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Chiral symmetry restoration in the Schwinger model with domain wall fermions

Pavlos M. Vranas
Department of Physics, Columbia University, New York, New York 10027

~Received 4 June 1997; published 14 January 1998!

Domain wall fermions utilize an extra spacetime dimension to provide a method for restoring the
regularization-induced chiral symmetry breaking in lattice vector gauge theories even at finite lattice spacing.
The breaking is restored at an exponential rate as the size of the extra dimension increases. Before this method
can be used in dynamical simulations of lattice QCD, the dependence of the restoration rate on the other
parameters of the theory and, in particular, the lattice spacing must be investigated. In this paper such an
investigation is carried out in the context of the two flavor lattice Schwinger model.@S0556-2821~98!02401-1#

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc, 71.10.Fd
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I. INTRODUCTION

When fermions are discretized on ad-dimensional lattice
they ‘‘double’’ produce 2d species for each flavor. In orde
to remove the unwanted degrees of freedom special
must be taken. For a vector theory, such as QCD, two m
ods have been used to deal with this problem, but both br
the global symmetries of the continuum theory. Wilson f
mions @1# are implemented by adding an irrelevant opera
to the action. This operator makes all but one of the spe
heavy ~with masses close to the cutoff!. For theNf flavor
QCD this operator breaks the SU(Nf)L3SU(Nf)R chiral
symmetry down to SU(Nf). This explicit breaking is severe
and requires fine-tuning of the bare quark mass in orde
obtain a massless theory. Even then the size of the brea
is proportional to the lattice spacing and only close to
continuum limit the explicit breaking becomes small. Sta
gered fermions@2# break the SU(Nf)L3SU(Nf)R chiral
symmetry down to U~1!3U~1!. Because of the remnant o
chiral symmetry the massless theory can be reached by
ply taking the bare quark mass to zero. However, the fla
symmetry of the theory has been compromised and is
only recovered as the continuum limit is approached.

Despite these problems both methods have been very
cessful in describing the light hadron spectrum at zero te
perature. However, both methods have difficulties in stu
ing the finite temperature phase transition. Wilson fermio
have a complicated phase diagram that, at the presently
cessible lattice spacings, makes it hard to extract the rele
physics. Staggered fermions, because of the exact remna
chiral symmetry, do not suffer from this problem. Howeve
at the presently accessible lattice spacings, the breakin
flavor symmetry makes two of the three pions heavy. T
can have important physical consequences since the tr
tion temperature is of the order of the pion mass. For a
view on the finite temperature phase transition with b
types of fermions the reader is referred to@3#, and references
therein.

A few years ago a new method for discretizing fermio
was developed in order to address the more difficult pr
lems associated with chiral gauge theories@4#. In the follow-
ing years this method was further developed~see@5#, and
references therein! with important progress in the develop
ment of chiral gauge theories@6,7#. The basic idea follows
570556-2821/98/57~3!/1415~18!/$15.00
re
h-
ak
-
r
es

to
ng
e
-

m-
r

so

c-
-
-
s
c-
nt

t of
,
of
s
si-
-

h

-

from the fact that a massive vector theory in 2n11 dimen-
sions, with a mass term that changes sign along the 2n11
dimension, develops a massless chiral zero mode that is
ponentially bound along the 2n11 direction to the region
where the mass changes sign. From the point of view of
2n-dimensional world this is a chiral fermion. This region
called domain wall and this type of fermion is called doma
wall fermion ~DWF!. When such a theory is discretized sp
cies doubling also occurs. However, since t
(2n11)-dimensional theory is vectorlike the extra spec
can be removed with the addition of a standard Wilson te
The resulting theory has a single chiral fermion expon
tially bound to the wall. If, for practical reasons, the 2n11
dimension is made finite with periodic boundary conditio
for the mass then the mass must change sign one more
In that region~antiwall! an exponentially bound chiral zer
mode with opposite chirality appears. As a result, the the
becomes vectorlike. Different types of boundary conditio
yield similar problems. In order to preserve the single chi
mode, the 2n11 dimension must be kept infinite. At firs
sight this may seem impractical. However, Narayanan
Neuberger developed a method, called the overlap form
ism, that makes it possible to deal with this infinity@6#.

The overlap formalism develops a transfer matrix alo
the 2n11 dimension and an associated Hamiltonian. T
gauge fields are defined only on the 2n-dimensional space
and are taken to be independent of the 2n11 coordinate@6#.
In essence, the extra dimension is treated as a complic
flavor space. The resulting formalism involves two Hamilt
nians, one for the region of positive mass and one for
region of negative mass. The chiral determinant is the de
minant of the overlap of the two ground states associa
with each Hamiltonian and it can be calculated explici
once all the negative eigenvectors of both Hamiltonians
known. For a finite 2n-dimensional lattice the Hamiltonian
are finite size matrices of size;V3V where V is the
2n-dimensional volume and their eigenvectors can be rea
calculated. The resulting chiral determinant has the cor
magnitude and a phase that exhibits the correct gauge de
dence for ‘‘smooth’’ gauge fields. For ‘‘rough’’ gauge field
the phase exhibits a mild breaking of gauge symmetry e
for anomaly free theories. This problem has been resolve
@7#.

These methods can also be used to formulate a ve
1415 © 1998 The American Physical Society
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1416 57PAVLOS M. VRANAS
theory. In this case the boundary conditions along then
11 dimension are set to be periodic. A Dirac fermio
emerges with the positive chirality component bound on
wall and the negative chirality bound on the antiwall. If th
2n11 dimensions are taken to be infinite the two chiralit
are decoupled and the resulting theory has intact chiral s
metries. Again, this infinity can be dealt with the overl
formalism and now there are no issues associated with
phase of the determinant since, for a vector theory, the
terminant is real. Therefore, the overlap formalism provid
an ideal lattice regularization of vector theories where
chiral symmetries are left intact even for finite lattice spa
ing. Also, the anomalous breaking of the axial symmetry
reproduced in an elegant way along with a formula for
index of the chiral Dirac operator@6#.

The overlap formalism was used in a dynamical nume
cal simulation of the massless single and multiflav
Schwinger model with good results@8#. Numerical simula-
tions of QCD using the overlap formalism would clearly
very appealing. However, as mentioned above, such a s
lation would require the calculation of all negative eigenve
tors of matrices of size;V3V. This makes such a calcula
tion prohibitive for present generation supercomputers.

An obvious alternative~see@5#, and references therein! is
to keep the 2n11 dimensions finite and use standard hyb
Monte Carlo type algorithms to simulate the theory in 2n
11 dimensions. Of course, the exact chiral symmetry will
spoiled but it will be recovered as the sizeLs of the 2n11
dimension is sent to infinity. Therefore, even at finite latt
spacing one can control the restoration of the regulariza
induced chiral symmetry breaking by using the parame
Ls . This involves no fine tuning and, furthermore, since t
two chiralities decay exponentially away from the wall~an-
tiwall!, one would expect that the restoration of chiral sy
metry would be exponential, i.e.,;e2cLs, 0,c. The com-
puter cost of such a simulation would beLs times larger than
a simulation of standard Wilson fermions with the sam
physical masses. Since for present day supercompute
value of Ls greater than 10–20 will make simulations im
practical, an important question to ask is what is the r
‘‘ c’’ of restoration of chiral symmetry and how does it d
pend on the other parameters of the theory and in partic
on the lattice spacing. In@9,10# some of the issues relating t
this question were investigated analytically. Numerical wo
in @11–13# has yielded encouraging results and in particu
the interesting work of@13# indicates that DWF can succes
fully address problems related to the evaluation of weak m
trix elements. However, these works have only margina
addressed this particular question. Before full scale dyna
cal QCD simulations are performed this question should
answered. In this paper this question is investigated in
context of the two flavor lattice Schwinger model.

A useful variation of the wall, anti-wall model studied i
@14# was proposed in the context of vector lattice gau
theory in @9,10#. There, instead of having a mass th
changes sign in two places along the 2n11 dimensions~say
at 0 andLs/2!, the mass is kept fixed to some positive val
m0 , but the boundary conditions are taken to be free at
ends of the 2n11 dimensions. Again, two zero modes wi
opposite chiralities emerge, but they are now bound at
opposite ends of the 2n11 dimension and are separated by
e
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distanceLs rather thanLs/2 as in the original model. There
fore, the expectation is that for the sameLs this model will
achieve better restoration of chiral symmetry.

