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Finite-temperature reaction-rate formula: Finite-volume system, detailed balance,T˜0 limit,
and cutting rules

A. Niégawa*
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A complete derivation, from first principles, of the reaction-rate formula for a generic process taking place
in a heat bath of finite volume is given. It is shown that the formula involves no finite-volume correction.
Through perturbative diagrammatic analysis of the resultant formula, the detailed-balance formula is derived.
The zero-temperature limit of the formula is discussed. Thermal cutting rules, which are introduced in previous
work, are compared with those introduced by other authors.@S0556-2821~98!00903-5#

PACS number~s!: 11.10.Wx, 12.38.Bx, 12.38.Mh
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I. INTRODUCTION

Ultrarelativistic heavy-ion-collision experiments at CER
and the BNL Relativistic Heavy Ion Collider~RHIC! lead us
to entertain a hope of reviving quark-gluon plasma~QGP! in
the present day. As promising observables of the QGP
mation, rates of various reactions taking place in a Q
~heat bath! have been computed by many authors. Almost
of them, however, concentrated on the analyses of par
production from a QGP or the decay rate of a particle in
QGP, whose computational method has long been kno
@1#.

Since then, through analyses from first principles, a c
culational scheme of the rate of a generic thermal reac
has been proposed@2–7#. The resultant reaction-rate formu
is written in terms of the Keldish variant of the real-tim
formalism ~RTF! of thermal field theory@8#. However, a
complete analysis of classes of diagrams, which leads to
grams in the RTF including thermal propagators withn ~>2!
thermal self-energy insertion, is still lacking. Reference@3# is
the only work that discusses such classes of diagram
scalar field theory. In the course of the deduction@3# of such
diagrams, there comes about an involved series, for whic
identity is assumed. As for@4#, where fermion fields are dea
with, the set of diagrams under consideration is not analyz
This is also the case1 for @7#. Incidentally, the thermal self
energy part in itself and the one thermal self-energy-inse
propagator are deduced in@2–4,9#.

The principal purpose of this paper is to present a co
plete derivation of the thermal reaction-rate formula~Secs.
II–V !.

There has been confusion regarding the issue of fin
volume corrections to the standard thermal perturba
theory.~Why and how has the confusion arisen is describ
historically in@10# with relevant references.! By employing a
cubic system with periodic boundary conditions, it has be
shown in @10# that thermal expectation valuesof normal-

*Electronic address: niegawa@sci.osaka-cu.ac.jp
1In fact, in @7#, ann (>2) thermal self-energy-inserted propagat

is not deduced from the starting formula but is assumed at the
to have the correct form in the RTF@cf. Eq. ~17! in @7##.
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ordered products of field operators can be chosen to be
and there is no finite-volume correction in thermal amp
tudes. It should be stressed that this statement is the s
ment within the RTF. The statement does not tell us whet
or not the thermal reaction-rate formula deduced from fi
principles is free from finite-volume corrections. We sh
derive in Secs. II–V the thermal reaction-rate formula for t
finite-volume system and explicitly see that there is no fini
volume correction.

It should be emphasized that the absence of finite-volu
corrections here as well as in@10# is rather academic since
cubic system with periodic boundary conditions is taken. F
physical finite-volume system, there are@6# two sources en-
tering the finite-volume effects in the thermal perturbati
theory constructed on the basis of a~grand! canonical en-
semble. One comes from the physically sensible bound
condition on the single-particle wave function. The oth
comes from taking the physically sensible ensemble. For
nonequilibrium case, such as an expanding QGP, the s
tion is of course much more involved.

In Sec. VI, through diagrammatic analysis for th
reaction-rate formula, we derive the detailed-balance f
mula. In Sec. VII, we analyze the zero-temperature limit
the reaction-rate formula and reproduce a variant of the C
kosky rules@11#.

At zero temperature, the cutting~Cutkosky! rules@11# are
a powerful device to investigate the imaginary or absorpt
part of a scattering amplitude and a reaction rate like a s
tering cross section. Then, it is natural to infer that a fini
temperature extensions of the cutting rules~thermal cutting
rules! also plays an important role in thermal field theory.

Previously, several authors@12,2–7,9,13–16# have dis-
cussed thermal cutting rules.2 However, because of the fac
that the generalization of the notion of ‘‘cutting’’ in vacuum
theory to the case of thermal field theory is not unique,
terms ‘‘cutting’’ and ‘‘~un!cuttable’’ are endowed with dif-
ferent meanings in@12,2–7,9,13–16#, which has caused a

art

2The relationship between a thermal self-energy part~in
imaginary-time formalism! and a rate of decay~production! of a
particle in ~from! a heat bath was clarified in@1#, from which the
cutting rules as applied to the self-energy part can be read off.
1379 © 1997 The American Physical Society
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1380 57A. NIÉGAWA
recent controversy. With these circumstances in mind,
pigeonhole different definitions of thermal cutting rules~Sec.
VIII !.

II. PRELIMINARY

We consider a heat-bath system of temperatureT, com-
posed of the fieldsf (a), with a labeling collectively a field
type and its internal degree of freedom. We assumeT@m
and ignorem ~hot plasma!. The system is inside a cube wit
volumeV5L3. Employing the periodic boundary condition
we label the single-particle basis by its momentumpk
52pk/L, kj50,61,62, . . . ,6`( j 5x,y,z).

Physically interesting thermal reactions are of the follo
ing generic type:

$A%1heat bath→$B%1anything. ~2.1!

Here $A% and $B% designate a group of particles, which a
not thermalized, such as virtual photons and leptons.~Gen-
eralization to more general processes, where among$A%
and/or $B% are f (a)’s, is straightforward and will be deal
with in Sec. V.! The reaction rateR of the thermal process
~2.1! is expressed@2–4# as a statistical average of the tran
tion probability W5S* S ~with S the S-matrix element! of
the zero-temperature(T50) process,

$A%1$nk
~a!%→$B%1$nk

~a!8%, ~2.2!

where$nk
(a)% denotes the group off (a)’s, which consists of

the numbernk
(a) of fk

(a) (f (a) in a modek):

R5N /D, ~2.3a!

N[ (
$nk

~a!%

r (
$nk

~a!8%

W@process~2.2!#

2pd~0!
, ~2.3b!

D[ (
$nk

~a!%

r (
$nk

~a!8%

W0~$nk
~a!%→$nk

~a!8%!, ~2.3c!

r5N21expS 2b(
a

(
k

nk
~a!pkD . ~2.3d!

Here b51/T, pk5upku, and 2pd(0)5t f2t i(;`) is the
time interval during which the interaction acts.W05S0* S0,
the ‘‘thermal vacuum bubble,’’ is theT50 transition prob-
ability of the process indicated in Eq.~2.3c!, i.e., the reaction
among the heat-bath particlesf (a)’s alone. Note that the
perturbation series forD starts from 1:

D511•••. ~2.4!

In Eq. ~2.3d!, N is the normalization factor. In Eqs.~2.3b!

and ~2.3c!, (̄ stands for the summation with symmetry fa
tors being respected, and, for a bosonic~fermionic! f (a),
nk

(a) runs over 0,1,2, . . . ,̀ ~0 and 1!. It is to be noted that
$A% and$B% in S, which we write$A,B%S , are not necessar
ily involved in one connected part ofS. This is also the case
for $A,B%S* . We assume that, inW5S* S, $A,B%S and
$A,B%S* are involved in one connected part, which we si
e

-

-

ply refer to as a connectedW. Then, a connectedW consists,
in general, of two mutually disconnected parts; the one
cludes$A,B%S and$A,B%S* and the other is a group of spec
tator particles. Generalization to other cases is straight
ward. Examples of double-cut diagrams@17# for S* S are
depicted in Fig. 1. It should be remarked on the form ofr in
Eq. ~2.3d!. Let us recall the following two facts. On the on
hand, the statistical ensemble is defined by the density ma
at the very initial timet i (;2`). On the other hand, in
constructing a perturbative RTF, an adiabatic switching
of the interaction is required@18,9,8#. Then, the Hamiltonian
H in r[N21e2bH should be the free HamiltonianH0,
which leads to Eq.~2.3d!.

As will be seen below, diagrammatic analysis shows t
N, Eq. ~2.3b!, takes the form

N5NconD, ~2.5!

whereNcon corresponds to a connected diagram andD is as
in Eq. ~2.3a!. ThenR5Ncon .

TheT5 0 S-matrix element is obtained through an app
cation of the reduction formula. As an illustration, we take
heat-bath system of thermal neutral scalarsf ’s, and we take
$A% to be $F(pi); i 51, . . . ,m% and $B% to be $F(qj ); j
51, . . . ,n% with F a nonthermalized heavy neutral scala
Assuming aF-f coupling to be of the formFf l , we have
@2,3#

S5)
j 51

m

~ iK Pj ,F j
!)
k51

n

~ iK Qk ,Fk
* !

3)
k

H (
i k50

nk

(
i k850

nk8

d~nk2 i k ;nk82 i k8!

