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Explicit quark-hadron duality in heavy-light meson weak decays in the ’t Hooft model

Benjamı´n Grinstein* and Richard F. Lebed†

Department of Physics, University of California at San Diego, La Jolla, California 92093
~Received 22 August 1997; published 31 December 1997!

We compute the nonleptonic weak decay width of a heavy-light meson in 111 spacetime dimensions with
a large number of QCD colors~the ’t Hooft model! as a function of the heavy quark mass. In this limit, QCD
is exactly soluble, and decay modes are dominated by two-particle final states. We compare the results to the
tree-level partonic decay width of the heavy quark in order to test quark-hadron duality in this universe. We
find that this duality is surprisingly well satisfied in the heavy quark limit, in that the difference between the
sum of exclusive partial widths and the tree-level partonic width approaches a constant asM→`, and the
deviation is well-fit by a small 1/M correction. We comment on the meaning of this conclusion and its
implications for the use of quark-hadron duality in hadronic physics.@S0556-2821~98!00503-7#

PACS number~s!: 11.10.Kk, 11.15.Pg, 13.25.2k
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I. INTRODUCTION

Quark-hadron duality, in its most general form, is the n
tion that certain rates for processes involving hadrons ca
computed simply as the underlying partonic rates@1#. Dual-
ity allows us to compute many quantities which would o
erwise be hopelessly difficult. One common application
duality is to the nonleptonic weak decays of heavy hadro
The lore is that, for large enough heavy quark mass, dua
holds in the computation of the hadronic width.

Several discrepancies between theory and experiment
have recently received attention rely on quark-hadron d
ity. Among them are the significant difference between li
times of beauty baryons and mesons@2#, the overestimates o
theB-meson semileptonic branching fraction@3# and the av-
erage number of charm quarks perB decay@4#. Because the
limit of experimental knowledge about nonleptonicB decays
is rapidly expanding, such issues are of great topical inter

But when is duality valid? In many cases duality follow
from the operator product expansion~OPE!. This is the case
for example, for the rate ofe1e2→ hadrons and for the
semileptonic decay rates of heavy hadrons. However, du
is applied in many other cases, such as in hadronic width
heavy hadrons, for which there is no OPE.

Reference@5# proposes an OPE-like expansion in inver
powers of the heavy quark massM , which not only incorpo-
rates quark-hadron duality as the lowest term in the exp
sion, but also organizes the corrections by inverse power
M . A main result of that work is the claim that correction
first appear at order 1/M2. The question above can be refo
mulated as, ‘‘Is an OPE-like expansion like that of Ref.@5#
valid?’’

To investigate the validity of duality it is convenient t
work with a soluble model of strong interactions formulat
as a full-fledged field theory, so that one may test dua
both in cases with and without an OPE. The ’t Hooft mod
@6#, large-Nc QCD in 111 dimensions, is a good laborator
for this purpose. It contains an infinite spectrum of meso
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composed of confined quarks, realizes asymptotic freed
trivially, and inherits all the phenomenological consequen
of large-Nc QCD @7# common to our universe, such as dom
nance of scattering amplitudes with the minimum number
meson states, Okubo-Zweig-Iizuka~OZI! suppression, the
absence of exotics, and others. For processes with an O
duality in the ’t Hooft model has been checked explicit
@8,9#. However, little is known about duality for non-OP
processes. The reason is that, in precisely those case
which an OPE is lacking, there is no simple analytic
method of verifying duality, and one must resort to arg
ments based on numerical solutions.

In this paper we compute the hadronic weak decay wi
G(M ) of heavy ‘‘B’’ mesons in the ’t Hooft model as a
function of the heavy ‘‘b’’ quark massM ; the meaning of
‘‘heavy’’ is made precise in Sec. II. We compare this to t
partonic ~perturbative! decay width of the heavy quark
Gpart(M ), which we compute analytically. For largeM we
find that bothGpart(M ) andG(M ) are essentially linear inM .
The difference between the two appears to be asymptotic
constant and small, indicating a small 1/M correction to the
naive duality limit. As M increases, new hadronic deca
channels become accessible, and at each of these thres
there is a singular peak inG(M ). AveragingG(M ) over a
region in M that includes many resonances removes th
peaks but does not change the leading dependence onM .
Our conclusion is that duality holds to leading order in M
but unlike the OPE-like expansion of Ref.@5#, appears to
have1/M corrections.

In Ref. @10# it is argued that there is strong experimen
evidence for the failure of duality. What is meant there is th
the pattern of corrections in powers of 1/M of Ref. @5# is not
supported by experiment. This agrees with our result, wh
indicates a violation to duality at first order in the 1/M ex-
pansion of Ref.@5#.

While we cannot carry over our quantitative results to t
physical world of non-planar QCD in 311 dimensions, we
believe that there is nothing intrinsic to 111 dimensions that
would make duality work differently than in 311. The op-
erator analysis that leads to the 1/M expansion proceeds in
111 much as in 311.

The paper is organized as follows. In Sec. II, we brie
1366 © 1997 The American Physical Society
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57 1367EXPLICIT QUARK-HADRON DUALITY IN HEAVY - . . .
review the ’t Hooft model and a standard method for
numerical solution. Section III compares features of 111
dimensions, such as the nature of phase space and sp
those in 311 dimensions. In Sec. IV, we present the alg
braic results of the inclusive parton-level calculation
widths. In Sec. V, we present the results of the exclus
calculation in the ’t Hooft model. Section VI gives our nu
merical results and a discussion of their implications, a
Sec. VII concludes.

There are other nonperturbative questions of phenome
logical interest in the area of hadronicB weak decays for
which there is an established lore. One can test any of th
hypotheses in the ’t Hooft model. Of particular interest is t
notion that contributions to decay amplitudes from differe
underlying quark diagram topologies contribute with distin
weights, which can very much suppress the amplitude fro
given topology. For example, the ‘‘annihilation’’ diagram
in which the valence quark-antiquark pair annihilate throu
a weak current, are supposedly suppressed relative
‘‘spectator’’ diagrams by a factor off B /MB , wheref B is the
B decay constant andMB its mass. We will address thi
question in a separate publication@11#.

