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We derive consistency conditions which constrain the possible form of the strong couplings of the excited
baryons to the pions. The consistency conditions follow from requiring the pion-excited baryon scattering
amplitudes to satisfy the lardé; Witten counting rules and are analogous to consistency conditions used by
Dashen, Jenkins, and Manohar and othersfarave baryons. The consistency conditions are explicitly solved,
giving the most general allowed form of the strong vertices for excited baryons in theNatgait. We show
that the solutions to the lardé; consistency conditions coincide with the predictions of the nonrelativistic
quark model for these states, extending the results previously obtained fgrvihee baryons. The B
corrections to these predictions are studied in the quark model with arbitrary number of dglors
[S0556-282(198)06701-0

PACS numbeps): 11.15.Pg, 13.75.Gx, 14.20c

[. INTRODUCTION Following the recent progress in understanding the pre-
dictions of the quark model for ground state baryons, some
The successes of the nonrelativistic quark mghEtQM) effort has been also directed into explaining the analogous
in describing baryon spectroscopy and couplifig have  predictions for the excited baryons sector. Thus|,1i8] the
remained for a long time something of a mystery. Recentlata on the strong decays of these states have been used to
work by several groupf2—9], most notably by Dashen, Jen- test the idea that the lardé; limit might provide an expla-
kins, and Manohafsee also earlier related work {i0])  nation for the validity of the quark model description. The
helped to shed light on this problem and clarify the relationgythors off 18] adopted a Hartree description with the num-
of the NRQM to QCD. These works showed that the predictgr of quarks in the baryon fixed to its physical valNe
tions of the NRQM for low-lying s-wave baryons follow _3 The largeN, expansion has been implemented at the

from QCD in the largeN, limit [11] as a consequence of the |eye| of operators mediating the strong decays, which can be
counting rules of Witterj12—14 for pion-baryon scattering ¢|,gsified according to their order inN/. A fit to the ex-

amplitudes. In this way they have been able to derive con- erimental data on strong decays of the 1 baryons in the

sistency conditions Whl(_:h constrain the mass splittings, pio 0 of SU(6) gave the result that the naive quark model, con-
couplings, and magnetic moments of ground-state baryont%linin only one-body operators, reproduces the experimen-
up to orderO(1/N,) in the 1N. expansion. g only y op » rep P

The nonrelativistic quark model has been used to describ@‘I data to a good precision. On the other hand, two-body

also the properties of the orbitally excited baryons. The reQPerators which could contribute to same order iN.las

alization of the fact that these states can be accounted for {f10S€ kept in the quark model, appear to be suppressed in
the quark model has been one of the first significant argulNature for reasons seemingly unrelated to the lagesx-
ments in its favof15]. Later works applied the quark model Pansion. From this, the authors [df8] concluded that there
to explaining the phenomenology of the strong decays of th&ight be more than largk, to the success of the quark
L=1 baryons to the ground state baryons. The measuredodel relations.
decay widths have been found to be well described by a fitto In this paper we study the strong pion couplings of the
the quark model predictiongl6—18. When supplemented orbitally excited baryons, both light and heavy, in the large-
with dynamic assumptions, the quark model can be also usdd, limit using as input constraints on pion-baryon scattering
to make more detailed predictions about the mass spectruamplitudes following from the counting rules of Witten. This
and decay properties of these stdtg8—21]. approach is closer in spirit to the one used[R3] by

In addition to the quark model, various other approache®ashen, Jenkins, and Manohar. We derive in this way con-
have been employed to describe the orbital excitations o$istency conditions which constrain the possible form of the
baryons. Among them the Skyrme model, which is closelystrong coupling vertices, which are then solved explicitly.
related to the larg&, approximation, has been used to con-Our final conclusion is that the model-independent results
struct these states as bound states of a soliton and a mesoptained from solving the consistency conditions are the
[22-26. A bag model description of these states has beesame as those following from the quark model in the large-
given in[27]. The properties of the negative parity baryonsN, limit, thus extending the statements [@-6] to the ex-
have been investigated also with the help of the QCD suneited baryons’ sector. We stress that our results do not con-
rules in[28—30. More recently, in31] the structure of the flict with the conclusions of18]. A detailed discussion of
mass spectrum of the excited baryons has been studied usingr results in the language pE8] can be found in Appendix
an effective Hamiltonian motivated by larg&- arguments.  B. Rather, the findings dfL8] can be formulated in the light
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FIG. 1. Young tableaux for the SW) representation of the s- FIG. 2. SU4) representations for light p-wave baryons,
wave baryons foN.=3 and in the largeN, limit. =3 and in the largeN, limit.

of our results as a new puzzle: why does the quark model This picture is precisely the same as the one predicted by
work better than it should? the NRQM with SU4) spin-flavor symmetry. In NRQM lan-

Our paper is structured as follows. We begin by introduc-guage the s-wave baryons have orbital wave functions which
ing in Sec. Il the spectrum of the orbital excitations andare completely symmetrical under permutations of two
constructing its generalization to the larbg-limit. The  quarks. This constrains their spin-isospin wave function to
structure of these states is more complex than for the case ¢fansform also under the completely symmetric representa-
the s-wave baryons. We introduce the concepPedpin to  tion of SU4), which contains the,J values given above.
deal with the mixed symmetry spin-flavor states and pointSpin and flavor independence of the interquark forces in the
out an additional problem connected with the appearance dRQM is responsible for the degeneracy of all these states.
spurious unphysical states in tNe>>3 case. Section Ill con- Figure 1 shows the Young diagram of the totally symmetric
tains the derivation of the consistency conditions for strongepresentation of S4) for N.=3 and its extension to the
coupling vertices. These arise from a mismatch between thease of arbitranN, .
scaling power withN, of the meson-baryon vertices and the  The spectrum of the p-wave baryons has a more compli-
Witten scaling law for the meson-baryon scattering ampli-cated structure. The spin-flavor wave function of the light
tudes. The consistency conditions are explicitly solved inbaryons has mixed symmetry, transforming fof=3 as a
Sec. Il giving the most general solution f&, P-, and  70under SU6) and as £0 under SW4). To keep our results
D-wave pion couplings in the largd; limit. We show in  as general as possible and to avoid some ambiguities con-
Sec. IV that the solutions to the consistency conditions actunected with the identification of the lardés states with
ally coincide with the predictions of the constituent quarkphysical states, we will not assume @Jsymmetry. Just as
model in the largeN, limit. The orbital excitations are first in the case of the s-wave baryons, we will divide the p-wave
explicitly constructed in the quark model with and d  states into sectors with well-defined strangeness and assume
quarks only and arbitrary number of cold¥s . Armed with ~ only isospin symmetry. We extrapolate the mixed symmetry
these wave functions, we develop the machinery necessary tepresentation fronN =3 to the largeN. case as shown in
compute the strong coupling vertices of these states. A byFig. 2.
product of this quark model calculation is a determination of ~Under the isospin-spin SB)X SU(2) group this represen-
the largeN, scaling law of the decay vertices, which exhibits tation splits into (,S) representations which satisfy— |
a surprising dependence on the symmetry type of the exciteg 1 (except forl =S=N./2 which is only contained in the
state involved. Section V contains an exact calculation in théotally symmetric representation
quark model of the strong coupling vertices for an arbitrary This can be proven by considering the product ofl§U
value ofN,. These results are used to examine the structureepresentations shown in Fig. 3 and its decomposition into
of the 1N, corrections to the larghk; relations obtained in irreducible representations 8U(2)spinX SU(2)isospin- FOr
Sec. Ill. We conclude in Sec. VI with a summary and out-definiteness we will také\; to be odd, although the argu-
look on our results. Appendix A presents the quark modement is equally valid also for even values bf,. The
calculation of the strong couplings among excited statessospin-spin (,S) content of the product of representations
transforming under the mixed symmetry representation obn the left-hand sidéLHS) can be obtained from the corre-
SU(4) and Appendix B gives an interpretation of our resultssponding product

Ne—1 N.—1 11
2 e(53] e

in the language of quark operators.
and includes all representations of the forim §,i + 3) with
In the largeN, limit, the s-wave baryons containing only i=1,...,(N.—1)/2. All the representations with# S occur
u,d quarks forml =J towers of degenerate states. Both pos-with multiplicity 1. The representations withl,S)= (i
sibilities| =J=1/2,3/7 ... andi=J=0,1,... areophysi- 1 1+ 1y (i—1i- 1) appear twice, except forl(S)
cal significance, the former corresponding to the light bary-
ons and the latter to baryons with one heavy quamkthis
casel is to be interpreted as the angular momentum of the

light degrees of freedojnBaryons with strangeness can be D:I I:] ® [:I = |:|:| D ®

[(0,0),(1,1), o
Il. SPIN-FLAVOR STRUCTURE

OF THE EXCITED BARYONS

Ne—1 Ne Nc-1

also incorporated in the lardd; limit as separate towers of L]
states, each labeled by a quantum nunierelated to the
number of strange quarks Ks= ;ns. For eactK tower, the FIG. 3. Product of S(#) representations used in the text for the

spinJ and isospinl take values restricted by the condition determination of thel(S) content of the mixed symmetry represen-
[l -J|<K. tation.
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TABLE I. The p-wave light baryons containing onlyd quarks TABLE Il. The p-wave hyperons containing one strange quark
and their quantum numbers. and their quantum numbers.
State (.37 Loy 23 (1,9 (SU(3),SU(2)) State (,3%) (1,9 (SU(3),SU(2))
NS5 Gz Su (3.3) (82 A(1405) (057 (0.2) (12
N(1520 (3.3 D3 A(1520) (037)
NSO 3z Su (3 &4 A(1670) (0.37) (0.2) (82
N(1700 (4,27 Dis A(1690) (02)
NA678 — (3.57) D *(1620) (13)  (L3)
A(1620) 2,1 Sa ) (10,2 3 (1670) (13)
A(1700) kD D33 A(1800) (037) 03 (8,9)
A?) (057)
. A(1830) (03)
=(NJ/2,N./2) which appears only once. On the other hand,E i .
the symmetric representation on the right-hand §RIgS) of (1750) (137) (1.3)
Fig. 3 contains only thel=S representations described 2(?) (13)
above, but with unit multiplicity. Subtracting them from the 3 (1775) (15°)

(1,9) representations on the LHS of Fig. 3 we are left w'ithg(?) (12 d (10,2)
the representation content mentioned above for the mixe 2 2

symmetry SW4) representation. This can be further checked™(?) (13)

by comparing the dimensionality of the $4) representation
given by the Young diagram in Fig. 2 for arbitral; with o )
the sum of the dimensions of the,§) representations de- theu,d quarks’ wave function in the baryon and is equal to

scribed above 0 for the symmetric representation and to 1 for the mixed
symmetric representation.
1 Ne—1 With these definitions the total quark spiof a p-wave
dim= E(Nc_l)(N°+ 1)(Ne+2)= >, [n?+2n(n+2)]. baryon takes all the values compatible with
n=2
@2 S=T+K+P. 23

The total baryon spid is given byJ=S+L with L=1.
The lowest-lying observed p-wave light baryons containing
only u,d quarks are listed in Table | together with their
guantum numbers in the quark mod&2]. Note that the
states (,S)=(3/2,3/2) which would be present in the large- |§—K| — = &_ K (2.4)

N limit are forbidden in theN.=3 case for the reason men- 2 ' '
tioned above.

It is not difficult to introduce also StrangeneSS in this piC'This exclusion rule is Operative 0n|y at the top of the |arge-
ture. Because the strange quark is now different from theNC towers and therefore can be neglected in the lafge-
otherN;—1 quarks in the baryon, the Pauli principle con- jimit. One should keep however in mind the fact that new
strains only the symmetry properties of the wave function f0runphysica| states are introduced in the laelimit which
the latter. In this case both $4) representations shown in \would be otherwise forbidden by this rule.

Figs. 1 and 2 are possible. We show in Table Il the lowest- The classification of the states into symmetric and mixed
lying observed and expected p-wave hyperons with ongepresentations is even more transparent for the p-wave bary-
strange quark together with their quark model quantum numpns with one heavy quark. In the heavy mass limit the spin
bers. For example, the states with§) =(1,3/2) in Table Il and parity of the light degrees of freedom become good
are completely symmetric under a permutation of thd  quantum numbers. Furthermore, in the NRQM the total spin
quarks, whereas the statdsS) = (0,3/2) are antisymmetric of the light quarksS, is also conserved and can be used
under the same transformatidfor N.=3 the mixed symme-  together with the isospin to identify the permutational sym-
try state is in fact antisymmetpicThe symmetric represen- metry of the state.

In addition to this, an exclusion rule must be imposed for
P=1, forbidding the following symmetric states

tation corresponds t@0 and the antisymmetric one ® of Thus, in the largeN, limit the symmetric representation
SU4). The other states in Table Il are mixtures of both rep-wil| give rise to anl =S, tower of states, in analogy to the
resentations. situation for the light s-wave baryorfwith the total spin of

To construct the analogs of these states in the large- the light quarksS, taking the place of the total spif). The
limit, it is convenient to introduce two vectod§ and P,  mixed symmetry representation will generate also a tower
which will be calledK-spin andP-spin, respectively. The with || -S,|<1, as in the case of the light p-wave baryons.
K-spin counts the number of strange quarks as describerom this the states with=S,=(N.—1)/2 will have to be
above and takes the value 1/2 for hyperons with @geark  excluded. The total heavy baryon sgiwill be given in the
[5]. The P-spin labels the type of permutational symmetry of general case including also strangeness by
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J=7+ §/+§Q+ K+P+[ (2.5 with_q“ the momentum of the current. In the quark model the
scaling powerk is equal to 1/2 for p-wave baryons trans-
with So=1/2 the heavy quark spin. forming under the completely symmetric representation of

We emphasize that the use of quark model quantum numSU(4) and 0 for baryons transforming according to the mixed
bers such a§,S,,S,, etc., does not imply any dynamical Symmetry representation of $4J. This will be proved in
assumption on our part and is made with the sole purpose dec. IV.Y? is a tensor operator with spin 0 and isospin 1 and
counting states. All our main results below will be obtainedQ""® has spin 2 and isospin X(!"#=Q/"4, Q":#=0). The
without any assumption of whether these quantities are corpperatorsZ,Y,Q have expansions in powers ofN/ of the
served or not. We use the NRQM just as a convenient lansame form ax.
guage which serves to guide our intuition about the spin and The pion coupling to the states appearing3ril)—(3.4) is

flavor structure of the states of interest. obtained by dividing these matrix elements by the pion decay
In the next section we will study the strong couplings of constant_=0O(y/N,) [2,3,5,1(. The consistency conditions
the excited baryons in the lardgé: limit. of Dashen, Jenkins, and Manoh@JM) were obtained by
considering pion scattering on s-wave baryon$(q)
IIl. CONSISTENCY CONDITIONS +B—a°(p)+B’ [2,3,5. The leading contribution to this
FOR EXCITED BARYONS amplitude arises from two tree graphs with the pions cou-

