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Renormalizability of a lattice chiral fermion in the overlap formulation

Atsushi Yamada*
International Center for Theoretical Physics, Trieste, Italy

~Received 13 June 1997; published 30 December 1997!

Renormalizability of a lattice chiral fermion is studied at the one loop level in the overlap formulation in
four dimensions. The fermion chirality is examined including the self-energy corrections due to gauge inter-
actions. Divergent terms breaking the chiral symmetry do not appear and the chiral fermion is renormalized,
preserving the correct chiral properties without adding new counterterms or tuning the parameters involved.
The divergent part of the wave function renormalization factor agrees with that of the continuum theory. The
lattice chiral fermion in the overlap formulation has passed the important test, renormalizability, at the one loop
level. @S0556-2821~97!05523-9#

PACS number~s!: 11.15.Ha, 11.30.Rd
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The overlap formulation@1# is a formulation of a lattice
chiral fermion, inspired by the idea of the domain wall fe
mion @2#. It has been shown to have promising analytic pro
erties @3–8# and gives results in good agreement with co
tinuum theories in numerical simulations of two-dimension
systems@9#. This formulation provides the possibility of in
vestigating chiral gauge theories in the strong coupling
gion, as well as a clearer analysis of the phenomenon
chiral symmetry breaking in vector gauge theories such
QCD. Moreover, it has been recently argued that this form
lation can be applied in the study of supersymmetric ga
theories @10# and strongly correlated fermion systems
three ~two plus one! dimensions@11#. However, one of the
most important tests of the validity of that formulation, th
renormalizability of a chiral fermion, has not yet been exa
ined. Since the existence of the triangle anomaly means
it is impossible to regularize a chiral fermion in a chira
invariant way@12#, even if a chiral fermion is obtained in th
continuum limit in a~lattice! regularization at the tree leve
@13#, it is not evident that the chirality of the regularize
fermion is preserved after including quantum correctio
The fact that the chiral anomaly is correctly reproduced
the overlap formulation@4# shows that the chirality of the
regularized fermion is preserved in the triangle anomaly d
gram. However, the dynamics of gauge fields does not p
any role in this analysis@14#. Therefore, that fact does no
guarantee that the chirality of the regularized fermion is p
served after including the radiative corrections by the
namics of the gauge bosons@15#. In this paper, we study the
fermion propagator in the overlap formulation regularized
a lattice, including self-energy corrections due to the SU(N)
gauge interactions at one loop level, and directly examine
chirality of the fermion and its renormalizability.~We will
follow the notation of Ref.@5# in our analysis.!

In the overlap formulation, the effective action of a chir
fermion in the presence of gauge fields is expressed by
overlap of the two vacuauA6& of the HamiltoniansH6(A),
where
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H6~A!5E
p
c†~p!H6~p!c~p!1V~A!, ~1!

H6~p!5g5F (
m51

4

i p̃ mgm1TcX6~p!G ,

X6~p!56
l

a
1

ar

2
p̂2. ~2!

In Eq. ~1!, the momentum integral is over the Brillouin zon
@2p/a,p/a# and the termV(A) describes the gauge inte
actions, which we treat as perturbations. In Eq.~2!,
p̃m5(1/a)sin(pma), p̂m5(2/a)sin(pma/2), a is the lattice
spacing, andTc561 determines the fermion chirality, a
will be seen later. The HamiltoniansH6 describe time evo-
lution of a Dirac fermion in four plus one dimensions an
this Dirac fermion is reduced to a Weyl fermion in fou
dimensions@1,7#. The operatorc(p) is expanded in terms o
creation and annihilation operators as

c~p!5(
s

@u6~p,s!b6~p,s!1v6~p,s!d6
† ~p,s!#,

~3!

whereu6(p,s) andv6(p,s) are positive and negative en
ergy eigenspinors of the one-particle HamiltonianH6(p),
respectively, i.e., H6(p)u6(p,s)5v6(p)u6(p,s) and
H6(p)v6(p,s)52v6(p)v6(p,s). The label s denotes

the spin states andv6(p)5Ap̃21X6
2 (p). The spinorsu6

andv6 are given by

u6~p,s!5

v61X62 i(m p̃mgmTc

A2v6~v61X6!
x~s!,

v6~p,s!5

v62X61 i(m p̃mgmTc

A2v6~v62X6!
x~s!, ~4!

