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Several years ago it was conjectured in the so-called Roma approach that gauge fixing is an essential
ingredient in the lattice formulation of chiral gauge theories. In this paper we discuss in detail how the
gauge-fixing approach may be realized. As in the uggalige-invariantlattice formulation, the continuum
limit corresponds to a Gaussian fixed point that now controls both the transversal and the longitudinal modes
of the gauge field. A key role is played by a new phase transition separating a conventional Higgs or Higgs-
confinement phase from a phase with broken rotational invariance. In the continuum limit we expect to find a
scaling region where the lattice correlators reproduce the Euclidean correlation functions of théctargket
gauge theory, in the corresponding continuum ga{i§6556-282(98)03901-0

PACS numbsgs): 11.15.Ha, 12.15:y, 11.30.Rd

I. INTRODUCTION ping that acts on the Fourier space of the lat#cgfield, is
qualitatively different from the corresponding mapping de-
The great difficulty in constructing chiral gauge theories,fined by acontinuumgauge transformation. The result is that
such as the standard model, using lattice regularization ithe lattice effective action suffers from generic violations of
related to thedoubling problen{2-5]. In lattice QCD, spe- gauge invariance which are not controlled by any small pa-
cies doubling occurs when the discretized fermion action hasameter. We know of no method that ensures the smallness
an unwanted symmetry that should be anomalous in the corof these violations on the entire lattice gauge orbit, at the
tinuum. When one uses Wilson fermions, the Wilson termprice of tuning any finite number of parametdsee Sec.
eliminates the doublers at the price of breaking all the axialV C or the review articld 7] for more details
symmetries explicitly. In the continuum limit, one expects to  In the so-called Roma Approadh], it was conjectured
recover the axial symmetries, except the anomalous,by  that gauge fixing is a crucial ingredient in the lattice formu-
tuning the fermion hopping parameter to a critical value. lation of chiral gauge theories. A gauge fixing action should
In the lattice discretization of a chiral gauge theory, oneassign a bigger Boltzmann weight to a smooth gauge field,
has to account for the fact that a Weyl fermion in a complexrelative to a rough field that belongs to the same gauge orbit.
representation contributes to the gauge anomaly. This meaf$is should reduce lattice-artefact violations of gauge invari-
that a lattice action for a single chiral fermion cannot beance, because the latter are associated with the roughness of
gauge invariant. We will assume below that, as in the conthe lattice gauge field.
tinuum, the lattice fermion action involves a sum over dif- In spite of this promising picture, the gauge-fixing ap-
ferent complex representations, whose total gauge anomatyroach has remained elusive. A naive discretization of the
is zero. The question is to what extent the violations of gaugéorentz gauge-fixing action leads to a lattice action that has
invariance, coming from the individual representations, cana dense set dattice Gribov copies with no continuum coun-
cel each other. terparts. These lattice artifact Gribov copies exist even for
Consider theregularizedeffective action obtained by in- the classical vacuumRemarkably, the proliferation of Gri-
tegrating out an anomaly free set of chiral fermions. In thebov copies on the lattice resembles the fermion doubling
continuum, one can use dimensional regularization to definproblem in a number of waysAs a result, the Boltzmann
the effective action for smooth gauge fields that vanish rapweight of too many rough lattice configurations is not sup-
idly at infinity. Using the freedom to add local counter-terms, pressed.
the violations of gauge invariance are proportional to the In this paper we construct a lattice gauge-fixing action
dimensionless parameter=d— 4, and so they vanish in the that accommodates this proble(Bee Ref[8] for a prelimi-
limit e—0. This extends to topologically non-trivial back- nary version of this work.The gauge-fixing action is asso-
ground fields, using for example thefunction regulariza- ciated with a new generic phase diagram. We argue that, in
tion [6]. this phase diagram, there is a Gaussian critical point that
On the lattice one encounters a fundamentally differenbelongs to the universality class of a gauge-fixed continuum
situation. The lattice spacing is a dimensionful parametetheory. In comparison with the gauge-invariant lattice defi-
that plays a dual role. First, it provides a UV cutoff, by nition of QCD, the weak coupling limit here controls not
replacing the infinite range of momentum integrals with anonly the transversal modes of the gauge field, but also the
integration over the periodic Brillouin zone. In addition, the longitudinal ones.
lattice spacing enters th@nulti-valued mapping from the As discussed above, gauge invariance of the target con-
compact link variables), ,, to the Lie-algebra valued,  tinuum theory, as well as the residual Becchi-Rouet-Stora-
field. These differences in the global structure imply that aTyutin (BRST) invariance, are both explicitly broken on the
genericlattice gauge transformation, considered as a mapiattice. By tuning a finite number of counter-terms, one
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hopes to recover BRST invariance in the continuum limit,changes sign. In a weakly coupled theory, the actual location
provided the fermion spectrum is anomaly frEE. The of the transition should be close to its tree-level value, and
BRST identity that requires the vanishing of the renormal-near the transition one expects the onset of a scaling behav-
ized gauge boson mass?=0, plays a key role. Since the ior governed by renormalizedcontinuum perturbation
regularization is not gauge invariant, a mass counter-terrtheory.

has to be introduced, and its parameter needs to be tuned, in Our aim is to achieve criticality of the lattice vector field,
order to enforce this BRST identity. Usually, a negativevery much like the way this is done in the familidr*
renormalized mass-squared indicates spontaneous symmetheory. However, going from a spin-0 to a spin-1 field pre-
breaking. Here we encounter a new feature, namely, theents new difficulties. The lattice theory is formulated in
gauge fielccondenses if its mass-squared parameter becomégrms of the link variablesJ, ,, which are group-valued
too negative. This implies that the new critical point is lo- parallel transporters. On the other hand, renormalized pertur-
cated on the boundary between a conventional phase, whidation theory, that governs the scaling region, is more natu-
is invariant under lattice rotations, and a new phase whereally formulated in terms of the Lie-algebra valuag field.

the lattice rotation symmetry is broken spontaneously by th@hus, it takes some trial and error to find the-dependent
vacuum expectation valu¢/EV) of the gauge field. action that best suits our purpose.

The construction of the gauge-fixing action is presented in Another complication arises because not every renormal-
Sec. Il. The main results afa) the gauge-fixing action has a izable vector theory is unitary. A unitary, physical Hilbert
unique absolute minimumy, =1, and (b) perturbation space exists if and only if the vector theory is actually an
theory around this minimum is manifestly renormalizable. Inanomaly free gauge theory in a gauge fixed form. This re-
Sec. Il we discuss a simple chiral fermion action. The va-quires us to choose the lattice action, such that the marginal
lidity of perturbation theory implies the onset of a scaling gauge symmetry breaking terms in the tree-level vector La-
behavior in the weak-coupling limit. Up to the grangian have the form
regularization-dependent counter-terms, the continuum La- 1
grangian that controls the scaling behavior can be read off - "
from the marginal and relevant terms of the lattice action. zgo(gauge conditiojf. @D
The scaling region should therefore faithfully reproduce the
correlation functions of the target chiral gauge theory, in theAn appropriate Faddeev-Popov ghost action will be neces-
corresponding gauge. sary too.

Without the new gauge-fixing action, the fermion action
of Sec. Il QO(_as notlead to a chiral gauge theory in the B. A higher-derivative Higgs action
continuum limit. The longitudinal modes fluctuate strongly, ) o ) )
and their non-perturbative dynamics ultimately renders the OUr starting point is the lattice action
fermion spectrum vector-like(This applies to many other _
chiral fermion proposals, see Ref2,9].) In the second part S=Sc(U) +Su(4,U). 22
of this paper, we examine the dynamics of the lattice longi- . . . .
tudinal modes from a broader point of view. We explain tﬁe_HereSG(U) is the usual plaquette action. The Higgs action
problems created by this dynamics, and how they may be
solved within the present approach.