) ) ) ) ) pling in either order and is given by
We will obtain constraints on the pion couplings of the

excited baryons by studying both'elastic pion scattering on Nggz(x) aqp .. o

these states and inelastic scattering among s-wave and ex- T= ——— ——= (XD X = XgXP"). (3.5

cited states. The results will follow from a set of consistency fz  E)

conditions, derived by requiring the total scattering ampli- ] ] ] )

tude to satisfy largéN, counting ruleg12—14. We start by T_h|s_ scattering amplitude is o_f ordal, , in apparent contra-

reviewing the largeN, scaling properties of the different diction with the largeN counting rules of Witten according

couplings which will be needed. to which it should be of order 1. One concludes therefore
Pions couple to baryons with a strength proportional tothat one has

the matrix element of the axial current taken between the ibt via

corresponding states. In the case of the s-wave baryons this [Xo " Xo'1=0. 3.9

matrix element was parametrized|i,3,5 as

This is the leading order consistency condition of DJM

J’,m',a’ A ;Ta J,m,a [2,3,5,1(]
< [a7'vs277 _ ) Taking as target a p-wave baryon, the above reasoning
=Ncg(X)(J',m’",a'|X'3|J,m,a) (3.1)  can be extended immediately to the couplirgsfor which

‘ one obtains the analogous condition
with X'? an irreducible tensor operator of spin and isospin 1

andg(X) a reduced matrix element of order 1 in the lafge- [zt Zi21=0. (3.7
limit. X'® has a largeN, expansion of the form
X'2=X#+ XN+ - - -. The matrix elemen3.1) grows lin-  The operatorg'@ act only on the space of the p-wave states
early withN, because the axial current couples to each of thavhich are degenerate among themselves and have vanishing
N. quarks in the baryon. matrix elements between p-wave states of different mass.
We will use a similar parametrization for the matrix ele- We would like next to derive consistency conditions in-
ment of the axial current taken between two excited baryonsolving the couplingsr andQ. In order to do so we consider
L the scattering amplitude for the proces$(q)+ (p-wave
(J'1";m' 2’| qy'ys 2729|3,1;m, @) — 7°(p) + (s-wave. The mass splitting between s-wave and
. p-wave states is of order 1 in the larbke-limit, so that the
=Ncg(2)(3".1":m",'|Z%]3,l;m,a), (3.2 jnitial and final pions will not have the same energy. Adding
together the contributions of the diagrams with intermediate

ia . . . .
whereZ'™ is again an irreducible tensor operator wtk | 0o g p-wave baryons we obtain, for this case,

=1. This matrix element grows also witl. for the same
reason as in the preceding case. LSS T
On the other hand, the axial current matrix elements taken 7— ¢ 9( )[ _Pp (a) (g(X)X12YPT— g(2)YPTZ2)

between s-wave and p-wave baryons grow slower thian 1‘,2T l E(ﬁ)
We parametrize the matrix elements of the time and space o
components of the axial current as q'E(p) N: " 9(Q)

+-= (G)XPTYA—g(2)YZP )+ ——
0. 1 E(q) f2
(3'.m",a'[ay ys27%]d,1;m, @)
PP
=Neg(Y)(J',m",a'|Y&J,1;m, ), 3.3 x| Pad (g(X)X2QikPT— g(Z)Qik:PTZia)
E(p)

(3'.m", e’ [qy'ys 57°9|d,1;m, @) qp'p!
_ N kbt ~ij.a_ ij,azkbt
=NI(Q)HI M’ [QT 3 Lima) (3.4 PG XTI me@en )]' ¢9
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This scattering amplitude is apparently of ordlErwith «=0 The consistency conditiof8.7) can be used to obtain con-
which again violates the counting rules of Witten, accordingstraints on the reduced matrix eleme®&l’,1";J,1). For
to which it should be at most of ordéd; *2 [13]. This re-  this it will be sandwiched between two general states

quires all the independent kinematical structures to vanish téJ’,1’;m’,a’[- - -|J,1:m,a) and a complete set of interme-
leading order: diate states is inserted. We obtain
iay/bt _ bt—ia__ .
g(X)XOYO g(Z)YO ZO—O, E <J’,|’;m',a'|ZJbT|J1,I1;m1,a1>

Jilimyey

ibtya__ a—ibt _ ) ' .
g(X)XO YO g(Z)YOZO 0, (3-9) X(Jl,ll;ml,al|zla|J,|;m,a>—(ZJbT<—>ZIa)=0.
g(X)XFQE - 9(2)Q " zg =0, (3.12

This equation can be projected, as[#], onto the channel

kbt yij,a_ ij,azkbt _

9(X)Xo" Qo "~ 9(2)Qp"Zo ™ =0. (3.10 with total angular momenturil and isospirK by multiply-
All of our conclusions about the pion couplings of the ex-Ing it with
cited baryons in the larght, limit will follow from the set of (H",h'[3,1;m’,j){(H,h|3,1;m,i K", '|I" 1;a’,b)
consistency condition.7),(3.9),(3.10. In the present paper
we restrict ourselves to the leading order in the laxge- X(K,7|l,1;a,a) (3.13

expansion. Therefore, to simplify the notation, we will drop
the index 0 on the coupling operators throughout in the fol
lowing.

and summing ovem,m’,i,j,a,a’,a,b. The resulting con-
sistency condition takes the form

J 1 H
A. Consistency condition forZ > (233+1)(21,+1)5
A, o1,

The consistency condition foEZ'? (3.7) is completely
identical in form to the one foX'@ (3.6) which has been 1
studied in detail in[2,5]. These authors showed thxt? X
forms, together with the generators of the spin-isospili2sU
X SU(2) groupJ',1? a contracted SI4) algebra. Every pos- =(—)20"Z(H K1) Z(H,K;3,1).  (3.14
sible solution forX'? corresponds to a particular irreducible _ ) ) )
representation of this algebra. The most general irreducible We will try to guess the solution of this consistency con-
representation can be labeled by a spin vedtoin terms of dition by using as guidance the nonrelativistic quark model.

which the basis states of the representation are constructed gee found, the so_Iutlon W”.l be seen to be. unique by using
S=it i or example numerical solution of the consistency condition

3.14) or the method of the induced representati
In principle it would be possible to take over the results of( 4 P s

o X ; ; Let us consider for simplicity the case of baryons without

[5] for X* and write down directly the matrix elements of strange quarks. Also, let us first assume that the total baryon
Z'®. We will prefer however to construct the solution 8¢ Lo 2 s e .
by using a NRQM-inspired ansatz. Besides reproducing th pin is given by =1 +L Whlc‘h IS to”say that the baryon wil
result of[5], this approach has the advantage of suggesting e regarded as contamlng a “care” ofd quarks transform-
method for obtaining the solution of the consistency condi—!f‘g uﬂnder th? symmetric represgntgtlon of (8L The
tions (3.9),(3.10. In retrospect, this will furnish also a proof cor_e spin S '_S therefore equal to 'ES_ isospin In addition
of the validity of the NRQM predictions for excited baryons t© this, the orbital angular momentumis added to make up
in the largeN; limit. the total spinJ. This corresponds to the case of a heavy

We begin by parametrizing the matrix elementsZt baryon transforming under the symmetric representation of
taken between states belongingAcand A’ towers, respec- SU(4), provided thatl is interpreted as the angular momen-
tively, as tum of the light degrees of freedom.
The basis states can be easily constructed and are given

K
, Z(3'1330,19)Z(34,11:3,1)
"1 1,

(3',1";m’,a’|Z'33,1;m, @) by
=(—1)"""AJ(21+1)(23+1)Z(3",1";3,1)

[I,L;d,m,a)= > [I,L;mg,m_,a){(J,m|l,L;mg,m).

(3", m'|3,L;miN1" e’ [1,1;a,a). (3.11) s (3.15

The notation adopted anticipates a result to be proven belowhe currentz'® becomes in the quark model

according to whiclZ only connects towers with=A". The _ _

reduced matrix elemer#(J’,1";J,1) depends on the com- 28— o', (3.16
mon value ofA, although for the sake of simplicity this is . -

not made explicit. The normalization coefficient is chosenwhereo' acts only on the spin of the,d quarksS and
such that the reduced matrix element is symmetric under acts only on the isospih. .

permutation of the initial and final indiceZ(J',1";J,1) Therefore the matrix element &'? between the states
=Z(J,1;3",1"). (3.19 can be expressed as
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('L, m e’ |21, L;3,ma)= > (I'.L;mim/ ,a'|oc'®71,L;mg,m_,a)J",m’|[I",L";ms,m/)
msm_mgm/
x(J,m[l,L;mg,m). (3.17

The matrix element in the bagisL;mg,m,,«) can be parametrized with the help of the Wigner-Eckart theorem in terms of
a new reduced matrix elemeg{l’,l)

(I',L";mg,m{ ,a'|c'® 7(I,L;ms,m ,a)= Z(1",D)(1",mg1,1;mg, i) 8L Sy m (s |1, La,@). (318

21'+1

With this normalization the reduced matrix element is symmeA(ic,1)=2(1,1").
Inserting this expression if8.17) it is possible to compute the matrix elementaf taken betweenl,L;J,m,«) states.
Comparing with the parametrizatid.11) we obtain the following connection betwe&(J’'l’,JI) andZ(l',1)

(1S ZIT D@ DZN I =Z(1" )8 6 a(—)2 a1y [ 220 o (3.19
’ ’ LL"ULA o1 +1 J Ly . .

We can find a consistency condition f&¢1’,1) by inserting this expression int8.14). The sum oved; can be performed
explicitly and we find

| 1 1
2K+1)> N e NN |}z||2|| a1 KLz
— )41 ! —( — - ’
( +)|l( ) Ir 1 K ( ’l)(ll) ( ) J/ A H J A H ( ’ )( l)'
J H 1
(3.20
It is easy to see, by making use of the relati&u. (6.4.8 in [33] ]
i e w0 e # i iz dos| [is Js2 ]
11 12 . . . 21 22 23 31 32 33
2u+1) jor J22 dasf = —)”[. : ” o ] (3.21)
% (2 Joz Jaz A 2 22 s = Jiz A ) (N Jun Iz

a1 32 a3
that this equation is satisfied by the solutidfl’,1)= /(21 +1)(21’ + 1) [up to a constant which can be absorbed mta) |.
We obtain in this way the result

(1
Z(J' 153, =(—)""*! H[J L J,]5AA'5LA- (3.22

We consider next the slightly more complicated case of the baryons transforming under the mixed symmetry representation
of SU(4). This is relevant for the light baryons containing onlyd quarks. In this case, the total spin of the excited baryon is

given byJ= [ +P+L. There is an important difference in the application of the quark model to this situation, connected with

the fact thato' in (3.16 acts on the spins of the,d quarks. The total spin of the,d quarks§= [ +P is not equal td as
before. Therefore the natural set of states for doing the quark model calculati®R)S,L;J,m, ).

On the other hand, we would like to classify the state$3ii1) according to the value of the spin vectdy such thatl

+A=1]. This requires a different coupling of the vectdr®,L: |I,(PL)A;J,m,a). The connection between these two sets of
states is a well-known recoupling problem in the theory of angular momentum and is given t§.E§.in [33]

1L, (PL)A;J,m,a)=(—)"'"P~Lt=9% J(2S+ 1)(2A+1){
S

| S
L3 A]I(IP)S,L;J,m,a>. (3.23

The matrix element oZ'@ taken between thiIP)S,L;J,m) states can be written as

('PHS',Lm e [Z7)(IP)S,Lidmay= X (I'S'L/;mg,m ,a'|o'®|ISLims,m, ,a)
mgmy_mgm,

x(J',m’|S",L";mg,m/}{J,m|S,L;mg,m,). (3.29

An application of the Wigner-Eckart theorem gives
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(S'1'L";m&,m] ,a'|o'® 7 SIL;mg,m, @)

Z(S' ’,SI)&LL/amLmL(S’,m’S|S,1;mS,i><I a'|l,1;a,a),
(3.29

with Z(S'1”,S1) a new reduced matrix element. With this choice for the normalization factor, it transforms under a permu-
tation of the initial and final indices as

“J2s @2 1)

Z(S'1",Sh=(—)S*=S1"z(s1,8'1"). (3.26

It is easy to compute now the matrix elemen®ét between thél,(PL)A;J,m, a) states by inserting3.25) into (3.24) and
using the expansiofB8.23. We obtain

(" (P'L"A";J",m’",a'|Z31,(PL)A;J,m,a)

VT (2S+1)(2A+1)(2A" +1) " P S\ (1 P S|_
=(—) VPR Ty T I Z(s'1",sl)
py 21" +1 L" J A L J A
X >, (S,mgS,1;ms,i)Jd’,m'|S,L;ms,m )3, m[S,L;mg,m ){1",a’[l,1;,a). (3.27

mgm_mg

Let us pause for one moment and compare this expression(3vith). One can see that the isospin CG coefficient is the same
on the RHS of these two relations. We extr@¢d’1’,J1) by multiplying both equations withd’,m’|J,1;m,i) and summing
over (m,i). The resulting sum over 4 CG coefficients can be expressed pswrthol. We obtain finally

2A+1)(2A"+1)
21" +1

(_)J+I7A (2J+1)(2|_’_1)2(\]/,'/;\],'):(_)I’+J’IP’PL+1\/(2J+1)(

1" P S)(1I P S
N\ ’
xg() J(25+1)(25+1){L Y A,HL 3 A]

S 1 S
X

5L J,]Z(S’I’,SI). (3.28

We insert the following ansatz for the reduced matrix elem&8'l’,Sl) [inspired by(3.22 with the identification
(ILY)—=(IPY)]

Z(S'1",Sh=(—)"5"J(25+1)(25 +1)(21 + 1)(21" +1)

I P S
SI l I/ 1 (329)

which has the required symmetry prope(8/26. For P+# P’ this reduced matrix element vanishes because the
If we assume tha® =P’ we can perform the sums ovBr  operator(3.16) is totally symmetric and the initial and final
andS’ in (3.28 with the help of the identityEq. (C.35¢ in  states have different permutational symmetry in the spin-
[34] ] flavor of theN, quarks!
One can see that, in spite of their quite different detailed
a X(c d xXl[e f x structure, both cases considered lead to the same answer
Z (—)?(2x+ 1)‘ ” H ] (3.22 and (3.31), which also coincides with the result ob-
X c dgle f h tained by[5] for the case ofX'2. The two most important
‘g h j”g h j} properties of this solution are now apparent.

b a |j

(3.30 The excited states can be classified in towers of states
fbec labeled by a spin vectok such thatJ—I|<A. To enforce
the cancellation of the leadinly, dependence among the

e a d

with ¢=a+b+c+d+e+f+g+h+x+j.
The final result forz(J'1",J1) is

, lin the quark model this matrix element receives a nonvanishing
Z(3' 13, =(— )| 2J+I’+P[ I 11 Sxn Oppr. contribution starting at orden(c)? in the nonrelativistic expansion
J AT [38]. However, a study of these effects would take us beyond the
(3.3 model-independent framework of the present work.
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different intermediate states, expressed by the consistenas to consider the couplings of eashtower of excited bary-

condition, all the members of A tower must be degenerate ons at a time. We turn now to the first of them, the coupling

among themselves. Y responsible for S-wave pion couplings between p- and
Pions do not couple towers of excited states with differens-wave baryons.

values ofA, as the corresponding nondiagonal matrix ele-

ments ofZ'? vanish.

The second property will be useful in the study of the B. Consistency condition forY

consistency conditions for andQ (3.9),(3.10, as it allows We parametrize the matrix elements of & operator as
(3" 15m e’ Y33, ma)= (=) T 20+ 1Y(3'17,31) 85 Sy (112’ [1,1;,3), (3.32
(s-wave (p-wave
J17m’a’ | Y33,1;m,a) = (—)2'21+1Y(I'17,31) 835 S {1, ' |1 ,1;a,a), (3.33
(p-wave (s-wave.

