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Finite-temperature reaction-rate formula: Finite-volume system, detailed balanceT —0 limit,
and cutting rules
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A complete derivation, from first principles, of the reaction-rate formula for a generic process taking place
in a heat bath of finite volume is given. It is shown that the formula involves no finite-volume correction.
Through perturbative diagrammatic analysis of the resultant formula, the detailed-balance formula is derived.
The zero-temperature limit of the formula is discussed. Thermal cutting rules, which are introduced in previous
work, are compared with those introduced by other autf&8556-282(98)00903-5

PACS numbgs): 11.10.Wx, 12.38.Bx, 12.38.Mh

[. INTRODUCTION ordered products of field operators can be chosen to be zero
and there is no finite-volume correction in thermal ampli-
Ultrarelativistic heavy-ion-collision experiments at CERN tudes. It should be stressed that this statement is the state-
and the BNL Relativistic Heavy lon CollidéRHIC) lead us  ment within the RTF. The statement does not tell us whether
to entertain a hope of reviving quark-gluon plas(@GP in or not the thermal reaction-rate formula deduced from first
the present day. As promising observables of the QGP forprinciples is free from finite-volume corrections. We shall
mation, rates of various reactions taking place in a QGRlerive in Secs. |-V the thermal reaction-rate formula for the
(heat bathhave been computed by many authors. Almost alffinite-volume system and explicitly see that there is no finite-
of them, however, concentrated on the analyses of particleolume correction.
production from a QGP or the decay rate of a particle in a It should be emphasized that the absence of finite-volume
QGP, whose computational method has long been knownorrections here as well as [ith0] is rather academic since a
[1]. cubic system with periodic boundary conditions is taken. For
Since then, through analyses from first principles, a calphysical finite-volume system, there 4@ two sources en-
culational scheme of the rate of a generic thermal reactiotering the finite-volume effects in the thermal perturbation
has been propos¢@-7]. The resultant reaction-rate formula theory constructed on the basis of(grand canonical en-
is written in terms of the Keldish variant of the real-time semble. One comes from the physically sensible boundary
formalism (RTF) of thermal field theory[8]. However, a condition on the single-particle wave function. The other
complete analysis of classes of diagrams, which leads to diasomes from taking the physically sensible ensemble. For the
grams in the RTF including thermal propagators witf=2) nonequilibrium case, such as an expanding QGP, the situa-
thermal self-energy insertion, is still lacking. Referef®@gis  tion is of course much more involved.
the only work that discusses such classes of diagrams in In Sec. VI, through diagrammatic analysis for the
scalar field theory. In the course of the deducfi8hof such  reaction-rate formula, we derive the detailed-balance for-
diagrams, there comes about an involved series, for which amula. In Sec. VII, we analyze the zero-temperature limit of
identity is assumed. As fg#], where fermion fields are dealt the reaction-rate formula and reproduce a variant of the Cut-
with, the set of diagrams under consideration is not analyzedosky rules[11].

This is also the caddor [7]. Incidentally, the thermal self- At zero temperature, the cuttin@utkosky rules[11] are
energy part in itself and the one thermal self-energy-inserted powerful device to investigate the imaginary or absorptive
propagator are deduced [i8—4,9. part of a scattering amplitude and a reaction rate like a scat-

The principal purpose of this paper is to present a comiering cross section. Then, it is natural to infer that a finite-
plete derivation of the thermal reaction-rate form(&ecs. temperature extensions of the cutting ru{#sermal cutting
-V). ruleg also plays an important role in thermal field theory.

There has been confusion regarding the issue of finite- Previously, several authofd2,2-7,9,13—-1phave dis-
volume corrections to the standard thermal perturbatiortussed thermal cutting rulésdowever, because of the fact
theory. (Why and how has the confusion arisen is describedhat the generalization of the notion of “cutting” in vacuum
historically in[10] with relevant referencesBy employing a  theory to the case of thermal field theory is not unique, the
cubic system with periodic boundary conditions, it has beerierms “cutting” and “(un)cuttable” are endowed with dif-
shown in[10] that thermal expectation valuesf normal-  ferent meanings i112,2-7,9,13—1F which has caused a

*Electronic address: niegawa@sci.osaka-cu.ac.jp 2The relationship between a thermal self-energy pért

Yn fact, in[7], ann (=2) thermal self-energy-inserted propagator imaginary-time formalismand a rate of decayproduction of a
is not deduced from the starting formula but is assumed at the stagarticle in (from) a heat bath was clarified ifi], from which the
to have the correct form in the RTEf. Eq. (17) in [7]]. cutting rules as applied to the self-energy part can be read off.
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recent controversy. With these circumstances in mind, we

pigeonhole different definitions of thermal cutting rul&ec.
VIl ). < > S

Il. PRELIMINARY

We consider a heat-bath system of temperafureom-
posed of the fieldgs(®), with « labeling collectively a field
type and its internal degree of freedom. We assursem
and ignorem (hot plasma The system is inside a cube with
volumeV=L2. Employing the periodic boundary conditions,
we label the single-particle basis by its momentyp :
=27k/L, kj=0,+1,*2,... *=(j=Xy,2). (a) (b)

Physically interesting thermal reactions are of the follow-
ing generic type: FIG. 1. Two examples of double-cut diagrams for the transition
probability W=S* S in vacuum theory. Long dashed lines are the
{A} + heat bath-{B} + anything. (2.))  final-state cut lines while the short-dashed lines are the initial-state

) ] ) cut lines. The left side of the cut lines represents $hmatrix ele-
Here{A} and{B} designate a group of particles, which are ments, while the right side does§*. The line that is cut by the

not thermalized, such as virtual photons and leptéG&n-  final-state (initial-state cut line represents a particle in the final
eralization to more general processes, where amgRig (initial) state inS. The lines cut by the initial-statdinal-statd cut
and/or{B} are ¢(¥'s, is straightforward and will be dealt line include those corresponding {@\} [{B}] in Eq. (2.2. The
with in Sec. V) The reaction rat&R of the thermal process group of lines on top of the diagrams stands for spectator particles.
(2.1) is expressefi2—4] as a statistical average of the transi- (3) Both S and S* are connected. In addition to the spectator par-
tion probability W=S*S (with S the S-matrix element of ticles mentioned above, additional spectator particles a& inb)
the zero-temperatur¢ T=0) process S is connected whil&s* is disconnected. Note, however, tl&itS

is connected.

{A}+{n}—{B}+{ni""}, (2.2)

ply refer to as a connectall. Then, a connected/ consists,

where{n(k")} denotes the group ap{®’s, which consists of in general, of two mutually disconnected parts; the one in-

the numbem(® of ¢(* (¢(*) in a modek): cludes{A,B}s and{A,B}s. and the other is a group of spec-
tator particles. Generalization to other cases is straightfor-
R=NID, (238 ward. Examples of double-cut diagrarfis7] for S*S are
depicted in Fig. 1. It should be remarked on the fornpadh
N g ~ WIprocesg2.2)] oap EO: (2.3d. Let us recall the following two facts. On the one
o & P ~ 2w8(0) ' (2.3b hand, the statistical ensemble is defined by the density matrix
My iy at the very initial timet; (~—o). On the other hand, in

constructing a perturbative RTF, an adiabatic switching off
_ N (a) () of the interaction is required.8,9,8. Then, the Hamiltonian
D= %) P % Wol{mh—={m™ ), (230 o, p=N"te A" should be the free Hamiltoniahi,,
My ™) which leads to Eq(2.3d).
As will be seen below, diagrammatic analysis shows that

p:NleXp( —,32 Zk nff‘)pk>. (2.39 N, Eq.(2.3b), takes the form

N=NorD, (2.5
Here B=1/T, p=|p|, and 2r8(0)=t;—t;(~=) is the _ _
time interval during which the interaction actly=S5S,, ~ WhereA;q, corresponds to a connected diagram @ni$ as
the “thermal vacuum bubble,” is th&=0 transition prob- N EQ. (2.38. ThenR=Nop.

ability of the process indicated in E€2.30), i.e., the reaction TheT= 0 S-matrix element is obtained through an appli-
among the heat-bath particles®’s alone. Note that the cation of the reduction formula. As an illustration, we take a
perturbation series fop starts from 1 heat-bath system of thermal neutral scalais, and we take
{A} to be {®(p;);i=1,... m} and {B} to be {®(q));]
D=1+---. (2.9 =1, ... n} with & a nonthermalized heavy neutral scalar.

