
PHYSICAL REVIEW D 1 JANUARY 1998VOLUME 57, NUMBER 1
The standard model from a new phase transition on the lattice
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School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel-Aviv University,
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Several years ago it was conjectured in the so-called Roma approach that gauge fixing is an essential
ingredient in the lattice formulation of chiral gauge theories. In this paper we discuss in detail how the
gauge-fixing approach may be realized. As in the usual~gauge-invariant! lattice formulation, the continuum
limit corresponds to a Gaussian fixed point that now controls both the transversal and the longitudinal modes
of the gauge field. A key role is played by a new phase transition separating a conventional Higgs or Higgs-
confinement phase from a phase with broken rotational invariance. In the continuum limit we expect to find a
scaling region where the lattice correlators reproduce the Euclidean correlation functions of the target~chiral!
gauge theory, in the corresponding continuum gauge.@S0556-2821~98!03901-0#

PACS number~s!: 11.15.Ha, 12.15.2y, 11.30.Rd
s
n

ha
co
rm
xia
to

n
le
ea
be
on
if-
a

ug
an

-
th
fin
ap
s

th
e
-

en
te
y
an
e

t
ap

e-
at
of
pa-
ess

the

u-
ld

eld,
rbit.
ri-
ss of

p-
the
has
-
for

ing

p-

on

-
t, in
that
um
fi-
t
the

on-
ra-
e
ne
I. INTRODUCTION

The great difficulty in constructing chiral gauge theorie
such as the standard model, using lattice regularizatio
related to thedoubling problem@2–5#. In lattice QCD, spe-
cies doubling occurs when the discretized fermion action
an unwanted symmetry that should be anomalous in the
tinuum. When one uses Wilson fermions, the Wilson te
eliminates the doublers at the price of breaking all the a
symmetries explicitly. In the continuum limit, one expects
recover the axial symmetries, except the anomalous U~1!, by
tuning the fermion hopping parameter to a critical value.

In the lattice discretization of a chiral gauge theory, o
has to account for the fact that a Weyl fermion in a comp
representation contributes to the gauge anomaly. This m
that a lattice action for a single chiral fermion cannot
gauge invariant. We will assume below that, as in the c
tinuum, the lattice fermion action involves a sum over d
ferent complex representations, whose total gauge anom
is zero. The question is to what extent the violations of ga
invariance, coming from the individual representations, c
cel each other.

Consider theregularizedeffective action obtained by in
tegrating out an anomaly free set of chiral fermions. In
continuum, one can use dimensional regularization to de
the effective action for smooth gauge fields that vanish r
idly at infinity. Using the freedom to add local counter-term
the violations of gauge invariance are proportional to
dimensionless parametere5d24, and so they vanish in th
limit e→0. This extends to topologically non-trivial back
ground fields, using for example thez-function regulariza-
tion @6#.

On the lattice one encounters a fundamentally differ
situation. The lattice spacing is a dimensionful parame
that plays a dual role. First, it provides a UV cutoff, b
replacing the infinite range of momentum integrals with
integration over the periodic Brillouin zone. In addition, th
lattice spacing enters the~multi-valued! mapping from the
compact link variablesUx,m , to the Lie-algebra valuedAm
field. These differences in the global structure imply tha
generic lattice gauge transformation, considered as a m
570556-2821/97/57~1!/132~15!/$10.00
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ping that acts on the Fourier space of the latticeAm-field, is
qualitatively different from the corresponding mapping d
fined by acontinuumgauge transformation. The result is th
the lattice effective action suffers from generic violations
gauge invariance which are not controlled by any small
rameter. We know of no method that ensures the smalln
of these violations on the entire lattice gauge orbit, at
price of tuning any finite number of parameters~see Sec.
IV C or the review article@7# for more details!.

In the so-called Roma Approach@1#, it was conjectured
that gauge fixing is a crucial ingredient in the lattice form
lation of chiral gauge theories. A gauge fixing action shou
assign a bigger Boltzmann weight to a smooth gauge fi
relative to a rough field that belongs to the same gauge o
This should reduce lattice-artefact violations of gauge inva
ance, because the latter are associated with the roughne
the lattice gauge field.

In spite of this promising picture, the gauge-fixing a
proach has remained elusive. A naive discretization of
Lorentz gauge-fixing action leads to a lattice action that
a dense set oflattice Gribov copies with no continuum coun
terparts. These lattice artifact Gribov copies exist even
the classical vacuum.~Remarkably, the proliferation of Gri-
bov copies on the lattice resembles the fermion doubl
problem in a number of ways.! As a result, the Boltzmann
weight of too many rough lattice configurations is not su
pressed.

In this paper we construct a lattice gauge-fixing acti
that accommodates this problem.~See Ref.@8# for a prelimi-
nary version of this work.! The gauge-fixing action is asso
ciated with a new generic phase diagram. We argue tha
this phase diagram, there is a Gaussian critical point
belongs to the universality class of a gauge-fixed continu
theory. In comparison with the gauge-invariant lattice de
nition of QCD, the weak coupling limit here controls no
only the transversal modes of the gauge field, but also
longitudinal ones.

As discussed above, gauge invariance of the target c
tinuum theory, as well as the residual Becchi-Rouet-Sto
Tyutin ~BRST! invariance, are both explicitly broken on th
lattice. By tuning a finite number of counter-terms, o
132 © 1997 The American Physical Society
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57 133THE STANDARD MODEL FROM A NEW PHASE . . .
hopes to recover BRST invariance in the continuum lim
provided the fermion spectrum is anomaly free@1#. The
BRST identity that requires the vanishing of the renorm
ized gauge boson mass,mr

250, plays a key role. Since th
regularization is not gauge invariant, a mass counter-t
has to be introduced, and its parameter needs to be tune
order to enforce this BRST identity. Usually, a negati
renormalized mass-squared indicates spontaneous symm
breaking. Here we encounter a new feature, namely,
gauge fieldcondenses if its mass-squared parameter beco
too negative. This implies that the new critical point is l
cated on the boundary between a conventional phase, w
is invariant under lattice rotations, and a new phase wh
the lattice rotation symmetry is broken spontaneously by
vacuum expectation value~VEV! of the gauge field.

The construction of the gauge-fixing action is presented
Sec. II. The main results are~a! the gauge-fixing action has
unique absolute minimum,Ux,m5I , and ~b! perturbation
theory around this minimum is manifestly renormalizable.
Sec. III we discuss a simple chiral fermion action. The v
lidity of perturbation theory implies the onset of a scali
behavior in the weak-coupling limit. Up to th
regularization-dependent counter-terms, the continuum
grangian that controls the scaling behavior can be read
from the marginal and relevant terms of the lattice acti
The scaling region should therefore faithfully reproduce
correlation functions of the target chiral gauge theory, in
corresponding gauge.

Without the new gauge-fixing action, the fermion acti
of Sec. III does notlead to a chiral gauge theory in th
continuum limit. The longitudinal modes fluctuate strong
and their non-perturbative dynamics ultimately renders
fermion spectrum vector-like.~This applies to many othe
chiral fermion proposals, see Refs.@7,9#.! In the second par
of this paper, we examine the dynamics of the lattice lon
tudinal modes from a broader point of view. We explain t
problems created by this dynamics, and how they may
solved within the present approach.

In Sec. IV we discuss the lattice effective action, and
role of lattice artefact Gribov copies. In Sec. V we discu
the complete phase diagram in the limit of a vanishing ga
coupling. In Sec. VI we explain how our approach evad
the no-go theorems. Several open questions are discuss
Sec. VII, and our conclusions are offered in Sec. VIII.

II. CONSTRUCTING THE LATTICE GAUGE-FIXING
ACTION

A. The phase transition associated with a critical vector boson

This section is devoted to a step-by-step construction
the gauge-fixing action. As discussed in the Introduction,
lattice-regularized theory has no symmetry that protects
masslessness of the vector bosons. Therefore, in the rele
part of the phase diagram, the lattice vector field is gen
cally not critical. Now, according to the standard lore, t
correlation length should diverge close to a continuous ph
transition associated with the condensation a Bose field
this paper we wish to apply this to the lattice vector field

As a preliminary requirement for a continuous transitio
one needs a higher-power term, that stabilizes the clas
potentialVcl(Am) when the coefficient of the quadratic ter
,
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changes sign. In a weakly coupled theory, the actual loca
of the transition should be close to its tree-level value, a
near the transition one expects the onset of a scaling be
ior governed by renormalized~continuum! perturbation
theory.

Our aim is to achieve criticality of the lattice vector field
very much like the way this is done in the familiarF4

theory. However, going from a spin-0 to a spin-1 field pr
sents new difficulties. The lattice theory is formulated
terms of the link variablesUx,m , which are group-valued
parallel transporters. On the other hand, renormalized pe
bation theory, that governs the scaling region, is more na
rally formulated in terms of the Lie-algebra valuedAm field.
Thus, it takes some trial and error to find theUm-dependent
action that best suits our purpose.

Another complication arises because not every renorm
izable vector theory is unitary. A unitary, physical Hilbe
space exists if and only if the vector theory is actually
anomaly free gauge theory in a gauge fixed form. This
quires us to choose the lattice action, such that the marg
gauge symmetry breaking terms in the tree-level vector
grangian have the form

1

2j0
~gauge condition!2. ~2.1!

An appropriate Faddeev-Popov ghost action will be nec
sary too.