With this choice for the normalization coefficients we have egea I’ 1 |

— ’ _ "+J+A’
Y(J'1',31)=Y(J1,3'1l"). The same definition§3.32 and Y(J1',dN=(-) [A 3 A,], (3.3
(3.32 will be used for transitions between other orbital ex-
citations. provided thatr =1. After substituting this solution i63.35

We proceed next in complete analogy to the derivation othe sum over; can be done with the help of the identity
the consistency condition f&'2 (3.14). The relation(3.7)is  (3.30.

sandwiched between states belongingAtoand A towers, In particular, for decays into s-wave baryons containing
respectively, only u,d quarks, we obtain the solution
3,1";m’ a’(S-Wave|rXiaYbT Y(J J|):(_)23[J ):(_)1%'5 ;
o ! A J O NETPRES T
—Y1Z3|3,1;m,a(p-wave)=0. (3.39 (3.37)

Let us trace again how the same result arises in the quark
We denoted here=g(X)/g(Z). Then a complete set of in- model. The quark model counterpart of the operatdis
termediate states is inserted between each two operators. The
necessary matrix elements ¥fandZ are expressed with the
help of the general resul.22. The resulting equation is

. 1 o
a GO\ e a_ R | a
finally projected onto the particular channel with total spin " HIE] (Olz.Lj,i)o'r'er 3; (=) olr e,

isospin H,K). We obtain in this way the consistency con- (3.39
dition _ :
where the light quark operater! acts only on the spins,
acts on the orbital degrees of freedom, aridacts on the
isospins.
| Kifrs 1 I We consider first the coupling of a p-wave state trans-
rlzl (211+1) 1" 1 14 |H A" MCUTL) forming under the symmetric representation of(&U The
matrix element3.32) is written in the quark model as
, I K
=(—)7'7K*A A(H A J]Y(HI’,HK). (3.39
(I;m,a’|Y3d,1;ma)= >, (I;m,a’|Y3l,L;mg,m_,c)
mgmp
In addition tc,> (/determin_ing the_ struc_turt_a of the reduced matrix x(3,mll,L;mg,my). (3.39
elementY(J'l’,J1), this relation will fix also the value of
the ratior. The Wigner-Eckart theorem can be used to parametrize the

It is straightforward to check that the solution of the con-matrix element of the operator on the RHS(8f38) in terms
sistency conditior(3.35 is given by of a new reduced matrix elemeftJ,|)
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(J;m,a’|ori® 21,L;mg,m_,a)= T(3,1)(J,m[I,1;mg,j }O|L,L;m ,i}{J,a’|l,1;a,a). (3.40

2J+1

Inserting this expression int®.39 we obtain the result

1
(I;m,a’| Y33, 1;m,a)= m?’(J,I) > (@,mll1,1;mg,m I, mll,L;mg,m )J,a’|1,1;a,8) 8 1
:mﬂ\],l)<\],a'|| ,1;a,a>5,_1, (341)

which can be compared with the defining matrix elemenY®{3.32. Taking into account the fact that for the quark model
states considered =L, we find the following expression for(J,JI) in terms of the quark model reduced matrix element

703,1):

Y(J,J)=(—) ! ). (3.42

S——— N
3(20+1)V2I+1 s Tl

It will be shown in Sec. IV D by an explicit calculation in the quark model that the reduced n¥éttjk) is given in the large-
N, limit, up to a numerical factor, by

TJ3,1)=(—)>"1J3(23+1)(21 +1). (3.43

This leads to the same expressi@37) for Y(J,J1) as the model-independent approach based on the consistency conditions.

It is possible to generalize this argument by keeping the orbital angular momentum of the quark model state lajbitrary
They are only constrained by the requirement of parity conservat(ora)L=7r’(—)L'. The relevant quark model matrix
element can be parametrized in this case as

(I',L";m&,m/ ,a'|o'r'® 7(1,L;mg,m_, @) TUL L), mgl1,1;mg, j YL m/|L,1;m i)

1
C(21+1)\2L7+1
x(1",a'[1,1;a,a), (3.49
with 7(1'L’,IL) another reduced matrix element. We assumed again that the spin-flavor wave functiomaf thearks in

the baryon is completely symmetric.
With the help of this relation it is possible to compute the matrix element®dfetween eigenstates of the total spin

(J,1";m,a’|Y3|J,I;m,a)= T(1'L',IL) >, (0]1,1;j,i)J,m[1",L";m&,m, }J,m|l,L;mg,m,)

1
(21'+1)\2L +1

X(1",mg|l,1;mg, i }L",m/|L,L;m,i){I",a'|l,1;a,a)

a'|l,1;a,a). (3.45

1 I L J
ry ! _\1-1-J-L' ’
\/3(2|'+1)m L ILE) [L’ I’ 1]<' ’

This has the same structure as the model-independent so(@t@f), which is reproduced provided one takes

TN'LIL)=(—)2" 321+ 1)(21" +1). (3.46

The phase can be equivalently rewritten ais2l’ =1+ 2l which gives an expression identical {8.43).

A similar result is obtained also for the case of the excited baryons whose spin-flavor wave function transforms according
to the mixed representation of $). The relevant matrix element &f* can be expressed, with the help of the recoupling
relation(3.23 in terms of the matrix element

QLML YA (IP)S,L;d,ma)= > (I’,L";mg,m ,a'|Y3(IP)S,L;mg,m_,a)(J,m|S,L;mg,m,)
mgm_mgm,
(3", m’'|1",L";mg,m/). (3.47

The matrix element on the RHS can be expressed with the he(.88 in terms of a new reduced matrix element
7(1'L’",SIL) defined by
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(I',L";m§,m/ ,a’'|o'r'® 7 (IP)S,L;mg,m_,a)=

TU'L',SIL)(1,mgS,1;mg,j )L, m/|L,1;m,i)

1
(21"+1)\2L +1

(1", a'|l,1;a,a). (3.48

Inserting this relation intq3.47 we find for the matrix It is easy to see thdD*? satisfies the same consistency con-

element ofY2 in the |(IP)S,L;J,m,a) basis dition (3.10 asQ" 2,
e oa We introduce reduced matrix elements associated with
(J'1'Lm’ e’ [Y3(IP)S,L;J,m, ) this operator, defined by

=833 6mm{l'a'|11;a,a
53 Ommr(1 | ) (3,1";m’ ' (s-wave | Q*?|J,1;m, a( p-wave)

1
% _\1+L'-S-3J —(_ J+I+J'+I’\/— e
m( ) (—) (2J+1)(21+21)Q(J'1",3dI)
LU o1 X(J3',m'|3,2;mk)1",a’[I,1;a,a), (3.54
X I'L",SIL). 3.4
[" S J}ﬂ : (349 (3',1";m’,a’ (p-wave| Q¥ J,1;m, a(s-wave)
Next we transform to thél,(PL)A;J,m,a) basis with =(—)2*2 {23+ 1)(21+ 1DQ(I'I",II)
the help of the recoupling relatio3.23. We adopt the fol-
lowing ansatz for the quark model matrix element X{J",m'|3,2;m,k){1",a’|l,1;a,a). (3.59
T('L',SIL)
r As usual, the choice for the normalization coefficients is
'L, SIL=(-)""V@I+ )21 +1)(25+1) made such tha@(J’1",31)=Q(J1,3'1"). The same defini-
| 1 S tions (3.54 and (3.59 apply to transitions between other
x{ , }I(L’,L), (3.50 orbital excitations.
111 We derive a consistency condition f@x(J1,J'1") by tak-

with Z(L',L) an arbitrary function of its argumerfisThis "9 the following matrix element of the relatid®.10:

will be derived in Sec. IV D by explicit calculation in the

P e/ ' i jbt
quark model in the largét, limit. Inserting(3.50 into (3.23 (31,1;m’, @’ (s-wave|rX"Q’
we can perform the sum ov&with the help 0f(3.30. The —QIPTZi23,1;m, a(p-wave)=0. (3.56
final result for the matrix element of? has the form, with
P=1, We insert a complete set of intermediate states between the
A 1 A two operators and project this relation onto the particular
Y(J'l /,J|):5JJ,C(LL7A)(_)|’+J+AI{ P SarLr channel with total spin-isospirH,K) by multiplication with
(3.5 (HY 0137 ,2:m7 ) (H B[, 5mai (K 5|1 L b)
with c(LL’A) a numerical coefficient given by X(K, 7|l La,a). (357
LL'A)= ! 2A+1(—)"a"L1 AL We obtain finally the set of constraints
c( )= NG (=) 1L 1 y
(3-53 I ! 1 I
S (=) (23,4 1)(20,+ 1) ;
The result(3.51) can be seen to coincide with the general r31|l ! ! J, A Y
solution of the consistency condition far (3.36).
J 1 HI(lI 1 K
X Jql4,J1
C. Consistency condition forQ J o2 Jr 11 QW1 I1)
The operatorQ'l:® parametrizes pion coupling in a D- ) [

wave. It will prove convenient to define a modified operator =(—)2H-I-K+a A“[ 3 A H]Q(J’I " HK).
QX2 with only one indexk=—2,—1,0,1,2, by

(3.58

Qka=> (2Kk1,1;i,j)Q2, (3.53
ij

We quote directly the solution of this consistency condi-
tion. We will attempt later to make it plausible using a quark
model construction. The most general solution can be written
2For simplicity we will omitZ(L’,L) throughout in the following. as a sum of P symbols of the form
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AT tion for Q regardless of the value gf which can take there-
. _ fore all values compatible with the nonvanishing of the 9
QU "]I)_y;m Cy Al Jy, (3.59 symbol in which it appears.
y 1 2 We will try now to make the result3.59 plausible, by

examining the structure of this coupling in the quark model.
which satisfies(3.58 provided thatr=1. In particular, for  The operatoQ? is given in the quark model by
final s-wave states containing onlyd quarks one hada’
=0, J' =1’ and the 9 symbols reduce tojésymbols

2 3
|1 1%

, Q= (2k[1,1;,iYolr @7, (3.64
(_)J+J i

QU JIN)=¢ci———
V3(23'+1 o
( ) with the samed’,r',7® as in (3.39. Let us consider first

(_)J+J’+1 [2 J J’] baryons containing only,d quarks and whose flavor-spin
tCo— A2- wave function transforms under the symmetric representa-

523+l 12 tion of SU4). We will keep the orbital angular momenta of
(3.60 the initial and final stateg,L’ completely general, subject

only to the requirement of parity conservatiom(—)"
It is not completely straightforward to check tH&t58 is  — (=)L

indeed satisfied by3.59. Therefore it might be useful 1o The matrix element of the quark model operators on the
sketch the steps of this derivation. First, thesymbols on RHS of (3.64 between eigenstates & and C has been

thheel LSSE ar(e6 \;vrgtgnn[gg]a sum over § Symhols with the already parametrized i{8.44) in terms of the reduced matrix
P 9.(6.%.91 element7(I’'L’,IL). The matrix element ofQX® between

A1y Iy eigenstates of=1+L can be easily obtained as
A1 J =2 (—)P2x+1) AT Ay
< 1 2 x (3,1;m’,a’'|QX4J,1;m, @)
y 1 2
o1 1) (3 3 2 = 2 (2K1LL0)
“1a x 3flx ar l] " fimme mgm;
(3.61) X(J",m'[I",L";mg,m{ ){(J,m|l,L;mg,m.)
This allows the sum ovel, to be performed with the help of X(I",L5ms,m,a’[or'@ 7%, Limg,m, ).
(3.30 (3.65
, Jo1oa) (1, Ay, o - .

S (=) 23,4+ 1) Comparing with(3.54 we see that it is possible to extract
7 I, A" 1"J[2 J X Q(J’17,31) by multiplying the RHS with(J’,m’|J,2;m,k)

5 3 3 ¥ HY (1 H and summing ovem,k. The resulting sum over 6 Clebsch-
x[ 1] :(_)4,1[ X H X ] Gordan (CG) coefficients can be written in terms of § 9

1 J H 2 J A'J|1J 1 1y symbol by using Eq(6.4.4 in [33]. We obtain finally
(3.62 o
(=)HIHNQINIINN(2I+ 1) (21 + 1)
with ¢1=—23"+1+1;+1"—A"—J—x—H. Next, the sum
overl, can be done, also with the help &.30. As a result, 31+ 3 Ll 2J+1
the LHS of (3.58 takes the form =(-) 52I ,+17(| "L",IL)
, A" Ayl I K 1 o

r(=)# (=)0 >(2x+1>{ H ] -

X 1 2 X A x H X L | J ) (3.66)

JJH 2|(K H A 1 1 2

X .
X A" U131 o1 (3.63

For the quark model states considered onefad , so that
with ¢,=2H—A—A’'—K—1+1. We added a phase factor the 9§ symbol corresponds ty=1 in (3.59. Requiring
identically equal to 1 under the summation sign, which al-equality with the model-independent soluti¢B.59 of the
lows thex sum to be performed with the help of a relation consistency condition fof gives for the quark model re-
analogous t@3.61). The result is a Psymbol identical to the duced matrix elemerd{I'L’,IL) the expression
one on the RHS 0f3.58. It is easy to check that also the
total phase factor and the remaining $§/mbol are the same 1
as the ones on the RHS (.58, which proves the validity TN'L'IL)=(—)-*Y

i A ; . —(21"+1)(21+1). (3.67)
of (3.59. The solution(3.59 satisfies the consistency condi- \J5
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This agrees, up to an unimportant overall coefficient, withsymmetry representation of $4). The calculation for
the result(3.46 obtained from considering the matrix ele- this case proceeds in close analogy to the one for the
ment of the s-wave operat?. Y2 operator. First we compute the matrix element of

The g-symbol with y=2 in (3.59 arises when con- Q*?in the|(IP)S,L;J,m,«) basis with the help of the rela-
sidering initial states transforming under the mixedtion

Q'L;m e’ Q9 (IP)S L d,may= >, (I',L";ms,m ,a’|QXY(IP)S,L;mg,m ,a)(J,m|S,L;mg,m)

mgm_mgm,
(3", m’'|1",L";mg,m/) (3.68
followed by the application 0€3.64),(3.48. We obtain

S 11

[ 23+1
(LM, a’|QX(IP)S,L;d,m,a)=(J'm’'|32;mK){1"a’'|I 1;aa) \/ 5 L 1 L'}7'L,SIL). (3.69
2041 ;L

We are eventually interested in the matrix elementQbft in the basigl,(PL)A;J,m,«). Using the recoupling relation
(3.23 we get

(1Lm’ e |QKA1L(PL)AI, M @) =(3'm’|32;mK) (1" a1 1;08) V5(2A + 1) (21 + 1)(2]+ 1)(—) -7 2+2 -1t
|I
] L 1 L'}, (3.70
J 2

XE—’ZSZSHIlSlll
z () Ne o afli 1 s

where we used the ansa.50 for 7{I1'L’,SIL). To do the sum ove$ we first combine the two josymbols with the help
of (3.30 such thatS appears only in onejésymbol

I 1 S|{I 1 S 2 s I J x|[A 1 x|[1 L x
AR Y R A G PN ERNTRET AR TR € @73
with ¢=1"+J+A+L+1+S+1+x. Now the sum oveE can be performed usin@.21)
I!
2 5 11" S s 3 3 o 2 J J|(1 L L
_l’_ =(— . .
S (2S+1) J L x =) I x L'J|{x 1 2 372

1 L" L

We obtain for the matrix element @*? in the|l,(PL)A;J,m,a) basis the following expression containing a sum over 4
6j symbols

(I7Lm e’ | Q1L (PL)A;J,m,a)=(3'm’|32;mK)(I " @’ [11;0@) 5(2A + 1) (21 +1)(2]+1)(—) '3 - HarsLieL

I J x|{A 1 x]({2 L" x][2 L x
ey ) e

A1 1]|1 L1
This can be put in a form resembliig.59 by first combining the second and fourth $ymbols with(3.30

1 Lox 1 L x ' 1 2 Yy 1 1 y A L’ y
= —\¢
R R et | o N

with ¢’ =A+L—L’'—x+y. The sum ovex can be now done in terms of § 8ymbol similar to those ii3.59

X D (—)X(2x+1)[

L 1y

1" J x|[A 1 x|[L" 2 x A 1]
A1 U2 L oylla 1y ‘ @79
1 2

g (—)%(2x+1)



57 1/N; EXPANSION FOR EXCITED BARYONS 1461

When inserted intd3.73 this gives a result for the reduced matrix elem&gtl’1’,JI) of the same form ag3.59

L
QU'I"IN= 2 c(LL'A)Y A 1] (3.76
=12
Y y 1 2

with coefficientsc, given by

, 1 2 y|l{1l 1 vy
’ _ =21+
Cy(LL'A)=v5(2A+1)(—) Y(2y+1) 11 1HA L L]' (3.77

Finally, the most general solution f&@(J’1’,JI) containing also P symbols withy=3 is obtained if one considers
transitions among two states with mixed symmetry. This situation is not very relevant from a phenomenological point of view
so that its discussion is relegated to Appendix A.

