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Explicit quark-hadron duality in heavy-light meson weak decays in the 't Hooft model
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We compute the nonleptonic weak decay width of a heavy-light mesor-hspacetime dimensions with
a large number of QCD coloishe 't Hooft mode] as a function of the heavy quark mass. In this limit, QCD
is exactly soluble, and decay modes are dominated by two-particle final states. We compare the results to the
tree-level partonic decay width of the heavy quark in order to test quark-hadron duality in this universe. We
find that this duality is surprisingly well satisfied in the heavy quark limit, in that the difference between the
sum of exclusive partial widths and the tree-level partonic width approaches a constdnt-as and the
deviation is well-fit by a small M correction. We comment on the meaning of this conclusion and its
implications for the use of quark-hadron duality in hadronic phy$i86556-282(98)00503-7

PACS numbgs): 11.10.Kk, 11.15.Pg, 13.25k

[. INTRODUCTION composed of confined quarks, realizes asymptotic freedom
trivially, and inherits all the phenomenological consequences
Quark-hadron duality, in its most general form, is the no-of largeN. QCD [7] common to our universe, such as domi-
tion that certain rates for processes involving hadrons can beance of scattering amplitudes with the minimum number of
computed simply as the underlying partonic rdtes Dual- meson states, Okubo-Zweig-lizuk®ZI) suppression, the
ity allows us to compute many quantities which would oth-absence of exotics, and others. For processes with an OPE,
erwise be hopelessly difficult. One common application ofduality in the 't Hooft model has been checked explicitly
duality is to the nonleptonic weak decays of heavy hadrond.8,9]. However, little is known about duality for non-OPE
The lore is that, for large enough heavy quark mass, dualitprocesses. The reason is that, in precisely those cases for
holds in the computation of the hadronic width. which an OPE is lacking, there is no simple analytical
Several discrepancies between theory and experiment thadethod of verifying duality, and one must resort to argu-
have recently received attention rely on quark-hadron dualments based on numerical solutions.
ity. Among them are the significant difference between life- In this paper we compute the hadronic weak decay width
times of beauty baryons and mes$8§ the overestimates of I'(M) of heavy “B” mesons in the 't Hooft model as a
the B-meson semileptonic branching fractif®] and the av-  function of the heavy b” quark massM; the meaning of
erage number of charm quarks ggidecay[4]. Because the “heavy” is made precise in Sec. Il. We compare this to the
limit of experimental knowledge about nonleptoalecays partonic (perturbativgé decay width of the heavy quark,
is rapidly expanding, such issues are of great topical interest.,,{M), which we compute analytically. For largd we
But when is duality valid? In many cases duality follows find that bothl,, (M) andI’(M) are essentially linear iM.
from the operator product expansi@@PE). This is the case, The difference between the two appears to be asymptotically
for example, for the rate o&*e — hadrons and for the constant and small, indicating a smalMLkorrection to the
semileptonic decay rates of heavy hadrons. However, dualitpaive duality limit. AsM increases, new hadronic decay
is applied in many other cases, such as in hadronic widths afhannels become accessible, and at each of these thresholds
heavy hadrons, for which there is no OPE. there is a singular peak ifi(M). AveragingI'(M) over a
Referencd5] proposes an OPE-like expansion in inverseregion in M that includes many resonances removes these
powers of the heavy quark malk, which not only incorpo-  peaks but does not change the leading dependendd .on
rates quark-hadron duality as the lowest term in the expan©ur conclusion is that duality holds to leading order in M,
sion, but also organizes the corrections by inverse powers djut unlike the OPE-like expansion of REf], appears to
M. A main result of that work is the claim that corrections havel/M corrections.
first appear at order 2. The question above can be refor-  In Ref.[10] it is argued that there is strong experimental
mulated as, “Is an OPE-like expansion like that of R&|  evidence for the failure of duality. What is meant there is that
valid?” the pattern of corrections in powers oM /of Ref.[5] is not
To investigate the validity of duality it is convenient to supported by experiment. This agrees with our result, which
work with a soluble model of strong interactions formulatedindicates a violation to duality at first order in theML/ex-
as a full-fledged field theory, so that one may test dualitypansion of Ref[5].
both in cases with and without an OPE. The 't Hooft model ~While we cannot carry over our quantitative results to the
[6], largeN. QCD in 1+1 dimensions, is a good laboratory physical world of non-planar QCD in-81 dimensions, we
for this purpose. It contains an infinite spectrum of mesonselieve that there is nothing intrinsic te-ll dimensions that
would make duality work differently than in-31. The op-
erator analysis that leads to theMl/expansion proceeds in
*Electronic address: bgrinstein@ucsd.edu 1+1 much as in 3-1.
"Electronic address: rlebed@ucsd.edu The paper is organized as follows. In Sec. Il, we briefly
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review the 't Hooft model and a standard method for itswhereA,, is the SUN;) gauge field with field strength ,,
numerical solution. Section Ill compares features afll defined in the usual way, angl, is a Dirac fermion of bare
dimensions, such as the nature of phase space and spin,itassm, and flavora. The bare couplingy not only has
those in 3-1 dimensions. In Sec. IV, we present the alge-dimensions of mass in two dimensions, but scales gbld/
braic results of the inclusive parton-level calculation ofjn the largeN, limit.

widths. In Sec. V, we present the results of the exclusive The renormalization of the fermion propagator is excep-

calculation in the 't Hooft model. Section VI gives our nu- tionally simple. The only modification is a shift of the bare
merical results and a discussion of their implications, andermion mass by

Sec. VIl concludes.