In Sec. IV we discuss .the Iatticg effective action, apd the Sy=tr>, (—xk¢'OU)d+ ke O2(U)g), (2.3
role of lattice artefact Gribov copies. In Sec. V we discuss
the complete phase diagram in the limit of a vanishing gauge
coupling. In Sec. VI we explain how our approach evadesVhere
the no-go theorems. Several open guestions are discussed in

Sec. VII, and our conclusions are offered in Sec. VIIL. ny(U)=2 (8crayUs it 5x—;,yU$ )83y,
“

II. CONSTRUCTING THE LATTICE GAUGE-FIXING 2.4

ACTION . . . .
is the standard nearest-neighbor covariant Laplacian. The lat-

A. The phase transition associated with a critical vector boson tice spacinga is equal to one. BothJ, u and ¢, take values

This section is devoted to a step-by-step construction of? & Lie groupG. The first term on the right-hand sideHS
the gauge-fixing action. As discussed in the Introduction, th®f Ed. (2.3) is a conventional lattice Higgs action, whereas
lattice-regularized theory has no symmetry that protects th1€ second term is a higher derivati¢t¢D) action. _
masslessness of the vector bosons. Therefore, in the relevant (HD actions were recently discussed by Jansen, Kuti and
part of the phase diagram, the lattice vector field is generik-iu [10]. Here we are interested in a different critical point
cally not critical. Now, according to the standard lore, theffom the one studied in Ref10]. At the technical level, this
correlation length should diverge close to a continuous phas@/ows us to introduce only a Laplacian-squared HD term,
transition associated with the condensation a Bose field. IWhereas for the purpose of R¢L0] it was crucial to intro-
this paper we wish to apply this to the lattice vector field. duce also a Laplacian-cubed one. _

As a preliminary requirement for a continuous transition, 1ne action Eq(2.2) is gauge invariant, whereTthe lattice
one needs a higher-power term, that stabilizes the classicgpuge transformation is given by, ,—g.Uy .9, , and
potentialV(A,) when the coefficient of the quadratic term ¢,— g,¢y for g,e G. Now, since¢, e G too, we may use



134 YIGAL SHAMIR 57

the lattice gauge invariance to eliminate completely #he | x|\ 12
field. Note that this operation affects or, . We introduce <AL= 9\ 22] k<0. (2.10
the notation 04K

_ Equation(2.10 exhibits the mean-field critical exponent 1/2.

U)=S U —. 2. ] e or
SU(U)=Su(¢ )|¢X ! @9 It is easy to check that this is the absolute minimum of the
. . . classical potential.

ThedSUbeC”pt oBy stagds for \k/_ector. t?]H can bg :_?C?V' We note that Eq(2.10 is invariant under arbitrary S@)

ere Trom S‘/A y ~ making e substitution rotations, reflecting the symmetry of the approximate poten-
Uy = &xUnudxrp- (The significance of thed, field, 5 gq. (2.9). When higher-order corrections are taken into
which is associated with the longitudinal degrees of freedomgccqynt, the rotational symmetry of the potential is reduced
is discussed in Sec. V and Sec. VI to the lattice hypercubic symmetry.

We will denote the first formulation of the theoffq. Below, the phase with a non-zero vector condensate will
(2.2)] as theHiggs picture The alternative formulatiofEq. e genoted as the FMD phase. We will speak about the FMD
(2.5] where onlyU,, (but not¢,) is present, is called the yansition, referring to the transition from the rotationally in-
vector picture The equality of the partition functions in the yariant phase to the FMD phase in the laigeegion. FMD

two pictures extends to observables. Any observable in thetands forferromagnetic directional The preferred space-

vector picture is mapped o a gauge-invariant observable i ime direction of the FMD phase is defined by the vectorial

Higgs picture, and vice versa. Thus, we are dealing with tWC{/EV. For gy+0, there are no Goldstone bosons in the FMD

[rri%hematmally equivalent formulations of the same theoryphase, because the lattice rotation group is discrete. The lim-

) ) ~ L _ iting go=0 theory is discussed in Sec. V, and in particular
In this section we assume>1. The physics in this pa- e explain there in what sense the FMD phase is ferromag-

rameter range is more easily accounted for in the vector picsgtic.

ture, which is used below to study the classical potential, and

to set up the weak-coupling expansion. In the vector picture,

the gauge non-invariance of the action resideS,in There-

fore, we will ultimately demand that the marginal terms in ~ We now want to study fluctuations around the classical

D. The weak-coupling expansion

S, have the form of a gauge-fixing actiocf, Eq. (2.1). vacuumU, ,=I (equivalentlyA =0) in the rotationally in-
variant phase, close to the FMD transition where the theory
C. The classical potential defined by Eqs(2.2—(2.5) is expected to be critical. The

. . . . FMD transition is given by =0 in the classical approxima-
For simplicity we consider the classical potential in the . A tioned i 1 W
U(1) case. The essential features generalize to the nofio"- AS mentioned earlier, we are assumirg>1. We,

Abelian case. Making use of the standard weak-coupling ext_heref_ore, focus on thg HD term in its v_ector plcfture form.
Relaxing the assumption of a constat field, we find

pansion
. _ _ 2
Usen=XPiG0A ar2) (2.6 K¢'OXU) bl g 1= Kgé(@ A’:A")
and considering a constaAt, field, the actionS, leads to 2
the following classical potential: +92 > A,ZL +--, (2.1
o
Vo= kF(GoA,) + K F*(GoA,), 2.7 , N
where the dots stand for irrelevant operatarg. is the back-
ward lattice derivative, defined as, f,=f,—f,_; for any
F(goA,) =22 [1-cos(goA,)]. (28 functionft,.
. Equation(2.11) contains a longitudinal kinetic term. We
Note thatSg is zero for a constant Abelian field. define
For k>0, the absolute minimum of the classical potential 1
is A,=0 (mod 2w/gy). Since the quadratic term i T T2 21
12 Kg()1 ( . 2
comes only from thec-term, a non-zero vector condensate 280

arises fork<<0. The classical features of the transition can be
determined by keeping only the leading term in the expanand we will assume thaf, is an O(1) parameter. This
sion of F(goA,), separately for thee- and k-terms. (This ~ Means that the longitudinal kinetic term belongs to the tree-
ul . . . .
approximation is consistent fdi|<«.) The result is the !evel Lagrang|an. Remem_ber that a transversal kmet'? term
. : is provided by the gauge-invariant plaquette act®n Fi-
quartic potential .
nally, we assume that the tree-level vector boson mass is
2 zero. Under these assumptions, the tree-level vector propa-
S A
§7

"

(2.9 oatoris

Vo~ k03>, A2+ kgl
I

Lon [
Equation (2.9 closely resembles the potential of &* G V(p)znw(p)tfonw(p)1 2.13
theory. For small negative, the minimum is # 2
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where Going to the vector picture and applying the weak-coupling
expansion, we have
I (p)=6,,—P.P,/p% (2.14
pA PV G Puby P Vilgo1=0A,— (GoA,)3+ - . (219
1T, (p)=p,p, /P (2.19  |tis easy to check that the desired mixed term is now present
in the tree-level vector action. We comment that, in the
and f)Mzz sin@,/2). Higgs picture,V, is a gauge-invariant local vector field,

Massless weak-coupling perturbation theory is defined byvhose expectation value serves as an order parameter for the
the vector propagator Eq2.13, and by a set of vertices FMD phase(The corresponding order parameter in the vec-
which can be read off from the lattice action using E2j6)  tor picture is the expectation value VL|(/,X:| .) At the clas-

in the usual way. sical level,(V,)=go(A,), where the latter is given by Eq.
(2.10.
E. The gauge-fixing action For the Laplacian-squared HD actipsee Eq(2.3)], it is

evident that, ,=1 is the unique absolute minimum fail
configurations, and not only for the constant ones considered
. .77 in the classical potentidwe assumep,=1). This property,
at_)le According o th_e standard Iore,. repormah;a_bﬂﬂy M- \which is necessary to validate the weak-coupling expansion,
plies a Lorentz invarianscaling behavior in the vicinity of applies to the new HD actiof2.16 as well. The proof is
the Gaussian critical poirgo= 1/« =0. The scaling behavior given inIl. The symmetric combination used in the defini-
is achieved by tuning a finite number of counter-terms, thation of B, [Eq. (2.19)], which does not affect the marginal
correspond to the relevant and the marginal operators. term contained irBX AV, , is essential for the proof.

At this stage, the marginal gauge symmetry breaking \ye define the lattice gauge-fixing action to be
terms in the tree-level vector actigpee Eq.(2.11)] do not

have the form of a gauge-fixing actiazf, Eq.(2.1). The way Sg%l-(u)zga-lb(gﬁ,u)w . (2.20

to remedy this is to add another term to the HD action. There X

are two options. The new term can be chosen to cancel thgg expected, Sn#. has the classical continuum limit
quartic term in Eq(2.11). The remaining marginal term— (1/2¢,)(9- A+gA?)2. Because of the irrelevant terms it con-

the longitudinal kinetic term—has the form of a gauge-fixingtains’ one cannot WritSSf" as the(sum overx of the) square

action for the linear Lorentz gaug® A=0. Alternatively, of a local function of theU ,-s. Consequently, the gauge-
Mmoo )

t_he new HD te”‘;‘ can Igad 10 a mixed marginal term PrOPOr, ed lattice action is not invariant under BRST transforma-
tional to (9- A)A“. In this case one recovers the non-linear

gauged-A+gA?=0 tions.
The linear gaug®- A=0 is more familiar, and less com- It is interesting that the breaking ¢gauge aniBRST

licated to impl ti turbation th M th invariance is a common feature of the chiral fermion action
picated to impiement in perturbation theory. Moreover, the, 4 y,q gauge-fixing action. In the case of the gauge-fixing
above non-linear gauge is consistent only fof1)U or

. . . action, it has to be so because of a theorem by Neuberger
SUN)xU(), where_as the linear gauge is consistent for an%ﬂ, which asserts that any lattice BRST-invaridgauge-
g?”%e group. Tue Ilnear_ gauge has, hOWe‘;]e“ onbe_.\l_te_zchnlc ed) partition function must vanish due to lattice artefact