IV. QUARK MODEL MATRIX ELEMENTS
A. Symmetric states

In this section we compute the reduced matrix elements of the operatar® on quark model states with arbitrary number
of colors. It will be seen that in the limNl,— o these reduced matrix elements coincide with those required by the consistency
conditions discussed in Sec. lll.

We start by computing the reduced matrix elemé(it’,l) defined by

(I",L";mg,m/ ,e'|d'®7?I,L;mg,m_,a)= Z(1" 1)1 mg|l,1;mg, i) 8L s Sy m (1@’ [ L, 8). 4.7

21'+1

The states on the LHS transform under the completely symmetric representatiodof Bb simplicity we will take them to
contain onlyu- andd-type quarks, although additional quark flavors can be included in a straightforward way. In the quark
model withN,. colors they are given by

Ny

_ Ny Nd_. ] Ny . .
|I,m,a>—2 (I,m|7,7,|,m—|)8|7,|>u|7,m—|)d
Ny Ng . ; Ny /2+i Ny /2—i Ng/2+m—i Ng/2—m+i
=2 (hmim7, 2 m DS W (u])WE ()N (d N 4.2
with
N, N,
Nu=?+a, Nd=?—a 4.3

the numbers ofu and d quarks, respectively, in the baryon state. The syn®oheans complete symmetrization under
permutation of all quarks. The explicit form of the wave functid®) has been given without proof {185] and a particular
case was previously considered 86]. For a simple method of computing matrix elements in the quark modelNyittolors
see[37]. In the following, for completeness of the presentation we give a detailed derivati@nzhf

Proof. Any completely symmetric state &f, quarks can be constructed as a linear combination of symmetrized products
of one-quark states

1
S(nl,nz,n3,n4)=\/—N((UT)”1(u1)”2(dT)”3(dl)”4+permutation}; (4.9
with
_(nl+n2+n3+n4)!
N= niinynglng! 4.5

It is easy to see that the action of spin and isospin operators on these states is given by
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Ei oLS(nl,nz,ng,m): Vny(ng+21)S(ni+1,n,—1n3,n4) + Vna(nz+21)S(nqy,ny,ng+1n,—1), (4.6

Z (Ti_S(nl,nz,n3,n4)=\nl(n2+1)8(”1_1,n2+1,n3,n4)+ \/n3(n4+1)8(”1,”2,“3_1,n4+1), (47)
I

Z 05S(N1,N3,N3,N4) = (N1 —Na+N3—Nz)S(Ng Ny, N3,Ny), 4.9
2 TLS(nl,nz,n3,n4)= Vvng(ny+1)S(ny+1,n,,n3—1n,) ++Ny(ny+1)S8(ng,np+21ng5,n,—1), (4.9
1

E rLS(nl ,N5,N3,Na)=+N1(N3+1)S(N;—1,n,,n3+1n,)+ \ny(ng+1)S(ny,no—1,n3,n,+1), (4.10

i
Ei 7,S(N1,Nz,N3,N,) = (Ng+Ny—N3—N,)S(Ny Ny, N3, Ny). (4.11

It will prove more convenient to express the arguments of the symmetrized products of one-quark states in terms of four
angular-momentum-like variables defined as

Ny=jy+my, (4.12
Ny=j1— My, (4.13
N3=jo+my, (4.19
Ng=j,—my. (4.15

In terms of these variables, the action of the spin and isospin operators can be expressed as

Ei 0", S(i1.i2:mM1, M) = V(i1 —my) (J 1+ M+ 1)S(j 1,5 2.my+1mp) + V(i 2= M) (J o+ Mo+ 1)S(j1,j2.My,My+1),
(4.16

2 0L S(iaizsme,mg) = (ot my) (=Mt DSz, ma— 1mg) + (Tt mo) (2= Mt DSz, memp=1),

(4.1
2 7S(j1d2:M1Ma) = 2(My+ M) S(j1,2,my,my), (418
i o - - 11 1 1
Ei 7. S(j1,02,M1,Mp) = V(jo+ M) (1 +my+1)S| jo+ 2T 5 Mt 5. M5
- - ) 1 1 1
V(2= m)(j1—m+1)S| 1+ 527 5 M= 5. Mt 5, (4.19
e . . o1 1 1 1
Ei 7 S(1,j2,m,Mp) =V(j1+ M) (jo+ my+1)S Jl_E,J2+ E’ml_i'm2+§
- - ) 1. 1 1 1
V(1M (j—my+1)S J17 5.2t 5 Mt 5.my = 5, (4.20
2 7S d20Me M) =211 128 1,12 My my). (429

A state of well-defined spin is constructed by taking appropriate linear combinations of symmetrized products of one-
particle states
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ma)= 2 c(my,mz.mjsj2)S(siz.me.ms) (4.22

with m; +m,=m. The quantum numbers of the state fixandj, through the conditions
@=]j1=]2, (4.23
Ne=2(j1t]2), (4.249

which give (4.3) with j;=N_,/2 andj,=Ng4/2.
The coefficients in (4.22 can be determined by requiring the stafigsn, ) to satisfy the relations

Jo|l,ma)=V(IF=m)(I =m+1)|[I,m=1,a). (4.25

Inserting the expansio.22 one finds, with the help of4.16—(4.21), the following recursion relations among the coeffi-
cientsc:

VA =m)(I+m+1)c(my,my,m+11,j2)=V(j1+my)(j;—m+1)c(my—1m,,m,jq,j2)

+(j2+ M) (jo—my+1)c(my,my—1m,jy,j2), (4.26

VA +m)(I—=m+1)c(my,my,m—1,1,j2)=V(j1—my)(j1+my+1)c(my+1m,,m,jq,j5)

+(j2— M) (jo+my+1)c(my,my+1m,jy,j). (4.27)

These relations can be seen to coincide with the familiar recursion relations for the Clebsch-Gordan coefficients, with the
identification

c(my,my,m,jq,j2)=(l,mlj1,jo;my,my). (4.28

It is known that these recursion relations fix uniquely the CG coefficients up to an overall phase. To complete our proof of
(4.2 we still have to show that this state is also an eigenstateé®,ofvith the same eigenvalue d4. This can be done by
comparing the action af 2 on the statd4.2) with that of I2. We obtain

- 1 1 X
Plmay=(53,3-+ 533, +3 [, ma)

= > c(my,my,m,j1,j ) {(J2(j1+ 1) +ja(j2+1)+2mmy)S(jq,j2,my,my)

mq,my

+ V(1M (1= M+ 1) (o= M) (jo+ Mo+ 1)S(j1,j2,m— 1 my+1)

+V(1=m) (G2 +my+ 1) (M) (j2— M+ 1)S(j1,j2.m+1my—1)} (4.29

which also coincides with the result of applyilﬁé on the same state.

The knowledge of the stat€4.2) can be used to calculate the matrix elem@ni). We will choose for this calculation the
spherical component (@) =(0,0) of the current ir{4.1). The corresponding quark model operator can be written as a sum over
N, one-quark operators

NC
o= 5Ty. (4.30
=1

Because of the symmetry property &fl’,1), there are only two independent quantities to calculd{¢;l) and Z(l,I
—1). We obtain for them the results

Z(1,1)=(21+1)(N.+2), (4.3))

Z(1,1=1)=(21 —=1)(21 + 1) (N + 2+ 21) (N, +2—21). (4.32

In order to obtainZ(l,1) we consider the following matrix element of the ty@el)

N¢ o |
<|,|,||§1 0"37"3||,|,|>=m2(|,|). (4.33
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The quark model matrix element on the LHS can be computed with the help of the wave fudcBowith the result

Ne o N, N Ny(Ny+2) — Ng(Ng+2)
<|’|’I|i=21 agrg||,|,|>=%‘, |<I,I|7,?d;m,l—m>|2(4m—2l)= 2(|+1‘; a = (4.34

N, .Ng are given by(4.3). Inserting this expression int@.33 one obtains the resu(®.31) for Z(1,1).
For Z(l,1 —1) we consider the matrix element

NC
(|,|—1,|—1|Zl ohrsl—11-11—1)= Z(1,1-1). (4.35

1(21+1)

The quark model matrix element can be computed with the result
NC
. N, N N, N
A1=11—-13 ol =11 —11—1)=4> m(l,1—1]=, =5 m I —1—m)(I — 1] — 1|—=, —==;m,I —1—m)
=1 m 2 2 2 2

_2\/2|—1 No o |(N
“TV2ivz 2 T

—°+1—|). (4.36

2

Comparing with(4.35 gives immediately the resu{#.32).
The resultg4.31),(4.32 can be put into a common form

Z(1",D)=+21"+ 1) (21 + 1)(Neg+2)2— (1" = D21 +14+1)%=(N+2) V(21" + 1) (21 + 1) + O(1/N,). (4.37)

We have made apparent here the fact that the corrections my of the remainindN.—1 quarks in the baryon. The cor-
the lowest-order result come only at sub-subleading order inesponding spin-flavor wave function will be denoted as
1/N.. This is an illustration, on the example of the quark
model, of a model-independent result obtained by Dashen

and Manohaf2] using the counting rules for pion-baryon 1SI,m, )i :i(|3| m,a)i—|SI,m,a);)
. y I [j.1] [RLL] j PRRL ] 1)
scattering. [2
B. Mixed symmetry states j=2,3,...Ne. (4.39

In this section we construct quark model states whose .
spin-flavor wave functions transform under the mixed sym- The space part of the wave function must transform also
metry representation of §4) shown in Fig. 2. They can be under the mixed symmetry representation of the permutation
built using the procedure described in Sec. II, by adding ongroup, corresponding to the same Young diagram as in Fig.
extra quark to a symmetric state Nf—1 quarks. We write 2. There are agailN.—1 linearly independent wave func-
the state obtained by adding thi& quark to a symmetric tions, which can be chosen to be antisymmetric under a per-
state ofN.— 1 quarks with spin and isospin as mutation of thej'" and 2! quarks. Their generic form is

1
Stma)i= 3 (smli,zimy,my) 1

myMpaga; IL,my )= \/§(¢(rj)YLmL(Fj)¢(r1)
1 : .
X(Lali, 55 a1, az)[i,my,aq) — (1) Yim (T (1))
|1 > 438 Xps(Fa, oo Fj1ljeas - IN)
R|l=,My,a5)i. .
21 (4.40
The states of mixed symmetry under @Jmust be anti-  With ¢g(rz, ... Fj—1.,fj+q, ... Fy) @ symmetric function

symmetric under permutations of the two quarks correspondsf its arguments. Ir{4.40, we have assumed that the orbital
ing to the first column of the Young diagram. There areangular momentum is carried by a single quark. This is
N:(N.—1)/2 ways to choose such a pair of quarks, but notstrictly true only for the lowest orbital excitations.

all the states obtained in this way will be linearly indepen- It is easy to combine now the spatial and the spin-flavor
dent. In fact there are onli.—1 independent states with parts into a completely symmetric wave function of well-
mixed symmetry, and we will choose them such that they arelefined spin and isospin. Our final result for such a quark
antisymmetric under a permutation of the first quark withmodel state is
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These states have a peculiar normalization, due to the fact
Jmay= > (3, m[S,L;mg,m)|SIL,ms,m,a), that the spatial wave functiord.40 with j#j’ are not or-

s (4.47 thogonal. They satisfy instead
with
N¢ 1
_ (_\#(Sli) ) /
|SIL’mS’mL’a> ( ) m;z |S|’ms’a>[lrl] []-/,1]<L,m|_|L,m|_>[]-’1]=§(5jj/+1)5mLmlf_I, (443
®|L,mL)[J—V1]. (4.42
The phase of these statggSli) will be chosen later for with Z an overlap integral. Using this expression we obtain
convenience. the following exact result for the norm of the statds42
S 1 1)2 - S 1 0)?2
Y oy Nc+2 . 2(2i+1)
<S I 1,ms,m|_ & |SI1!mSmeva>:5335msm’55mLm|'_5||’5aa’TI 3(2|+1) % % i _W % % i

g+2i(i+1)—S(S+1)—I(I+1) ] (4.44

)

The derivation of this relation will be presented in some detail, as it illustrates a few techniques useful in dealing with the
mixed symmetry states. We start by computing the scalar product of two direct product states

(S, Mm@’ [SIm,a) =2 (S, m'[i",5mp,my) (17’ i’ % al, ap(S,mli, 3;my,my)
><<|,a|i,%;al,a2>j,<%,mé,aé|®<i’,mi,ai|i,ml,al>®|%,mz,a2>j. (4.45
The matrix element on the RHS can be written as
i{(3.my, @ (i, my,eli,my, ) ®] 3,My,a0)= [(3.My, a5 ®(i",m1, 1| Py [i,my,a)®] 3,my,a5);, (446

where
1 - - - -
ij':Z(l+a-j'0-j’)(l+7j'7j’) (447)
is an operator which exchanges the spins and isospins gf thguarks. We obtain in this way
i1(z.my, a5l @i,y aili,my,a)®| 3,my, a5))
= 7 Kms,asl myao) (i umy aglimy )
1
—k . K-
+sz (—)¥ j<%1mé!aé|0'j |%1m21a’2>j<|,!mivai|0j’|liml1al>
1
—b . b -
+Z% (—)P j<%'mévaé|ﬁ' |%,mz,a2>j(l',mi,ailfj,h,ml,al)
1
—Kk - . k b
+Z;3 (_)k+bj<%vméaaé|01 7| ° %,mz,a2>j<|/ym1;a31|_|0'jr7'j/||,m1,a1>- (4.48
The matrix elements on the one-quark states are computed easily with the results

1 1
j<§1mé’aé| §1m21a2>j: 5m2mé5a2aév (449)

J<% ,mé,aé|a'}<| % 1m27a2>j: \/§<%1mé| %11;m21k>5a2aé7 (450
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j<%!mé1aé|71b| %,mz,Cl’z)j: \/§<%1aé| %11;a21b>5m2mé! (451)

j<%:mé’aé|‘7;<ﬂb| %,mz,a2>j=3(%,m§| 51mp K)(3 a5 7,1;a2,b). (4.52

The matrix elements of the one-quark operators taken on symmetric states continiigquarks can be obtained with
the help of the wave functiofd.2) of these states. For example, the matrix elemer&}bis parametrized as

(i",m",a’|of]i,m,a)=F(i)8is Suqr(i,m'[i,1;m,k). (4.53

The statdi,m,a) has the explicit form
li,m, )= ; (mljy,izkm=K)Sy —1(j1+Kji—Kj2+m=—k,j,—m+k), (4.59
with j;=Ny/2, j,=Ng/2, andN, 4= (N.—1)/2+ a. Next, we single out the quarkby using the relation

[Ny (N2
Sn(N1,N2,N3,Ny) = N_(UT)jSchl(nl_ 1nz,n3,n4)+ N_(Ul)jSNC—l(nlynz_ 1n3,Nn4)
Cc Cc

n n
S, _Ns(dT)jSchl(nlanvnS_lan4)+ Y, _N4(dl)jSchl(n1rn21n31n4_1)- (4.55
Cc Cc

The reduced matrix elemefRt(i) can be computed by taking the spherical compoken®d in (4.53. The matrix element on
the LHS of this relation can be written with the help @55 as
. . L jatk ji=k jptm—k j;—m+k 2m
0 _ . (2 _ _ —
<I!mla|0j||1mla> Zk |<|!m|J11J25kym k>| {Nc_l NC_1+ Nc_l Nc_l Nc_l (456

Comparing with(4.53 we obtain

2
F(i)= Vi(i+1). (4.57
N.—1
In a completely analogous way we write the other needed matrix elements as
(i’,m',a’|7'?|i,m,a>=G(i)5ii,5mmr<i,a'|i,1;a,a>, (4.58
! ! ’ ka' 2I+1 HEA ! AN . 1/ AN .
(i'm",a'|of7i,m,a)= mH(I D (A,m' i, Lm k)G e |i,1;e,a). (4.59

The corresponding reduced matrix elements can be computed with the results

2

G(I):m\ll(l‘l'l), (460}
N+ 1
H(i)= "= (4.6
. 2 N.—1 | N.—1 .