There are other nonperturbative questions of phenomeno- m2—m2 g=m2—g?N /2. (2.2
logical interest in the area of hadron® weak decays for '
which there is an established lore. One can test any of thedgonsequently, it makes good sense to describe masses in
hypotheses in the 't Hooft model. Of particular interest is theunits of gy/N. /27, which is finite in theN,—o limit. The
notion that contributions to decay amplitudes from differentdividing line of m2=1 (m§’R=O) in these units acts as a
underlying quark diagram topologies contribute with distinctboundary between heavy and light quarks, as is numerically
weights, which can very much suppress the amplitude from gerified in Refs.[12—14; for example, in[13] it was seen
given topology. For example, the “annihilation” diagrams, that the meson decay constant approaches the standard
in which the valence quark-antiquark pair annihilate throughasymptotic behaviof go 1M for M=5 or so. It follows
a weak current, are supposedly suppressed relative thfiatg,/N_ /27 in 1+1 assumes a role analogousigcp in
“spectator” diagrams by a factor df; /Mg, wherefgisthe 311,

B decay constant anip its mass. We will address this  Quantization of the theory is most convenient in axial

question in a separate publicatipfi]. light-cone gauge/_=0), where light cone coordinates are
defined by
Il. THE 't HOOFT MODEL
, , . ) (x0+x1)
The success of 't Hooft's method of solving a strongly xt=yg o= 7 2.3
coupled theory rests on two assumptions that considerably N J2

simplify the problem. First, one works in the limit of large

N., in which it is readily seeri7] that diagrams including and analogously for other vectors. The chief advantage of
either internal fermion-antifermion loops or the crossing ofthis choice is that only one component of the Dirac algebra
gluon lines at points other than their vertices are suppressddy—) survives, thus effectively eliminating the need to per-
by combinatorial powers oN. compared to those that do form Dirac traces.

not. These simple topological consequences of the theory Upon solving for the Green function of a fermion-
lead directly to the predictive power of large. . Second, in  antifermion pair with bare masséd andm in this model,
1+1 dimensions one may use the gauge freedom of QCD tone obtains the bound-state eigenvalue equation

choose a linear gauge in which some chosen component of

the gluon field vanishes, and only the sole orthogonal com- 2 Mm
ponent survives. Then, since the gluon self-coupling term in Hadn(X)=
the field strength appears as a commutator of field compo-

nents, this term vanishes in the gauge we have selected. Con- o um

sequently, gluon self-coupling vanishes in this gauge, and so N fo dydn " (y)Pr (y—x)z’ (2.4
in combination with largeN., gluon lines are not permitted

to cross each other, even at vertices. Moreover, ghosts aignich is known as the 't Hooft equatiof]. Here thenth

absent in linear gauges. It follows that the only diagrams that . Mm . .
must be summed are “rainbow” diagrams for the quarkelgenstategsn is the meson wave function, theh eigen-

mass and wave function renormalization, and “ladder” dia-Value wq is its squared mass, andis the fraction of the
grams for quark-antiquark interactiof).

meson momentum’s minus compondmthich acts, in the
In 1+1 dimensions confinement is realized trivially, since

2

M3  ma —
_ R _~ Mm
X +1—x n (%)

light-cone quantization, as a canonical spatial momentum

the lowest-order inter-quark potential obtained by taking theeomponent carried by quarkM. We will always label the
Fourier transform of the gluon propagai@vhich gives rise  9round statéthe lowest mass mesphy n=0. The principal

to the 1f Coulomb interaction in four dimensiongrows yalue prescr_lp'tlon serves tg regulate' the integrand singular-
linearly with the inter-quark separation. Although lowest- 1Y, Which originates in the infrared divergence of the gluon
order color confinement is an automatic consequence in twBroPagator. This equation has a discrete spectrum of eigen-

dimensions, it is a highly nontrivial fact that the phenomenonlues that increase approximately linearly for largeand
persists in the all-orders Green function solutions of the *the wave functions vanish at the boundanes0 and 1, with

Hooft model. the asymptotic behavicxpr’i"m(x)—mBM asx—0, where
To be specific, the Lagrangian of QCD, as in four dimen- )
sions, is Mg+ 7By cotr By =0, (2.5

1 — and similarly asx— 1, exchangingn for M. 8y, is a mono-
=—— m “(ig,— - . . ’ : } - PM
£ 4TrF'“’F Ea: Yal¥(10,= AL = Ma) Ya, tonic function ofM? (or M3), increasing from zero to one as
(2.) M?=0—.
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Also useful in this description is the full meson-quark possesses some unigue properties that must be remembered
vertexCD,"]"m, which is given by when comparing to the univgrse of four dimensions. There-
fore, the 't Hooft model may in no way be construed as any
_ 1 o sort of limiting case of real QCD, and any direct compari-
cpr"]/'m(z):f dyq&,"{'m(y)Pr—, (2.6) sons are necessarily qualitative. In other words, we espouse
0 (y—2)? the opinion that only certain conclusions based upon our
numerical studies of 't Hooft model solutions, not the nu-
for all complex values of. Indeed, except foze [0,1], the  merical results themselves, possess any validity -l 2i-

principal value prescription is unnecessary. mensions.
The decay constarft, for mesonn may be computed in The most obvious signal that+ll and 3+1 physics are
this framework. It is given by vastly different is that the former does not possess the quan-
tity of angular momentum, except in the residual form of
fn=Cnl\m, (2.7 parity! This is clear since finite rotations do not exist when

there is only one spatial direction, and only the improper
“rotation” taking x'— —x*, namely parity, remains. It fol-
1 lows that 't Hooft model eigenstates,(x) do not possess
anf dXn(X). (2.8)  spin, but only intrinsic parity { 1)"*1 [8]. All of the inter-
0 esting phenomenology provided by approximate spin sym-
] ] ] ] ] metries in our world(i.e., the smallness of hyperfine split-
Strictly speaking, the right-hand sidBHS) of (2.7) is also  ings, relations between different helicity amplitudes, Jetc.
multiplied by a factoryN,, but we may absorb this factor are therefore meaningless in two dimensions.
into the normalization of other factors by which it is multi- The lack of transverse directions has important conse-
plled in the full amplitudeS; what is important is that the final quences for Coup"ngs in41 dimensions_ As mentioned in
physical amplitude has the corrddt dependence at leading the previous section, gauge couplings have dimensions of
order. As each new quantity is calculated in this paper, Wenass, and so such theories are super-renormalizable. More-
will point out the leading dependence dhy, but as a rule  gyer, “vector” gauge bosons exist int1l only through their
we suppress the explicit factors for ease of notation. The "fongitudinal modes. There are also different Lorentz invari-
Hooft eigenfunctionsp,,, for example, ar@(NQ) solutions  ants in 11, since the Levi-Civita tensce”” has only two
of Eq. (2.4), and soc, is alsoO(NY). On the other hand, indices. The effects of these constraints are implicit in all the
light meson decay constants have the well-known behavioresults to follow.

where

f /N, and the full result Eq(2.7), including the N, The amount of Lorentz-invariant phase space is of course
may be verified by direct calculation. expected to vary between different spacetime dimendipns