Another feature added in this model is the introduction
an explicit chiral symmetry-breaking term that connects
two ends with strengthmf . This gives mass to the fermion i
addition to the one resulting because of the finite extendLs .
The reason for adding this term is that it provides line
control over the fermion mass instead of the exponential
provided byLs . Furthermore, in a numerical computation,
makes much more sense to varymf rather thanLs in order to
control the mass. Therefore, for a givenmf one would like to
keepLs large enough so that it does not affect the fermi
mass in any significant way. This method and the associa
Overlap formalism will be used throughout this paper.

The theory has five parameters. The first two are the
tice spacinga and the physical extentl along one direction
of the 2n-dimensional box~they are controlled by the pur
gauge couplingg0 and the size in lattice unitsL!. The re-
maining three parametersm0 , Ls , and mf all control, to
some extent, the amount of chiral symmetry breaking a
therefore the effective fermion mass. ForLs→` the theory
is chirally symmetric except for the explicit breaking intro
duced bymf . As a result, the effective fermion mass va
ishes linearly with vanishingmf @10#. But for finiteLs this is
not the case. As mentioned above, even formf50 the resto-
ration of chiral symmetry is expected to be exponen
;e2cLs.

One would expect that the exact continuum solution
the Schwinger model would be useful to compare with
sults obtained on the lattice. Unfortunately, this is only p
tially true. The regularization with DWF introduces to th
two-dimensional action a four-Fermi term with some coe
cient. Since, for the two-dimensional model, this operato
not irrelevant, the continuum theory will be different from
continuum theory with no four-Fermi term. Although th
continuum theory has been solved with such a term pre
@15#, the results can not be directly compared since the va
of the coefficient arising from the DWF has not been calc
lated. This problem was encountered in@8# and@7# and made
the comparison with continuum results complicated. For
nately, for the purposes of this work, the continuum resu
are not needed. In fact, there is a much more relevant c
parison that can be made. At every step the value of
observable at finiteLs can be directly compared with it
value at infiniteLs calculated using the Overlap on the sam
lattice size and lattice spacing.

The paper is organized as follows. In Sec. II the mo
and the corresponding overlap implementation is review
In Sec. III the definitions of the various observables used
this paper are given. In Sec. IV the free theory for finiteLs is
discussed, the full expression for the propagator is given
the ‘‘effective’’ bare fermion mass is identified. In Sec.
some general considerations regarding the interacting th
are presented. These considerations lead to specific pre
tions. In Sec. VI the results of a full dynamical simulatio
using the overlap with nonzero mass are presented. Th
results, interesting in their own right, are used to comp
with the finite Ls results of the next section. Section V
describes the results of a dynamical simulation of the
11)-dimensional system for various values of the para
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57 1417CHIRAL SYMMETRY RESTORATION IN THE . . .
eters on a fixed physical volume. The algorithm used i
standard hybrid Monte Carlo~HMC! algorithm. The numeri-
cal results confirm the predictions made in Sec. V and
gether outline the mechanisms of chiral symmetry restora
in the model. Section VIII contains a summary and conc
sions.

II. THE MODEL

In this section the model and the corresponding over
formalism @6# implementation is reviewed for the benefit
the reader and in order to establish notation@9,10#. The fol-
lowing is for a single flavor. The generalization to more fl
vors is straightforward.

The partition function of the single flavo
(2n11)-dimensional model is

E @dU#E @dC̄dC#E @dF†dF#e2S. ~1!

Um(x) is the gauge field,C(x,s) is the fermion field, and
F(x,s) is a bosonic Pauli-Villars~PV! type field. x is a
coordinate in the 2n-dimensional space-time box with exte
L along each of the directions,m51,2, . . . ,2n, and s
50,1, . . . ,Ls21, whereLs is the size of the 2n11 direction
and is taken to be an even number. The actionS is given by

S5S~g0 ,L,Ls ,m0 ,mf !

5SG~U !1SF~C̄,C,U !1SPV~F†,F,U ! ~2!

where

SG5
1

g0
2 (

p
Re Tr@ I 2Up# ~3!
he
-

th

t

a

-
n
-

p

-

is the standard plaquette action withg0 the lattice gauge
coupling. In this paper the couplingg0 is exchanged for the
parameter

~m l !5
g0

Ap
L, ~4!

wherel is the physical size of the 2n-dimensional box along
one of its dimensions andm is a mass related to the photo
mass with

mg5ANfm, ~5!

whereNf is the number of flavors. With these choicesm l is
the physical box size in units ofm and m l /L5ma is the
lattice spacing in units ofm.

The fermion action is

SF52 (
x,x8,s,s8

C̄~x,s!DF~x,s;x8,s8!C~x8,s8! ~6!

with the fermion matrix given by

DF~x,s;x8,s8!5d~s2s8!D” ~x,x8!1D” '~s,s8!d~x2x8!,
~7!

D” ~x,x8!5
1

2 (
m

@~11gm!Um~x!d~x1m̂2x8!

1~12gm!Um
† ~x8!d~x81m̂2x!#

1~m022n!d~x2x8!, ~8!
D” '~s,s8!5H PRd~12s8!2mf PLd~Ls212s8!2d~02s8!, s50,

PRd~s112s8!1PLd~s212s8!2d~s2s8!, 0,s,Ls21,

2mf PRd~02s8!1PLd~Ls222s8!2d~Ls212s8!, s5Ls21,

~9!
the
-

f-

the
n
eri-
e

PR,L5
16g5

2
, ~10!

where m0 is a (2n11)-dimensional mass representing t
‘‘height’’ of the domain wall. In order for the doubler spe
cies to be removed one must set 0,m0,2 @4#. However,
this range is further restricted by the requirement that
transfer matrix along the 2n11 direction be positive@6#

0,m0,1, ~11!

The gamma matrices are taken in the chiral basis and are
same as in the last reference in@6#. In two dimensions they
are
e

he

g15S 0 1

1 0D , g25S 0 i

2 i 0D , g55S 1 0

0 21D .

~12!

The PV action is designed to cancel the contribution of
heavy fermions in the largeLs limit. This is necessary be
cause the number of heavy fermions is;Ls and at the
Ls→` limit they produce bulk-type infinities@6#. There is
some flexibility in the definition of the PV action since di
ferent actions could have the sameLs→` limit. However,
the choice of the PV action may affect the approach to
Ls→` limit. A slightly different action than the one used i
@10# is used here. This action is easier to implement num
cally and for finite Ls it projects the ground state of th
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1418 57PAVLOS M. VRANAS
transfer matrixT better; the projector isTLs instead ofTLs/2

~see below!. Also, even for finiteLs , it exactly cancels out
the fermion action whenmf51 resulting into a pure gaug
theory. The PV action is

SPV5 (
x,x8,s,s8

F†~x,s!DF@mf51#~x,s;x8,s8!F~x8,s8!.

~13!

The transfer matrix along the 2n11 direction for this
model is

T5e2â†Hâ, ~14!

whereâ†, â are creation and annihilation operators that ob
canonical anticommutation relations and span a Fock sp
with vacuum stateu0&. These operators live on the sites
the 2n-dimensional lattice and carry spin, color and flav
indices. The left/right component decomposition ofâ is

â5S ĉ

d̂†D . ~15!

The single particle HamiltonianH is defined by

e2H5S B21 B21C

C†B21 C†B21C1BD , ~16!

B~x,y!5
1

2 (
m51

2n

@22Um~x!d~x1m̂2y!2Um
† ~y!

3d~y1m̂2x!#1~12m0!d~x2y!, ~17!

C~x,y!5
1

2 (
m

@Um~x!d~x1m̂2y!

2Um
† ~y!d~y1m̂2x!#sm ~18!

with s151, s25 i in two dimensions.
The fermionic and PV effective actions can be expres

in terms of the transfer matrix as

e2Seff
F

@Ls#5det~DF@mf # !5det~B!Ls Tr@TLsO~mf !#,
~19!

e2Seff
PV

@Ls#5@det~DF@mf51# !#215$det~B!Ls Tr@TLs#%21,
~20!

where the operatorO(mf) implements the boundary cond
tions and contains all themf dependence:

O~mf !5)
n

~ ĉnĉn
†1mfĉn

†ĉn!~ d̂nd̂n
†1mfd̂n

†d̂n!. ~21!

For mf51 it is the identity operator and formf50 is a
projection operator to a stateu08&:

u0&5)
n

d̂†u08&. ~22!