H(I,I—1)=m ( 5 +i+1 T_I+1 (4.62

2
H(i',i)=1+N—+0(1/N§). (4.63

We note from these results that only the unit operator 1@;?’@ give leading contributions t(4.45 in the largeN,. limit.
Inserting the individual expressions for the matrix elements {#td5 we obtain
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A

|
1] +6(—)2 ST i+ 1H( i)

N

J-/(S’I’i,m'a'|S|i,ma)j=55g5mm/5||/5m 2

/E 1+ /6(2i+1)F(i)(—)i+l/2+S[_
|

NI=

+6(2i+1)G(i)( )'+1/2+'{
i

s i (1 i i
Xlgil%i' (469

The product of two § symbols can be transformed with the help of the iden@y80 into the form

N[

Si%li%ls|12.SI028I12
T _\SHI+1+2i - ] . (4.65
vyl )2 by TlE g
Furthermore, the second-8ymbol on the RHS can be eliminated by using the relation
I S x?2 1
X=20’1(2x+1) s 1 i Taer (4.66
We obtain finally for the scalar product of tensor product stede®4) the simple result
. Ne+1[S 1 0)?
j’<S,I,,m,,a,|S|1m!a>j:8335mm’5||’5aa’ (2|+1)N 1)1 1 i
c 2 2
> 2 1)—-S(S+1)—-I(1+1 4.6
m+l(l+)(+)(+)- (4.67)

This result only holds if the two external quarks are differg¢etj’. If they are identical, only the first term .48
contributes(without the factor 1/ This gives

J<S,| ’,m',a’|S|,m,a>]-=5sg5mm/5” ,6M,. (468)

We can us€4.68 and(4.67 to compute the norm of the statSIL,mg,m, , ). With the help of the definitiori4.42), it
can be written as

1 N

<S’| ’1,mé,m|’_ ,a'|SI1,mS,mL ,CZ): m 2 “ryl]<S’| ',m's,a’|S|,mS,a>[j'1] [j/‘1]<1,m£|l,m|_>[jyl]
=2

Nc+2 " ror "y "o
= O IS M 0’ [SL M, @)= (S M@’ |Stm,a)), (469

where we used4.39 and(4.43. To bring this into the final forn{4.44) we only need to insert the expressiqds68 and
(4.67 for the scalar products on the RHS and simplify the resulting expression with the helB6f

C. Matrix elements of Zk® on mixed symmetry states

In this section we will compute the matrix elemédBt25 of Z? taken between quark model states with mixed symmetry.
It will be shown that the ansatz f@(S'l’,SI) introduced in Sec. lll A can in fact be obtained by an explicit calculation in the
qguark model.

We parametrize the matrix element 8f2 between the quark model stat@s42) as

N¢

1
S’ Lmi,m e’ | D okASIlime,m ,a)= Z(S'1",S0) 8, (S mS,1;me, k)1, a’|I,1:a,a).
< S |n§1 n n| S L > \/(28’4’1)(2"4‘1) mLmL< S| S >< | >
(4.70

We obtain for the reduced matrix element the following result:
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Z(S'l",Sh= ;NC(NC+2)\/(2i +1)(2i" +1)V(25+1)(2S +1) (21 + 1) (21" + 1) (=) ~IHS HI HuSI+ys1T

1 8 S)|i S i’ g
x[l | I’]1 A A ETERY . (4.71

This has to be divided with the square roots of the norms of the initial and final $fadds To leading order i\, the result
takes exactly the formi3.29 provided the phase(Sli) of the quark model statdg.42 is chosen as

N
Nl=

I

w(SIi)=i+I+; (4.72

The derivation of(4.71) proceeds in close analogy to the computation of the norm of the mixed symmetry states. First, we
express the matrix elemeft.70 of Zk2 in terms of matrix elements on direct product states as
N¢ 1 N
(s'1'Limg,mi,a’| X opralSILimg,my @)= ()T o 3
n=1 Nc_lj,j’=2
NC

X[j’,l]<S,| ’,mé,a'|n§=:l O'LT§|S|,ms,a> [j.1] [j/’1]<1,m|,_|l,m|_>[jyl]

:(_)u//(SIi)+|//(S’I’i’) Nc+2

Smm L(Z1=Z5), (4.73

where we denoted the diagonal and nondiagonal matrix eleme@$ oh direct product states by

NC

Z;=4S'l"\m’,a’| Y, ok7?|Slm,a);, (4.74
n=1
NC

Z,= (S, @’ | >, okr2ISIm,a);. (4.79
n=1

The nondiagonal matrix element on direct product stafteés () can be transformed into a diagonal one with the help of the
exchange operatd#.47)

NC NC
jr<%,mé,aé|®<i',mi,ai|nzl 0ﬁ7ﬁ|i,m1,a1>®| %,mz,az)j=j<§,m§,a§|®(i’,mi,aﬂij,nZl Uﬁ7ﬁ|i,m1|a1>
®|3,my,az);. (4.79

This expression can be computed by expandingRjje operator and inserting a complete set of intermediate states:

NC
p(hms, e i myaf] 3, okrdlimyan)e| hms,a)
n=

N

1 , _ 1 B
:Zj<%vméaaé|%1m21a2>j<|lvmi1ai|nzl onTali,my, @)+ ZZ (—) j<%:méaaé|ffj l 3,My, @)
NC
><2”<i’,mi,ai|0}r|i’,m’i,ai><i’,m’1’,ailr§1 onrali,my,ay)
ml -
1 Ne
+ 22 (0 (hmpagle ™| hmg, )i (1 m | i mp )i mg,af] 3 kel my an)
@1

-1 - . I by
+Z|§t; (—)'*b j(%,mé,aﬂa-j |7-J. b) %’mz’a2>j.,,§,; ) <|’,mi,a£|0'j,7'j,||n,mz,az
) i”m e

NC
X(i",m'l’,a'ﬂnzl ok 7Ai,my, aq). 4.77
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Only completely symmetric states bf.—1 quarks contribute to the sum over intermediate states since both the operator and
the initial state in the last matrix elements of each term are symmetric under permutations of any quarks. One notes that
keeping only the first and the last term in this relation is sufficient to obtain the Mydamit of this matrix element.
Furthermore, in the sum over quarksZi? one can omit the term acting on the" quark, as this will only change the result

by an amount nonleading iIN.. This allows us to compute these matrix elements by using the results of Sec. IV A. Putting

all pieces together one obtains for the matrix elemerZ‘8fbetween quark-model states with well-defined spin and isospin
(S,1) the following result:

((S'17,mg,a’|Z49S1,mg, a);=Nc\(2i +1)(2i' +1)(2S+1) (21 + 1)(S',mg[S,1;mg k)1, a’[1,1;a,a)

1 —2i'+1+S-1 ts s L 3 I+1"+S+8' ;
70 T vt 2, (@"+1)

i” £ S|(s 1 s)(i"” 3 I I I’
X . : : A 4.7
cooafle s il ool oy (4.78

Each of the two terms corresponds to the contributions of the first and fourth terfds7in, respectively. They can be
transformed into the following form by a repeated applicatiot380:

1S S)(1 1 1’ o lrs s 11(s i i)[s i oW
. . ] ] :(_)|+| +1+S+1"+S
00 i3 0 L 1" 0)1i o 1)|l% 1”o0
3[8’ s 1”8 i
I 11 i1
S 1 S’ U (o1
2, (@"+1) Cooa iy
{S H | %Hg % i,}
1" 0f[2 o 1|[L 1” O
SIS 1] S i 3||S 3V (4.80
o s o a1 '

Inserting these expressions it 78 we obtain the following result for the nondiagonal matrix elemeri'Sfbetween direct
product states:

NI
N[—

=

NI

4.79

N
—_—
—

NI (Q
— NI
=

—_—

| I

N

1+i’—i+S+I
=(-) 5

+

Z,=N\(2i +1)(2i' +1)(2S+1)(21 + 1)(S',mgS,1;mg  K)(1", o' |, 1;a,a)(— )1+~ 1+ +V

s s 1)|S i i|[S 1 i
X . .
{I I’ 0} Lot oo (481

For the diagonal case, only the first term(h77) survives(without the factor of 1/4 Using(4.79 we can write for this case

Z,=(—)F S HUN (20 +1) (21 +1)V(2S+1) (21 +1)(S',mY S, 1;mg,k)(I",a' [l ,1;a,a)

[SI S 1][8 | %HS, % i,] [S, S 1’[8 | %][S, % ir”

' , -3 ’ , . (482
1" 0f{f o 1||L 1”0 O 5 I I I O S A |
Inserting (4.81) and (4.82 into (4.73 and using the definition aZ(S'1’,S1) (4.70 gives the final result for the matrix

element ofZ (4.71).
We will present in the following an alternative method of calculating the matrix element of a current between states with
mixed symmetry. Besides reproducing the re¢dil7 1), this method has the advantage of simplifying very much the compu-

X

3The exact result for arbitrar,, is presented in the Sec. V.
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tation of transition matrix elements between excited and ground state baryons, to be discussed in the next section. We start by
writing the matrix element of the curre@t® taken between two stat¢4.42 as

N N
i "t 1 3 TN \ TN
<S/|/|Zka|S|>:(_)l//(SII)+l//(S| i )m ”’22 [j’,1]<SI |Zka|S|>[j,l]+j22 []’1]<S| |Zka|S|>[j'1] T. (483
=

We consider the two terms of this relation in turn. The first N¢ 1
sum can be written as > Alj,1]=—=(Nc—TII). (4.89
= V2
NC
> alS1Z¥s g We will need also the following matrix element:
jii'=2
N N Ne (S'1'|IZX4SI) = (S'I'|HZK 1+ P3+ - - -
= (S22 A[LZCY AlLISh, (489 +P2, ]IS
j'=2 j=2 lNC 1
where =(S'I'[TIZ*M|S1y,.  (4.90
1 We used in the first line the property of the permutation
Alj.1]=—=(1-Pjy) (4.89 operatorPizj =1. The second equality is obtained by writing
V2 I1Z*2p%,=I1P,;Z3P,; . When acting to the left on(S'l ],

is the antisymmetrization operator for quafksl] and P, this gives

has been defined i#.47). The spin states defined {#.39 {S'1'|TIPy = (S'1'|T (4.91)
can be written in terms of it &S|y 1;= — A[i,1][S1);. )

An important relation we will use extensively in the fol- since ,(S'I’|II is completely symmetric under any permu-
lowing expresses the result of symmetrizing a direct productation of theN, quarks. This completes the proof @f.90).
state|Sl); under a permutation of any two quarks: The relations(4.89 and (4.90 allow us to express the

sum of matrix element&4.84 as
H|S|,ma'>1=(1+ P12+ ceet PlNC)|S|,ma>l

N¢

:5S|B(II)|I'm'a>’ (486 E [Jrvl]<S,|’|Zka|sl>[]’l]:%N(2: l<S,|,|Zka|S|>l
e
with |I,m,a) the completely symmetric state constructed in 8
Sec. IV A. The normalization constai®(li) can be com- _E (S'1"|T1Z*2TT| S 1)
puted by taking the norm of the both sides of this relation. 21 !
We obtain
=EN2 (S'1"|Z%3S1)
N¢ 2 ¢ 1 1
SsB(li)= > (Sl,malSl,ma),
' L 5e50n BB
=Ng+Nu(Ng— 1) (S, ma|SI,ma), 2 7
r_11|7kale—
(n#n"). (4.8 X(S'=1|ZEs=1).
(4.92
The nondiagonal matrix element appearing on the RHS has
been calculated previously and is given(dy67). We obtain The second term i4.83 can be computed in an analo-
finally gous way. We note for this the following useful properties of
the antisymmetrization operatéy j,1].
‘ 11 0} 2 (1) Alj,1] commutes withzk?
B2(1i)=Ng(Ne+1)(2i+1) ,
IS i [A[j,1],Z*¥]=0. (4.93

N¢

(4.89 This follows from the fact thaZ*® is completely symmetric
5 . .

under a permutation of two quarks and commutes therefore

) ) with the P operator(4.47).
It will be shown below that the phase Bf1i) can be chosen (2) The square of\[j,1] is given by

such that the leading term N, is positive.

The sums over the antisymmetrization operator&tig4) Alj,1]%= \/EA[j 7. (4.99
can be written in terms of the complete symmetrization op-
eratorlIl as With the help of these relations ard.89 we can write

%+2i(i+1)—2|(|+1)
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N¢ N,
2, (S 11298y 2, G S 1248 4 =N «S'1V[Z9IS1),
< 1
=2, W(SVIALLZ A}, 1]IS s ~ R dsids BADB(T)
= 1<s'|' zka§ Alj,1]? SI> X(S'=1"|Z*s=1).
I=2 1 (4.99

=(S'1"|Z¥%(N,—IT)|S),. 4.9
1§ 25N IS (499 Combining the two result$4.92 and (4.96) gives the

Using a relation similar tq4.90 for the second term, this following general expression for the matrix element of the
equation can be put into the form currentZk® taken between two mixed symmetry states

o N(Ng+2)
1y 1]7kal —(_\Y(Sl)y+ys'1’iy e ¢
(S'1"1Z<a[sly=(~) iND?

(S ’|Z"a|SI>1—$5S,5S,,,B(Ii )B(1i"){(S' =1 '|zka|s:|>] .
‘ 4.9

We are now in a position to compute the phase of the normalization coltiant This can be done by comparing the two
expressiong4.73 and (4.97) for the matrix elemen{Z'#). We obtain in this way the following exact relation:

1 _ _ 1
E53.55,|,E;(|| )B('i" (S =1"|Z¥8S=1)=Z,+ N (21— Z2). (4.989
c

C

Using (4.81) for Z, one finds to leading order iN_

(Net2) V22I|’11].B(”)B(|/i/):Ng\/(Zi+1)(2i'+1)\/(23+1)(2|+1)(—)1+i/_i+s/+"

rS’ S 1}{8 i %HS’ L i’]
X , ,
17 0J|L o 1|t 1I” O
SV(2i+1)(2i"+1)
o 2(21'+1)

5|s§|rsr. (499)

From this follows thaBB(li) can be chosen to be positive for all values of its arguments.
It is easy to see now with the help ¢4.82 and (4.99 that (4.97) gives, to leading order iN., the same result for
(S'1"|Z*¥SI) as(4.71).