Assuming a®-¢ coupling to be of the formb ¢', we have
In Eq. (2.3% N is the normalization factor. In Eq$2.3b [2,3]

and (2.39, 2 stands for the summation with symmetry fac-

tors being respected, and, for a bosoffiermionic) ¢, _ o o %

n(k“) runs over 0,1,2... o (0 and J. It is to be noted that S_jﬂl (IKPJ 'q>j)kljl (IKQK"I"‘)

{A} and{B} in S, which we write{A,B}g, are not necessar- ,

ily involved in one connected part & This is also the case M Ik

for {A,B}s. We assume that, iwW=S*S, {A,Blg and x[[{ 2 > an=i;ng—ip)
{A,B}s are involved in one connected part, which we sim- K0 ik=o0
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ik
XN H (iKican) T (1K)

Wk n'=1

11 o1 oof] o1 o,

x(0|T |0>],
1:1 k=1
(2.6
where
’ 1/2
N" = (n"><nk) e 2.7
Nl e/ \icJigtiy!
In Eq.(2.6), &(---;---) denotes the Kronecker8 symbol,
1 4 ipE-Xx
Kk,n-~-¢nz—fd x e Pk - (x),
V2pVZ,
1 _
Kp_@n-mjz—f d*x e Pix
Y V2E|VZ,
X(O+M?)- - ®j(x), (2.9
whereE; = \/pj»2+ M? with M the mass ofP. TheZ’s in Eq.

(2.8) are the wave-function renormalization constasin
Wy=S§S, is given by a similar expression to E€R.6),

where factors related to theé fields are deleted. It is to be

noted that, in Eq(2.6), amongn, (n;) of ¢,’s in the initial
(final) state,iy (iy) of ¢'s are absorbed itemitted from)
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= dpg i
V)_.2m p2yio* (31

(b) {ix=i,=1, jx=j=0} and{i_ k_i,—kzl J-k=1lk
=0}. We first deal with the casg, =i, =1, j,=j,=0}. We
take out the diagram fo=S* S, which is obtalned fronw
above as follows. Remove the propagat8tl), connect
dn-1.x, E0.(2.6), to the vertexw, in S, and connect,, ;.
to v,. Here ¢p,—1x [¢n =1.] designates that, in E42.6),
iKn1 [iK§ . ;] operates orp,_; [¢n—1]. We pick out,
from Eq.(2.6),

NI = N§T

i’

(3.2

Here and below, we suppress the suh‘imhenever no con-
fusion arises. Irs*, Nﬂ”,lzN =1. InsertlngN”n NI =n
into Eq. (2.3b with Eq. (2.3d, we obtain

1
efr—1

(n)= =ng(p). (3.3

Hereng(p) is the Bose distribution function and the angular
brackets denote the statistical average

efﬁnpﬂn

(Qp)=
efﬁnp

Then, inAin Eq. (2.3b), the portion corresponding to Eq.
(3.1) turns out to

thei, (i,) vertices inS. The remainingy,—i, (=n,—iy) of
¢’s are merely spectators, which reflects only on the statis- 1 1 (> dpg )
tical factor inA in Eq. (3.14 below. mns(p): Vﬁxﬁ 0(po)2m (P )ng(p), (3.4

The expression foS*, the complex conjugate d8, is
obtained by taking the complex conjugate of E216), where
we make the substitution

. L,
et T e IS

This applies also to the expression & .

Ill. DERIVATION OF THE REACTION-RATE FORMULA

wherel/(2pV) has come frorka n—11Kkn=11in EQ.(2.6)

with Eq. (2.8). It is to be noted thaZ ,* in K’s, Eq. (2.8),

may be dealt with just as in vacuum theory, so that we ignore
% throughout this paper.

{i _«=1"=1,j_=]j_=0}. The relative diagram to the
above diagram foiWW=S*S, same as abov®/ except that
bn-1.—-k (Pn=1.-K) is connected to the vertex, (v,),
yields, in place of Eq(3.4),

In this section, we take self-interacting neutral scalar 1 (= dpg 5
theory. Generalization to the complex-scalar theory is Vf,mﬁ 6(—Po)2m5(P*)ng(p). (3.9
straightforward(cf. Sec. VIIl). A comment on gauge theories
is made at the end of this section. Fermion fields are dealt Adding Eqs.(3.1), (3.4), and(3.5), we extract
with in Sec. IV.

i
2\
A. Analysis of non-mode-overlapping diagrams, Pﬁ+i0+ +2mng(pi) (Pi) =iD 11(Py)
icvtigtictics<2

In this subsection, for completeness, we briefly recapitu- =iD{J(P)+iD{Y(Py).

late the heart of the analysis [&,3]. Let us analyzeV'in Eq. (3.6

(2.3b with Sin Eq. (2.6).

@ {ix=ix=ik=i=0}. Let us take a diagram fow
=S*S. Let v; andv, be the vertices insid&, which are
connected by the propagator

Here iD{? and iD{) stand, respectively, for the
T-independent parfthe first term on the left-hand side
(LHS)] and theT-dependent paitthe second terjnof iD 4 ;.
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© {ix=§x=0, ix=j, =1} and{i =] _=1, i’ =]’ By Py
=0}. In order to extract the contribution of ;\1 — 2}
{ix=ix=0, i,=j,=1}, we take a diagram fow=S*S in \m>\1”/ 2 et
N, Eq.(2.3b, whereg, 1 in Sis connected to the vertex M /“\(‘31\
vy in Sand ¢, _;. in S* is connected to the vertax, in D NENEEEE 1\\
S* ! 3 2 1 Qn

We pick out from Eq(2.6) and from the form ofS*,

FIG. 2. Diagrammatic representation of the thermal amplitide

nn’\nn’ _ \nn+1ygnn+1_
Nii» Njj» =Npy " "Noy ~“=n+1. in Eq. (3.14).

i’

Inserting into Eq.(2.3b yields ]
=[iD11(P)]*.
1+n—1+ng(p). (3.7
© {ik=ix=1,ig=j =0} and {i =] =0,i" =]’y

Then, in AV in Eq. (2.3b), the portion under consideration = 1}. In a similar manner as ifc) above, we extract

takes the form

1f°c dpoe o1t R 39 271 (= Pyo) + Ne(PK) 18(PH) =iD 15( Py)
—_— n ) )
o (po)2{ s(P)}é( _iD,y(—Py. (312

\Y,

Ai=j=1, iL=]_=0}. We consider the relative g forms ofD;;(P) (i,j=1,2) defined above are noth-
diagram forW=S*S, which is the same as above except thatjng pyt the thermal propagators in the Keldish variant of the
$n=1;- In Sis connected to the vertex, and -1, N RTF, which is defined on the time pat, —ow— +o%—

S* is connected to the vertex,. In a similar manner as —%——x—iB, in a complex time plane. The above deriva-

above, we have tion shows that the suffix 1 db;; stands for the vertex i
1 (= dp and the suffix 2 stands for the vertex 8f. On the other
\_/J' 2—7700(—p0)277n5(p)5(P2). (3.9 hand, in the RTF, the suffix 1 stands for physical or type-1

field and 2 stands for thermal-ghost or type-2 field.
Let us turn to identify the vertex factors. We take the