II. THE ’t HOOFT MODEL

The success of ’t Hooft’s method of solving a strong
coupled theory rests on two assumptions that consider
simplify the problem. First, one works in the limit of larg
Nc , in which it is readily seen@7# that diagrams including
either internal fermion-antifermion loops or the crossing
gluon lines at points other than their vertices are suppres
by combinatorial powers ofNc compared to those that d
not. These simple topological consequences of the the
lead directly to the predictive power of largeNc . Second, in
111 dimensions one may use the gauge freedom of QCD
choose a linear gauge in which some chosen componen
the gluon field vanishes, and only the sole orthogonal co
ponent survives. Then, since the gluon self-coupling term
the field strength appears as a commutator of field com
nents, this term vanishes in the gauge we have selected.
sequently, gluon self-coupling vanishes in this gauge, an
in combination with largeNc , gluon lines are not permitted
to cross each other, even at vertices. Moreover, ghosts
absent in linear gauges. It follows that the only diagrams t
must be summed are ‘‘rainbow’’ diagrams for the qua
mass and wave function renormalization, and ‘‘ladder’’ d
grams for quark-antiquark interactions@6#.

In 111 dimensions confinement is realized trivially, sin
the lowest-order inter-quark potential obtained by taking
Fourier transform of the gluon propagator~which gives rise
to the 1/r Coulomb interaction in four dimensions! grows
linearly with the inter-quark separation. Although lowes
order color confinement is an automatic consequence in
dimensions, it is a highly nontrivial fact that the phenomen
persists in the all-orders Green function solutions of the
Hooft model.

To be specific, the Lagrangian of QCD, as in four dime
sions, is

L52
1

4
TrFmnFmn1(

a
c̄a~gm~ i ]m2gAm!2ma!ca ,

~2.1!
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whereAm is the SU(Nc) gauge field with field strengthFmn

defined in the usual way, andca is a Dirac fermion of bare
massma and flavora. The bare couplingg not only has
dimensions of mass in two dimensions, but scales as 1/ANc
in the large-Nc limit.

The renormalization of the fermion propagator is exce
tionally simple. The only modification is a shift of the ba
fermion mass by

ma
2→ma,R

2 [ma
22g2Nc /2p. ~2.2!

Consequently, it makes good sense to describe masse
units of gANc /2p, which is finite in theNc→` limit. The
dividing line of ma

251 (ma,R
2 50) in these units acts as

boundary between heavy and light quarks, as is numeric
verified in Refs.@12–14#; for example, in@13# it was seen
that the meson decay constant approaches the stan
asymptotic behaviorf B}1/AM for M>5 or so. It follows
that gANc /2p in 111 assumes a role analogous toLQCD in
311.

Quantization of the theory is most convenient in ax
light-cone gauge (A250), where light cone coordinates ar
defined by

x6[x7[
~x06x1!

A2
, ~2.3!

and analogously for other vectors. The chief advantage
this choice is that only one component of the Dirac alge
(g2) survives, thus effectively eliminating the need to pe
form Dirac traces.

Upon solving for the Green function of a fermion
antifermion pair with bare massesM and m in this model,
one obtains the bound-state eigenvalue equation

mn
2fn

Mm̄~x!5S MR
2

x
1

mR
2

12xDfn
Mm̄~x!

2E
0

1

dyfn
Mm̄~y!Pr

1

~y2x!2
, ~2.4!

which is known as the ’t Hooft equation@6#. Here thenth

eigenstatefn
Mm̄ is the meson wave function, thenth eigen-

value mn
2 is its squared mass, andx is the fraction of the

meson momentum’s minus component~which acts, in the
light-cone quantization, as a canonical spatial moment
component! carried by quarkM . We will always label the
ground state~the lowest mass meson! by n50. The principal
value prescription serves to regulate the integrand singu
ity, which originates in the infrared divergence of the glu
propagator. This equation has a discrete spectrum of eig
values that increase approximately linearly for largen, and
the wave functions vanish at the boundariesx50 and 1, with

the asymptotic behaviorfn
Mm̄(x)→xbM asx→0, where

MR
21pbMcotpbM50, ~2.5!

and similarly asx→1, exchangingm for M . bM is a mono-
tonic function ofM2 ~or MR

2), increasing from zero to one a
M250→`.
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Also useful in this description is the full meson-qua

vertexFn
Mm̄ , which is given by

Fn
Mm̄~z!5E

0

1

dyfn
Mm̄~y!Pr

1

~y2z!2
, ~2.6!

for all complex values ofz. Indeed, except forzP @0,1#, the
principal value prescription is unnecessary.

The decay constantf n for mesonn may be computed in
this framework. It is given by

f n5cn /Ap, ~2.7!

where

cn[E
0

1

dxfn~x!. ~2.8!

Strictly speaking, the right-hand side~RHS! of ~2.7! is also
multiplied by a factorANc, but we may absorb this facto
into the normalization of other factors by which it is mult
plied in the full amplitudes; what is important is that the fin
physical amplitude has the correctNc dependence at leadin
order. As each new quantity is calculated in this paper,
will point out the leading dependence onNc , but as a rule
we suppress the explicit factors for ease of notation. Th
Hooft eigenfunctionsfn , for example, areO(Nc

0) solutions
of Eq. ~2.4!, and socn is alsoO(Nc

0). On the other hand
light meson decay constants have the well-known beha
f n}ANc, and the full result Eq.~2.7!, including theANc,
may be verified by direct calculation.

The ’t Hooft model wave functionsfn andFn are calcu-
lated by means of a standard numerical method called
Multhopp technique@12,15#, in which the integral equation
is converted to an equivalent infinite-dimensional eigenva
system, which in turn may be truncated after a desired n
ber of modes to give approximate wave function solutio
Since the relevant formulas for unequal-mass mesons do
appear elsewhere, we present a summary in Appendix A

Whereas the eigenfunctionsfn
Mm̄ describe the complete

set of homogeneous solutions for the two-point Green fu
tion, the solution for 1→2 meson decays~the leading decay
channels in largeNc) requires also three-point Green fun
tions. Remarkably, the requisite expressions may be wri
entirely in terms of triple overlap integrals of the functionsf
and F @9,14#, without bare quark model contact-type inte
actions. In physical terms, this means that the three vert
of the diagram for the three-point Green function are re
nance dominated, without contact contributions. Nevert
less, for the diagrams computed, it will prove to be comp
tationally convenient to describe part of the full amplitude
terms of these contact terms. We exhibit these explicit
pressions in Sec. V, but for the moment it is only importa
to note that such expressions indeed exist.

III. PECULIARITIES OF 1 11 DIMENSIONS

Despite one’s hopes that exact calculations in the ’t Ho
model may lend insight into real 311 strong interaction
physics, we emphasize that the two-dimensional unive
l
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possesses some unique properties that must be remem
when comparing to the universe of four dimensions. The
fore, the ’t Hooft model may in no way be construed as a
sort of limiting case of real QCD, and any direct compa
sons are necessarily qualitative. In other words, we espo
the opinion that only certain conclusions based upon
numerical studies of ’t Hooft model solutions, not the n
merical results themselves, possess any validity in 311 di-
mensions.