The 't Hooft model wave functiong, and®,, are calcu- since the measure of the phase space integrals is the
lated by means of a standard numerical method called thB-dimensional volume element. However, the difference be-
Multhopp techniqud 12,15, in which the integral equation tween X1 and 3+1 is particularly dramatic. To be specific,
is converted to an equivalent infinite-dimensional eigenvaluén D spacetime dimensions, the differential width for-a:2
system, which in turn may be truncated after a desired numdecay in terms of the solid angle of either final-state particle
ber of modes to give approximate wave function solutionsis given by
Since the relevant formulas for unequal-mass mesons do not

appear elsewhere, we present a summary in Appendix A. dr = p|P~3 |

Whereas the eigenfunctions™ describe the complete (27)P~28M?2
set of homogeneous solutions for the two-point Green func- . . . )
tion, the solution for 1>2 meson decayghe leading decay Where[p| is the spatial momentum of either final-state par-
channels in largd\,) requires also three-point Green func- t|cle_ in the_ rest_frame of_the initial particle of mabk, and_
tions. Remarkably, the requisite expressions may be writtef”! 1S the invariant amplitude of the process. N?(’)te particu-
entirely in terms of triple overlap integrals of the functiops @1y the behavior of the phase space fadpr® * as the
and ® [9,14], without bare quark model contact-type inter- |p_|=0 thrgshold IS approached: -FDr=4, the differential
actions. In physical terms, this means that the three vertice¥dth vanishes with the decreasing amount of phase space
of the diagram for the three-point Green function are reso@vailable, but forb =2, the differential width actually be-
nance dominated, without contact contributions. NevertheSOMeS Singulatbarring an accidental zero in the amplitude
less, for the diagrams computed, it will prove to be compu-M)- It follows t.hat tvvp—parUcIe decay modes near threshold
tationally convenient to describe part of the full amplitude in@€ €nhanced in-i1, in stark contrast to81.
terms of these contact terms. We exhibit these explicit ex-
pressions in Sec. V, but for the moment it is only important
to note that such expressions indeed exist. Because of the small number of integrations necessary to

compute phase space int1 dimensions, it is possible to

M|2dQ, (3.1

IV. THE PARTONIC CALCULATION

Ill. PECULIARITIES OF 1 +1 DIMENSIONS

Despite one’s hopes that exact calculations in the 't Hooft 1also, spinors retain the property of chirality, sinceya matrix

model may lend insight into real+3l strong interaction siill exists in 1+1, signaling two inequivalent representations of the
physics, we emphasize that the two-dimensional universeorentz group.
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perform the partonic integrals analytically in all cases of in- 5
terest to us. In the -3 parton decay, one starts with<2

=6 final-state momentum components, of which 2 are fixed |
by energy-momentum conservation and 3 are fixed by the O
2

on-shell conditions of the final-state partons; this leaves only

one nontrivial integration, which can be done explicfly.
Her.e we consider th.e case of an initial quark of miss FIG. 1. Parton decay diagram for the inclusive decay. Of inter-

decaying into three distinguishable equal-mass quarks Qfg; are the parton labels, as used in the text.

massm= M/3. The final nontrivial integral involves a small

number of square root factors arising from the on-shell masssgpy “\W of mass My in the SM,cy=ca=1/2. The cou-

energy constraints, since both energies and momenta app&fing at the other end of the weak current, creating quark 5

in both the phase space and the invariant amplitude eX3ng antiquark 4, is assumed to be the same except for the
pressed in a given frame. Such expressions in our case inteciy element” V.. Gy is defined, as in the SM, by

grate to the standard three kinds of complete elliptic |ntegrals</§g§/8M\zN; note thatGr. is dimensionless in £1. Finally,

of Lege_ndre, usually denoted #§, E, andII. we begln by the abbreviationg andu are carried over from Eqg4.2)
presenting the functional form for the phase space with con-

stant invariant amplitude: and(4.3).
P ' The weak decay amplitude and width in this case are ef-

fects of orders/N; andN., respectively. This counting may

®45(M;m,m,m)= . 2(1+e)*1’2(1—5/3)*3’2K(u), be esta_blished in the parton diagram by observing that the

4mM pair (54) in Fig. 1 can occur with each of thHé. colors, but

4D sewing up” i -si (F

g up” the partons into color-singlet mesons (g4

where (12), and (32 costs a factor of 4/N, each. Finally, each
color may occur in the loop created by 1, 3, and 2, for one

= 3_m [0,1] 42 more factor ofN. It follows that the weak decay width

M = ' calculated from the parton diagram@(N,). In Sec. V we
show that the hadronic calculation of the width also produces

and a leading factor oN,.
The width is presented in two special cases. In the first,
_J(1-e)(1+€l3)? we takeM,,>M, the usual four-fermion coupling assump-
u= (1+€)(1—el3)% 4.3 tion. This corresponds to using only tigg,, term in the

numerator of thew propagatof, —i(g,,—d,d,/M&)/(9?
Note that, unlike the two-body phase space given by Eq.—M\ZN-‘ris). We then find

(3.2), this expression does not diverge for finite However, .

it does possess a singularity @ms—0 (e—0), since then 4GgM
= ——|VgyVi2(cd—c2)?(1— e/3)¥(1+ €)1
m2
<D3=Wln —| 1+ O(W : (4.9 X[E(u)—16(e/3)3(1— €/3) "3(1+€) K (u)].
(4.6
The opposite limiting case— 1, in which the three partons
are produced at rest, is equally peculiar: The limiting cases of this expression are given by
3\3 4GZM &2
b= a1+ 01— e)l, (4.5 M= ——|VaVig*(c{—ch)?| 1- 5 +O(e’ne) |,
ar
4.7
which means that phase space does not vanish in this limit.
We now present the expressions for the inclusive partoni@S€—0, and
decay width. For definiteness, we attempt to describe the
couplings in terms as similar to standard mo¢®&M) nota- z 122 272 3
tion as possible. Our labeling of partons is exhibited in Fig. F—’—B\E [Va1Vig*(cy—ca)“(1—e€)| 1+ z2(17¢
1. The decay of the heavy quark 1 to the lighter quark 3 is
assumed to couple to a vector-like weak current with vertex 5
factor (—ig»/\2)Va1y*(cy—Cays), carried by a gauge bo- +0((1—€)%) |, (4.9

2Strictly speaking, there is also a degree of freedom from the 3The_d|fference from the strong width, which @&(1/N), is that
“solid angle” of one of the final-state particles. However, i1, ~ the qqW vertices are unsuppressed in larg&, while the
this is a discrete degree of freedom. Integration of a differentialg q-gluon vertex isO(1/y/Ng).
width over this quantity gives an additional factor of-1=2 for “We use unitary gauge in order to avoid the necessity of including
Lorentz scalars and#(—1)=0 for pseudoscalars. additional charged Goldstone fields.