FIG. 1. Two examples of double-cut diagrams for the transit
probability W5S* S in vacuum theory. Long dashed lines are t
final-state cut lines while the short-dashed lines are the initial-s
cut lines. The left side of the cut lines represents theS-matrix ele-
ment S, while the right side doesS* . The line that is cut by the
final-state~initial-state! cut line represents a particle in the fin
~initial! state inS. The lines cut by the initial-state@final-state# cut
line include those corresponding to$A% @$B%# in Eq. ~2.2!. The
group of lines on top of the diagrams stands for spectator partic
~a! Both S andS* are connected. In addition to the spectator p
ticles mentioned above, additional spectator particles are inS* . ~b!
S is connected whileS* is disconnected. Note, however, thatS* S
is connected.



ti

la
i

s
ea

itu

ar

.

ore

e
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3N
i ki k8

nknk8 )
n851

i k8

~ iK k,n8
* !)

n51

i k

~ iK k,n!

3^0uTF )
n851

i k8

fn8)
n51

i k

fn)
j 51

m

F j )
k51

n

FkG u0&J ,

~2.6!

where

N
i ki k8

nknk8[H S nk8

i k8
D S nk

i k
D 1

i k8! i k!
J 1/2

. ~2.7!

In Eq. ~2.6!, d(•••;•••) denotes the Kronecker’sd symbol,

Kk,n•••fn[
1

A2pkVZf

E d4x e2 ipk•xh•••f~x!,

KPj ,F j
•••F j[

1

A2EjVZF

E d4x e2 iP j •x

3~h1M2!•••F j~x!, ~2.8!

whereEj5Apj
21M2 with M the mass ofF. TheZ’s in Eq.

~2.8! are the wave-function renormalization constants.S0 in
W05S0* S0 is given by a similar expression to Eq.~2.6!,
where factors related to theF fields are deleted. It is to be
noted that, in Eq.~2.6!, amongnk (nk8) of fk’s in the initial
~final! state,i k ( i k8) of fk’s are absorbed in~emitted from!
the i k ( i k8) vertices inS. The remainingnk2 i k (5nk82 i k8) of
fk’s are merely spectators, which reflects only on the sta
tical factor inA in Eq. ~3.14! below.

The expression forS* , the complex conjugate ofS, is
obtained by taking the complex conjugate of Eq.~2.6!, where
we make the substitution

i k→ j k i k8→ j k8 .

This applies also to the expression forS0* .

III. DERIVATION OF THE REACTION-RATE FORMULA

In this section, we take self-interacting neutral sca
theory. Generalization to the complex-scalar theory
straightforward~cf. Sec. VIII!. A comment on gauge theorie
is made at the end of this section. Fermion fields are d
with in Sec. IV.

A. Analysis of non-mode-overlapping diagrams,
i k1 i k81 j k1 j k8<2

In this subsection, for completeness, we briefly recap
late the heart of the analysis of@2,3#. Let us analyzeN in Eq.
~2.3b! with S in Eq. ~2.6!.

~a! $ i k5 i k85 j k5 j k850%. Let us take a diagram forW
5S* S. Let v1 and v2 be the vertices insideS, which are
connected by the propagator
s-

r
s

lt

-

1

VE2`

` dp0

2p

i

P21 i01
. ~3.1!

~b! $ i k5 i k851, j k5 j k850% and $ i 2k5 i 2k8 51, j 2k5 j 2k8
50%. We first deal with the case$ i k5 i k851, j k5 j k850%. We
take out the diagram forW5S* S, which is obtained fromW
above as follows. Remove the propagator~3.1!, connect
fn51;k , Eq.~2.6!, to the vertexv1 in S, and connectfn851;k
to v2. Here fn51;k @fn851;k# designates that, in Eq.~2.6!,
iK k,n51 @iK k,n851

* # operates onfn51 @fn851#. We pick out,
from Eq. ~2.6!,

Nii 8
nn85N11

nn5n. ~3.2!

Here and below, we suppress the suffixk, whenever no con-

fusion arises. InS* , Nj j 8
nn85N00

nn51. InsertingNj j 8
nn8Nii 8

nn85n
into Eq. ~2.3b! with Eq. ~2.3d!, we obtain

^n&5
1

ebp21
[nB~p!. ~3.3!

HerenB(p) is the Bose distribution function and the angul
brackets denote the statistical average

^Vn&[
(
n50

`

e2bnpVn

(
n50

`

e2bnp

.

Then, inN in Eq. ~2.3b!, the portion corresponding to Eq
~3.1! turns out to

1

2pV
nB~p!5

1

VE2`

` dp0

2p
u~p0!2pd~P2!nB~p!, ~3.4!

where1/(2pV) has come fromiK k,n851
* iK k,n51 in Eq. ~2.6!

with Eq. ~2.8!. It is to be noted thatZf
21/2 in K ’s, Eq. ~2.8!,

may be dealt with just as in vacuum theory, so that we ign
Zf

21/2 throughout this paper.
$ i 2k5 i 2k8 51, j 2k5 j 2k8 50%. The relative diagram to the

above diagram forW5S* S, same as aboveW except that
fn51;2k (fn851;2k) is connected to the vertexv2 (v1),
yields, in place of Eq.~3.4!,

1

VE2`

` dp0

2p
u~2p0!2pd~P2!nB~p!. ~3.5!

Adding Eqs.~3.1!, ~3.4!, and~3.5!, we extract

i

Pk
21 i01

12pnB~pk!d~Pk
2![ iD 11~Pk!

[ iD 11
~0!~Pk!1 iD 11

~T!~Pk!.

~3.6!

Here iD 11
(0) and iD 11

(T) stand, respectively, for the
T-independent part@the first term on the left-hand sid
~LHS!# and theT-dependent part~the second term! of iD 11.
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~c! $ i k5 j k50, i k85 j k851% and $ i 2k5 j 2k51, i 2k8 5 j 2k8
50%. In order to extract the contribution o
$ i k5 j k50, i k85 j k851%, we take a diagram forW5S* S in
N, Eq. ~2.3b!, wherefn851;k in S is connected to the verte
v1 in S andfn851;k in S* is connected to the vertexv2 in
S* .

We pick out from Eq.~2.6! and from the form ofS* ,

Nii 8
nn8Nj j 8

nn85N01
n,n11N01

n,n115n11.

Inserting into Eq.~2.3b! yields

11n→11nB~p!. ~3.7!

Then, inN in Eq. ~2.3b!, the portion under consideratio
takes the form

1

VE2`

` dp0

2p
u~p0!2p$11nB~p!%d~P2!. ~3.8!

$ i 2k5 j 2k51, i 2k8 5 j 2k8 50%. We consider the relative
diagram forW5S* S, which is the same as above except th
fn51;2k in S is connected to the vertexv1 andfn51;2k in
S* is connected to the vertexv2. In a similar manner as
above, we have

1

VE2`

` dp0

2p
u~2p0!2pnB~p!d~P2!. ~3.9!

Adding Eqs.~3.8! and ~3.9!, we extract

2p@u~pk0!1nB~pk!#d~Pk
2![ iD 21~Pk!. ~3.10!

~d! $ i k5 i k85 j k5 j k850%, $ i k5 i k850, j k5 j k851%, and
$ i 2k5 i 2k8 50, j 2k5 j 2k8 51%. In a similar manner as in~a!
and ~b! above, we extract

2 i

Pk
22 i01

12pnB~pk!d~Pk
2![ iD 22~Pk! ~3.11!

[ iD 22
~0!~Pk!1 iD 22

~T!~Pk!
ha
t

5@ iD 11~Pk!#* .

~e! $ i k5 j k51, i k85 j k850% and $ i 2k5 j 2k50, i 2k8 5 j 2k8
51%. In a similar manner as in~c! above, we extract

2p@u~2pk0!1nB~pk!#d~Pk
2![ iD 12~Pk!

5 iD 21~2Pk!. ~3.12!

The forms ofDi j (P) ( i , j 51,2) defined above are noth
ing but the thermal propagators in the Keldish variant of
RTF, which is defined on the time pathC, 2`→1`→
2`→2`2 ib, in a complex time plane. The above deriv
tion shows that the suffix 1 ofDi j stands for the vertex inS
and the suffix 2 stands for the vertex inS* . On the other
hand, in the RTF, the suffix 1 stands for physical or type
field and 2 stands for thermal-ghost or type-2 field.

Let us turn to identify the vertex factors. We take th
interaction Lagrangian density

Lint5gFf l /l ! 1lf l 8/l 8!. ~3.13!

Then, aFf l (f l 8) vertex inS receives the factorig ( il),
and then aFf l (f l 8) vertex in S* receives the factor
2 ig (2 il). This again is in accordance with the RT
where ig (2 ig) and il (2 il) are the factors which are
associated with, in respective order,Ff l and f l 8 vertices
of type-1 ~type-2! fields.

Repeating the above procedure, we finally obtain

FIG. 2. Diagrammatic representation of the thermal amplitudA
in Eq. ~3.14!.
1

VS )
j 51

n

2qjVDR5S )
i 51

m
1

2piV
D A~P1

~2! , . . . ,Pm
~2! ,Q1

~1! , . . . ,Qn
~1! ;P1

~1! , . . . ,Pm
~1! ,Q1

~2! , . . . ,Qn
~2!!. ~3.14!
HereA represents thethermal amplitudein the Keldish vari-
ant of the RTF for the forward process,

(
i 51

m

F1~Pi !1(
j 51

n

F2~Qj !→(
i 51

m

F2~Pi !1(
j 51

n

F1~Qj !,

whereF1 (F2) is a type-1~type-2! field. The thermal am-
plitudeA is diagrammed in Fig. 2. As we have assumed t
W5S* S represents the connected diagram@cf. above after
Eq. ~2.4!#, the diagram forA is connected.

