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Chiral symmetry restoration in the Schwinger model with domain wall fermions

Pavlos M. Vranas
Department of Physics, Columbia University, New York, New York 10027
(Received 4 June 1997; published 14 January 1998

Domain wall fermions utilize an extra spacetime dimension to provide a method for restoring the
regularization-induced chiral symmetry breaking in lattice vector gauge theories even at finite lattice spacing.
The breaking is restored at an exponential rate as the size of the extra dimension increases. Before this method
can be used in dynamical simulations of lattice QCD, the dependence of the restoration rate on the other
parameters of the theory and, in particular, the lattice spacing must be investigated. In this paper such an
investigation is carried out in the context of the two flavor lattice Schwinger mp8i@556-282(198)02401-1

PACS numbses): 11.15.Ha, 11.30.Rd, 12.38.Gc, 71.10.Fd

I. INTRODUCTION from the fact that a massive vector theory in21 dimen-
sions, with a mass term that changes sign along tihe 2

When fermions are discretized ordadimensional lattice dimension, develops a massless chiral zero mode that is ex-
they “double” produce 2 species for each flavor. In order ponentially bound along ther2-1 direction to the region
to remove the unwanted degrees of freedom special camghere the mass changes sign. From the point of view of the
must be taken. For a vector theory, such as QCD, two methgn-dimensional world this is a chiral fermion. This region is
ods have been used to deal with this problem, but both breakalled domain wall and this type of fermion is called domain
the global symmetries of the continuum theory. Wilson fer-wall fermion (DWF). When such a theory is discretized spe-
mions[1] are implemented by adding an irrelevant operatorcies doubling also occurs. However, since the
to the action. This operator makes all but one of the specie€n+ 1)-dimensional theory is vectorlike the extra species
heavy (with masses close to the cutpffFor theN; flavor ~ can be removed with the addition of a standard Wilson term.
QCD this operator breaks the SN, X SU(N;)r chiral  The resulting theory has a single chiral fermion exponen-
symmetry down to SU{;). This explicit breaking is severe tially bound to the wall. If, for practical reasons, the21
and requires fine-tuning of the bare quark mass in order tdimension is made finite with periodic boundary conditions
obtain a massless theory. Even then the size of the breakirfgr the mass then the mass must change sign one more time.
is proportional to the lattice spacing and only close to thdn that region(antiwall) an exponentially bound chiral zero
continuum limit the explicit breaking becomes small. Stag-mode with opposite chirality appears. As a result, the theory
gered fermions[2] break the SUK;) X SU(N¢)gr chiral  becomes vectorlike. Different types of boundary conditions
symmetry down to (1)XU(1). Because of the remnant of Yield similar problems. In order to preserve the single chiral
chiral symmetry the massless theory can be reached by sinmode, the 2+1 dimension must be kept infinite. At first
ply taking the bare quark mass to zero. However, the flavogight this may seem impractical. However, Narayanan and
symmetry of the theory has been compromised and is alsbdeuberger developed a method, called the overlap formal-
only recovered as the continuum limit is approached. ism, that makes it possible to deal with this infinj§/].

Despite these problems both methods have been very suc- The overlap formalism develops a transfer matrix along
cessful in describing the light hadron spectrum at zero temthe 2n+1 dimension and an associated Hamiltonian. The
perature. However, both methods have difficulties in studygauge fields are defined only on the-dimensional space
ing the finite temperature phase transition. Wilson fermionsand are taken to be independent of thret2L coordinatd 6].
have a complicated phase diagram that, at the presently alit essence, the extra dimension is treated as a complicated
cessible lattice spacings, makes it hard to extract the relevafiavor space. The resulting formalism involves two Hamilto-
physics. Staggered fermions, because of the exact remnantiians, one for the region of positive mass and one for the
chiral symmetry, do not suffer from this problem. However, region of negative mass. The chiral determinant is the deter-
at the presently accessible lattice spacings, the breaking afinant of the overlap of the two ground states associated
flavor symmetry makes two of the three pions heavy. Thiswith each Hamiltonian and it can be calculated explicitly
can have important physical consequences since the transince all the negative eigenvectors of both Hamiltonians are
tion temperature is of the order of the pion mass. For a reknown. For a finite A-dimensional lattice the Hamiltonians
view on the finite temperature phase transition with bothare finite size matrices of size-VXV where V is the
types of fermions the reader is referred 89, and references 2n-dimensional volume and their eigenvectors can be readily
therein. calculated. The resulting chiral determinant has the correct

A few years ago a new method for discretizing fermionsmagnitude and a phase that exhibits the correct gauge depen-
was developed in order to address the more difficult probdence for “smooth” gauge fields. For “rough” gauge fields
lems associated with chiral gauge theofi¢k In the follow-  the phase exhibits a mild breaking of gauge symmetry even
ing years this method was further developsée[5], and for anomaly free theories. This problem has been resolved in
references therejnwith important progress in the develop- [7].
ment of chiral gauge theorid$,7]. The basic idea follows These methods can also be used to formulate a vector
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theory. In this case the boundary conditions along the 2 distancel ; rather tharl /2 as in the original model. There-
+1 dimension are set to be periodic. A Dirac fermion fore, the expectation is that for the samgthis model will
emerges with the positive chirality component bound on theachieve better restoration of chiral symmetry.

wall and the negative chirality bound on the antiwall. If the  Another feature added in this model is the introduction of
2n+1 dimensions are taken to be infinite the two chiralitiesan explicit chiral symmetry-breaking term that connects the
are decoupled and the resulting theory has intact chiral syntwo ends with strengtim; . This gives mass to the fermion in
metries. Again, this infinity can be dealt with the overlap addition to the one resulting because of the finite extend
formalism and now there are no issues associated with th€he reason for adding this term is that it provides linear
phase of the determinant since, for a vector theory, the desontrol over the fermion mass instead of the exponential one
terminant is real. Therefore, the overlap formalism providegprovided byL . Furthermore, in a numerical computation, it
an ideal lattice regularization of vector theories where themakes much more sense to vany rather thari_ in order to
chiral symmetries are left intact even for finite lattice spac-control the mass. Therefore, for a given one would like to

ing. Also, the anomalous breaking of the axial symmetry iskeepL¢ large enough so that it does not affect the fermion
reproduced in an elegant way along with a formula for themass in any significant way. This method and the associated
index of the chiral Dirac operatd6]. Overlap formalism will be used throughout this paper.

The overlap formalism was used in a dynamical numeri- The theory has five parameters. The first two are the lat-
cal simulation of the massless single and multiflavortice spacinga and the physical exteritalong one direction
Schwinger model with good resulf8]. Numerical simula- of the 2n-dimensional boxXthey are controlled by the pure
tions of QCD using the overlap formalism would clearly be gauge couplinggy, and the size in lattice units). The re-
very appealing. However, as mentioned above, such a simunaining three parameterms,, Ls, and m; all control, to
lation would require the calculation of all negative eigenvec-some extent, the amount of chiral symmetry breaking and
tors of matrices of size-VXV. This makes such a calcula- therefore the effective fermion mass. Hoy— the theory
tion prohibitive for present generation supercomputers. is chirally symmetric except for the explicit breaking intro-