B. A higher-derivative Higgs action

Our starting point is the lattice action

S5SG~U !1SH~f,U !. ~2.2!

HereSG(U) is the usual plaquette action. The Higgs acti
is

SH5tr( ~2kf†h~U !f1 k̃f†h2~U !f!, ~2.3!

where

hxy~U !5(
m

~dx1m̂,yUx,m1dx2m̂,yUy,m
† !28dx,y ,

~2.4!

is the standard nearest-neighbor covariant Laplacian. The
tice spacinga is equal to one. BothUx,m andfx take values
in a Lie groupG. The first term on the right-hand side~RHS!
of Eq. ~2.3! is a conventional lattice Higgs action, where
the second term is a higher derivative~HD! action.

~HD actions were recently discussed by Jansen, Kuti
Liu @10#. Here we are interested in a different critical poi
from the one studied in Ref.@10#. At the technical level, this
allows us to introduce only a Laplacian-squared HD ter
whereas for the purpose of Ref.@10# it was crucial to intro-
duce also a Laplacian-cubed one.!

The action Eq.~2.2! is gauge invariant, where the lattic
gauge transformation is given byUx,m→gxUx,mgx1m̂

† and
fx→gxfx for gxPG. Now, sincefxPG too, we may use
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134 57YIGAL SHAMIR
the lattice gauge invariance to eliminate completely thefx
field. Note that this operation affects onlySH . We introduce
the notation

SV~U !5SH~f,U !ufx5I . ~2.5!

The subscript ofSV stands for ‘‘vector.’’SH can be recov-
ered from SV by making the substitution
Ux,m→fx

†Ux,mfx1m̂ . ~The significance of thefx field,
which is associated with the longitudinal degrees of freedo
is discussed in Sec. V and Sec. VI.!

We will denote the first formulation of the theory@Eq.
~2.2!# as theHiggs picture. The alternative formulation@Eq.
~2.5!# where onlyUx,m ~but notfx! is present, is called the
vector picture. The equality of the partition functions in th
two pictures extends to observables. Any observable in
vector picture is mapped to a gauge-invariant observabl
Higgs picture, and vice versa. Thus, we are dealing with t
mathematically equivalent formulations of the same the
@11#.

In this section we assumek̃@1. The physics in this pa
rameter range is more easily accounted for in the vector
ture, which is used below to study the classical potential,
to set up the weak-coupling expansion. In the vector pictu
the gauge non-invariance of the action resides inSV . There-
fore, we will ultimately demand that the marginal terms
SV have the form of a gauge-fixing action,cf. Eq. ~2.1!.

C. The classical potential

For simplicity we consider the classical potential in t
U~1! case. The essential features generalize to the n
Abelian case. Making use of the standard weak-coupling
pansion

Ux,m5exp~ ig0Ax1m̂/2,m!, ~2.6!

and considering a constantAm field, the actionSV leads to
the following classical potential:

Vcl5kF~g0Am!1 k̃F2~g0Am!, ~2.7!

F~g0Am!52(
m

@12cos~g0Am!#. ~2.8!

Note thatSG is zero for a constant Abelian field.
For k.0, the absolute minimum of the classical potent

is Am50 ~mod 2p/g0!. Since the quadratic term inVcl
comes only from thek-term, a non-zero vector condensa
arises fork,0. The classical features of the transition can
determined by keeping only the leading term in the exp
sion of F(g0Am), separately for thek- and k̃ -terms.~This
approximation is consistent foruku! k̃ .! The result is the
quartic potential

Vcl'kg0
2(

m
Am

2 1 k̃g0
4S (

m
Am

2 D 2

. ~2.9!

Equation ~2.9! closely resembles the potential of aF4

theory. For small negativek, the minimum is
,

e
in
o
y

c-
d

e,

n-
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l

e
-

i^Am&i5
1

g0
S uku

2k̃
D 1/2

, k,0. ~2.10!

Equation~2.10! exhibits the mean-field critical exponent 1/2
It is easy to check that this is the absolute minimum of
classical potential.

We note that Eq.~2.10! is invariant under arbitrary SO~4!
rotations, reflecting the symmetry of the approximate pot
tial Eq. ~2.9!. When higher-order corrections are taken in
account, the rotational symmetry of the potential is reduc
to the lattice hypercubic symmetry.

Below, the phase with a non-zero vector condensate
be denoted as the FMD phase. We will speak about the F
transition, referring to the transition from the rotationally i
variant phase to the FMD phase in the large-k̃ region. FMD
stands forferromagnetic directional. The preferred space
time direction of the FMD phase is defined by the vector
VEV. For g0Þ0, there are no Goldstone bosons in the FM
phase, because the lattice rotation group is discrete. The
iting g050 theory is discussed in Sec. V, and in particu
we explain there in what sense the FMD phase is ferrom
netic.

D. The weak-coupling expansion

We now want to study fluctuations around the classi
vacuumUx,m5I ~equivalentlyAm50! in the rotationally in-
variant phase, close to the FMD transition where the the
defined by Eqs.~2.2!–~2.5! is expected to be critical. The
FMD transition is given byk50 in the classical approxima
tion. As mentioned earlier, we are assumingk̃@1. We,
therefore, focus on the HD term in its vector picture for
Relaxing the assumption of a constantAm field, we find

k̃f†h2~U !fufx515 k̃g0
2S S (

m
Dm

2AmD 2

1g0
2S (

m
Am

2 D 2

1••• D , ~2.11!

where the dots stand for irrelevant operators.Dm
2 is the back-

ward lattice derivative, defined asDm
2 f x5 f x2 f x2m̂ for any

function f x .
Equation~2.11! contains a longitudinal kinetic term. W

define

1

2j0
[k̃g0

2 , ~2.12!

and we will assume thatj0 is an O(1) parameter. This
means that the longitudinal kinetic term belongs to the tr
level Lagrangian. Remember that a transversal kinetic te
is provided by the gauge-invariant plaquette actionSG . Fi-
nally, we assume that the tree-level vector boson mas
zero. Under these assumptions, the tree-level vector pr
gator is

Gmn~p!5
Pmn

' ~ p̂!1j0Pmn
i

~ p̂!

p̂2
, ~2.13!
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where

Pmn
' ~ p̂!5dmn2 p̂mp̂n / p̂2, ~2.14!

Pmn
i

~ p̂!5 p̂mp̂n / p̂2, ~2.15!

and p̂m52 sin(pm/2).
Massless weak-coupling perturbation theory is defined

the vector propagator Eq.~2.13!, and by a set of vertices
which can be read off from the lattice action using Eq.~2.6!
in the usual way.

E. The gauge-fixing action

In view of the presence of kinetic terms for all polariz
tions, lattice perturbation theory is manifestlyrenormaliz-
able. According to the standard lore, renormalizability im
plies a Lorentz invariantscaling behavior in the vicinity of
the Gaussian critical pointg051/k̃50. The scaling behavio
is achieved by tuning a finite number of counter-terms, t
correspond to the relevant and the marginal operators.

At this stage, the marginal gauge symmetry break
terms in the tree-level vector action@see Eq.~2.11!# do not
have the form of a gauge-fixing action,cf. Eq. ~2.1!. The way
to remedy this is to add another term to the HD action. Th
are two options. The new term can be chosen to cance
quartic term in Eq.~2.11!. The remaining marginal term—
the longitudinal kinetic term—has the form of a gauge-fixi
action for the linear Lorentz gauge]•A50. Alternatively,
the new HD term can lead to a mixed marginal term prop
tional to (]•A)A2. In this case one recovers the non-line
gauge]•A1gA250.

The linear gauge]•A50 is more familiar, and less com
plicated to implement in perturbation theory. Moreover, t
above non-linear gauge is consistent only for U~1! or
SU~N!3U~1!, whereas the linear gauge is consistent for a
gauge group. The linear gauge has, however, one tech
disadvantage. The quartic term in Eq.~2.11! is the stabilizing
term of the classical potential@see Eq.~2.9!#. In its absence,
one has to reanalyze the classical potential, and make
that it is stabilized by a higher-power term~in practice this is
an A6 term!. This task is done in Ref.@12#, which is hence-
forth referred to asII .

Here we will consider only the non-linear gauge. Sin
the necessary mixed term contains a derivative, one
modify the HD action while leaving the classical potent
intact. This simplifies our task, as the large-k̃ study of the
phase diagram in Sec. II C remains valid. The new HD
tion is

SHD
n.l.5

1

2j0g0
2 tr( S f†h2~U !f12B(

m
Dm

2VmD ,

~2.16!

Bx5(
m

S Vx2m̂,m1Vx,m

2 D 2

, ~2.17!

Vx,m5
1

2i
~fx

†Ux,mfx1m̂2H.c.!. ~2.18!
y

t
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Going to the vector picture and applying the weak-coupl
expansion, we have

Vmufx5I5g0Am2 1
6 ~g0Am!31••• . ~2.19!

It is easy to check that the desired mixed term is now pres
in the tree-level vector action. We comment that, in t
Higgs picture,Vm is a gauge-invariant local vector field
whose expectation value serves as an order parameter fo
FMD phase.~The corresponding order parameter in the ve
tor picture is the expectation value ofVmufx5I .! At the clas-

sical level,^Vm&5g0^Am&, where the latter is given by Eq
~2.10!.