D. Matrix elements of Y2 and Q? in the quark model

As already mentioned in Sec. I, the matrix elements of the operatdand Q*? in the quark model can be reduced to
those of the operatoEEilr'noLrﬁ. Herer,,o,,m, are vector operators acting on the orbital, spin, and isospin degrees of
freedom of then'" quark, respectively. In this section we prove that the quark model reproduces, in théjaliget, the
results(3.43 and (3.50 expected from the model-independent treatment of Secs. Il B and IlI C.

We consider first the transitions from an excited baryon state transforming under the symmetric representatidgnhtof SU
another symmetric baryon state. For generality we leave the orbital momenta of the initial and final states completely arbitrary

L,L’. The dependence on the spin-isospin quantum numbers is contained in the reduced matrixBlEmé¢rdefined by
NC
(I ’L’,m’sm,’_a’|nzl rhohralll,msm a)=

LOZL L) mg1,L;mg, j )1 ' |1,1;e,a)

1
T
(2I'+1)yaL' +1
x(L",m/|L,1;m,i). (4.100
We will restrict our considerations to baryon states for which all the orbital angular momentum is carried by one quark at a

time. This is strictly true only for the lowest orbital excitations. In Hartree language the spatial part of the wave function for
these states has the form
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R )
Lm0 = <=3 G2 )12 Ym (T )= (T, (4.109

where¢(r ) is a s-wave one-particle wave function a:yzgmL(F) carries angular momentunh. (m,). The spatial part of the
matrix element4.100 can be written in terms of the matrix element

. 1 1
! ! I — ! ! ! . H
(L ,mL|rn|L,m,_>——Nc NS (L",L)L",m/|L,1;my,i), (4.102

with Z(L',L) an overlap integral of ordemg. The casd.’ =0 of a s-wave baryon in the final state is special, as the scaling
law with N, is different

. 1
(Ofry|L,my) = —=Z5 (0L, 1;mp ,i). (4.103

N,

For both these cases the matrix elememripﬁs independent oh due to the symmetry of the wave function under any
permutation of two quarks. Therefore the spin-isospin part of the matrix eldhé@00 decouples completely from the spatial
part and is given exactly by the formu{d.37 for the ground state baryons. We obtain in this way for the reduced matrix
element7(l',1)

Ng+2
J2I+1)(217+1), L'#0,

N¢
T D=1 \ 12 (4.109
jN_C J(21+1)(21'+1), L'=0,

which can be seen to coincide, up to an unimportant phase and numerical factor, with th€3ré8uéinticipated in Sec. IIl.

We consider next the case of an excited baryon transforming under the mixed symmetry representati@h) of B
initial state. The final state corresponds to the completely symmetric representation. We write the matrix element relevant for
this case as

NC
{ ’L’,m’mﬁa’|n§_:1 r ol 3SIL,mem a)=

70, SHZ(L',L)]{I",m'|S,1;mg,j)}{I",a’|l,1;a,a)

1
(21"+1)\2L +1
X(L",m/|L,1;m,i). (4.105

The scaling law withN; of the spatial part of this matrix element is again different, depending on whietke® or L’ =0.
Both cases can be considered together by writing it as

. NK(_)I,/I(S”) N¢ 1 ) _
(L’,m,_|r'n|SIL,mSm,_a)=mka . (OkrnOnk— 5k’n5nl)ﬁz(l—,1L)<lemL|L11mL A)[SImsa) iy
C C ) =

N

Ng(—)'/’(S”) c
T(L",L)(L',m{|L1,mp,i){ |Sl,Msa)in 1y~ 5,1122 Sl Msa)piy | -

B V2N(N.—1) V2L +1

(4.106

Herex=1/2 forL'=0 andx=0 for L' #0. Adding the spin-isospin part of the operator and summing oveNthguarks in
the baryon gives

Ne N#(—)¥(Sth
(I’L’,m’m,’_a’|nzlr'ncrjnrﬁ|SIL,msmLa>= =

(L, L)Y(L",m/ [L1m, ,i
V2N.(N—1) V2L’ +1 (L LXLTmi L1 m i)

Nc N¢
X nZl (I"m"a’|o 75| Sl msa)y = (! ',m’a’|0'117'61‘k22 |SI,msa) k-

(4.107)

The first term in the braces can be written as
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Ne _ 1[N | N
n§=:l {l "m’a,|01”7ﬁ|5|’m3a>[”~1]:ﬁ( nZl (I'm"a’| oy, 7| SI,mgar),—(! ',m’a'|nzl 0'Jn7'ﬁ|S|,mSa>1)
1 1 Nc
:E( N(I",m’a’ |} 73|SI,msa), — N—c5s|B(|i X1 ',m’a'|nzl al 71 ,msa>) )
(4.108

In the second line we used the identity

NC NC
NI, m’a’| 2 ohri|Shmsa),=(1",m'a’| 3 ohri(1+Pi+-- - +Phy ISl msa);
n=1 n=1

N¢ N¢ N¢
=k21 (I ,1m,al|P1kZl ohmhPulShmsa),; =(1",m'a| 21 ohall|Sl,msar),
= n= n=

(4.109

followed by the application of the relatia@.86). In (4.109 we have definedP;=1.
The second term if4.107% can be put into the following form through an application(4f89 and (4.86):

NC
) 1 . .
(I ',m’a’|ajlri2 |S|vmsa>[k,1]zﬁ(53|8(”)<| ",m'a’|a) 75, mg, @)= N(I',m a’'| ¢} 75|SI,mgar);).  (4.110
k=2
Combining(4.108 and(4.110 together we obtain the following general formula for the matrix elen4ri05:

% L NE(—)“sh
I'L",m'm/ &’ rl ol 78SIL, mgm, o) =
< L |n:1 n“n n| SHHIL > \/NC(NC—l) \/2L'+1

Z(L',L)(L",m/|L1,m, ,i){ N(I’,m’ o' |} 73|SI,msar),

N
1 <
- sBUN( M’ X ULTﬁ“,ms,a)]. (4.11
c n=1

The second term if4.11]) is already known from our analysis of the symmetric states in Sec. IV A. The first matrix element
is new. In the following we present the details of its calculation.
Using (4.86) one can write

NC
(I’,m'a'|(rj17'?|8|,ma>1=B(l’i,) 1<|’|',m’a’|k21 Pl 73Sl may);. (4.112
A typical term of the sum ovek has the form
e o ja 1 e P )8 1 e rore Sz -z j_a
{1, m'a |P1ka'11'l|SI,ma)l=Z {1 m' |(717'1|Sl,ma/>1-l—zr {11 m"a’ (o1 oy ) (71 7 ) oy 75 Sl mar),
+O(1N,), (4.113

where we used the definition of tl operator(4.47) and the fact thaF (i) andG(i) computed in Sec. IV B are nonleading
in 1/N.. The first matrix element is easily calculated with the result

if]i ¢ 1
2 2 2

N[=

1 s I"f(x 1
1<I’I’,m’a’|a"17-él‘|SI,moz)1=<l’,m’|S,1;m,j><I’,a’|l,1;oz,a>65ii,\/(28+1)(2I+1){i ” ]
(4.114

The second matrix element can be reduced to quantities already known by simplifying the products of two spin and isospin
Pauli matrices with the help of the identity

oa0p=—/3(0[11;ab) 1— 2, (1c|11;ab)o. (4.115

We obtain in this way
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1M e |01 o) (71 7 ) ah 73 Shma) = (17,m’[S,1;m, ) )17, a'|1,1;a,a)V(2i +1)(2i +1)(2S+1) (21 + 1)

- (1 11 -
. (s 1 e 2
X (_)—|+§+S., . ) +6(_)_S_I i 1 i’
bt s 1
- . 17
i+1/2+1 I ! I/ =1 . - ’
_\—it+1/2+ =y i
X| (=) i1 +6(—) i1 i
L | ")

=361, m'|S,1;m,j)}1",a' I, L;a,a)\(2i + 1)(2i +1)(25+ 1)(21 + 1)

T A - S L I I |
XIe o1 |2 AT (4.116
2 2 2 2 2
We used in the second equality the identity

1 i 1)(s 1 1 . i’ 1
i’ 1= Y . | +g(_)| +S+3/2, U s (411-0
1

S I

N

N
N

NI
Nl

and a similar one witl8— |, which can be obtained froif8.21) by taking\ = 1/2 and thg's are the same as in thg¢ Symbol
on the LHS.
Combining(4.114 and(4.116 we find the following result for the matrix eleme(t.113:

{11 ’,m’a’|P1kcrjl7'i‘|SI,ma)1= V2i+1)(2i" +1)(21+1)(2S+ 1) (1", m'[S,1;m,j (1", o’ |l 1;e,a)

1 (S 1)1
X3 . e 4.11
21'+1 3 iflz z i (.19

where we have rewritten th&;, symbol in(4.114 as

N

i i’ 0)2
6ii,=2\/(2i+1)(2i’+1)[ 11 I’] (4.119
2 2
and added the two terms with the help of the identity
z i i’ x)? 1
2x+1 = . 4.12
X:0]1( ) o1 T (4.120

Next we usg3.30 to write the product of 2 symbols in(4.118 as

2 I : I Osi — 124+ SHI+1" +i 1S bt
= +(-) ! 11 1 (- (4.12)
S 1|1 % 1] 6y(2S+1)(21+1) S I I'J|3 % i

The sum ovek in (4.112 is dominated by the terms witke 1, of which there ar&l.— 1. Neglecting the contribution of the
k=1 term, we obtain for the matrix eleme{®.112 to leading order irN.

(2S+1)(21+1

(I',m'a’|o} 73|SI,ma); = 3\2(2i +1) )<I Lm'[S,1m, X1, e'|1,1;a,8)

21'+1
Is| _ 1/2+S+I+I’+i‘l 1 1] s i
X[e\/(zs+1)(2|+1)+( : S I I'jlz 3 1] (4122

When inserted intd4.111), the term proportional tdg, will be canceled exactly by the second term(4n11]). As a result,
we obtain for the reduced matrix elemefit ’',S1) taken between the unnormalized quark model states
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11 11(s I'1
7(|',S|)=Ng3J2(2i+1)¢(2S+1)(2l+1)(2|'+1)(—)1’2+S*'*"*‘(—)“5”)’S | |H A i]- (4.123

11
2 2

The physical value of this reduced matrix element is obtained by dividing with the square root of the norm of the initial state
(4.44). This gives

11 1
m',Sn]norm=N§‘1’22J€¢(28+1>(2I+1><2|'+1><—>—1’2+S+'+"“(—)WS“““S“)(S | l,]. (4.124

Finally we insert herep(Sli)=1+1+S the phase of thej6 number of colordN.. The results presented in the preceding
symbol appearing in the formula for the nor@#.44) and  section are obtained from these expressions by keeping only
#(Sli)y=i+1+ } the phase of the mixed symmetry state,the leading terms ilN.. We take advantage of our ability to
which gives for the total phase—()*'“'. Thus(4.124 can derive exact relations for the quark model matrix elements to

be seen to coincide exactly, up to a numerical factor, with theStlJOly the 1N corrections to the larghk; predictions. By

. : examining a few simple particular cases we conclude that the
expression (3.50 -expected from the model-independent results obtained in Sec. Il in the lardé- limit will receive
treatment of Sec. Ill B. : (015 :

An important by-product of this calculation is the large- in general, 1. corrections.
N. scaling law of the transition matrix elements into final
states in an s wave. We obtain that the matrix elemen¥ of A Z(S'l".SI)
and Q%@ from an initial state with mixed symmetry scales _ o ' .
like NZ. On the other hand, the same matrix elements with a We begin by giving the result for the matrix element
symmetric excited state in the initial state scald&é. This ~ Z(S'l",SI) defined by

dependence of the scaling law on the symmetry type of the N¢
excited state is a new feature, unnoticed previously. As dis- (S'1'L";ms,m/ | > ok2ISIL;mg,m, @)
cussed in Sec. lll, for both cases the scaling law for the total =1 "

scattering amplitude is sufficiently restrictive to allow the
derivation of useful consistency conditions. In spite of their

Z(S'1", S8 Oy

different N scaling, the solutions for these matrix elements - J2S +1)(21"+1)
have the same dependence on spin and flavor quantum num-
bers. X(S',mg|S,1;mg,k)(1",a’|l,1;a,a). (5.2

The quark model computations in the next section illus-
trate another important asymmetry between the symmetric
and the mixed symmetry states. Th&l/corrections to the According to(4.73 this matrix element is completely deter-
largeN.. results for coupling ratios vanish for the forniei mined in terms of the diagonal and the nondiagonal matrix
but not for the latter. Such dependence on the symmetrglements of the current on direct product states. These will
properties of these states raises the question of how to dide characterized by two quantities,z, defined by
tinguish states with different permutational symmetry be-
yond the framework of the quark model.