An obvious alternativésee[5], and references thergiis  duced bym;. As a result, the effective fermion mass van-
to keep the 2+ 1 dimensions finite and use standard hybridishes linearly with vanishingy; [10]. But for finite L this is
Monte Carlo type algorithms to simulate the theory in 2 not the case. As mentioned above, evennfipe=0 the resto-
+1 dimensions. Of course, the exact chiral symmetry will beration of chiral symmetry is expected to be exponential
spoiled but it will be recovered as the sikg of the 2n+1 ~eCLs,
dimension is sent to infinity. Therefore, even at finite lattice One would expect that the exact continuum solution of
spacing one can control the restoration of the regularizatiothe Schwinger model would be useful to compare with re-
induced chiral symmetry breaking by using the parametesults obtained on the lattice. Unfortunately, this is only par-
L. This involves no fine tuning and, furthermore, since thetially true. The regularization with DWF introduces to the
two chiralities decay exponentially away from the w@h-  two-dimensional action a four-Fermi term with some coeffi-
tiwall), one would expect that the restoration of chiral sym-cient. Since, for the two-dimensional model, this operator is
metry would be exponential, i.e5 e C's, 0<c. The com- not irrelevant, the continuum theory will be different from a
puter cost of such a simulation would bgtimes larger than continuum theory with no four-Fermi term. Although the
a simulation of standard Wilson fermions with the samecontinuum theory has been solved with such a term present
physical masses. Since for present day supercomputers[#5], the results can not be directly compared since the value
value of Lg greater than 10-20 will make simulations im- of the coefficient arising from the DWF has not been calcu-
practical, an important question to ask is what is the ratdated. This problem was encountered &} and[7] and made
“c” of restoration of chiral symmetry and how does it de- the comparison with continuum results complicated. Fortu-
pend on the other parameters of the theory and in particularately, for the purposes of this work, the continuum results
on the lattice spacing. I/9,10] some of the issues relating to are not needed. In fact, there is a much more relevant com-
this question were investigated analytically. Numerical workparison that can be made. At every step the value of any
in [11-13 has yielded encouraging results and in particularobservable at finitd. can be directly compared with its
the interesting work of13] indicates that DWF can success- value at infinitel s calculated using the Overlap on the same
fully address problems related to the evaluation of weak malattice size and lattice spacing.
trix elements. However, these works have only marginally The paper is organized as follows. In Sec. Il the model
addressed this particular question. Before full scale dynamiand the corresponding overlap implementation is reviewed.
cal QCD simulations are performed this question should bén Sec. Ill the definitions of the various observables used in
answered. In this paper this question is investigated in théhis paper are given. In Sec. IV the free theory for firitas
context of the two flavor lattice Schwinger model. discussed, the full expression for the propagator is given and

A useful variation of the wall, anti-wall model studied in the “effective” bare fermion mass is identified. In Sec. V
[14] was proposed in the context of vector lattice gaugesome general considerations regarding the interacting theory
theory in [9,10]. There, instead of having a mass thatare presented. These considerations lead to specific predic-
changes sign in two places along the-21 dimensiongsay tions. In Sec. VI the results of a full dynamical simulation
at 0 andL ¢/2), the mass is kept fixed to some positive valueusing the overlap with nonzero mass are presented. These
mg, but the boundary conditions are taken to be free at theesults, interesting in their own right, are used to compare
ends of the B+ 1 dimensions. Again, two zero modes with with the finite Lg results of the next section. Section VII
opposite chiralities emerge, but they are now bound at théescribes the results of a dynamical simulation of the (2
opposite ends of ther2+ 1 dimension and are separated by a+ 1)-dimensional system for various values of the param-
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eters on a fixed physical volume. The algorithm used is as the standard plaquette action wiy the lattice gauge
standard hybrid Monte Carl¢iMC) algorithm. The numeri-  coupling. In this paper the couplingy, is exchanged for the
cal results confirm the predictions made in Sec. V and toparameter

gether outline the mechanisms of chiral symmetry restoration

in the model. Section VIII contains a summary and conclu- 9

sions. (ul)y=—=1L, 4

NG

wherel is the physical size of therdimensional box along

In this section the model and the corresponding overlagne of its dimensions and is a mass related to the photon
formalism[6] implementation is reviewed for the benefit of mass with

the reader and in order to establish notafi®ri0]. The fol-
lowing is for a single flavor. The generalization to more fla- m.= N 5
vors is straightforward. = Ni, ©

The partition function of the single flavor
(2n+1)-dimensional model is

Il. THE MODEL

whereN; is the number of flavors. With these choigekis

the physical box size in units oft and ul/L=pua is the
_ : s lattice spacing in units ofe.

f [dU]f [d\Ifd\If]f [dd'dd]e™ ™. (1) The fermion action is

U ,(x) is the gauge field¥(x,s) is the fermion field, and — L, .,
(I)l(Lx,s) is a bosonic Pauli-VillardPV) type field. x is a SFz_XX,ES o V(X 8)De(x,sx",sHW(x",s")  (6)
coordinate in the @-dimensional space-time box with extent o

L along each of the directionsge=1,2,...,, and s
=0,1,...Ls—1, wherel is the size of the 8+ 1 direction
and is taken to be an even number. The ac8as given by

with the fermion matrix given by
De(x,s;x",8")=68(s—s")D(x,x")+D*(s,8")6(x—x"),
S= S(Qo:'-,LSvaamf) (7)

=Se(U)+ Se(W,%,U)+Spy(dT,0,U)  (2) 1 A
DO6X)=3 2 [(1+7,)U,() 80+ a=x")

where
1 +(1=y,)ULX) (X +a—x)]
Se=gg 2 ReTiI-Uyl @ +(Mo—2n) B(x—X), ®)
J
PRO(1—s")—mP 8(Ls—1—s")—8(0—s'), s=0,
Dt (s,s')=4 Pré(s+1-5")+P 8(s—1-s")—d8(s—s'), 0<s<Lgs—1, 9

—MPrS(0—s')+ P 8(Ls—2—5')— 8(Le—1—5s'), s=L.—1,

1+ ys 01 0 i 1 0
Pre=— (10 711 o) 2T =i o) Tlo 1)

(12)
wherem, is a (2n+1)-dimensional mass representing the
“height” of the domain wall. In order for the doubler spe- The PV action is designed to cancel the contribution of the
cies to be removed one must setM,<2 [4]. However, heavy fermions in the largk, limit. This is necessary be-
this range is further restricted by the requirement that theause the number of heavy fermions 4sL and at the

transfer matrix along ther2+ 1 direction be positivé6] L—oo limit they produce bulk-type infinitie§6]. There is
some flexibility in the definition of the PV action since dif-
0<my<1, (11)  ferent actions could have the sarbg— limit. However,

the choice of the PV action may affect the approach to the
The gamma matrices are taken in the chiral basis and are thg— < limit. A slightly different action than the one used in
same as in the last reference[Bl. In two dimensions they [10] is used here. This action is easier to implement numeri-
are cally and for finiteLg it projects the ground state of the
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transfer matrixT better; the projector i§"s instead ofT‘s?
(see below. Also, even for finitel ¢, it exactly cancels out
the fermion action whem;=1 resulting into a pure gauge
theory. The PV action is

> ot (x,5)De[mi=1](x,s;x’,s" )P (x',s).
(13

The transfer matrix along then2-1 direction for this
model is

T=e 22, (14)

wherea’, a are creation and annihilation operators that obe))N

canonical anticommutation relations and span a Fock spa . ] .
P pf rows labeledQ correspond to the right chirality statesith

with vacuum staté0). These operators live on the sites o
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lim TLS*)e_)\OloH><OH|,

Lg—oo

(23

where|0y) and )\, are the ground state eigenvector and ei-
genvalue ofa’Ha obtained by filling all negative energy
states. To get an explicit relation betwgép) and|0) let R
be the eigenvector matrix of the single particle Hamiltonian
H. The matricesH and R have sizeNXN where N
=sgpinxcolorxflavorxV. R can be put in the form

P~ P*

R:(Q Q*)’

here the rows labele® correspond to the left chirality
ates (with creation/annihilation operatoré’,c) and the

(24)

the -dimensional lattice and carry spin, color and flavor Creation/annihilation operatort',d). The + splitting of the

indices. The left/right component decompositionaois

. [¢C
a= a—l-) (15)
The single particle Hamiltoniahl is defined by
. [ B B!C
®© “lctet c'Bic+B)’ 19
1 2n A )
B(xY)=5 2 [2-U,()30x+a=y)=UL(y)
=
X 8(y+ u—x)]+(1—mg) S(x—y), (17
1 .
C(xy)=75 2 [U,(0)8(x+4=y)
o
~UL(y) 8y +i—x)]o, (18)

with o1=1, o,=i in two dimensions.

columns corresponds to eigenvectors with positive/negative
eigenvalues. WithN* denoting the number of positive/
negative eigenvalues the size of tRe, Q- matrices is
N/2XxN~ and the size of theP*, Q" matrices isN/2
XN*. Then it can be shown that

N
0w =11 (&P i+d,Qp »I0). (25)
From Egs.(19), (20), and (23) the effective action for the

fermion and PV fields in thé—o limit is given by the
overlap formula

e SetfLs=mi] = g~ Sel == mi] ~SiiLs==1= (0,,| O(my) [Oyy)..
26

For m;=1, (04| O(1)|04)=1, corresponding to a theory
with no fermions. Them;=0 case corresponds to massless
fermions and the overlap takes the special form