Isadvantage. T e quartic term in HR.1) is t estabilizing g4 copies. We return to the role of lattice Gribov copies
term of the classical potentifdee Eq(2.9)]. In its absence, in Sec. IV
one has to reanalyze the classical potential, and make sure S
that it is stabilized by a higher-power teriin practice this is
an A® term). This task is done in Ref12], which is hence-
forth referred to adl . St=Sg+ S+ St s, (2.2

Here we will consider only the non-linear gauge. Since 9 P

the necessary mixed term contains a derivative, one Capor the non-linear gauge, the continuum Faddeev-Popov ac-
modify the HD action while leaving the classical potential tion involves the operatofwe suppress the group structure
intact. This simplifies our task, as the largestudy of the  constants 9°+igA-d+g{A,d+igA}. The last term is ab-
phase diagram in Sec. Il C remains valid. The new HD acsent in the case of the linear gauge. For the discretization of

In view of the presence of kinetic terms for all polariza-
tions, lattice perturbation theory is manifestignormaliz-

Before we introduce fermions, the complete lattice action
(in the vector picturgis therefore

tion is 9% we take the standardree) lattice Laplacian. We are dis-
1 cretizing a second-order operator, and our choice avoids the
gl tr O2(U)p+2BS AV, |, appearance of any EP doublers. For th_e interaction terms,
HD 250907 E ( ¢V % wH any lattice operator with the correct classical continuum limit

(2.16 should do. For the discretization gfA- 9, for example, one
can takez ,V,A  whereA , is the antisymmetric difference
Vo int Ve 2 operator.(Since BRST symmetry is broken anyway by the
Bx:E (f) ' (2.17) gauge-fixing action, we make no attempt to preserve any
” exact relation between the discretized versionssdfand
A-43.) We note that the ghost fields contribute to the effective
potential only through loops, and so they do not modify the

1
= (T “_
Viu 2i (hxUubxsp—H.C). (2.18 tree-level considerations.
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S is the counter-term action. The role 8f; is to enforce ~ gauge-fixing actions, there is a lot of freedom in the choice
BRST invariance in the low momentum limit of lattice per- of the chiral fermion action. We consider heie the vector
turbation theoryf1]. The BRST symmetry is violated in par- picture an action which is the most economic in the number
ticular by (margina) SO(4)-breaking lattice operators. Of fermionic degrees of freedofil4]. (For related work see
Therefore, enforcing BRST invariance should also restoréRefs. [15,16.) Other fermion actions have certain advan-
full SO(4)-invariance in the continuum limit. The counter- tages over the one presented here, and in particular they can
term action is more naturally written in terms #f,. We  reduce the required fine-tuning.
define S as a local functional of th&J ,-s by tradingA,, According to Ref[14], one introduces a two-component
with V,, using Eq.(2.19. (The second term in the expansion lattice fermion fieldy, , to account for a single Weyl fermion
of V,,, which breaks S@¥) invariance, is needed only for the in the target continuum theory. The fermion actior(ssip-
dimension-two mass counter-term. In all other cases ongressing coordinates summations
simply replacegjoA,, Wizth V) W
_ The BRST identitym; =0, which says that théreno_rmal— S = E XD, (U)x—— (xOx+H.c), (3.1)
ized) vector boson mass must vanish to all orders in pertur- 3 4
bation theory, is consistent with taking the continuum limit
at the FMD _transition. As a mass counter-term one can take Dyy,u(U)= %(5X+;L,yux,“— 6X,,;,yu;#). (3.2
the k-term in Eq. (2.3). This means thatx is tuned to
kci(Do.&0), where in perturbation theory .,  Here[,, is the free lattice LaplaciapEq. (2.4) for U, ,
=3,-1Cn(£0)92™ V. Note that the coefficient of the mass =17, and x,xy= €.sXx.aXy. 5= Xx€Xy Where € is the anti-
term in Eq.(2.9) is kg3. The absence of a@(1/g3) term in  symmetric two-by-two matrix. We assunve=0(1). The
the expansion ok, is in agreement with the vanishing of first term in Eq.(3.1) is the naive lattice discretization of the
the tree-level vector boson mass. continuum Weyl action. The second term is a Majorana-

In this paper we have simplified things by consideringWilson (MW) term, that breaks explicitly gauge invariance
only the most important counter-term, namely, theas well as the fermion number symmetry. The latter is un-
dimension-two mass term. In the case of the non-lineawvanted, because fermion number is not conserved in the con-
gauge, the next most important counter-term is theinuum theory. . . _
dimension-four SQY)-breaking termZMAfL. As for the lin- In order to understand the properties of the lattice fermion
ear gauge, the classical potential is stabilized byA&merm, path integral, it is convenient to recast the fermlcﬁactlon Eq.
and (EMAi)Z too occurs only as a counter-term. In this case,(3.1) in terms of four components fieldgy and ¢y . By
the effect of the dimension-four non-derivative counter-definition, P ¢#y=yx and Priy=€ex', where PR,L:%(l
terms is discussed ihl. One finds that the conventional +.,.) denote chirality projectorsfy, is not an independent
(hyper-cubic invariantphase and the FMD phase both ex-fig|d, and is given by
tend into the higher-dimensional phase diagram. Also, the
FMD transition remains continuous when the dimension-four Im=vlC. 3.3
counter-terms are tuned to their critical values. The crucial MM
features leading to these conclusions @eit is justified to  Here( is the antisymmetric four-by-four charge conjugation
expandU , y.p.to a finite order |rAH (equal to the dlmens[on matrix, obeyingC?=—1, YILC: ~Cy,, and ysC=Crs.
of the stabilizing termwhen looking for the absolute mini- |, tarms of these four component fields, the fermion action
mum of the potentialib) the coefficients of the counter- takes the form
terms areO(1), whereas the coefficient of the gauge-fixing
action isO(l/gS). Since these features are true in the case of _
the non-linear gauge as well, we expect a similar robustness ~ Sr= 32 ol v,D (V)P +7,D ,(U*)Prliy
against the inclusion of additional counter-terms. ”

In this section we have discussed the phase diagram only

in the largex limit. The phase diagram for arbitraryand « — 7 mbdu. (3.4
is studied in Sec. V A. This study, as well as additional ar-
guments presented in Sec. VI A, further clarify why the con-  Let us first examine Eq3.4) in perturbation theory. The
tinuum limit of the gauge-fixing approach should be definedtree-level fermion propagator is titeasslessWilson propa-
at the FMD transition. gator[14]. Because of the Majorana-like condition E§.3),
the symmetry factors in Feynman graphs are the same as for
Majorana fermions. Now, if we go to the small momentum
lll. CHIRAL FERMIONS limit, we find that the two chiralities off), couple to the

In a gauge-invariant lattice theory, the minimum of the 9auge field according toomplex conjugateepresentations

plaguette action is unique up to a gauge transformation, an@f the gauge group. One sees that the role of Be) is to

the transversal kinetic term is sufficient to define a validmaintain  consistently the identification P ¢y« x,
weak-coupling expansion. In th@bsenceof gauge invari- Pgryy < x, at the level of Feynman diagrams. That E2}4)
ance, there exists a valid weak-coupling expansion providedorrectly describes a single left-handed Weyl fermion, can be
the gauge-fixing action of Sec. Il E is added to the plaquettererified by calculating the non-analytic part of one-fermion-
action. This applies also to the gauge-fixing action presentetbop diagrams, that should agree with the continuum result in
in 1l for the linear gauge’- A=0. Using either of these the limit of a vanishing external momentufthe role of
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counter-terms is discussed belovs usual, the non-analytic Finally, let us discuss the fermion mass counter-terms. As
contribution comes from an infinitesimal neighborhood ofwith ordinary Wilson fermions, a mass counter-term

the origin in thg Brillouin zone. In this neighborhood one c.anmoﬂlI IS Necessary to maintain the masslessness of each
neglect the Wilson term in both numerators and denominaghra| fermion. (A different fermion action that does not re-
tors. The left-handed and right-handed componentg/gf ire mass counter-terms will be discussed elsewf&sg)

are no Ion.ger coupled, and One can reexpress the Feynmape  renormalized Majorana-like mass is proportional to
integrand in terms of the continuum propagator for a smgle(mo_mc), where m, is (minus the fluctuations-induced

Weyl fermion. [A left-handed fermion loop is equal to a B : . .
right-handed fermion loop in the complex conjugate repre-mass' If No—my) is small but non-zero, BRST invariance

sentation. The “double-counting” is compensated by a one-WiII be. explicitly broken in the scaling regipn. The SC?‘””Q
half symmetry factor for each closed fermion loop, which Pehavior is then governed by a renormalizable continuum
arises from the Majorana-like condition EG.3).] theory WhICh is not gauge myanaﬁtence also non-unitayy