For the Laplacian-squared HD action@see Eq.~2.3!#, it is
evident thatUx,m5I is the unique absolute minimum forall
configurations, and not only for the constant ones conside
in the classical potential~we assumefx5I !. This property,
which is necessary to validate the weak-coupling expans
applies to the new HD action~2.16! as well. The proof is
given in II . The symmetric combination used in the defin
tion of Bx @Eq. ~2.17!#, which does not affect the margina
term contained inB(mDm

2Vm , is essential for the proof.
We define the lattice gauge-fixing action to be

Sgf
n.l.~U ![SHD

n.l.~f,U !ufx5I . ~2.20!

As expected, Sgf
n.l. has the classical continuum lim

(1/2j0)(]•A1gA2)2. Because of the irrelevant terms it con
tains, one cannot writeSgf

n.l. as the~sum overx of the! square
of a local function of theUm-s. Consequently, the gauge
fixed lattice action is not invariant under BRST transform
tions.

It is interesting that the breaking of~gauge and! BRST
invariance is a common feature of the chiral fermion act
and the gauge-fixing action. In the case of the gauge-fix
action, it has to be so because of a theorem by Neube
@13#, which asserts that any lattice BRST-invariant~gauge-
fixed! partition function must vanish due to lattice artefa
Gribov copies. We return to the role of lattice Gribov copi
in Sec. IV.

Before we introduce fermions, the complete lattice act
~in the vector picture! is therefore

SV
n.l.5SG1Sgf

n.l.1Sfp
n.l.1Sct . ~2.21!

For the non-linear gauge, the continuum Faddeev-Popov
tion involves the operator~we suppress the group structu
constants! ]21 igA•]1g$A,]1 igA%. The last term is ab-
sent in the case of the linear gauge. For the discretizatio
]2 we take the standard~free! lattice Laplacian. We are dis
cretizing a second-order operator, and our choice avoids
appearance of any FP doublers. For the interaction ter
any lattice operator with the correct classical continuum lim
should do. For the discretization ofgA•], for example, one
can take(mVmDm whereDm is the antisymmetric difference
operator.~Since BRST symmetry is broken anyway by th
gauge-fixing action, we make no attempt to preserve
exact relation between the discretized versions of]2 and
A•].! We note that the ghost fields contribute to the effect
potential only through loops, and so they do not modify t
tree-level considerations.



r-
-
.
or
r-

n
e
on

tu
i

ak

s

f

ng
he
ea
th

se
er
l
x-
th

ou
cia

-
-
g
o

e

on

ar
n
e

he
a
lid

de
et
te

ice

er

n-
can

t

e
a-
e
n-

con-

ion
Eq.

t

n

ion

s for
m

be
n-
lt in

136 57YIGAL SHAMIR
Sct is the counter-term action. The role ofSct is to enforce
BRST invariance in the low momentum limit of lattice pe
turbation theory@1#. The BRST symmetry is violated in par
ticular by ~marginal! SO~4!-breaking lattice operators
Therefore, enforcing BRST invariance should also rest
full SO~4!-invariance in the continuum limit. The counte
term action is more naturally written in terms ofAm . We
define Sct as a local functional of theUm-s by tradingAm
with Vm using Eq.~2.19!. ~The second term in the expansio
of Vm , which breaks SO~4! invariance, is needed only for th
dimension-two mass counter-term. In all other cases
simply replacesg0Am with Vm .!

The BRST identitymr
250, which says that the~renormal-

ized! vector boson mass must vanish to all orders in per
bation theory, is consistent with taking the continuum lim
at the FMD transition. As a mass counter-term one can t
the k-term in Eq. ~2.3!. This means thatk is tuned to
kc.l .(g0 ,j0), where in perturbation theory kc.l .

5(n>1cn(j0)g0
2(n21) . Note that the coefficient of the mas

term in Eq.~2.9! is kg0
2. The absence of anO(1/g0

2) term in
the expansion ofkc.l . is in agreement with the vanishing o
the tree-level vector boson mass.

In this paper we have simplified things by consideri
only the most important counter-term, namely, t
dimension-two mass term. In the case of the non-lin
gauge, the next most important counter-term is
dimension-four SO~4!-breaking term(mAm

4 . As for the lin-
ear gauge, the classical potential is stabilized by anA6 term,
and ((mAm

2 )2 too occurs only as a counter-term. In this ca
the effect of the dimension-four non-derivative count
terms is discussed inII . One finds that the conventiona
~hyper-cubic invariant! phase and the FMD phase both e
tend into the higher-dimensional phase diagram. Also,
FMD transition remains continuous when the dimension-f
counter-terms are tuned to their critical values. The cru
features leading to these conclusions are~a! it is justified to
expandUm up to a finite order inAm ~equal to the dimension
of the stabilizing term! when looking for the absolute mini
mum of the potential;~b! the coefficients of the counter
terms areO(1), whereas the coefficient of the gauge-fixin
action isO(1/g0

2). Since these features are true in the case
the non-linear gauge as well, we expect a similar robustn
against the inclusion of additional counter-terms.

In this section we have discussed the phase diagram
in the large-k̃ limit. The phase diagram for arbitraryk andk̃
is studied in Sec. V A. This study, as well as additional
guments presented in Sec. VI A, further clarify why the co
tinuum limit of the gauge-fixing approach should be defin
at the FMD transition.

III. CHIRAL FERMIONS

In a gauge-invariant lattice theory, the minimum of t
plaquette action is unique up to a gauge transformation,
the transversal kinetic term is sufficient to define a va
weak-coupling expansion. In theabsenceof gauge invari-
ance, there exists a valid weak-coupling expansion provi
the gauge-fixing action of Sec. II E is added to the plaqu
action. This applies also to the gauge-fixing action presen
in II for the linear gauge]•A50. Using either of these
e
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gauge-fixing actions, there is a lot of freedom in the cho
of the chiral fermion action. We consider here~in the vector
picture! an action which is the most economic in the numb
of fermionic degrees of freedom@14#. ~For related work see
Refs. @15,16#.! Other fermion actions have certain adva
tages over the one presented here, and in particular they
reduce the required fine-tuning.

According to Ref.@14#, one introduces a two-componen
lattice fermion fieldxx , to account for a single Weyl fermion
in the target continuum theory. The fermion action is~sup-
pressing coordinates summations!

SF5(
m

x̄smDm~U !x2
w

4
~xhx1H.c.!, ~3.1!

Dxy,m~U !5 1
2 ~dx1m̂,yUx,m2dx2m̂,yUy,m

† !. ~3.2!

Here hxy is the free lattice Laplacian@Eq. ~2.4! for Ux,m

5I #, and xxxy[eabxx,axy,b5xx
Texy where e is the anti-

symmetric two-by-two matrix. We assumew5O(1). The
first term in Eq.~3.1! is the naive lattice discretization of th
continuum Weyl action. The second term is a Majoran
Wilson ~MW! term, that breaks explicitly gauge invarianc
as well as the fermion number symmetry. The latter is u
wanted, because fermion number is not conserved in the
tinuum theory.

In order to understand the properties of the lattice ferm
path integral, it is convenient to recast the fermion action
~3.1! in terms of four components fieldscM and c̄M . By
definition, PLcM5x and PRcM5e x̄ T, where PR,L5 1

2 (1
6g5) denote chirality projectors.c̄M is not an independen
field, and is given by

c̄M[cM
T C. ~3.3!

HereC is the antisymmetric four-by-four charge conjugatio
matrix, obeyingC2521, gm

TC52Cgm , and g5C5Cg5 .
In terms of these four component fields, the fermion act
takes the form

SF5 1
2 (

m
c̄M@gmDm~U !PL1gmDm~U* !PR#cM

2
w

4
c̄MhcM . ~3.4!

Let us first examine Eq.~3.4! in perturbation theory. The
tree-level fermion propagator is the~massless! Wilson propa-
gator@14#. Because of the Majorana-like condition Eq.~3.3!,
the symmetry factors in Feynman graphs are the same a
Majorana fermions. Now, if we go to the small momentu
limit, we find that the two chiralities ofcM couple to the
gauge field according tocomplex conjugaterepresentations
of the gauge group. One sees that the role of Eq.~3.3! is to
maintain consistently the identification PLcM↔x,
PRcM↔ x̄ , at the level of Feynman diagrams. That Eq.~3.4!
correctly describes a single left-handed Weyl fermion, can
verified by calculating the non-analytic part of one-fermio
loop diagrams, that should agree with the continuum resu
the limit of a vanishing external momentum~the role of
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counter-terms is discussed below!. As usual, the non-analytic
contribution comes from an infinitesimal neighborhood
the origin in the Brillouin zone. In this neighborhood one c
neglect the Wilson term in both numerators and denom
tors. The left-handed and right-handed components ofcM
are no longer coupled, and one can reexpress the Feyn
integrand in terms of the continuum propagator for a sin
Weyl fermion. @A left-handed fermion loop is equal to
right-handed fermion loop in the complex conjugate rep
sentation. The ‘‘double-counting’’ is compensated by a o
half symmetry factor for each closed fermion loop, whi
arises from the Majorana-like condition Eq.~3.3!.#

We next discuss the rigorous definition of the fermion
path integral. We introduce the 2N32N fermion matrixQab
by writing the action in the generic formSF

5 1
2 (a,bcM

a QabcM
b . ~The charge conjugation matrixC is

absorbed into the definition ofQ.! It is easy to check thatQ
is antisymmetric. The fermion path integral takes the follo
ing form @17#

E )
a

dcM
a expS 1

2 (
a,b

cM
a QabcM

b D
5

1

2NN!
ea1 ,b1 ,...,aN ,bN

Qa1 ,b1
•••QaN ,bN

[pfS Q

2 D . ~3.5!

There is no integration over the~dependent! variablesc̄M .
According to Eq.~3.5!, the fermionic path integral is aPfaff-
ian. In general, pf(Q/2) is complex, as expected from th
Euclidean path integral for a single Weyl fermion.