The most obvious signal that 111 and 311 physics are
vastly different is that the former does not possess the qu
tity of angular momentum, except in the residual form
parity.1 This is clear since finite rotations do not exist wh
there is only one spatial direction, and only the improp
‘‘rotation’’ taking x1→2x1, namely parity, remains. It fol-
lows that ’t Hooft model eigenstatesfn(x) do not possess
spin, but only intrinsic parity (21)n11 @8#. All of the inter-
esting phenomenology provided by approximate spin sy
metries in our world~i.e., the smallness of hyperfine spli
tings, relations between different helicity amplitudes, et!
are therefore meaningless in two dimensions.

The lack of transverse directions has important con
quences for couplings in 111 dimensions. As mentioned in
the previous section, gauge couplings have dimension
mass, and so such theories are super-renormalizable. M
over, ‘‘vector’’ gauge bosons exist in 111 only through their
longitudinal modes. There are also different Lorentz inva
ants in 111, since the Levi-Civita tensoremn has only two
indices. The effects of these constraints are implicit in all
results to follow.

The amount of Lorentz-invariant phase space is of cou
expected to vary between different spacetime dimensionsD,
since the measure of the phase space integrals is
D-dimensional volume element. However, the difference
tween 111 and 311 is particularly dramatic. To be specific
in D spacetime dimensions, the differential width for a 1→2
decay in terms of the solid angle of either final-state parti
is given by

dG5
upuD23

~2p!D228M2
uMu2dV, ~3.1!

where upu is the spatial momentum of either final-state pa
ticle in the rest frame of the initial particle of massM , and
M is the invariant amplitude of the process. Note partic
larly the behavior of the phase space factorupuD23 as the
upu50 threshold is approached: ForD54, the differential
width vanishes with the decreasing amount of phase sp
available, but forD52, the differential width actually be-
comes singular~barring an accidental zero in the amplitud
M). It follows that two-particle decay modes near thresho
are enhanced in 111, in stark contrast to 311.

IV. THE PARTONIC CALCULATION

Because of the small number of integrations necessar
compute phase space in 111 dimensions, it is possible to

1Also, spinors retain the property of chirality, since ag5 matrix
still exists in 111, signaling two inequivalent representations of t
Lorentz group.
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perform the partonic integrals analytically in all cases of
terest to us. In the 1→3 parton decay, one starts with 332
56 final-state momentum components, of which 2 are fix
by energy-momentum conservation and 3 are fixed by
on-shell conditions of the final-state partons; this leaves o
one nontrivial integration, which can be done explicitly.2

Here we consider the case of an initial quark of massM
decaying into three distinguishable equal-mass quarks
massm<M /3. The final nontrivial integral involves a sma
number of square root factors arising from the on-shell ma
energy constraints, since both energies and momenta ap
in both the phase space and the invariant amplitude
pressed in a given frame. Such expressions in our case
grate to the standard three kinds of complete elliptic integ
of Legendre, usually denoted byK, E, andP. We begin by
presenting the functional form for the phase space with c
stant invariant amplitude:

F3~M ;m,m,m!5
1

4p3M2
~11e!21/2~12e/3!23/2K~u!,

~4.1!

where

e[
3m

M
P@0,1#, ~4.2!

and

u[A~12e!~11e/3!3

~11e!~12e/3!3
. ~4.3!

Note that, unlike the two-body phase space given by
~3.1!, this expression does not diverge for finitem. However,
it does possess a singularity asm→0 (e→0), since then

F35
3

8p3M2
lnS M

mD F11OS m2

M2D G . ~4.4!

The opposite limiting casee→1, in which the three parton
are produced at rest, is equally peculiar:

F35
3A3

32p2M2
@11O~12e!#, ~4.5!

which means that phase space does not vanish in this li
We now present the expressions for the inclusive parto

decay width. For definiteness, we attempt to describe
couplings in terms as similar to standard model~SM! nota-
tion as possible. Our labeling of partons is exhibited in F
1. The decay of the heavy quark 1 to the lighter quark 3
assumed to couple to a vector-like weak current with ver
factor (2 ig2 /A2)V31g

m(cV2cAg5), carried by a gauge bo

2Strictly speaking, there is also a degree of freedom from
‘‘solid angle’’ of one of the final-state particles. However, in 111,
this is a discrete degree of freedom. Integration of a differen
width over this quantity gives an additional factor of 11152 for
Lorentz scalars and 11(21)50 for pseudoscalars.
-
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son ‘‘W’’ of mass MW ; in the SM,cV5cA51/2. The cou-
pling at the other end of the weak current, creating quar
and antiquark 4, is assumed to be the same except for
‘‘CKM element’’ V45* . GF is defined, as in the SM, by
A2g2

2/8MW
2 ; note thatGF is dimensionless in 111. Finally,

the abbreviationse and u are carried over from Eqs.~4.2!
and ~4.3!.

The weak decay amplitude and width in this case are
fects of ordersANc andNc , respectively. This counting ma
be established in the parton diagram by observing that
pair (5 4̄) in Fig. 1 can occur with each of theNc colors, but
‘‘sewing up’’ the partons into color-singlet mesons (5 4)̄,
(1 2̄), and (3 2̄) costs a factor of 1/ANc each. Finally, each
color may occur in the loop created by 1, 3, and 2, for o
more factor ofNc . It follows that the weak decay width3

calculated from the parton diagram isO(Nc). In Sec. V we
show that the hadronic calculation of the width also produ
a leading factor ofNc .

The width is presented in two special cases. In the fi
we takeMW@M , the usual four-fermion coupling assump
tion. This corresponds to using only thegmn term in the
numerator of theW propagator,4 2 i (gmn2qmqn /MW

2 )/(q2

2MW
2 1i«). We then find

G5
4GF

2M

p
uV31V45* u2~cV

22cA
2 !2~12e/3!3/2~11e!1/2

3@E~u!216~e/3!3~12e/3!23~11e!21K~u!#.

~4.6!

The limiting cases of this expression are given by

G→
4GF

2M

p
uV31V45* u2~cV

22cA
2 !2F12

e2

3
1O~e3lne!G ,

~4.7!

ase→0, and

G→
16GF

2M

3A3
uV31V45* u2~cV

22cA
2 !2~12e!F11

3

4
~12e!

1O~~12e!2!G , ~4.8!

e

l

3The difference from the strong width, which isO(1/Nc), is that

the q q̄W vertices are unsuppressed in largeNc , while the

q q̄-gluon vertex isO(1/ANc).
4We use unitary gauge in order to avoid the necessity of includ

additional charged Goldstone fields.