In the infiniteLs limit TLs becomes a projection operato
to the ground state of2â†Hâ,
y
ce

r

d

lim
Ls→`

TLs→e2l0u0H&^0Hu, ~23!

whereu0H& andl0 are the ground state eigenvector and
genvalue ofâ†Hâ obtained by filling all negative energ
states. To get an explicit relation betweenu0H& andu0& let R
be the eigenvector matrix of the single particle Hamiltoni
H. The matricesH and R have size N3N where N
5spin3color3flavor3V. R can be put in the form

R5S P2 P1

Q2 Q1D , ~24!

where the rows labeledP correspond to the left chirality
states ~with creation/annihilation operatorsĉ†,ĉ! and the
rows labeledQ correspond to the right chirality states~with
creation/annihilation operatorsd̂†,d̂!. The 6 splitting of the
columns corresponds to eigenvectors with positive/nega
eigenvalues. WithN6 denoting the number of positive
negative eigenvalues the size of theP2, Q2 matrices is
N/23N2 and the size of theP1, Q1 matrices isN/2
3N1. Then it can be shown that

u0H&5)
i 51

N2

~ ĉl i
†Pl i ,i

2 1d̂l i
Ql i ,i

2 !u0&. ~25!

From Eqs.~19!, ~20!, and ~23! the effective action for the
fermion and PV fields in theLs→` limit is given by the
overlap formula

e2Seff@Ls5`,mf #5e2Seff
F

@Ls5`,mf #2Seff
PV

@Ls5`#5^0HuO~mf !u0H&.
~26!

For mf51, ^0HuO(1)u0H&51, corresponding to a theor
with no fermions. Themf50 case corresponds to massle
fermions and the overlap takes the special form

e2Seff@Ls5`,mf50#5u^0Hu08&u2. ~27!

It can be shown that

u^0Hu08&u25udet~Q2!u2, ~28!

If N25N/2, Q2 is a square matrix and the overlap will i
general be non zero. However, ifN2ÞN/2 thenQ2 is not a
square matrix and its determinant is identically zero. Fr
Eqs.~22!, ~25!, and~28!, one can see that this arises becau
of a mismatch in the filling levels ofu0H& andu08&. In order
to obtain a non zero overlap one would need to insert
appropriate number of creation and annihilation operator
balance the filling levels. In fact these operators are th
Hooft vertices constructed with lattice fields. Then an eleg
definition of the topological chargeq as seen by the fermion
arises@6#:

q5N22N/2, ~29!

whereq is naturally integer valued.
WhenmfÞ0 use of Eqs.~21!, ~25!, and~26! yield explicit

expressions for the overlap as a determinant of a matrix
is constructed out ofP2 andQ2. These expressions are use
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57 1419CHIRAL SYMMETRY RESTORATION IN THE . . .
in the numerical simulation of the overlap (Ls→`) in Sec.
VI. For more details the reader is referred to@6# and @9,10#.

III. OBSERVABLES

In this section the definitions of the observables that
measured in this paper are given. The operators involved
as in @6,10#.

The 2n-dimensional fermion operators of th
(2n11)-dimensional theory are constructed out of t
2n-dimensional fermion fieldsc̄,c as in @10#:

c~x!5PRC~x,0!1PLC~x,Ls21!,

c̄~x!5C̄~x,Ls21!PR1C̄~x,0!PL . ~30!

In theLs→` limit of the theory these operators exactly co
respond to insertions in the overlap of the creation and a
hilation operators discussed in Sec. II. This will allow e
plicit comparisons to be made between measurem
involving c̄,c in the 2n11 theory with finiteLs and mea-
surements with the overlap involving the corresponding c
ation and annihilation operators.

The following is a list of definitions of the observables f
any Ls and the corresponding overlap expressions. The d
nitions of the actions are as in Sec. II but for two flavors. U
is made of the fact that@10#

det~DF!5det~DF
† !. ~31!

The fermion effective action of the (2n11)-dimensional
theory in a background gauge field is

e2Seff
F

@Ls ,mf #5E @dC̄dC#e2SF

5det~DF
†@Ls ,mf #DF@Ls ,mf # !. ~32!

The PV effective action in a background gauge field is

e2Seff
PV

@Ls#5E @dC̄dC#e2SPV

5det~DF
†@Ls ,mf51#DF@Ls ,mf51# !21.

~33!

The fermion effective action in a background gauge field

e2Seff@Ls ,mf #5e2Seff
F

@Ls ,mf #2Seff
PV

@Ls#

5
det~DF

†@Ls ,mf #DF@Ls ,mf # !

det~DF
†@Ls ,mf51#DF@Ls ,mf51# !

,

~34!

e2Seff@Ls5`,mf #5^0HuO~mf !u0H&2. ~35!
e
re

i-

ts

-

fi-
e

The chiral condensate operator is

c̄c52
1

2V (
x

(
i 51

2

@c̄R
i ~x!cL

i ~x!1c̄L
i ~x!cR

i ~x!#.

~36!

The following observable is related to the chiral condens
in a background gauge field:

P1@Ls ,mf #5E @dC̄dC#c̄ce2SF2Seff
PV

,

P1@Ls ,mf #52
1

V (
x

@DF
21~x,Ls21,2;x,0,2!

1DF
21~x,0,1;x,Ls21,1!#e2Seff, ~37!

P1@Ls5`,mf #52
1

V (
x

@^0Huĉx
†O~mf !ĉxu0H&

3^0HuO~mf !u0H&1~c→d!].
~38!

The ’t Hooft vertex operator is

w5
1

V (
x

F)
i 51

2

@c̄R
i ~x!cL

i ~x!#1)
i 51

2

@c̄L
i ~x!cR

i ~x!#G .

~39!

The following observable is related to the ’t Hooft vertex
a background gauge field:

P2@Ls ,mf #5E @dC̄dC#we2SF2Seff
PV

,

P2@Ls ,mf #5
1

V (
x

@DF
22~x,Ls21,2;x,0,2!

1DF
22~x,0,1;x,Ls21,1!#e2Seff, ~40!

P2@Ls5`,mf #5
1

V (
x

@^0Huĉx
†O~mf !ĉxu0H&21~c→d!#.

~41!

The observablese2Seff, P1 , and P2 are interesting becaus
they correspond to overlap expressions and, therefore,
values at theLs5` limit are calculable. Furthermore, thes
quantities are sensitive to the topology of the backgrou
gauge field. The expectation value of the fermion condens
is

^c̄c&5
1

Z E @dU#E @dC̄dC#E @dF†dF#c̄ce2S,

~42!
^c̄c&Ls5`5
*dU~1/V!(x@^0Huĉx

†O~mf !ĉxu0H&^0HuO~mf !u0H&1~c→d!#e2SG

*dU^0HuO~mf !u0H&2e2SG
. ~43!

The expectation value of the ’t Hooft vertex is
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^w&5
1

Z E @dU#E @dC̄dC#E @dF†dF#we2S, ~44!

^w&Ls5`5
*dU~1/V!(x@^0Huĉx

†O~mf !ĉxu0H&21~c→d!#e2SG

*dU^0HuO~mf !u0H&2e2SG
. ~45!
on
fe

t i
o
e

n
h

to
th
fu
th
o

’’
s

o

ns

t.

x-
Notice that a numerical evaluation of̂c̄c&Ls5` and

^w&Ls5` requires two separate pure gauge simulations,
for the numerator and one for the denominator, i.e., the
mion determinant is treated as an observable@8,7#.

IV. THE FREE THEORY

In this section the propagator is given, its singular par
identified and the bare fermion mass which is a function
Ls , m0 , mf , is extracted. As a verification of this result th
smallest eigenvalue of the free (2n11)-dimensional Dirac
operator is also calculated.

The propagator has been calculated for the infiniteLs case
in the first reference of@6#. The propagator has also bee
calculated for the model described in Sec. II but only in t
limit where exponentially small contributions inLs could be
ignored @9#. The size of these contributions was alluded
but no explicit expression was given. Since in this paper
interest is on the behavior of these contributions, the
calculation is worked out. Because the general form of
propagator is the same as in@6,9# an effort has been made t
keep similar notation.

The free (2n11)-dimensional Dirac operator of Eq.~7!
in momentum space is

DF~p:s,s8!5 i p”̄ d~s2s8!2b~p!d~s2s8!1
11g5

2
M ~s,s8!

1
12g5

2
M†~s,s8!. ~46!

and

b~p!5 (
m51

2n

@12cos~pm!#112m0 , ~47!

p̄m5sin~pm!, m5@1, . . . ,2n#, pm5
2pkm

L
,

km5@0,1, . . .L21#, ~48!