Adding Egs.(3.8) and(3.9), we extract interaction Lagrangian density

27 0(pyo) + Na(P)18(PH=iD,1(Py).  (3.10

@ {ix=ig=ik=ix=0}, {ik=ix=0, jx=j,=1}, and
{i_x=1",=0, j_x=]"=1}. In a similar manner as if8)  Then, ab ¢’ (¢”') vertex inS receives the factoig (i\),
and (b) above, we extract and then ab¢” (¢”) vertex in S* receives the factor
—ig (—i\). This again is in accordance with the RTF,

Lin=gD ¢ 1/1+N¢" 171, (3.13

— +2WnB(pk)5(pﬁ)EiD22(pk) (3.1)) where.ig (—ig) z?mdi)\ (—.i)\) are th(i factorirwhic.h are
Pi—i associated with, in respective orddrg” and ¢” vertices
O D of type-1(type-2 fields.
=iD33(Py)+iD%5(Py) Repeating the above procedure, we finally obtain
1/ AU |
A1 29V |R=| ] 5= |AP?, ... P2 QM ... QPP ... P Q?, ... Q7). (3.14
V=g 7Y i1 2pV

HereA represents théhermal amplituden the Keldish vari- 1 dpo
ant of the RTF for the forward process, v J o (3.19
Pk ™
m n m n
;1 ¢1(Pi)+jzl ‘Dz(Qj)HiZl (I)Z(P‘ngl ®4(Qj), In the largeV limit the LHS of Eq.(3.14) becomes

n

IT 2e

where®, (d,) is a type-1(type-2 field. The thermal am-
—— R
=1 dgj/(2m)®

1 n
plitude A is diagrammed in Fig. 2. As we have assumed that v( I1 2q;v
W= S*S represents the connected diagrgch above after =1
Eq. (2.4)], the diagram foA is connected.

Each loop momentur® in A accompanies and Eq.(3.15 becomes

oL
Y
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V/p>/l,/V2 4 b —1 v
1 : ) 1 / )
/i/pKVZ 2‘72

vl Vi P

(a) (b)

FIG. 3. Double-cut diagrams fow=S*S, which yields (a)

iDZ(P)IDSY(P) and (b) iDYT(P)IDYHI(P). Here P
=(p.p).

1 d d*P
s ﬂ_J _
Vo 2 (277)4

So far, D in Eq. (2.39 does not participateD=1 [cf. Eq.
(2.4)]. The role of D will be discussed below.

(3.19

B. Analysis of mode-overlapping diagramsj+i.+j+j=4

1383

V2

H 3 ' ! ' -

. ! . '

: ! : '
vy { Vo V1 Lo

P ' p< h
NP = S Sy e
Vi V3 v ; Vs

(a)

FIG. 4. Double-cut diagrams fow=S*S, which yields (a)
iD{H(P)IDSY(P) and (b) iDYHI(P)IDYHI(P). Here P
=(p.p).

whereD{3),,(P)=6(% po)D12/21(P). The (part of) thermal

propagatoriD {3’ (P) [iD{})(P)] is diagrammed in the
double-cut diagram foWW=S*S, Fig. Ja), as the line that
connects the emitter verte%, (v,) with the absorber vertex

Ui (v2).

The above derivation of the thermal reaction-rate formula The second term of Eq3.17) goes to
is not complete in that we have only considered the cases

where i +i+jctjc<2. When generalized self-energy

parts are involved iW=S*S, i, +i,+j+j, =4. (We call

[276(po)ne(E) 8(P?)12=iD {{ " (P)iDSY ) (P).
(3.19

the diagram withi,+i,+j,+j.=4 the mode-overlappin
diagran?) As mentilt()nelt(j ir{kSeJck. |, a complete analysirs)pof ?he'[,)(lTl)(H(P)_ (D5 (P)) is diagrammed in the double-cut
classes of diagrams that leads to RTF diagrams includin?'agram' Fig. &), as the line that connects the emitter ver-
thermal propagators with (=2) thermal self-energy inser- ©€X vy (v2) with the absorber vertex; (v,). Thus, with
tions is still lacking. In this subsection, dealing with mode- Obvious notation, theng(l+ng) part in Eq. (3.17)
overlapping diagrams, we shall complete the derivation of'supplies” the (++) portion of iD;,(P)iD,(P), Fig.
the thermal reaction-rate formula. We shall show at the sam@(@, and the ng part “supplies” the (++) part of

time that there is no finite-volume correction to the formula.iD$?(P)iD 3 (P) in Fig. 3(b).
For illustration of the procedure, we start with analyzing The (——) portion of iD1,(P)iD,4(P) emerges from

the diagram(for W= S*S) with {i,=j,=i,=j.=1}. Let us
focus our attention op with modek. Both in S and inS*,
there are one “absorber vertex'v{ andv, in Fig. 3 and
one “emitter vertex” (v, andvy in Fig. 3).

From S* S, pick out the factor

’ ’
N NS =2,

where and below the suffix K” is dropped whenever no
confusion arises. IV in Eg. (2.3b), we have, in place of Eq.

(3.3,
(n?)=2n3+ng
=ng(1+ng)+n3,

(3.17

whereng=ng(p).
The first term on the right-hand sidBHS) of Eq. (3.17)
goes to

{276(po)na(p) 8(PAH2m0(po)[ 1+ ng(p)18(P?)}
=iD{3(P)IDSY(P), (3.18

W=S*S, which is the same as Fig. 3 except tHat
=j_«=1"=j"=1}. Now, v, andv; (v; andv,) are ab-
sorber (emitten vertices. The ¢,—) portion comes from
W=S*S with {ik:i*k:jk:j*kzl}' This time,Ul andvi
(v, andvy) are absorbetemittep vertices. The - +) por-
tion comes fromW=S*S with {i;=i",=j=j"_ =1},
where the absorbeemittep vertices arev, andv; (v, and
v1). Adding all these contributions to the contributi18),
we obtain Eqg.(3.18 with completeiD ,(P)iD,(P). In a
similar manner, we can find a set of relative diagrams,
which, together with Egq.(3.19, vyield the complete
1D 11(P)iD2(P).

All the verticesvq, vy, vy, andv, (cf. Fig. 3 are not
necessarily within one connected diagram. There is a dia-
gram as depicted, e.g., in Fig. 4. Figur@4[4(b)] contains
the factoriD {3’iD$?) [iD{PMiD Y] in Eq. (3.18 [Eq.
(3.19]. Let us inspect Fig. @). As stated above after Eq.
(2.4, we are considering the case whef{é,B}s and
{A,Bls [{A}={@(P;)} and{B}={®(Q;)}] are involved in
one connected part 8=S*S. Then, all®’s are in, e.g., the
bottom subdiagram in Fig.(d) [and then also in Fig. #)]
and, in the middle subdiagram, only constituent parti¢ies
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of the heat bath participatéD(ﬂ)(P) is involved in the form for S, Eq. (2.6), we see that the permutation ¢,
middle subdiagram, which goes B, while iD{})(P) isin-  (n'=1,....y) and the permutation of, (N=1,... i)

volved in the bottom subdiagram, which goes\fg,,. Thus, give the same diagram, and thepli,! same diagrams
Fig. 4@) is in Ngo,D with D#1 in Eq.(2.5 with Eq.(2.4).  emerge. Then!i !j!ji! same diagrams emerge foW
As a matter of fact)V.,, here is obtained froridV=S*Swith  =S*S, which eliminatesthe first factor on the RHS of Eq.
{iv=ix=1, iy=j«=0} and D is obtained fromW,=S;S, (3.20. In Min Eq. (2.3b, we have, in place of Eq3.3),
[cf. Eq. (2.39] with {i,=j,=0, i,=j,=1}. Thus, Fig. 4a)
does contribute tdR in Eq. (2.39 as R = Ngn,, Which .
already appears at lower order of the perturbation series. As 1 o -1 i
above, it is straightforward to find a set of relative diagrams, k1:[0 (n+|’—|—k)k1:[0 (n=Kk) ) =H.
which, together with Fig. @), yields the complete
iD1,(P)iD,4(P). Similarly one can find a set of relative
diagrams, which, together with Fig(B), yields the complete  Here it is convenient to introduce a generating function of
iD11(P)iD25(P). i’