FIG. 1. Parton decay diagram for the inclusive decay. Of int
est are the parton labels, as used in the text.
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ase→1. We see that the width is finite ase→0 and vanishes
ase→1. The former limit shows that the width for the pa
tonic decay of the heavy quark is given approximately byM
times a constant, dimensionless coefficient.

It is easy to understand the prefactor (cV
22cA

2)2, which
means that the width in theMW@M limit vanishes forV
6A currents. The decay vertex in this limit is of the for
gmnJm j n for some quark currentsJ and j . Note that the only
nonvanishing components of the metric areg12 andg21, so
the vertex involves onlyJ2 j 1 andJ1 j 2 . Now, V6A cur-
rents correspond to the quarks being all right~left!-handed.
The currentsJ6 and j 6 in this chiral basis are just bilinear
of g6 , sincegmg5cR,L56gmcR,L . However, in 111 di-
mensionsg2cL5g1cR50, and so all currents of on
chirality vanish, leading to the vanishing of the decay vert

If we imposecV
25cA

251/4 from the beginning of the cal
culation, then we find that only pieces obtained from co
traction with theqmqn terms in theW propagator survive,
giving rise to the width

G5
GF

2M5

pMW
4

uV31V45* u2~e/3!2~12e/3!23/2~11e!21/2

3$28~e/3!2@~11e/3!31~e/3!~12e/3!2#K~u!

1~11e2/9!~12e/3!3~11e!E~u!

148~e/3!3~11e2/27!P~v,u!%, ~4.9!

where

v[
~11e/3!~12e!

~12e/3!~11e!
. ~4.10!

The asymptotic expansions in this case are

G→
GF

2M5

pMW
4 S e

3D 2F12
2e2

9
1O~e3!G , ~4.11!
e
e

gh

m
le
.

-
for e→0, and

G→
8GF

2M5

243A3MW
4 F11

1

2
~12e!1O~~12e!2!G , ~4.12!

for e→1. Here we see that the width vanishes ase→0 but is
finite ase→1. Specifically, in the former limit the width is
approximately a dimensionless constant timesM3m2/MW

4 .

V. THE HADRONIC CALCULATION

Matrix elements for exclusive 1→2 meson decays ar
most conveniently written in terms of transition form factor
We identify theB̄ meson in 111 as the ground state of th
Mm̄ tower of resonances to which it belongs, and sub
quently label it by0. Consider the ‘‘tree’’~T! diagram of
Fig. 2, for whichB̄5(1 2̄), where 1 is the heavy ‘‘b’’ quark;
the matrix element is parameterized by

FIG. 2. Diagram for ‘‘tree’’ ~T! meson exclusive decay. Num
bers indicate quark labels used in the text~except0, which refers to

the ground-state ‘‘B̄’’ meson!, while letters indicate the eigenvalu
index of meson resonances. One can also consider contact-type
grams, in which the point labeled byn is not coupled to a reso
nance.
^m~p8!u q̄gmQu0~p!&5H ~p1p8!m f 1~q2!1~p2p8!m f 2~q2! for m even,

emn~p1p8!n f 1~q2!1emn~p2p8!n f 2~q2! for m odd,
~5.1!
e

t

where q2[(p2p8)2, and Q and q indicate the fields of
quarks with massesM and m. The light quark fieldq here
refers to the daughter of the heavy quark~3 in Fig. 2!, not the
spectator quark~2 in Fig. 2!, although both are taken to hav
massm. The labelm indicates the eigenvalue index of th
final-state decay product meson (2 3)̄ not coupled to the
flavor-changing current. In the remainder of this section,m
exclusively means this value and not the value of the li
quark mass.

Next, we reserve the labeln in the T diagram for the
meson resonances or contact terms (1 3)̄ coupled to the
flavor-changing current.n carries the momentum transferq2,
which is the kinematic variable of interest in this syste
however, it proves more convenient to use the equiva
t

;
nt

Lorentz-invariant quantityv[p2 /q2 , which indicates the
fraction of light-cone coordinate ‘‘spatial’’ component of th
currentq2 carried by meson0. In the method of calculating
the matrix element~5.1! developed in@12#, one considers no
0→mn directly, but rather the crossed processn→0m above
its threshold (q2>(m01mm)2); in that case, one finds
vP@0,1#:

v~q2!5
1

2F11S m0
22mm

2

q2 D
2A122S m0

21mm
2

q2 D 1S m0
22mm

2

q2 D 2G . ~5.2!
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Here and below we use the same symbolm for the masses o
heavy-light and light-light mesons, since from the index o
can immediately tell which one is appropriate~e.g., m0 is
heavy-light!. Sincev is obtained by solving the quadrat
equation q2v21(mm

2 2m0
22q2)v1m0

250, it should be
pointed out that the branch choice used forv does not affect
the final numerical results for form factors or amplitudes;
two branches simply correspond to the two possible dir
tions of the mesons0 andm̄ in the rest frame ofn. However,
the branch chosen above turns out to greatly facilitate
numerical computations. For some values ofq2 below this
crossed-process threshold,v is complex, and the following
expressions for the form factors must be computed in a
ferent way, as discussed below.

With the aforementioned identifications, we may expre
the form factors entirely in terms of resonance quantities
promised in Sec. II. The notation and form factor expressi
we present here appear in Ref.@14#, while the characteristic
integral expression contained within was first obtained in@9#.
The form factors are explicitly

f 1~q2!5(
n

An~q2!

12q2/mn
2

, ~5.3!

and

f 2~q2!5
1

q2F(n

Bn~q2!

12q2/mn
2

2(
n

An~q2!

12q2/mn
2 ~m0

22mm
2 !G ,

~5.4!

where the pole residue functionsAn andBn are given by

An~q2!5
cn@11~21!n1m#

~q2v2m0
2/v!

Fn0m~v!, ~5.5!

and

Bn~q2!5cn@11~21!n1m11#Fn0m~v!, ~5.6!

and the triple overlap integralFn0m is defined by

Fn0m~v![F 1

12vE0

v

dvfn
1 3̄~v !f0

1 2̄S v
v DFm

2 3̄S v2v

12v D
2

1

vEv

1

dvfn
1 3̄~v !F0

1 2̄S v
v Dfm

2 3̄S v2v

12v D G .
~5.7!