and the spinorx(s) satisfiesg5Tcx(s)5x(s). The two sets
„b1(p,s),d1(p,s)… and„b2(p,s),d2(p,s)… are related by
a Bogoliubov transformation as

ty
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b2~p,s!5cosb~p!b1~p,s!2sin b~p!d1
† ~p,s!,

d2
† ~p,s!5sin b~p!b1~p,s!1cosb~p!d1

† ~p,s!, ~5!

with cosb(p)5u1
† (p,s)u2(p,s). The Dirac vacuau6& of the

HamiltonianH6(0) are defined asb6(p,s),d6(p,s)u6&
50, and the Dirac vacuauA6& are given by the integra
equations

uA6&5a6~A!@12G6~V2DE6!#21u6&,

G65
12u6&^6u

E6~0!2H6~0!
, ~6!

ua6~A!u2512^A6u@V2DE6#G6
2 @V2DE6#uA6&,

~7!

where DE65E6(A)2E6(0). E6(A) and E6(0) are the
ground state energies of the HamiltoniansH6(A) and
H6(0), respectively. The fermion propagator is defined
the path integral

E DA^A1uV~p,q!uA2&e2S~A!

E DA^A1uA2&e2S~A!

, ~8!

where V(p,q)5$c(p) c̄ (q)2 c̄ (q)c(p)%/2, c̄5c†g5 and
S(A) is the action of the gauge field. We find it convenie
for later calculations to decomposeV(p,q) in the form@us-
ing the Bogoliubov transformation ~5!#, V(p,q)
5^1uV(p,q)u2&1:V(p,q):

^1uV~p,q!u2&5~2p!4dP
4 ~p2q!

1

2
@S1~p!2S2~p!#,

~9!

:V~p,q!:5
1

cosb~p!cosb~q!

3(
s,t

@2u1~p,s! ū2~q,t!b1
† ~q,t!b2~p,s!

1u1~p,s! v̄ 1~q,t!b2~p,s!d2~q,t!

1v2~p,s! ū2~q,t!d1
† ~p,s!b1

† ~q,t!

1v2~p,s! v̄ 1~q,t!d1
† ~p,s!d2~q,t!#. ~10!

Here dP
4 (p2q) is the periodic d function on the

lattice, S1(p)5(su1(p,s) ū2(p,s)/cosb(p), and S2(p)
5(sv2(p,s) v̄ 1(p,s)/cosb(p). The first term ~9! is the
propagator forA50 and the second term~10! satisfies the
relation ^1u:V(p,q):u2&50. Near the originp.0,

S6~p!.
l

a

1

p2F1

2
~11g5Tc!~7 ip” !1

a

2l
p2g5G , ~11!
t

and thus the propagator@S1(p)2S2(p)#/2 describes a chi-
ral fermion in this region. At each corner of the Brilloui
zone, pm.6p/a1qm , the propagator takes the followin
form:

1

2
@S1~p!2S2~p!#.

1

A~4n2r 22l2!1O~a2q2!
~c11c2g5!,

~12!

wheren51, . . . ,4 is thenumber of momentum componen
which lie near the corner of the Brillouin zone andc1,2 are
constants. The gauge symmetry of the Hamiltonians~1! be-
comes a chiral gauge symmetry near the origin of the B
louin zone, while chiral noninvariant contributions comin
from each corner are suppressed due to theA(4n2r 22l2)
mass. ~We restrict ourselves to the range of paramet
0,l,2r .!

Now we consider the one loop correction to the propa
tor ^1uV(p,q)u2&. Inserting the decomposition ofV(p,q)
into Eq.~8!, Eq. ~9! yields the propagator at tree level, whi
the quantum corrections arise from^A1u:V(p,q):uA2&. To
obtain the one loop correction, the interactionV(A) in Eq.
~1! should be expanded up to the second order in the ga
coupling constantg; V(A)5V1(A)1V2(A), where

V15 igE
p,q

c̄ ~p!(
m

V1m~p1q!Am~p2q!c~q!, ~13!

V25
1

4
ag2E

p,t,q
c̄ ~p!(

m,n
V2m~p1q!

3dmn$Am~ t !,An~p2t2q!%c~q!, ~14!