The exact largeN, scaling law for matrix elements of Ne
and Q following from the calculations of this section is Zl=j(S’I’,m’,a’|2 oﬁrﬁ|8l,m,a>j
strictly correct only for the case of the baryons made of n=1
heavy quarks, for which the constituent quark picture is _ (2S+1)(21+ 1)z(S',m'|S,Lm,K)(I", ' |1, 1;a,3),
known to be exactly valid. Our results following from the
consistency conditions discussed in Sec. lll rest on the as- (5.2
sumption that no important changes occur as the quarks be-
come light and that the modified scaling law corresponding
to this situation still allows the derivation of consistency con- c
ditions. While this assumption seems plausible and is similaZz=j(S'l",m’,a’| Z orriIShm,a),
to smoothness arguments commonly used in other Ibtge- =t
studieg[12,9], it is important to keep it in mind as one of the  — [(2S+1)(2I +1)z(S ,m'|S,1;mk)(1",a’|l,1;a,a).
vulnerable points of an analysis of this type. 5.3

N

V. QUARK MODEL MATRIX ELEMENTS

FOR ARBITRARY N .
¢ The reduced matrix elemeid(S’'l’,S1) (taken between un-

In this section we compute the full expressions for re-normalized quark model stajes expressed in terms a
duced matrix elements in the quark model with arbitraryandz, as
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N +2

4

Z(S'1",Sl)=(—)USV I+ [(25+1)(21+1)(2S +1) (21" +1) (21— 2,). (5.4)

We obtain for the diagonal matrix element the simple result

(1 s S)(t 11
2= 2+ 1) (21 + 1)z(i’,i)(—) 2 +S+"l , H , ]

o0 i3 0
U B - R A A R
+65”,(_)1—2I—S - [l 1 l][l 1 l]’ (55)
with
z(i",1)=V(Ne+1)?=(i"—i)%(i"+i+1)2=Ng+ 1+ O(1N,). (5.6)

The nondiagonal matrix elemerf can be written as a sum over the four terms into which it can be decomposed with the
help of (4.77)

1
ZZZZ(T1+T2+T3+T4) (57)

We find
Ti1=24, (5.8

NI -
- NI
= @

———

—
Nk

- »
— (,1

—_—

———
NiF =
N

i
T2:\/6(2i+1)(2i/+1)2F(i/)Z(ir'i)(_)—1/2+2i+i/+|+S+S/[

i " 111 S S|(1 1 I’
_6\/€F(i)5ii’ /2i’+1(—)1/2i|,|; . S’]|' L 1][ 1], (5.9

2 2

Nl =
N
=2
———
——
N[ =
- w
- 0
—_—
———
NP =
-

i
T3= \/6(2i+1)(2ir+1)2|:(i/)Z(i/’i)(_)1/2+2i+i'+|+S+|'[

i i’ 1)1 s S)(1 1 I’
_6\/€F(|)5”, /Zi!_l_l(_)l/Z—i—S/{l . l/][ . . ]| }’ (51@

2 2

_ : L Z(iiMzZ(i) i” 3 S)(s 1 &)[i" L+ ][ 1V
= \/—r _\SHI+S +1 " . . . .
T,=6(2i+ D)2 +1)(-) ;—Nc_l P P | P S A

2

( PP (i 1" 1)(s s 1)(I I" 1
e T A L (R
2 2 2 2 2 2 2 2

The expression for, greatly simplifies if only terms of order 1 are kept, in addition to the leading ones of bidedue
to the fact that in this approximation ttz€i’,i) factors are constants. This allows the sum aVetio be performed with the
help of (4.80. We obtain

NI

2, s L i i’ 0)(i i" 0)(1 S S)(1 1 I’ .
= j— 0 — —
ZD@ 0 (Ne+1)(—)?[{6]o} 3{611}]+12% Y A FREUETI A R | PR +O(NS Y,
(5.12
Z , _ sy [ S S)(1 11
— 2)(—)%o 3 V%o 3y3—=> ¢ )
ZiDa D (N +2)(=)?{6]o}*+3(—) (6]} +32|'+1[| : %”' L

1 dor 1 sroi Q! ey i 13 i 13 -1
— ()% +21" (I + 1) =SS+ D —1"(1"+D][{6]o} "~ 3{6j1}]" ]+ ON. ), (5.13
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with ¢g=1+i—i'+1'+S’. We denoted here the products gf §/mbols encountered in Sec. llI

61 3_(3' > 1}8 A T (5.1
Blowl™=1 1+ oy 3o 1l 11 o) |

The difference ofz; andz, can be finally written as

AR

H H 1 sy ! !
o SN ()G () (Bjof ()M 32017+ 1) S8 +1)

—|'(|'+l)][{6j0}3—3{6j1}3]_18(_)i+i’+|’+S’

s 1" 11(s I' 1)(1 S S)(1 I I’
1o il oz (1o )i ot ot
2 2 2 2 2 2 2

The alternative method presented in Sec. IV C can be also used to give an exact expression for the reduced matrix element
of Z'2. We find from(4.97) the following result:

+O(NSY). (5.19

NI

Z(S'17,Sl=(—) SIS 28+ 1) (21 +1) (28 + 1) (21 +1)%
X zl—iB(Ii)B(l’i')Z(I—m5SI5S"’ : (519
N§ (21+21)(21"+1)

whereZ(1',1) has been defined i@.37) andB(li) is given by(4.88. We have checked explicitly that both methods lead to
the same answer f@(S'1’,SI) up to the next-to-leading order inNl{. We notice that5.16) does not involve any summation
over intermediate state quantum numbers.

The leading order term i(b.15 is written as proportional tdl.+ 2, which was seen to give the correct result to two orders
in the 1N, expansion for the case of the symmetric baryons. It is natural to ask whether a similar result holds also for the
reduced matrix elemet(S'1’,Sl). In the following we will argue that no result of comparable simplicity can be obtained for
the 1N, corrections to this quantity. Strictly speaking this still does not prove that there are nonvanistirgpdrections to
Z(J'17,31) (which is the true physical coupling with a meaning beyond the quark medecth is related taZ(S'l’,S1) by
(3.28. We have checked, however, on a few particular cases that this is indeed the case.

We will consider for simplicity the case when the quantum numbers of the initial and final states satisfy

S#I1,S' #I’ (5.19
and examine the structure of theNL/corrections in the following two particular casgs) S=S',I=1' and (b) S=1",1

=S'. This constraing,i’ to be equali=i’.
The norm of a state satisfying.17) can be obtained fron¥.44) and is given exactly by

ct2 N

(sllsh=— N T (5.18

This will have to be divided out from the quantity on the RHS(5f15. We obtain

1 Ne+2
V(SHi|Sliy}s'1'i’|s'1’i’y 4

(21— 25)=(2i +1>(2i’+1>[ —3(N+2)(—)%{6]}3—18—) ' 71"+

s 1" 11(s I’ 1)({1 S S)(1 1 1’
o) IFEE T O EE TR A I L] 1
2 2 2 2 2 2

+3(—)%{6] 1}3} : (5.19

NI
N[

Next, we note that in the limi¢5.17) the product of 4 § symbols on the RHS can be written as
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1 2i—1)(2i+3
'y ror , ( ..)(I ) case a)
RPN A U A R L AN E R E R 36(2i +1)2 i(i+1)
(=) E N (R S S 2 (I T S U () I T S U 1
2 2 2 2 2 2 2 2 Case(b)
9(2i+1)?
(5.20

On the other hand, the leading order term is proportiongbiq}3. From (4.79 we obtain, in the limit(5.17),

1 (2i-1)(2i +3)
_\2i
- a1 s sy(r o) | eV a@y o
BILF=("30 im0 1 (5.21)
2 (—)t+2 case(b).
6(2i+1)%i(i+1)

One can see that for caé® the terms of order 1 i165.19 do not have the same structure as the leading term of digdand
therefore cannot be generally absorbed into a rescaling of the latter.
B. 7(1',SI)
Next we present the exact calculation of the reduced matrix eleffi¢htSI) defined by
N¢ 1
'L m'm}a’'| >, rlol2SILmgm a)=
< L |nzl nnnl S L> (2|,+1)m

XL m|L.Lmg i), (5.22

T, SHZ(L' L)1, m'[S,1;ms,j )1 a' |1, 1;e,8)

relevant for the transitions from orbital excitations with mixed symmetry to symmetric states. We calculate this matrix element
starting from the general formul@.111) and proceeding along the same steps as in Sec. IV D. The first te@nlihl can
be expressed with the help 6£.112 in terms of the two matrix element&€ 1)

{17,m | o 78S ma), = V(2S+ 1) (21 + D)ty (I7,m’|SL;m,j X1, a'[11;a,a), (5.23
{17, m @’ |Prot 78IS may, = V(2S+ 1) (21 + D)to(17,m’|SL;m,j X1, a'[1 1;a,a). (5.24

Expanding the permutation operatey, and evaluating the resulting matrix elements with the help of the results of Sec.
IV B we obtain the following exact expressions for the coefficignts,:

1 s 1"\ (2 1 1
t1:65iirl . }| . ], (525)

1 1
| | 5 3

| 3 (i) (s v o111
: 1 —3\[§F(i)5ﬁr\/2i,+1(_)l S i1 [l i i 1 1

3 S (i 1) (s v 1) (1 11
—3\[§G(i)5”,m(—)' 1’2+'L . |'”1 . i”i . l]+9H(i',i) (2i+1)(2i'+1)

2 2

it (s o111
PRI PO PO (5.26
2 2 2 2 2 2

The result fort, simplifies considerably when only the terms of order 1 ard,. Hre kept

1
2

NI

NI

—
N
N| w
=
—_—
- =
NI U)
Nk =
N —
——
- =

NI

t, 3 1 6 6(5 i it 0)% (s I a1 1”1
- y— —— 42+ 1) =211 +1 , :
JRi+D)@2i"+1) |21"+1 Ne21+1 N2 ("+1) ( L 3 3 i)z 3 i

+O(N;?).

The matrix element on the RHS ®.112 is proportional to the combination
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3 1 i i’ 0)%](s I 1
t;+(N.—Dto=+(2i+1)(2i"+1 N+ —6|z+2i'("'+1)-21"(1"+1 .
1+ (No= D=2+ D@7+ D) Som Nob mm =6 34204 D=2 D 1y o [y
[ L
X1y o [HONGY. (5.28
2 2
After dividing this expression witlB(I'i’) we find for the first matrix element it4.111 the following result:
_ _ 2i+1
(I",m" a'|od 2SI, mga); = (2S+ 1) (21 + 1)(1",m’|SL;m,j){I",a’[11;a,a)32 i1
x{1+ ! +2I’+11+2"("+1) 21'(1"'+1) 3 6 e 2]
2N, 3N, |2 22i'+1) |5 3 I
s " 11 1" 1 L
Ve o1 il 2 [ TONG. (5.29
2 2 2 2

The second matrix element {d.111 is given by

SsBUI (1 % i 22| SN2 ZST DT T I | SLim. )1 o 1 L. a) 32 A |2 e L
siB(1i)( ,ma|n:10nTn| Mg, a)= 85 Ng +1)(21+ 1)1, m'|SL;m,j)(I",a'[11;,a) S T162+D)

5 21+1

2N, 2N (2i+1) ' (530

1
x| 1+ S+2i(i+1)-21(1+1)

The result for the reduced matrix eleméiit’,SI) valid to next-to-leading order in il is obtained by insertings.29 and
(5.30 into (4.111) and making use of4.12]) for the product of § symbols in(5.29.

Let us examine closer the structure of thdlltorrections to the leading order result fafl ', S1) on the simple particular
case wherS# 1. After dividing with the norm of the initial stat€5.18 we find for this case

1
S+ =211 +1)

11 1 1 21'+1
' _ N[ Kk—1/2 7 \— 4 .
T, Sh=NY26(2S+ 1) (21 +1) (21" +1)(—) ! {s | "Hl 2Nc+ 3N,

( 3 i i’ 0 2)
><—2(2i,+1)—6[% % I,] ] 533

The last term in the braces has the explicit expression

(—3 —6i e )—ZI,H - (1-25), (5.3
22" +1) soef )TN (A=2oi.

AL 21741
TS PRERURE RN UREY

N

which shows that it cannot be absorbed into a rescaling ofvave baryons. In extending their analysis to the excited
the leading order term. This quark model calculation sugbaryons’ sector one has to deal with additional complica-
gests therefore that the ratios of tfi@ndQ couplings of the  tions, related to the more complex structure of the spectrum
mixed symmetry states predicted by the consistency condiPf these states.

tions in the largeN, limit will receive nontrivial 1N, cor- The consistency conditions are very effective in con-
rections. straining the largeN, spin-isospin dependence of the strong

vertices of these states, especially for Sxevave pion cou-
pling, which is completely determined in terms of just one
unknown constant. The allowed form of the strong vertices
turns out to be exactly the same as the one following from

We have studied the strong couplings of the excited barythe constituent quark model. In addition to constraining the
ons in the largeN, limit with the help of consistency condi- structure of the strong vertex, the consistency conditions pre-
tions on pion-baryon scattering amplitudes. This method iglict also the equality of the pion couplings to excited and to
similar to the one used by Dashen, Jenkins, and Manohas-wave baryons, respectively. This is again what is expected
[2,3,5,4 in their analysis of the strong couplings of the s- from the constituent quark model.

VI. CONCLUSIONS AND OUTLOOK
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Our findings extend therefore the results obtained intation. Extending our analysis to this case should be com-
[2,3,5,4 for the strong couplings of the-wave baryons and pletely straightforward. Finally, a similar analysis could be
give a natural explanation for the successes of the quargerformed for the electromagnetic couplings of the excited
model when applied to strong decays of the excited baryonbaryons, with the help of consistency conditions for photon-
[1,16-1§ in terms of the largeN. expansion. For example, baryon scattering amplitudes. For the s-wave baryons such
this lends additional support to some predictions made reeonstraints on the magnetic moments have been worked out
cently for strong decays of excited heavy bary¢as,39 in [4]. We plan to return to some of these problems in a
with the help of the quark model. However, as discussed irffuture publication.

Sec. V, the quark model predictions for ratios of strong cou-

plings for these states cannot be expected to hold to the same

accuracy as in the s-wave sector, as these ratios are not in ACKNOWLEDGMENTS

general protected againstNL/ corrections. The exact results
in Sec. V provide a specific framework to study quantita-
tively how good the larg®&. approximation is by examining
their completeN. dependence ds varies from the physical

Va';fﬁchg |t° '”;'”r']ty' o ded i APPENDIX A: TRANSITION MATRIX ELEMENTS
e results of the present paper can be expanded In & gy EEN STATES WITH MIXED SYMMETRY
number of directions. We recall that our analysis has only

assumed isospin symmetry. Thus, one can attempt to incor- We present in this Appendix the computation in the quark
porate SW3) with some amount of symmetry breaking, by model of the matrix elements & andQ? between excited
studying consistency conditions following from lare- baryon states with mixed symmetry. This quantity is phe-
counting rules for kaon-baryon scattering amplituf@#]. nomenologically relevant for strong decays of positive-parity
In this way one should be able to relate the strong couplingexcited baryons into negative-parity states in ideWe in-

of different towers of states with different strangeness quanelude this calculation here merely for the sake of complete-
tum numbers, which in our present analysis are left comness and because the result provides an explicit realization
pletely unrelated. Second, we have only discussed exciteir the most general solution of the consistency condition for
states transforming under the symmetric and mixed symme(J’'1’,JI) (3.59.

ric representations of S¥). It is known that excited states We start by computing the quark model reduced matrix
exist which transform also under the antisymmetric represerelementZ(S’l’,S1) defined by

The research of D.P. was supported by the Ministry of
Science and the Arts of Israel. The work of T.M.Y. was
supported in part by the National Science Foundation.