We now compute the invariant matrix element for a curr
coupling of the form (2 ig2 /A2)V31g

m(cV2cAg5), exactly
as for the inclusive decay. Such a calculation is possible
an arbitrary combination ofV and A currents, even though
we presented the matrix element only for a current of
bilinearVm[ q̄gmQ, because the two currents are related
gmg55emngn. The invariant matrix element is simply th
product of a linear combination of the form factors det
mined by the current coupling, multiplied by the propaga
of the flavor-changing current~the ‘‘W’’ ! and finally by a
factor representing the meson formed from the flav
changing current. The last step amounts, via LSZ reduc
e

e
-

e

f-

s
s
s

t

r

e
y

-
r

-
n

of the two-point Green function, to the insertion of a fact
of the meson decay constant. In the T diagram, we as
this meson the labelk and quark structure (5 4̄). Using Eq.
~2.7! to write the decay constantf k in terms ofck , we have
at last

MT5ckA2

p

GFMW
2

~MW
2 2q2!

V31V45* (
n

H 2@~cV
22cA

2 !„~21!k

1~21!n
…#1

q2

MW
2 @~cV1cA!~21!k2~cV2cA!#

3@~cV1cA!~21!n2~cV2cA!#J cnmn
2

q22mn
2

Fn0m~v!,

~5.8!

where the on-shell process hasq25mk
2 . The pseudoscala

parity of the ground stateB̄ has been taken into account
this expression. We remind the reader that in this expres
Fn0m is given by ~5.7! only for n such that mn

2.(m0

1mm)2; other methods must be employed for smallermn
2 , as

described below.
The conversion of the decay constantf k to ck in fact gives

the only surviving factor ofANc in the amplitude, which
means that the weak decay width is proportional toNc , in
agreement with the partonic result of Sec. IV. This may
seen with reference to Fig. 2 by the usual largeNc counting
arguments: The coupling of three mesons~0, m, andn in this
case! appears with the factor 1/ANc, while mesonn is de-
stroyed by theW current, thus providing a decay constant
O(ANc). This part of the diagram alone, which is none oth
than the form factorsf 6(q2), is thusO(Nc

0). The creation of
the mesonk from the weak current gives the remaining fa
tor of ANc. Finally, the width is given by Eq.~3.1!.

The question remains what to do with the contributio
from current-coupled resonances below the thresholds for
T diagram. The expressions listed above are inadequate
cause they assume the reality ofv in the computation of
contour integrals with denominators of the form (v1c
6 i«), where the« arises from the Feynman prescription
the fermion propagators, andc represents other purely rea
numbers arising from the loop calculation. Such integrals
naturally trivial whenv is real and simply lead to step func
tions. However, whenv is complex the results are rathe
more cumbersome~although still tractable in principle!. One
may resort instead to other methods@12# in order to obtain
amplitudes from the below-threshold resonances. The
proach relies on sum rules@9# that are satisfied by the am
plitudes, and are described in Appendix B. The upshot is
the sum rules may be used to describe the below-thres
amplitudes in terms of combinations of values from t
above-threshold amplitudes, a process to which we refe
‘‘backsolving.’’

However, backsolving has drawbacks from the practi
point of view. As the number of resonances below thresh
increases, the number of the above-threshold pole resid
and corresponding accuracies with which these are comp
must increase dramatically to maintain the accuracy of
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1372 57BENJAMÍN GRINSTEIN AND RICHARD F. LEBED
below-threshold residues thus calculated. For transition
the B̄ meson to lightp ’s, it is known@12,14# that the below-
threshold pole residues are very large compared to t
above-threshold fellows, and tend to alternate in si
Clearly, a small uncertainty in the above-threshold calcu
tion magnifies to a large uncertainty in the below-thresh
residues, and the alternating sign suggests delicate canc
tions among the computed residues, which makes the s
tion even worse.

There is a much more efficient method of calculation
we are willing to abandon the requirement that all vertices
the calculation of Fig. 2 are resonant couplings, and al
for quark model-type contact terms. The calculation is ba
upon the observation thatv as defined in Eq.~5.2! is real not
only for decays in the crossed kinematic regionq2>(m0
1mm)2, but also decays in the direct decay kinematic reg
0<q2<(m02mm)2, wherev>1. It therefore makes sens
to redefine v[q2 /p2 rather than p2 /q2 , so that v
P@0,1# in this range. One then finds

v~q2!5
1

2F11S q22mm
2

m0
2 D

2A122S q21mm
2

m0
2 D 1S q22mm

2

m0
2 D 2G . ~5.9!

It is convenient to define the triple overlap integral

F0nm~v![F 1

12vE0

v

dvf0
1 2̄~v !fn

1 3̄S v
v DFm

3 2̄S v2v

12v D
2

1

vEv

1

dvf0
1 2̄~v !Fn

1 3̄S v
v Dfm

3 2̄S v2v

12v D G ,
~5.10!

as well as the contact terms

C1[2
1

vEv

1

dvf0
1 2̄~v !fm

3 2̄S v2v

12v D ,

C2[2vE
v

1

dvf0
1 2̄~v !fm

3 2̄S v2v

12v D 1

v~v2v!
,

C3[2
1

12vE0

v

dvf0
1 2̄~v !Fm

3 2̄S v2v

12v D . ~5.11!

Note that the triple overlap is somewhat different from th
in Eq. ~5.7!, both in the arguments of each wave function a
the definitions@~5.2! and ~5.9!# of v for each case. Further
more, there is some flexibility in how one expresses res
containing these contact terms, since one can use the c
pleteness of the ’t Hooft model eigenfunctions onxP@0,1# to
show(ncnfn(x)51, and from this prove identities such a

(
n

cnF0nm~v!5C22C3 . ~5.12!
of

ir
.
-

d
lla-
a-

f
n

d

n

t
d

ts
m-

After a lengthy but straightforward calculation, one find

f 1~q2!5(
n

An~q2!

12q2/mn
2

1
1

~q2/v2m0
2v!

3$q2C12@11~21!mm1m3#C21C3%,

~5.13!

and

f 2~q2!5
1

q2 H (n

Bn~q2!

12q2/mn
2

2(
n

An~q2!

12q2/mn
2 ~m0

22mm
2 !

1~12r !~q2C11C3!

2@~12r !1~21!m11m1m3~11r !#C2J , ~5.14!

where

r[
m0

22mm
2

q2/v2m0
2v

, ~5.15!

and the pole residue functions are given by@compare~5.3!
and ~5.4!#

An~q2!5
cn@11~21!n1m#

~q2/v2m0
2v!

F0nm~v!, ~5.16!

and

Bn~q2!5cn@11~21!n1m11#F0nm~v!. ~5.17!

Finally, the matrix element for the decay0 → mk, which
unlike Eq. ~5.8! holds for all such decays allowed by kine
matics, is given by

MT5ckA2

p

GFMW
2

~MW
2 2q2!

V31V45* F2~cV
22cA

2 !