We next discuss the rigorous definition of the fermionicBY tuning mg to mc, assuming all other counter-terms al-
path integral. We introduce the\x 2N fermion matrixQ,, 5 rgady have their c;rltlcal values, we recover BRST invariance
by writhg the action in the generic formSe S|multa_neogsly with the m_assl_ess_ne_ss of the chiral fermions.
Z%Ea,ﬁﬁb&Qaglﬂﬁ- (The charge conjugation matrig is (The situation on the lattice is similar to what one would

absorbed into the definition @) It is easy to check thad encounter in the continuum, if a gauge non-invariant regu-

is antisymmetric. The fermion path integral takes the foIIow—Iar'.Zatlon IS emplo_yed for a chiral gauge theory. As on the
ing form [17] lattice, Majorana-like mass counter-terms may be needed,

alongside with other gauge non-invariant counter-terms, to
1 cancel the breaking of gauge invariance induced by the regu-
du® exd = @ B Iarlzathn, and to ensure that the renormalized amplitudes are
f 1;[ Y F{Z QE,B l/"\"Q“ﬁl’bM) gauge invariant.
An important question in the literature on lattice chiral

_ L gauge theories, is how to reproduce correctly fermion num-
= SN €e1 By By Qg 817 Qay ber violation in the continuum limit. Different solutions have
been proposed to the probleft8—21. We hope that the
Epf<9) . (3.5 present approach can shed new light on it.
2 For definiteness, we adopt the strategy of Ref4].

Namely, we demand that the lattice fermion action should
have no symmetry which is not present in the target con-
tinuum theory. Now, while the action E3.1) is not invari-
ian. In general, pfQ/2) is complex, as expected from the ant un(.je.r glppal U.L) transformation; W.ith an arbitrary
Euclidean path integral for a single Weyl fermion. phase, it is still invariant gnder the resu.jmh:k.cretesymme—

(As a further check that our fermion path integral de-ty x——x, x——x. This symmetry implies &mod 2
scribes a Weyl fermion, we can consider a “two-generation” conservation Iaw_for each fe_rrmon species, which Stl|! causes
model, where each complex representation occurs twice i Problem. Consider for definiteness an(Sgrand unified
the fermion spectrum. Using the identity’p®/2)=det@Q), theory (GUT), with one generation that contains5aand a
that holds for a general antisymmeric matrix, this two-10. In an instanton background, the numbers of zero modes
generation model can be defined by an action similar to Ecfor these representations are, respectively, one and three.
(3.4), where we now drop an overall one-half factor, substi-This is in conflict with the abovémod 2 conservation laws.

tute Yy — o, Ym— Yo, and regardyp and g asindepen-  Thus, on top of the MW terms present in Hg.1) for each
dent Dirac-like variables. The counting of degrees of free-'epresentation, one has to mtroduce_an additional gauge-non-
dom is now straightforward. Since the two chiralitiesygf  invariant MW term that couples th& and the10. (As a

belong to complex conjugate representations, this action agesult, a Majorana-like mass counter-term that mixes3he
tually describes two left-handed Weyl fermions in $@me  and the10 will be necessary top With this new MW term,
complex representation. the remaining discrete symmetry leads only(iteod 2 con-

Until now we have implicitly discussed the fermions in servation of the total fermion number for each generation.
the background of a fixed external gauge field. The main

result of the previous section is that, with the gauge-fixing

a_ction, perturbation theory is valid f_or a dynamical gauge IV. WHY GAUGE FIXING

field as well. Therefore, with appropriate counter-terths,

continuum fields describing the scaling behavior are in one- We now return to the lattice effective action, and consider
to-one correspondence with the massless poles of the vario@®me of its properties in more detail. We keep the discussion
tree-level propagatorsif we choose an anomaly free fer- at an informal level. Our approach has been presented in
mion spectrum, the scaling region should be governed by detail in the previous sections, and the aim here is to clarify
continuum chiral gauge theory, in the relevant gauge. Wéhe nature of throblemsthat it is meant to solve.

note that if one chooses amomalougermion spectrum, the In this section we assume that the lattice chiral fermion
scaling region will still be governed by a renormalizable La-actionSg is bilinear in the fermion fields, and that it depends
grangian, but BRST invariance and, hence, unitarity will bein addition only on the link variables), ,. (This corre-
violated. sponds to the vector pictuyelt is also assumed th&¢ is

There is no integration over tr(dependentvariablesﬂ,,.
According to Eq(3.5), the fermionic path integral is Bfaff-
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(mildly) local. The lattice spacing will be shown explicity ~ U? ,, and 1etA? be related tdJ9), via Eq.(2.6). Since the
in this section. operators that occur on the RHS of E¢.2) arenot gauge
The difficulties encountered in the construction of latticeinvariant, they are sensitive to the value gf for x in the
chiral gauge theories can be addressed at a more rigorowseinity of x,. Now, theg,-s on different sites aincorre-
level [5,7]. This complementary discussion, which focusesjated As a result, the expansion parametkggaA(g)| and
on the robustness of the Nielsen-Ninomiya theorem, is given, z A(g)/A(g)| areO(1) for a generic lattice gauge transfor-

in Sec. V. mation. We conclude thaB. fails to be (approximately
constant on most of the lattice gauge orbit. This is true for
A. Rough lattice gauge transformations and the need any orbit, including orbits that have a smooth representative.
for gauge fixing

The lattice effective action is defined by integrating out B. Proliferation of lattice Gribov copies

the fermions The above problem stems from theughnessof generic

L _ lattice gauge transformations. Following REL] we make
Sei(U)=—log J DyDye” SFU49), (4.1)  no attempt to reduce the violations of gauge invariance at the
level of the effective action. Instead, our aim is to suppress
the Boltzmann weight of rough gauge field configurations
(relative to smooth configurations that belong to the same
orbit) consistently with the gauge invariance of the physical
Hilbert space, namely, vigauge fixing
In lattice QCD, gauge fixing is a matter of choice, since it
s no effect on the gauge-invariant observables. Here, the
fermion action is not gauge invariant. As a result, the gauge-
fixing method is anintegral part of the definition of the
theory. Different gauge-fixing methods may in general give
con an AN, rise to different phase diagrams with different critical points.
OxySe™ CoOy +nzl 2 Cn.iOxy 4.2 There is no guarantee that every gauge-fixing method will
lead to a non-trivial continuum limit, let alone to a chiral
The ~ sign indicates that the right-hand siRHS) is com-  gauge theory.
puted perturbatively. Note that the gauge field is external, Still, in order to make progress, one has to chossme
and so the gauge-field action is not needed at this seagfd. ~ gauge-fixing method. Vink22] proposed to use the Laplac-
and On. are local lattice operators that depend A, cf. ian gauge, where a maximally smooth representative is cho-

Eq. (2.6. The dimension Ofon. is 4+n, and the Senon each gauge orbit by global minimization. The Laplac-
i-summation is over linearly mdependent operators of thi an gauge is highly non-local, and this creates difficulties

dimension O;°" is some discretized version of the consistent oh in the analytic and in the numerical study of this

ethod.
anomaly. We assume that all operators of dimension Iess As discussed in detail in Sec. II, we build a local gauge-
than or equal to four, other thafi$’", have been cancelled fixi ’

b If, h f | ng lattice action, thafa) has the unique absolute mini-
y counter-terms. If, moreover, we choose a set of complex. - U, ,=I. and(b) reduces to a covariant gauge-fixing

representations that satisfies the anomaly cancellation condiviion in'the classical continuum limit. Our gauge-fixing ac-
tion, thency=0. - o
nos 0 tions[Eqgs.(2.16—(2.18 for the non-linear gauge, sék for
The infinite sum on the RHS of Ed4.2) accounts for the linear gaugkare clearly not the most naive discretiza-
lattice artifact violations of gauge invariance. The preusetlorls of the corresponding continuum actions. Focusing for
form of these violations is model dependent, but their exis S|mpI|C|ty on the linear gauge-A=0, let us examine what

tence is generic. As can be easily seen by going to mome Jjoes wrong with a naively discretized gauge-fixing action.
tum space, which is the usual setting for a perturbative COMAve thus consider the following action:

putation, this sum represents a double expansidggaA,,|
and| ap”| ' naive_
Let us first consider a smooth gauge fiedd which is of 25 2 trg e (4.3
characterized by some physical scalgp,<a" 1, and the o
corresponding configuration of link vanablesx defined 1
via Eqg. (2.6). Since the dimensionful quant|t|ds andp — - - - _
are O(Appyg, both of the above expansion parameteﬁs are 9 2,:‘ AV 2i % (A Uxu=He). “.9
small. Equation4.2) is the gradient o5 with respect to a
motion inside the lattice gauge orbit. TherefoSgy is (@p-  Note thatg, 'S ,A,V, , reduces in the classical continuum
proximately constant on the orbit in the vicinitwg,ﬁ. The  |imit to - A, as it should.
constancy oS¢ extends to that portion of the orbit which is What is common to our gauge-fixing actighand to the
reachable fronUO by a smooth gauge transformation. naive gauge-fixing action Ed4.3), is that they contain a
The problem is that, on the lattice, smooth gauge translongitudinal kinetic term. The trouble it is that it
formations represent a tiny part of the local gauge group. Leéupports adense sebf Gribov copies for the identity field
U(g) ngQ,LgH be agenericconfiguration in the orbit of U, ,=I. Each of these Gribov copies is a classical vacuum

Clearly, the well-defined object is exp&), rather tharB.g
itself. For our purpose it will be sufficient to consider the
perturbativeeffective action, and so we will ignore the prob-
lems associated with the global definition S .