1370 BENJAMIN GRINSTEIN AND RICHARD F. LEBED 57

ase— 1. We see that the width is finite @s~0 and vanishes
ase— 1. The former limit shows that the width for the par-
tonic decay of the heavy quark is given approximately\by
times a constant, dimensionless coefficient.

It is easy to understand the prefacta? ¢ c3)?, which
means that the width in th#,,>M limit vanishes forV
+ A currents. The decay vertex in this limit is of the form
g“*J,j, for some quark currents andj. Note that the only
nonvanishing components of the metric gi'e” andg™ ", so FIG. 2. Diagram for “tree” (T) meson exclusive decay. Num-
the vertex involves only)_j, andJ,j_. Now, V+A cur- bers indicate quark labels used in the téestcept0, which refers to
rents correspond to the quarks being all rifgft)-handed. the ground-state B” meson), while letters indicate the eigenvalue
The currentsl.. andj. in this chiral basis are just bilinears index of meson resonances. One can also consider contact-type dia-
of y., since Y, Ys¥rL=* V.Y, - However, in &1 di- grams, in which the point labeled hy is not coupled to a reso-
mensions y_y, = v, g=0, and so all currents of one nance.
chirality vanish, leading to the vanishing of the decay vertex.

If we imposec\z,zc,z_\zlm from the beginning of the cal- for e—0, and
culation, then we find that only pieces obtained from con-
traction with theq,q, terms in theW propagator survive,

giving rise to the width - 8GZMS . 1(1 roriea| @ia
——F— 1+ 5(1-¢e)+ —€)9)|, (4.
GZM® 2433Mpl " 2
= ——|VyVid?(el3)%(1—€l3) ¥1+e)~ 12
T™™Mw
X {—8(el3)[(1+ €/3)3+ (e/3)(1— €/3)?]K(u) for e— 1. Here we see that the width vanishesas0 but is

finite ase—1. Specifically, in the former limit the width is

2 _ 3
+(1+€/9(1—€l3)*(1+€)E(u) approximately a dimensionless constant tifvem?/ My, .

+48(el3)3(1+ €227 (v,u)}, 4.9
where V. THE HADRONIC CALCULATION
_(1+ el3)(1—¢) Matrix elements for exclusive +2 meson decays are
v= (1—€el3)(1+e)" (410 most conveniently written in terms of transition form factors.

We identify theB meson in 1 as the ground state of the
Mm tower of resonances to which it belongs, and subse-
quently label it byO. Consider the “tree”(T) diagram of
, (411  Fig. 2, for whichB=(12), where 1 is the heavyb” quark;

the matrix element is parameterized by

The asymptotic expansions in this case are

2€°
1- T+O(€3)

—

G'éMf’(e)Z

3
T™™w

3

(p+p")*f(g®)+(p—p")*f_(g?) for m even,

5.1
€,,(p+p)"f(q)+e,(p—p')"f_(g?) formodd, 63

<m(p’)|q_7"Q|0(p)>=[

where g?°=(p—p’)? and Q and q indicate the fields of Lorentz-invariant quantityw=p_/q_, which indicates the
guarks with masses! andm. The light quark fieldg here fraction of light-cone coordinate “spatial” component of the
refers to the daughter of the heavy quéBkn Fig. 2, notthe  currentq_ carried by mesof. In the method of calculating
spectator quark2 in Fig. 2, although both are taken to have the matrix elemeng5.1) developed if12], one considers not
massm. The labelm indicates the eigenvalue index of the 0— mn directly, but rather the crossed process Om above
final-state decay product meson (R ®ot coupled to the its threshold ¢*=(uo+um)?); in that case, one finds
flavor-changing current. In the remainder of this section, we[0,1]:

exclusively means this value and not the value of the light

quark mass. 1 MS—an
Next, we reserve the label in the T diagram for the w(g?) = > 1+ >
meson resonances or contact terms Y1cdupled to the q
flavor-changing current carries the momentum transfgf, 2, 2 2 2\2
which is the kinematic variable of interest in this system; — \/1_2 #oT Am Fo~ Hm . (5.2
however, it proves more convenient to use the equivalent q? q?
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Here and below we use the same symidbr the masses of of the two-point Green function, to the insertion of a factor
heavy-light and light-light mesons, since from the index oneof the meson decay constant. In the T diagram, we assign
can immediately tell which one is appropriate.g, uo iS  this meson the labét and quark structure (5)4 Using Eq.
heavy-light. Sincew is obtained by solving the quadratic (2.7) to write the decay constarft in terms ofc,, we have
equation g?w?+ (u2—ué—q?)w+us=0, it should be at last
pointed out that the branch choice useddodoes not affect

the final numerical results for form factors or amplitudes; the 5 GeM2

two branches simply correspond to the two possible direc- pAfr=c, \ﬁ;—v"zvsl\/st [2[(c\2,—c,§)((—1)"
tions of the meson8 andm in the rest frame ofi. However, T(Mw—9°) n

the branch chosen above turns out to greatly facilitate the 5

numerical computations. For some valuesgéfbelow this +(—D)M]+ q—[(Cv+CA)(— 1)k—(cy—ca)]
crossed-process threshold,is complex, and the following 2

expressions for the form factors must be computed in a dif- "
ferent way, as discussed below. N cn,uﬁ
With the aforementioned identifications, we may express X[(eytea)(—=1)"=(cy—ca)]t 5 Fnom(®),
the form factors entirely in terms of resonance quantities, as 4k
promised in Sec. Il. The notation and form factor expressions (5.9

we present here appear in REE4], while the characteristic
integral expression contained within was first obtainef@in ~ where the on-shell process hgé= ,uﬁ The pseudoscalar
The form factors are explicitly parity of the ground stat® has been taken into account in
2 this expression. We remind the reader that in this expression
f+(q2):z ﬂ (5.3 From IS given by (5.7) only for n such that/,Lﬁ>(,uo
n 1—q2/,uﬁ + wm)?; other methods must be employed for smaJh%r, as
described below.