3H (
n

@~21!kq21~21!nmn
2#cn

q22mn
2

F0nm~v!

1~21!k11q2C11m1m3C2J 1
q2

MW
2 @~cV1cA!~21!k

2~cV2cA!#H (
n

cn

q22mn
2 @~cV1cA!~21!nmn

2

2~cV2cA!q2#F0nm~v!1~cV2cA!q2C1

1~cV1cA!m1m3C2J G , ~5.18!

where as before,q25mk
2 .
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VI. RESULTS AND DISCUSSION

We computed the weak decay width of a free heavy qu
with massesM52.28→15.00 in units ofgANc/2p using Eq.
~4.6!, theMW→` case. Likewise, we computed the hadron
width using the same range of heavy quark mass and a fi
light quark massm50.56. The expressions used were E
~5.18! and ~3.1!, with definitions~2.8!, ~5.9!, ~5.10!, ~5.11!,
and with sums over all channels0→mk satisfying the on-
shell conditionmm1mk<m0. Both widths are taken to hav
the same overall multiplicative factor 8GF

2 uV31V45* u2(cV
2

2cA
2)2/p.
It is equally possible, in principle, to use~5.8! instead of

~5.18! and backsolve for pole residuesAn andBn defined in
~5.5!–~5.6!, or equivalently the overlap integralsFn0m , us-
ing the expressions in Appendix B whenevermn,m0

1mm , and obtain the hadronic width in this way. Howeve
as discussed in Sec. V, this approach rapidly leads to un
trollably large numerical uncertainties. Nevertheless,
were able to show in some simple cases with only a f
backsolved residues that both methods produce the sam
merical result within a few percent.

It is no more difficult to consider cases other th
MW→`. For example, if one imposes the conditionV2A
condition cV5cA51/2, then Eq.~5.18! is just as valid, but
now one uses the partonic width~4.9!.

Of course, the partonic width is just a single easily eva
ated function of the quark masses. The hadronic width,
the other hand, requires first the solution of the ’t Ho
equation, which is accomplished by means of the Multho
technique described in Appendix A, repeated for as m
resonances as desired. Next, the matrix elements are obt
by taking sums of overlap integrals over these wave fu
tions, as in Eqs.~5.10! and~5.11!. We compute the first 500
eigenvectors but include only the first 50 in our sums o
resonances. The results change very little when more r
nances are included. Finally, the amplitude for a given
clusive process is squared and multiplied by phase spac
give the hadronic width.

Clearly, such a procedure uses a significant amoun
computing time, and therefore it is not practical to comp
the hadronic width at points exceptionally finely spaced
M . In practice, we computed each above-threshold amplit
at values ofM52.28 and each integer mass fromM53.00
to 15.00. The significance of the lower bound is that, w
the given light quark massm50.56, this ‘‘b quark’’ mass
gives a ground-state ‘‘B̄’’ meson just above the threshold fo
producing two ground-state ‘‘p ’’ mesons, i.e., the smalles
value of heavy quark mass unstable under hadronic w
decay.

We then make the empirical observation that the am
tudes for exclusive processesMT(0→mk) are smooth func-
tions of M . We thus obtain the value of the amplitude at
intermediate pointsM by fitting to a fixed power law behav
ior over each interval, either by interpolating for values b
tween adjacent pairs of points where the amplitudes w
computed directly, or by extrapolating from the nearest t
points if we are probing values ofM above the proces
threshold but below the first explicitly computed point.
fact, we find that the exclusive amplitudes do not vanish
k
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threshold and are usually5 monotonically increasing func
tions ofM ~for example, see Fig. 3!, although the rate of this
increase is dependent upon the particular exclusive mode
der consideration. The phase space is a known function
the computed meson masses, and thus the width can be
ably computed at any value ofM in the desired range.

Since the phase space in 111 is singular at threshold@Eq.
~3.1!#, one would expect a plot of widthG vs M to be very
ill-behaved, with dramatic singularities increasing in dens
as M increases. One would expect it to be essential to
some sort of smearing inM to properly test duality between
this hadronic description of theG and the smooth partonic
result. In fact, this does not appear to be the case. We ref
Fig. 4, which is our central result. It is obtained by interp
lating each exclusive decay amplitude, as described abov
intervals ofDM50.01. The remarkable result is that, aft
passing the first couple of thresholds,G appears to be a
nearly smooth function inM , barely sensitive to the phas
space singularities as each new threshold is passed. Thi
sult suggests that the effect of individual higher resonance
quite minimal, as one might expect in 311 dimensions. In
the 111 case, however, the result is all the more surprisi
since now phase space near threshold provides a large
hancement rather than a suppression.

It is interesting to watch the width develop as more a
more resonances are added. In Figs. 5a–5d we include
clusive channels with the lowest 1, 3, 5, and 11 thresho
respectively. We now see explicitly that the full width ov

5In the few exceptions to this rule, the amplitude dips slightly f
values ofM just above threshold, but thenceforth assumes mo
tonically increasing behavior.

FIG. 3. Weak decay amplitudeMT for the exclusive decay to
the lowest mode0→(m50),(k50), as a function of heavy quark
mass M , with light quark massm50.56. The overall factor
2A2/pGFV31V45* (cV

22cA
2) in the amplitude is suppressed for co

venience.
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1374 57BENJAMÍN GRINSTEIN AND RICHARD F. LEBED
the range inM we consider is essentially produced by t
first 11 channels, indicating the decreasing influence of in
vidual higher resonances. The small wave inG above all the
included thresholds is an artifact due to the interpolation r
tine between values ofM at which the amplitudes are explic
itly computed; its small size indicates the smoothness of
amplitudes inM and the reliability of the interpolation.

Another remarkable feature of Fig. 4 is the near-perf
linearity of G for valuesM.7.0. Suppressing the propo
tionality constant betweenG andM , Fig. 4 appears to obe
the asymptotic formG'0.514M20.141. This is surprisingly
close to what is predicted asymptotically for the parto
rate: Suppressing the same proportionality constant in
~4.7!, one predictsGpart5

1
2 M (11O(1/M2)).

One may ask whether the strength of the peaks in Fig.
large enough that the mass-smeared partonic and had
widths nevertheless disagree. That is, local duality app
remarkably well satisfied, but perhaps global duality actua
fails by concealing a large portion ofG(M ) in the very nar-
row threshold peaks. In this scenario, the appar
asymptotic smoothness of Fig. 4 fools us, for the density
threshold singularities increases withM so rapidly as to push
the curve of hadronicG(M ) out of agreement withGpart(M )
for sufficiently largeM . We now argue that this possibilit
does not appear to be realized, at least numerically. Le
smear inM over a region of sizeD, 1!D!M .6 Owing to
the approximate linearity of squared meson masses in
excitation number, there are;M3D thresholds in this re-

6In practice, we use a normalized Gaussian window function w
a mean ofM and a variation ofD, although the result should b
independent of the particular form used.