~As a further check that our fermion path integral d
scribes a Weyl fermion, we can consider a ‘‘two-generatio
model, where each complex representation occurs twic
the fermion spectrum. Using the identity pf2(Q/2)5det(Q),
that holds for a general antisymmeric matrix, this tw
generation model can be defined by an action similar to
~3.4!, where we now drop an overall one-half factor, subs
tutecM→cD , c̄M→ c̄D , and regardcD andc̄D asindepen-
dent Dirac-like variables. The counting of degrees of fre
dom is now straightforward. Since the two chiralities ofcD
belong to complex conjugate representations, this action
tually describes two left-handed Weyl fermions in thesame
complex representation.!

Until now we have implicitly discussed the fermions
the background of a fixed external gauge field. The m
result of the previous section is that, with the gauge-fix
action, perturbation theory is valid for a dynamical gau
field as well. Therefore, with appropriate counter-terms,the
continuum fields describing the scaling behavior are in o
to-one correspondence with the massless poles of the va
tree-level propagators. If we choose an anomaly free fe
mion spectrum, the scaling region should be governed b
continuum chiral gauge theory, in the relevant gauge.
note that if one chooses ananomalousfermion spectrum, the
scaling region will still be governed by a renormalizable L
grangian, but BRST invariance and, hence, unitarity will
violated.
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Finally, let us discuss the fermion mass counter-terms.
with ordinary Wilson fermions, a mass counter-ter

m0c̄McM is necessary to maintain the masslessness of e
chiral fermion.~A different fermion action that does not re
quire mass counter-terms will be discussed elsewhere@36#.!
The renormalized Majorana-like mass is proportional
(m02mc), where mc is ~minus! the fluctuations-induced
mass. If (m02mc) is small but non-zero, BRST invarianc
will be explicitly broken in the scaling region. The scalin
behavior is then governed by a renormalizable continu
theory which is not gauge invariant~hence also non-unitary!.
By tuning m0 to mc , assuming all other counter-terms a
ready have their critical values, we recover BRST invarian
simultaneously with the masslessness of the chiral fermio
~The situation on the lattice is similar to what one wou
encounter in the continuum, if a gauge non-invariant re
larization is employed for a chiral gauge theory. As on t
lattice, Majorana-like mass counter-terms may be need
alongside with other gauge non-invariant counter-terms
cancel the breaking of gauge invariance induced by the re
larization, and to ensure that the renormalized amplitudes
gauge invariant.!

An important question in the literature on lattice chir
gauge theories, is how to reproduce correctly fermion nu
ber violation in the continuum limit. Different solutions hav
been proposed to the problem@18–21#. We hope that the
present approach can shed new light on it.

For definiteness, we adopt the strategy of Ref.@14#.
Namely, we demand that the lattice fermion action sho
have no symmetry which is not present in the target c
tinuum theory. Now, while the action Eq.~3.1! is not invari-
ant under global U~1! transformations with an arbitrary
phase, it is still invariant under the residualdiscretesymme-
try x→2x, x̄→2 x̄ . This symmetry implies a~mod 2!
conservation law for each fermion species, which still cau
a problem. Consider for definiteness an SU~5! grand unified
theory ~GUT!, with one generation that contains a5̄ and a
10. In an instanton background, the numbers of zero mo
for these representations are, respectively, one and th
This is in conflict with the above~mod 2! conservation laws.
Thus, on top of the MW terms present in Eq.~3.1! for each
representation, one has to introduce an additional gauge-
invariant MW term that couples the5̄ and the10. ~As a
result, a Majorana-like mass counter-term that mixes th5̄
and the10 will be necessary too.! With this new MW term,
the remaining discrete symmetry leads only to~mod 2! con-
servation of the total fermion number for each generation

IV. WHY GAUGE FIXING

We now return to the lattice effective action, and consid
some of its properties in more detail. We keep the discuss
at an informal level. Our approach has been presente
detail in the previous sections, and the aim here is to cla
the nature of theproblemsthat it is meant to solve.

In this section we assume that the lattice chiral ferm
actionSF is bilinear in the fermion fields, and that it depen
in addition only on the link variablesUx,m . ~This corre-
sponds to the vector picture.! It is also assumed thatSF is
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138 57YIGAL SHAMIR
~mildly! local. The lattice spacinga will be shown explicitly
in this section.

The difficulties encountered in the construction of latti
chiral gauge theories can be addressed at a more rigo
level @5,7#. This complementary discussion, which focus
on the robustness of the Nielsen-Ninomiya theorem, is gi
in Sec. VI.

A. Rough lattice gauge transformations and the need
for gauge fixing

The lattice effective action is defined by integrating o
the fermions

Seff~U !52 log E DcDc̄e2SF~U,c,c̄ !. ~4.1!

Clearly, the well-defined object is exp(2Seff), rather thanSeff
itself. For our purpose it will be sufficient to consider th
perturbativeeffective action, and so we will ignore the prob
lems associated with the global definition ofSeff .

The variation ofSeff , in response to an infinitesimal lattic
gauge transformation at the pointx0 , has the following gen-
eral form

dx0
Seff'c0Ox0

con1 (
n>1

an(
i

cn,iOx0

n,i . ~4.2!

The ' sign indicates that the right-hand side~RHS! is com-
puted perturbatively. Note that the gauge field is extern
and so the gauge-field action is not needed at this stage.Ox

con

andOx
n,i are local lattice operators that depend onAm , cf.

Eq. ~2.6!. The dimension ofOx
n,i is 41n, and the

i -summation is over linearly independent operators of t
dimension.Ox

con is some discretized version of the consiste
anomaly. We assume that all operators of dimension
than or equal to four, other thanOx

con , have been cancelle
by counter-terms. If, moreover, we choose a set of comp
representations that satisfies the anomaly cancellation co
tion, thenc050.

The infinite sum on the RHS of Eq.~4.2! accounts for
lattice artifact violations of gauge invariance. The prec
form of these violations is model dependent, but their ex
tence is generic. As can be easily seen by going to mom
tum space, which is the usual setting for a perturbative co
putation, this sum represents a double expansion inug0aAmu
and uapmu.

Let us first consider a smooth gauge fieldAm
0 which is

characterized by some physical scaleLphys!a21, and the
corresponding configuration of link variablesUx,m

0 defined
via Eq. ~2.6!. Since the dimensionful quantitiesAm and pm
are O(Lphys), both of the above expansion parameters
small. Equation~4.2! is the gradient ofSeff with respect to a
motion inside the lattice gauge orbit. Therefore,Seff is ~ap-
proximately! constant on the orbit in the vicinityUx,m

0 . The
constancy ofSeff extends to that portion of the orbit which
reachable fromUx,m

0 by a smooth gauge transformation.
The problem is that, on the lattice, smooth gauge tra

formations represent a tiny part of the local gauge group.
Ux,m

(g) 5gxUx,m
0 gx1m̂

† be agenericconfiguration in the orbit of
us
s
n

t

l,

s
t
ss

x
di-

e
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n-
-

e
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et

Ux,m
0 , and letAm

(g) be related toUx,m
(g) via Eq.~2.6!. Since the

operators that occur on the RHS of Eq.~4.2! arenot gauge
invariant, they are sensitive to the value ofgx for x in the
vicinity of x0 . Now, thegx-s on different sites auncorre-
lated. As a result, the expansion parametersug0aAm

(g)u and
uaDnAm

(g)/Am
(g)u areO(1) for a generic lattice gauge transfo

mation. We conclude thatSeff fails to be ~approximately!
constant on most of the lattice gauge orbit. This is true
anyorbit, including orbits that have a smooth representati

B. Proliferation of lattice Gribov copies

The above problem stems from theroughnessof generic
lattice gauge transformations. Following Ref.@1# we make
no attempt to reduce the violations of gauge invariance at
level of the effective action. Instead, our aim is to suppr
the Boltzmann weight of rough gauge field configuratio
~relative to smooth configurations that belong to the sa
orbit! consistently with the gauge invariance of the physi
Hilbert space, namely, viagauge fixing.

In lattice QCD, gauge fixing is a matter of choice, since
has no effect on the gauge-invariant observables. Here,
fermion action is not gauge invariant. As a result, the gau
fixing method is anintegral part of the definition of the
theory. Different gauge-fixing methods may in general g
rise to different phase diagrams with different critical poin
There is no guarantee that every gauge-fixing method
lead to a non-trivial continuum limit, let alone to a chir
gauge theory.

Still, in order to make progress, one has to choosesome
gauge-fixing method. Vink@22# proposed to use the Laplac
ian gauge, where a maximally smooth representative is c
sen on each gauge orbit by global minimization. The Lapl
ian gauge is highly non-local, and this creates difficult
both in the analytic and in the numerical study of th
method.

