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Self-isospectral periodic potentials and supersymmetric quantum mechanics
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We discuss supersymmetric quantum mechanical models with periodic potentials. The important new fea-
ture is that it is possible foboth isospectral potentials to support zero modes, in contrast with the standard
nonperiodic case where either one or neittirrt not both of the isospectral pair has a zero mode. Thus it is
possible to have supersymmetry unbroken and yet also have a vanishing Witten index. We present some
explicit exactly soluble examples for which the isospectral potentials have identical band spectra, and which
are “self-isospectral” in the sense that the potentials have identical shape, but are translated by one half-period
relative to one anothefS0556-282(98)02202-4

PACS numbe(s): 11.30.Pb, 03.65-w, 11.10.Kk

Supersymmetry and supersymmetry breaking are fundawhich indicates thatH. are formally positive operators.
mental issues in theoretical particle physics, and supersyn¥hus, their energy spectrum cannot go below Zefbe fac-
metric (SUSY) quantum mechanic6QM) provides an im- torization (2) also implies thatv. have (almos} the same
portant testing ground for both physical and computationabpectrum because there is a one-to-one mapping between the
aspects of SUSY theorig4,2]. There are also many appli- energy eigenstataﬁg);
cations to the theory of solitori8]. Of particular interest for

particle physics are possible mechanisms for breaking SUSY 1/d
dynamically. Typically, one considers models with discrete Y =— d—X~|—W(x)> ),
spectra, and then the Witten index, which characterizes the VE

difference between the number of bosonic and fermionic

zero modes, may be used to indicate whether or not SUSY is

broken [1]. Interesting subtleties arise for potentials with (=) 1 d (+)

continuum statef4] or with singularitieg5]. YE :E ~ax WO ()
In this paper we consider SUSY quantum mechanics for

periodic potentials(which therefore have band spegtriihe The caveat “almost” is needed above because this mapping

main new feature is that it is possible for the periodic isos- “ .
; - ) I h -
pectral bosonic and fermionic potentials to haectlythe between states does not apply to the “zero modesigen

same spectrumincluding zero modesThis is in contrast states withE =0), which due to the positivity ofi.. are the
with the usual(nonperiodic and fast decayingcase for lowest possible states in the spectrum. From Egpit is

which at most one potential of an isospectral pair can have §2sY to see that the Schinger equation [ dy

2610 mode. TV ()9 =EyL?) has zero modes,

Consider one dimensional SUSY quantum mechanical
models on the real line. The bosonic and fermionic Hamilto- wgﬂ(x):ex;{ + J'XW)1 (4)
nians H.. correspond to an isospectral pair of potentials

V. (x) defined in terms of the “superpotentialV/(x) as
provided these functionr,!fgt) belong to the Hilbert space.
Ve () =W (x) = W' (X). (1)  SUSY is said to be unbroken if at least one of g’ is a
o ] ) true zero mode. Otherwise, SUSY is said to be broken dy-
The Hamiltonians may be factorized into products of Her-pnamically. In the broken SUSY case there are no zero modes

mitian conjugate operators as and so the spectra &f.. are identical[due to the mapping
q q )]
H,=|—+Wx) || - —+Wx) |, _ In the “star_ldard cases[1], in Which V. (X) tend+to posi-
dx dx tive asymptotic values as— * «, this means tha}.’/g—) must
q g be normalizable in order to be true zero modes. But it is clear
Ho=|— — + W) || — +W(x) |, 2 that in these cases, at most only one of the functmﬁgﬁ
dx dx
1in some cases wheié. (x) are singulaH.. may have negative
*E-mail: dunne@hep.phys.uconn.edu energy state$5]. We shall exclude such cases from the present
TE-mail: joshua@itp.ucsb.edu discussion.
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may be normalizable. Thus the spectra of the potentials L

coincide except possibly for the zero energy ground state b= fo W(y)dy=0 %
level. For example, if the(well-behaved superpotential

tends to asymptotic values with opposite signsxas*=, g 5 necessary condition for unbroken SUSY, and when this

then one of the zero modes in E@) is normalizable, and  ¢ongition is satisfied, the bosonic and fermionic sectors have
SUSY is unbroken; superpotentials that are odd functionsgentical spectra, including zero modes. The Witten index
W(—x)=—W(x), belong to this class. Dynamically broken inen vanishes.