Each loop momentumP in A accompanies
t

1

V(
pk

E dp0

2p
. ~3.15!

In the largeV limit the LHS of Eq.~3.14! becomes

1

VS )
j 51

n

2qjVDR→1

VS )
j 51

n

2Ej

d

dqj /~2p!3DR
and Eq.~3.15! becomes
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1

V(
pk

E dp0

2p
→E d4P

~2p!4
. ~3.16!

So far,D in Eq. ~2.3c! does not participate;D51 @cf. Eq.
~2.4!#. The role ofD will be discussed below.

B. Analysis of mode-overlapping diagrams,i k1 i k81 j k1 j k8>4

The above derivation of the thermal reaction-rate form
is not complete in that we have only considered the ca
where i k1 i k81 j k1 j k8<2. When generalized self-energ
parts are involved inW5S* S, i k1 i k81 j k1 j k8 >4. ~We call
the diagram withi k1 i k81 j k1 j k8>4 the mode-overlapping
diagram.! As mentioned in Sec. I, a complete analysis of t
classes of diagrams that leads to RTF diagrams includ
thermal propagators withn (>2) thermal self-energy inser
tions is still lacking. In this subsection, dealing with mod
overlapping diagrams, we shall complete the derivation
the thermal reaction-rate formula. We shall show at the sa
time that there is no finite-volume correction to the formu

For illustration of the procedure, we start with analyzi
the diagram~for W5S* S) with $ i k5 j k5 i k85 j k851%. Let us
focus our attention onf with modek. Both in S and inS* ,
there are one ‘‘absorber vertex’’ (v18 and v2 in Fig. 3! and
one ‘‘emitter vertex’’ (v1 andv28 in Fig. 3!.

From S* S, pick out the factor

N11
nn8N11

nn85n2,

where and below the suffix ‘‘k’’ is dropped whenever no
confusion arises. InN in Eq. ~2.3b!, we have, in place of Eq
~3.3!,

^n2&52nB
21nB

5nB~11nB!1nB
2 , ~3.17!

wherenB[nB(p).
The first term on the right-hand side~RHS! of Eq. ~3.17!

goes to

$2pu~p0!nB~p!d~P2!%$2pu~p0!@11nB~p!#d~P2!%

5 iD 12
~1 !~P!iD 21

~1 !~P!, ~3.18!

FIG. 3. Double-cut diagrams forW5S* S, which yields ~a!
iD 12

(1)(P) iD 21
(1)(P) and ~b! iD 11

(T)(1)(P) iD 22
(T)(1)(P). Here P

5(p,p).
a
es

g

f
e

.

whereD12/21
(6) (P)[u(6p0)D12/21(P). The ~part of! thermal

propagator iD 12
(1)(P) @iD 21

(1)(P)# is diagrammed in the
double-cut diagram forW5S* S, Fig. 3~a!, as the line that
connects the emitter vertexv28 (v1) with the absorber vertex
v18 (v2).

The second term of Eq.~3.17! goes to

@2pu~p0!nB~E!d~P2!#25 iD 11
~T!~1 !~P!iD 22

~T!~1 !~P!.
~3.19!

iD 11
(T)(1)(P) „iD 22

(T)(1)(P)… is diagrammed in the double-cu
diagram, Fig. 3~b!, as the line that connects the emitter ve
tex v1 (v28) with the absorber vertexv18 (v2). Thus, with
obvious notation, thenB(11nB) part in Eq. ~3.17!
‘‘supplies’’ the (11) portion of iD 12(P) iD 21(P), Fig.
3~a!, and the nB

2 part ‘‘supplies’’ the (11) part of
iD 11

(T)(P) iD 22
(T)(P) in Fig. 3~b!.

The (22) portion of iD 12(P) iD 21(P) emerges from
W5S* S, which is the same as Fig. 3 except that$ i 2k
5 j 2k5 i 2k8 5 j 2k8 51%. Now, v1 andv28 (v18 andv2) are ab-
sorber ~emitter! vertices. The (1,2) portion comes from
W5S* S with $ i k5 i 2k5 j k5 j 2k51%. This time,v1 andv18
~v2 andv28! are absorber~emitter! vertices. The (21) por-
tion comes from W5S* S with $ i k85 i 2k8 5 j k85 j 2k8 51%,
where the absorber~emitter! vertices arev2 andv28 (v1 and
v18). Adding all these contributions to the contribution~3.18!,
we obtain Eq.~3.18! with completeiD 12(P) iD 21(P). In a
similar manner, we can find a set of relative diagram
which, together with Eq. ~3.19!, yield the complete
iD 11(P) iD 22(P).

All the verticesv1, v18 , v2, and v28 ~cf. Fig. 3! are not
necessarily within one connected diagram. There is a
gram as depicted, e.g., in Fig. 4. Figure 4~a! @4~b!# contains
the factoriD 12

(1)iD 21
(1) @iD 11

(T)(1)iD 22
(T)(1)# in Eq. ~3.18! @Eq.

~3.19!#. Let us inspect Fig. 4~a!. As stated above after Eq
~2.4!, we are considering the case where$A,B%S and
$A,B%S* @$A%5$F(Pi)% and$B%5$F(Qj )%# are involved in
one connected part ofW5S* S. Then, allF ’s are in, e.g., the
bottom subdiagram in Fig. 4~a! @and then also in Fig. 4~b!#
and, in the middle subdiagram, only constituent particlesf ’s

FIG. 4. Double-cut diagrams forW5S* S, which yields ~a!
iD 12

(1)(P) iD 21
(1)(P) and ~b! iD 11

(T)(1)(P) iD 22
(T)(1)(P). Here P

5(p,p).
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of the heat bath participate.iD 21
(1)(P) is involved in the

middle subdiagram, which goes toD, while iD 12
(1)(P) is in-

volved in the bottom subdiagram, which goes toNcon . Thus,
Fig. 4~a! is in NconD with DÞ1 in Eq. ~2.5! with Eq. ~2.4!.
As a matter of fact,Ncon here is obtained fromW5S* S with
$ i k5 j k51, i k85 j k850% andD is obtained fromW05S0* S0

@cf. Eq. ~2.3c!# with $ i k5 j k50, i k85 j k851%. Thus, Fig. 4~a!
does contribute toR in Eq. ~2.3a! asR 5 Ncon , which
already appears at lower order of the perturbation series
above, it is straightforward to find a set of relative diagram
which, together with Fig. 4~a!, yields the complete
iD 12(P) iD 21(P). Similarly one can find a set of relativ
diagrams, which, together with Fig. 4~b!, yields the complete
iD 11(P) iD 22(P).

The relevant part of Fig. 4~b! and its ‘‘relatives’’ sits inA,
Eq. ~3.14!, as a (1,2) component of a thermal self-energ
inserted propagator. Thus,W5S* S with $ i k5 j k5 i k85 j k8
51% together with its ‘‘relatives’’ has turned out to take th
proper seat inA in Eq. ~3.14!.

It is straightforward to generalize the above argument t
generic diagram forW5S* S. Let us focus our attention on
modek. We analyzeN in Eq. ~2.3b!. Let fk be f in the
modek. In S in Eq. ~2.6!, i k fk’s in the initial state andi k8
fk’s in the final state participate directly in the reaction.
S* , j k ( j k8) fk’s in the initial ~final! state participate directly
i k2 i k85 j k2 j k85nk2nk8 . In S, there arei k ( i k8) ‘‘absorber
vertices’’ ~‘‘emitter vertices’’! and, inS* , there arej k ( j k8)
‘‘emitter vertices’’ ~‘‘absorber vertices’’!. ~Recall that, in the
case of Figs. 3 and 4,v18 andv2 are absorber vertices andv1

andv28 are emitter vertices.!
We pick out, fromW5S* S,

Nj j 8
nn8Nii 8

nn85
n!n8!

~n2 i !! ~n2 j !!

1

i ! i 8! j ! j 8!

5
1

i ! i 8! j ! j 8!
)
k50

i 821

~n1 i 82 i 2k!)
k50

j 21

~n2k!, ~3.20!

where and below the suffixk has been dropped. From th
r

s
,

-

a

form for S, Eq. ~2.6!, we see that the permutation offn8
(n851, . . . ,i k8) and the permutation offn (n51, . . . ,i k)
give the same diagram, and theni k! i k8! same diagrams
emerge. Theni k! i k8! j k! j k8! same diagrams emerge forW
5S* S, which eliminatesthe first factor on the RHS of Eq
~3.20!. In N in Eq. ~2.3b!, we have, in place of Eq.~3.3!,

K )
k50

i 821

~n1 i 82 i 2k!)
k50

j 21

~n2k!L [H j , j 8
i ,i 8 .

Here it is convenient to introduce a generating function

H j , j 8
i ,i 8 ,

f ~y,z![ (
n50

`

yn1 i 82 izne2xn ~x5bp5bpk!. ~3.21!

In fact, from Eq.~3.21!, we obtain

H j , j 8
i ,i 8 5

1

f

]2f

]yi 8]xj U
y5z51

. ~3.22!

From Eq.~3.22! with Eq. ~3.21!, it can be shown that

H j , j 8
i ,i 8 5 (

k50

min~ i 8, j 8! S i 8

k D j 8! ~ j 1 i 82k!!

~ j 82k!!
$nB~x!% j 1 i 82k. ~3.23!