As discussed in detail in Sec. II, we build a local gaug
fixing lattice action, that~a! has the unique absolute min
mum Ux,m5I , and ~b! reduces to a covariant gauge-fixin
action in the classical continuum limit. Our gauge-fixing a
tions @Eqs.~2.16!–~2.18! for the non-linear gauge, seeII for
the linear gauge# are clearly not the most naive discretiz
tions of the corresponding continuum actions. Focusing
simplicity on the linear gauge]•A50, let us examine wha
goes wrong with a naively discretized gauge-fixing actio
We thus consider the following action:

Sgf
naive5

1

2j0g0
2 tr(

x
Gx

2 , ~4.3!

Gx5(
m

Dm
2Vx,m5

1

2i (
m

~Dm
2Ux,m2H.c.!. ~4.4!

Note thatg0
21(mDm

2Vx,m reduces in the classical continuu
limit to ]•A, as it should.

What is common to our gauge-fixing action~s! and to the
naive gauge-fixing action Eq.~4.3!, is that they contain a
longitudinal kinetic term. The trouble withSgf

naive is that it
supports adense setof Gribov copies for the identity field
Ux,m5I . Each of these Gribov copies is a classical vacu
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57 139THE STANDARD MODEL FROM A NEW PHASE . . .
of SG1Sgf
naive. The superposition of contributions comin

from all these classical vacua, whichcannot be calculated
perturbatively, may ultimately render the fermion spectru
vector-like. Even without fermions, stability of the classic
potential is lost, and it is unclear whether the FM-FMD tra
sition ~associated with a divergent vector-field correlati
length! can be maintained in the weak-coupling limit.~If the
gauge-fixing action in Eq.~2.21! is replaced bySgf

naive, the
resulting classical potential is identically zero. If we assu
k5O(1/g0

2), which implies the presence of a tree-level ma
term, one hasVcl

naive5kF(g0Am) @compare Eq.~2.7!#. The
minimum of Vcl

naive is Am50 for k.0, andAm5p/g0 for k
,0.!

We now demonstrate the existence of a dense set of la
Gribov copies for the identity field. Consider first the U~1!
case. The conditionGx50 is satisfied if the imaginary part o
Ux,m is zero everywhere. The latter is true if we consid
only lattice gauge transformations wheregx561. In other
words, in spite of the presence of the gauge-fixing act
Sgf

naive, the Gribov copies of the identity field still exhibit
local Z2 symmetry. @This is also true for the non-linea
gauge, if one replacesGx in Eq. ~4.3! by Gx

n.l.5(m(Dm
2Vx,m

1Vx,m
2 ).# An ‘‘elementary’’ Gribov copy is created if we

choose gx521 for x5x0 , and gx51 elsewhere. This
clearly shows that the Gribov copies arelocal lattice arte-
facts.

The above example generalizes to non-Abelian groups
the case of SU~2N! and SO~2N! groups, simply replace61
by 6I . Moreover, for any SU~N! group, one can choose a
SU~2! subgroup~which for simplicity we assume to lie at th
top left corner! and repeat the above construction withgx
5diag(61,61,1,1,...). Thediscrete local symmetry of the
Gribov copies is therefore larger than Z2 in the general case
For a more detailed discussion of lattice Gribov copies
Ref. @23#.

A number of remarkable similarities draw us to say th
the proliferation of Gribov copiesis the spin-1 counter-par
of the fermion doublingproblem. In both cases, one dea
with the discretization of a first-order differential operator:
the spin-12 case, this is the Dirac~or Weyl! equation; in the
spin-1 case, this is a covariant gauge condition~see Sec.
II E!. In both cases the problem arises when a non-com
continuum variable is replaced with a compact lattice va
able: fermion doubling arises because, unlike in the c
tinuum, the lattice momentum is periodic; in the spin-1 ca
also the non-compact continuum gauge field is replaced w
compact group variables. In both cases, there are theo
that establish an impasse under certain mild-looking con
tions: the Karsten-Smit@3# and Nielsen-Ninomiya@4# theo-
rems which predict fermion doubling, and Neuberger’s th
rem @13# which asserts that any BRST-invariant partitio
function must vanish identically. Finally, in both cases t
solution is to reduce the symmetry of the lattice theory,
adding irrelevant terms to the naively discretized action.
the case of Wilson fermions, this is the role of the Wils
term. As for our gauge-fixing action~s!, one can show~see
II ! that it is equal to the square of a discretized gauge c
dition, plus irrelevant terms. Thus, again, the irrelevant ter
reduce the symmetry, this time by breaking explicitly BRS
invariance.
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C. Other approaches

A different approach to the dynamical problems crea
by rough lattice gauge transformations is to adopt a m
sophisticated definition for the effective action. The prom
nent representatives of this approach are the interpola
method@24,25# and the overlap formalism@26#.

In the interpolation method, one constructs a continu
interpolating field Am

cont5Am
cont(y;Ux,m), yPR4, for each

configuration of the lattice gauge field. The determinant
the Weyl operator,s•(]1 igAcont), is then defined using a
separate regulator. Associated with the fermion regular
tion is a new cutoff parameter, denoted genericallyL f ,
which must be sent to infinity before the lattice spacinga is
sent to zero.@A concrete method@25# is to discretize the
Weyl action on a finer lattice with a lattice spacingaf!a,
usinge.g. the fermion action of Ref.@14# @Eq. ~3.1!#. In this
caseL f5af

21 .#
Consistent regularizations of the Weyl determinant bre

gauge invariance for finite values of the cutoff, even wh
the fermion spectrum is anomaly free. Therefore, gauge-n
invariant counter-terms are needed in the interpolat
method too.~It has been proposed that gauge-non-invari
counter-terms may be avoided, if the real part of the effect
action is regulated separately from the imaginary part@27#.
In spite of attempts in this direction@25#, it remains unclear
whether this procedure can be implemented beyond pe
bation theory without violating locality, and, eventually, un
tarity.!

For given Ux,m-s, the interpolating field assigns alocal
winding number to each hypercube~in the non-Abelian
case!, or to each plaquette~in the Abelian case!. In the non-
Abelian case, this is the winding number of the continuu
gauge transformation defined on the faces of the hyperc
that brings the interpolating field to a prescribed axial gau
in the Abelian case, the continuum gauge transformatio
defined on the perimeter of each plaquette. Now, a fun
mental requirement is that the fermion determinant should
gauge invariant in the limitL f→`. Gauge invariance can b
established only ifAm

cont(y) is globally bounded@24,25#.
Gauge invariance is therefore recovered in the limitL f→`
only on that portion of the lattice gauge orbit, where all t
local winding numbers are zero@7#. The solution is to apply
a gauge transformation that sets all local winding number
zerobeforecomputing the fermion determinant~for simplic-
ity we consider a trivial global topology!. We note that the
smoothing gauge transformation is non-local, and so a c
ful study of potential problems associated with the infini
volume limit is required.

In the overlap approach, while the real part of the effe
tive action is gauge invariant by construction, the imagina
part is not. Again, we expect that gauge-non-invaria
counter-terms will be needed, starting at some finite lo
order. Potentially severe problems with the overlap appro
were pointed out in Ref.@28#. According to our judgement
subsequent works~including in particular Ref.@29#! fail to
address the issues raised in Ref.@28#. Numerical evidence for
the lack of gauge invariance~in the non-Abelian case! has
been found in Ref.@30# ~see Fig. 1 therein!.

V. THE REDUCED MODEL

Returning to our approach, we consider in this section
limit of a vanishing gauge coupling. Since 1/g0

2 is the coef-
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140 57YIGAL SHAMIR
ficient of the plaquette action, theg050 limit constrains the
lattice gauge field to the trivial orbit.

The theory defined byg050 limit is called thereduced
model. If we use thevector picture, the reduced model is
obtained by substitutingUx,m→fx

†fx1m̂ in the lattice action.
The lattice gauge field measureP*dUx,m is replaced by
P*dfx . @Alternatively, starting from theHiggs picturethat
already involves bothUx,m and fx ~see Sec. II B!, one ob-
tains the reduced model by simply settingUx,m5I .#

In the weak gauge-coupling limit, the transversal mod
are perturbative at the lattice scale. Many important featu
including the fermion spectrum, are determined by the
namics of the longitudinal modes. The utility of the reduc
model is that it allows us to study the longitudinal dynam
in isolation, without making anya priori assumption. The
reduced model accounts for dynamical situations rang
from a divergent longitudinal correlation length, as in o
approach, down to a very short correlation length. In t
section we study a prototype reduced model. The entire
namical range is realized in different regions of its pha
diagram. In Sec. VI we discuss the effects of the longitudi
dynamics on the fermion spectrum, first in general terms
then in our approach.

A. The phase diagram

In this subsection~and the next one! we discuss the re
duced model related to the lattice action of Sec. II B,
fxPU(1). Since Eq.~2.3! is written in the Higgs picture,
the reduced model is obtained by settingUx,m51. This leads
to the action

SH8 5( ~2kf†hf1 k̃f†h2f!. ~5.1!

Our first task is to derive the mean-field phase diagram in
( k̃ ,k)-plane. This phase diagram is in fact generic, and p
tains also to the more relevant theories defined in Sec.
and in II .