and The conversion of the decay constépto c, in fact gives
1 B.(q?) A(q?) the only surviving factor ofyN, in the amplitude, which
f_(9?)=— nq) nlq (#g_p;) , means that the weak decay width is proportionaN{g in
g} W 1-q¥ud N 1-q¥ul m agreement with the partonic result of Sec. IV. This may be

(5.9 seen with reference to Fig. 2 by the usual laMjecounting
arguments: The coupling of three mes@dsm, andn in this
casé appears with the factor {N., while mesonn is de-
nem stroyed by theV current, thus providing a decay constant at
MF oml( @) (5.5) O(yN,). This part of the diagram alone, which is none other
(Po—wdlow) than the form factor$.. (%), is thusO(NQ). The creation of

where the pole residue function&, and B,, are given by

An(qz):

From(w)=

the mesork from the weak current gives the remaining fac-
and tor of N. Finally, the width is given by Eq(3.1).
o nem+1 The question remains what to do with the contributions
Bu(q7) =Gl 1+ (1) IFnom(®), (5.6 from cu?rent—coupled resonances below the thresholds for the
and the triple overlap integrdl o, is defined by T diagram. The expressions _Iisted_above are inad(_aquate be-
cause they assume the reality of in the computation of
1 (o ey Sfv) . afv-w contour integrals W_ith denominators of the fornz_u{_c _
EJO dvén(v)do”| | Pm| T4 +ig), where thes arises from the Feynman prescription in
the fermion propagators, ardrepresents other purely real
11 3 Sl aalv—o numbers arising from the loop calculation. Such integrals are
- ZL dv #n (0) Q" — 1 ém'| T | |- naturally trivial whenw is real and simply lead to step func-
tions. However, whenw is complex the results are rather
(5.7 more cumbersom@lthough still tractable in principjeOne
. . ) may resort instead to other methdd<] in order to obtain
We now compute the invariant matrix element for a C“”e”tamplitudes from the below-threshold resonances. The ap-
coupling of the form ¢ig,/\2)Vay*(Cy—Cays), exactly proach relies on sum ruld9] that are satisfied by the am-
as for the inclusive decay. Such a calculation is possible fOintudes, and are described in Appendix B. The upshot is that
an arbitrary combination o andA currents, even though the sum rules may be used to describe the below-threshold
we presented the matrix element only for a current of thegmplitudes in terms of combinations of values from the
bilinear V#= q y*Q, because the two currents are related byabove-threshold amplitudes, a process to which we refer as
YuYs=€,,y" . The invariant matrix element is simply the “backsolving.”
product of a linear combination of the form factors deter- However, backsolving has drawbacks from the practical
mined by the current coupling, multiplied by the propagatorpoint of view. As the humber of resonances below threshold
of the flavor-changing currenthe “W”) and finally by a increases, the number of the above-threshold pole residues
factor representing the meson formed from the flavor-and corresponding accuracies with which these are computed
changing current. The last step amounts, via LSZ reductiomust increase dramatically to maintain the accuracy of the
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below-threshold residues thus calculated. For transitions of After a lengthy but straightforward calculation, one finds
the B meson to lightz's, it is known[12,14] that the below-

threshold pole residues are very large compared to their A(0?) 1
above-threshold fellows, and tend to alternate in sign. f.(g)=> - 5 >
Clearly, a small uncertainty in the above-threshold calcula- n 1-9u; (90— uow)

tion magnifies to a large uncertainty in the below-threshold
residues, and the alternating sign suggests delicate cancella- X{g?Cy=[1+(=1)"myms]C+ Ca,
tions among the computed residues, which makes the situa- (5.13
tion even worse.

There is a much more efficient method of calculation ifand
we are willing to abandon the requirement that all vertices in

the calculation of Fig. 2 are resonant couplings, and allow 1 B.(0?) A ()
for quark model-type contact terms. The calculation is based f (qZ)— E n > (MO_M%)
upon the observation that as defined in Eq5.2) is real not q? 1- qz/Mn n 1—q2/Mn

only for decays in the crossed kinematic regigfe (uq

+ um)?, but also decays in the direct decay kinematic region
0=<q°<(mo— um)?, Wherew=1. It therefore makes sense
to redefine o=q_/p_ rather thanp_/q_, so that o (A=) + (=)™ Immy(1+r)]Cr¢, (5.19
€[0,1] in this range. One then finds

+(1-1)(g°Cy+Ca)

. 2 where
1 —
w(qz): s a" —um

2 m me—
2 2 2\2 = qzlo—nz]' 13
+ w— Uow

_\/1—2 g il @ Em 1 59
o Mo and the pole residue functions are given[bpmpare(5.3

It is convenient to define the triple overlap integral and(5.4)]
C[1+(—1)""™]
13 32( V@ An(q?) == Form(®),  (5.16
Fonm(w)= J dv ¢3? v)¢ )(I) ‘(1 w) n(Q%) (QFlo—2e) onm( @)
__J d d) ( )@13 ¢32 VT and
v v MmMil-w/|
(5.10 Bo(0®) = 1+(~1)" ™ Fgn(w).  (5.17)
as well as the contact terms Finally, the matrix element for the decdy— mk, which
unlike Eq. (5.8 holds for all such decays allowed by kine-
Sfv—o matics, is given by
=-— dvd> 2(0) 32| = |,
l-w 2
2 GgMy, -
Mr=cy ;2—V31V 2(cy—cy)
=] s = [(~Dkg2+ (~1)"le,
X Z D) 2 Fonm(®)
n q = my
32 —w
== dv</> (v)CD . (.11 92
1o +(=1)*1g%C +mymgC, +M_2[(CV+CA)(_1)k
Note that the triple overlap is somewhat different from that W
in Eq. (5.7), both in the arguments of each wave function and Ch 5
the definitiong(5.2) and (5.9)] of w for each case. Further- —(cy—cp)li 2 ———levtea) (= 1) uy
more, there is some flexibility in how one expresses results H
containing these contact terms, since one can use the com- —(Cy—Ca)G2]F ol @) + (Cy—CA) G2C
pleteness of the 't Hooft model eigenfunctions»oa[ 0,1] to v e Fonm voedt
show 2, c,¢,(X)=1, and from this prove identities such as
+(cytca)mimgCs |, (5.18

F =C,—C5. 51
;C” onm( @) =C2~Cs (6.12 where as beforeg®= u2.
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VI. RESULTS AND DISCUSSION — T

We computed the weak decay width of a free heavy quark
with massed =2.28— 15.00 in units oy N./27 using Eq.
(4.6), theM,,— case. Likewise, we computed the hadronic  so |- -
width using the same range of heavy quark mass and a fixet
light quark massn=0.56. The expressions used were Egs.
(5.18 and (3.1, with definitions(2.8), (5.9, (5.10, (5.12),
and with sums over all channes—mk satisfying the on- 60 - .
shell conditionu,+ wi=< uo. Both widths are taken to have
the same overall multiplicative factor GF|V3,Vig?(c?