The fermionic and PV effective actions can be expressed

in terms of the transfer matrix as

e~ Serlls)= de( D[ my]) = detB)*s TH{ T-O(my)],
(19

e~ Seilts)=[det D[ m;=1])] '={de(B)"s TH T} %,
(20

where the operato®(m;) implements the boundary condi-
tions and contains all then; dependence:

omp =11 @&r+meele)(d,df+medidy).  (22)
n

For m;=1 it is the identity operator and fom;=0 is a
projection operator to a state’):

0)=11I d'lo"). (22

In the infiniteL¢ limit Tts becomes a projection operator
to the ground state of a'Ha,

e Selts=m=0)=|(0,[0")]. (27
It can be shown that
[(04]0")[?=|de(Q "), (28)

If N"=N/2, Q" is a square matrix and the overlap will in
general be non zero. However,Nf” #N/2 thenQ™ is not a
square matrix and its determinant is identically zero. From
Egs.(22), (25), and(28), one can see that this arises because
of a mismatch in the filling levels dD,) and|0’). In order
to obtain a non zero overlap one would need to insert the
appropriate number of creation and annihilation operators to
balance the filling levels. In fact these operators are the 't
Hooft vertices constructed with lattice fields. Then an elegant
definition of the topological charggas seen by the fermions
arises[6]:
g=N"—N/2, (29

whereq is naturally integer valued.

Whenm; # 0 use of Eqs(21), (25), and(26) yield explicit
expressions for the overlap as a determinant of a matrix that
is constructed out d?~ andQ ™. These expressions are used
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in the numerical simulation of the overlap{—~) in Sec. =~ The chiral condensate operator is

VI. For more details the reader is referred[6 and[9,10]. )
_ 1 — . — .
. OBSERVABLES == 5y 2 2 LIROOYLOO+ L 00 PR(X)]-

In this section the definitions of the observables that are (36

measured in this paper are given. The operators involved arghe following observable is related to the chiral condensate
as in[6,10]. in a background gauge field:

The 2n-dimensional fermion operators of the
(2n+1)-dimensional theory are constructed out of the

- VAW e Se— Sy
2n-dimensional fermion fieldg, ¢y as in[10]: Pl[LS’mf]_J’ [AWdW Jyype v e,

=PrV(x,00+ P ¥ (x,Ls—1),
K(X) _R O P (_X : Pl[l-s,mf]=—%2[DEl(X,LS—l,Z;X,O,Z)
P(X)=W(X,Ls— 1) Pr+W¥(x,0P . (30 *

. +D:1(x,0,1x,Ls—1,)]e S, (37)
In the Lg— o0 limit of the theory these operators exactly cor-

respond to insertions in the overlap of the creation and anni- 1

hilation operators discussed in Sec. Il. This will allow ex- Pi[Le=c0,m;]=— v > [{04]cto(my)E,|0p)

plicit comparisons to be made between measurements X

involving g in the 2n+1 theory'wnh finiteLg and mea- X (0y]O(Mg)[0p) + (c—d)].
surements with the overlap involving the corresponding cre- (39)

ation and annihilation operators.
The following is a list of definitions of the observables for The 't Hooft vertex operator is

any L, and the corresponding overlap expressions. The defi-

nitions of the actions are as in Sec. Il but for two flavors. Use 1

is made of the fact thdtlQ] W=y >

X

2

2
I1 wk(xwt(x)]{[l [¢L<x>wk<x>1]

=1

dei(Dg)=de(D{). (31) (39

The following observable is related to the 't Hooft vertex in

The fermion effective action of the {2+ 1)-dimensional a background gauge field:

theory in a background gauge field is

— e &PV
e :ﬁ[LS’mf]=j [d%‘lf]e_SF PZ[stmf]:j [dWPdW Jwe SF~Sefr,

- t
=de(Dg[Ls,m]De[Ls,mg]). (32 P,[Ls,m;]= % z [D,Zz(x,Ls—l,Z;x,O,Z)
The PV effective action in a background gauge field is g
+DF2(x,0,1x,Ls—1,1)]e" S, (40)
e_SZf\f/[Ls]:J [d‘I_’d‘I’]e_SPV
1
PolLe=om]=g 2 [{O4[E&{O(M)E,(0)*+ (c—d)].

=detD{[Ls,m=1]De[Lg,m=1]) %
(4D)

(33

The fermi frecti . back d field i The observables™ >ff, P;, and P, are interesting because
e fermion efiective action in a background gauge fie ISthey correspond to overlap expressions and, therefore, their

values at thd.s=o0 limit are calculable. Furthermore, these
quantities are sensitive to the topology of the background
de(DE[LS ,m¢]De[Lg,m(]) gauge field. The expectation value of the fermion condensate

= , is
de(Df[Ls,m;=1]D¢[Ls,me=1])

e SerfLs.mf] — e—sgﬁ[L,5 m¢]-ShelLg]

(34) @mzé J [dU]J [qud\If]f [ddTdd]yye S,
e—seﬁ[Lszoc,mf]:<0H|O(mf)|oH>2_ (35) (42

— AUV 3, (0|8 0(m) &, 04} 04| O(mp) [0y) + (c—d) Je S
(W) = [dU{04[O(m)[0n)%e S '

(43

The expectation value of the 't Hooft vertex is
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(w>=% f [dUJf[d«Ich\If]f[dcb*d@]we-S, (44)

_ JAU(IN) 5, [(04[E10(m),{0,)>+ (c—d)Je S
T JdU(04[O(m)[0,,)%e~ S

(49)

Notice that a numerical evaluation W@)Lszw and  where{). have no spin indices and

(w)LS:@ requires two separate pure gauge 5|mqlat|ons, one Q. (p:s,s')=[—b(p)+M(s,s")][—b(p)+M(s,5)]
for the numerator and one for the denominator, i.e., the fer- —,
mion determinant is treated as an observ4B|&]. +p5,

IV. THE FREE THEORY Q_(p:s,s)=Q,(p:Ls—1-sLs—1-s"), (5]

In this section the propagator is given, its singular part isvhere
identified and the bare fermion mass which is a function of on
L, mgy, My, is extracted. As a verification of this result the =S 9 (52)
smallest eigenvalue of the free {2 1)-dimensional Dirac =1 "
operator is also calculated.
The propagator has been calculated for the infibitease The inverse of the second order free Dirac operatgD |
in the first reference of6]. The propagator has also been must therefore be of the form
calculated for the model described in Sec. Il but only in the 1+ 1
limit where exponentially small contributions Iny could be _ ¥s ~ s 10—
ignored[9]. The size of these contributions was alluded to G=—7 Git—5 G, [DeDelG=1 (53
but no explicit expression was given. Since in this paper the o . .
interest is on the behavior of these contributions, the fullvhereG.. have no spin indices. From general considerations
calculation is worked out. Because the general form of thé3+ must be of the fornj9]
propagator is the same as[i,9] an effort has been made to
keep similar notation.
The free (D +1)-dimensional Dirac operator of E7)
in momentum space is

G.(p:s,s’)=Age 25784 A emalsts)

+A2efa(Lsflfs+Lsflfs’)

+Am[e—a(Ls—1+s—s’)+ e—a(LS—1+s’ —s)]’

! '_ ! ! 1+ 75 ’
De(p:s,s’)=ipd(s—s')—b(p)d(s—s )+TM(S,S) (54)
+1—‘y5 Mi(ss') 46 G_(p:s,s')=G,(p:Lg—1—-s,Ls—1-5'). (55
The coefficients in Eq(55) are momentum dependent.
and The coefficienta is the solution of the equation
2n 1+ b2+ p?
b(p)= 2, [1-cosp,)]+1-my, (47) costa)=——7p— (56
=
A straight forward calculation results to the following ex-
p_M=Sin(|OM), w=[1,...,2], puzzﬁku' pressions for the remaining coefficients:
1
k,=[0.1,...L—1], (48) Ao=2b sina) " 57
M(s,8')=8(s+1—-s")—8(s'—0)S(Lg—1—s)(1+my), B )
(49) Ay=— (b=e ) (1—mp), (58)

where theé functions are understood as having “period”

L. Nptice that t.he firs’g two terms of E46) are the same as A2=E (e2—b)(1—m?), (59)

for Wilson fermions with mass (£mg), where 6<my<<1 A

(see Sec. )l The second order free Dirac operator is diago-
. - B

nal in spin: An=— 5 [2bm sinh(a)+ e~ ats D (e 22— ]