Sincei 2 i 85 j 2 j 8, we can readily see thatH j , j 8
i ,i 8 , Eq. ~3.23!,

is symmetric under (i ,i 8) ↔ ( j , j 8). Then, without loss of
generality, we assumei> j .

In the Appendix, we show that
H j , j 8
i ,i 8 5 (

k50

min~ j , j 8!
i !

~ i 2 j 1k!!

i 8! j 8!

~ j 82k!!
S j

kD ~nB! i 1k~11nB! j 82k ~3.24!

5 (
k50

min~ j , j 8!

$Ci , j
k ~nB! j 2k%$Ci 8,i 2 j 1k

0
~nB! i 2 j 1k%$Cj 8,k

0
~nB!k%$Cj 82k, j 82k

0
~11nB! j 82k%. ~3.25!
HerenB[nB(p) and

Ci , j
k [

i !

~ i 2 j 1k!! S j

kD .

In Eq. ~3.25!, the factorCi , j
k may be identified as the numbe

of ways of connectingj 2k ~out of j ) emitter vertices inS*
to i absorber vertices inS, the factorCi 8,i 2 j 1k
0 to the number

of ways of connectingi 2 j 1k absorber vertices inS to i 8
emitter vertices inS, the factorCj 8,k

0 to the number of ways
of connectingk emitter vertices inS* to j 8 absorber vertices
in S* , and the factorCj 82k, j 82k

0 to the number of ways of
connectingj 82k absorber vertices inS* to i 82( i 2 j 1k)
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5 j 82k emitter vertices inS. Then, inR in Eqs.~2.3a!, we
have, in place of Eqs.~3.18! and ~3.19!,

(
k50

min~ j , j 8!

@Ci , j
k $ iD 12

~1 !~p!% j 2k#@Ci 8,i 2 j 1k
0 $ iD 11

~T!~1 !~p!% i 2 j 1k#

3@Cj 8,k
0 $ iD 22

~T!~1 !~p!%k#@Cj 82k, j 82k
0 $ iD 21

~1 !~p!% j 82k#.

~3.26!

This is just a portion of ‘‘right’’ thermal amplitude in the
RTF. Just as in the simple case$ i k5 j k5 i k85 j k851%, ana-
lyzed above, we can find a set of relative diagrams forW
5S* S, which, together with Eq.~3.26!, leads to Eq.~3.26!
with completeD ’s. Among the diagrams that accompany E
~3.26! with completeD ’s, are disconnected ones like Fi
4~a!. Such diagrams belong toN5NconD with DÞ1 @cf. Eq.
~2.5!#, and then do contribute toR in Eq. ~2.3a! asR 5
Ncon . Connected diagrams that accompany Eq.~3.26! with
completeD ’s take the proper seat inA in Eq. ~3.14!.

Conversely, for any diagram forA in Eq. ~3.14!, through
the analysis running in the opposite direction, one can id
tify a set of diagrams forW5S* S. The analysis made abov
is so general that no additional comment is necessary on
diagrams that lead toA, Eq. ~3.14!, which includes therma
propagator~s! with n (>2) thermal self-energy insertion.

This completes the derivation of the formula~3.14! for the
rate of a generic thermal reaction taking place in a heat b
of finite volume. Keeping in mind a suitable normalizatio
for incident fluxes ofF ’s, the formula~3.14! ‘‘smoothly’’
goes to the formula for the infinite-volume (V5`) system
@cf. Eq. ~3.16!# in the sense that there do not exist ex
contributions in Eq.~3.14! with V,`, which disappear in
the limit V→`. Thus, there is no finite-volume correction
the thermal reaction-rate formula~3.14!.

Here we make a comment on gauge theories. Choosi
physical gauge like the Coulomb gauge, the gauge bo
may be dealt with in a similar manner to the above sca
field case. When we adopt a covariant gauge, a Fadd
Popov~FP! ghost field comes on the stage. The first summ
tions in Eqs.~2.3b! and~2.3c! are carried out over the mode
of physical degrees of freedom. This can be implemented
inserting the projection operatorP onto the physical spac
on the left side ofr in Eqs.~2.3b! and~2.3c! and the sum is
taken over$nk

(a)% for all, unphysical as well as physica
modesa ’s. As far as the ensemble average of physical qu
tities like the reaction rate are concerned, the entire role oP
is to make@19# the antiperiodic boundary condition for F
ghost field the periodic one,fFP(t2 ib,x) 5 fFP(t,x), so
that the bare FP ghost propagator is the same in form to
scalar propagator. Keeping this fact in mind, we can ded
Eq. ~3.14!, whereA is evaluated using standard gauge-fie
and FP ghost thermal propagators in the covariant gaug

IV. DIRAC FERMION

We study the case of the Dirac fermion. The express
for S in Eq. ~2.6! with Eqs. ~2.7! and ~2.8! is changed ac-
cordingly. Letnk

(s) @n̄ k
(s)# (s56) be the number of mode-k

fermion @antifermion# with helicity s. The combinatorial
.

n-

he

th

a
on
r-
v-
-

y

-

he
e

n

factor N
i ki k8

nknk8 in Eq. ~2.6! is changed to

Nf5 )
s56

S N
i k
~s!i k

~s!8

nk
~s!nk

~s!8

N
ī k

~s! ī k
~s!8

n̄k
~s! n̄k

~s!8D
[ )

s56
F S nk

~s!8

i k
~s!8 D S nk

~s!

i k
~s! D S n̄ k

~s!8

ī k
~s!8D S n̄ k

~s!

ī k
~s!D G , ~4.1!

where nk
(s)2 i k

(s)5nk
(s)82 i k

(s)8 and n̄ k
(s)2 ī k

(s)5 n̄ k
(s)8

2 ī k
(s)8 . In Eqs.~2.3b! and ~2.3c!, the summations onnk

(s) ,

nk
(s)8 , n̄ k

(s) , and n̄ k
(s)8 are taken over 0 and 1. We assum

that the interaction Lagrangian is bilinear in fermion field
which include fermion fields constituting the heat bath a
possibly nonthermalized heavy fermion fields, the count
part of F ’s in Eq. ~2.6!.

A. Analysis of non-mode-overlapping diagrams

We proceed as in Sec. III A using the same notation.

~a! $ i k
(s)5 i k

(s)85 j k
(s)5 j k

(s)85 ī k
(s)5 ī k

(s)85 j̄ k
(s)5 j̄ k

(s)8

50% (s56). In place of Eq.~3.1!, we have

1

VE2`

` dp0

2p

iP”

P21 i01
, ~4.2!

which comes from the following contraction inS @cf. Eq.
~2.6!#:

^0uT@••• c̄ ~x1!c~x1!••• c̄ ~x2!c~x2!•••#u0&

5 iSF~x12x2!^0uT@••• c̄ ~x1!•••c~x2!•••#u0&.

~4.3!

Herec̄c ’s in Eq. ~4.3! come from the interaction Lagrangia
Lint .

~b! Fermion mode with$ i k
(s)5 i k

(s)851, j k
(s)5 j k

(s)850%
~s56! and its relative. We consider the positive-helici

~s51! fermion mode with$ i k
(1)5 i k

(1)851, j k
(1)5 j k

(1)850%.
In place of Eqs.~3.2! and~3.3!, we have, in respective orde

Nf5n2

and

^n2&5
1

ebp11
[nF~p!,

where nF(p) is the Fermi distribution function and̂Vn&
[(n50

1 e2bnpVn /(n50
1 e2bnp. We note that the contribution

corresponding to Eq.~4.3! above is@cf. Eq. ~2.6!#
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^0uT@•••cn851~y!c̄~x1!c~x1!••• c̄ ~x2!c~x2!c̄n51~z!•••#u0&

52 iSF~y2x2!iSF~x12z!^0uT@••• c̄ ~x1!•••c~x2!•••#u0&.
n

es

th
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rn
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h
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ing
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on-

ct
Then, the LHS of Eq.~3.4! is replaced by

2
1

2pV
nF~p!u~1 !~P! ū ~1 !~P!.

Adding the contribution from the negative-helicity fermio

mode with$ i k
(2)5 i k

(2)851, j k
(2)5 j k

(2)850%, we have

2
1

2pV
nF~p! (

s56
u~s!~P! ū ~s!~P!

52
1

VE2`

` dp0

2p
u~p0!2pd~P2!nF~p!P” . ~4.4!

Adding further the contribution from the antifermion mod

with $ ī 2k
(s)5 ī 2k

(s)851, j̄ 2k
(s)5 j̄ 2k

(s)850% (s56) to Eqs.
~4.2! and ~4.4!, we extract

F i

Pk
21 i01

22pnF~pk!d~Pk
2!GP” k

[ iS11~Pk!5 iS11
~0!~Pk!1 iS11

~T!~Pk!. ~4.5!

~c! Fermion mode with$ i k
(s)5 j k

(s)50, i k
(s)85 j k

(s)851%
(s56) and its relative. In place of Eq.~3.7!, we have

12nF~p!.

Then, Eq.~3.8! is replaced by

1

VE2`

` dp0

2p
u~p0!2p$12nF~p!%d~P2!P” .

Adding the contribution from the antifermion mode wi

$ ī 2k
(s)5 j̄ 2k

(s)51, ī 2k
(s)85 j̄ 2k

(s)850% (s56), we extract

2p@u~p0!2nF~pk!#d~Pk
2!P” k[ iS21~Pk!.

