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Renormalizability of a lattice chiral fermion in the overlap formulation

Atsushi Yamada
International Center for Theoretical Physics, Trieste, Italy
(Received 13 June 1997; published 30 December 1997

Renormalizability of a lattice chiral fermion is studied at the one loop level in the overlap formulation in
four dimensions. The fermion chirality is examined including the self-energy corrections due to gauge inter-
actions. Divergent terms breaking the chiral symmetry do not appear and the chiral fermion is renormalized,
preserving the correct chiral properties without adding new counterterms or tuning the parameters involved.
The divergent part of the wave function renormalization factor agrees with that of the continuum theory. The
lattice chiral fermion in the overlap formulation has passed the important test, renormalizability, at the one loop
level.[S0556-282197)05523-9

PACS numbsd(s): 11.15.Ha, 11.30.Rd

The overlap formulatiori1] is a formulation of a lattice

chiral fermion, inspired by the idea of the domain wall fer- Hi(A)ZJ YT (PIH=(P)Y(p) +V(A), (1)

mion[2]. It has been shown to have promising analytic prop- P

erties[3—8] and gives results in good agreement with con-

tinuum theories in numerical simulations of two-dimensional H

systemq 9]. This formulation provides the possibility of in-

vestigating chiral gauge theories in the strong coupling re-

gion, as well as a clearer analysis of the phenomenon of

chiral symmetry breaking in vector gauge theories such as

QCD. Moreover, it has been recently argued that this formu- ) ) o

lation can be applied in the study of supersymmetric gaug Eq. (1), the momentum integral is over the Bnllouml zone
—mla,w/a] and the termV(A) describes the gauge inter-

theories[10] and strongly correlated fermion systems int . . i

three (two plus ong¢ dimensiong 11]. However, one of the ictlons, WhICh we treat as, perturbatlolns. In E@’
most important tests of the validity of that formulation, the P»=(1/@)sin(p,@), p,=(2/2)sin(p,a/2), a is the lattice
renormalizability of a chiral fermion, has not yet been exam-SPacing, andlc==1 determines the fermion chirality, as

ined. Since the existence of the triangle anomaly means thifill Pe sfeer;)l_ater.fThe_ Ha_mllftonlaril‘si desc(rjl_be time evo- q
it is impossible to regularize a chiral fermion in a chiral- ution of a Dirac fermion in four plus one dimensions an

invariant way{ 12], even if a chiral fermion is obtained in the th|s Dlr_ac fermion is reduced to a weyl fermlon in four
continuum limit in a(lattice) regularization at the tree level g:?ai?osrl,oggj’;]r;nTir?i?aggﬁrgt%'féfo)rfa?pandEd in terms of
[13], it is not evident that the chirality of the regularized P

fermion is preserved after including quantum corrections.

The fact that the chiral anomaly is correctly reproduced in ~ #(p)= 2>, [U-(p,o)b.(p,o)+v.(p,0)d(p,0)],

the overlap formulatiorf4] shows that the chirality of the 7 3)
regularized fermion is preserved in the triangle anomaly dia-

gram. However, the dynamics of gauge fields does not plawhereu. (p,o) andv.(p,o) are positive and negative en-
any role in this analysi$14]. Therefore, that fact does not ergy eigenspinors of the one-particle Hamiltonidn (p),
guarantee that the chirality of the regularized fermion is pretespectively, i.e., H.(p)u.(p,o)=w-(p)u-(p,c) and
served after including the radiative corrections by the dy-H. (p)v.(p,0)=—w.(p)v+(p,o). The label ¢ denotes
namics of the gauge bosofik5]. In this paper, we study the o spin states an. (p) = /'52+X2+(p). The spinorsu..
fermion propagator in the overlap formulation regularized OMndv.. are given by7 - -
a lattice, including self-energy corrections due to the IS)J( -

4
~(P)=7s 21 iDLyt TeXa(p)|,
=

« _ L\ ar, X
t(p)——g+7p- (2

gauge interactions at one loop level, and directly examine the w++X+—iz Dy, T
chirality of the fermion and its renormalizabilityWe will U (p, o) = - pERIRC (o)
follow the notation of Ref[5] in our analysis. S Vo (0.+X.) XL