M ~s,s8!5d~s112s8!2d~s820!d~Ls212s!~11mf !,
~49!

where thed functions are understood as having ‘‘period
Ls . Notice that the first two terms of Eq.~46! are the same a
for Wilson fermions with mass (12m0), where 0,m0,1
~see Sec. II!. The second order free Dirac operator is diag
nal in spin:

DFDF
†5

11g5

2
V11

12g5

2
V2 , ~50!
e
r-

s
f

e

e
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e

-

whereV6 have no spin indices and

V1~p:s,s8!5@2b~p!1M ~s,s8!#@2b~p!1M†~s,s8!#

1 p̄2,

V2~p:s,s8!5V1~p:Ls212s,Ls212s8!, ~51!

where

p̄25 (
m51

2n

p̄m
2 , ~52!

The inverse of the second order free Dirac operatorDFDF
†

must therefore be of the form

G5
11g5

2
G11

12g5

2
G2 , @DFDF

† #G5I , ~53!

whereG6 have no spin indices. From general consideratio
G6 must be of the form@9#

G1~p:s,s8!5A0e2aus2s8u1A1e2a~s1s8!

1A2e2a~Ls212s1Ls212s8!

1Am@e2a~Ls211s2s8!1e2a~Ls211s82s!#,

~54!

G2~p:s,s8!5G1~p:Ls212s,Ls212s8!. ~55!

The coefficients in Eq.~55! are momentum dependen
The coefficienta is the solution of the equation

cosh~a!5
11b21 p̄2

2b
. ~56!

A straight forward calculation results to the following e
pressions for the remaining coefficients:

A05
1

2b sinh~a!
, ~57!

A152
B

D
~b2e2a!~12mf

2!, ~58!

A25
B

D
~ea2b!~12mf

2!, ~59!

Am52
B

D
$2bmf sinh~a!1e2a~Ls21!~e22a@ea2b#

2mf
2@e2a2b# !%, ~60!
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where

D5@e2a~b2e2a!1mf
2~ea2b!#1@4mfb sinh~a!#e2a~Ls21!

1@mf
2~b2e2a!1e22a~ea2b!#e22a~Ls21!. ~61!

In order to identify the singular part of the propagator
expansion in the variablesp, mf and (12m0)(Ls21) is done
treating these variables as numbers with magnitudes m
smaller than 1. The only singular amplitudes areA2 andAm
and the resulting expression for the singular part ofG6 is

G1
singular~p:s,s8!5

1

p21meff
2 $m0~22m0!

3e2a~Ls212s1Ls212s8!

2meff~12m0!@e2a~Ls211s2s8!

1e2a~Ls211s82s!#%, ~62!

with

meff5m0~22m0!@mf1~12m0!Ls#. ~63!

The expression forG2
singular can be obtained from Eqs.~62!

and~55!. The propagator for the free theory is then given

DF
215DF

†G. ~64!

To verify the above result the smallest eigenvalue
DFDF

† is also calculated. The leading order term in an e
pansion as the one used above is

lmin5p21meff
2 1O~4!. ~65!

and is proportional to the inverse of the singular part ofG6

as it should be.
The interesting result of the above analysis is Eq.~63!.

This is the mass of the lightest mode of the theory and
controlled bymf ,m0 ,Ls . This formula strongly suggests th
pattern for chiral symmetry restoration in the model.

V. THE INTERACTING THEORY,
GENERAL CONSIDERATIONS

The question on how the chiral symmetry restoration r
depends on the various parameters of the model ultima
can only be answered when the full theory is consider
This is done using numerical simulations in Sec. VII. Ho
ever, some general considerations that hint to the expe
behavior are useful in order to guide the numerical exp
ments and to provide an understanding of the results. S
considerations leading to specific predictions are presente
this section. These predictions are confirmed by the num
cal simulations and therefore sketch the mechanisms of
ral symmetry restoration in the model.

A. The effects of topology

In this section a special kind of trajectory@17,6# that
‘‘cuts’’ through the various topological sectors of the co
figuration space is considered. The values of the relev
observables of Sec. III are calculated along this trajector
ch
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Consider the following set of U~1! gauge linkU configu-
rations labeled by the continuous parametertPR @17,6#:

U1~n1 ,n2!5H 1 if n1ÞL21,

expF2 i
2pn2

L
tG if n15L21,

U2~n1 ,n2!5expF i
2pn1

L2 t G , ~66!

whereU1 , U2 are links defined on the sitesn1 , n2 of the two
dimensional torus of sizeL3L. This configuration is peri-
odic along the second direction but has a discontinuity alo
the first. Whent is an integer the electric field strength
uniform E52pt/L2. Whent is not an integerE has a dis-
continuity at~n121, n221!. The topological charge of the
gauge field is defined as@16#

q5(
p

ln@Up#

2p i
, ~67!

where the sum is over all plaquette variablesUp and the
logarithm has ln(1)50 with the cut along the negative rea
axis. It is straightforward to verify thatq is an integer that
changes values ast is varied between integer values~see Fig.
1!. For more information on these configurations the rea
is referred to@17,6#. Here it is worthwhile to point out tha
this trajectory in configuration space is interesting becaus
connects the trivial configuration with uniform configur
tions that have non zero topological charge. As such,
configurations at integert can be thought of as local minim

FIG. 1. Observables~for definitions see Sec. III! along the con-
figuration space trajectory, Eq.~66!, labeled byt. The parameters
have values:L56, m l 53.0, m050.9, mf50, Ls514.
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FIG. 2. Observables~for definitions see Sec. III! along the configuration space trajectory, Eq.~66!, labeled byt. The parameters have
values:L56, m l 53.0, m050.9, mf50, Ls54,6,8,10,12,14,̀. At Ls5` P150.
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and therefore in some sense they represent vacua of diffe
topological charge. The path that connects the configurat
of integer t is certainly not unique but it can neverthele
provide insightful information on how the transition betwe
sectors of different topological charge takes place. Theref
although one can not extract from this trajectory quantitat
information, the qualitative information will be quite usef
if, in particular, similar features are observed when the
configuration space is considered in the HMC simulation
the model in Sec. VII.

In the following, the observables in Eqs.~32!–~45! are
considered in the presence of the gauge field configuratio
Eq. ~66!. The boundary conditions for both fermion flavo
in the two-dimensional space are taken to be antiperiodic
course, for the full dynamical U~1! theory, the choice of
boundary conditions is irrelevant for as long as they are
same for all flavors@they can change by U~1! phases at the
boundary#.

TheLs5` quantities are calculated using the overlap f
mula. The finiteLs quantities are obtained by explicit com
putation of the determinants and inverses ofDF . The reader
is reminded thate2Seff@Ls5`,mf50# is not zero only in the topo-
logical sectorq50. The quantity related to the chiral con
densateP1@Ls5`,mf50# is identically zero in all sectors
This is a consequence of the exact SU(2)L3SU(2)R chiral
ent
ns

e,
e

ll
f

of

f

e

-

symmetry. Therefore a nonzeroP1@Ls ,mf50# at some finite
Ls will indicate explicit breaking of the chiral symmetry. Th
quantity P2@Ls5`,mf50# related to the ’t Hooft vertex is
not zero only in sectorsq561. This represents the anoma
lous breaking of the U~1! axial symmetry.

In Fig. 1 the topological charge along withSG , Seff
F , Seff

PV ,
Seff , and Seff1SG is shown for L56, m l 53.0, m050.9,
mf50, andLs514 along the trajectory of Eq.~66!. The ab-
solute scale in these figures is of course irrelevant. One
already see the separation of the different topological sec
with the q50 sector as the absolute minimum and the ot
sectors as relative minima. It is interesting to observe h
the addition ofSeff

PV andSG changes the fermion actionSeff
F .

In Fig. 2 Seff , P1 and P2 are shown along the same tra
jectory and for the same parameters but for various value
Ls . In the Seff figure at t52 the curves with largerSeff

correspond to largerLs with Ls54,6,8,10,12,14. The curve
that sharply increases tò at t;0.5 corresponds toLs5`.
It is clear from this figure that in theq50 sector theLs
5` limit is approached very fast. TheqÞ0 sectors carry
large actions relative to theq50 action and therefore the
also approximate theLs5` limit very well. The only re-
gions that suffer from a slow approach to theLs5` limit are
the two regions in the immediate neighborhood wheret
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changes from 0 to61. There, theLs5` results raises dis-
continuously but the finiteLs results approach this discon
tinuous behavior slowly.

In the P1 figure att50 the curves with smallerP1 cor-
respond to largerLs with Ls54,6,8,10,12,14. TheLs5`
curve is identically zero for allt and is not plotted. From this
figure it is seen thatP1 in the nonzero topological sectors i
negligible even atLs54. In the zero topological sector i
decreases very fast with increasingLs for all values oft
except for the same two regions wheret changes from 0 to
61. There, two large spikes appear with heights that ess
tially do not change with increasingLs . Instead, their width
slowly shrinks with increasingLs . As a result, chiral sym-
metry is slowly restored in these regions.