SUSY occurs when the superpqtenual tends to asymptotic | is jnstructive to consider some simple special classes of
values with equal signs as— = ; superpotentials that are periodic superpotentials which satisfy E@). First, suppose

even inx are of this type. the superpotential is antisymmetric on a half-period:
Two simple representative examples of unbroken SUSY

are (i) W(x)=x, which gives the harmonic oscillator. Of the
two functions y§™=e***2, clearly only ¢~ is normaliz-

able and hence a zero modé) W(x)=|j tanhx (with | a _
positive integey, which gives the Pschl-Teller potentials ~ Then, from Eqgs(1) and(8) we obtain

L
X+ =

Wix+3

=—-W(x). (8

.2 e L
V.=j%—j(j ¥ 1)sechx. (5) Vil x+ 5[ =Vz(x). (9)

Once again, of the two possibilitiaﬁgi)=[cosh<]ii, only  The potentials/.. are simply translations of one another by

47 is normalizableV_ hasj discrete bound statdsvith ~ half a period, and thus are essentially identical in shape.
energiesE,=n(2j—n) for n=0,1,...j—1] and a con- Therefore, they must support exactly the same spectrum, as

tinuum beginning aE=j2; on the other handy, hasj SUSY indeed tells us they do. We refer to such a pair of
—1 discrete bound statdwith energiesE,=n(2j—n) for  isospectral V.. that are identical in shape as “self-
n=1,...j—1] and a continuum beginning &=j2. The isospectral.” A simple example of a superpotential of this
two spectra coincide manifestly, except for the zero mode. YP€ is W(X)=sinx, with V. (x)=sir’(x) +cox=V_(x

Now consider the superpotentidV(x) to be periodic, +m). . o )
with period L: W(x+L)=W(x). The potentialsV. (x) in Se_cond, consider periodic superpotentials that are even
Eq. (1) are therefore also periodic with periad From the ~ functions ofx,
Bloch-Floquet theory6], the Hilbert space consists of qua-
siperiodic functions: functions that satisfy(x+L)

= (exp ikL)y(x), where the real quantiti is the crystal  p, ;t \yhich also satisfy the conditios, =0 [by subtracting an
momentum. - o (%) appropriate constant, any evé(x) can be brought into this

From Eq.(4) we havey,~’(x+L)=e" 5 '(X) where  ¢jaqd The functiondW(x)/dx is odd and so Eq1) implies
the real constang, is given by

W(—x)=WI(X), (10

Vi (=x)=Vz(X). (1)

X+L
b= f W(y)dy. (6)  The two potentials are then simply reflections of one another.
X They have the same shape and therefore give rise to exactly
the same spectrum, as we know from SUSY. Such potentials
For either one of the functiong™) to belong to the Hilbert aré also self-isospectral. A simple example of a superpoten-
space, we must identify: ¢, =ikL. But ¢, is real, which tial of this type is W(x)=cos, with V.. (x) =cos(x)
means thatp, =kL=0. Thus, the two functiong§") either ~ —SIX=V_(=X). : . .
both belong to the Hilbert space, in which case they are Third a}nd Iast,. consider periodic superpotentials that are
strictly periodic with periodL, %{=)(x+L)=y{"(x), or odd functions ok:
(when ¢L¢O) n'either of therTbeIor_lgs to the Ijiilbe.rt space. W(—x) = —W(X). (12)
(Note that this is the exact opposite of the situation for non-
periodic potentials where i) is a zero mode of..., then  Then ¢ =0 is satisfied trivially. The functiodlW(x)/dx is
szf) is nota zero mode o¥/ ;. .) Thus, in the periodic case even and thu¥ . (x) are also even. In this cas¥,.(x) are
the spectra oV, andV_ matchcompletely not necessarily related by simple translations or reflections.
To summarize, we see that They are isospectral, but may not be self-isospectral. As an
example, the superpotenthl(x) = sinx+ sin2x gives rise to
an isospectral pair which is not self-isospectral, while
2This conclusion is valid provided the{™ do not have nodes W(x)=sinx+sin3x [which also belongs to the first special
(i.e., zeros, which means that the other function has polEsis  class mentioned abov&V(x+ 7) = —W(x)] gives rise to a
condition is violated, for example, in the case of the Scarf potentiakelf-isospectral pair.
[7] V(X) ~csé(x), for whichW(x)=] cotx. We shall exclude such To make these general ideas more explicit, we now
singular potentials from the present discussion, but note that theqaresent a class of exactly soluble models. We illustrate this
deserve further study — even in the nonperiodic case, singular swelass beginning with the simplest case. Consider the super-
perpotentials naturally exhibit interesting proper{igs potential
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sn(x|m)cn(x|m)

W(X)=m anxm)

13

Here sng|m), cn(x|m), and dnk|/m) are the Jacobi elliptic
functions[8,9], and the(rea) elliptic modulus parametan
can be chosen,©@m=1. Given this superpotential, the iso-
spectral painl) of potentials is

B 2—m+2(m—1)/dré(x|m), 0.5}
Va= 2—m—2drf(x|m). (14

Some relevant properties of the Jacobi elliptic functions are
listed here.