In the overlap formulation, the effective action of a chiral S
fermion in the presence of gauge fields is expressed by the w+—X++i2 Dy, T
overlap of the two vacufA=) of the HamiltoniansH .. (A), _ pomTmoC

vi(pyo-)_ X(O-)v (4)

where V20 . (0 —X.)

and the spinoy (o) satisfiesysT.x(o) = x(o). The two sets
*On leave of absence from the Department of Physics, Universitfb, (p,o),d.(p,o)) and(b_(p,o),d_(p,o)) are related by
of Tokyo, Tokyo, 113 Japan. a Bogoliubov transformation as
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b_(p,o)=cosB(p)b.(p,a)—sin B(p)d’ (p,a), and thus the propagatps, (p) —S_(p)]/2 describes a chi-
ral fermion in this region. At each corner of the Brillouin

zone,p,==*m/a+q,, the propagator takes the following

d" (p,0)=sin B(p)b..(p.o) +coB(P)A (p,0), (B)  f7°

with cosG(p)=uT+(p,cr)u_(p,o). The Dirac vacud=) of the 1
Hamiltonian H..(0) are defined a®.(p,o),d-(p,o)| =) =[S (p)—S_(p)]= (citCyys),
=0, and the Dirac vacugA+) are given by the integral 2 V(4n%r?=\%)+0(a*q?)

equations 12

wheren=1, ... ,4 is thenumber of momentum components
which lie near the corner of the Brillouin zone ang, are
constants. The gauge symmetry of the Hamiltonigisbe-
1-|=)(=| 6 comes a chiral gauge symmetry near the origin of the Bril-
©) louin zone, while chiral noninvariant contributions coming
from each corner are suppressed due to {n’rZ—\?)
las (A)]2=1—(A%|[V=AE.]Gi[V—AE.]|A+), mass. (We restrict ourselves to the range of parameters
- T - 7 0<A<2r.)
Now we consider the one loop correction to the propaga-
where AE. =E.(A)—E. (0). E.(A) and E.(0) are the 1O (+[Q(p,a)[—). Inserting the decomposition &1 (p,q)
ground state energies of the Hamiltoniaftt.(A) and INto Eq.(8), Eq.(9) yields the propagator at tree level, while

.(0), respectively. The fermion propagator is defined bythe quantum corrections arise fraA+|:Q(p,q):|A—). To
the path integral obtain the one loop correction, the interactiv(A) in Eq.

(1) should be expanded up to the second order in the gauge
coupling constang; V(A)=V,(A) +V,(A), where

|Ai>:ar(A)[l_Gr(V_AEr)]illi%

G« E.(0)-H.(0)"

| paariap@ia- e

: ®) V1=igf Y(P)2 Vi (p+ DA (p-Dy(a), (13)
jDA(A+|A—>e*S(A) p.g 7
. _ . 1 2 -
where Q(p,q)={(p) ¥(a) ~ (@) H(P)}/2, ¥=y'ys and V=729 f P2 VaulP+a)
S(A) is the action of the gauge field. We find it convenient
for later calculations to decompo$k(p,q) in the form[us- X 8 AL),A(P—t—a)}¥(q), (14
ing the Bogoliubov transformation (5)], Q(p.q) ) )
=(+|Q(p,a)| =) +:Q(p,q): Vi,(p)=7v,cosp,a2)—irTsinpP,a2), and V,,(p)

=rT.cosp,a/2)—iy,sinp,a/2). Then evaluating|A+)
perturbatively in Eg. (6) the quantum correction