V1m(p)5gmcos(pma/2)2 irT csin(pma/2), and V2m(p)
5rTccos(pma/2)2 igmsin(pma/2). Then evaluating uA6&
perturbatively in Eq. ~6! the quantum correction
^A1u:V:uA2&, up to the orderg2 @16#, is

^1u:V:G2V2u2&1^1uV2G1:V:u2&

1^1uV1G1:V:G2V1u2&1^1uV1G1V1G1:V:u2&

1^1u:V:G2V1G2V1u2&. ~15!

These terms are evaluated by rewriting the fermion opera
in V1 andV2 in terms of the creation and annihilation oper
tors defined in Eq.~3!. Then performing the path integra
over the gauge fields, the first two terms and the last th
terms lead to the quantum corrections described by the F
man diagrams Figs. 1~a! and 1~b!, respectively.

Before examining these terms separately, we briefly d
cuss their general features and the strategy of our anal
Each term in Eq.~15! yields the contribution to the tree leve
propagator of the formS«(p)aS(p)S«8(p) where« and«8
denote6, andS(p) is a self-energy given by integral ove
the loop momentum. Here, we explicitly factor out the latti
spacinga so thatS(p) has the correct dimension~one! of
the self-energy for fermions. To compute the divergent p
of the renormalization factors,S(p) should be evaluated up
to the logarithmically divergent part in the continuum lim
We find that in general, in this limitS(p) gives rise to the
following expression:
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S~p!5
1

a
@s1~l,r ,j!1s2~l,r ,j!g5#

1
1

l
C

ḡ2

16p2
$12~12j!% ln~p2a2!

1

2
~12g5Tc!ip”

1~finite terms!, ~16!

wheres1,2(l,r ,j) are the constants obtained by the integ
tion over the loop momentum andC is a numerical coeffi-
cient. Herej is the gauge fixing parameter, defined later, a
ḡ25(N221)/(2N)g2. This expression is obtained, for ex
ample, by expandingS(p) with respect to the external mo
mentump as in Refs.@12,17,18#, or by splitting the integra-
tion region of the loop momentum into two pieces as in R
@12#. In both methods, the ultraviolet divergent parts a
evaluated by explicitly factoring out thea dependence from
the momentum integral with a rescaling of the loop mom
tum k→ k̄ /a. Logarithmic divergences appear as the infrar
divergences of the integration with respect to the resca
variable k̄ . Following the strategy of Refs.@12,17,18#, we
expandS(p) up to the first order inp, where zero and firs
order terms give rise to the ultraviolet divergence in the c
tinuum limit as

S~0!→
1

a
@s1~l,r ,j!1s2~l,r ,j!g5#1finite term,

~17!

(
m

pm

]S~p!

]pm
U

p50

→
1

l
C

ḡ2

16p2
$12~12j!% ln~k2a2!

3
1

2
~12g5Tc!ip” 1finite term,

~18!

wherek is the infrared regulator. The remaining finite part
given by

S~p!2S~0!2(
m

pm

]S~p!

]pm
U

p50

→
1

l
C

ḡ2

16p2
$12~12j!% ln~p2/k2!

1

2
~12g5Tc!ip” .

~19!

Expression~16! is the sum of Eqs.~17!, ~18!, and~19!. The
infrared divergence atk→0 is cancelled between Eqs.~18!
and~19!. In Eq. ~18!, the logarithmic divergence is obtaine
if the integral over the rescaled loop momentumk̄ 5ak ex-
hibits infrared divergences. When the integral overk̄ is in-
frared finite, there is no logarithmic term in Eq.~19!. The
renormalization factors are evaluated by inserting Eq.~16!
into the expressionS«(p)aS(p)S«8(p). In Eq. ~16!, the Lor-
entz structure of the linearly divergent terms is complet
determined by the discrete symmetry on the lattice, e
(k↔2k). These terms are reduced to a finite wave funct
renormalization factor
-

d

f.

-
d
d

-

y
.,
n

l

a

1

p2F1

2
~11g5Tc!~2« ip” !1

a

2l
p2g5G

3a
1

a
@s11s2g5#•

l

a

1

p2F1

2
~11g5Tc!~2«8ip” !

1
a

2l
p2g5G→ 1

2
@s1Tc~2«1«8!1s2~«1«8!

1O~a!#
l

a

1

2
~11g5Tc!

2 ip”

p2
. ~20!

From this expression, we can see that only an ultravio
divergence ofS(p) more severe than quadratic can inva
date the chiral property of the regularized fermion. The log
rithmically divergent term in Eq.~18! directly appears in the
wave function renormalization factor as a logarithmic dive
gence.