(1) Periodicity properties: 0 25 05 T8 T

sn(x-+2K(m)|m)=—sn(x|m), FIG. 1. The spectrum of the isospectral pair of potentials in Eq.

(14), as a function of the elliptic parameter. There is a single
bound band, bounded below by enekpy~ 0, and above by energy
E,=1-m. There is also a continuum band beginningEat=1.
Note that wherm=1 the bound band smoothly degenerates into a
single discrete bound level of ener@y=0; this is just the zero

cn(x+ 2K (m)|m)=—cn(x|m),
dn(x+ 2K (m)|m)=dn(x|m). (15

Here K(m) is the “real elliptic quarter period”:K(m)

=f”’2d0/\/m4_9 mode of thej =1 Paschl-Teller system in E¢5).
=z ,
(2) Differentiation properties: Both #$") and 4 have period K(m), and areboth good
d zero modes. Thus the spectra\of should bedentical This
d—Xsr(x|m) =cn(x|m) dn(x|m), can be checked explicitly because the spectrum can be com-

puted exactly, since the Schilinger equation for the poten-
d tials (14) is an example of the Lamequation, whose explicit
—cn(x|m)=—snx|m) dn(x|m), solution is known in terms of elliptic functiong9]. Each
dx spectrum has a single bound band and a continuum, as
shown in Fig. 1.
(16) The upper edge of the bound band has endfgy 1

d
—d =— .
dx n(x|m) m sr(x|m) cn(x|m) —m, with Bloch wave functions

(3) Quaderatic relations: [sr(x|m)/dn(x|m),
(21

() —
—dr(x|m)+1—m=—m cr?(x|m)=m sré(x|m)—m. cn(x|my,

1
(€7 while the the lower edge of the continuum band has energy
Finally, we note that whem=1 these relations all reduce E>=1, and Bloch wave functions

to those for the familiar hyperbolic functions since ‘cn(x|m)/dn(x|m),

(*)—
2 sn(x|m).

snx|1)=tanhx, cn(x|1)=sechx, dn(x|1)=sechx. (22

(18)
. These band-edge properties may be verified directly usin
Thus, whenm=_1 the superpoter_ltlal in Eq13) reduc_es 10 the various progertﬁas I?isted in E(%ﬂ.G),(l?). y g
tanhx and the isospectral potentials4) reduce to thg =1 Concentrating on the potentisl_ (an analogous analysis

case of the exaT“F"e in E¢H). (The reader is urged to €O holds forV, ), the Schidinger equation can be writtdis-
sider them—1 limit at all stages of the subsequent dlscus-ing Eq.(17)] in Lameform:

sion)
Frqm the periodicity propertig(slS), the superpotential " =[2m srt(xlm)—m—E] . (23
W(x) in Eqg. (13) and the potential$/.. in Eq. (14) have
period K (m): This equation has two independent solutions
= H(x=* _
Vo (x+2K(mM) =V . (). (19 ) = E@ (X)a> oFx2la) (24)

The zero mode#d) are’
(537 — oFlog drx|m) _ . where the parameter is_, related to the energy.eigenvaIEe
o (x)=e"9 =[dn(x|m)]"*. (200 py E=dr(a|m); H(x) is the Jacobi eta functio® (x) the
Jacobi theta function, and(«) the Jacobi zeta functiof®].
It is an instructive exercise to verify that at the band edges
3Note that the function dm{m) has no nodes or poles on the real these solutions reduce to the wave functions in Egs.
axis. (20),(21),(22), and furthermore that whem=1 they reduce
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FIG. 4. The uppeflower) level shows the potential_ (V)
for various values of the elliptic modulus parametar=0.5, m
=0.9, andm=0.999, going from left to right. Notice that, is
0 T3 0 5 - E identical toV_, but shifted by half a period. Also note that as
approaches 1, within the central periodK(m)<x<K(m), V_
FIG. 2. Theexactdispersion relatiori25) between energg and  approaches a Bohl-Teller potential with a single binding well,
crystal momentunk for the isospectral systefd4). This plotis for  while V, flattens out to a constant. The situation is interchanged if
m=0.3, and we clearly see the band gap betwEen0.7 andE we displace the picture bi((m), which is half a period of the
=1. The horizontal line marks the edge of the Brillouin zone, atpotentials.
which k= z/[2K(m)].