The relevant part of Fig.(®) and its “relatives” sits inA, NI
Eq. (3.14), as a (1,2) component of a thermal self-energy-
inserted propagator. ThusV=S*S with {i,=j=i =]y o
=1} together with its “relatives” has turned out to take the fiy,2)=> y"i'ize ¥ (x=pgp=8py). (3.21)
proper seat irA in Eq. (3.14). n=0

It is straightforward to generalize the above argument to a
generic diagram fow=S*S. Let us focus our attention on a
modek. We analyze\ in Eq. (2.3D. Let ¢, be ¢ in the  In fact, from Eq.(3.21), we obtain
modek. In Siin Eq. (2.6), i\ ¢’s in the initial state and,
¢’'s in the final state participate directly in the reaction. In )
S*, ik (ix) ¢«'sinthe initial (final) state participate directly; i’ 1 Gl
ik—ik=]jk—jk=Nk—nNg. In S, there arei, (i;) “absorber W gyt oxd
vertices” (“emitter vertices”) and, inS*, there arejy (jy)
“emitter vertices” (“absorber vertices). (Recall that, in the
case of Figs. 3 and 4,; andv, are absorber vertices and From Eq.(3.22 with Eq. (3.2)), it can be shown that
andv, are emitter vertice.

We pick out, fromW=S*S,

(3.22

y=z=1

min(i’,j") P\t —
- "I =k)! o
. -~ . H;"'j,: 2 (k)—(j’—k)l (N0 K (323
Nii Niir =t =iiin =) i
1 it 11 Sincei—i’=j—j’, we can readily see that'",, Eq.(3.23
- HE A T — ' J’JI, ‘ . ’
i kHO (n+i'=i k)kljo (N=K), 320 is symmetric underi(i’) < (j,j’). Then, without loss of

generality, we assumie=j.
where and below the suffik has been dropped. From the In the Appendix, we show that

min(j,j")

il iy (i
i’ _
Hit = >

i+k ik
K=o (i—j+k)! (j/—k)!\k (ng)' "*(1+ng)’ (3.29

min(j,j")
= 2 G (el THCD ik () T THC], (M) HC] i (140g) 719, (3.29
|
Hereng=ng(p) and toi absorber vertices i, the factorC{, ; ;. to the number
i j of ways of connecting —j +k absorber vertices i to i’
C!sz (I—j—+k)| k)' emitter vertices irs, the factorC?,’k to the number of ways

of connectingk emitter vertices ir§* to j' absorber vertices
In Eq. (3.25, the factorC{; may be identified as the number in S*, and the factonC?_k’j_k to the number of ways of
of ways of connecting —k (out of j) emitter vertices ir5* connectingj’ —k absorber vertices iI8* to i’ —(i—j+k)
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=]’ —k emitter vertices irS. Then, inR in Egs.(2.39, we

factor N™"™ in Eq. (2.6) is ch
have, in place of Eq93.18 and(3.19), actor [ in Eq. (2.6)is changed to

min(j,
E [c D (P HIC) DR () I ( e WW)

0 T i (u) RHGRGK
: + + "=
x[C), JiIDEH(PAIC], i JiDST (P} 7M.

, (4.0

(0) (o) (o)
(3.26 _
L . . . . _rr:t |(U ((r) i_("), i_(a)
This is just a portion of “right” thermal amplitude in the k k

RTF. Just as in the simple ca$g=j.=i,=j,=1}, ana-
lyzed above, we can find a set of relative diagrams\ibr
=S*S, which, together with Eq(3.26), leads to Eq(3.26
with completeD'’s. Among the diagrams that accompany Eq. — i ) . In Egs.(2.3D and(2.39, the summations on(") :
(3.26) with completeD’s, are disconnected ones like Fig. n(") _E”), and_ﬁ") are taken over 0 and 1. We assume

4(2). Such diagrams belong 6= N,o,D with D# 1 [cf. EG.  that the interaction Lagrangian is bilinear in fermion fields,

Where n(g)_l(g):n(a),_l(g)’ and _(-U)__(_U):_(_U—)’

(2.5], and then do contribute t&® in Eq. (2.39 asR =  which include fermion fields constituting the heat bath and
Neon- Connected diagrams that accompany 8326 with  possibly nonthermalized heavy fermion fields, the counter-
completeD’s take the proper seat i in Eq. (3.14). part of ®’s in Eq. (2.6).

Conversely, for any diagram fak in Eq. (3.14), through
the analysis running in the opposite direction, one can iden-
tify a set of diagrams fowW=S* S. The analysis made above
is so general that no additional comment is necessary on the We proceed as in Sec. Il A using the same notation.
diagrams that lead té, Eq. (3.14), which includes thermal @ {i{P=i'=j@=j == ==

A. Analysis of non-mode-overlapping diagrams

propagatafs) with n (=2) thermal self-energy insertion. =0} (0==). In place of Eq.(3.1), we have
This completes the derivation of the formya14) for the
rate of a generic thermal reaction taking place in a heat bath 1(=dp, iP
of finite volume. Keeping in mind a suitable normalization —f vﬁm’ 4.2

for incident fluxes of®’s, the formula(3.14) “smoothly”
goes to the formula for the infinite-volumé&/ & «) system
[cf. Eq. (3.16] in the sense that there do not exist extrawhich comes from the following contraction i8 [cf. Eq.
contributions in Eq.(3.14 with V<, which disappear in (2.6)]:

the limit V—oo. Thus, there is no finite-volume correction to

the thermal reaction-rate formu(8.14). —

Here we make a comment on gauge theories. Choosing a (O|T[ - - (Xl) P(Xq) - - (Xz) ¥(Xy)- - -1]0)
physical gauge like the Coulomb gauge, the gauge boson
may be dealt with in a similar manner to the above scalar- =iSg(X,—X){O|T[ - - .le). - h(Xp) - - -1]0).

field case. When we adopt a covariant gauge, a Faddeev-
Popov(FP) ghost field comes on the stage. The first summa-
tions in Egs(2.3b and(2.3¢ are carried out over the modes

of physical degrees of freedom. This can be implemented byere s4's in Eq. (4.3) come from the interaction Lagrangian
inserting the projection operatd? onto the physical space ;..

on the left side ofp in Egs.(2.3b and(2.3¢ and the sum is (b) Fermion mode Wlth{l(o')_l((r) -1, J(a)_J(a)’:o}
taken over{n{®)} for all, unphysical as well as physical,
modesa’s. As far as the ensemble average of physical quan-
tities like the reaction rate are concerned, the entire rol@ of
is to make[19] the antiperiodic boundary condition for FP
ghost field the periodic oneprp(t—iB,X) = ¢rp(t,X), SO
that the bare FP ghost propagator is the same in form to the N¢=n?
scalar propagator. Keeping this fact in mind, we can deduce

Eq. (3.14), whereA is evaluated using standard gauge-field 5

and FP ghost thermal propagators in the covariant gauge.

4.3

(c==) and its relative. We consider the positive-helicity
(o=+) fermion mode with{i {7 =i{"" =1, j{"=j(") =0}
In place of Eqs(3.2) and(3.3), we have, in respective order,

1
2 =
n :n )’
IV. DIRAC FERMION (%)= —ppry ~Ne(P

We study the case of the Dirac fermion. The expression
for Sin Eq. (2.6) with Egs.(2.7) and (2.8) is changed ac- where ng(p) is the Fermi distribution function and(},,)
cordingly. Letn{” [n{”] (¢=+) be the number of mode- =3!_,e #"PQ,/S}_,e #"P. We note that the contribution
fermion [ant|ferm|orj with helicity . The combinatorial corresponding to Eq4.3) above is[cf. Eq. (2.6)]
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f _ _1 _
(OITL b 2 (V) (X0) Y(Xa) - Yh(Xe) Y(X) Yrp-1(2) - 1|O)
= —iSE(y —X2)iSE(Xy=2)(O[T[ - - ¢h(xq) - - - Yh(x2) - - -1|).