1 -
(+lp.a)l-)=(2m*sp(p—a)5[S(P)~S-(P)]. (A+]:Q:[A-), up to the ordeg? [16], is
€) (+]:Q:G_V)| =)+ {+|V,G,:Q:|—)
1 H(+ VG 1 Q:G V| =)+ (+| VG WG :Q:|—-)
AQp,g)=——————
(P9):= CogB(p)coss(a) H(+]:0:6 WG |-, 15
_ - These terms are evaluated by rewriting the fermion operators
« t
UET [~us(p,o)u_(q,7)b.(q,7)b_(p,o) in 1, andV, in terms of the creation and annihilation opera-
_ tors defined in Eq(3). Then performing the path integral
+us(p,o)v4(q,7mb_(p,o)d_(q,7) over the gauge fields, the first two terms and the last three
_ . " terms lead to the quantum corrections described by the Feyn-
tv-(p,o)u_(q,7)d;(p,o)bi(q,7) man diagrams Figs.(4) and 1b), respectively.

— Before examining these terms separately, we briefly dis-
+u-(p.o)o (0, NdL(P.o)d-(AD]. (10 ¢sg their general features and the strategy of our analysis.
Each term in Eq(15) yields the contribution to the tree level
Here op(p—q) is the periodic 6 function on the propagator of the forn8,(p)az(p)S, (p) wheree ande’
lattice, S, (p)=Z,u,(p,o)u_(p,o)/cosB(p), and S_(p) denotex, andX(p) is a self-energy given by integral over
=S v_(p,0)v+(p,o)/cosB(p). The first term(9) is the theloop momentum. Here, we explicitly factor out the lattice

propagator forA=0 and the second terfl0) satisfies the SPacinga so thatX(p) has the correct dimensidfone of
relation(+|:Q(p,q):|—)=0. Near the origip=0, the self-energy for fermions. To compute the divergent part

of the renormalization factorg, (p) should be evaluated up
N 171 a to the logarithmically divergent part in the continuum limit.
S.(p)=——|=(1+ysTo)(Fip)+=—p2ys|, (11  We find that in general, in this limE (p) gives rise to the
- ap?2 2\ following expression:
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1
3(P)=Toa0 €+ (AT, ) 5]

Q
+ = 26\2)5(1—75T )ip
N 1672 2 ¢ (a)
+ (finite termg, (16
whereo; J(\,r,€) are the constants obtained by the integra- —&—
tion over the loop momentum ar@d is a numerical coeffi- (b)

cient. Here¢ is the gauge fixing parameter, defined later, and
g%=(N?—1)/(2N)g?. This expression is obtained, for ex-
ample, by expanding (p) with respect to the external mo-
mentump as in Refs[12,17,18, or by splitting the integra-
tion region of the loop momentum into two pieces as in Ref.

[12]. In both methods, the ultraviolet divergent parts are N1l i a ,
5(1"‘ YsTo)(—eip)+ N P7s

FIG. 1. The Feynman diagrams describing the contributions of
(a) the first two terms andb) the last three terms in E@15).

evaluated by explicitly factoring out thee dependence from a n2
the momentum integral with a rescaling of the loop momen- P

tumk— k/a. Logarithmic divergences appear as the infrared 1 N 101 .
divergences of the integration with respect to the rescaled Xaa[ffﬁ 0275]'5 E §(1+ vsTo)(—&g'ip)

variable k. Following the strategy of Ref§12,17,18, we

expandz, (p) up to the first order irp, where zero and first ) 1 ,

order terms give rise to the ultraviolet divergence in the con- o P 7’5}—> FlonTe(—e+e’)+oy(e+e’)
tinuum limit as

A1 —ip
2(0)—>g[al()\,r,g)ﬂLoz(h,r,g)y5]+finite term, +O(a)]a 2(1+%T°) p? 0
17
From this expression, we can see that only an ultraviolet
E d2(p) < 5 divergence of%(p) more severe than quadratic can invali-
m Pu ap,, SN ) date the chiral property of the regularized fermion. The loga-
p=0 rithmically divergent term in Eq(18) directly appears in the
1 wave function renormalization factor as a logarithmic diver-
Xz(l— vsTo)ip +finite term, gence.