1+vs 1-ys

Tz et O 50 ~mZe *=b])}, (60
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where
A=[e?*(b—e )+ m#(e*—b)]+[4mb sinha)]e ats™ Y

+[mi(b—e ?)+e 2(e?—b)Je 2ts7L), (61)

In order to identify the singular part of the propagator an
expansion in the variablgs, m; and (1—mg) ‘s~ is done
treating these variables as numbers with magnitudes mucl
smaller than 1. The only singular amplitudes Areand A,
and the resulting expression for the singular parGof is

. 1
G p:s,s') = Py {mo(2—m)

K g~ alls—1-stLs—1-s')

-1620
~-1640
_1660 [
_1680 [
~1700 |

~1720 b

P

|||||||||_

F
Seff

N

codnn

—38

-40

—42

—44

~46
1720

1715

1710

1705 |

1700 &

bl

A
PV
Seff

Lo d ]

e I

T

40

_ meﬁ(l_ mo)[efa(Lsfl+sfs’)

+e*a(Ls*l+S,*S)]}’ (62)

with

T T P

Megr=Mo(2—Mg)[ Mg+ (1—mg)"s]. (63

The expression fo66°"%“ can be obtained from Eq$62)
and(55). The propagator for the free theory is then given by

FIG. 1. Observable§or definitions see Sec. )lalong the con-
figuration space trajectory, E¢66), labeled byz. The parameters
have valuesL=6, ul=3.0,my=0.9,m;=0, Lg=14.

To verify the above result the smallest eigenvalue of
DFDE is also calculated. The Ieading order term in an ex- Consider the fo||owing set of ) gauge linkU Configu-
pansion as the one used above is rations labeled by the continuous parameter’ [17,6]:

(65 1
Ui(ng,ny)= ex;{

D-!=D[G. (64)

Nmin=P?+ Mz +O(4). if np#L—1,

and is proportional to the inverse of the singular parGof —i 2N,
as it should be.

The interesting result of the above analysis is ER).
This is the mass of the lightest mode of the theory and is
controlled bym; ,mg,L. This formula strongly suggests the

pattern for chiral symmetry restoration in the model.

if nl:L_l,

T

X 27Tn1
Uz(nl,nz)::ex | _Trf_ T

: (66)

whereU 1, U, are links defined on the sites, n, of the two
dimensional torus of sizé XL. This configuration is peri-
odic along the second direction but has a discontinuity along

) ) ) the first. Whenr is an integer the electric field strength is
The question on how the chiral symmetry restoration ratg,nirorm E=277/L2. When = is not an integeE has a dis-

depends on the various parameters of the m_odel “'t_imatel¥ontinuity at(n,—1, n,—1). The topological charge of the
can (_)nly be an_swered W_hen t_he fuI_I thepry is conS|deredgauge field is defined 446]

This is done using numerical simulations in Sec. VII. How-
ever, some general considerations that hint to the expected
behavior are useful in order to guide the numerical experi-
ments and to provide an understanding of the results. Such
considerations leading to specific predictions are presented in . .
this section. These prgedicti%ns arg confirmed by r::he numer'Where the sum is over all plaguette variabldg and the

cal simulations and therefore sketch the mechanisms of ch 99_3“”1?" has_ In(130 with the C.Ut along the '.‘eQa“Ve real
ral symmetry restoration in the model. axis. It is stralghtf.orwar.d to verify thaq is an integer that
changes values ass varied between integer valugsee Fig.

1). For more information on these configurations the reader
is referred to[17,6]. Here it is worthwhile to point out that

In this section a special kind of trajectoffl7,6] that this trajectory in configuration space is interesting because it
“cuts” through the various topological sectors of the con- connects the trivial configuration with uniform configura-
figuration space is considered. The values of the relevartons that have non zero topological charge. As such, the
observables of Sec. Il are calculated along this trajectory. configurations at integer can be thought of as local minima

V. THE INTERACTING THEORY,
GENERAL CONSIDERATIONS

In[U
g=3 ool

, (67)

A. The effects of topology
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FIG. 2. Observabletfor definitions see Sec. llalong the configuration space trajectory, E86), labeled byr. The parameters have
values:L=6, ul=3.0,my;=0.9, m;=0, L=4,6,8,10,12,14. At L= P,;=0.

and therefore in some sense they represent vacua of differesgmmetry. Therefore a nonzeRy[ L, m;=0] at some finite
topological charge. The path that connects the configurationis, will indicate explicit breaking of the chiral symmetry. The
of integer 7 is certainly not unique but it can nevertheless quantity P,[L,=%,m;=0] related to the 't Hooft vertex is
prOVide |nS|ghth| information on how the transition between not zero 0n|y in Sectorq: +1. This represents the anoma-
sectors of different topological charge takes place. Thereforggys preaking of the (1) axial symmetry.

glltchough oner?an nolt_ extraqt :‘crom this trajﬁcgory quantitafti\lle In Fig. 1 the topological charge along wiSk , Sgﬁ’ ng\f/,
information, the qualitative information will be quite usefu : _ _ _
if, in particular, s?milar features are observed v?/hen the full e 8Nd Sert g is shown forL=6, ul=3.0, me=0.9,

configuration space is considered in the HMC simulation o =0, andLs_z 14 along the t_rajectory of I_Ec(66). The ab-
the model in Sec. VII solute scale in these figures is of course irrelevant. One can

In the following, the observables in EqE32)—(45) are already see the separation of the different topological sectors

considered in the presence of the gauge field configuration d¥ith the a=0 sector as the absolute minimum and the other
Eq. (66). The boundary conditions for both fermion flavors sectors_a_ls relaté\\//e minima. It is mterestlng. to obs_erve how
in the two-dimensional space are taken to be antiperiodic. Ofhe addition ofSii andSg changes the fermion acticfy.
course, for the full dynamical (1) theory, the choice of In Fig. 2 S¢t, P, and P, are shown along the same tra-
boundary conditions is irrelevant for as long as they are thgectory and for the same parameters but for various values of
same for all flavorgthey can change by (@) phases at the Lg. In the Sy figure at 7=2 the curves with largefSy
boundary. correspond to largek ¢ with Ls=4,6,8,10,12,14. The curve
ThelLg=0o0 quantities are calculated using the overlap for-that sharply increases to at 7~0.5 corresponds tb = o.
mula. The finiteL quantities are obtained by explicit com- It is clear from this figure that in thg=0 sector thelq
putation of the determinants and inversePgf. The reader = limit is approached very fast. Thg#0 sectors carry
is reminded thae ™ Seilbs==M=0l js not zero only in the topo- large actions relative to thg=0 action and therefore they
logical sectorg=0. The quantity related to the chiral con- also approximate th& = limit very well. The only re-
densateP4[Ls=0c,m;=0] is identically zero in all sectors. gions that suffer from a slow approach to thg= o limit are
This is a consequence of the exact SU(25U(2); chiral  the two regions in the immediate neighborhood where
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particle HamiltonianH of Eq. (16) changes. Therefore, in
that neighborhood there are configurations for whithhas
zero eigenvalues. These configurations were identifig@]in
and also discussed [i0]. For these configurations the over-
lap formulation is not well defined because the ground state
is degenerate and, in turn, the finitg theory experiences
large correlations along then2-1 dimension. However, the
set of configurations for whiclid has an exact zero eigen-
value is of measure zero. As a result the overlap is a well
defined formulation. On the other hand, regions of the con-
figuration space surrounding these special configurations are
characterized by small decay rates. The importance of these
regions is determined dynamically and only a full simulation
of the theory can accurately probe their effect to the expo-
10-1 o nential decay. However, close to the continuum limit one
would expect that these regions are severely suppressed since
the pure gauge action separates sectors with topological
L charge that differs by one unit with barriers of energ;k/g(z)
(seeSg in Fig. 1). But away from the continuum limit, where
most numerical simulations are performed, these regions

FIG. 3. P, from Fig. 2 vs L, at different values ofr oy hecome important and contribute to the explicit break-
=0,0.3,0.4,0.55 corresponding to diamonds, squares, crosses, ocrﬁ-g of chiral symmetry

gons.

o
o
[e]
o]
o]

1078

o0
X

107°

11 IIIIII!

10—10

T IIHIII|
<
| IlIIIII|

IIII|
IHI‘

(o))
—
(=
—_
@]