Let us first consider the ordinary VEV,v, as an order
parameter~or the staggered VEVvAM!. An additional order
parameter will be introduced shortly. By definition

FIG. 1. Mean-field phase diagram. See Table I for the definit
of the various phases.
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v5^fx&, ~5.2!

vAM5^exfx&, ~5.3!

where ex5(21)(mxm. For k̃50, we recover the familiar
non-linear sigma model. On thek-axis there is a symmetric
~PM! phase foruku,kc , a ferromagnetic~FM! phase fork
.kc , and an antiferromagnetic~AM ! phase fork,2kc .
The field redefinitionfx→exfx mapsk to 2k, thus imply-
ing a symmetry of thek-axis.

We now extend the discussion to the full (k̃ ,k)-plane.
Mean-field approximation ind-dimensions yields the follow-
ing equation for the FM-PM line

k1~2d11! k̃5kc , FM-PM. ~5.4!

The equation for the AM-PM line is

k1~6d21! k̃52kc , AM-PM. ~5.5!

The FM-PM and AM-PM transitions are continuous. Th
symmetry of thek-axis extends tok̃Þ0. Under the field
redefinitionfx→exfx , the point (k̃ ,k) is mapped in four
dimensions to (k̃ ,2k232k̃ ). This implies that the linear
equation

k116k̃50, ~5.6!

defines a symmetry line of the phase diagram. The FM-
and AM-PM lines meet in the second quadrant, at the po
(2kc/7,16kc/7) on the symmetry line. It can be shown tha
beyond this point, the symmetry line is a first-order transiti
line separating the FM and AM phases@31#.

In condensed matter physics, it is well known that sp
models with competing interactions tend to develop a grou
state that breaks translation and rotation invariance. I
small antiferromagnetic interaction is added to a domin
ferromagnetic one, the spin orientation of the ground st
will rotate slowly with a wave vectorqmÞ0 ~see Ref.@32#
for a recent review!.

In the reduced model defined by Eq.~5.1!, competing
interactions occur whenk and k̃ have opposite signs. In
order to look for a similar phenomenon, we introduce t
mean-field ansatz

^fx&5veiqmxm. ~5.7!

We assume 0<qm,2p. A non-zeroqm signals the sponta
neous breaking of translation and rotation invariance. M
precisely, translation invariance is broken in the directi
defined byqm , but it remains unbroken in the transvers
directions. In condensed matter, phases with a non-zeroqm
are known ashelicoidal-ferromagneticones. Here, the
helicoidal-ferromagnetic phase of the reduced model is
g050 boundary of the FMD phase of the full theory~see
Sec. II C!, and the name FMD will be used both in the fu
theory and in the reduced model.

A simple mean-field method is based on afactorized
probability measure~see e.g. Ref. @33#!. For the FM-PM
transition, one can use the following factorized probabil
measure

n
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P0~ux!5
112v cos~ux!

2p
. ~5.8!

In order to accommodate a non-zeroqm , we generalize this
to

P~ux!5
112v cos~ux2qmxm!

2p
. ~5.9!

One haŝ 1&P51 and ^eiux&P5veiqmxm @in agreement with
Eq. ~5.7!#. Because of its factorized nature, th
qm-dependence ofP(ux) affects only theinternal energy, but
not theentropy. Introducing the notationSH8 5(xHx , we find

^H&P5~12v2!~8k172k̃ !1v2@kF~qm!1 k̃F2~qm!#,
~5.10!

where the functionF is defined in Eq.~2.8!. While the
choice of the factorized probability measures Eqs.~5.8! and
~5.9! is somewhat arbitrary, the internal energy~5.10! is a
universal feature of any mean-field approximation forSH8 .

If we consider a point in the phase diagram well to t
right of the FM-PM line, the value ofv is finite in lattice
units. Making the self-consistent assumption thatqm is small,
the location of the FM-FMD transition can be determined
minimizing the internal energy with respect toqm . Remark-
ably, theqm-dependent part of the internal energy coincid
with the classical potential~2.7!, if we make the identifica-
tion g0Am↔qm . Consequently, there is complete agreem
between the mean-field properties of the FM-FMD transit
in the reduced model, and the classical properties of
FMD transition in theg0Þ0 theory. The mean-field locatio
of the FM-FMD transition isk50. For k.0 one is in the
FM phase, whereas fork,0 one is in the FMD phase. Clos
to the FM-FMD line,qm is given by Eq.~2.10! whereg0Am
is replaced byqm ~after this replacementg0 drops out, and
one hasq252k/2k̃ for a small negativek!. The FM-FMD
line ends when it hits the FM-PM line. The multi-critica
point where the PM, FM and FMD phases meet is known
a Lifshitz point @34#. Its mean-field value is (kc/9,0). ~Lif-
shitz points exhibit rich critical behavior. This was discuss
recently in a field theoretic context by J. Kuti@35#.!

The remaining features of the mean-field phase diag
are as follows~see Fig. 1!. The transformationfx→exfx
mapsqm to qm1p. This implies the existence of a secon
FMD region ~and another Lifshitz point! below the symme-
try line in the fourth quadrant. The PM-FMD line, separati
the paramagnetic phase from the FMD phase, can be d
mined by first minimizing the~internal! energy with respec
to qm , and then the~free! energy with respect tov. The PM
phase occupies a bounded region in the phase diagram.
two FMD regions above and below the symmetry line belo
to a single FMD phase. The PM-FMD line lies on an ellips
with the FM-PM and AM-PM lines tangent to it at the tw
Lifshitz points. A more detailed mean-field calculation w
be presented elsewhere@31#.

The mean-field ansatz~5.7! implies the simultaneous
breaking of the internal U~1! symmetry, as well as of rotation
and translation invariance. We believe that one cannot br
translation invariance without at the same time breaking
internal symmetry. However, one can conceive of a ph
s
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~denoted PMD! where only rotation symmetry is broken
while the internal symmetries as well as translations are
broken. The order parameter for a PMD phase of the redu
model is the expectation value of the composite vector fi
@compare Eq.~2.18!#

Vx,m
i

5
1

2i
~fx

†fx1m̂2H.c.!. ~5.11!

At the moment, however, we have no evidence for a PM
phase.

The phases of the reduced model are depicted in Tab
The order parametervH is defined asvH5^fxe

2 iqmxm&.
Note that in the special caseqm5(0,0,0,0) „qm
5(p,p,p,p)…, vH coincides withv (vAM). In this paper we
usually do not distinguish betweenv andvH , since the cor-
rect meaning can be understood from the context. Howe
this distinction is important in numerical simulation. Th
value ofqm , to be used in the measurement ofvH , can be
determined for example by measuring^fx

†fx1m̂& and ex-
tracting its phase.

The relation between the (k̃ ,k)-phase diagram of the re
duced model and the (k̃ ,k,g0)-phase diagram of the ful
theory is the following. In the U~1! case, the symmetric~PM!
phase is the boundary of a Coulomb phase, and the bro
~FM or AM! phase is the boundary of a Higgs phase. In
non-Abelian case, the PM, FM and AM phases correspon
the boundary of a single Higgs-confinement phase. Fina
the helicoidal-ferromagnetic~FMD! phase of the reduced
model is the boundary of the FMD phase of the full theo

In the g0→0 limit of the full theory, we find~approxi-
mately! massless gauge bosons close to the FM-FMD line
well as close to the PM-FM line, and in the entire PM pha
An interesting observation is that, even without fermions
we want to study a Lorentz gauge-fixed Yang-Mills theo
on the lattice, then the appropriate critical line is the FM
FMD line. The reason is that, in order to keep the longitu
nal kinetic term in the tree-level action,k̃ must scale like
1/g0

2 ~see Sec. II!. In the large-k̃ limit, a PM phase does no
exist, and criticality can only be achieved by approaching
FM-FMD line.

B. The weak-coupling expansion in the reduced model

In view of the properties of the weak-coupling expansi
in the full theory~Sec. II!, and in particular Eq.~2.12!, one
expects that 1/k̃ will play the role of a coupling constant in
the reduced model. We will now demonstrate this explicit
We do not carry out here any detailed calculations that

TABLE I. Phases of the reduced model. The entries indic
which order parameters were non-zero in each phase.

Phase v vAM vH Vm
i

PM no no no no
FM yes no yes no
AM no yes yes no
FMD no no yes yes
PMD~?! no no no yes
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quire the full lattice Feynman rules. Therefore, we work
the continuum approximation,i.e. we extract from the lattice
action the marginal and relevant terms, that control the c
cal behavior in the vicinity of the Gaussian critical poi
1/k̃50.

The weak-coupling expansion is facilitated by expand
around a broken symmetry vacuum. We first introduce
Goldstone boson~GB! field ux via fx5eiux. @This classical
expansion is consistent with the mean-field ansatz~5.7!, be-

causev→1 for k̃→`.# Rescalingu→(1/A2k̃ )u we find, in
the continuum approximation, the following GB Lagrangi

LGB5
1

2 E d4xS ~hu!21
k

k̃
]mu]mu1

1

2k̃
~]mu]mu!2D .

~5.12!

Equation~5.12! is valid on the FM side of the transition line
On the FMD side, one first looks for the classical vacuum
assumingu5qmxm and minimizing forqm . The result is the
same as in the mean-field approximation. The weak-coup
expansion on the FMD side is then defined viau→qmxm

1(1/A2k̃ )u.
We will consider here only the FM side. Taking the Fo

rier transform of the bilinear part of the Lagrangian, we fi
the following GB propagator

G0
21~p!5~p2!21m0

2p2, ~5.13!

where m0
25k/ k̃ . Analytical continuation to Minkowski

space shows the existence of a positive-residue pole apM
2

50, and a negative-residue~ghost! pole atpM
2 5m0

2 . These
poles merge into a quartic singularity in the limitm0

2→0.
The continuum limit of the reduced model is therefore n
unitary. ~In Sec. VI B we discuss the interaction of the G
field with fermions. The crucial requirement is that the no
unitary GB sector, which accounts for the two unphysi
polarizations of the gauge bosons, will decouple from
fermions in the continuum limit. This decoupling is di
cussed in detail in Ref.@36#.!