—ci)?l .

It is equally possible, in principle, to u$6.8) instead of 40 - .
(5.18 and backsolve for pole residuet, and 5, defined in !
(5.5—-(5.6), or equivalently the overlap integrals,on,, US-
ing the expressions in Appendix B whenever,<pug
+ um, and obtain the hadronic width in this way. However, 20 ]
as discussed in Sec. V, this approach rapidly leads to uncon 1
trollably large numerical uncertainties. Nevertheless, we P N R

were able to show in some simple cases with only a few 5 10 15
backsolved residues that both methods produce the same nu- M
merical result within a few percent. FIG. 3. Weak decay amplitudé1 for the exclusive decay to

It is no more difficult to consider cases other thanthe lowest mod®— (m=0),(k=0), as a function of heavy quark
My —c. For example, if one imposes the conditivh- A mass M, with light quark massm=0.56. The overall factor
condition cy=c,=1/2, then Eq.(5.18 is just as valid, but 2V2/mGeVa1Vig(ci—cf) in the amplitude is suppressed for con-
now one uses the partonic wid4.9). venience.

Of course, the partonic width is just a single easily evalu-
ated function of the quark masses. The hadronic width, othreshold and are usuallymonotonically increasing func-
the other hand, requires first the solution of the 't Hoofttions of M (for example, see Fig.)3although the rate of this
equation, which is accomplished by means of the Multhopgncrease is dependent upon the particular exclusive mode un-
technique described in Appendix A, repeated for as manyler consideration. The phase space is a known function of
resonances as desired. Next, the matrix elements are obtainé® computed meson masses, and thus the width can be reli-
by taking sums of overlap integrals over these wave funcably computed at any value ® in the desired range.
tions, as in Eqs(5.10 and(5.11). We compute the first 500 Since the phase space if-1 is singular at thresholEqg.
eigenvectors but include only the first 50 in our sums over(3.1)], one would expect a plot of width vs M to be very
resonances. The results change very little when more resdi-behaved, with dramatic singularities increasing in density
nances are included. Finally, the amplitude for a given exasM increases. One would expect it to be essential to use
clusive process is squared and multiplied by phase space twme sort of smearing iW to properly test duality between
give the hadronic width. this hadronic description of thE and the smooth partonic

Clearly, such a procedure uses a significant amount ofesult. In fact, this does not appear to be the case. We refer to
computing time, and therefore it is not practical to computeFig. 4, which is our central result. It is obtained by interpo-
the hadronic width at points exceptionally finely spaced inlating each exclusive decay amplitude, as described above, at
M. In practice, we computed each above-threshold amplitudimtervals of AM=0.01. The remarkable result is that, after
at values ofM =2.28 and each integer mass fravh=3.00 passing the first couple of thresholds, appears to be a
to 15.00. The significance of the lower bound is that, withnearly smooth function iM, barely sensitive to the phase
the given light quark masm=0.56, this ‘b quark” mass space singularities as each new threshold is passed. This re-
gives a ground-stateB” meson just above the threshold for su[t suggests that the effect of individual higher resonances is
producing two ground-state#” mesons, i.e., the smallest duité minimal, as one might expect int3 dimensions. In
value of heavy quark mass unstable under hadronic weal€ 1+1 case, however, the result is all the more surprising,

decay. since now phase space near threshold provides a large en-
We then make the empirical observation that the amplihancement rather than a suppression.

tions of M. We thus obtain the value of the amplitude at all More resonances are added. In Figs. 5a—5d we include ex-
intermediate point$/ by fitting to a fixed power law behav- clusive .channels with the Iowe_st_ 1, 3,5, and 11 t_hresholds,
ior over each interval, either by interpolating for values be-respectively. We now see explicitly that the full width over
tween adjacent pairs of points where the amplitudes were

computed directly, or by extrapolating from the nearest two

points if we are probing values dfI above the process 5in the few exceptions to this rule, the amplitude dips slightly for
threshold but below the first explicitly computed point. In values ofM just above threshold, but thenceforth assumes mono-
fact, we find that the exclusive amplitudes do not vanish atonically increasing behavior.
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0T 7 - gion, and the contribution to the smeared rate from their

i 1 phase space near the threshold scaled a&? for each’ We
observe empirically that the magnitudes of amplitudes first
appearing at a given threshold mads, tend to evolve ap-

8 1  proximately no faster than ad,,>°. It follows that the con-
i i tribution to the smearedl (M) from the region of widthA
scales approximately ad ~°7. For the border region, where
one of the meson®,k is highly excited and the other is near
the ground state, the phase space is seen to schlé 3sbut
the number of such states is onlyM A, so again the area
under these peaks contributes little KgM). Finally, the
phase space far above a given threshold scaleM a3,
which means that, given the density of states for various
eigenvalue indices, amplitudes cannot on the average grow
with M above their respective thresholds faster tNat? for
k>1 andms>1, M2 for one ofm,k=0(1) and the other
>1, orM? for m andk=0O(1), orelse the linear behavior of
I'(M) will be violated. In fact, the amplitudes we have com-
puted all obey these constraints. We see that the linear be-
havior observed requires a delicate balance of numbers and
mass dependences of amplitudes versus excitation numbers,
M and we hope to obtain analytic arguments for this remarkable
. . _ behavior in the future.