In order to gain some understanding about this mode of
changes from 0 ta- 1. There, theL = results raises dis- chiral symmetry breaking the expectation value of the chiral
continuously but the finitd_ results approach this discon- condensatéyy), Eq.(42), was calculated in a configuration
tinuous behavior slowly. space restricted only on the trajectory of E6f), i.e., (&)

In the P, figure at7=0 the curves with smallelP; cor-  was calculated as in E§42) but with the path integral over
respond to largetg with Ls=4,6,8,10,12,14. Thé ;=  the gauge field configuration space replaced by an integral
curve is identically zero for alt and is not plotted. From this over the single trajectory of E¢66) parametrized by~ This
figure it is seen thaP; in the nonzero topological sectors is calculation was done numerically. As can be seen from Fig.
negligible even at_;=4. In the zero topological sector it 2, the integrands are relatively smooth and become negli-
decreases very fast with increasihg for all values of 7  gible as|7 is increased above 2. Therefore, it was enough to
except for the same two regions wherehanges from 0 to choose a reasonably fine discretization and sum over a finite
+1. There, two large spikes appear with heights that esseange only. The summation was done for step gize
tially do not change with increasirigs. Instead, their width =0.025 and over the rande| <2.5.(#) is plotted vsL in
slowly shrinks with increasind.s. As a result, chiral sym- Fig. 4 for anL=6 lattice, my=0.9, m;=0, and various
metry is slowly restored in these regions. gauge couplingsul/L, ul=3.0,2.5,2.0,1.5,1.Qdiamonds,

In the P, figure atr=1, the curves with largeP, corre-  squares, crosses, octagons, stdfer ul =3.0 there is decay
spond to largel ¢ with L¢=4,6,8,10,12,14. The L= with a fast rate untiL,=10. ForL¢=12 and above there still
curve can be distinguished by the discontinuous behavior @ decay but with a smaller rate. As can be seen from this
the places wherg changes form 0 toc1 and from*=1 to  figure the functional form of the fast decay is exponential.
+2. From this figure it is seen thd&, approaches thég;  The slower decay is consistent with exponential but it turns
=oo limit very fast for all = except again for the regions out that it is also consistent with power law or exponential
whereq changes. times power law behavior. Since the functional forms are

The slow approach .+ andP, to theL = limitinthe  further “contaminated” by higher order effects in order to
regions of changing topological charge is not particularlybe able to distinguish between the different types of decay it
troubling since the effect is a small percent of the values thais estimated that calculations up tg~30 will be needed.
they acquire along the trajectory. Not so 8. The two  This is beyond the purpose of this simple test and the avail-
“spikes” present a large size contribution to a quantity thatable computer resources. In any case, the important observa-
should otherwise be identically zero. In FigP3 is plotted tion is that as the gauge coupling is decreased the inflection
vs L¢ for various cross sections of Fig. 2. Fer=0 (dia- point moves to largeLg and the slower of the two decays
mondg P, decays exponentially. For=0.3,0.4 (squares, becomes faster until ail =1.0 there is no visible inflection
crossepthe rate of the exponential decay decreases. Finallyhelow Lg=18. This phenomenon can be easily understood
close to the point where the configuration changes topologiby looking atP, in Fig. 2 (ul=3.0 there. For L, smaller
cal charge,r~0.55 (octagony there is almost no decay at than about 10 the explicit breaking that occurs insideghe
all. =0 sector dominates and the contribution of the “spikes” to

The slow approach to theg=c limit in the neighbor- the expectation value is small by comparison. When this
hoods of changing topological chargas expected. Accord- breaking has almost completely disappearkg;-10, the
ing to the topological charge definition E9), g changes breaking that comes from the “spikes” dominates. This
because the number of negative eigenvalues of the singlereaking disappears in a slower fashion as the width of the
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FIG. 4. Expectation value of the chiral condensate in a configu-
ration space rest_ricted on the trajectory of Ef) vs L for differ- FIG. 5. P, along the configuration space trajectory, E66),
ent gauge couplings. The parameters have value$, my=0.9,  |apeled by 7. The parameters have valués=6, ul=3.0, m,

m¢=0, ul=3.0, 2.5, 2.0, 1.5, and 1.0 corresponding to diamonds— (.9, m,=0.1,L.=4,6,8,10,12,14,16,.
squares, crosses, octagons, and stars.

This behavior is encouraging as far as numerical simulations
“spikes” shrinks. However, as the gauge coupling is de-are concerned. Since most numerical simulations are done
creased the regions of changing topology where thdor small but nonzero masses one would expect that for some
“spikes” are located are weighted less by the pure gaugéange of masses the effects of the topology changing con-
action and the slower decay is overshadowed by the initiafigurations to these simulations will generally be small and

faster exponential decay. perhaps even lost in the statistical noise.
Therefore, one sees that there are two distinct mecha-
nisms that control the restoration rate of chiral symmetry. B. The effects of gauge field fluctuations

One is related to the restoration in the= 0 topological sec-

tor. The other is related to the topoloav chanaing regions of In this section the effects of gauge field fluctuations to the
: pology ging reg chiral symmetry restoration rate are discussed.

the gauge field configuration space and in particular to the The two mechanisms of chiral symmetry restoration iden-

regions that connect thg=0 andg= =1 sectors. e ; L
To conclude this section the effects 1w are presented. tified in Sec. V A will be affected when the gauge field is

The observabl®; along the trajectory of Eq66) is plotted
in Fig. 5 for L=6, ul=3.0, my=0.9, m;=0.1, and L, 10° —— IS N o
=4,6,8,10,12,14,16,. At 7=0 the curves with largeP,
correspond to largeks. It is clear that theLg=o limit is
approached rapidly and with no complications. Again the
region of changing topology approaches thg—oo limit
slowly but it is away from it only by a small percentage. One
would expect that the non zems; behavior will persist down

to some small value ah; before signs of then;=0 behav-

ior described above appear. One can visualize how Fig. 5
changes with decreasing;. As m; becomes smalleP,
tends to zero in the various topological sectors. However, its
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value, at the place where the topological charge changes A °

from 0 to =1, remains roughly constant resulting in the 13 ¢

spikes of Fig. 2. Y1078 ¢ e
In order to see more clearly how the= limit is ap- SIS BN RN BT

proached form;=0.1, the expectation value of the chiral 5 10 15

condensaté i), Eq. (42), is calculated in a configuration L,

space restricted only on the trajectory of E§6) for various

Ls and for Ls=c. In Fig. 6 [<W>LS—<W>_@]/<90_¢>LS IS FIG. 6. [(y) — ()1 gb)_ Vs Ls for m=0.1. (yy) is
plotted vsLs. Again, one can see that there is an inflection athe chiral condensate in a configuration space restricted on the tra-
aboutLs=10. However, when the inflection occurs thg jectory of Eq.(66). The parameters have values- 6, x| =3.0, and

=oo value has already being approached to better than 0.3%mn,=0.9.
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RN IR R I IR think of M(p) as being a momentum dependent mass ma-
trix. The smallest eigenvalue oM is obtained at zero
momentum and is equal tmiff with mgg=mg(2—mg)[ my
+(1—my)‘s], Eq. (63). The quantity (1 my) is the smallest
eigenvalue of the matriB. When interactions are turned on
the smallest eigenvalue @& will shift to values (1-mg)
larger than the free theory (Amg) value for the simple
reason that the matrices, (x) 5(x+ u—x") that make uB
are unitary. Therefore, the smallest eigenvalugai™ will
now bem.2, m.q=my(2—mp)[my+(1—my)“s]. For small fluc-
tuations one may still be able to think d#f as a mass ma-
trix. If that is the case the lightest mass in the theory will be
X m¢, and one sees that fon;=0 the chiral symmetry resto-
ration rate will become faster as the fluctuations become
smaller.
4 6 8 10 12 Finally, the quantitative effect of dynamical gauge fields
Lg to the mechanism related to topology changing is compli-
cated since it involves some understanding about the volume
FIG. 7. () vs L, calculated in an ensemble of configurations Of configuration space that contains gauge field configura-
generated by applying small fluctuations of sigdo the trivial  tions for which the overlap Hamiltonian has near zero eigen-
configuration(U =e'"™ with r randomly distributed in-e<r<e).  values. As already mentioned, one would expect that this
The parameters have values: 6, my=0.9,m;=0, e=0.4, 0.3,0.2, volume will shrink as the continuum limit is approached be-
0.1, and 0.01 corresponding to octagons, stars, squares, crosses, @adise the pure gauge action introduces energy barriers of
diamonds. size ~ 1/g3 between sectors with topological charge that dif-

fers by one unit.
allowed to fluctuate. The effect of dynamical gauge fields to
the mechanism that restores chiral symmetry in the zero to- C. The range ofm,

pological sector can be seen by measurigags) in an en-

sembl of confuratons generate by appying smll fucy 1 112 S22 1 lower ange ol avd e e |
tuations to the trivial configuration. In particular, consider PP :

gauge field configurations with links =™ wherer is a In order for the doubler species to acquire masses of the

random number in the rangee<r < e with € a small num- order of the cutoffn, must be in the range-dm, <2 [4]. As

ber that controls the size of the fluctuations. These_configu'—t was found in[6], in order for the transfer matrix to be