Because of the quartic kinetic term in the GB Lagrangi
the canonical dimension of the GB fieldu(x) is zero. The
GB Lagrangian is invariant under the shift symme
u(x)→u(x)1const, which forbids the appearance of no
derivative terms under renormalization. In addition, the G
Lagrangian is invariant under the discrete symme
u(x)→2u(x). Equation~5.12! is the most general renor
malizable Lagrangian allowed by these symmetries.

What marks the Feynman rules of the GB Lagrangian
that one derivative acts on every line attached to a ver
The derivatives acting on the two ends of each internal
effectively cancel one factor of 1/p2 in the propagator. The
result is that the UV power counting of the GB model is t
same as in an ordinarylF4 theory. If we ignore the vecto
index carried by the partial derivatives, one can match e
term in the GB Lagrangian with a corresponding term in
lF4 Lagrangian according to the rule]u→F.

In the lF4 theory, at the one loop level only the ma
term is renormalized, but not the kinetic term. By analogy
the GB Lagrangian only (]mu)2, but not (hu)2, is renor-
i-
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malized at the one-loop level. The induced one-lo
(]mu)2-term has a positive sign. This implies

kc.l .~ k̃ !52c1O~ k̃ 21!. ~5.14!

@Note that the coefficient of (]mu)2 in Eq. ~5.12! is k/ k̃ .#
The dimension of the positive constantc is two. Its numeri-
cal value, which isO(1/a2), has to be determined by a la
tice calculation. Finally, as in thelF4 theory, the one-loop
beta-function is determined by the vertex renormalizati
and is found to be positive. Explicitly

b~ k̃ 21![L
]

]L
k̃ 215

5

16p2 k̃ 22, ~5.15!

whereL is the UV cutoff ~the inverse lattice spacing in
lattice calculation!.

C. Infra-red divergences of the critical theory

If we tunek to kc.l .( k̃ ), the quadratic kinetic term in Eq
~5.13! vanishes, and the renormalized GB propagator rea

Gr
21~p!5Z~p2!2, ~5.16!

where Z accounts for the wave-function renormalizatio
This quartic propagator leads to IR divergences in four
mensions, like massless bosons with an ordinary kinetic t
do in two dimensions.

The IR divergences of massless Goldstone bosons lea
the restoration of continuous symmetries in two dimensio
@37#. Only symmetric observables, which are invariant und
all the continuous symmetries, can have a non-zero va
There are theorems@38–40# that guarantee the IR-finitenes
of the symmetric observables.

Here the quartic propagator~5.16! does not characterize
whole phase, but only the FM-FMD line itself. The ord
parametervH ~or v! dips close to the FM-FMD line, and
vanishes on that line in several~maybe in all! interesting
cases@31,36#. The theorems on the finiteness of symmet
observables, in particular Ref.@40#, generalize to four dimen-
sions. Also, as in two dimensions, the predictions of t
weak-coupling expansion are often valid, if interpreted ca
fully @41#. This will be important in Sec. VI B.

D. Realistic reduced models

The key features of the simplified reduced model stud
in this section extend to the realistic reduced models, defi
from the~gauge-fixing and ghost! action of Sec. II E for the
non-linear gauge, or the action ofII for the linear gauge.
This includes the qualitative structure of the phase diagr
and in particular the FM and FMD phases, the Gauss
critical point at k̃5`, and the IR divergences on the FM
FMD line.

Particularly interesting are the critical FM-FMD theorie
in the reduced models that correspond to the linear ga
]•A50. In the Abelian case, the linear-gauge reduced mo
leads to a free theory with a 1/(p2)2 propagator. The prop-
erties of this critical theory are analogous to the spin-wa
phase of a two-dimensional Abelian theory. This will be d
cussed in detail elsewhere@31,36#. The critical theory for a
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57 143THE STANDARD MODEL FROM A NEW PHASE . . .
non-Abelian gauge group was investigated by Hata@42# in
the continuum approximation. His main result is that, li
non-Abelian sigma models in two dimensions, these fo
dimensional non-linear models are asymptotically free
will be interesting to investigate the significance of this res
for the construction of gauge-fixed non-Abelian lattice the
ries via our approach.

VI. FERMIONS IN THE REDUCED MODEL

In a manifestly gauge invariant theory like QCD, the fe
mion spectrum can be read off from the lattice action
going to the free field limitg050. Here, the fermion action is
not gauge invariant~in the vector picture!, and the limitg0
50 gives rise to an interacting theory, namely, to the
duced model. We identify the elementary fermions of a g
eral lattice gauge theory with the independentfermionic
massless polesof the associated reduced model.~If the fer-
mion action is gauge invariant, anyfx dependence of its
reduced-model form can be eliminated by a field redefi
tion.! It is justified to determine the matter spectrum by s
ting g050, since, in a scaling region, the transversal degr
of freedom are perturbative at the lattice scale.

A. The robustness of the no-go theorems

Let the gauge field belong to a Lie groupG. By construc-
tion, the associated reduced model has a globalG-symmetry,
denotedGL , that acts onfx by left multiplication. ~The
reduced model is obtained from the vector picture
Ux,m→fx

†fx1m̂ , and the productfx
†fx1m̂ is invariant under

left multiplication. Notice also that the gauge-invaria
Higgs picture can be obtained by gauging theGL symmetry
of the reduced model.! Now, we demand the existence o
massless vector bosons in the scaling region, which can
identified with the gauge bosons of the target continu
theory. These vector bosons couple to the Noether cur
associated with theGL symmetry. Thus, assigning the ferm
ons to representations ofGL determines whether the con
tinuum limit is chiral or vector-like.

In previous chiral fermion proposals, it was usually a
tempted to take the continuum limit in a symmetric pha
where theGL symmetry isnot broken spontaneously.~Physi-
cal gauge invariance is restored dynamically in a symme
phase, when we consider the fullg0Þ0 theory. This means
that there are no light unphysical states, whose decouplin
the continuum limit requires fine-tuning. Since the VEV
thefx field is zero, the physics in a symmetric phase is m
easily accounted for in the gauge-invariant Higgs picture.! In
a symmetric phase, the fluctuations of thefx field are usu-
ally not controlled by any small parameter. As a result, n
perturbative methods had to be invoked in order to determ
the fermion spectrum. Where available, it was always fou
that the true fermion spectrum is vector-like~see Refs.@7,9,
43# for details!.

We have discussed this phenomenon in Refs.@5,7#, and
argued that it has a simple physical explanation. Here we
only outline the key considerations leading to this conc
sion, and we refer the reader to Refs.@5,7# for the details.
One starts with the observation that, in a symmetric phas
the reduced model, there are generically no massless sc
Therefore, the only massless particles~if any! are fermions.
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~It could be@43# that no massless fermions are present unl
a mass term if fine-tuned. Since we are in symmetric pha
a massless fermion obtained by fine-tuning is necessari
Dirac fermion.! Now, in four dimensions, there are no reno
malizable interactions involving only fermion fields. Th
continuum limit defined by a generic point inside a symm
ric phase is therefore a theory of free massless fermions~if it
is not empty!. One can then construct aneffective lattice
Hamiltonian for the fermions, that satisfies all the assum
tions of the Nielsen-Ninomiya theorem. ~The effective
Hamiltonian is defined as thep050 limit of the inverse of a
suitable two-point function.! We refer here in particular to
the analytic structure near the zeros of the effective Ham
tonian, and to the existence of a smooth interpolat
throughout the rest of the Brillouin zone. This leads to t
conclusion that the fermion spectrum is vector-like in a sy
metric phase, provided the underlying theory is local.~In the
case of a non-local theory one, expects violations of unita
and/or Lorentz invariance, see Ref.@7# for references to the
original literature.!

This impasse extends, by continuity, to the fermion sp
trum on any phase transition line that separates a symm
phase from a broken phase. In particular, even though
gauge boson mass vanishes on the PM-FM line, we do
expect to find a chiral gauge theory by taking the continu
limit at the PM-FM line. The fermion spectrum will be
vector-like if the PM-FM line is approached from the P
phase. If we approach the PM-FM line from the FM pha
we can only obtain a mirror fermion model@44#, but we
cannot decouple the unwanted mirror fermions.

B. Evading the no-go theorems

Let us now investigate what changes when the continu
limit is taken at the FM-FMD line. We will consider the
simplest case, namely a U~1! gauge group with the gauge
fixing action pertaining to the linear gauge,cf. II . As men-
tioned in Sec. V D, the properties of the critical FM-FM
theory are analogous to the spin-wave phase of a t
dimensional Abelian theory.

We go from~the vector picture of! the full theory to the
reduced model according to the ruleUx,m→fx

†fx1m̂ . The
fermion action Eq. ~3.1! becomes ~we use the two-
component notation!

SF85(
m

~ x̄f†!smDm~fx!2
w

4
~xhx1H.c.!. ~6.1!