~d! Interchanging the roles ofS and S* in ~a! and ~b!
above, we obtain, in place of Eq.~3.11!,

F 2 i

Pk
22 i01

22pnF~pk!d~Pk
2!GP” k

[ iS22~Pk!5 iS22
~0!~Pk!1 iS22

~T!~Pk!.

~e! Fermion mode with$ i k
(s)5 j k

(s)51, i k
(s)85 j k

(s)850%
(s56) and its relative. The relevant statistical factor
nF(p). Let us show that the part under consideration tu
out to iS12(Pk). In place ofp0.0 portion of Eq.~3.12!, we
have 2pnF(pk)d(Pk

2)P” k which seems to be thep0.0 por-
tion of iS12(Pk). However, this is not the case. Within th
resultant reaction-rate formula, which is an amplitude in
s

e

RTF, the above factor 2pnF(pk)d(pk
2)P” k necessarily ap-

pears in association with a thermal fermion loop~see below
for details!. The thermal fermion loop carries an extra min
sign, so that we have, for the portion under consideration

iS12
~1 !~Pk!52p@2nF~pk!#d~Pk

2!P” k .

Adding the contribution from the antifermion mode wit

$ ī 2k
(s)5 j̄ 2k

(s)50, ī 2k
(s)85 j̄ 2k

(s)851% (s56), we extract

2p@u~2p0!2nF~pk!#P” kd~Pk
2![ iS12~Pk!. ~4.6!

In the process of deduction,iSjl ( j ,l 51,2) appears in
succession. At the final stage, sets of^W&5^S* S& turn out to
be thermal amplitudesA’s @cf. Eq. ~3.14!#, which includes
thermal loops of the fermionc. Out ofA’s, we take a ‘‘stan-
dard’’ As : Each fermion loop contains at most oneiS12.
~Note that the number ofiS21 in a fermion loop is equal to
the number ofiS12.! FromAs , we take two fermion loopsL1
and L2 and let iS21(P)PL1 and iS21(Q)PL2.
iS21(P) iS21(Q) comes, with obvious notation, fromS* S
5S* (p,q, . . . )S(p,q, . . . )[Ws , whereS is the S-matrix
element obtained using Feynman rules~in vacuum theory!.
The S-matrix element which is related toS(p,q, . . . )
through exchange p↔q is 2S(q,p, . . . ), where
S(q,p, . . . ) isobtained using Feynman rules. Then, we ha

Ws→W52S* ~p,q, . . . !S~q,p, . . . !, ~4.7!

which brings an extra minus sign into the correspond
thermal amplitudeA. Observe here that, through the abo
replacement ofS, L1 and L2 in As turn out to be a one
thermal fermion loopL in A. A thermal fermion loop carries
a minus sign. ThenL1 andL2 in As carries15(2)2 while
L in A carries2. In reducinĝ W& to A, the extra minus sign
in Eq. ~4.7! eliminates one2, being present inAs , and is left
with one2, which is interpreted as the minus sign associa
with L in A. What we have shown is thatA is a ‘‘right
thermal amplitude.’’

Repeating the above procedure for ‘‘parent’’As’s and
‘‘children’’ A’s, as ‘‘constructed’’ above, we can exhaust a
A’s that contributes to the reaction-rate formula, and see
they are ‘‘right’’ thermal amplitudes.

B. Analysis of mode-overlapping diagrams

Let us turn to analyze the mode-overlapping diagram
Noting thatnk

(s) , etc., and then alsoi k
(s) , etc., take two val-

ues 0 and 1, we shall exhaust all the mode-overlapping c
figurations.

~a! $ i k
(s)5 i k

(s)85 j k
(s)5 j k

(s)851% (s56) and its relatives.
From Eq. ~4.1!, Nf5(n(s))4 (s56), which leads to
^(n(s))4&5nF . Through by now familiar manner, we extra
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nF (
s56

@$2pu~p0!uj
~s!~P! ū j 8

~s!
~P!%

3$2pu~p0!ui
~s!~P! ū i 8

~s!
~P!%#. ~4.8!

ui
(s) and ū i 8

(s) @uj
(s) and ū j 8

(s)# in Eq. ~4.8! are attached to the
vertices inS @S* #.

The relatives, to be analyzed, of the above configura

are $ i k
(s)5 i k

(s)85 j k
(2s)5 j k

(2s)851% and $ i k
(s)5 i k

(2s)85 j k
(s)

5 j k
(2s)851% (s56). The former yields

nF
2 (

s56
@$2pu~p0!uj

~2s!~P! ū j 8
~2s!

~P!%

3$2pu~p0!ui
~s!~P! ū i 8

~s!
~P!%#, ~4.9!

and the latter yields

nF~12nF! (
s56

@$2pu~p0!uj
~2s!~P! ū j 8

~s!
~P!%

3$2pu~p0!ui
~s!~P! ū i 8

~2s!
~P!%#. ~4.10!

Adding Eqs.~4.8! and ~4.9!, we obtain

„iS22
~T!~1 !~P!…j j 8„iS11

~T!~1 !~P!…i i 8

1nF~12nF! (
s56

@$2pu~p0!uj
~s!~P! ū j 8

~s!
~P!%

3$2pu~p0!ui
~s!~P! ū i 8

~s!
~P!%#. ~4.11!

Adding Eqs.~4.10! and ~4.11!, we have

„iS22
~T!~1 !~Pk!…j j 8„iS11

~T!~1 !~Pk!…i i 8

2„iS12
~1 !~Pk!…i j 8„iS21

~1 !~Pk!…j 8 i . ~4.12!

Recalling the fact thati and i 8 ( j and j 8) attach to the ver-
tices in S (S* ), we see that Eq.~4.12! is just a portion of
‘‘right’’ thermal amplitude in the RTF. Adding an appropr
ate sets of relative diagrams, we can extract Eq.~4.12! with
completeS’s.

~b! $ i k
(1)5 i k

(2)5 j k
(1)5 j k

(2)51% and its relatives. Taking
care of the anticommutativity of fermion fields, we extrac

nF
2@2pu~p0!$ui 1

~1 !~P!ui 2
~2 !~P!2ui 2

~1 !~P!ui 1
~2 !~P!%#

3@2pu~p0!$ ū j 1

~1 !~P! ū j 2

~2 !~P!2 ū j 2

~1 !~P! ū j 1

~2 !~P!%#.

~4.13!

Here ui ’s ( ū j ’s! are attached to the vertices inS (S* ).
Simple manipulation yields

Eq. ~4.13!5„iS12
~1 !~Pk!…i 1 j 1

„iS12
~1 !~Pk!…i 2 j 2

2„iS12
~1 !~Pk!…i 1 j 2

„iS12
~1 !~Pk!…i 2 j 1

.

~4.14!
n

Adding appropriate relative diagrams, we can extract
~4.14! with completeS’s, which sits on the ‘‘right seat’’ in
thermal amplitude in the RTF@cf. Eq. ~3.14!#.

~c! $ i k
(1)5 i k

(2)5 j k
(1)5 j k

(2)51, i k
(s)85 j k

(s)851% (s56)
and its relatives. We extract

nF
2@2pu~p0!$ui 1

~1 !~P!ui 2
~2 !~P!2ui 2

~1 !~P!ui 1
~2 !~P!%#

3@2pu~p0!$ ū j 1

~1 !~P! ū j 2

~2 !~P!2 ū j 2

~1 !~P! ū j 1

~2 !~P!%#

3 (
s56

@2pu~p0! ū i 3
~s!~P!uj 3

~s!~P!#, ~4.15!

where the spinors with sufficesi 1, i 2, andi 3 ( j 1, j 2, and j 3)
are attached to the vertices inS (S* ).

We shall show that

Eq. ~4.15!5S j 1 j 2 j 3

i 1i 2i 3 ~P!2S j 1 j 2 j 3

i 2i 1i 3 ~P!, ~4.16!

where

S j 1 j 2 j 3

i 1i 2i 3 ~P!

[„iS12
~1 !~P!…i 1 j 1

„iS12
~1 !~P!…i 2 j 2

„iS21
~1 !~P!…j 3i 3

1„iS11
~T!~1 !~P!…i 1i 3

„iS12
~1 !~P!…i 2 j 2

„iS22
~T!~1 !~P!…j 3 j 1

1„iS12
~1 !~P!…i 1 j 1

„iS11
~T!~1 !~P!…i 2i 3

„iS22
~T!~1 !~P!…j 3 j 2

.

~4.17!

We shall prove this by running in the opposite direction; i.
starting from Eq.~4.16!, we derive Eq.~4.15!. The first term
on the RHS of Eq.~4.17! consists of two terms; one is pro
portional tonF

2 and one is proportional tonF
3 . The second

and third terms are proportional tonF
3 . Here „iS12

(1)(P)…i 1 j 1

may be written as@cf. Eq. ~4.4!#

„iS12
~1 !~P!…i 1 j 1

522pnF~p!d~P2! (
s56

ui 1
~s!~P! ū j 1

~s!~P!.

~4.18!

OtherS’s in Eq. ~4.17! may be expressed similarly. Straigh
forward but tedious manipulation shows that the ‘‘nF

3 part’’
of S j 1 j 2 j 3

i 1i 2i 3 2S j 1 j 2 j 3

i 2i 1i 3 vanishes. Then, in Eq.~4.16!, we are left

with ‘‘ nF
2 part,’’ which turns out to be Eq.~4.15!.

The same comment as above after Eq.~4.14! applies here.