. ey L positive definite for all gauge fields, the rangenaf should
ratlons_have a “flat d|s_tr|but|on eind in this .ensem_btl$lﬂ_> be further restricted to €my<1, Eq.(11). For QCD, any
is obtained by calculatingP,)/(e™>f). In Fig. 7 (f) is

, value ofmg in this range should lead to the same continuum
plotted vsL for various values o€=0.4, 0.3, 0.2, 0.1, and iyt since the local and global symmetries of the theory
0.01 corresponding to octagons, stars, squares, crosses, §@thain unchanged. On the other hand, different choices of
diamonds. The value at each point was calculated in an eng il result in different ways of approaching this limit.
semble consisting of 40 configurations. Antiperiodic bound-goy the Schwinger model there is an additional complication.
ary conditions have been used for the fermions &rd6,  As mentioned in the introduction, a four-Fermi term is a
m;=0, me=0.9. It can be seen that as the size of the flucynarginal operator in two dimensions. Although it is not ex-
tuations decreases the chiral symmetry restoration rate islicitly introduced in the action, the DWF regularization in-
creases. , , _ _ troduces such a term with a coefficient that dependsngn
_ Some insight to this behavior can be gained by considerrg 7] Therefore, different values ofi, will lead to different
ing the following “heuristic” argument. The Dirac operator continuum limits. For this reason, a quantitative study of the
of equation 7 can be rewritten as effects ofm, to the approach to the continuum limit in the
De=D et M Schwinger model is complicated and will not be done here.
nawe s -mn However, there are some important generic features that can
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1 be discussed.

) "= _ Y Consider the overlap Hamiltonian, Eq. (16) as a func-
Draiud x.X') 2 EM: Yul U3 2t p=x') tion of the (h+1)-dimensional masmy, [6]. It is easy to
see that formg= —o0, H has the same number of positive
and negative eigenvaluebl, =N_. It is also easy to see
that formy<<0, H cannot have a zero eigenvalue. As a result

M=—B+ 1+vs M -+ 1-7s M 68) H hasq=0, formo<0. Asmjy is increased from.zerch-] can
2 2 ' develop zero eigenvalues and as a regsft0 (eigenvalues
cross zero altering™). Close to the continuum it can be
whereB is the Hermitian matrix given in Eq17) andM is  easily seen that most crossings will occur aroomg=0 [6].
given by Eq.(49). For the free theory in momentum space Farther away from the continuum pure gauge numerical
De=ip + M(p), M(p) can be read from Ed46). One can simulations[18] show a finite regior[momin,m)max], where

—UL(X’)&(X’—I—,&—X)],
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most crossings occur. This suggests that one should ket mnrl—rrrrmrrnwml—mm]—rnml—rrrrrml—rrnm

Mo, <My for two reasons. First, one would like to be as far
0.08

away as possible from the region where crossings occt M
since, as discussed in Sec. V A, itis there that the decay rat¢ L Fau
become small. Second, as can be seen from the definition « - I
the topological charge, Eq29), it is only then that the full @~ 0.07 . 1 7
effects of nontrivial topology are visible to the fermions. In ) 1
particular, one would expect that by keepimg, ~<my
guantities that are sensitive to topology will have a
“smoother” approach to the continuum limit. 0.06 —
From the above discussion it appears that at any couplin r 1 1 . I{ _____ R

<w> / m
L
=
[

the safest choice would be to s, to its largest allowed :I I 1 ]
value my~1. Even then, because in generak@y s ’ ]{ """" i

<m, <2 it may be that far away from the continuum 1 0.05
max —

<mg__=my<my__. If this situation occurs the finite lattice o T B .

spacing errors at that coupling will be large and the chiral 107 10° 10* 10® 10® 107! 10°
symmetry restoration rate will be slow. However, the nu- m,

merical simulations of18] indicate that even for reasonably
strong couplingsn, _ <1. The couplings used in this paper

fall in this category(see Fig. 1 iM18]) andm is kept fixed
to my=0.9.

In [13] it was found that for QCD some tuningmg
=1.7) was necessary in order to sufficiently restore Chirablaquette action is used here. The result{im}s/mz vsLon
symmetry at_s=10. However, the configurations used there . L=6, my=0.9, ul =3.0 lattice is given in Fyig. 8. This

were not generated with the DWF action but rather with thequantity acquires a nonzero vacuum expectation value even

staggered fermion .action #=5.7. IF is possible th"it thi$ for m¢{=0 (dotted lineg as a result of the anomalously bro-
large value ofm, is at least due in part to the “semi- ken U(1) axial symmetry.

guenched” nature of the calculation and if the configurations The result for(y)/m., vs m; on the same lattice and for

:L(faﬁgé':]irated with the DWF action settimg~1 may be the same parameters is presented in Fig. 9. The behavior of
(¢y) vs m¢ is interesting in that ) ~m; for m;<0.1
VI. DYNAMICAL SIMULATION OF while () ~m¥2 for m;>0.1. Fits toAmP for m;<0.1 and
THE MASSIVE THEORY WITH THE OVERLAP for m¢>0.1 are shown in the same figure. Both fits haye a
per degree of freedom of about one. For;<0.1 p
In this section a full dynamical simulation that measures=0.996(3) while form>0.1 p=0.322).
the chiral condensatéyy) and the 't Hooft vertexw) of This type of behavior was found by analytical continuum
the two flavor massive Schwinger model using the overlagalculations in[19]. In particular, the linear behavior was
formalism of the model of Sec. Il will be presented. The found to take place fom;L <1 while themfl’3 behavior was
result is interesting on its own right and it also provides thefound to occur form;L>1. Unfortunately, the coefficients
Ls=9 numbers that will be used to compare with the resultscalculated in that reference can not be directly compared
of the dynamical simulation for finitég presented in the with the ones here because, as previously discussed, an ad-
next section. L ditional four-Fermi interaction is induced by the DWF regu-
The expectation value§py) and(w) can be calculated larization[8,7]. This term in two dimensions is not irrelevant
numerically using Eqs(43) and (45), respectively. As it is and it will contribute to the continuum limit. For the same
evident from these equations a pure gauge simulation witheasons the value dfw) cannot be directly compared with
action Sg must be performed with the overlap factors ap-the continuum results dfL9].
pearing in the numerator and denominator treated as observ-
ables. The pure gauge theory expectation values of the over- VIl. HYBRID MONTE CARLO SIMULATION
lap factors in the numerator and denominator are then
divided to produce ) or {(w). A heat bath algorithm was

used to generate configurations with the standard Wilsori, h .
plaquette pure gauge action of E). rithm used is the standard hybrid Monte CaftMC) algo-

Measurements ofw) for the masslessm;=0, theory rithm [20]. The expectation value of the chiral condensate

were performed iri8]. The reader is referred there for more {(##), EQ.(42), is calculated and used to monitor the amount

details on the method and results. However, the resulivfor Of €xplicit chiral symmetry breaking. The reason for using

in that reference cannot be compared directly with tive (%) instead of the pion mass is that in two dimensions

=0 result here since a different implementation of the overthere is no spontaneous chiral symmetry breaking and al-
lap was used. Furthermore, the single plaquette action usdfough the pion mass vanishes for vanishing fermion mass
there was a heat kernel action while the standard Wilsotthe pion is not a Goldstone particle. In this sefige)) is as

FIG. 8. (W)/mi vs m; for L=6, my=0.9, ul=3.0 using the
overlap. The dotted lines are the =0 result* the corresponding
statistical error.