FIG. 4. The full decay width for the sum of exclusive modes
the decay0→mk as a function of heavy quark massM , with light
quark mass m50.56. The overall factor 8GF

2 uV31V45* u2(cV
2

2cA
2)2/p in the width is suppressed for convenience. The das

line is the tree-level parton result, Eq.~4.6!.
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gion, and the contribution to the smeared rate from th
phase space near the threshold scales asM 25/2 for each.7 We
observe empirically that the magnitudes of amplitudes fi
appearing at a given threshold massM thr tend to evolve ap-
proximately no faster than asM thr

20.6. It follows that the con-
tribution to the smearedG(M ) from the region of widthD
scales approximately asM 20.7. For the border region, wher
one of the mesonsm,k is highly excited and the other is nea
the ground state, the phase space is seen to scale asM 22, but
the number of such states is only;MD, so again the area
under these peaks contributes little toG(M ). Finally, the
phase space far above a given threshold scales asM 23,
which means that, given the density of states for vario
eigenvalue indices, amplitudes cannot on the average g
with M above their respective thresholds faster thanM1/2 for
k@1 andm@1, M3/2 for one of m,k5O(1) and the other
@1, orM2 for m andk5O(1), orelse the linear behavior o
G(M ) will be violated. In fact, the amplitudes we have com
puted all obey these constraints. We see that the linear
havior observed requires a delicate balance of numbers
mass dependences of amplitudes versus excitation num
and we hope to obtain analytic arguments for this remarka
behavior in the future.

What are we to conclude from this result? The ’t Hoo
model is exactly soluble, so it must be the case that
fully-dressed parton diagrams give results agreeing with
hadronic calculation; indeed, this is how the hadronic pro
lem was solved in the first place. The partonic width co
puted in~4.6! represents only the Born term in an expansi
in strong couplingg, so the addition of gluon loops is appa
ently necessary to bring the two results into agreement.
small discrepancy between the curves may have this ori
or it may simply be a limitation of the numerical accuracy
the calculation. However, it is interesting to note that the t
curves appear to differ asymptotically by a constant, wh
for plots linear in M is a 1/M correction. Therefore, we
suggest that this effect is genuine and not a numerical a
fact. In Fig. 6 we superimpose on the hadronic width of F
4 the curveGpart(M )•(110.15/M ), and see that the fit is
outstanding. From this result, we learn that local duality
this system is violated badly only for the first few resonanc
and very close to thresholds of higher resonances, and
1/M effects appear to be only at the few percent level
M.7. It would be very interesting to see explicitly wha
happens to the partonic inclusive width at the one- or tw
loop level.

One natural idea of how to improve the Born result is
replace the bare quark masses with the renormalized va
This would not sum all gluon corrections, but it would in
clude an important subclass of them. Unfortunately, due
the result~2.2!, masses below 1.0~such as that of our light
antiquark! haveimaginaryrenormalized values, and then ou
whole interpretation of phase space, essential for the ca
lation of the width, becomes ambiguous.

VII. CONCLUSIONS

We have calculated the nonleptonic decay width of
heavy-light meson in the context of the ’t Hooft model as

h
7This is verified from~3.1! and the observation that, forM@1,

m0}M .

d
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FIG. 5. ~a! The full decay width as a function of heavy quark massM , with light quark massm50.56, including only the exclusive mod
with the lowest threshold value~corresponding tom 5 k 5 0!. The scale is the same as in Fig. 4.~b! Same as~a!, except now including the
exclusive modes corresponding to thethreelowest threshold values.~c! Same as~a!, except now including the exclusive modes correspo
ing to thefive lowest threshold values.~d! Same as~a!, except now including the exclusive modes corresponding to theelevenlowest
threshold values. Observe that this figure is almost indistinguishable from the full result, Fig. 4.
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function of the bare heavy quark mass, both for the B
term of the free partonic decay~which we called the ‘‘par-
tonic width’’! and the full sum of allowed hadronic deca
~the ‘‘hadronic width’’!. We found that these two quantitie
approximately agree at leading order inM , with the hadronic
width being slightly larger. Both quantities are observed
grow linearly and smoothly for largeM , despite the effects
of numerous phase space threshold singularities in the
ronic case. The slight discrepancy between hadronic and
tonic widths is well-fit by a 1/M correction, Ghadr(M )
'Gpart(M )•(110.15/M ).
n

o

d-
ar-

Assuming that the small discrepancy between the parto
and hadronic results is genuine~rather than a numerical ar
tifact! leads one to conclude that nonleptonic heavy-lig
meson decays in 111 dimensions cannot be described
terms of an OPE that lacks 1/M corrections, and it naturally
leads one to believe that the same conclusion is true in 311.
Since the lowest order of the OPE is simply the naive f
quark picture, this result also has obvious implications
the application of quark models in such decays. Another
cisive test of quark-hadron duality in 111 is whether anni-
hilation diagrams, in which the valence quarks in the dec
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1376 57BENJAMÍN GRINSTEIN AND RICHARD F. LEBED
ing meson annihilate through a weak current, are suppre
compared to spectator tree diagrams~Fig. 2!; these studies
are well underway@11#, and results will be forthcoming
shortly.

A number of unanswered questions not addressed by
work include the effects of loop corrections to the Born a
plitude free quark decay, the dependence of decay width
the light quark mass, the effects of including finite mes
strong decay widths@which are O(1/Nc)], the effects of
identical final state quarks or mesons, multiparticle fin
states~also suppressed by powers ofNc), and so on. While
‘‘two-dimensional phenomenology’’ cannot be used as
quantitative substitute for the standard four-dimensional
riety, it clearly indicates the limitations of the standard lo

Note added. An interesting recent work by Blok@16# sug-
gests that global quark-hadron duality at high energies in
’t Hooft model with massless quarks may be achieved
including smearing through the 1/Nc-suppressed widths o
resonances. Our calculation, on the other hand, does no
clude finite-width effects but nevertheless achieves an ef
tively smeared result, even at relatively lowM , which sup-
ports the claim of duality at leading order.
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APPENDIX A: THE MULTHOPP TECHNIQUE

This technique@12,15# is used to solve numerically cer
tain singular integral equations in a systematic expansio
basis functions. Specifically, it is used to solve equations
the form

FIG. 6. The full decay width of Fig. 4 compared to the tre
level parton result of Eq.~4.6! corrected by a 1/M effect:
Gpart(M )•(110.15/M ).
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c~x!5E
a

b

dyK~x,y!Pr
1

~x2y!
•

dc~y!

dy
, ~A1!

wherec(a)5c(b)50. The ’t Hooft equation is seen to b
of this form after an integration by parts. Generally speaki
one maps the intervalyP@a,b# to uP@0,p# by a function
linear in cosu, and then expands in a Fourier series inu.
Equivalently, such functions written directly in terms ofy for
each mode turn out to be the product of a common fac
@Ay(12y)# times Chebyshev polynomials of the seco
kind, Un(y).