~d! $ i k
(1)5 i k

(2)5 j k
(1)5 j k

(2)5 i k
(1)85 i k

(2)85 j k
(1)85 j k

(2)8

51% and its relatives. We extract

nF
2@2pu~p0!$ui 1

~1 !~P!ui 2
~2 !~P!2ui 1

~2 !~P!ui 2
~1 !~P!%#

3@2pu~p0!$ ū j 1

~1 !~P! ū j 2

~2 !~P!2 ū j 1

~2 !~P! ū j 2

~1 !~P!%#

3@2pu~p0!$ ū i 3
~1 !~P! ū i 4

~2 !~P!2 ū i 3
~2 !~P! ū i 4

~1 !~P!%#

3@2pu~p0!$uj 3

~1 !~P!uj 4

~2 !~P!2uj 3

~2 !~P!uj 4

~1 !~P!%#.

~4.19!
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As in the above case~c!, through straightforward but tedious calculation, we obtain

Eq. ~4.19!5S j 1 j 2 j 3 j 4

i 1i 2i 3i 4 ~P!2S j 1 j 2 j 3 j 4

i 2i 1i 3i 4 ~P!2S j 1 j 2 j 4 j 3

i 1i 2i 3i 4 ~P!1S j 1 j 2 j 4 j 3

i 2i 1i 3i 4 ~P!, ~4.20!

where

S j 1 j 2 j 3 j 4

i 1i 2i 3i 4 ~P![„iS12
~1 !~P!…i 1 j 1

„iS12
~1 !~P!…i 2 j 2

„iS21
~1 !~P!…j 3i 3

„iS21
~1 !~P!…j 4i 4

1„iS11
~T!~1 !~P!…i 1i 3

„iS12
~1 !~P!…i 2 j 2

„iS22
~T!~1 !~P!…j 3 j 1

„iS21
~1 !~P!…j 4i 4

1„iS12
~1 !~P!…i 1 j 1

„iS11
~T!~1 !~P!…i 2i 3

„iS22
~T!~1 !~P!…j 3 j 2

„iS21
~1 !~P!…j 4i 4

1„iS12
~1 !~P!…i 1 j 1

„iS21
~1 !~P!…j 3i 3

„iS11
~T!~1 !~P!…i 2i 4

„iS22
~T!~1 !~P!…j 4 j 2

1„iS11
~T!~1 !~P!…i 1i 4

„iS12
~1 !~P!…i 2 j 2

„iS21
~1 !~P!…j 3i 3

„iS22
~T!~1 !~P!…j 4 j 1

1„iS11
~T!~1 !~P!…i 1i 4

„iS11
~T!~1 !~P!…i 2i 3

„iS22
~T!~1 !~P!…j 4 j 1

„iS22
~T!~1 !~P!…j 3 j 2

.

a

-

o
in

on

a

c

ce

, i

o

r
ly

at
ow

tors

e

tri-

ing

ne
The same comment as above after Eq.~4.14! applies here.
There remains the following two configurations to be an

lyzed: ~e! $ i k
(1)85 i k

(2)85 j k
(1)85 j k

(2)851% and its relatives

and ~f! $ i k
(1)85 i k

(2)85 j k
(1)85 j k

(2)851, i k
(s)5 j k

(s)51% (s5
6) and its relatives. The case~e! @~f!# may be analyzed in a
similar manner as~b! @~c!# above and the ‘‘right combina
tion’’ of thermal propagators is extracted.

As in the scalar-field case, Sec. III B, there appear disc
nectedN ’s: N5NconD with DÞ1. Such cases are treated
the same manner as in the scalar-field case.

This completes the analysis of all mode-overlapping c
figurations.

Conversely, we take a diagram forA in the reaction-rate
formula @cf. Eq. ~3.14!#. The amplitudeA contains ‘‘vanish-
ing contributions,’’ whichshouldvanish. By this we mean
the contributions coming from the configurations, in which

least one ofi k
(s) , i k

(s)8 , j k
(s) , j k

(s)8 , ī k
(s) , ī k

(s)8 , j̄ k
(s) , j̄ k

(s)8

(s56) is equal to or greater than 2. Let us show that su
contributions really vanish. Suppose thatA contains

)
k51

3

„iS12~Rk!…i kj k
, ~4.21!

whereRk (k51,2,3) is the loop momentum@cf. Eq. ~3.15!#
and the suffixi k j k stands for the (i k , j k) element ofiS12 in
the 434 Dirac-matrix space. In the loop-momentum spa
there are ‘‘points,’’ whereR15R25R3[R5(r 0 ,r ). Adding
the contributions from the five relative diagrams, we have
place of Eq.~4.21!,

(
perm

s l 1l 2l 3

j 1 j 2 j 3)
k51

3

„iS12~R!…i kl k
, ~4.22!

where the summation is taken over all permutations
( j 1 j 2 j 3). Heres l 1l 2l 3

j 1 j 2 j 351 or 2 when (l 1l 2l 3) is an even or
-

n-

-

t

h

,

n

f

odd permutation of (j 1 j 2 j 3), which is a reflection of the
anticommutativity of fermion fields. We take the caser 0.0.
The ‘‘type-1 side’’ of Eq.~4.22! comes fromi k

(1)1 i k
(2)53,

and theni k
(1)>2 or i k

(2)>2. Then the contribution unde
considerationshouldvanish. In order to see that this is real
the case, using the expression~4.18!, we further extract, from
Eq. ~4.22!,

(
perm

s l 1l 2l 3

j 1 j 2 j 3)
k51

3 F (
sk56

ui k

~sk!
~R! ū l k

~sk!
~R!G . ~4.23!

Again straightforward but tedious manipulation shows th
Eq. ~4.23! in fact vanishes. In a similar manner, we can sh
that Eq.~4.22! with r 0,0 also vanishes.

We can also see that the product of thermal propaga
„iS11

(T)(R)…i 1 j 1
)k52

3
„iS12(R)…i kj k

and its relatives add up to

vanish. When the product ofn(>4) iS12(R) and/or
iS11

(T)(R) appears inA, pick out three of them and apply th
above argument to show that the contribution vanishes.

The above analysis applies to all other ‘‘vanishing con
butions,’’ which include)k51

3
„iS21(Rk)… with its relatives,

etc. This completes the proof of absence of the ‘‘vanish
contributions.’’

V. RATE OF REACTIONS BETWEEN THE CONSTITUENT
PARTICLES OF THE HEAT BATH

In the heat bath composed of scalar fieldsf ’s, taking
place is the reaction

f~p1!1•••1f~pm!1heat bath

→f~q1!1•••1f~qn!1anything, ~5.1!

wheref ’s are the constituent particle of the heat bath. O
can easily show that the reaction rate takes the form
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1

VS )
j 51

n

2qjVDR5S )
i 51

m
1

2piV
D S )

i 51

m

nB~pi !D S )
j 51

n

$11nB~qj !% D
3A~P1

~2! , . . . ,Pm
~2! ,Q1

~1! , . . . ,Qn
~1! ;P1

~1! , . . . ,Pm
~1! ,Q1

~2! , . . . ,Qn
~2!!, ~5.2!
h

it

on
r-

o-
n

se

-2

-

for

it-

,

i.e.,
-

whereA is the RTF amplitude for the forward process,

f1~P1!1•••1f1~Pm!1f2~Q1!1•••1f2~Qn!

→f2~P1!1•••1f2~Pm!1f1~Q1!1•••1f1~Qn!.

~5.3!

It is worth noting that Eq.~5.2! may be rewritten as

1

V
R5F)

i 51

m
1

VE dpi0

2p
u~pi0!iD 12~Pi !G

3F)
j 51

n
1

VE dqj 0

2p
u~qj 0!iD 21~Qj !GA

[Ãbubble. ~5.4!

The RHS,Ãbubble, is a no-leg thermal amplitude, in whic
no summation is taken overpi ( i 51, . . . ,m) and qj ( j
51, . . . ,n).

Generalization of the above result to the theories w
gauge bosons and/or fermions is straightforward.

VI. DETAILED BALANCE

In this section, on the basis of the generalized reacti
rate formula, Eq.~5.2!, we derive the detailed-balance fo
mula through diagrammatic analysis.

The purpose of this section is to show that the rate~5.2!
for the process~5.1! is equal to the rate for the inverse pr
cess to Eq.~5.1!. ~For the case of theories with gauge boso
and/or fermions, the same result is obtained.! This is well
known for the cases of decay and production proces
which correspond tom51, n50 andm50, n51, respec-
tively, in Eq. ~5.2!.

Take a diagram forA, Eq. ~5.2!, and letN1 andN2 be the
number of iD 21’s and iD 12’s, respectively, which is in-
volved in A,

)
j 51

N1

iD 21~Rj !)
k51

N2

iD 12~RN11k!. ~6.1!

By cutting all the linesiD 12’s and iD 21’s, we divideA into
one or several ‘‘type-1 islands’’ and one or several ‘‘type
islands.’’ Here, the type-1~type-2! island is a ‘‘maximal’’
amputatedsubdiagram ofA, which consists of only type-1
~type-2! vertices and of the propagatorsiD 11’s ( iD 22’s! con-
necting them. Then, a type-1~type-2! island includes no
type-2~type-1! vertex. A type-1~type-2! island is connected
by iD 21’s and/oriD 12’s to type-2~type-1! island~s!.