Since each potential extends indefinitely and periodically,
to the well-known bound state and continuum states for thehey are indistinguishable as far as their spectrum is con-
Poschl-Teller potentiaV_ = 1— 2tantx. cerned.

Given the exact solutio(24) we can use Bloch’s theorem This raises the question of what happens in the>1
to find the exact dispersion relation between the endfgy limit, because we know that whem=1 the potentialsV .

and the crystal momentuik are genuinely different and only_ has a zero mode. The
. situation is best illustrated by Fig. 4. Consider a single period
P(x+ 2K (m))= kKM y(x), —K(m)=x=<K(m). As m—1, K(m)—oe, and this single

period becomes our real line. On this domain, the potential
V_ becomes % 2tanifx, and its bound band collapses
+iZ(dn Y(VE|m)). (25  smoothly into a single discrete bound levaee Fig. L
Moreover, the Bloch wave function®0) and (21) at the
lower and upper edges of the bound band each tend smoothly
é? the normalizable wave functlord/( )=sechx of this
single bound state. On the other hand, on this donvain
flattens out and becomes 1, which has no bound statdg
a continuume>1). Correspondingly, the Bloch wave func-
tions(20) and(21) at the lower and upper edges of the bound
band tend smoothly to costand sinkx (respectively, which
are not normalizable. Displacing this picture bg(m) (i.e.,
by half a periog, the roles ofV_ andV, are interchanged.

2K( )

We plotted this dispersion relation in Fig. 2, which clearly
shows the band gap. Note that it is rare to have an exa
solution for these band features.

The isospectral potentialg.. in Eq. (14) are also self-
isospectral. Indeed, using the properties

sn(x+ K(m)|m)=cn(x|m)/dn(x|m),

cn(x+K(m)|m)=—y1—m sn(x|m)/dn(x|m), This is just the simplest example of a general class of

exactly solvable periodic potentials with bound bands. In-

dn(x+K(m)|m)=y1—m/dn(x|m), (26) deed, it is a classic result that the spectrum of the Lame
equation

we see that the superpotentiaB) satisfies the conditiofB), o
and the two potentials are identical up to a displacement by ¢'=[i(j+1)m sre(x|m)—E]y (28
half a period(see Fig. 3
hasj bound bands and a continuum bd®d Moreover, the
V. (x+K(m)=V_(x). (27) exac; splutior[gnalogous to Eq24)] can be writ_ten in terms
of elliptic functions(although forj=2 the relation between
the energy and the crystal momentum becomes more difficult
to specify explicitly. In order to make the connection be-
tween these Lamequations and SUSY quantum mechanics
/\ /\ A /\ we must shift the Lameotential by a constant to ensure that
the lower edge of the lowest band has enekyy0. For
example, forj=2 the self-isospectral pair of potentials is

vwvv

—2m+4+2ym’—m+1+6(m—
FIG. 3. The self-isospectral potential$4): V_ (left) andV V+=[ 2m-+4+2ym"-m+1+6(m 1)/dr12(x|m),

(right). Note that they are identical, except for being displaced by —2m+4+2ym’—m+ 1—6dnz(x|m).
half a period. These plots are for the elliptic parametet0.7. (29
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FIG. 5. The spectrum of the isospectral pair of potentials in Eq
(29), as a function of the elliptic parameter. There are two bound

bands, and a continuum band beginnindcat4ym?—m+1. Note

that whenm=1 the bound bands smoothly degenerate into two
discrete bound levels of enerdy=0 andE=3 and a continuum
threshold atE=4; these are the two bound states and continuum

threshold of thg =2 Paschl-Teller system in Eq5).

The energy spectrum is shown in Fig. 5, and the band-edge

Bloch wave functions fol _ are
Eo=0:¢5 '=m+1+m?>—m+1—3msri(x|m),
E;=—1—-m+2{ym?—m+1:4{")=cn(x|m)dn(x|m),
E,=—1+2m+2ym?—m+1:45 ) =sn(x|m)dn(x|m),
Es=2—m+2Vm>—m+1:45)=snx|m)cn(x|m),
Es=4Vm’—m+ 144 ) =m+1—m>*—m+1
—3msre(x|m). (30)
The band-edge Bloch wave functiong™ for V., are
obtained simply by shifting the/\ ) in Egs.(30) by half a
period. The superpotential for the isospectral 29 is de-

termined by the zero modﬁg_):

6msn(x|m)cn(x|m)dn(x|m)

d
W=— —log ¢y )= -
ax°9 Yo m+ 1+ Jm?—m-+1—3msri(x|m)
(31

Whenm=1 this reduces t&W=2tanhx, which is thej=2
Paschl-Teller model in Eq(5).