Then, the LHS of Eq(3.4) is replaced by RTF, the above factor 2ng(p,) 8(pz) Py necessarily ap-
pears in association with a thermal fermion lospe below
_ _nF(p)u(+)(p)F+)(p)_ for detailg. The thermal fermion loop carries an extra minus
2pV sign, so that we have, for the portion under consideration,
Adding the contribution from the negative-helicity fermion iS(lJE)(Pk)=27T[—nF(pk)]5( Pﬁ)Pk-

mode with{i{)=i{' =1, ()=} =0}, we have

Adding the contribution from the antifermion mode with
~ 5py"(P) 2 U (PIUT(P) {(iQ=79=0,i9' =9 =1} (6= ), we extract

1 (= dp, 27 6(—po) —Ne(P) JPkA(PY)=iS12(Py). (4.6
=—vf Eﬁ(po)Zm‘?(PZ)np(p)P- (4.4
- In the process of deductionS; (j,1=1,2) appears in
: —_— . . succession. At the final stage, setgdf) =(S*S) turn out to
Adding further the contribution from the antifermion modes be thermal amplituded's [cf. Eq. (3.14], which includes

with {i©Q=1'=1, [Q=7Q'=0} (6==) to Eds. thermal loops of the fermiorr. Out of A’s, we take a “stan-

(4.2 and(4.4), we extract dard” Ag: Each fermion loop contains at most oi®;».
(Note that the number afS,; in a fermion loop is equal to

2 S(P2) | p the number ofS;,.) Fro_mAS, we take two fermlon loopk

P2+i0* mE(Pi) A(Pi) | P and L, and let iS,;(P)el; and iS,;(Q)el,.

i1S,1(P)iS,1(Q) comes, with obvious notation, fror§8*S

=iS1 (PO =iSIY (P +iSiY(PY). (45 =S (p,q,...)S(p,q, ...)=W;, whereS is the S-matrix

, , element obtained using Feynman rul@s vacuum theory

(c) Fermion mode with{i{”=j{"=0, i{?"=j{"'=1}  The Smatrix element which is related t&(p,q, ...)

(o==) and its relative. In place of E¢3.7), we have through exchange p~q is —-5(q,p,...), where
S(q,p, - . . ) isobtained using Feynman rules. Then, we have

1-ng(p).

Then, Eq.(3.9) is replaced by We—W==S"(p., .. )S(AP, - ), S
1 (= dp which brings an extra minus sign into the corresponding
_f —00(p0)2w{1—np(p)}5( P2)P. thermal amplitudeA. Observe here that, through the above

V)-u2m replacement ofS, L; and L, in Ag turn out to be a one

. o ) , ... thermal fermion loof in A. A thermal fermion loop carries
Adding the contribution from the antifermion mode with a minus sign. Theih; andL, in A, carries+ = (—)2 while

(i0=719=1,i1' =] =0} (6==+), we extract L in A carries—. In reducing(W) to A, the extra minus sign
5 _ in Eq. (4.7) eliminates one-, being present ik, and is left
27 6(po) —Ne(PK) ]18(Pi) P=iS21(Py). with one—, which is interpreted as the minus sign associated

) . with L in A. What we have shown is tha is a “right
(d) Interchanging the roles o and S* in (a) and (b) thermal amplitude.”

above, we obtain, in place of E3.11), Repeating the above procedure for “parer.’s and
. “children” A’s, as “constructed” above, we can exhaust all
—i , ; .
—2mn S(P2) | p A’s that contrlbutes to the reapt|on—rate formula, and see that
Pﬁ—i0+ mE(P) (P | Pi they are “right” thermal amplitudes.

— —ic(0) ic(m)
=1S22(Pi) =122 (Pi) +1S55 (P B. Analysis of mode-overlapping diagrams

(e) Fermion mode with{i{?=j(=1, i(ka)/:j(ka)rzo Let us tur(g) to analyze the qug—overlapping diagrams.
(r==) and its relative. The relevant statistical factor is Noting thatn;”, etc., and then alsif”, etc., take two val-
ne(p). Let us show that the part under consideration turnd/es 0 and 1, we shall exhaust all the mode-overlapping con-
out t0iS;,(P,). In place ofpy>0 portion of Eq.(3.12, we figurations. , ,
have 27ng(py) 8(P2) P, which seems to be thg,>0 por- @ {i{?=i{"" =j@=j{"" =1} (¢=+) and its relatives.
tion of iS;,(P,). However, this is not the case. Within the From Eg. (4.1), N;=(n(?)* (o¢==), which leads to
resultant reaction-rate formula, which is an amplitude in the(n(®))#)=nc. Through by now familiar manner, we extract



ne 2 [{270(po)uj” (P) U} (P}
X{2m6(po)u{” (P)u'(P)}1. (4.9

u{” andu’? [uf” ande(‘,’)] in Eq. (4.8) are attached to the
vertices inS [S*].

The relatives, to be analyzed, of the above configuration

are {i{=i{""'=j{"7=j"'=1} and {i{)=i{ " ="
=j{"? =1} (o0==). The former yields

ng 2 [{2m0(po)uj” " (P)uj, (P}
x{2m6(po)ul” (P)ul7 (P)}, (4.9
and the latter yields
ne(1=ng) 2 [{270(po)uj /(P Ul (P)}
x{2m0(po)uf” (P)uf, 7(P)}]. (4.10

Adding Egs.(4.8) and(4.9), we obtain

(iS55 (P)) (84T (P

+ne(1-ng) 2 [{2m6(po)uf” (P)uj?'(P)}

x{2m8(po)u{”(P)ul (P)}]. (4.1
Adding Egs.(4.10 and(4.11), we have
(55 (P (S (P)iiv
— (S5 (P (S5 (P (412

Recalling the fact that andi’ (j andj’) attach to the ver-
tices inS (S*), we see that Eq(4.12) is just a portion of

“right” thermal amplitude in the RTF. Adding an appropri-

ate sets of relative diagrams, we can extract @dl2 with
completeS’s.
(b) {it"=i{)=j{"=j{)=1} and its relatives. Taking

care of the anticommutativity of fermion fields, we extract

ne[2mo(po){ui,” (P)ul, '(P)—uf " (P)ui (P)}]
X[2m6(po){uf, (P)u] (P)~uf"(P)uf (P)}.
(4.13

Here u;’s (u_j’s) are attached to the vertices B (S*).
Simple manipulation yields

Eq. (4.139= (S5 (P, (S15) (P,
= (S35 (PR3, (1S5 (P,
(4.19
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Adding appropriate relative diagrams, we can extract Eq.
(4.14 with completeS's, which sits on the “right seat” in
thermal amplitude in the RTFef. Eq. (3.14)].

© {i)=i=i=i=1i" =} =1} (=)
and its relatives. We extract

ne[2m8(po){uf (P)uf,(P)—u " (P)uf '(P)}]

x[2m0(po){uf(P)ul (P)—uf (P)uf (P)}]

X 2 [276(po) u{? (P)ui 7 (P)], (4.19

where the spinors with sufficés, i,, andis (j1, j2, andjs)
are attached to the vertices $(S*).
We shall show that

Eq. (4.15=8"12'3(p)—s'21's(p), (4.16

jaiols jaiols
where

'ﬂﬂa
J11213( )

=(iS15'(P))i ;, (S13(P));,;, (S5 (P));.i,

+ (S (P, (S (P, (S5 (P,

+ (iS55 (P, (ST (P))y i, (S5 (PY), i,
(4.1

We shall prove this by running in the opposite direction; i.e.,
starting from Eq(4.16), we derive Eq(4.15. The first term
on the RHS of Eq(4.17 consists of two terms; one is pro-
portional ton% and one is proportional toﬁ The second
and third terms are proportional t& . Here (iS{3)(P)); ;,

may be written acf. Eq. (4.4)]

(S} —27ng(p) 8(P?) 2 u?(P)uf?(P).