In the P2 figure att51, the curves with largerP2 corre-
spond to largerLs with Ls54,6,8,10,12,14,̀. The Ls5`
curve can be distinguished by the discontinuous behavio
the places whereq changes form 0 to61 and from61 to
62. From this figure it is seen thatP2 approaches theLs
5` limit very fast for all t except again for the regions
whereq changes.

The slow approach ofSeff andP2 to theLs5` limit in the
regions of changing topological charge is not particula
troubling since the effect is a small percent of the values t
they acquire along the trajectory. Not so forP1 . The two
‘‘spikes’’ present a large size contribution to a quantity th
should otherwise be identically zero. In Fig. 3P1 is plotted
vs Ls for various cross sections of Fig. 2. Fort50 ~dia-
monds! P1 decays exponentially. Fort50.3,0.4 ~squares,
crosses! the rate of the exponential decay decreases. Fina
close to the point where the configuration changes topolo
cal charge,t'0.55 ~octagons!, there is almost no decay a
all.

The slow approach to theLs5` limit in the neighbor-
hoods of changing topological chargeq is expected. Accord-
ing to the topological charge definition Eq.~29!, q changes
because the number of negative eigenvalues of the sin

FIG. 3. P1 from Fig. 2 vs Ls at different values oft
50,0.3,0.4,0.55 corresponding to diamonds, squares, crosses,
gons.
n-

at
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particle HamiltonianH of Eq. ~16! changes. Therefore, in
that neighborhood there are configurations for whichH has
zero eigenvalues. These configurations were identified in@6#
and also discussed in@10#. For these configurations the ove
lap formulation is not well defined because the ground s
is degenerate and, in turn, the finiteLs theory experiences
large correlations along the 2n11 dimension. However, the
set of configurations for whichH has an exact zero eigen
value is of measure zero. As a result the overlap is a w
defined formulation. On the other hand, regions of the c
figuration space surrounding these special configurations
characterized by small decay rates. The importance of th
regions is determined dynamically and only a full simulati
of the theory can accurately probe their effect to the ex
nential decay. However, close to the continuum limit o
would expect that these regions are severely suppressed
the pure gauge action separates sectors with topolog
charge that differs by one unit with barriers of energy;1/g0

2

~seeSG in Fig. 1!. But away from the continuum limit, where
most numerical simulations are performed, these regi
may become important and contribute to the explicit bre
ing of chiral symmetry.

In order to gain some understanding about this mode
chiral symmetry breaking the expectation value of the ch
condensatêc̄c&, Eq. ~42!, was calculated in a configuratio
space restricted only on the trajectory of Eq.~66!, i.e., ^c̄c&
was calculated as in Eq.~42! but with the path integral ove
the gauge field configuration space replaced by an inte
over the single trajectory of Eq.~66! parametrized byt. This
calculation was done numerically. As can be seen from F
2, the integrands are relatively smooth and become ne
gible asutu is increased above 2. Therefore, it was enough
choose a reasonably fine discretization and sum over a fi
range only. The summation was done for step sizedt
50.025 and over the rangeutu,2.5.^c̄c& is plotted vsLs in
Fig. 4 for an L56 lattice, m050.9, mf50, and various
gauge couplingsm l /L, m l 53.0,2.5,2.0,1.5,1.0~diamonds,
squares, crosses, octagons, stars!. For m l 53.0 there is decay
with a fast rate untilLs510. ForLs512 and above there stil
is decay but with a smaller rate. As can be seen from
figure the functional form of the fast decay is exponenti
The slower decay is consistent with exponential but it tu
out that it is also consistent with power law or exponent
times power law behavior. Since the functional forms a
further ‘‘contaminated’’ by higher order effects in order
be able to distinguish between the different types of deca
is estimated that calculations up toLs'30 will be needed.
This is beyond the purpose of this simple test and the av
able computer resources. In any case, the important obse
tion is that as the gauge coupling is decreased the inflec
point moves to largerLs and the slower of the two decay
becomes faster until atm l 51.0 there is no visible inflection
below Ls518. This phenomenon can be easily understo
by looking at P1 in Fig. 2 ~m l 53.0 there!. For Ls smaller
than about 10 the explicit breaking that occurs inside thq
50 sector dominates and the contribution of the ‘‘spikes’’
the expectation value is small by comparison. When t
breaking has almost completely disappeared,Ls.10, the
breaking that comes from the ‘‘spikes’’ dominates. Th
breaking disappears in a slower fashion as the width of

cta-
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‘‘spikes’’ shrinks. However, as the gauge coupling is d
creased the regions of changing topology where
‘‘spikes’’ are located are weighted less by the pure gau
action and the slower decay is overshadowed by the in
faster exponential decay.

Therefore, one sees that there are two distinct mec
nisms that control the restoration rate of chiral symme
One is related to the restoration in theq50 topological sec-
tor. The other is related to the topology changing regions
the gauge field configuration space and in particular to
regions that connect theq50 andq561 sectors.

To conclude this section the effects ofmf are presented
The observableP1 along the trajectory of Eq.~66! is plotted
in Fig. 5 for L56, m l 53.0, m050.9, mf50.1, and Ls
54,6,8,10,12,14,16,̀. At t50 the curves with largerP1
correspond to largerLs . It is clear that theLs5` limit is
approached rapidly and with no complications. Again t
region of changing topology approaches theLs→` limit
slowly but it is away from it only by a small percentage. O
would expect that the non zeromf behavior will persist down
to some small value ofmf before signs of themf50 behav-
ior described above appear. One can visualize how Fig
changes with decreasingmf . As mf becomes smallerP1
tends to zero in the various topological sectors. However
value, at the place where the topological charge chan
from 0 to 61, remains roughly constant resulting in th
spikes of Fig. 2.

In order to see more clearly how theLs5` limit is ap-
proached formf50.1, the expectation value of the chir
condensatêc̄c&, Eq. ~42!, is calculated in a configuration
space restricted only on the trajectory of Eq.~66! for various
Ls and for Ls5`. In Fig. 6 @^c̄c&Ls

2^c̄c&`#/^c̄c&Ls
is

plotted vsLs . Again, one can see that there is an inflection
about Ls510. However, when the inflection occurs theLs
5` value has already being approached to better than 0

FIG. 4. Expectation value of the chiral condensate in a confi
ration space restricted on the trajectory of Eq.~66! vs Ls for differ-
ent gauge couplings. The parameters have valuesL56, m050.9,
mf50, m l 53.0, 2.5, 2.0, 1.5, and 1.0 corresponding to diamon
squares, crosses, octagons, and stars.
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This behavior is encouraging as far as numerical simulation
are concerned. Since most numerical simulations are don
for small but nonzero masses one would expect that for som
range of masses the effects of the topology changing con
figurations to these simulations will generally be small and
perhaps even lost in the statistical noise.

B. The effects of gauge field fluctuations

In this section the effects of gauge field fluctuations to the
chiral symmetry restoration rate are discussed.

The two mechanisms of chiral symmetry restoration iden
tified in Sec. V A will be affected when the gauge field is

-

,

FIG. 5. P1 along the configuration space trajectory, Eq.~66!,
labeled by t. The parameters have valuesL56, m l 53.0, m0

50.9, mf50.1, Ls54,6,8,10,12,14,16,̀.

FIG. 6. @^c̄c&Ls
2^c̄c&`#/^c̄c&Ls

vs Ls for mf50.1. ^c̄c& is
the chiral condensate in a configuration space restricted on the tr
jectory of Eq.~66!. The parameters have valuesL56, m l 53.0, and
m050.9.
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allowed to fluctuate. The effect of dynamical gauge fields
the mechanism that restores chiral symmetry in the zero
pological sector can be seen by measuring^c̄c& in an en-
semble of configurations generated by applying small fl
tuations to the trivial configuration. In particular, consid
gauge field configurations with linksU5eir p where r is a
random number in the range2e,r ,e with e a small num-
ber that controls the size of the fluctuations. These confi
rations have a ‘‘flat’’ distribution and in this ensemble^c̄c&
is obtained by calculatinĝP1&/^e

2Seff&. In Fig. 7 ^c̄c& is
plotted vsLs for various values ofe50.4, 0.3, 0.2, 0.1, and
0.01 corresponding to octagons, stars, squares, crosses
diamonds. The value at each point was calculated in an
semble consisting of 40 configurations. Antiperiodic boun
ary conditions have been used for the fermions andL56,
mf50, m050.9. It can be seen that as the size of the fl
tuations decreases the chiral symmetry restoration rate
creases.