The fermion variables in Eq.~6.1! areneutralwith respect to
GL . If, instead, we use thechargedvariablesxc5fx, the
fermion action reads

SF85(
m

x̄ csmDmxc2
w

4
~~f†xc!h~f†xc!1H.c.!.

~6.2!

According to the rules of the weak-coupling expansi
~see Sec. V B!, the tree-level fermion action is obtained b
substituting the classical vacuumfx51. Using Eq.~6.2! for
definiteness, we get
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SF
05(

m
x̄ csmDmxc2

w

4
~xchxc1H.c.!. ~6.3!

In the limit w50, only the kinetic term(mx̄ csmDmxc is left.
Thus, thew50 action exhibits the infamous doubling, wit
sixteen Weyl fermions altogether.~Each fermion is associ
ated with a point in the Brillouin zone, whose lattice mome
tum components are equal to either 0 orp.! Since we take
w5O(1), the MW term eliminates the doublers, and th
pole in the tree-level fermion propagator describes a sin
Weyl field ~see Sec. III!.

Had we started from the fermion action written in term
of the neutral variables@Eq. ~6.1!#, the substitutionfx51
would lead to a tree-level action identical to Eq.~6.3!, but
with the neutral fieldx replacing the charged fieldxc . Now,
deep in the FM phase this makes no difference, because
GL symmetry is broken anyway by thefx-VEV, which is
O(1) in lattice units. However, theGL symmetry is restored
right on the FM-FMD line@31,36#. It is therefore a meaning
ful ~and important! question to ask what are theGL-quantum
numbers of the massless fermions.

The fact that one cannot simply read off the quant
numbers of one-fermion states from the tree-level action,
consequence of the IR-divergent nature of the GB propa
tor, 1/(p2)2. The way to proceed is to examine a family
fermionic two-point functionsGn5^(fnx)( x̄f†n)&. Assum-
ing all mass parameters have been tuned to their critical
ues, Gn will in general contain terms proportional t
(p” )21 logk(p2) for any k. The presence of logarithmic term
~which typically lead to power law corrections whe
summed over all orders! means that the operatorfnx does
not create a one-particle state@41,43#. Only when there are
no logarithmic corrections do we have a simple mass
pole, and the quantum numbers of the intermediate o
fermion state must coincide with the quantum numbers of
interpolating fermion field.

The fermion spectrum in the reduced model can be s
ied in detail using the weak-coupling expansion. While t
actual calculations require a substantial amount of work,
conclusions are robust, as they really depend on unive
properties of the low-energy effective~continuum! Lagrang-
ian. A one-loop calculation, which is also supported by n
merical simulations, will be presented elsewhere@36#. Here
we will list the key results, as they apply to the MW fermio
action.

Logarithmic terms areabsentonly for n51, namely in the
two-point function^xcx̄ c&. Consequently, the massless fe
mion has the quantum numbers of thexc field. The latter is
charged, which means that thexc Weyl fermion will couple
to the transversal gauge field, when the latter is turned o

As can be expected on general grounds~see Sec. III!,
divergent Majorana-like mass terms are induced at the o
loop level. These must be cancelled by suitable coun
terms, to maintain the masslessness of each chiral ferm

When the Majorana-like mass counter-terms are tune
their critical values, the unphysical GB fielddecouplesfrom
the xc-fermions. The continuum limit is a direct product o
~in general! several free theories, one associated with
unphysical GB field, and one associated with every spe
of chiral xc-fermions.
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This establishes an agreement between the prediction
the weak-coupling expansion in the full theory and in t
reduced model, thus supporting the consistency of our
proach. The properties of the reduced model are true fo
arbitrary fermion spectrum, and this is consistent with t
vanishing of the anomaly in the absence of a transve
gauge field.

In comparison with previous chiral fermion proposals~see
Sec. VI A! we note two key differences that allow us
escape from a similar impasse. First, one may worry that
need to tune mass counter-terms may indicate that we go
wrong spectrum~e.g.Dirac instead of Weyl fermions!. Now,
when the~Majorana-like! mass counter-terms arenot tuned
to their critical values, the fermions remaincoupledto the
IR-singular GB field in the low-energy limit. Due to poten
tial IR divergences, it is not at all clear that~massive! one-
fermion states could be consistently defined in this case,
that such states would have well-definedGL-quantum num-
bers. The off-critical theory remains to be investigated in
future. However, in view of the above IR subtleties, the ge
eral conclusion is that by considering the role of fermi
mass perturbations, one does not end up with an argum
against the existence of a chiral spectrum at the critic
point. ~See also the discussion of fermion mass coun
terms in Sec. III.!

The other key difference is that the continuum limit
now taken at the phase transition separatingtwo broken
phasesof the reduced model. Off the FM-FMD line~on both
sides! the GL symmetry is broken spontaneously, and
asymptotic states do not have well-definedGL-quantum
numbers. On the FM-FMD line itself, theGL symmetry is
restored, and the question arises whether we do not run
the same old conflict with the No-Go theorems. The answ
is contained in the analytic structure discussed abo
Thanks to the presence of the highly IR-singular GB field
zero in the inverse propagator does not necessarily imply
existence of a one-fermion state with the same quan
numbers. As an illustration, consider the four-compon
unit-charge field cc , whose left-handed component
PLcc5xc , and whose right-handed component isPRcc

5f2x̄ c . If we consider the inverse two-point function o
cc , we may erroneously conclude that it interpolates a ma
less Dirac fermion. In reality, only the left-handed channel
this inverse propagator has a simple zero;p” , implying the
existence of a unit-charge left-handed fermion. In the rig
handed channel, one finds ap” log(p2) correction in the one-
loop approximation, which implies the absence of a rig
handed fermion with the same charge.

VII. OPEN QUESTIONS

In Sec. II E, the criterion for fixing the counter-terms w
to enforce BRST invariance~and, hence, unitarity! order by
order. This perturbative prescription is incomplete. Ul
mately, the counter-terms should be determined by a n
perturbative method. To define rigorously the continuu
limit, one has to specify a trajectory in the Higgs~or Higgs-
confinement! phase, that ends at the Gaussian pointg0

51/k̃50 on the FMD boundary.~See Sec. V A for the
phase diagram.! In addition, one has to construct a BRS
operator, and prove its nilpotency in the continuum lim
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57 145THE STANDARD MODEL FROM A NEW PHASE . . .
Enforcing BRST invariance should also lead to the resto
tion of full SO~4! invariance, because the marginal SO~4!-
breaking operators violate the BRST symmetry too.

We comment that similar problems are encountered
lattice QCD with Wilson fermions, where the axial-flavo
symmetries are broken on the lattice, in analogy with
BRST symmetry in our gauge-fixing approach. When us
Wilson fermions, tuning is required not only at the level
the lattice action, but also in the construction of renormaliz
operators with well defined axial-flavour transformati
properties@45#. This is analogous to the problem of definin
BRST-invariant operators in our gauge-fixing approach.~In
QCD, the fine-tuning problem can be solved using doma
wall fermions@46–48#. Whether a similar solution exists fo
the tuning problem in the gauge-fixing approach, is an in
esting question.!

Our gauge-fixing formulation can be tested by applying
to asymptotically free gauge theories which arenot chiral. In
particular, in the absence of fermions, one should st
whether the confining behavior and the mass gap of Ya
Mills theories are reproduced. One possibility is that t
FMD transition becomes weakly first order due to no
perturbative effects. This scenario is favorable, at least fr
the point of view of numerical simulations. Another pos
bility is that the correlation length of the vector field strict
diverges at the FMD transition, already forg0Þ0. In this
case, a consistent continuum limit may exist provided all
massless excitations are unphysical.

VIII. CONCLUSIONS

In a regularized chiral gauge theory, the longitudina
modes of the gauge field couple to the fermions. Before
regularization is removed, there are violations of gauge
a,
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variance even if the fermion spectrum is anomaly free. Wh
we use the lattice regularization, the longitudinal mod
should decouple in the continuum limit, but it may be to
much to expect for exact decoupling when the lattice spac
is still finite.

The gauge-fixing approach aims to decouple the long
dinal modes in the continuum limit. In this paper we ha
discussed how the gauge-fixing approach may be reali
thus making the first step of a systematic investigation of
gauge fixing approach. We have constructed a lattice gau
fixing action that has a unique classical vacuum. The gau
fixing action contains a longitudinal kinetic term, and lea
to a renormalizable weak-coupling expansion, which is va
even if the lattice fermion action is not gauge invariant. W
have argued that the continuum fields, needed to describe
scaling behavior, are in one-to-one correspondence with
poles of the tree-level lattice propagators. This should
commodate any consistent theory, including anomaly f
chiral gauge theories.
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Kronfeld, G. Schierholz, and U.-J. Wiese, Nucl. Phys.B404,
839 ~1993!.

@25# P. Hernandez and R. Sundrum, Nucl. Phys.B455, 287~1995!;
B472, 334 ~1996!; G. T. Bodwin, Phys. Rev. D54, 6497
~1996!.

@26# R. Narayanan and H. Neuberger, Nucl. Phys.B443, 305
~1995!, and references therein.

@27# G. T. Bodwin and E. V. Kova´cs, inLattice ’90, Proceedings of
the International Symposium, Tallahassee, Florida, edited
V. M. Heller et al. @Nucl. Phys. B ~Proc. Suppl.! 20, 546
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