FIG. 4. The fu” decay W|dth fOI‘ the sum Of EXC|USIV§ mOdes n What are we to Conclude from thls result’) The ’t Hooft
the decay0—mk as a function of heavy quark mabé, with light  model is exactly soluble, so it must be the case that the
quazrk mass m=0.56. The overall factor @g|VsVid*(Cy  fully-dressed parton diagrams give results agreeing with the
—ca)?m in the width is suppressed for convenience. The dasheghadronic calculation; indeed, this is how the hadronic prob-
line is the tree-level parton result, E@t.6). lem was solved in the first place. The partonic width com-

puted in(4.6) represents only the Born term in an expansion
the range inM we consider is essentially produced by thein strong couplingy, so the addition of gluon loops is appar-
first 11 channels, indicating the decreasing influence of indiently necessary to bring the two results into agreement. The
vidual higher resonances. The small wavd'imbove all the small discrepancy between the curves may have this origin,
included thresholds is an artifact due to the interpolation rouer it may simply be a limitation of the numerical accuracy of
tine between values & at which the amplitudes are explic- the calculation. However, it is interesting to note that the two
ity computed; its small size indicates the smoothness of théurves appear to differ asymptotically by a constant, which
amplitudes inM and the reliability of the interpolation. for plots linear inM is a 1M correction. Therefore, we

Another remarkable feature of Fig. 4 is the near-perfecguggest that this effect is genuine and not a numerical arti-
linearity of I' for valuesM>7.0. Suppressing the propor- fact. In Fig. 6 we superimpose on the hadronic width c_)f Fig.
tionality constant betweeR andM, Fig. 4 appears to obey 4 the curvel’ya(M)-(1+0.15M), and see that the fit is
the asymptotic fornt'~0.514V —0.141. This is surprisingly ou.tstandmg.. Frpm this result, we learn that local duality for
close to what is predicted asymptotically for the partonicth's system is violated badly only fprthe first few resonances
rate: Suppressing the same proportionality constant in E and very close to thresholds of higher resonances, and that
(4.7), one predictsl“pa,tzéM(1+O(1/M 2)). /M effects appear to be only at the few percent level for

One may ask whether the strength of the peaks in Fig. 4 i¥>7- It would be very interesting to see explicitly what
large enough that the mass-smeared partonic and hadrori¢PPens to the partonic inclusive width at the one- or two-
widths nevertheless disagree. That is, local duality appearOP level. _ _ ,
remarkably well satisfied, but perhaps global duality actually One natural idea of how to improve the Born result is to
fails by concealing a large portion &f(M) in the very nar- replace the bare quark masses with the renormallzed vglues.
row threshold peaks. In this scenario, the apparen-trh's woul_d not sum all gluon corrections, but it would in-
asymptotic smoothness of Fig. 4 fools us, for the density oflude an important subclass of them. Unfortunately, due to

threshold singularities increases withso rapidly as to push the_result(2.2), masses helow 1'0‘?UCh as that of our light
the curve of hadroni€ (M) out of agreement witl o (M) antiquark haveimaginaryrenormalized values, and then our

for sufficiently largeM. We now argue that this possibility Wh.°|e interpreFation of phase Space, essential for the calcu-

does not appear to be realized, at least numerically. Let ulét'on of the width, becomes ambiguous.

smear inM over a region of size\, 1<A<M.® Owing to

the approximate linearity of squared meson masses in the

excitation number, there are M3A thresholds in this re- We have calculated the nonleptonic decay width of a
heavy-light meson in the context of the 't Hooft model as a

VII. CONCLUSIONS

8In practice, we use a normalized Gaussian window function with
a mean ofM and a variation ofA, although the result should be  "This is verified from(3.1) and the observation that, fol>1,
independent of the particular form used. Mo M.
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FIG. 5. (a) The full decay width as a function of heavy quark mi&swith light quark massn= 0.56, including only the exclusive mode
with the lowest threshold valugorresponding tan = k = 0). The scale is the same as in Fig.(d). Same aga), except now including the
exclusive modes corresponding to theeelowest threshold valuegc) Same aga), except now including the exclusive modes correspond-
ing to thefive lowest threshold valuegd) Same aga), except now including the exclusive modes corresponding toetbeenlowest
threshold values. Observe that this figure is almost indistinguishable from the full result, Fig. 4.

function of the bare heavy quark mass, both for the Born Assuming that the small discrepancy between the partonic
term of the free partonic decayhich we called the “par- and hadronic results is genuifiather than a numerical ar-
tonic width”) and the full sum of allowed hadronic decays tifact) leads one to conclude that nonleptonic heavy-light
(the “hadronic width”). We found that these two quantities meson decays in 41 dimensions cannot be described in
approximately agree at leading ordeihy with the hadronic  terms of an OPE that lacksNl/ corrections, and it naturally
width being slightly larger. Both quantities are observed toleads one to believe that the same conclusion is truetih. 3
grow linearly and smoothly for larg®, despite the effects Since the lowest order of the OPE is simply the naive free
of numerous phase space threshold singularities in the hadguark picture, this result also has obvious implications for
ronic case. The slight discrepancy between hadronic and pathe application of quark models in such decays. Another in-
tonic widths is well-fit by a I correction, I'yaq(M) cisive test of quark-hadron duality i+l is whether anni-
~IpaM)-(1+0.15M). hilation diagrams, in which the valence quarks in the decay-
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oy T T T T T e dy(y)
¢<x)—fadyK<x,y)Pr(X_y)-d—y. (A1)
8l 7 where y(a) = y(b)=0. The 't Hooft equation is seen to be

of this form after an integration by parts. Generally speaking,
one maps the intervatle[a,b] to #<[0,7] by a function
linear in co®, and then expands in a Fourier serieséin
Equivalently, such functions written directly in termsyofor
each mode turn out to be the product of a common factor
[Vy(1—y)] times Chebyshev polynomials of the second
kind, U,(y).

In particular, we use a slight variant of the Multhopp tech-
nique for the special case thKf{x,y) is independent of.
The variable transformation is

_1+c039 _1+cos€’
=T YT

(A2)

in terms of which the 't Hooft equation may be written

FIG. 6. The full decay width of Fig. 4 compared to the tree-  u”  — (M?2+m?) —(M?~m?)cosd , —
level parton result of Eq.(4.6) corrected by a M effect: 74’ (6)= Sirtg (6)
I'paM)-(140.15M).