The variation ofS., in response to an infinitesimal lattice ha
gauge transformation at the poixy, has the following gen-
eral form
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of Sg+ S, The superposition of contributions coming C. Other approaches
from all these classical vacua, whidannotbe calculated A different approach to the dynamical problems created
perturbatively, may ultimately render the fermion spectrumby rough lattice gauge transformations is to adopt a more
vector-like. Even without fermions, stability of the classical Sophisticated definition for the effective action. The promi-

potential is lost, and it is unclear whether the FM-FMD tran-nent representatives of this approach are the interpolation
sition (associated with a divergent vector-field correlation™ethod[24,25 and the overlap formalisi{26].

length can be maintained in the weak-coupling linif.the In thle .mter?ollatlocgmrjetggd, .one construc4ts fa contmhuum
gauge-fixing action in Eq(2.21) is replaced bySi", the interpolating field A, ™=A, Yy’UXvH)’ yeR?, for eac
. : A . configuration of the lattice gauge field. The determinant of
resulting (Z:Iassu?al poteptlal is identically zero. If we assumep o Weyl operatorg- (9+igA®" is then defined using a
«=0(1/gp), which implies the presence of a tree-level massseparate regulator. Associated with the fermion regulariza-
term, one has/¢"*= kF(goA,) [compare Eq(2.7)]. The tion is a new cutoff parameter, denoted generically,
minimum of Vif"*®is A, =0 for k>0, andA ,= m/g, for «  which must be sent to infinity before the lattice spaciniy
<0.) sent to zero[A concrete method?25] is to discretize the
We now demonstrate the existence of a dense set of latticé/eyl action on a finer lattice with a lattice spaciag<a,
Gribov copies for the identity field. Consider first th&1l) usmge-g-thg fermion action of Ref.14] [Eq. (3.1]. In this
case. The conditiof,=0 is satisfied if the imaginary part of caseA;=a; ~.] o _
U, is zero everywhere. The latter is true if we consider Consistent regularizations of the Weyl determinant break
only lattice gauge transformations whegg= = 1. In other ~9auge invariance for finite values of the cutoff, even when

words, In spite of the presence of the gauge fixing actior & Erio8 SoEE L L SR e T Rerpaiation
naive H H H H H H H =

lsgf I,Zthe Grlbo;/ CO_FI)_IhG.S o.f th? |d(tant|tyfflelctihstlll ex_rll.lblt a method too.(It has been proposed that gauge-non-invariant
ocal £ symme ry. [ IS 1S aiso frue ST € non-in€ar: -ounter-terms may be avoided, if the real part of the effective
gauge, if one replace, in Eq. (4.3 by G;"=2,(A, Vi action is regulated separately from the imaginary paf.
+Viw)-1 An “elementary” Gribov copy is created if we | spite of attempts in this directiof25], it remains unclear
chooseg,=—1 for x=Xo, and g,=1 elsewhere. This whether this procedure can be implemented beyond pertur-
clearly shows that the Gribov copies doeal lattice arte-  bation theory without violating locality, and, eventually, uni-
facts tarity.)

The above example generalizes to non-Abelian groups. In For givenU, ,-s, the interpolating field assignslacal
the case of SI2N) and S@2N) groups, simply replacee1 ~ winding numberto each hypercubdin the non-Abelian
by +1. Moreover, for any S(N) group, one can choose an case, or to each plaquettén the Abelian case In the non-
SU(2) subgroup(which for simplicity we assume to lie at the Abelian case, this is the winding number of the continuum
top left corney and repeat the above construction wigh ~ gauge transformation defined on the faces of the hypercube,
=diag(+1,+1,1,1,..). Thediscrete local symmetry of the thatbrings the interpolating field to a prescribed axial gauge;
Gribov copies is therefore larger than i the general case. N the Abelian case, the continuum gauge transformation is

For a more detailed discussion of lattice Gribov copies sed€fined on the perimeter of each plaquette. Now, a funda-
Ref. [23]. mental requirement is that the fermion determinant should be

{gauge invariant in the limif\;— . Gauge invariance can be

A number of remarkable similarities draw us to say tha i . eon .
the proliferation of Gribov copiess the spin-1 counter-part cStablished only ifA, (y) is globally bounded[24,25.
Gauge invariance is therefore recovered in the lifpits

of the fermion doublingproblem. In both cases, one deals | that porti t the latli bit. wh Il th
with the discretization of a first-order differential operator; in 2" N that portion ot the fattice gauge orbit, where afl the
local winding numbers are zefd@]. The solution is to apply

the Spins case,_thl_s is the D|_ra(Dr wey) equation; in the a gauge transformation that sets all local winding numbers to
spin-1 case, this is a covariant gauge conditieae Sec. zerobeforecomputing the fermion determina¢for simplic-

I E)I In both cases .the problem arses when a non_—compgq{y we consider a trivial global topologyWe note that the
contmuum.varlable is replgced with a compgct I.attlce Va“'smoothing gauge transformation is non-local, and so a care-
able: fermion doubling arises because, unlike in the congy study of potential problems associated with the infinite-
tinuum, the lattice momentum is periodic; in the spin-1 caseygjume limit is required.

also the non-compact continuum gauge field is replaced with |, the overlap approach, while the real part of the effec-
compact group variables. In both cases, there are theoremgge action is gauge invariant by construction, the imaginary
that establish an impasse under certain mild-looking condipan is not. Again, we expect that gauge-non-invariant
tions: the Karsten-Smit3] and Nielsen-Ninomiyd4] theo-  counter-terms will be needed, starting at some finite loop
rems which predict fermion doubling, and Neuberger’s theoyger. Potentially severe problems with the overlap approach
rem [13] which asserts that any BRST-invariant partition yyere pointed out in Ref.28]. According to our judgement,
function must vanish identically. Finally, in both cases thesubsequent workéincluding in particular Ref[29)) fail to
solution is to reduce the symmetry of the lattice theory, byaddress the issues raised in Re8]. Numerical evidence for

addingirrelevantterms to the naively discretized action. In the |ack of gauge invariancén the non-Abelian cagehas
the case of Wilson fermions, this is the role of the Wilsonpeen found in Ref[30] (see Fig. 1 therejn

term. As for our gauge-fixing acti¢s), one can showsee

Il that it is equal to the square of a discretized gauge con- V. THE REDUCED MODEL

dition, plus irrelevant terms. Thus, again, the irrelevant terms

reduce the symmetry, this time by breaking explicitty BRST  Returning to our approach, we consider in this section the
invariance. limit of a vanishing gauge coupling. Sincegglis the coef-
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= v={), (5.2
UAM:<Ex¢x>a (5.3

where e,=(—1)*+*«. For k=0, we recover the familiar
non-linear sigma model. On theaxis there is a symmetric
(PM) phase forlk|< k., a ferromagneti¢FM) phase forx
>k., and an antiferromagneticAM) phase fork<-—«..
The field redefinitiong,— e,¢, mapsk to — «, thus imply-
ing a symmetry of thec-axis.

We now extend the discussion to the fu,k)-plane.
Mean-field approximation id-dimensions yields the follow-
ing equation for the FM-PM line

‘m

T T T
— T

el
A
o

AM

k+(2d+1) k=K., FM-PM. (5.4

FIG. 1. Mean-field phase diagram. See Table | for the definitionTpe equation for the AM-PM line is

of the various phases.
k+(6d—1)k=—k;, AM-PM. (5.5

ficient of the plaquette action, thggy=0 limit constrains the
lattice gauge field to the trivial orbit. The FM-PM and AM-PM transitions are continuous. The

The theory defined byg,=0 limit is called thereduced symmetry of thex-axis extends tox#0. Under the field
model If we use thevector picture the reduced model is redefinition ¢, — e, ¢, , the point {<,«) is mapped in four
obtained by substitutingl, ,— ¢I¢>x+;} in the lattice action. dimensions to %, x—37x). This implies that the linear
The lattice gauge field measuié¢/dU, , is replaced by equation ' '
I1fd¢,. [Alternatively, starting from thédiggs picturethat
already involves botiJ, , and ¢, (see Sec. Il B one ob-
tains the reduced model by simply settiog ,=1.]