Take a type-1 island and we write its contribution~to A)

I1~Qj 1
, . . . ,Qj l 8

;Pi 1
, . . . ,Pi l

!. ~6.2!
h

-

s

s,

Here $Pi k
,1<k<l % is a subset of$Pi ,1< i<m% on the

LHS of Eq. ~5.3! and $Qj k
,1<k<l 8% is a subset of$Qj ,1

< j <n% on the RHS of Eq.~5.3!, where l , l 8 >0. This
type-1 island is connected bys1(>0) propagatorsiD 21’s
ands2(>0) propagatorsiD 12’s to one or several type-2 is
lands. With the help of the identity

D21~R!5ebr 0D12~R!, ~6.3!

and the momentum-conservation condition, we obtain,
iD ’s that are attached toI1,

)
j 51

s1

iD 21~Rj !)
k51

s2

iD 12~Rs11k!

5expS bF (
k51

l

pi k
2 (

k51

l 8

qj k
G D )

j 51

s1

iD 12~Rj !

3)
k51

s2

iD 21~Rs11k!. ~6.4!

We now take a type-2 island, whose contribution is wr
ten as

I2~Pi 1
, . . . ,Pi l

;Qj 1
, . . . ,Qj l 8

!, ~6.5!

where$Qj k
,1<k<l 8% is a subset of$Qj ,1< j <n% on the

LHS of Eq. ~5.3! and $Pi k
,1<k<l % is a subset of$Pi ,1

< i<m% on the RHS of Eq.~5.3!. Here l (l 8) is not nec-
essarily equal tol (l 8) in Eq. ~6.2!. In a similar manner as
above, in place of Eq.~6.4!, we have, with obvious notation

)
j 51

s18

iD 21~Rj !)
k51

s28

iD 12~Rs
181k!

5expS bF (
k51

l

pi k
2 (

k51

l 8

qj k
G D )

j 51

s18

iD 12~Rj !

3)
k51

s28

iD 21~Rs
181k!. ~6.6!

For all the islands, we make the above replacements;
the LHS of Eqs.~6.4! and~6.6! are replaced with the respec
tive RHS. Through this procedure, eachiD 21 and eachiD 12
in Eq. ~6.1! is ‘‘used’’ twice. Then we obtain

Eq. ~6.1!5expS bF (
j 51

m

pj2(
j 51

n

qj G D
3)

j 51

N1

iD 12~Rj !)
k51

N2

iD 21~RN11k!.
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Now we note that the propagators inI1’s (I2’s! are
iD 11’s ( iD 22’s!, and vertices inI1’s (I2’s! are il (2 il)
@cf. above after Eq.~3.13!#. Then, using the relation~3.11!,

@ iD 11~R!#* 5 iD 22~R!,

and @ il#* 5 2 il, we easily see that3
s

r

,
et
n

s,
uo
ar

s

@I1~Qj 1
, . . . ,Qj l 8

;Pi 1
, . . . ,Pi l

!#*

5I2~Qj 1
, . . . ,Qj l 8

;Pi 1
, . . . ,Pi l

!. ~6.7!

Here we note that, from the first-principles derivatio
above, it is obvious that, to any order of perturbation ser
the amplitudeA in Eq. ~5.2! is real, provided that all the
contributing diagrams are added. This fact, together with
~6.7!, shows that
A~P1
~2! , . . . ,Pm

~2! ,Q1
~1! , . . . ,Qn

~1! ;P1
~1! , . . . ,Pm

~1! ,Q1
~2! , . . . ,Qn

~2!!

5expS bF(
i 51

m

pi2(
j 51

n

qj G DA~Q1
~2! , . . . ,Qn

~2! ,P1
~1! , . . . ,Pm

~1! ;Q1
~1! , . . . ,Qn

~1! ,P1
~2! , . . . ,Pm

~2!!. ~6.8!
he
on-
tex.
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on-
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,
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en,
-

-

Eq.
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Using Eq.~6.3!, we obtain

ebpinB~pi !511nB~pi !,

e2bqj$11nB~qj !%5nB~qj !. ~6.9!

Substituting Eq.~6.8! into Eq. ~5.2! and using Eq.~6.9!, we
finally obtain

1

VS )
j 51

n

2qjVDR5
1

VS )
i 51

m

2piVDR8. ~6.10!

Here, the LHS is the rate of the thermal reaction~5.1! while
the RHS is the rate of its inverse process

f~q1!1•••1f~qn!1heat bath

→f~p1!1•••1f~pm!1anything.

Equation~6.10! is the desired detailed-balance formula.

VII. T˜0 LIMIT AND CUTKOSKY RULES

In this section, we show that, in the limitT→0, the
reaction-rate formula~3.14! reduces to the formula that i
obtained using the Cutkosky rules. Then, in the case ofm52
and n50, Eq. ~3.14! goes to the optical theorem and, fo
m52 andn51, Eq.~3.14! goes to the Mueller formula@20#
for inclusive reactions.

3A comment on QCD~QED! is in order. As to the 4-gluon vertex
when compared to the scalar theory, no new feature arises. LVi

( i 51,2) be the factor that is associated with a trigluon vertex i
type-i island.Vi is real andV252V1. Then, in place of Eq.~6.7!,
we haveI1* 5(2)NI2 with N the number of trigluon vertices inI1.
SinceA in Eq. ~5.2! contains an even number of trigluon vertice
Eq. ~6.8! holds unchanged. Let us turn to analyze the quark-gl
vertex. In a standard notation, the factor associated with a qu
gluon vertex in a type-1/2 island is6 iggmTa. Taking a trace, inA
in Eq. ~5.2!, of the products ofg matrices and of color matrice
yields a real function ofP’s andQ’s. Then, (ig)* 52 ig leads to
Eq. ~6.8!. To sum up, Eq.~6.8! holds for QCD~QEC!.
In the previous section, for a given diagram forA in Eq.
~3.14!, we have defined a set of ‘‘islands.’’ The islands in t
set may be classified into two groups. The first group c
sists of islands which contain at least one external ver
Here the external vertex is the vertex, in which or fro
which the external momentum flows. The second group c
sists of isolated islands which have no external vertex.

Let us take the scalar-field theory and investigate
zero-temperature limit (T→0) of the reaction-rate formula
Eq. ~3.14!. ~Again, generalization to other theories
straightforward.! In this limit, iD 21(P) → 2pu(p0)d(P2)
and iD 12(P) → 2pu(2p0)d(P2). It can readily be seen
that, due to momentum conservation,I1 andI2, Eqs. ~6.2!
and~6.5!, corresponding to the isolated islands vanish. Th
the nonvanishing amplitudeA contains only the islands be
longing to the first group. Thus, we obtain

A5)
j 51

s

@2pu~r j 0!d~Rj
2!#)

i 51

N1

I1~$P% i ;$Q% i !

3)
j 51

N2

I2~$Q% j ;$P% j !, ~7.1!

where$P% i , etc., denotes the subset ofP1 , . . . ,Pm , which
flow in the i th ‘‘type-1 island,’’ etc. $P% iø$Q% i and
$Q% jø$P% j are not empty. In Eq.~7.1!, the direction of all
the s momenta,R’s, each of which connects a ‘‘type-1 is
land’’ and a ‘‘type-2 island,’’ is taken to flow from the
‘‘type-1 island’’ to the ‘‘type-2 island.’’ As noted before, the
diagram representingA in Eq. ~7.1! is connected.

The RHS of Eq.~7.1! is just the quantity which is ob-
tained by applying the Cutkosky rules@11# ~in vacuum
theory! to the present case. As a special case, consider
~7.1! with m52 andn50. Since the particle represented b
f is stable atT50, in Eq.~7.1!, N1 5 N2 51 and$P% i 51 5
$P% j 51 5 $P1 ,P2%. Thus Eq.~7.1! is the optical theorem in
vacuum theory. Similarly, form52 andn>1, Eq. ~7.1! is
just the~generalized! Mueller formula@20# for the inclusive
process,

F~p1!1F~p2!→F~q1!1•••1F~qn!1anything.
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VIII. THERMAL CUTTING RULES

In view of the controversy mentioned in Sec. I, we surv
in this section the discussions made in the past for the t
mal Cutkosky formula and thermal cutting rules. Althou
no new result is involved here, it is worth pigeonholing t
issue. The Cutkosky formula@11# in vacuum theory is the
formula that relates the imaginary or absorptive part of
amplitudeA to the sum of cut amplitudes(cutsB

(cut). For
simplicity, in this section, we take a self-interacting compl
scalar-field theory. Generalization to other theories
straightforward.B(cut)’s are constructed fromA by so cutting
the propagatorsiD ’s in A thatA is divided intoAS andAS* ,
which are amputated. HereAS is a part~s! of A andAS* is the
complex conjugate of the amplitude that is obtained fromA
by removing AS and iD ’s. Cutting the propagatoriD (P)
makesiD (P),

2pu~6p0!d~P22m2!, ~8.1!

where the upper~lower! sign is taken whenP flows from a
vertex inAS (AS* ) to a vertex inAS* (AS). When the Cut-
kosky formula is applied to a forward amplitudeA, we see
that ImA is proportional to the corresponding reaction ra
where cutted propagators represent the~on-shell! particles in
the final state.

