

ck
~n!

1

Nc
n21
Ok

~n! . ~B1!

HereOk
(n) are all possiblen-body operators with the sam

quantum numbers as the QCD operatorO. The contribution
of ann-body operator to the matrix element ofO involves, in
the language of the Feynman diagrams, at leastn21 gluon
lines connecting different quarks in the baryon. This supp
a factor ofas

n21 which translates, in the large-Nc limit, into
the suppression factor 1/Nc

n21 in ~B1!.
Counting powers of 1/Nc with the help of ~B1! is ob-

scured by the fact that the matrix elements ofOk
(n) can be

proportional to powers ofNc . This can happen if the contri
butions of theNc quarks in the baryon add up coherently in
the matrix element ofOk

(n) . For the case of excited baryon
in the initial state transforming under the mixed symme
representation, it has been pointed out in@18# that there are
infinitely many operators contributing to leading order
n

es

t,
c-

n
s,
e

in
e
in

u-

ny

s

1/Nc . This means that somen-body operatorsOk
(n) will have

matrix elements of orderNc
n21 , which will compensate the

suppression factor in~B1!.
We will consider in the following all quark operator

which contribute to leading order in 1/Nc to theS-wave and
D-wave pion couplings up to and including 2-body ope
tors. These will be denoted as in@18#:

Ya5aAa1
1

Nc
bBa1•••, ~B2!

Qka5dDka1
1

Nc
~eEka1 f Fka!1•••, ~B3!

with a,b,d,e, f unknown coefficients of the order of unity
The 1-body operatorsAa and Dka are identical to the ones
introduced already in Sec. III:

Aa5^0u11;j i & (
n51

Nc

r n
i sn

j tn
a , ~B4!

Dka5^2ku11;j i & (
n51

Nc

r n
i sn

j tn
a . ~B5!

The 2-body operators are defined as@18#

Ba5^0u11;dc& (
nÞn851

Nc

^1cu11;i j &r n
i sn

j sn8
d tn8

a , ~B6!

Eka5^2ku11;i j & (
nÞn851

Nc

r n
i ^1 j u11;pq&sn

psn8
q tn8

a , ~B7!

Fka5^2ku11;q j& (
nÞn851

Nc

^1qu11;ip&r n
i sn

psn8
j tn8

a . ~B8!

In addition to these operators, the authors of@18# include
also two other 2-body quark operatorsCa andGka. However,
when considering only SU~2! pion couplings as in the
present paper, their matrix elements are not enhanced
factor of Nc so they will not be included.

We are interested in the matrix elements ofYa and Qka

taken between mixed symmetry excited states and symm
states. The matrix elements of the 1-body quark operatorsAa

and Dka have been computed already in Sec. IV to lead
order in 1/Nc and in Sec. V to all orders in 1/Nc . In the
following we describe the computation of the matrix el
ments of the 2-body operatorsBa, Eka, andFka.

The matrix elements of the 2-body operators can be
pressed in terms of the quantityTs(I 8,SI) defined by
n of
^I 8L8;m8mL8a8u (
nÞn851

Nc

r n
i ^s ju11;kl&sn

ksn8
l tn8

a uSIL;mSmLa&5
1

~2I 811!A2L811
Ts~ I 8,SI!^I 8m8uSs;mSj &^L8mL8 uL1;mLi &

3^I 8a8uI1;aa&. ~B9!

The reduced matrix elementTs(I 8,SI) can be computed using the methods applied in Sec. IV D for the computatio
T(I 8,SI). We obtain in this way to leading order in 1/Nc

Ts~ I 8,SI!52Nc
k11/2A2s11A~2S11!~2I 11!~2I 811!~2 !2I 1I 8H s 1 1

I S I8J . ~B10!
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Note the additional factor ofNc compared with the corresponding result for the 1-body operator~4.124!, which can overcome
the suppression inherent to the 2-body operators.

We will put now the 2-body operators~B6!,~B7!,~B8! into a form involving the operator in~B9!. For Ba this can be done
by writing the successive couplings of the vectors entering the definition of the operator as

Ba5 ‘ ‘ u~r nsn!1,sn8;0& ’ ’ 52(
s

A3~2s11!H 1 1 1

1 0 sJ ‘ ‘ ur n ,~snsn8!s;0& ’ ’ 5 ‘ ‘ ur n ,~snsn8!1;0& ’ ’

5^0u11;i j & (
nÞn851

Nc

r n
i ^1 j u11;kl&sn

ksn8
l tn8

a . ~B11!

We used here the recoupling relation for 3 angular momenta@33#. This result is the analog for spherical coordinates of
well-known vector identity (rWn3sW n)•sW n85rWn•(sW n3sW n8). Writing Ba in this form one can see that its contribution to t
S-wave amplitude is related toTs51(I 8,SI) in the same way the matrix element ofYa is related toT(I 8,SI) ~4.124!.
Furthermore, the two reduced matrix elementsT(I 8,SI) ~4.124! andTs51(I 8,SI) ~B9! are identical, up to a trivial numerica
factor, so that their contributions toYa will be also identical. This completes the equivalence proof for the quark oper
mediatingS-wave transitions.

This argument can be extended to the 2-body quark operators mediatingD-wave couplings. ForEka the proof is immediate,
because its matrix elements are related toTs51(I 8,SI) ~B9! in the same way the matrix elements ofDka are related toT(I 8,SI)
~4.124!. Since theT matrix elements are proportional, so will be their contributions toQka too. The corresponding proof fo
Fka is slightly more complicated, and involves first casting this operator in a different form with the help of the reco
relation ~B11!,

Fka5 ‘ ‘ u~r nsn!1,sn8;2k& ’ ’ 52(
s

A3~2s11!H 1 1 1

1 2 sJ ‘ ‘ ur n ,~snsn8!s;2k& ’ ’

52(
s

A3~2s11!H 1 1 1

1 2 sJ ^2ku1s; i j & (
nÞn851

Nc

r n
i ^s ju11;ml&sn

msn8
l tn8

a . ~B12!

The matrix element ofFka can be now written in theu(IP)S,L;Jma& basis in terms ofTs(I 8,SI) ~B9! as

^J8I 8,m8a8uFkau~ IP !S,L;Jma&5A5
2J11

2I 811
^J8m8uJ2;mk&^I 8a8uI1;aa&(

s
~2 !sA3~2s11!H 1 1 1

1 2 sJ Ts~ I 8,SI!

3H S s I8

L 1 L8

J 2 J8
J . ~B13!

This can be transformed to the basisuI ,(PL)D;Jma& with the help of the recoupling relation~3.23!. The resulting sum over
S can be performed with the result

SS5(
S

~2S11!H s 1 1

I S I8J H I 1 S

L J DJ H S s I8

L 1 L8

J 2 J8
J

5~2 !J82I 2s2L(
y

~2 !y~2y11!H 1 1 y

L8 D LJ H 1 1 y

2 1 sJ H L8 I 8 J8

D I J

y 1 2
J . ~B14!

The remaining sum overs can be done with the help of the orthogonality relation for 6j symbols. We obtain finally the
following result for the matrix element ofFka:

^J8I 8,m8a8uFkauI ,~PL!D;Jma&5^J8m8uJ2;mk&^I 8a8uI1;aa&2Nc
k11/2A15~2J11!~2I 11!~2D11!

3~2 ! I 2J1I 81J8H 1 1 1

L8 D LJ H L8 I 8 J8

D I J

1 1 2
J , ~B15!

which can be seen to have again the same form as the general solution of the consistency condition forQka ~3.59!.
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