N¢

. 1
(s'l ’L’,m'smﬁa’|r§,l rl ol 73SIL, mgm, a)=

V(2S' +1)(21'+1) (2L +1)
X(L",m{|LL;m,iX{1",a'|l11;a,a). (A1)

TS, SHZ(L',L)(S',mS1;ms,j)

We proceed in close analogy to the calculatiorZgif’,S1) in Sec. IV D. First we take the matrix element of the spatial part
of the operator, which is parametrized by the overlap integfhl,L):

_)u//(S’I’i’)+z//(SIi) N¢ )
E [k',1]<S/|/:m/sa/|0#17'ﬁ|5|:msa>[k,1]

(S'1'L",mim! a'|rl o) 72| SIL, mgm, o) =

2(NC 1) k,k’=2
L 1“ Llul I 5| Z L yL 6 5 ! (5 . A2
/2| 7 ] L L kn@kk nl

After summing over the contributions of tié. quarks to the transition operator we obtain the following general expression
for the reduced matrix elemef{S'l’,SI):

T(S'17,S{S',;mg|SL;mg,j)I",a’|I1;a,a)

V(28 +1)(21'+1)

(—)#S1IN+ (s Ne _ Ne o N
T 2(N—1) lZ (Sl mga’ o Shmsa)ny+ X o (S mse’ |04 2, [SImsa)pe -
c n=1 K'=2 k=2

(A3)

The first term in the braces is of ord®f, and is therefore suppressed relative to the second one, which is oﬂ‘dﬁ'dm this
section we work only to leading order . so we keep only the contribution of the second term. It can be computed by
expressing the sums ovkrk’ with the help of(4.89:
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NC NC
j 1 H s ’ ’ |
E [k,'1]<S’I',m'Sa’|0'Jl7'el‘g2 |S|,msa>[k’l]:§{65|5sl|/B(II)B(I’I Y1, mg,a’ |} 75]1,mg, @)

K=

=Nz (S'1";mg,a’[Pyal 7Shms, @),

_N<2: (S’ ,?m/s,a/|(Tj17iP1k|S|?ms'a>1

+N2 (S'1;mg, o’ |oh 73S lmg, a) 1} + O(N,). (Ad)
Each of the terms on the RHS can be evaluated using the methods of Sec. IV D. We obtain, for the reduced matrix element
s, S,

N N2
\/(23,+1)(2|’+1),I(S’|"S|):(—)¢(S/|/I )-HMS“)WC_:L)\/(ZI+1)(2|,+1)(28+1)(2|+1)[

T s s 11 1" 1 gy s s 9 s s 1)(1 1" 1
21'+1| 3 i3 3 i 204112 3 i |3 5 0

(i i o)(i i 0)(S S 1)(I I” 1
+1(—)7ITST S 1 1 sll: " it (A5)

The first two terms can be combined together by usth2]) for the product of two § symbols in the second term. The last
two terms can be also written together such that we obtain, for the total sum of the four terms in the curly brackets,

S |1
el 1

171
e o[
2 2

The product of three jsymbols on the RHS can be transformed into the following form by repeated applicatidriaf):
S 1 1)(s S8 1)(I 1" 1 s 1" 1 Ssy 2s+s’+|111111
= —+ J—
syl o vl s 0T oy leen T sl s s
68/'/

6(21"+1)

58'58/'/
2(21+1)(21"+1)

N[

N
Nl
(NI

11 1] ]S 1S S 1
, +18(_) +i+i =1 = ., .
S 1| 3 i : Lo

(AB)

_ar = U2+SHI+1 +i Is1/
3(-) 1
21'+1

N
N[

(A7)

(_)1/2+S+S’+|+ir{l 1 1]

ST

When inserted intdA6), the last term in this relation exactly cancels the first terifAi®). We obtain in this way the following
expression for the reduced matrix elem@&g®’l’,S1) taken between unnormalized mixed symmetry states:

S I 1

11
2 2

(S| ’,S|):§NC(—)¢<S"’i’>+¢<5'w(2i +1)(2i" +1)(2S+1)(21 +1)(2S +1)(2I" + 1)(—)1““’—"—3’[
53'/

st 25+8' +1 it 11
X — (- .
5 3 i']|e'+1) (=) S I I||I” § S

The physical value of(S'l’,SI) is obtained after dividing this expression with the squared roots of the norms for the initial
and final state$4.44). Inserting the appropriate phases of the mixed symmetry sigt®$i)= 3+1+i we obtain our final
result:

(A8)

[7—(S,|, SI)] —6(_)S+2|+|,\/(28 1)(2| 1)(281 1)(2|, 1)|— 5S|’ ( )ZS+S’+|[ 1 1]‘ 1 1 1]
' norm + 6(2" 1) S I’ I |’ S/ S .
(‘ ‘9)

This will be used in the following to compute the matrix elementy'®fand Q¥® between states with mixed symmetry.
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1. Matrix elements of Y2

The matrix element ofY? takes its simplest form in th§IP)S,L;J,m,a) basis, where it is directly proportional to
s, Sl):

s 19
[23+1
((I'P)S',L";3",m’" ' [Y3|(IP)S,L;J,m,a)= 2I,+17(s'|',3|)5u,5mm, L 1 L'} (I"elll;ea). (AL0)
J o J

The 9§ symbol with one value of 0 can be reduced tojas@mbol. We decided to write it in this form, as it allows us to read
off the results from the corresponding expressions@f given below by making the replacement=® in the Wigner
symbols.

We are interested finally in the matrix elements 6t in the |I,(PL)A;J,m,a) basis, which is reached through the
recoupling relation3.23. With P=P’'=1, we have

L (2341
(I",(P'L)A"; ", m" ' | Y3l (PL)A;J,m,a)=(—) '"t737 L) 833 Omm {1, |l 1;,a)

21'+1

I 1 sj{1" 1 ¢
X D \/(28-1-1)(28’+1)(2A+1)(2A’+1)[ H ’
ss

L J AJ|lL" J A
S 19
xyL 1 L"}7s'l’,S. (A11)
J o J

All that is left to do is insert here the result of the quark model calculatio(8fl’,S1) (A9) and perform the summations
overS,S'.

We write the total result for the reduced matrix elem¥(d1’,J1) as
Y1, ID)=[YI",ID ]+ Y ,ID ], (A12)
where[Y(JI',J1)], , stand for the contributions of the two terms7(S’l’,S1) (A9). We find

L A" O oo
[Y(Jl',J|>]1=<—>1*2J¢2A+16M{1 . L,}(—W' *A[A, ; A], (A13)

, 1 1 1)(1 1 1 O I I
[Y(IU 1) ]p=24/3(— )2+ +2 ¢(2A+1><2A'+1>[L K L,HA, A L}(—)“' ”[A, ] A}. (AL4)

Their sum can be seen to have the same form as the model-independent solution of the corresponding consistency condition
(3.36.

2. Matrix elements of Q2

The matrix element 0Q*? is given, in the|(IP)S,L;J,m,a) basis, by an expression similar 410)

S 19
[ 23+1
((I'P)S',L";:J",m’,a'|Q*|(IP)S,L;J,m,a)= \/5 TS, SHS L 1 L' (3,m'|32;mky1", a|l1;a,a).
21" +1 ,
J 23
(A15)

This can be transformed to the (PL)A;J,m,«) basis with the help of the recoupling relati¢®.23. Again with P=P’
=1, we have
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o 2341
(I",(P'LHA"; 3 ,m",a'|QX1,(PL)A;J,m,a)=(—) "t -L'=J 52|,+1<J’,m’|J2;m,k>

I 1S
x(1",a|l1;a,8) > \(25+ 1)(28’+1)(2A+1)(2A’+1)[ ]
ss

L J A
s 19
"1 g L1 L
X "1 .
L3 A 7(S'l’,Sl) (A16)
J 2 J

In the following we consider the contributions of the two term&{8’'l’,S1) (A9) to this relation in turn. For the first term
the summation oves is trivial and amounts to the substituti®@i—~1’. The remaining sum ove®’ can be readily done by
using (3.21), which gives for the contribution of this term @(J'1’,JI):

I 1 1" (L A" 23 J 2
L J Aj{1 1 L"J|A" L ') (AL7)

This can be put into a form similar {8.59 by expressing the product of the first and lags§mbols with the help of3.21):

[Q'1",IN];=(—)1+22" 5B(2A+1)(2A" +1)

A1y

BESATEEEEEI IS o2yl ]
Lo aflar o), P A s L L S| (A18)
y

The contribution of the second term is proportional to the double sum &&r

s 1 ¢
oS () 84128 11 WA S VRS A [ N A1 IR
SS_SS( ) ( )( )L J A L’ J A’ s I | S 3 o

(A19)

The summations ove® and S’ are analogous to the sum ovBrencountered in Sec. lll C in E43.70 and can be
performed along similar lines. A slight generalization of the sum &@r (3.70 gives the identity

S 1V
I 1 S|{1 1 1 , y 1 z||ly 1 z
—)2S(2g+ L L' Y — 13 +L+1 —\%(27+
% (-)es 1)[L 3 AHI K s] Y =) 2, (22 1)’1 2 1”A L' LJ
J 2 Y
L 1 J
xi A 1 Jyp, (A20)
z 1 2
wherey can take the valueg=1,2,3. Applying(A20) twice we obtain
1 1 1 1 1 1 AT
y Yi|Y Z\y z
= —)Z —)Y
lss= 2, )(2z+1>y§1’2( >(2y+1>{l ) 1”A, . L,Hl ) 1HA A L}
z 1 2
(A21)

The contribution of the second term (A9) to the reduced matrix eleme@(J’l’,JI) is given, in terms ol 5g, by

[QU'1",dN],=6(—)-"-"VB(2A+1)(2A" + 1)l sg. (A22)
The total expression foR(J’l’,J1) is given by

QMI'I",IN=[QMI",IN]+[QW'I",IN],, (A23)
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which can be seen to have the form of the general solution/N_ . This means that sonrebody Operatorﬁ(kn) will have

(3.59. matrix elements of ordeN? ', which will compensate the
suppression factor ifB1).
APPENDIX B: QUARK OPERATORS We will consider in the following all quark operators
FOR PION COUPLINGS OF EXCITED STATES which contribute to leading order inN{ to the S-wave and

There exists an alternative description of the baryon state%;\ga-l\fﬁezgcvﬁlogep l:jngnsotue% tgszgg].mcludmg 2-body opera-

and of their couplings in the largd; expansion, based on

the use of quark operatorb,7,9,1§. Compared to the a a1

method of the consistency conditions used in the main text, Yi=aAt N_CbB T (B2)
this approach has the advantage of making a direct connec- 1

tion with the quark structure of the baryons. This connection Qka=dDkKa+ — (eE¥a+ fFKa) 4. . . (B3)
is obvious for the case of baryons containing heavy quarks, N¢

but the validity of the method is not restricted to this case

4 extends also o b d ¢ liaht K with a,b,d,e,f unknown coefficients of the order of unity.
and extends aiso 1o baryons made up ot fight quarks. = pq 1-body operator&? and D¥? are identical to the ones
In this Appendix we give a partial proof of the equiva-

. o introduced already in Sec. llI:
lence of the method of the consistency conditions as used in y N

the main text with the method of the quark operators. More a_ EC i i a
precisely, we show that the two-body operators introduced in A%=(0[1L;ji >n:1 'nOnTn; (B4)
[18] to parametrize the pion couplings of the=1 excited

NC

baryons to the ground state baryons, give the same contribu- o
tion as the one-body operators in the laigedimit. This DKa=(2k|11;ji) >, rhol7?. (B5)
clarifies the relation of our results to thos€ ©8]. This proof n=1

can probably be made complete along the lined&jfto The 2-body operators are defined[48]

include the contributions of ali-body quark operators.

We begin by briefly describing the basic idea of th&l 1/
expansion expressed in the language of quark operators. Any
QCD operator®, such as the axial current or the pion cou-
pling to baryons, can be expanded[&$

NC
B=(0]1L,dc) >, (lc|iLiij)rialat 7, (B6)
n#n’=1
NC
. EX=(2K[1Lij) 2 r(1j|liLpa)odon, 7, (BD)
#n'=1

0=> " ——o. B1 '
2 o (B1) . o
Fe=(2k110)) 2 (ldliLip)riodol, 7o . (B8
Here O{" are all possiblen-body operators with the same n#n' =1
quantum numbers as the QCD operafbrThe contribution |, aqgition to these operators, the authors[8] include
of ann-body operator to the matrix element@finvolves, in <5 o other 2-body quark operatd8 andGK2. However
the language of the Feynman diagrams, at least gluon — yhen considering only S@) pion couplings as in the
lines connecting different quarks in the baryon. This SuPp“e%resent paper, their matrix elements are not enhanced by a
a factor ofad~* which translates, in the large; limit, into  factor 0fN,, so they will not be included.
the suppression factor} " in (B1). . We are interested in the matrix elementsYsf and Q<@

Counting powers of N¢ with the help of(B1) is ob-  taken between mixed symmetry excited states and symmetric
scured by the fact that the matrix elements@f’ can be  states. The matrix elements of the 1-body quark operdtbrs
proportional to powers dfl;. This can happen if the contri- and D¥® have been computed already in Sec. IV to leading
butions of theN. quarks in the baryon add up coherently into order in 1N, and in Sec. V to all orders in . In the
the matrix element oﬂ(k“). For the case of excited baryons following we describe the computation of the matrix ele-
in the initial state transforming under the mixed symmetryments of the 2-body operatoBs, EX?, andF*?,
representation, it has been pointed ouf18] that there are The matrix elements of the 2-body operators can be ex-
infinitely many operators contributing to leading order in pressed in terms of the quantify(l’,S1) defined by

NC

. 1
I'L":m'm| a’ ri(sj|11:kl oo 2 SIL;mgm, a)= T(17,SH{'m'|Ssmej {L'm/|L1;mi
< L |n¢§:l n< J| > n“n n| st > (2|,+1)m s( )< | SJ>< L| L>

X(1I"a'|I1;aa). (B9)

The reduced matrix elemer(l’,SI) can be computed using the methods applied in Sec. IV D for the computation of
7(1",S1). We obtain in this way to leading order inNl/

11
TS(I’,SI)=2N§+1’2\/25+1\/(28+1)(2I+1)(2I’+1)(—)"+'/|IS s I,}. (B10)
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Note the additional factor dfl, compared with the corresponding result for the 1-body opefdt@24, which can overcome
the suppression inherent to the 2-body operators.

We will put now the 2-body operato(86),(B7),(B8) into a form involving the operator ifB9). For B? this can be done
by writing the successive couplings of the vectors entering the definition of the operator as

11 1
Ba:“|(rnan)1,on,;o>”=—ZS 3(25+1)|l 0 S}“ [ (0000)S;0)” =" 1o, (000 1;0)”
NC
=(0[1Lij) > ri1jj1ikloket 7, . (B11)

n#n’=1

We used here the recoupling relation for 3 angular momg38& This result is the analog for spherical coordinates of the

well-known vector identity I(nx 5n)-5n/=Fn»(5nX En/). Writing B2 in this form one can see that its contribution to the
S-wave amplitude is related t@;_,(1',SI) in the same way the matrix element ®f is related toZ{I',SI) (4.124.
Furthermore, the two reduced matrix elemefts’,S1) (4.124 and7Z,_(1’,SI) (B9) are identical, up to a trivial numerical
factor, so that their contributions t%6® will be also identical. This completes the equivalence proof for the quark operators
mediatingS-wave transitions.

This argument can be extended to the 2-body quark operators medatiraye couplings. FOE*® the proof is immediate,
because its matrix elements are relateo,(1’,SI) (B9) in the same way the matrix elements®f? are related ta@{l’,SI)
(4.124. Since theZ matrix elements are proportional, so will be their contributiont3 too. The corresponding proof for
Fka is slightly more complicated, and involves first casting this operator in a different form with the help of the recoupling
relation(B11),

1 1
Fra="|(rhon) Lo, 2k)" =—§S: Va(2stl), s)“ |rn.(onom)s;2K)”
111 Ne o |
:_ES J3(2s+1) L 2 s (2K|1s;ij) 9&2’ 1 rsilitmlyolo,, 75, . (B12)
n+n =

The matrix element oF* can be now written in th&(IP)S,L;Jma) basis in terms offg(1',SI) (B9) as

2J+1 1 1 1
(J’I’,m’a’|Fka|(IP)S,L;Jma)= 52| 1<J’m’|J2;mk><I’a’|l1;aa)2(—)s\/3(25+1) 1 2 S]’Z’S(I’,SI)
"+ s
S s [/
x¢L 1 L"}. (B13)
J 2 J

This can be transformed to the baligPL)A;Jma) with the help of the recoupling relatiai3.23. The resulting sum over
S can be performed with the result

S s
5 311|1sL1L,
25_3(28+1)| s I'llL J A 5

! ! !

11 11 - )

y y

A1

L' A LHZ 1 s] ' B14)
1 2

=<—>J’—'—S—L; (—)Y(2y+1)

The remaining sum oves can be done with the help of the orthogonality relation fprsgmbols. We obtain finally the
following result for the matrix element dFa:

(317, m’ o’ |FRa|l L (PL)A; dJma)=(J'm’|32;mky (I’ a'|11;aa)2N " Y2152]+ 1) (21 + 1)(2A + 1)

L 1 J
X (— 1=J+1"+J' 1 1 1 A | J B15
(=) oL , (B15
1 1 2

which can be seen to have again the same form as the general solution of the consistency con@8riF&9).
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