Next we discuss each contribution in H45) separately.
(18 The contributions of the first two terms to the tree level

t iven by S;(p)all? (p)S- ith
wherec is the infrared regulator. The remaining finite part iSpropaga or are given by S (p)all: (p)S-(p) wi

given by

912 g2
I 2 (p)=—- — (2 o2
2P-30-3 ”;m 2= p)f 6
o

p=0

1 g2 , o1 . X
G151 (1= OHn(pl )5 (1= 5T o).

4rT, . )
—1 ,

a (21

(199  where the uppetlower) sign should be taken for the contri-

bution containings, (G_), andD (k) is the gauge boson
Expression16) is the sum of Eqs(17), (18), and(19). The propagator

infrared divergence at—0 is cancelled between Eqd.8)
and(19). In Eq. (18), the logarithmic divergence is obtained

if the integral over the rescaled loop momentimr ak ex-

hibits infrared divergences. When the integral okers in-
frared finite, there is no logarithmic term in E(L9). The
renormalization factors are evaluated by inserting E@) ) ) ] )
into the expressios,(p)a3. (p)S, (p). In Eq.(16), the Lor- In Eq. (21), o?(£) is the constant obtained by the integration
entz structure of the linearly divergent terms is completelyover the rescaled loop momentuk= ak. No logarithmic
determined by the discrete symmetry on the lattice, e.g.livergence appears, since the rescaled integral is infrared
(k< —k). These terms are reduced to a finite wave functiorfinite. As was discussed previously, the contributid@$)
renormalization factor are reduced to a finite wave function renormalization factor.

D (k):i(tS —(1—§)R”RV) (22)
y% RZ v RZ .
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Next consider the last three terms in E@5). The third
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divergent terms as well as logarithmically divergent terms

term leads to the following contributions to the tree levelwith C=1/4 in the form of Eq(16), while the contributions

propagator: S, (p)aZ® (p)S.(p)+S_(p)aZ” (p)S_(p)

with

b 17 1 i
M= | e ®
X PR Vi, (p+k)Sz(k)

The integration over the rescaled momentknexhibits in-
frared divergences neak =0, which in turn, give rise to
logarithmic divergences in the form of E(.6) with C=1/4.
Infrared divergences appear only in the regﬁfro, as is
seen from Egs(11) and(12). The contributions of the fourth

and fifth terms in Eq. (15 are expressed as

—S;(p)a[2% (p) +112(p)]S. , where

, 1 2 sinB(k)

b = — —

22P=39"2 | o) VPt Cosgi
w u+(k,s)z+(k,s) (for+)
s | —v_(k,s)u_(k,s) (for—)

b __3_2 1 1

2P == 29" 2 (p2 fkwi<p>+wt<k>\’1ﬂ(p+k)

X2, [us(k,s)us(k,5)—v+(k,5)v (k)]

The upper(lower) sign should be taken for the contribution

containingG, (G_). The contributiong24) lead to linearly

(25) lead only to the linearly divergent terms. This is because

the integrations over the rescaled loop momentikingive
rise to infrared divergences in Eq24), whereas in Eqg25)
they are finite.

Summing up all the contributionsl2®, 3%°" together
with the tree level propagator, the propagator is given at one
loop level as
2
g

1-(1-
i1 (1-6)

A1 —ip
a 5(14— ’}/STC)F 1+

X (Ina2p?+finite terms |. (26)

From this expression, we see that the chirality of the
regularized fermion is properly preserved and the wave

function renormalization factor i€=1+ g%/167°[1—(1

— &)](Ina?u2+ const), whereu is the renormalization scale.
The divergent part of the wave function renormalization fac-
tor agrees with that of the continuum theory.

We have studied the renormalization of a lattice chiral
fermion due to the non-Abelian gauge interactions in the
overlap formulation in four dimensions. Divergent terms
breaking the chiral symmetry do not appear at one loop level,
and accordingly there is no need to add new counterterms or
to tune parameters in the theory to specific values to realize a
chiral fermion. The divergent part of the wave function
renormalization factor is correctly reproduced. Our study
proves the renormalizability of a lattice chiral fermion in the
overlap formulation at one loop level, and indicates, together
with the analyses of the gauge bosepoint functiong 5—7]
the renormalizability of this formulation.
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