(4.18

(P, =

OtherS's in Eq. (4.17) may be expressed similarly. Straight-
forward but tedious manipulation shows that thleeF ‘part”

of 811'122'J33 8;2']1'13 vanishes. Then, in Eq4.16, we are left
with nF part,” which turns out to be Eq4.15.
The same comment as above after @ql4) applies here.
(@ {if7=il)=j0 =0 =i =i = =0
=1} and its relatives. We extract

ng[2m8(po){uf,” (P)u(P)—u{ (P)u{ " (P)}]

x[2m0(po){uf. (P)uf )(P)—uf (P)uf " (P)}]

ul(PYul (P}

'(P)}.
(4.19

X[ZWH(po){_(H(P)_( (P)—ul]

X[2m6(po){uj . (P)uj )(P)—ui )(P)uj’
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As in the above casg), through straightforward but tedious calculation, we obtain
Eq. (4.19= 811'12'133'1(P) 5;2'112'133'14(;3) 811'12']3']“3(P)+S;2'112'J3'J43(P) (4.20
where
L (PY=(iS15 (P))y (S5 (P));, (1851 ()1, (S5 (P)) i,
+(SEY T (P))i, (815 (P, (1855 (P) 1, (1851 (P))y 5,
(S5 (P))y 3, (517 (P, (1555 (P)) 1, iS5 (P)) 1,
+ (iS55 (P))i 5, (1S51 (P, (ST (P, (S35 (P))y 4,
+ (S (P)); i, (1S55 (P))1, (151 (P));i, (S5 (P))y i,
+ (S (P, (1817 (P, (1855 T (P)) 3, (155 T (P))y

The same comment as above after 14 applies here.
There remains the following two configurations to be ana

lyzed: () {i{" =i{) =j{"7 " =j{7 =1} and its relatives

and (f) {i(k+)':if(*)':j(kﬂ':j(k*)': 1, i(k(f):j(ka): 1} (o=

+) and its relatives. The cage) [(f)] may be analyzed in a

similar manner agb) [(c)] above and the “right combina-

tion” of thermal propagators is extracted.

As in the scalar-field case, Sec. lll B, there appear discon-

nected\’s: N= NP with D# 1. Such cases are treated in
the same manner as in the scalar-field case.

odd permutation of j(;j,j3), which is a reflection of the

-anticommutativity of fermion fields. We take the cage-0.

The “type-1 side” of Eq.(4.22 comes fromi{"+i{7)=3,
and theni{")=2 ori{=2. Then the contribution under
con5|derat|orsh0uldvanish. In order to see that this is really
the case, using the expressi@nl8, we further extract, from
Eq. (4.22),

3
j1i2i3
l1lal3 =y

> o

perm

2 uMRUMR)|. (423
o==*

This completes the analysis of all mode-overlapping con-

figurations.

Conversely, we take a diagram férin the reaction-rate
formula[cf. Eq. (3.14]. The amplitudeA contains “vanish-
ing contributions,” whichshouldvanish. By this we mean
the contributions coming from the configurations, in which at

least one Oi(a) i(a)’ j((r) j(a)' '_((T) '_(U)' j_((T) j_ElT)’

(o==%)is equal to or greater than 2. Let us show that such

contributions really vanish. Suppose thatontains

3
[T (S12(R); i (4.21
k=1 Kk

whereRy (k=1,2,3) is the loop momentufief. Eq. (3.15]
and the suffixi,j, stands for thei(,j,) element ofiS;, in

the 4x4 Dirac-matrix space. In the loop-momentum space,

there are “points,” wherdR;=R,=R;=R=(rq,r). Adding

the contributions from the five relative diagrams, we have, in

place of Eq.(4.21),

pgm U:bjjgn (iS12(R))i . (4.22

Again straightforward but tedious manipulation shows that
Eqg. (4.23 in fact vanishes. In a similar manner, we can show
that Eq.(4.22 with ry<0 also vanishes.

We can also see that the product of thermal propagators

(S{?(R))ij,TIe_»(iS12(R)); 5, and its relatives add up to
vanish. When the product oh(=4) iS;,(R) and/or
(T)(R) appears imA, pick out three of them and apply the
above argument to show that the contribution vanishes.

The above analysis applies to all other “vanishing contri-

butions,” which includell?_,(iS,;(Ry)) with its relatives,
etc. This completes the proof of absence of the “vanishing
contributions.”

V. RATE OF REACTIONS BETWEEN THE CONSTITUENT
PARTICLES OF THE HEAT BATH

In the heat bath composed of scalar fields, taking
place is the reaction

d(p)+--
—@(g)+ -

-+ ¢(py,) + heat bath

-+ ¢(qg,) +anything, (5.1

where the summation is taken over all permutations ofyhere ¢'s are the constituent particle of the heat bath. One

J1J2J3_ + or —

NI when (41,l3) is an even or

(J1i2j3). Hereo

can easily show that the reaction rate takes the form
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T PRV n
V(,Hl 2qu)72: 11 555\ LL nap) (j[[l{1+ns<q,->}
XAPP, ... PR.QY, ... QM:PY, .. PP.QP, ... QP), (5.2

whereA is the RTF amplitude for the forward process,

d1(P)+ -+ d1(Pm)+ d2(Q1) + - -+ d2(Qp)

—@o(P)+ -+ P(Pr)+ ¢1(Qq) + -+ - + ¢1(Qp).
(5.3

It is worth noting that Eq(5.2) may be rewritten as

1

\%

"1 (dp
il;[l vj Ziﬂ_oa(pio)iDlz(Pi)

X A

"1 dg
11 5] FR0a0ivz@)

=Apubble- (5.9

The RHS, A, bbre, iS @ No-leg thermal amplitude, in which

no summation is taken ovep; (i=1,...m) and g; (]
=1,...n).

Generalization of the above result to the theories with

gauge bosons and/or fermions is straightforward.

VI. DETAILED BALANCE

In this section, on the basis of the generalized reaction-
rate formula, Eq(5.2), we derive the detailed-balance for-

mulathrough diagrammatic analysis
The purpose of this section is to show that the (&)

Here {P; ,1<k</} is a subset of P;,1<i<m} on the
LHS of Eq. (5.3 and{Q; ,1<k</"} is a subset ofQ;,1
<j=n} on the RHS of Eq(5.3), where/, /' =0. This
type-1 island is connected by, (=0) propagatordD,4’s

ands,(=0) propagators$D ;,'s to one or several type-2 is-
lands. With the help of the identity

D21(R)=€#"0D4(R), (6.3

and the momentum-conservation condition, we obtain, for
iD’s that are attached 16,

S1 S2

[T iD,(R)IT iD1a(Rs )

=1 k=1

=exp(,8

S2

X 11 1D21(Re ).