- , dng m( 01) 1
ing meson annihilate through a weak current, are suppressed + Jo df do’ Pr (cosf—cosd’)’
compared to spectator tree diagratfsg. 2); these studies
are well underway{11], and results will be forthcoming (A3)
shortly.
A number of unanswered questions not addressed by thixpanding
work include the effects of loop corrections to the Born am-
plitude free quark decay, the dependence of decay widths on - o
the light quark mass, the effects of including finite meson MM()= >, a,sinmé, (A4)
strong decay widthgwhich are O(1/N,)], the effects of m=1
identical final state quarks or mesons, multiparticle final
states(also suppressed by powers §f), and so on. While and using the integrain=0,1, . . .)
“two-dimensional phenomenology” cannot be used as a
guantitative substitute for the standard four-dimensional va- .
riety, it clearly indicates the limitations of the standard lore. fwd OPr——— cosmé@’ :WSII'.'I mo (A5)
Note addedAn interesting recent work by BloKL6] sug- 0 (cos¥’ —cos h) sing '
gests that global quark-hadron duality at high energies in the
't Hooft model with massless quarks may be achieved byye are led to a series equation for the eigenvector coeffi-
including smearing through the N{-suppressed widths of jentsa,,.
resonances. Our calculation, on the other hand, does not in- \ye truncate the series after mode=N, and evaluate
clude finite-width effects but nevertheless achieves an effeqsoth sides at the equally-spaced values 6of(Multhopp
tively smeared result, even at relatively law, which sup-  gpgleg,
ports the claim of duality at leading order.

k

b=——, M=1...N, A6
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APPENDIX A: THE MULTHOPP TECHNIQUE N . . 1
> sinkdy, sin k== (N+1) 8, (A7)
This techniqug 12,15 is used to solve numerically cer- k=1

tain singular integral equations in a systematic expansion of
basis functions. Specifically, it is used to solve equations ofo obtain at last the finite eigenvector systggzompare Ref.
the form [12], Eqgs.(A6)—(A7)]
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4 NN eigenvector modes in the wave function solution, so as to
wla,= > > decrease the size of the region where the asymptotic behav-
(N+1)m=1 =1 iors differ.

; : 2, 2\ g2 2 Finally, the quantityc,,, which is the meson decay con-
sin O‘fnsm ekm[(M ) (_M m")cos i stant up to a normalization factpEq. (2.7)], is simply given
sin6, | sin 6, by

+mmay. (A8) anfldx¢n(x)= gal. (Al4)
0

The series expansiofA4) transforms the normalization

.\ 1 > . APPENDIX B: AMPLITUDE SUM RULES
condition [ ;dx¢(x)“=1 into

The asymptotic forms of 't Hooft model solutions may be

N N used to obtain constraints on the form factor expressions,
1=— 2 manY, na[l+(—1)™"[(1-(m—n)?) such as Eqs(5.3—(5.4), that are derived from them, as is
m=1 =t shown in[9]. There it is seen that, dg%|—», the form
X(1—(m+n)2)]" 4, (A9) factors vanish at least as fast [ag|** #m, where g, is de-

fined in Eq.(2.5. By symmetry there is also a term that falls
while the phase of the eigenvectors may be chosen by notingff as|g?|**#m, but sinceM >m, we haveBy,> 8, and the
the asymptotic forms slower fall-off dominates.
N It is then apparenzt from Eqs{25.3)2—(5.4) that the pole
residue functionsd,(q°) andB,(g°)/g° must also vanish at
¢(x)a—2\/§mE:1 (=1)"mag+0(x), (A10)  |aast as fast am?|#m. But (5.3 and(5.4) have a very sug-
gestive form: They explicitly display the pole-dominance na-
asx—0, and ture of the largeN, limit, since A,(g?) and B,(g?)/q? are
\ expected to have no non-analytic behavior for fimjte and
moreover, these expressions are written very conveniently
¢(X)_’+2vl_xmzl man+0(1-x),  (All)  for an application of Cauchy’s theorem. If we choose our
contour such that it encloses all of the complgi plane
asx— 1. Note that the Multhopp solution requires the eigen-except for the part of the real axis where the resonance poles
functions to vanish as square roots at the endpoints, in cori€, then using Cauchy’s theorem with the vanishing of the
trast to the dynamically-generated exponents of the exact séesidue functions fofg?|—o gives[9]
lution given by Eq.(2.5). Great care must be exercised when

extracting information near the endpoints of the numerically- An(9?) _ An(pp) (B1)
calculated wave functions. no1-0gud N 1-gHul

In terms of the eigenvector componerag, the vertex
function ® may be written for reak, where A (9% = A4,(g%) or B,(g%)/q?, and the sums over

are restricted to the appropriate parities. Each residue func-

- }N: ) tion thus needs only to be computed at the value of its cor-
D(x<0)=—= —1)™may(V1-x—y=x)", responding mass eigenvalue.
(x<0) D& (=) many( ) p g g

m= This sum rule also gives us enough information, in prin-

(A12) ciple, to obtain residue functions that are not conveniently
and computable in a direct fashiofl2]. Let t denote some
threshold inn, below which it is unwieldy to compute the
+a N residue functions directly. Then, if we choose at leagal-
d(x>1)= —E May(\+X— Vx—1)2M, ues ofqiz, i=1...t above threshold, we obtain a solvable
VX(X—1)m=1 (A1) tXt linear system of equations:
2 2 2
These regions are the only ones for which we need explicit 2 %: - A"(';L")z + An(gi )2.
expressions; whenevere (0,1), the 't Hooft equatior{2.4) n<t 1—qi/u, n>tl-qgi/py 0 1-0i/ug
and the definitior(2.6) may be employed to rewrit®(x) in (B2

terms of p(x).

Because of the singularities W at x=0 and 1, when
numerically computing overlap integrals such as in Egs
(5.7, (5.10, or (5.1, one must sample the region near the
singularities more heavily. Moreover, in contrast to the nu- We also note one other sum r@,12], which is simply
merical Multhopp solution forfP(x) given above, the singu- derived by taking the limit?— oo in (él) ’and recalling that
larities in the exact solution behave a@B™"™(x—07)  the form factor expressions vanish in this limit:
~(=x)Pv~1 and ®MM™(x—1")~(1—x)#n"1. Such a dif-
ference can also lead to substantial errors when computing 27 (u2)=0 B3
overlap integrals; the answer is to increase the number of ; #nAa(pn) =0. B3

Adding additionalqi2 simply overconstrains the system and
provides consistency checks. We refer to this approach in the
text as “backsolving,” to indicate that it is an indirect
method of solution.
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