Kobes and Semenoff~KS! @12# were the first who gener
alized the Cutkosky formula to the case of the RTF. Name
they obtained the formula that relates the imaginary part
thermal amplitude to the sum of ‘‘circled amplitudes,’’ ea
of which corresponds to the ‘‘circled’’ diagram that includ
the so-called circled and uncircled vertices. The first pape
@12# discusses general thermal amplitudes and the sec
one discusses physical amplitudes, i.e., amplitudes with
external vertices being of type 1. In the sequel, unless ot
wise stated, we shall restrict our concern to the physical
plitudes. The thermal Cutkosky formula deduced in@12# may
be written in terms of thermal amplitudes in the RTF:

Im@ iG~P1
~1! , . . . ,Pn

~1!!#

52
1

2 (
i 1 , . . . ,i n51

2

8 G~P1
~ i 1! , . . . ,Pn

~ i n!
!. ~8.2!

HereG(P1
( i 1) , . . . ,Pn

( i n)) stands for the~amputated! thermal
amplitude with type-i j ( j 51, . . . ,n) external vertices in
which or from which Pj flows. In Eq. ~8.2!, the sum(8
stands for taking summation excludingi 15•••5 i n51 and
i 15•••5 i n52. Note that, as a matter of course, inG, the
sum is taken over the types~1 and 2! for all internal vertices.

KS then generalized the notion of cuttings. Comparison
iD 21(P), Eq. ~3.10!, and iD 12(P)5 iD 21(2P), Eq. ~3.12!,
with Eq. ~8.1! leads them to regardiD 12 andiD 21 in G’s on
the RHS of Eq.~8.2! ascut propagators. Through cuttings,
eachG is divided into several pieces. KS then introduced
notion ofcuttableanduncuttable diagrams. The former dia-
gram is the diagram that does not include isolated islan~s!
~cf. Sec. VII! while the latter diagram includes at least o
isolated island. Note that, in the case of vacuum theory,
the diagrams are cuttable ones, which motivates KS to in
duce the above definition. Thus, the terminology ‘‘unc
r-

n

e

,

,
a

of
nd
ll
r-
-

f

a

ll
o-
-

table’’ sounded quite natural at the time of its introductio
In spite of the fact that this is a matter of definition, th
existence ofuncuttable diagramshas aroused controversy.

Kobes analyzed@13# retarded Green functions in terms o
circled diagrams. As to the usage of ‘‘cuttings,’’ ‘‘cuttable,
and ‘‘uncuttable,’’ he followed@12#.

Jeon analyzed@14# two-point functions in imaginary-time
formalism. Continuing to the real energies, he discus
thermal cutting rules. His definition of cutting is the same
in @12#; i.e., the propagatorsiD 12 and iD 21 are regarded as
cut propagators. No mention was made on the cuttable
uncuttable diagrams, but no doubt that he supposed all
grams to be cuttable.

Bedeque, Das, and Naik analyzed@15# the imaginary part
of thermal amplitudes~physical and ‘‘unphysical’’! from the
same starting formula as in@12#, but with a different route.
Recall that the propagatoriD jk ( j ,k51,2) connects a type-j
vertex with a type-k vertex.iD jk is defined to be acut propa-
gator if and only if one of the type-j and type-k vertices is of
circled and another is of uncircled~cf. the first paper of@12#!.
They then showed that the imaginary part of a thermal a
plitude is written as the sum ofcuttable diagrams, in the
sense of KS stated above. In each cuttable diagram, a
nected subdiagram~s! at one side of the cut line contains on
uncircled vertices~external and internal! while a connected
subdiagram~s! at the other side of the cut line contains on
circled vertices. As was pointed out in@16#, however, each
connected part contains in general propagators that are
portional to the on-shell factord(P22m2). Of course, in the
zero-temperature limit, their formula as well as KS’s o
reduce to the Cutkosky formula.

Gelis extensively analyzed@16# thermal cutting rules for
various formulations of real-time thermal field theory. As
the usage of ‘‘cuttings,’’ ‘‘cuttable,’’ and ‘‘uncuttable,’’ he
followed @12#.

Cutting rules for thermal reaction-rate formula are d
cussed in@2–7#. Note that, as mentioned above, in vacuu
theory, the cut propagator, Eq.~8.1!, corresponds to the~on-
shell! final-state particle. The thermal cutting rules intr
duced in@2–7# are a generalization of this fact. As we hav
seen above,iG12 ~which collectively denotesiD 12 andiS12)
( iG21) consists of two parts; one comes from the parti
~antiparticle! in the initial state and the other comes from t
antiparticle ~particle! in the final state, whileiG11

(T) and
iG22

(T) , the T-dependent parts ofiG11 and iG22, come from
the interplay of the initial-state~anti!particle and the final-
state~anti!particle. We recall that each of the thermal prop
gators iG11 and iG22 consists of two parts, theT50 part
iG (0) and theT-dependent partiG (T). Then,A in Eq. ~3.14!
or ~5.2! is divided into 2N contributions, whereN is the
number ofiG11’s and iG22’s. The above observation lead
us to regardiG12, iG21, iG11

(T) , and iG22
(T) as thecut propa-

gators.
Through the applications of the above cutting rules,A is

divided into several subparts. Each subpart contains o
type-1 vertices or only type-2 vertices. The former~latter!
belongs toS (S* ) in ^S* S&. The cuttings work as follows
The line that cutiG12(P) with p0.0 (p0,0) is the initial-
state particle~final-state antiparticle! cut line. The line that
cut iG21(P) with p0.0 (p0,0) is the final-state particle
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~initial-state antiparticle! cut line. The line that cut
iG11

(T)(P) @iG22
(T)(P)# is the initial-state cut lineand the final-

state cut line inS (S* ) and, inS* (S), one extra spectato
particle with P is, for the line that cutiG11

(T)(P) with p0

.0 (p0,0) is the initial-state particle~antiparticle! cut line
and the final-state particle~antiparticle! cut line. For the cut
line on iG22

(T)(P), a similar statement holds.
It is quite obvious that the ‘‘cutting rules’’ introduce

above for thermal reaction rates may be used for gen
thermal amplitudes evaluated in the Keldish variant of
RTF.

Finally, it is worth mentioning that it can easily be se
from Eqs.~3.14! and ~8.2! that the RHS of Eq.~8.2!, which
represents the imaginary part of a physical amplitude,
sum of various reaction rates times corresponding kinem
cal factors.
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APPENDIX: PROOF OF EQ. „3.24…

Here we prove the identity Eq.~3.24!. We expand the
RHS of Eq.~3.24! in powers ofnB(x)([j) to obtain

(
k50

min~ j , j 8!
i !

~ i 2 j 1k!!

i 8! j 8!

~ j 82k!!
S j

kD j i 1k~11j! j 82k

5 (
k50

min~ j , j 8!

(
l 50

j 82k
i !

~ i 2 j 1k!!

3
i 8!

l ! ~ j 82k2l !!

j ! j 8!

k! ~ j 2k!!
j i 1 j 82l

5 (
k50

j 8

(
l 50

min~ j 82k, j !
i !

~ i 2 j 1l !!

j !

l ! ~ j 2l !!

3
i 8! j 8!

k! ~ j 82k2l !!
j j 1 i 82k, ~A1!

wherei> j . Comparing Eq.~A1! with Eq. ~3.23!, we see that
it is sufficient to show that

kF j , j 8
i ,i 8 5kG j , j 8

i ,i 8 , ~A2!
.

.

al
e

a
ti-

where

kF j , j 8
i ,i 8 [ (

l 50

min~ j , j 82k!
i ! j !

l ! ~ i 2 j 1l !! ~ j 82k2l !! ~ j 2l !!
,

~A3!

kG j , j 8
i ,i 8 [

~ j 1 i 82k!!

~ i 82k!! ~ j 82k!!
. ~A4!

Here we define two functions:

F j , j 8
i ,i 8 ~x![(

k50

j 8

xj 82k kF j , j 8
i ,i 8 , ~A5!

Gj , j 8
i ,i 8 ~x![(

k50

j 8

xj 82k kG j , j 8
i ,i 8 . ~A6!

It can easily be shown thatF ’s and G’s satisfy the same
differential equation:

d

dx
F j , j 8

i ,i 8 ~x!5F j , j 821
i ,i 821

~x!1 jF j 21, j 821
i ,i 8 ~x!, ~A7!

d

dx
Gj , j 8

i ,i 8 ~x!5Gj , j 821
i ,i 821

~x!1 jG j 21, j 821
i ,i 8 ~x!.

~A8!

From Eqs.~A5!, ~A6! with Eqs.~A3! and ~A4!, we obtain

F j , j 8
i ,i 8 ~0!5Gj , j 8

i ,i 8 ~0!5
i !

~ i 2 j !!
, ~A9!

F j ,0
i ,i 8~x!5Gj ,0

i ,i 8~x!5
i !

~ i 2 j !!
. ~A10!

We see from Eq.~A7! @Eq. ~A8!# that F j , j 8
i ,i 8 (x) @Gj , j 8

i ,i 8 (x)#

may be obtained fromF ĵ ,0
i , î 8(x) @Gĵ ,0

i , î 8(x)# in Eq. ~A10! with

î 8< i 8, ĵ < j , and F ĵ , ĵ 8
i , î 8 (0) @Gĵ , ĵ 8

i , î 8 (0)# in Eq. ~A9! with î 8

< i 8, ĵ < j , ĵ 8< j 8. SinceF ’s andG’s subject to the same se
of equations~A7!–~A10!, we conclude that

F j , j 8
i ,i 8 ~x!5Gj , j 8

i ,i 8 ~x!,

which proves Eq.~A2!. Q.E.D.
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