/ a Sy

kzl pik_kzl qJ'ijHl iD12(Ry)

(6.9
We now take a type-2 island, whose contribution is writ-

ten as

Tp(Piy, - Py iQi - Q). (6.5

where{Q; ,1<k</"} is a subset ofQ;,1<j=<n} on the
LHS of Eg. (5.3 and{P; ,1<k</} is a subset ofP;,1

for the procesg5.1) is equal to the rate for the inverse pro- <i<m} on the RHS of Eq(5.3). Here/ (/") is not nec-
cess to Eq(5.1). (For the case of theories with gauge bosonsessarily equal to” (/) in Eq. (6.2). In a similar manner as

and/or fermions, the same result is obtain€ethis is well  apove, in place of Eq6.4), we have, with obvious notation,
known for the cases of decay and production processes,

which correspond ton=1, n=0 andm=0, n=1, respec- sy )
tively, in Eq. (5.2). IIiDzﬂRQIIiDljR%+@

Take a diagram foA, Eq.(5.2), and letN; andN, be the =1 k=1
number ofiD,,'s and iDy,’s, respectively, which is in- , I <
volved inA, ’ L
=exp B 2 pi,— 2 q;, | |1l iD1x(R)
Ny N3 k=1 k=1 i=1

H iD21(R)) I1 iD12(Rn, +k)- (6.1 s}
j=1 k=1

x T iD21(Ry 10 (6.6
By cutting all the linesD ,’s andiD,,’s, we divideA into .k’l )
one or several “type-1 islands” and one or several “type-2  For all the islands, we make the above re_placements; ie.,
islands.” Here, the type-Itype-2 island is a “maximal” the LHS of Eqs(6.4) a_nd(6.6) are replz_iced with the respec-
amputatedsubdiagram ofA, which consists of only type-1 tivé RHS. Through this procedure, ey, and eachD,,
(type-2 vertices and of the propagatdi;,’s (iD,,'s) con-  in Eq.(6.1) is “used” twice. Then we obtain

necting them. Then, a type-{type-2 island includes no m n

type-2(type-1) vertex. A type-1(type-2 island is connected Eq. (6.1)=exp( B le pj_gl qu

Ny Np

by iD,4's and/oriD 1,'s to type-2(type-]) islands).
xj[[1 iD12(R) [1 1D21(Ry, +10-

Take a type-1 island and we write its contributitia A)

Qi - Q. iPiy - Py ). (6.2
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Now we note that the propagators ify’'s (Z,’s) are

iD14's (iD,y's), and vertices inZ;'s (Z,'s) areik (—il\)
[cf. above after Eq(3.13]. Then, using the relatiof8.11),

[iD11(R)]*=iD2x(R),

and[iN]* = —i\, we easily see that
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[Il(le, Ce ’Qj/r ;Pil' e ,Pi/)]*
:Iz(le, P ’Qj// ;Pil’ e ,Pi/). (67}

Here we note that, from the first-principles derivation
above, it is obvious that, to any order of perturbation series,
the amplitudeA in Eq. (5.2 is real, provided that all the
contributing diagrams are added. This fact, together with Eq.
(6.7), shows that

AP?, ... P2 QP,. .. QY:PY, ... PM.QP, ... QP)

=exp(ﬂ

Using Eq.(6.3), we obtain

efPing(p;)=1+ng(p;),
e A{1+ng(q))}=ng(q)). (6.9

Substituting Eq(6.8) into Eq. (5.2 and using Eq(6.9), we
finally obtain

1
- R'.  (6.10

n 1 m
I1 2qjv)7z= —(H 2pv
=1 Vii=1
Here, the LHS is the rate of the thermal reacti{ril) while
the RHS is the rate of its inverse process

#(gy)+ - - - + ¢(q,) + heat bath
—¢(py)+ - -+ ¢(pm) +anything.

Equation(6.10 is the desired detailed-balance formula.

VIl. T—0 LIMIT AND CUTKOSKY RULES

In this section, we show that, in the limiE—0, the

reaction-rate formuld3.14 reduces to the formula that is

obtained using the Cutkosky rules. Then, in the casasf

andn=0, Eg. (3.14 goes to the optical theorem and, for

m=2 andn=1, Eq.(3.14) goes to the Mueller formulg20]
for inclusive reactions.

3A comment on QCOQED) is in order. As to the 4-gluon vertex,
when compared to the scalar theory, no new feature arises/Let

m n
El pi—;l quA@@, L QRPW L PWQW, L QW PR PR (6.8

In the previous section, for a given diagram ferin Eq.
(3.14), we have defined a set of “islands.” The islands in the
set may be classified into two groups. The first group con-
sists of islands which contain at least one external vertex.
Here the external vertex is the vertex, in which or from
which the external momentum flows. The second group con-
sists of isolated islands which have no external vertex.

Let us take the scalar-field theory and investigate the
zero-temperature limit{—0) of the reaction-rate formula,
Eqg. (3.14. (Again, generalization to other theories is
straightforward. In this limit, iD,,(P) — 2mw6(po) 5(P?)
andiD,(P) — 2m0(—po) 8(P?). It can readily be seen
that, due to momentum conservatidh, and Z,, Egs. (6.2
and(6.5), corresponding to the isolated islands vanish. Then,
the nonvanishing amplitud& contains only the islands be-
longing to the first group. Thus, we obtain

s Ny
A=Jlj1 [276(r o) 5<Rf)]i[ll Z({P}i :{Q})

Ny
lejl ,({Q}:{P})), 7.1

where{P};, etc., denotes the subset®f, ... P, which
flow in the ith “type-1 island,” etc. {P};U{Q}; and
{Q};U{P}; are not empty. In Eq(7.1), the direction of all
the s momenta,R’s, each of which connects a “type-1 is-
land” and a “type-2 island,” is taken to flow from the
“type-1 island” to the “type-2 island.” As noted before, the
diagram representing in Eq. (7.2 is connected.

The RHS of Eq.(7.1) is just the quantity which is ob-

(i=1,2) be the factor that is associated with a trigluon vertex in af@ined by applying the Cutkosky rulgd1] (in vacuum

typeid island.V; is real andV,= —V;. Then, in place of Eq(6.7),
we haveZ,;* = (—)NZ, with N the number of trigluon vertices ify.

theory) to the present case. As a special case, consider Eq.
(7.1 with m=2 andn=0. Since the particle represented by

SinceA in Eq. (5.2 contains an even number of trigluon vertices, ¢ is stable al =0, in Eq.(7.1), N; = N, =1 and{P};; =
Eq. (6.8) holds unchanged. Let us turn to analyze the quark-gluon P}j=1 = {P1,P,}. Thus Eq.(7.1) is the optical theorem in
vertex. In a standard notation, the factor associated with a quarkvacuum theory. Similarly, fom=2 andn=1, Eq.(7.1) is

gluon vertex in a type-1/2 island isig y*T?. Taking a trace, irA

just the(generalized Mueller formula[20] for the inclusive

in Eq. (5.2, of the products ofy matrices and of color matrices Process,

yields a real function oP’s andQ’s. Then, {g)*=—ig leads to

Eq. (6.8. To sum up, Eq(6.8) holds for QCD(QEC).

P (py) +P(p2) —P(qy) + - - - +P(qn) +anything.
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VIIl. THERMAL CUTTING RULES table” sounded quite natural at the time of its introduction.
In spite of the fact that this is a matter of definition, the

In view of the controversy mentioned in Sec. |, we survey . i
xistence oluncuttable diagraméas aroused controversy.