Some insight to this behavior can be gained by consid
ing the following ‘‘heuristic’’ argument. The Dirac operato
of equation 7 can be rewritten as

DF5D” naive1M,

D” naive~x,x8!5
1

2 (
m

gm@Um~x!d~x1m̂2x8!

2Um
† ~x8!d~x81m̂2x!#,

M52B1
11g5

2
M1

12g5

2
M†, ~68!

whereB is the Hermitian matrix given in Eq.~17! andM is
given by Eq.~49!. For the free theory in momentum spa
DF5 i p”̄ 1M(p), M(p) can be read from Eq.~46!. One can

FIG. 7. ^c̄c& vs Ls calculated in an ensemble of configuratio
generated by applying small fluctuations of sizee to the trivial
configuration~U5eir p with r randomly distributed in2e,r ,e!.
The parameters have valuesL56, m050.9,mf50, e50.4, 0.3, 0.2,
0.1, and 0.01 corresponding to octagons, stars, squares, crosse
diamonds.
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think ofM(p) as being a momentum dependent mass m
trix. The smallest eigenvalue ofMM† is obtained at zero
momentum and is equal tomeff

2 with meff5m0(22m0)@mf

1(12m0)
Ls#, Eq. ~63!. The quantity (12m0) is the smallest

eigenvalue of the matrixB. When interactions are turned o
the smallest eigenvalue ofB will shift to values (12m08)
larger than the free theory (12m0) value for the simple
reason that the matricesUm(x)d(x1m2x8) that make upB
are unitary. Therefore, the smallest eigenvalue ofMM† will
now bemeff82, meff8 5m08(22m08)@mf1(12m08)

Ls#. For small fluc-
tuations one may still be able to think ofM as a mass ma
trix. If that is the case the lightest mass in the theory will
meff8 and one sees that formf50 the chiral symmetry resto
ration rate will become faster as the fluctuations beco
smaller.

Finally, the quantitative effect of dynamical gauge fiel
to the mechanism related to topology changing is com
cated since it involves some understanding about the volu
of configuration space that contains gauge field configu
tions for which the overlap Hamiltonian has near zero eig
values. As already mentioned, one would expect that
volume will shrink as the continuum limit is approached b
cause the pure gauge action introduces energy barrier
size;1/g0

2 between sectors with topological charge that d
fers by one unit.

C. The range ofm0

In this section the allowed range ofm0 and the effects it
has in the approach to the continuum limit are discussed

In order for the doubler species to acquire masses of
order of the cutoffm0 must be in the range 0,m0,2 @4#. As
it was found in @6#, in order for the transfer matrix to be
positive definite for all gauge fields, the range ofm0 should
be further restricted to 0,m0,1, Eq. ~11!. For QCD, any
value ofm0 in this range should lead to the same continuu
limit since the local and global symmetries of the theo
remain unchanged. On the other hand, different choices
m0 , will result in different ways of approaching this limit
For the Schwinger model there is an additional complicati
As mentioned in the introduction, a four-Fermi term is
marginal operator in two dimensions. Although it is not e
plicitly introduced in the action, the DWF regularization in
troduces such a term with a coefficient that depends onm0
@8,7#. Therefore, different values ofm0 will lead to different
continuum limits. For this reason, a quantitative study of
effects ofm0 to the approach to the continuum limit in th
Schwinger model is complicated and will not be done he
However, there are some important generic features that
be discussed.

Consider the overlap HamiltonianH, Eq. ~16! as a func-
tion of the (2n11)-dimensional massm0 @6#. It is easy to
see that form052`, H has the same number of positiv
and negative eigenvalues,N15N2 . It is also easy to see
that form0,0, H cannot have a zero eigenvalue. As a res
H hasq50, for m0,0. Asm0 is increased from zero,H can
develop zero eigenvalues and as a resultqÞ0 ~eigenvalues
cross zero alteringN2!. Close to the continuum it can b
easily seen that most crossings will occur aroundm050 @6#.
Farther away from the continuum pure gauge numer
simulations@18# show a finite region@m0min

,m0max
#, where

and
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most crossings occur. This suggests that one should k
m0max

!m0 for two reasons. First, one would like to be as f

away as possible from the region where crossings oc
since, as discussed in Sec. V A, it is there that the decay r
become small. Second, as can be seen from the definitio
the topological charge, Eq.~29!, it is only then that the full
effects of nontrivial topology are visible to the fermions.
particular, one would expect that by keepingm0max

,m0

quantities that are sensitive to topology will have
‘‘smoother’’ approach to the continuum limit.

From the above discussion it appears that at any coup
the safest choice would be to setm0 to its largest allowed
value m0'1. Even then, because in general 0,m0min

,m0max
,2 it may be that far away from the continuum

,m0max
⇒m0,m0max

. If this situation occurs the finite lattice

spacing errors at that coupling will be large and the ch
symmetry restoration rate will be slow. However, the n
merical simulations of@18# indicate that even for reasonab
strong couplingsm0max

,1. The couplings used in this pape

fall in this category~see Fig. 1 in@18#! andm0 is kept fixed
to m050.9.

In @13# it was found that for QCD some tuning (m0
51.7) was necessary in order to sufficiently restore ch
symmetry atLs510. However, the configurations used the
were not generated with the DWF action but rather with
staggered fermion action atb55.7. It is possible that this
large value ofm0 is at least due in part to the ‘‘sem
quenched’’ nature of the calculation and if the configuratio
are generated with the DWF action settingm0'1 may be
sufficient.

VI. DYNAMICAL SIMULATION OF
THE MASSIVE THEORY WITH THE OVERLAP

In this section a full dynamical simulation that measu
the chiral condensatêc̄c& and the ’t Hooft vertex̂ w& of
the two flavor massive Schwinger model using the over
formalism of the model of Sec. II will be presented. T
result is interesting on its own right and it also provides
Ls5` numbers that will be used to compare with the resu
of the dynamical simulation for finiteLs presented in the
next section.

The expectation valueŝc̄c& and ^w& can be calculated
numerically using Eqs.~43! and ~45!, respectively. As it is
evident from these equations a pure gauge simulation w
action SG must be performed with the overlap factors a
pearing in the numerator and denominator treated as obs
ables. The pure gauge theory expectation values of the o
lap factors in the numerator and denominator are t
divided to producê c̄c& or ^w&. A heat bath algorithm was
used to generate configurations with the standard Wil
plaquette pure gauge action of Eq.~3!.

Measurements of̂ w& for the massless,mf50, theory
were performed in@8#. The reader is referred there for mo
details on the method and results. However, the result fow
in that reference cannot be compared directly with themf
50 result here since a different implementation of the ov
lap was used. Furthermore, the single plaquette action u
there was a heat kernel action while the standard Wil
ep
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plaquette action is used here. The result for^w&/mg
2 vs Ls on

an L56, m050.9, m l 53.0 lattice is given in Fig. 8. This
quantity acquires a nonzero vacuum expectation value e
for mf50 ~dotted lines! as a result of the anomalously bro
ken U~1! axial symmetry.

The result for̂ c̄c&/mg vs mf on the same lattice and for
the same parameters is presented in Fig. 9. The behavio
^c̄c& vs mf is interesting in that̂ c̄c&;mf for mf,0.1
while ^c̄c&;mf

1/3 for mf.0.1. Fits toAmf
p for mf,0.1 and

for mf.0.1 are shown in the same figure. Both fits have ax2

per degree of freedom of about one. Formf,0.1 p
50.996(3) while formf.0.1 p50.32(2).

This type of behavior was found by analytical continuum
calculations in@19#. In particular, the linear behavior was
found to take place formfL!1 while themf

1/3 behavior was
found to occur formfL@1. Unfortunately, the coefficients
calculated in that reference can not be directly compar
with the ones here because, as previously discussed, an
ditional four-Fermi interaction is induced by the DWF regu
larization@8,7#. This term in two dimensions is not irrelevan
and it will contribute to the continuum limit. For the sam
reasons the value of̂w& cannot be directly compared with
the continuum results of@19#.