Next we discuss each contribution in Eq.~15! separately.
The contributions of the first two terms to the tree lev
propagator are given by2S7(p)aP6

a (p)S6(p) with

P6
a ~p!52

ḡ2

2

1

2v6~p!(m V2m~2p!E
k
Dmm~k!→

ḡ2

4l
sa~j!

3S 4rTc

a
2 ip” D , ~21!

where the upper~lower! sign should be taken for the contr
bution containingG1 (G2), andDmn(k) is the gauge boson
propagator

Dmn~k!5
1

k̂2S dmn2~12j!
k̂mk̂n

k̂2 D . ~22!

In Eq. ~21!, sa(j) is the constant obtained by the integratio
over the rescaled loop momentumk̄ 5ak. No logarithmic
divergence appears, since the rescaled integral is infra
finite. As was discussed previously, the contributions~21!
are reduced to a finite wave function renormalization fact

FIG. 1. The Feynman diagrams describing the contributions
~a! the first two terms and~b! the last three terms in Eq.~15!.



e

s

n

ms

se

one

he
ve

.
c-

ral
the

s
vel,
s or
ze a
n
dy
e

her

.
ful

in,

1436 57ATSUSHI YAMADA
Next consider the last three terms in Eq.~15!. The third
term leads to the following contributions to the tree lev
propagator: S1(p)aS1

b (p)S1(p)1S2(p)aS2
b (p)S2(p)

with

S6
b ~p!56

1

a
ḡ2(

m,n
E

k
F 1

v1~p!1v1~k!G
3F 1

v2~p!1v2~k!GV1m~p1k!S7~k!

3V1n~p1k!Dmn~p2k!. ~23!

The integration over the rescaled momentumk̄ exhibits in-
frared divergences neark̄ .0, which in turn, give rise to
logarithmic divergences in the form of Eq.~16! with C51/4.
Infrared divergences appear only in the regionk̄ .0, as is
seen from Eqs.~11! and~12!. The contributions of the fourth
and fifth terms in Eq. ~15! are expressed a

2S7(p)a@S6
b8(p)1P6

b (p)#S6 , where

S6
b8~p!5

1

a
ḡ2(

m,n
E

k
F 1

v6~p!1v6~k!G
2

V1m~p1k!
sinb~k!

cosb~k!

3(
s

F u1~k,s! v̄ 1~k,s! ~ for1 !

2v2~k,s! ū2~k,s! ~ for2 !
G

3V1n~p1k!Dmn~p2k!, ~24!

P6
b ~p!52

1

a
ḡ2

1

2v6~p!(m,n
E

k

1

v6~p!1v6~k!
V1m~p1k!

3(
s

@u6~k,s! ū6~k,s!2v6~k,s! v̄ 6~k,s!#

3V1n~p1k!Dmn~p2k!. ~25!

The upper~lower! sign should be taken for the contributio
containingG1 (G2). The contributions~24! lead to linearly
ite

.

l

l
divergent terms as well as logarithmically divergent ter
with C51/4 in the form of Eq.~16!, while the contributions
~25! lead only to the linearly divergent terms. This is becau
the integrations over the rescaled loop momentumk̄ give
rise to infrared divergences in Eqs.~24!, whereas in Eqs.~25!
they are finite.

Summing up all the contributionsP6
a,b , S6

b,b8 together
with the tree level propagator, the propagator is given at
loop level as

l

a

1

2
~11g5Tc!

2 ip”

p2 F11
ḡ2

16p2
$12~12j!%

3~ lna2p21finite terms!G . ~26!

From this expression, we see that the chirality of t
regularized fermion is properly preserved and the wa
function renormalization factor isZ511 ḡ2/16p2@12(1
2j)](lna2m21const), wherem is the renormalization scale
The divergent part of the wave function renormalization fa
tor agrees with that of the continuum theory.

We have studied the renormalization of a lattice chi
fermion due to the non-Abelian gauge interactions in
overlap formulation in four dimensions. Divergent term
breaking the chiral symmetry do not appear at one loop le
and accordingly there is no need to add new counterterm
to tune parameters in the theory to specific values to reali
chiral fermion. The divergent part of the wave functio
renormalization factor is correctly reproduced. Our stu
proves the renormalizability of a lattice chiral fermion in th
overlap formulation at one loop level, and indicates, toget
with the analyses of the gauge bosonn-point functions@5–7#
the renormalizability of this formulation.
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