In particular, we use a slight variant of the Multhopp tec
nique for the special case thatK(x,y) is independent ofy.
The variable transformation is

x5
11cosu

2
, y5

11cosu8

2
, ~A2!

in terms of which the ’t Hooft equation may be written

m2

2
fMm̄~u!5

~M21m2!2~M22m2!cosu

sin2u
fMm̄~u!

1E
0

p

du8
dfMm̄~u8!

du8
Pr

1

~cosu2cosu8!
.

~A3!

Expanding

fMm̄~u!5 (
m51

`

amsin mu, ~A4!

and using the integral (m50,1, . . . )

E
0

p

du8Pr
1

~cosu82cosu!
cosmu85p

sin mu

sin u
, ~A5!

we are led to a series equation for the eigenvector coe
cientsam .

We truncate the series after modem5N, and evaluate
both sides at the equally-spaced values ofu ~Multhopp
angles!,

uk[
kp

N11
, M51 . . .N, ~A6!

which are a convenient choice because of the inversion id
tity

(
k51

N

sin kum sin kun5
1

2
~N11!dmn , ~A7!

to obtain at last the finite eigenvector system@compare Ref.
@12#, Eqs.~A6!–~A7!#
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m2an5
4

~N11! (m51

N

(
k51

N

3
sin uknsin ukm

sin uk
H ~M21m2!2~M22m2!cosuk

sin uk

1mpJ am . ~A8!

The series expansion~A4! transforms the normalization
condition*0

1dxf(x)251 into

152 (
m51

N

mam(
n51

N

nan@11~21!m1n#@~12~m2n!2!

3~12~m1n!2!#21, ~A9!

while the phase of the eigenvectors may be chosen by no
the asymptotic forms

f~x!→22Ax (
m51

N

~21!mmam1O~x!, ~A10!

asx→0, and

f~x!→12A12x (
m51

N

mam1O~12x!, ~A11!

asx→1. Note that the Multhopp solution requires the eige
functions to vanish as square roots at the endpoints, in c
trast to the dynamically-generated exponents of the exac
lution given by Eq.~2.5!. Great care must be exercised wh
extracting information near the endpoints of the numerica
calculated wave functions.

In terms of the eigenvector componentsam , the vertex
function F may be written for realx,

F~x,0!5
2p

Ax~x21!
(

m51

N

~21!mmam~A12x2A2x!2m,

~A12!

and

F~x.1!5
1p

Ax~x21!
(

m51

N

mam~A1x2Ax21!2m.

~A13!

These regions are the only ones for which we need exp
expressions; wheneverxP(0,1), the ’t Hooft equation~2.4!
and the definition~2.6! may be employed to rewriteF(x) in
terms off(x).

Because of the singularities inF at x50 and 1, when
numerically computing overlap integrals such as in E
~5.7!, ~5.10!, or ~5.11!, one must sample the region near t
singularities more heavily. Moreover, in contrast to the n
merical Multhopp solution forF(x) given above, the singu
larities in the exact solution behave asFMm̄(x→02)
;(2x)bM21 and FMm̄(x→11);(12x)bm21. Such a dif-
ference can also lead to substantial errors when compu
overlap integrals; the answer is to increase the numbe
ng

-
n-
o-

-

it

.

-

ng
of

eigenvector modes in the wave function solution, so as
decrease the size of the region where the asymptotic be
iors differ.

Finally, the quantitycn , which is the meson decay con
stant up to a normalization factor@Eq. ~2.7!#, is simply given
by

cn[E
0

1

dxfn~x!5
p

4
a1 . ~A14!

APPENDIX B: AMPLITUDE SUM RULES

The asymptotic forms of ’t Hooft model solutions may b
used to obtain constraints on the form factor expressio
such as Eqs.~5.3!–~5.4!, that are derived from them, as
shown in @9#. There it is seen that, asuq2u→`, the form
factors vanish at least as fast asuq2u11bm, wherebm is de-
fined in Eq.~2.5!. By symmetry there is also a term that fal
off as uq2u11bM, but sinceM.m, we havebM.bm , and the
slower fall-off dominates.

It is then apparent from Eqs.~5.3!–~5.4! that the pole
residue functionsAn(q2) andBn(q2)/q2 must also vanish a
least as fast asuq2ubm. But ~5.3! and ~5.4! have a very sug-
gestive form: They explicitly display the pole-dominance n
ture of the large-Nc limit, sinceAn(q2) andBn(q2)/q2 are
expected to have no non-analytic behavior for finiteq2, and
moreover, these expressions are written very convenie
for an application of Cauchy’s theorem. If we choose o
contour such that it encloses all of the complexq2 plane
except for the part of the real axis where the resonance p
lie, then using Cauchy’s theorem with the vanishing of t
residue functions foruq2u→` gives @9#

(
n

Ln~q2!

12q2/mn
2

5(
n

Ln~mn
2!

12q2/mn
2

, ~B1!

whereLn(q2)5An(q2) or Bn(q2)/q2, and the sums overn
are restricted to the appropriate parities. Each residue fu
tion thus needs only to be computed at the value of its c
responding mass eigenvalue.

This sum rule also gives us enough information, in pr
ciple, to obtain residue functions that are not convenien
computable in a direct fashion@12#. Let t denote some
threshold inn, below which it is unwieldy to compute the
residue functions directly. Then, if we choose at leastt val-
ues ofqi

2 , i 51 . . . t above threshold, we obtain a solvab
t3t linear system of equations:

(
n<t

Ln~mn
2!

12qi
2/mn

2
52(

n.t

Ln~mn
2!

12qi
2/mn

2
1(

n

Ln~qi
2!

12qi
2/mn

2
.

~B2!

Adding additionalqi
2 simply overconstrains the system an

provides consistency checks. We refer to this approach in
text as ‘‘backsolving,’’ to indicate that it is an indirec
method of solution.

We also note one other sum rule@9,12#, which is simply
derived by taking the limitq2→` in ~B1! and recalling that
the form factor expressions vanish in this limit:

(
n

mn
2Ln~mn

2!50. ~B3!
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