VII. HYBRID MONTE CARLO SIMULATION

In this section a full dynamical simulation of the two fla
vor Schwinger model for finiteLs is presented. The algo-
rithm used is the standard hybrid Monte Carlo~HMC! algo-
rithm @20#. The expectation value of the chiral condensa
^c̄c&, Eq.~42!, is calculated and used to monitor the amou
of explicit chiral symmetry breaking. The reason for usin
^c̄c& instead of the pion mass is that in two dimension
there is no spontaneous chiral symmetry breaking and
though the pion mass vanishes for vanishing fermion ma
the pion is not a Goldstone particle. In this sense^c̄c& is as

FIG. 8. ^w&/mg
2 vs mf for L56, m050.9, m l 53.0 using the

overlap. The dotted lines are themf50 result6 the corresponding
statistical error.
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FIG. 9. ^c̄c&/mg vs mf for L56, m050.9, m l 53.0 using the overlap. The fits are to^c̄c&5Amf
p . Both fits have ax2 per degree of

freedom of about one. Formf,0.1 p50.996(3), while for mf.0.1 p50.32(2).
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good a probe of chiral symmetry breaking as is the p
mass, but unlike the pion mass it has the practical advan
of not requiring large lattice size along the time direction
order to measure the decay of the pion correlator. The eff
of the anomalously broken U~1! axial symmetry are moni-
tored by measuring the expectation value of the ’t Ho
vertex ^w&, Eq. ~44!.

The smaller size lattices were simulated on the works
tions of the Physics Department of Columbia University. T
larger lattices were simulated on the Silicon Graphics Po
Challenge Array computer system at NCSA UIUC and a
on the C90 supercomputer at PSC.

A. The algorithm

The HMC Hamiltonian is given by

HHMC5
1

2
P21SG@U#1x†~DF

†@mf ,Ls#DF@mf ,Ls# !21x

1F†~DF
†@mf51,Ls#DF@mf51,Ls# !F, ~69!

where P is the HMC momentum,SG is the pure gauge
plaquette action given in Eq.~3!, U is the U~1! gauge field,x
is the pseudofermion field,F is the bosonic PV field, andDF
is the three-dimensional Dirac operator of Eq.~7!.
n
ge

ts

t

-
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The HMC trajectory lengtht is set tot51, the step size is
t/N and the number of stepsN is adjusted according to th
size of the effective bare fermion mass. Typical simulatio
with mf>0.05 are done with 50 HMC steps. For themf
50 simulations the number of steps is set to 100–400
pending on the size ofLs . This is necessary because, f
mf50, trajectories that cross between different topologi
sectors experience large HMC fermion forces~for more de-
tails see Sec. VII B!. The conjugate gradient residual is set
1028. Typically, the number of conjugate gradient iteratio
is around 50 and does not exceed;100 for mf50 andLs
514. The number of measurements is;8000 except for the
more ‘‘expensive’’ 12312, 10,Ls lattices where 1000–
2000 measurements were performed.

B. HMC and topology

In this section problems related to the sampling of no
zero topological sectors with the HMC algorithm at sm
fermion masses are discussed.

The HMC algorithm is very successful provided the fe
mion mass does not become very small. If the fermion m
becomes very small then the effects of topology are not
produced correctly. In particular, the measurement of^w&
becomes problematic. If, for some fixed volume, the ferm
mass is made very small then similar analysis as in@21#
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indicates that the effect of the zero modes coming from
ferent topological sectors becomes important. In particu
as can be seen from the overlap implementation@6,8#, at
finite physical volume, at zero mass and in theLs→` limit,
the operatorw receives contributions only from sectors61,
while the fermion Boltzmann weight~fermion determinant!
is not zero only in sector 0. Asmf is turned on~and/orLs is
decreased from infinity! the fermionic determinant become
non zero in sectors other than 0 and the operatorw receives
contributions from sectors other than61. Because of this
behavior at small fermion mass the HMC algorithm w
mostly sample the sector 0 where the observablew receives
small contributions. The algorithm will infrequently visit th
sectors61, but when it does the observablew will receive
large contributions to ‘‘make up’’ for the small samplin
rate. As a result, when the fermion mass is decreased a la
number of HMC iterations will be needed to sample the61
sectors correctly. Therefore, for a fixed amount of compu
time, if the fermion mass becomes very small the import
contributions may not even be sampled at all and as a re
not only the expectation value ofw will be underestimated
but also the associated error. This type of difficulty has
ready been noticed in simulations of the Schwinger mo
@22,12#.

The problem described above leaves a clear signatur
the time history ofw. In Fig. 10 the time history ofwis given
for six different fermion masses atLs514. As the fermion
mass is decreased, the average around whichw fluctuates
decreases. This decrease is compensated by the large c
butions received from theq561 sectors. These contribu
tions start to appear as ‘‘spikes’’ in the time history. T
smaller the fermion mass the larger the ‘‘height’’ of th

FIG. 10. Time history ofw, Eq. ~44!, for six different values of
mf . Notice the different scale of themf50.05 andmf50.0 graphs.
The parameters areL56, m l 53.0, m050.9 andLs514.
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spikes but since the corresponding Boltzmann weight
comes smaller their frequency also decreases. Notice the
ferent scale of themf50.05 andmf50.0 graphs.

But it is not only ^w& that is affected at small fermion
masses. If, along an HMC trajectory, the topological cha
changes then the fermion determinant changes by a l
amount. As a result, the HMC fermion force becomes la
and the HMC step size errors become large. Therefore, as
fermion mass is made smaller one must adjust the HMC s
size accordingly. Finally, it should be stressed that these
ficulties are not related to DWF but rather to the HMC alg
rithm. In particular, the simulations using the overlap in S
VI do not suffer from these problems since there the ferm
determinant is treated as an observable in a pure gauge
bath.

C. mf50

In this section a strict test of chiral symmetry restorati
is done.

A full dynamical simulation using the HMC algorithm i
performed with the explicit fermion massmf set to zero so
that the only breaking of chiral symmetry comes from t
finite extentLs . The restoration rate at fixed physical volum
and various lattice spacings is studied by measuring^c̄c&
for various values ofLs . Although this provides a strict tes
one must keep in mind that the nonzero topological sec
may be suppressed more than they should for the rea
mentioned in Sec. VII B. This means that the rate of res
ration of chiral symmetry observed here is mainly due
effects that occur in the zero topological sector and its vic
ity. The following results were obtained at fixedm050.9.

In Fig. 11, ^c̄c&/mg is plotted in a ‘‘log’’ plot vs Ls at
fixed physical volumem l 53.0 and for various lattice spac
ings m l /L5ma,where L56,8,10,12 corresponding to th

FIG. 11. ^c̄c&/mg , Eq. ~42!, vs Ls for mf50, fixed physical
volume m l 53.0, m050.9 and for four different lattice spacing
m l /L5ma, with L56,8,10,12 corresponding to the lines from to
to bottom.
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lines from top to bottom. Data forL54, Ls56210 are sta-
tistically indistinguishable from theL56 data and are no
plotted. ForLs56210 the decay is consistent with expone
tial with a rate that becomes faster as the lattice spac
decreases. ForLs512222 the decay is again consistent wi
exponential but with a slower rate. Again, this rate becom
faster as the lattice spacing decreases. Also, the per
change of the rate atL56 is '5466% but atL512 is
'3166%. The fits shown are two parameter fits
^c̄c&/mg5Be2cLs. Thex2 per degree of freedom is smalle
than one for all the fits except for theL512,Ls56210 data
that have ax2 per degree of freedom of'3.

The exponentiated ratee2c of the various fits vs 1/L;a is
shown in Fig. 12. The diamonds correspond to theLs56
210 fits while the crosses to theLs510222 fits. One can
see thate2c is roughly a linear function of 1/L;a for the
Ls56210 fits and forL58,10,12. However, more data a
smaller lattice spacings are needed before one can be c
dent that scaling has set in and that this is the correct sca
form.

Although the above fits are all consistent with exponen
decay, power law decay of the form̂c̄c&/mg5BLs

2p can be
excluded with some confidence only for the fast decay,Ls
56210, at the smallest lattice spacing,L512. A power law
fit to this data hasx2 per degree of freedom of'32. More
statistics and largerLs will be needed in order to clearly
establish the type of decay for the other cases. For exam
at the largest lattice spacing,L56, it is estimated that the
error bars will have to be reduced from their few percent s
down by a factor of about 10. Alternatively, the error ba
can be kept at the few percent level but then it is estima
that Ls will have to be made as large as'30. Both ap-
proaches are beyond the purpose of this paper and the a
able computer resources.

The facts that the decay changes forLs.10, that the
slower decay approaches the faster one as the contin

FIG. 12. The exponentiated slopese2c of the lines in Fig. 11 vs
1/L;a. The diamonds correspond to the faster rates 6<Ls<10
while the crosses to the slower ones 12<Ls<22.
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limit is approached and that both decays become faster a
continuum limit is approached can all be understood fr
the analysis in Secs. V A and V B. Finally, the ’t Hooft ve
tex ^w& was also measured but, as expected from the dis
sion in Sec. VII B, its value and associated error is under
timated. In particular, its value is much lower than t
corresponding overlap value of Sec. VI. For this reason t
data is uninteresting and is not presented here.