In this section a full dynamical simulation of the two fla-
yor Schwinger model for finitd_g is presented. The algo-
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FIG. 9. <Ep>/my vs m; for L=6, my=0.9, ul = 3.0 using the overlap. The fits are {t@)zAm?. Both fits have g2 per degree of
freedom of about one. Fan;<0.1 p=0.99§3), while for m;>0.1 p=0.322).

good a probe of chiral symmetry breaking as is the pion The HMC trajectory lengthris set tor=1, the step size is
mass, but unlike the pion mass it has the practical advantag€N and the number of steps is adjusted according to the
of not requiring large lattice size along the time direction insize of the effective bare fermion mass. Typical simulations
order to measure the decay of the pion correlator. The effectgith m;=0.05 are done with 50 HMC steps. For the

of the anomalously broken (W) axial symmetry are moni- =0 simulations the number of steps is set to 100-400 de-
tored by measuring the expectation value of the 't Hooftpending on the size of ;. This is necessary because, for
vertex{w), Eq. (44). m;=0, trajectories that cross between different topological

The smaller size lattices were simulated on the workstasectors experience large HMC fermion fordésr more de-
tions of the Physics Department of Columbia University. Thetails see Sec. VIl B The conjugate gradient residual is set to
larger lattices were simulated on the Silicon Graphics Powe10~8. Typically, the number of conjugate gradient iterations
Challenge Array computer system at NCSA UIUC and alsds around 50 and does not exceed 00 form;=0 andLq

on the C90 supercomputer at PSC. =14. The number of measurements48000 except for the
more “expensive” 1X12, 10<L¢ lattices where 1000—
A. The algorithm 2000 measurements were performed.

The HMC Hamiltonian is given by B. HMC and topology
In this section problems related to the sampling of non-
zero topological sectors with the HMC algorithm at small
ot fermion masses are discussed.
+ PN (De[me=1Ls]De[mi=1L))P, (69) The HMC algorithm is very successful provided the fer-
mion mass does not become very small. If the fermion mass
where P is the HMC momentumSg is the pure gauge becomes very small then the effects of topology are not re-
plaquette action given in E(3), U is the U1) gauge fieldy = produced correctly. In particular, the measurementvef
is the pseudofermion fieldp is the bosonic PV field, anD ¢ becomes problematic. If, for some fixed volume, the fermion
is the three-dimensional Dirac operator of Ed). mass is made very small then similar analysis ag2]|

1
HHMCZE P2+ Sg[U]+ x"(DE Mg, LsIDe[mys Ls]) 2y
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FIG. 10. Time history ofv, Eq. (44), for six different values of
m; . Notice the different scale of the;=0.05 andm,=0.0 graphs.  spikes but since the corresponding Boltzmann weight be-
The parameters afe=6, ul =3.0,my=0.9 andL,=14. comes smaller their frequency also decreases. Notice the dif-

ferent scale of then;=0.05 andm;=0.0 graphs.

ferent topological sectors becomes_important. In particularmasses. If, along an HMC trajectory, the topological charge
as can be seen from the overlap implementafi®/8], at  changes then the fermion determinant changes by a large
finite physical volume, at zero mass and in the- limit,  amount. As a result, the HMC fermion force becomes large
the operatom receives contributions only from sectofsl,  and the HMC step size errors become large. Therefore, as the
while the fermion Boltzmann weighfermion determinant  fermion mass is made smaller one must adjust the HMC step
is not zero only in sector 0. Asy; is turned on(and/orLsis  sjze accordingly. Finally, it should be stressed that these dif-
decreased from infinifythe fermionic determinant becomes fijculties are not related to DWF but rather to the HMC algo-
non zero in sectors other than 0 and the openatoeceives  rithm. In particular, the simulations using the overlap in Sec.
contributions from sectors other thanl. Because of this V| do not suffer from these problems since there the fermion
behavior at small fermion mass the HMC algorithm will determinant is treated as an observable in a pure gauge heat
mostly sample the sector O where the observableceives  path.

small contributions. The algorithm will infrequently visit the
sectors* 1, but when it does the observahewill receive C. m=0
large contributions to “make up” for the small sampling _ i i i _
rate. As a result, when the fermion mass is decreased a larger In this section a strict test of chiral symmetry restoration
number of HMC iterations will be needed to sample the IS done. , , , , o
sectors correctly. Therefore, for a fixed amount of computer A full dynamical simulation using the HMC algorithm is
time, if the fermion mass becomes very small the importanP€rformed with the explicit fermion mass; set to zero so
contributions may not even be sampled at all and as a resdjfat the only breaking of chiral symmetry comes from the
not only the expectation value @f will be underestimated finite extentL . The restoration rate at fixed physical volume
but also the associated error. This type of difficulty has al-and various lattice spacings is studied by measuing)
ready been noticed in simulations of the Schwinger modefor various values ot 5. Although this provides a strict test
[22,17. one must keep in mind that the nonzero topological sectors
The problem described above leaves a clear signature iMay be suppressed more than they should for the reasons
the time history ofv. In Fig. 10 the time history olvis given mentioned in Sec. VII B. This means that the rate of resto-
for six different fermion masses &t =14. As the fermion ration of chiral symmetry observed here is mainly due to
mass is decreased, the average around whictuctuates effects that occur in the zero topological sector and its vicin-
decreases. This decrease is compensated by the large contiy- The following results were obtained at fixegh=0.9.
butions received from thg= =1 sectors. These contribu-  In Fig. 11,(¢)/m, is plotted in a “log” plot vs L at
tions start to appear as “spikes” in the time history. Thefixed physical volumeul=23.0 and for various lattice spac-
smaller the fermion mass the larger the “height” of the ings ul/L=pua,where L=6,8,10,12 corresponding to the
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FIG. 12. The exponentiated slopes® of the lines in Fig. 11 vs
1/L~a. The diamonds correspond to the faster ratesL§<10
while the crosses to the slower ones<ll2.<22.

FIG. 13. [(%jx}/myP vs L for four differentm;. The physical
volume is fixed atul =3.0, my=0.9, and the lattice spacing is set
by L=6. The fits are to a functioA+ Be °s. The dotted line is
lines from top to bottom. Data fdr=4, L;=6—10 are sta- theLs= result= the error from Fig. 9. The cross is the coefficient
tistically indistinguishable from thé =6 data and are not A-

plotted. ForL.;=6—10 the decay is consistent with exponen- it is approached and that both decays become faster as the
tial with a rate that becomes faster as the lattice spacinggntinuum limit is approached can all be understood from
decreases. Fdry=12—22 the decay is again consistent with the analysis in Secs. V A and V B. Finally, the 't Hooft ver-
exponential but Wi_th a slower rate. Again, this rate becomegex<w> was also measured but, as expected from the discus-
faster as the lattice spacing decreases. Also, the percegion in Sec. VII B, its value and associated error is underes-
change of the rate at=6 is ~54+6% but atL=12 is  {imated. In particular, its value is much lower than the
~31+6%. The fits shown are two parameter fits 10 cqrresponding overlap value of Sec. VI. For this reason that

(yp)Im,=Be . The x* per degree of freedom is smaller data is uninteresting and is not presented here.
than one for all the fits except for the=12,L,=6— 10 data
that have gy? per degree of freedom .0%3. . . D. m;#0