In the weak gauge-coupling limit, the transversal modegjefines a symmetry line of the phase diagram. The FM-PM
are perturbative at the lattice scale. Many important featuregng AM-PM lines meet in the second quadrant, at the point
mclu_dmg the ferml_on spectrum, are dete_rmmed by the dy‘(—KC/7,16:<C/7) on the symmetry line. It can be shown that,
namics of the longitudinal modes. The utility of the reducedpeyond this point, the symmetry line is a first-order transition
model is that it allows us to study the longitudinal dynamicsjjne separating the FM and AM phasf&id].
in isolation, without making any priori assumption. The |5 condensed matter physics, it is well known that spin
reduced model accounts for dynamical situations rangingnodels with competing interactions tend to develop a ground
from a divergent longitudinal correlation length, as in ourgeate that breaks translation and rotation invariance. If a
approach, down to a very short correlation length. In thissmgaj| antiferromagnetic interaction is added to a dominant
section we study a prototype reduced model. The entire dyfarromagnetic one, the spin orientation of the ground state
ngmmal range is reallzgd in different regions of |ts' phasq,\,i” rotate slowly with a wave vector],,#0 (see Ref[32]
diagram. In Sec. VI we discuss the effects of the longitudinakq, 4 recent review

dynamics on the fermion spectrum, first in general terms and | the reduced model defined by Ep.1), competing
then in our approach.

k+16xk=0, (5.6)

interactions occur whem and k have opposite signs. In
order to look for a similar phenomenon, we introduce the
A. The phase diagram mean-field ansatz

In this subsectiorfand the next onewe discuss the re-
duced model related to the lattice action of Sec. Il B, for
¢y U(1). Since Eq.(2.3) is written in the Higgs picture,
the reduced model is obtained by settldg,, = 1. This leads
to the action

() =ve k. (5.7

We assume &(q,<2m. A non-zerog, signals the sponta-
neous breaking of translation and rotation invariance. More
precisely, translation invariance is broken in the direction
defined byq,, but it remains unbroken in the transversal
S,=2 (—k¢p' O+ xep'D2¢). (5.  directions. In condensed matter, phases with a non-ggro
are known ashelicoidal-ferromagneticones. Here, the
] ) ] ] ] ~helicoidal-ferromagnetic phase of the reduced model is the
Qyur first task is to derive the mean-field phase diagram in th@ozo boundary of the FMD phase of the full theofsee
(«,k)-plane. This phase diagram is in fact generic, and perSec. Il Q, and the name FMD will be used both in the full
tains also to the more relevant theories defined in Sec. Il Eheory and in the reduced model.
and inll. A simple mean-field method is based onfactorized
Let us first consider the ordinary VEVW,, as an order probability measure(seee.g. Ref. [33]). For the FM-PM
parametefor the staggered VEW »y). An additional order transition, one can use the following factorized probability
parameter will be introduced shortly. By definition measure
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1+ 2v coq 6y) TABLE I. Phases of the reduced model. The entries indicate
Po(0y) = ————. (5.8 which order parameters were non-zero in each phase.
2

I

In order to accommodate a non-zefg, we generalize this Phase v Vam Ut Vi
to PM no no no no
FM yes no yes no
P(6,) = 1+2v coqg 6, q,ux,u) . (5.9 AM o yes yes o
2m FMD no no yes yes
PMD(?) no no no yes

One has(1)p=1 and(e'’)p,=ve'9%*x [in agreement with
Eq. (5.7]. Because of its factorized nature, the
q,,-dependence aP(6) affects only thenternal energybut  (genoted PMD where only rotation symmetry is broken,
not theentropy Introducing the notatio8y,=>,H,, we find  yile the internal symmetries as well as translations are un-
- - broken. The order parameter for a PMD phase of the reduced
(H)p=(1-v?)(8k+T72k) +v?[ kF(q,) + kF?(q,)], model is the expectation value of the composite vector field
(510  [compare Eq(2.18]

where the functionF is defined in Eq.(2.8). While the 1

choice of the factorized probability measures E&s8) and v‘)‘( W= _-(¢>t¢x+,1_ H.c). (5.11
(5.9 is somewhat arbitrary, the internal ener(§10 is a 2
universal feature of any mean-field approximation %r.

If we consider a point in the phase diagram well to the
right of the FM-PM line, the value of is finite in lattice
units. Making the self-consistent assumption thais small,
the location of the FM-FMD transition can be determined by . X "
minimizing the internal energy with respectdg . Remark- 'i(zt: Trt:a;))mv tzginc?g:sc,:lv?/litmc(a:qu_Igot’r?igoboazpe(rqv‘\,}e
ably, theq,,-dependent part of the internal energy coincidesusua’”y’dé ot di:tinguish betwee;naﬁthjﬂv. sinee the cor-
with the classical potentiaR.7), if we make the identifica- ect meaning can be understood from thHe’ context. However
tion goA, <0, . Consequently, there is complete agreemen{ ; '

between the mean-field properties of the FM-FMD transition his distinction is |mport_ant in numerical simulation. The
value ofg,,, to be used in the measurementwgf, can be

in the reduced model, and the classical properties of th%ﬁj termined. f le b ooy A d
FMD transition in thegy# 0 theory. The mean-field location SS'€rmined for example by measurifg, ¢, ) and ex-
tracting its phase.

of the FM-FMD transition isk=0. For k>0 one is in the . ~ )
FM phase, whereas far<0 one is in the FMD phase. Close  The relation between the«(«)-phase diagram of the re-
to the FM-FMD line,q,, is given by Eq.(2.10 whereggA, duced model and thex{ x,gy)-phase diagram of the full
is replaced byq,, (after this replacemerd, drops out, and theory is the following. In the (1) case, the symmetri®M)
one hasy?= — x/2x for a small negative). The FM-FMD  Phase is the boundary of a Coulomb phase, and the broken
line ends when it hits the FM-PM line. The multi-critical (FM or AM) phase is the boundary of a Higgs phase. In the
point where the PM, FM and FMD phases meet is known a§ion-Abelian case, the PM, FM and AM phases correspond to
a Lifshitz point[34]. Its mean-field value is./9,0). (Lif-  the boundary of a single Higgs-confinement phase. Finally,
shitz points exhibit rich critical behavior. This was discussed€ helicoidal-ferromagneti¢FMD) phase of the reduced
recently in a field theoretic context by J. K(ig5].) model is the bou.nd.ary of the FMD phase of. the full thgory.
The remaining features of the mean-field phase diagram N the go—0 limit of the full theory, we find(approxi-
are as follows(see Fig. 1 The transformationp,— e, ¢, mately massless gauge bosqns close_ to the FM-FMD line, as
mapsq, to q,,+ . This implies the existence of a second well as close to the PM-FM line, and in the entire PM phase.
FMD region (and another Lifshitz pointbelow the symme- An interesting observation is that, even without fgrmmns, if
try line in the fourth quadrant. The PM-FMD line, separatingWe Want to study a Lorentz gauge-fixed Yang-Mills theory
the paramagnetic phase from the FMD phase, can be dete?! thg lattice, then the_: appropriate critical line is the_FM_-
mined by first minimizing theinterna) energy with respect FMD line. The reason is that, in order tg keep the longitudi-
to g, , and then théfree) energy with respect to. The PM nal kinetic term in the tree-level actiom; must scale like
phase occupies a bounded region in the phase diagram. Theg3 (see Sec. )L In the largex limit, a PM phase does not
two FMD regions above and below the symmetry line belongexist, and criticality can only be achieved by approaching the
to a single FMD phase. The PM-FMD line lies on an ellipse,FM-FMD line.
with the FM-PM and AM-PM lines tangent to it at the two
Lifshitz points. A more detailed mean-field calculation will
be presented elsewhefigl]. _ ) _ )
The mean-field ansat£5.7) implies the simultaneous  In view of the properties of the weak-coupling expansion
breaking of the internal (1) symmetry, as well as of rotation in the full theory(Sec. 1), and in particular Eq(2.12, one
and translation invariance. We believe that one cannot brea&xpects that I/ will play the role of a coupling constant in
translation invariance without at the same time breaking arthe reduced model. We will now demonstrate this explicitly.
internal symmetry. However, one can conceive of a phas&/e do not carry out here any detailed calculations that re-

At the moment, however, we have no evidence for a PMD
phase.

The phases of the reduced model are depicted in Table I.
The order parametev, is defined asvy={(¢p,e 9% x).