D. mfÞ0

In this section themfÞ0 case is studied. Since typica
QCD simulations are done for non zero fermion mass
results of this section are of practical interest.

Dynamical simulations are performed with massesmf
large enough, 0.1<mf , so that the effects of topological sec
tors q50,61 are not miscalculated due to problems asso
ated with the HMC algorithm as described in Sec. VII
Both ^c̄c& and ^w& are measured and their approach to t
Ls5` limit is studied and compared with theLs5` results
of Sec. VI. This is done for fixed physical volume, and va
ous lattice spacings. The parameterm0 is kept fixed at 0.9.

In Fig. 13 @^c̄c&/mg#3 is plotted vs Ls for mf
50.1,0,2,0.3,0.5 at fixed physical volume and lattice spac
m l 53.0, L56. According to the results in Sec. VI one e
pects that@^c̄c&/mg#3;meff . Therefore a fit of@^c̄c&/mg#3

vs Ls is made to the formA1Be2cLs. All fits have ax2 per
degree of freedom'122. In these figures the cross is th
coefficientA and the dotted lines are theLs5` result of Fig.
9 plus/minus the error. One can see that asmf becomes
larger theLs5` result is approached faster. This is in acco
dance with naive expectations born out from the free the
formula formeff Eq. ~63!. In Fig. 14^w&/mg

2 is plotted vsLs

for the same parameters as in Fig. 13. The fits are again

FIG. 13. @^c̄c&/mg#3 vs Ls for four differentmf . The physical
volume is fixed atm l 53.0, m050.9, and the lattice spacing is se
by L56. The fits are to a functionA1Be2cLs. The dotted line is
theLs5` result6 the error from Fig. 9. The cross is the coefficie
A.
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form A1Be2cLs and havex2 per degree of freedom'1
22. One can see that theLs5` result has already been
approached atLs56.

The effects of changing the lattice spacing atmf50.2 can
be seen in Figs. 15 and 16. In Fig. 15@^c̄c&/mg#3 is plotted
vs Ls at fixed physical volumem l 53.0 for different lattice

FIG. 14. ^w&/mg
2 vs Ls for four different mf . The physical

volume is fixed atm l 53.0, m050.9, and the lattice spacing is se
by L56. The fits are to a functionA1Be2cLs. The dotted line is
theLs5` result6 the error from Fig. 8. The cross is the coefficien
A.

FIG. 15. @^c̄c&/mg#3 vs Ls for four different lattice spacings set
by L at fixedmf50.2. The physical volume is fixed atm l 53.0 and
m050.9. The fits are to a functionA1Be2cLs. The dotted line is
the Ls5` result6 the error. The cross is the coefficientA.
spacingsm l /L5ma, L54,6,8,10. The fits are again to
form A1Be2cLs and have ax2 per degree of freedom o
'122. One can see a similar behavior as the one in S
VII C. As the lattice spacing is reduced the ratec of the
exponential approach to theLs5` result increases. For ex
ample,^c̄c& at the larger lattice spacingL54 decays with
c50.54(3) but at the smaller lattice spacingL510 it decays
faster withc51.1(1). However, one should note that forL
58 andL510 the rate saturates and is essentially dicta
by theLs54,6 points with theLs56 point very close to the
Ls5` result. If a second slower rate sets in for 10&Ls it is
unimportant and is lost in the statistical noise. Some insi
to this behavior can be gained from the analysis at the en
Sec. V A ~in particular see Fig. 6!. Similar behavior is ob-
served in Fig. 16 for̂w&/mg

2. All fits havex2 per degree of
freedom'122.

Similar results are obtained if one keeps the physical v
ume andmf in physical units fixed while changing the lattic
spacing. This can be seen in Figs. 17 and 18 by compa
the L510, mf50.2 data~diamonds! with data atL54, mf
50.5 ~squares!. In these graphs the physical volume is fixe
at m l 53.0, andmf in physical units is fixed atmfL52.0.
Again the decay rate increases as the lattice spacing is
duced.^c̄c& at the larger lattice spacingL54 decays with
c50.48(5) but at the smaller lattice spacingL510 decays
faster withc51.1(1). All fits havex2 per degree of freedom
'122.

Finally, it should be noted that although the above data
consistent with exponential decay, other types of decay
not be excluded. This is mainly due to the fact that since
Ls5` result has already being approached, within statist
for Ls58210, the decay is basically dictated only by th
two points Ls54,6. More statistics are needed in order
clearly establish the type of decay.

FIG. 16. ^w&/mg
2 vs Ls for four different lattice spacings set b

L at fixed mf50.2. The physical volume is fixed atm l 53.0 and
m050.9. The fits are to a functionA1Be2cLs. The dotted line is
the Ls5` result6 the error. The cross is the coefficientA.
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VIII. CONCLUSIONS

In this paper the properties of domain wall fermio
~DWF! were studied in the context of the two flavor Lattic
Schwinger model. The expectation value of the chiral c
densatê c̄c& was used to probe issues related to restora
of the regularization-induced chiral symmetry breaking. T
expectation value of the relevant ’t Hooft vertex^w& was
used to probe issues related to topology.

Dynamical numerical simulations of the full theory we
performed. It was found that, as expected from perturba
considerations, the restoration of chiral symmetry as a fu
tion of Ls ~Ls is the size in lattice units of the 2n11 direc-
tion! at a fixed physical volume and lattice spacing, is co
sistent with exponential decay. In particular, the data
consistent with a picture where chiral symmetry is resto
with a fast exponential decay rate forLs up to some value
and with a slower exponential decay rate forLs above that
value. For the range of lattice spacings used in this paper
inflection appeared atLs'10. Using a simple model it wa
found that the first fast decay can be associated with re
ration of chiral symmetry in the zero topological sector wh
the second slower decay can be associated with the reg
of gauge field configuration space that connect theq50 and
q561 topological sectors.

The effects of the size of the lattice spacinga to the two
decays were studied using both analytical arguments and
plicit numerical simulations of the full theory. It was foun
that for zero explicit fermion mass the fast decay associa
with the zero topological sector becomes faster as the la
spacing is decreased. The vanishing of the chiral conden
is consistent with a forme2cLs with e2c being roughly a
linear function ofa, but more data at smaller lattice spacin
are needed before one can be confident that scaling has
and that this is the correct scaling form. The second slo

FIG. 17. @^c̄c&/mg#3 vs Ls for two different lattice spacings se
by L54 ~squares! andL510 ~diamonds! at m050.9. The physical
volume andmfL are fixed atm l 53.0 andmfL52.0. The fits are to
A1Be2cLs. The dotted lines are theLs5` results6 the error. The
cross is the coefficientA.
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decay also becomes faster as the lattice spacing is decre
and it differs less from the faster decay as the lattice spac
becomes smaller. For the smallest lattice spacing studied
two exponential decay rates differed by'3162%.

For small but nonzero explicit fermion massmf the values
of ^c̄c& and ^w& were measured. The correspondingLs
5` numbers were calculated by performing numeric
simulations with the overlap formalism. It was found that t
Ls5` numbers were also approached in a way that is c
sistent with exponential decay with a rate that became fa
as the lattice spacing decreased. Furthermore, the large
fermion mass the sooner theLs5` value was approache
and for the fermion masses studied in this paper theLs5`
result was already achieved to within a few percent forLs
5428. If a second slower decay does set in for 10&Ls , it is
unimportant and was lost in the statistical noise. Finally,
interesting result was obtained from the measurements
^c̄c& and^w& vs mf . It was found that these measuremen
are in agreement with the analytical predictions of@19#. In
particular the interestinĝc̄c&;mf

1/3 behavior was repro-
duced.

Although all the numerical data are consistent with exp
nential decay, power law decay can be excluded only for
fast decay at the smallest lattice spacing studied. For
data the decay is sufficiently fast and the error bars are
ficiently small so that a power law fit can be safely exclud
since it has ax2 per degree of freedom'31. More statistics
and largerLs are needed in order to be able to clearly d
tinguish between exponential and power law decay for
rest of the data points.

The next step is to carry out a similar investigation f
dynamical QCD. Many of the characteristics of DWF foun
here are sufficiently generic so that one would expect t
they will also be present in QCD. If it turns out that QCD
the presently accessible lattice spacings, volumes and q
masses has similar restoration rates as the ones found
then DWF will indeed provide a powerful fermion discret
zation method.

FIG. 18. ^w&/mg
2 vs Ls . The parameters are as in Fig. 17.
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