in this section the discussions made in the past for the thef? b | ded ¢ . . f
mal Cutkosky formula and thermal cutting rules. Although Kobes analyzedll3] retarded Green functions in terms o

no new result is involved here, it is worth pigeonholing the Circled diagrams. As to the usage of “cuttings,” “cuttable,”
issue. The Cutkosky formulfl1] in vacuum theory is the @and “uncuttable,” he followed12]. _
formula that relates the imaginary or absorptive part of an Jeon analyzefll4] two-point functions in imaginary-time
amplitude A to the sum of cut amplitudes B0, For ~ formalism. Continuing to the real energies, he discussed
S|mp||c|ty, in th|S Secti0n7 we take a Se|f-interacting Comp|exthermal Cutting rules. His definition of Cutting is the same as
scalar-field theory. Generalization to other theories arén [12]; i.e., the propagator,, andiD,; are regarded as
straightforward B(°“Y's are constructed from by so cutting ~ cut propagators. No mention was made on the cuttable and
the propagatoriD’s in A thatA is divided intoAg andAgs, uncuttable diagrams, but no doubt that he supposed all dia-
which are amputated. Herg; is a parts) of A andAg« isthe  grams to be cuttable.
complex conjugate of the amplitude that is obtained fram Bedeque, Das, and Naik analyZdd] the imaginary part
by removingAg and iD’s. Cutting the propagatoiD (P) of thermal amplitudegphysical and “unphysical) from the
makesiD (P), same starting formula as {12], but with a different route.
Recall that the propagatoD j, (j,k=1,2) connects a typg-
270(+ po) S(P*—m?), (8.1)  vertex with a typek vertex.iD j is defined to be aut propa-

o gatorif and only if one of the typg-and typek vertices is of
where the uppeflower) sign is taken wherP flows from a  ¢jrcled and another is of uncircledf. the first paper of12]).
vertex inAs (Asx) to a vertex inAss (As). When the Cut-  They then showed that the imaginary part of a thermal am-
kosky formula is applied to a forward amplitude we see plitude is written as the sum afuttable diagramsin the
that ImA is proportional to the corresponding reaction rate,sense of KS stated above. In each cuttable diagram, a con-
where cutted propagators represent(ihre-shel) particles in - npected subdiagrafs at one side of the cut line contains only
the final state. uncircled verticedexternal and internawhile a connected

Kobes and SemenofKS) [12] were the first who gener- subdiagrarts) at the other side of the cut line contains only
alized the CUtkOSky formula to the case of the RTF. Namelycirded vertices. As was pointed out [n_G:l7 however, each
they obtained the formula that relates the imaginary part of gonnected part contains in general propagators that are pro-
thermal amplitude to the sum of “circled amplitudes,” each portional to the on-shell factaf(P2—m?). Of course, in the
of which Corresponds to the “circled” diagram that includes Zero_temperature ||m|t, their formula as well as KS’s one
the so-called circled and uncircled vertices. The first paper ofeduce to the Cutkosky formula.

[12] discusses general thermal amplitudes and the second Gelis extensively analyzeld 6] thermal cutting rules for
one discusses physical amplitudes, i.e., amplitudes with a{jarious formulations of real-time thermal field theory. As to

external vertices being of type 1. In the sequel, unless othethe usage of “cuttings,” “cuttable,” and “uncuttable,” he
wise stated, we shall restrict our concern to the physical amfpjlowed [12].

plitudes. The thermal Cutkosky formula deducelg] may Cutting rules for thermal reaction-rate formula are dis-
be written in terms of thermal amplitudes in the RTF: cussed |r[2_7] Note that, as mentioned above, in vacuum
theory, the cut propagator, E(®.1), corresponds to théon-
Im[iG(P", ... PW)] shel) final-state particle. The thermal cutting rules intro-
2 duced in[2-7] are a generalization of this fact. As we have
-z G(P(il) o P(in))_ 8.2 seen aboveaG 1, (which collectively denotetD ;, andiS; ,)
2, T 1 TN (iG,,) consists of two parts; one comes from the particle
(antiparticle in the initial state and the other comes from the
HereG(PY?, . .. PUn) stands for théamputatefithermal ~ antiparticle (particle) in the final state, whileiG{? and
amplitude with type; (j=1,...n) external vertices in 'G(sz_), the T-dependent parts af5,; andiGz,, come from
which or from whichP; flows. In Eq. (8.2, the sums’ the interplay of the initial-statéantjparticle and the final-
stands for taking summation excludimng=---=i,=1 and state(antiparticle. We recall that each of the thermal propa-
i,=---=i,=2. Note that, as a matter of course,@) the  9atorsiG;; andiG,, consists of two parts, th&=0 part

sum is taken over the typés and 2 for all internal vertices. 1G‘® and theT-dependent paitG(". Then,A in Eq. (3.14
KS then generalized the notion of cuttings. Comparison oPr (5.2 is divided into 2' contributions, whereN is the
iD,1(P), Eq. (3.10, andiD ;,(P)=iD,;(—P), Eq. (3.12, number ofiG;4's andiG,,'s. The above observation leads

with Eq. (8.1) leads them to regari ,, andiD,; in G’'son  Us to regardG,, iG,y, G}, andiGS as thecut propa-

the RHS of Eq.(8.2) ascut propagators Through cuttings, gators

eachG is divided into several pieces. KS then introduced a Through the applications of the above cutting ruléss
notion of cuttableanduncuttable diagramsThe former dia- divided into several subparts. Each subpart contains only
gram is the diagram that does not include isolated igknd type-1 vertices or only type-2 vertices. The forn{gatten

(cf. Sec. VI while the latter diagram includes at least onebelongs toS (S*) in (S*S). The cuttings work as follows.
isolated island. Note that, in the case of vacuum theory, allhe line that cuiG ;,(P) with py>0 (py<<0) is the initial-

the diagrams are cuttable ones, which motivates KS to introstate particle(final-state antiparticlecut line. The line that
duce the above definition. Thus, the terminology ‘“uncut-cut iG,;(P) with ps>0 (py<0) is the final-state particle
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(initial state antiparticle cut line. The line that cut
iG{D(P) [iIGSD(P)]is the initial-state cut lin@andthe final-
state cut line inS (S*) and, inS* (S), one extra spectator

particle with P is, for the line that CutiG(lTl)(P) with pg
>0 (pp<0) is the initial-state particléantiparticle cut line
and the final-state particléantiparticle cut line. For the cut
line oniGSY(P), a similar statement holds.

It is quite obvious that the “cutting rules” introduced

above for thermal reaction rates may be used for general

A. NIEGAWA

thermal amplitudes evaluated in the Keldish variant of the

RTF.
Finally, it is worth mentioning that it can easily be seen
from Eqgs.(3.14 and (8.2 that the RHS of Eq(8.2), which

represents the imaginary part of a physical amplitude, is a
sum of various reaction rates times corresponding kinemati-

cal factors.
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APPENDIX: PROOF OF EQ. (3.29

Here we prove the identity Eq3.24). We expand the
RHS of Eq.(3.24) in powers ofng(x)(=¢) to obtain

r|J/| /

—K) K

ming, il

k=0 (i=j+K)! (j’

g+l

min(j,j") j'— il
Zo (i—j+k)!

k=0

i’

i

i+j' =/
Gk KGR

iomin ki) i
=2 o=
K=o (i=j+ (=)

/=0
i

X j+i’—k
KI(j' —k—2/)! ’

(A1)

wherei=j. Comparing Eq(Al) with Eq. (3.23, we see that
it is sufficient to show that

K’ kol
-;L—j'j/_ g]"]'/y (Az)

57
where
min(j,j’ —k) il
k]__ii/_ Ij!
WE S A=+ G k==
(A3)
j+i"—k)!
Gl U . A (A4)
PR =K1 = k)!
Here we define two functions:
Fit 0= xI'*kFil, (A5)
. =, ,
- j/ . -
Gt (=2 xi'Tkkgit (A6)
, “ ,

It can easily be shown thd’'s and G’'s satisfy the same
differential equation:

d
&F]'J 0 =F 00+iFY L0, (A7)
d ii’ i,i
axCiir (0= G,,_l(X)JrJG, 1J,,1(x)
(A8)

From Egs.(A5), (A6) with Egs.(A3) and(A4), we obtain

R (0)=G(0= = (A9)

. . il
500=G}5(0= =557 (A10)
We see from Eq(A?) [Eq (A8)] thatF (x) [G (x)]

may be obtained fronf: 0(x) [GJ o (x)] in Eq (AlO) with
, 1<j, and F" (0) [G" (0)] in Eq. (A9) with i’

Lis<ii'sil. SlnceF S andG s subject to the same set
of equations(A?)—(AlO), we conclude that

.,<I

ii’ _
Fj'j,(X)_

which proves Eq(A2). Q.E.D.
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