The exponentiated rats ° of the various fits vs 1/~a is _ ) i _ ) )
shown in Fig. 12. The diamonds correspond to the=6 In this section them;#0 case is studied. Since typical
—10 fits while the crosses to tHe,.= 10— 22 fits. One can QCD simulations are done for non zero fermion mass the

see thate ¢ is roughly a linear function of L/~a for the results of _this s_ection_are of practical interes_t.
L.=6—-10 fits and forL=8,10,12. However, more data at _DYynamical simulations are performed with massag
smaller lattice spacings are needed before one can be confa’9€ enough, 0m, so that the effects of topological sec-
dent that scaling has set in and that this is the correct scalings 4=0,=1 are not miscalculated due to problems associ-
form. ted with the HMC algorithm as described in Sec. VII B.
Although the above fits are all consistent with exponentiaBoth (#4) and(w) are measured and their approach to the
decay, power law decay of the forfg)/m,=BL_ P can be L=co limit is §tgdled and cqmpared Wlth the, = results _
excluded with some confidence only for the fast deday, of Sec. .VI. Th|s.|s done for fixed phy§|cal volgme, and vari-
=6—10, at the smallest lattice spacirig=12. A power law  ©US lattice spacings. The parametey is kept fixed at 0.9.
fit to this data hag¢® per degree of freedom of32. More In Fig. 13 [(yy)/m,]* is plotted vs L for my
statistics and larget.s will be needed in order to clearly =0.1.0,2,0.3,0.5 at fixed physical volume and lattice spacing,
establish the type of decay for the other cases. For examplé:! =3.0, L=6. According to the results in Sec. VI one ex-
at the largest lattice spacing,=6, it is estimated that the pects thaf(yy)/m,]3~mey. Therefore a fit of (yy)/m,]°
error bars will have to be reduced from their few percent size/s Ls is made to the fornA+Be™°\s. All fits have ay? per
down by a factor of about 10. Alternatively, the error barsdegree of freedom=1—2. In these figures the cross is the
can be kept at the few percent level but then it is estimategoefficientA and the dotted lines are tihg= result of Fig.
that L will have to be made as large as30. Both ap- 9 plus/minus the error. One can see thatnas becomes
proaches are beyond the purpose of this paper and the avali&rger thelL ;= result is approached faster. This is in accor-
able computer resources. dance with naive expectations born out from the free theory
The facts that the decay changes fog>10, that the formula formgy EQ. (63). In Fig. 14(w>/m§ is plotted vsL
slower decay approaches the faster one as the continuufor the same parameters as in Fig. 13. The fits are again to a
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FIG. 16. (w)/mi vs L for four different lattice spacings set by

volume is fixed atul =3.0,my=0.9, and the lattice spacing is set L at fixedm;=0.2. The physical volume is fixed atl=3.0 and

by L=6. The fits are to a functioA+Be °s. The dotted line is

my=0.9. The fits are to a functioA+Be °Ls. The dotted line is

theL 4= result= the error from Fig. 8. The cross is the coefficient the Ls=2 result=+ the error. The cross is the coefficient

A.

form A+Be ‘s and havey? per degree of freedom-1
—2. One can see that the;=0o result has already been
approached dt;=6.

The effects of changing the lattice spacingrgt=0.2 can
be seen in Figs. 15 and 16. In Fig. ﬂ@bzﬂ)/myf is plotted
vs L at fixed physical volumeul =3.0 for different lattice

0415|v|v|v|||||]|| L I B

e
-
o
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[<Py> / m ]}

PPN A DN U EPET R N RN B

FIG. 15.[(y4)/m,]3 vsL for four different lattice spacings set
by L at fixedm;=0.2. The physical volume is fixed atl = 3.0 and
my=0.9. The fits are to a functioA+ Be °Ls. The dotted line is
the Lg=o result = the error. The cross is the coefficieft

spacingsul/L=pua, L=4,6,8,10. The fits are again to a
form A+Be °'s and have ay? per degree of freedom of
~1—2. One can see a similar behavior as the one in Sec.
VII C. As the lattice spacing is reduced the rateof the
exponential approach to tHe,=< result increases. For ex-
ample,{ ) at the larger lattice spacing=4 decays with
¢=0.54(3) but at the smaller lattice spacibg 10 it decays
faster withc=1.1(1). However, one should note that far

=8 andL =10 the rate saturates and is essentially dictated
by theL =4,6 points with the_;=6 point very close to the
L,=0c result. If a second slower rate sets in forll; it is
unimportant and is lost in the statistical noise. Some insight
to this behavior can be gained from the analysis at the end of
Sec. V A(in particular see Fig. 6 Similar behavior is ob-
served in Fig. 16 foqw)/m?. Al fits have y? per degree of
freedom~1-2.

Similar results are obtained if one keeps the physical vol-
ume andm; in physical units fixed while changing the lattice
spacing. This can be seen in Figs. 17 and 18 by comparing
the L=10, m;=0.2 data(diamond$ with data atL =4, m;
=0.5(squares In these graphs the physical volume is fixed
at ul=3.0, andm; in physical units is fixed am;L=2.0.
Again the decay rate increases as the lattice spacing is re-
duced.(¢ ) at the larger lattice spacing=4 decays with
c=0.48(5) but at the smaller lattice spacihg 10 decays
faster withc=1.1(1). All fits havey? per degree of freedom
~1-2.

Finally, it should be noted that although the above data is
consistent with exponential decay, other types of decay can
not be excluded. This is mainly due to the fact that since the
L,=00 result has already being approached, within statistics,
for L,=8-10, the decay is basically dictated only by the
two pointsL,=4,6. More statistics are needed in order to
clearly establish the type of decay.
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FIG. 17.[(yy)/m,]? vs L for two different lattice spacings set FIG. 18.(w)/m}, vs Ls. The parameters are as in Fig. 17.

by L=4 (squaresandL =10 (diamond$ at my=0.9. The physical
volume andm;L are fixed atul =3.0 andm;L=2.0. The fits are to  decay also becomes faster as the lattice spacing is decreased
A+Be s, The dotted lines are tHe,= results= the error. The  and it differs less from the faster decay as the lattice spacing
cross is the coefficier. becomes smaller. For the smallest lattice spacing studied the
two exponential decay rates differed by81+2%.

For small but nonzero explicit fermion mass the values

In this paper the properties of domain wall fermions©of (¥#) and (w) were measured. The correspondihg
(DWF) were studied in the context of the two flavor Lattice == numbers were calculated by performing numerical
Schwinger model. The expectation value of the chiral consimulations with the overlap formalism. It was found that the
densate ) was used to probe issues related to restoratiohs= numbers were also approached in a way that is con-
of the regularization-induced chiral symmetry breaking. TheSiStent with exponential decay with a rate that became faster
expectation value of the relevant 't Hooft vertéw) was @S the lattice spacing decreased. Furthermore, the larger the
used to probe issues related to topology. fermion mass the sooner the=- value was approached

Dynamical numerical simulations of the full theory were @nd for the fermion masses studied in this paperltge
performed. It was found that, as expected from perturbativéesult was already achieved to within a few percentlfgr
considerations, the restoration of chiral symmetry as a func=4—8. If a second slower decay does set in foslQ,, itis
tion of L (L is the size in lattice units of therr 1 direc-  Unimportant and was lost in the statistical noise. Finally, an
tion) at a fixed physical volume and lattice spacing, is con-nteresting result was obtained from the measurements of
sistent with exponential decay. In particular, the data is(#) and(w) vs m;. It was found that these measurements
consistent with a picture where chiral symmetry is restoredare in agreement with the analytical predictions[9]. In
with a fast exponential decay rate fbg up to some value particular the interesting 1/;1//>~mf1’3 behavior was repro-
and with a slower exponential decay rate forabove that duced.
value. For the range of lattice spacings used in this paper the Although all the numerical data are consistent with expo-
inflection appeared dt,~10. Using a simple model it was nential decay, power law decay can be excluded only for the
found that the first fast decay can be associated with restdast decay at the smallest lattice spacing studied. For that
ration of chiral symmetry in the zero topological sector whiledata the decay is sufficiently fast and the error bars are suf-
the second slower decay can be associated with the regiofisiently small so that a power law fit can be safely excluded
of gauge field configuration space that connectgked and  since it has g per degree of freedon¥ 31. More statistics
g= *1 topological sectors. and largerL; are needed in order to be able to clearly dis-

The effects of the size of the lattice spaciado the two  tinguish between exponential and power law decay for the
decays were studied using both analytical arguments and exest of the data points.
plicit numerical simulations of the full theory. It was found  The next step is to carry out a similar investigation for
that for zero explicit fermion mass the fast decay associatedynamical QCD. Many of the characteristics of DWF found
with the zero topological sector becomes faster as the lattickere are sufficiently generic so that one would expect that
spacing is decreased. The vanishing of the chiral condensatieey will also be present in QCD. If it turns out that QCD at
is consistent with a forme™ ‘s with e ¢ being roughly a the presently accessible lattice spacings, volumes and quark
linear function ofa, but more data at smaller lattice spacingsmasses has similar restoration rates as the ones found here,
are needed before one can be confident that scaling has settiren DWF will indeed provide a powerful fermion discreti-
and that this is the correct scaling form. The second sloweration method.

VIIl. CONCLUSIONS
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