-9 -9 -

b, AN

A AL

-39 VIV VYt a1y V[V V1o

FIG. 6. The uppeflower) level shows the potentidl_ (V) in
Eq. (33) for j=3 and for various values of the elliptic modulus
parametem=0.5,m=0.9, andm=0.999, going from left to right.
Notice thatV , is identical toV _ , but shifted by half a period. Also
note that asm approaches 1, within the central periodK(m)
<x<K(m), V_ approaches thg=3 Pachl-Teller potential, while

V. approaches th¢=2 Paschl-Teller potential. The situation is

interchanged if we displace the picture K{m), which is half a
period of the potentials.

Another generalization of the single bound band example
(14) is obtained by generalizing the superpotentis) to

sn(x|m)cn(x|m)

W(x)= anxm

(32

where | is a positive integer. The resulting self-isospectral
potentialsV. =W?+W' are

Ve=j%2-m)—j(jF Ddré(xjm)+j(j=1)
X (m—1)/dré(x|m). (33

The zero mode Bloch wave functions ares§”
=[dn(xlm)]*). The potentials(33) are self-isospectral:
V, (x+K(m))=V_(x), as can be seen from Fig. 6. Note
also that aam—1, in the domain—K(m)<x=K(m), V_
approaches the "Bohl-Teller potentiaV _ in Eq. (5) which
hasj discrete bound states, while, approaches the Bohl-
Teller potentialV , in Eq. (5) which hasj —1 discrete bound
states.

In conclusion, we have shown that for supersymmetric
quantum mechanical models with periodic potentials it is
possible for both isospectral potentials to support zero
modes, in contrast to the standard nonperiodic case where
either one or neithefbut not both of the isospectral pair has
a zero mode. Thus it is possible to have supersymmetry un-
broken and yet also have a vanishing Witten index. In par-
ticular, we presented some explicit exactly soluble examples

This procedure may be repeated for higher integer valuef which the supersymmetric pair of potentials have identical
of j in the Lameequation(28), leading to a general class of shapes in that they are either translated by one half-period
self-isospectral periodic potentials. The band-edge Blochelative to one another or reflections of one another relative

wave functions(there are 2+ 1 of them since there are

bound bandsare always polynomials of ordé¢rin the Jacobi

elliptic functions(known as Lamedunctions[9]). Thus, it is

to the origin. Such potentials obviously have identical band
spectra(including zero modesand we named them “self-
isospectral.” It would be interesting to extend some of these

a straightforward algebraic problem to determine the bandideas to field theoretic examples. For example, given that the
edge wave functions and energies. Indeed, in a beautiful paondition for unbroken SUSY in the periodic ca&® is so
per[10], Alhassidet al. showed that the band-edge energiesdifferent from that in the nonperiodic case, can periodic su-

are simply the eigenvalues of the(8uoperatorJZ+ mJ§,

perpotentials lead to new mechanisms for SUSY breaking?

with J, and J, being the standard &) generators in a Finally, it is well known that the stability equation for soli-

(2j+1) dimensional matrix reprentatiaisee alsd11]).

tonic excitations in field theories is related to SUSY quantum
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mechanicg14,15]; thus, we can ask if SUSY plays a role in spectrum is determined by the boundary conditions, which in

the formation ofperiodic lattices of topological structures in general may be parametrized @<+ L) =e'®/“y(x); thus,

relativistic field theories, generalizing previous applicationsin particular,a=0 corresponds to periodic boundary condi-

to solid-state systen{46,17]. tions while = 7r corresponds to antiperiodic boundary con-
Note added After completing this work we learned that ditions. In fact, the closure of all the discrete spectranas

the closely related problem of elliptic supersymmetric mod-changes fromw=0 to o= 2 fills out the band spectrum of

els on a circle, of circumferenck, was studied in[12],  the corresponding periodic potential probl¢h3].

where it was noted that both supersymmetric sectors carried

zero modes with periodic boundary conditions. These mod- This work has been supported by DOE grant DE-FG02-

els have discrete spectra, and the precise form of the discreB2ER40716.0¢G.D.) and NSF grant PHY89-04035.F).
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