B. The weak-coupling expansion in the reduced model
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quire the full lattice Feynman rules. Therefore, we work inmalized at the one-loop level. The induced one-loop
the continuum approximatiomng. we extract from the lattice (aﬁe)z-term has a positive sign. This implies

action the marginal and relevant terms, that control the criti- _ _

cal behavior in the vicinity of the Gaussian critical point ke (K)=—c+0(k™1). (5.149
1/k=0. -

The weak-coupling expansion is facilitated by expandingNote that the coefficient ofd(,6) in Eq. (5.12 is «/«x.]
around a broken symmetry vacuum. We first introduce thelhe dimension of the positive constants two. Its numeri-
Goldstone bosoGB) field 8, via ¢, =e'%. [This classical ~cal value, which isO(1/a%), has to be determined by a lat-
expansion is consistent with the mean-field an¢at?), be-  tice calculation. Finally, as in thed* theory, the one-loop

causey— 1 for x—.] Rescalingd— (1/ /275)9we find in  Peta-function is determined by the vertex renormalization,
the continuum approximation, the following GB Lagrangian and is found to be positive. Explicitly

1 K 1 /3(~*1)=Ai”*1— > % (5.19
ﬁGBzzfd“x (Da)z+iaﬂeaua+z(aﬂeaﬂe)2 ) TR T1em2 '

(512 \whereA is the UV cutoff (the inverse lattice spacing in a
lattice calculation
Equation(5.12 is valid on the FM side of the transition line.
On the FMD side, one first looks for the classical vacuum by C. Infra-red divergences of the critical theory
assumingd=q,,x,, and minimizing forq, . The result is the B S _
same as in the mean-field approximation. The weak-coupling If we tunex to «¢, («), the quadratic kinetic term in Eq.
expansion on the FMD side is then defined ¥ia-q,x, (5.13 vanishes, and the renormalized GB propagator reads
+(1/\/27() 0. G*l(p)zz(pZ)Z (5.16
We will consider here only the FM side. Taking the Fou- ' '

rier transform of the bilinear part of the Lagrangian, we find\yhere 7 accounts for the wave-function renormalization.

the following GB propagator This quartic propagator leads to IR divergences in four di-
mensions, like massless bosons with an ordinary kinetic term
Go '(p)=(p?)2+m3p?, (513  do in two dimensions.

The IR divergences of massless Goldstone bosons lead to

where m2= x/%. Analvtical continuation to Minkowski the restoration of c_ontinuous symmet_ries in two d_imensions

0 ' aly - . [37]. Only symmetric observables, which are invariant under
space shows the existence of a posmve-gemdge POffiat a1l the continuous symmetries, can have a non-zero value.
=0, and a negative-residughos} pole atpy=mj. These  There are theoren88—4( that guarantee the IR-finiteness
poles merge into a quartic singularity in the |imﬂ-1(2)*>0. of the symmetric observables.
The continuum limit of the reduced model is therefore not Here the quartic propagat@.16 does not characterize a
unitary. (In Sec. VI B we discuss the interaction of the GB \yhole phase, but only the FM-FMD line itself. The order
field with fermions. The crucial requirement is that the non-parameter, (or v) dips close to the FM-FMD line, and
unitary GB sector, which accounts for the two unphysicalyanishes on that line in severéhaybe in al) interesting
polarizations of the gauge bosons, will decouple from thecaseq31,36. The theorems on the finiteness of symmetric
fermions in the continuum limit. This decoupling is dis- opservables, in particular R§#0], generalize to four dimen-
cussed in detail in Ref36].) sions. Also, as in two dimensions, the predictions of the

Because of the quartic kinetic term in the GB Lagrangianweak-coupling expansion are often valid, if interpreted care-
the canonical dimension of the GB fielt(x) is zero. The  fylly [41]. This will be important in Sec. VI B.

GB Lagrangian is invariant under the shift symmetry
0(x)— 6(x) + const, which forbids the appearance of non-
derivative terms under renormalization. In addition, the GB
Lagrangian is invariant under the discrete symmetry The key features of the S|mpI|f|ed reduced model studied
6(x)— — 6(x). Equation(5.12 is the most general renor- N this section extend to the realistic reduced models, defined
malizable Lagrangian allowed by these symmetries. from the (gauge-fixing and ghogtction of Sec. Il E for the

What marks the Feynman rules of the GB Lagrangian, ig1on-linear gauge, or the action of for the linear gauge.
that one derivative acts on every line attached to a vertexI his includes the qualitative structure of the phase diagram
The derivatives acting on the two ends of each internal linend in particular the FM and FMD phases, the Gaussian
effectively cancel one factor of p# in the propagator. The critical point atx =0, and the IR divergences on the FM-
result is that the UV power counting of the GB model is theFMD line.
same as in an ordinary®* theory. If we ignore the vector Particularly interesting are the critical FM-FMD theories
index carried by the partial derivatives, one can match eacin the reduced models that correspond to the linear gauge
term in the GB Lagrangian with a corresponding term in thed- A=0. In the Abelian case, the linear-gauge reduced model
A®* Lagrangian according to the rutg— ®. leads to a free theory with a pf)? propagator. The prop-

In the A®* theory, at the one loop level only the mass erties of this critical theory are analogous to the spin-wave
term is renormalized, but not the kinetic term. By analogy, inphase of a two-dimensional Abelian theory. This will be dis-
the GB Lagrangian onlyd,6)?, but not (16)?, is renor-  cussed in detail elsewhef81,36. The critical theory for a

D. Realistic reduced models
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non-Abelian gauge group was investigated by Hat2] in (It could be[43] that no massless fermions are present unless
the continuum approximation. His main result is that, likea mass term if fine-tuned. Since we are in symmetric phase,
non-Abelian sigma models in two dimensions, these foura massless fermion obtained by fine-tuning is necessarily a
dimensional non-linear models are asymptotically free. ItDirac fermion) Now, in four dimensions, there are no renor-
will be interesting to investigate the significance of this resultmalizable interactions involving only fermion fields. The
for the construction of gauge-fixed non-Abelian lattice theo-continuum limit defined by a generic point inside a symmet-

ries via our approach. ric phase is therefore a theory of free massless fermibits
is not empty. One can then construct affective lattice
VI]. EERMIONS IN THE REDUCED MODEL Hamiltonian for the fermions, that satisfies all the assump-

. ) ) . tions of the Nielsen-Ninomiya theorem(The -effective

_In a manifestly gauge invariant theory like QCD, the fer- jamjitonian is defined as the,= 0 limit of the inverse of a
mion spectrum can be read off from the lattice action bygjitaple two-point function.We refer here in particular to
going to the free field limigo= 0. Here, the fermion actionis  the analytic structure near the zeros of the effective Hamil-
not gauge invariantin the vector picturg and the limitgo  tonjan, and to the existence of a smooth interpolation
=0 gives rise to an interacting theory, namely, to the rethroughout the rest of the Brillouin zone. This leads to the
duced model. We identify the elementary fermions of a gentoncjusion that the fermion spectrum is vector-like in a sym-
eral lattice gauge theory with the independéetmionic  metric phase, provided the underlying theory is lo¢a.the
massless polesf the associated reduced modgf.the fer-  case of a non-local theory one, expects violations of unitarity
mion action is gauge invariant, any, dependence of its and/or Lorentz invariance, see RET] for references to the
reduced-model form can be eliminated by a field redefini-griginal literature).
tion.) It is justified to determine the matter spectrum by set- This impasse extends, by continuity, to the fermion spec-
ting go=0, since, in a scaling region, the transversal degreegym on any phase transition line that separates a symmetric

of freedom are perturbative at the lattice scale. phase from a broken phase. In particular, even though the
gauge boson mass vanishes on the PM-FM line, we do not
A. The robustness of the no-go theorems expect to find a chiral gauge theory by taking the continuum

Let the gauge field belong to a Lie gro@ By construc- limit at_the. PM-FM line. .The. fermion spectrum will be
tion, the associated reduced model has a gl@aymmetry, vector-like if the PM-FM line is approached from the PM
denotedG, , that acts ong, by left multiplication. (The  Phase. If we approach the PM-FM line from the FM phase,
reduced model is obtained from the vector picture via¥e can only obtain a mirror fermion modg#d], but we
Uy ¢I¢x+;,,, and the pdeUC‘ﬁl(ﬁxﬂ; is invariant under  cannot decouple the unwanted mirror fermions.
left multiplication. Notice also that the gauge-invariant
Higgs picture can be obtained by gauging e symmetry B. Evading the no-go theorems

of the reduced model.Now, we demand the existence of | et us now investigate what changes when the continuum
massless vector bosons in the scaling region, which can hgnit is taken at the FM-FMD line. We will consider the
identified with the gauge bosons of the target continuunsimplest case, namely a(l) gauge group with the gauge-
theory_. Thesc_e vector bosons couple to the l_\Ioether currefifing action pertaining to the linear gaugef, 11. As men-
associated with th&, symmetry. Thus, assigning the fermi- tioned in Sec. V D, the properties of the critical FM-FMD
ons to representations @L determines whether the con- theory are ana|ogous to the Spin_wave phase of a two-
tinuum limit is chiral or vector-like. dimensional Abelian theory_

In previous chiral fermion proposals, it was usually at-  We go from(the vector picture ofthe full theory to the
tempted to take the continuum limit in a symmetric phaseyeduced model according to the rulg, u— ¢l¢x+,1- The

where theG, symmetry isnotbroken spontaneouslPhysi-  fermjon action Eq.(3.1) becomes (we use the two-
cal gauge invariance is restored dynamically in a symmetrigomponent notation

phase, when we consider the fg§+# 0 theory. This means

that there are no light unphysical states, whose decoupling in , —.t w

the continuum limit requires fine-tuning. Since the VEV of St=2> (x¢N oA (dx)— 7 (XHx+He). (6.1

the ¢, field is zero, the physics in a symmetric phase is more a

easily accounted for in the gauge-invariant Higgs picjure. ) ) . ]

a Symmetric phase, the fluctuations of mg field are usu- The fermion variables in Eqﬁl) areneutral with I’eSpeCt to

ally not controlled by any small parameter. As a result, non-G. - If, instead, we use thehargedvariablesy.= ¢y, the

perturbative methods had to be invoked in order to determinéermion action reads

the fermion spectrum. Where available, it was always found

that the true fermion spectrum is vector-likeee Refs[7,9, o W

43] for details. SE=2 XA X~ Z((‘/’T o) O (o xo) +H.c).
We have discussed this phenomenon in REs?], and ®

argued that it has a simple physical explanation. Here we can

only outline the key considerations leading to this conclu-

sion, and we refer the reader to Reff§,7] for the details. According to the rules of the weak-coupling expansion

One starts with the observation that, in a symmetric phase dkee Sec. V B the tree-level fermion action is obtained by

the reduced model, there are generically no massless scalassibstituting the classical vacuug) = 1. Using Eq.(6.2) for

Therefore, the only massless particlésany) are fermions.  definiteness, we get

(6.2
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0 _ w This establishes an agreement between the predictions of
=2 XcTuAuxe— 7 (xcHxctHe). (6.3 the weak-coupling expansion in the full theory and in the
" reduced model, thus supporting the consistency of our ap-
o o — ) proach. The properties of the reduced model are true for an
In the limitw=0, only the kinetic tern® , x .o, A, xc IS 1eft. ~ arbitrary fermion spectrum, and this is consistent with the
Thus, thew=0 action exhibits the infamous doubling, with yanishing of the anomaly in the absence of a transversal
sixteen Weyl fermions altogethefEach fermion is associ- gauge field.
ated with a point in the Brillouin zone, whose lattice momen- |, comparison with previous chiral fermion propos@se
tum components are equal to either 07) Since we take gec. VI A) we note two key differences that allow us to
w=0(1), the MW term eliminates the doublers, and the escape from a similar impasse. First, one may worry that the
pole in the tree-level fermion propagator describes a singl@eed to tune mass counter-terms may indicate that we got the
Weyl field (see Sec. Il wrong spectrunte.g.Dirac instead of Weyl fermionsNow,
Had we started from the fermion action written in terms\yhen the(Majorana-liké mass counter-terms aret tuned
of the neutral variable$Eg. (6.1)], the substitutiong,=1  to their critical values, the fermions remagoupledto the
would lead to a tree-level action identical to H§.3), but  |R-singular GB field in the low-energy limit. Due to poten-
with the neutral fieldy replacing the charged fielg. . Now,  tjal IR divergences, it is not at all clear thahassivé one-
deep in the FM phase this makes no difference, because thermion states could be consistently defined in this case, nor
G_ symmetry is broken anyway by the,-VEV, which is  that such states would have well-defin@g-quantum num-
O(1) in lattice units. However, th&_symmetry is restored pers. The off-critical theory remains to be investigated in the
right on the FM-FMD line[31,36. It is therefore a meaning-  future. However, in view of the above IR subtleties, the gen-
ful (and importantquestion to ask what are ti@& -quantum  eral conclusion is that by considering the role of fermion
numbers of the massless fermions. mass perturbations, one does not end up with an argument
The fact that one cannot simply read off the quantumagainst the existence of a chiral spectrum at the critical
numbers of one-fermion states from the tree-level action, is @oint. (See also the discussion of fermion mass counter-
consequence of the IR-divergent nature of the GB propagaerms in Sec. Il
tor, 1/(p?)*. The way to proceed is to examine a family of  The other key difference is that the continuum limit is
fermionic two-point functiond’,=((¢"x)(x#'™)). Assum- now taken at the phase transition separatimgp broken
ing all mass parameters have been tuned to their critical vaphasef the reduced model. Off the FM-FMD lin@n both
ues, I',, will in general contain terms proportional to sides the G, symmetry is broken spontaneously, and all
(p) "t log“(p?) for anyk. The presence of logarithmic terms asymptotic states do not have well-defin&]-quantum
(which typically lead to power law corrections when numbers. On the FM-FMD line itself, th&_symmetry is
summed over all ordeysmeans that the operat@”y does restored, and the question arises whether we do not run into
not create a one-particle staf@1,43. Only when there are the same old conflict with the No-Go theorems. The answer
no logarithmic corrections do we have a simple masslesis contained in the analytic structure discussed above.
pole, and the quantum numbers of the intermediate oneFhanks to the presence of the highly IR-singular GB field, a
fermion state must coincide with the quantum numbers of theero in the inverse propagator does not necessarily imply the
interpolating fermion field. existence of a one-fermion state with the same quantum
The fermion spectrum in the reduced model can be studaumbers. As an illustration, consider the four-component
ied in detail using the weak-coupling expansion. While theunit-charge field ., whose left-handed component is
actual calculations require a substantial amount of work, thé_¢.= x., and whose right-handed component Rg
conclusions are robust, as they really depend on universal 42 . If we consider the inverse two-point function of
properties of the low-energy effectieontinuum Lagrang- 4., we may erroneously conclude that it interpolates a mass-
ian. A one-loop calculation, which is also supported by nu-ess Dirac fermion. In reality, only the left-handed channel of
merical simulations, will be presented elsewh36]. Here  this inverse propagator has a simple zerg, implying the
we will list the key results, as they apply to the MW fermion existence of a unit-charge left-handed fermion. In the right-
action. handed channel, one findspalog(p®) correction in the one-
Logarithmic terms arabsentnly forn=1, namely inthe  |oop approximation, which implies the absence of a right-
two-point function{x.x.). Consequently, the massless fer- handed fermion with the same charge.
mion has the quantum numbers of thgfield. The latter is

charged which means that thg. Weyl fermion will couple VIl. OPEN QUESTIONS
to the transversal gauge field, when the latter is turned on. o o
As can be expected on general grourdse Sec. I, In Sec. Il E, the criterion for fixing the counter-terms was

divergent Majorana-like mass terms are induced at the ond0 enforce BRST invariancend, hence, unitarijyorder by

loop level. These must be cancelled by suitable counterorder. This perturbative prescription is incomplete. Ulti-

terms, to maintain the masslessness of each chiral fermionmately, the counter-terms should be determined by a non-
When the Majorana_"ke mass counter-terms are tuned tserturbative method. To define rigorOUSIy the continuum

their critical values, the unphysical GB fiettbcoupledrom  limit, one has to specify a trajectory in the Higgs Higgs-

the x-fermions. The continuum limit is a direct product of confinement phase, that ends at the Gaussian pajpt

(in general several free theories, one associated with the=1/k=0 on the FMD boundary(See Sec. V A for the

unphysical GB field, and one associated with every speciephase diagram.In addition, one has to construct a BRST

of chiral y.-fermions. operator, and prove its nilpotency in the continuum limit.
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Enforcing BRST invariance should also lead to the restoravariance even if the fermion spectrum is anomaly free. When
tion of full SO(4) invariance, because the marginal 82 we use the lattice regularization, the longitudinal modes
breaking operators violate the BRST symmetry too. should decouple in the continuum limit, but it may be too
We comment that similar problems are encountered irmuch to expect for exact decoupling when the lattice spacing
lattice QCD with Wilson fermions, where the axial-flavour is still finite.
symmetries are broken on the lattice, in analogy with the The gauge-fixing approach aims to decouple the longitu-
BRST symmetry in our gauge-fixing approach. When usingdinal modes in the continuum limit. In this paper we have
Wilson fermions, tuning is required not only at the level of discussed how the gauge-fixing approach may be realized,
the lattice action, but also in the construction of renormalizedhus making the first step of a systematic investigation of the
operators with well defined axial-flavour transformation gauge fixing approach. We have constructed a lattice gauge-
propertieg 45]. This is analogous to the problem of defining fixing action that has a unique classical vacuum. The gauge-
BRST-invariant operators in our gauge-fixing approath. fixing action contains a longitudinal kinetic term, and leads
QCD, the fine-tuning problem can be solved using domainio a renormalizable weak-coupling expansion, which is valid
wall fermions[46—48. Whether a similar solution exists for even if the lattice fermion action is not gauge invariant. We
the tuning problem in the gauge-fixing approach, is an interhave argued that the continuum fields, needed to describe the
esting question. scaling behavior, are in one-to-one correspondence with the
Our gauge-fixing formulation can be tested by applying itpoles of the tree-level lattice propagators. This should ac-
to asymptotically free gauge theories which agtchiral. In  commodate any consistent theory, including anomaly free
particular, in the absence of fermions, one should studyghiral gauge theories.
whether the confining behavior and the mass gap of Yang-
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