
PHYSICAL REVIEW D 15 JANUARY 1998VOLUME 57, NUMBER 2
Self-isospectral periodic potentials and supersymmetric quantum mechanics
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We discuss supersymmetric quantum mechanical models with periodic potentials. The important new fea-
ture is that it is possible forboth isospectral potentials to support zero modes, in contrast with the standard
nonperiodic case where either one or neither~but not both! of the isospectral pair has a zero mode. Thus it is
possible to have supersymmetry unbroken and yet also have a vanishing Witten index. We present some
explicit exactly soluble examples for which the isospectral potentials have identical band spectra, and which
are ‘‘self-isospectral’’ in the sense that the potentials have identical shape, but are translated by one half-period
relative to one another.@S0556-2821~98!02202-4#

PACS number~s!: 11.30.Pb, 03.65.2w, 11.10.Kk
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Supersymmetry and supersymmetry breaking are fun
mental issues in theoretical particle physics, and supers
metric ~SUSY! quantum mechanics~QM! provides an im-
portant testing ground for both physical and computatio
aspects of SUSY theories@1,2#. There are also many appl
cations to the theory of solitons@3#. Of particular interest for
particle physics are possible mechanisms for breaking SU
dynamically. Typically, one considers models with discre
spectra, and then the Witten index, which characterizes
difference between the number of bosonic and fermio
zero modes, may be used to indicate whether or not SUS
broken @1#. Interesting subtleties arise for potentials wi
continuum states@4# or with singularities@5#.

In this paper we consider SUSY quantum mechanics
periodic potentials~which therefore have band spectra!. The
main new feature is that it is possible for the periodic is
pectral bosonic and fermionic potentials to haveexactlythe
same spectrum,including zero modes. This is in contrast
with the usual ~nonperiodic and fast decaying! case for
which at most one potential of an isospectral pair can hav
zero mode.

Consider one dimensional SUSY quantum mechan
models on the real line. The bosonic and fermionic Hamil
nians H6 correspond to an isospectral pair of potenti
V6(x) defined in terms of the ‘‘superpotential’’W(x) as

V6~x!5W2~x!6W8~x!. ~1!

The Hamiltonians may be factorized into products of H
mitian conjugate operators as

H15F d

dx
1W~x!GF2

d

dx
1W~x!G ,

H25F2
d

dx
1W~x!GF d

dx
1W~x!G , ~2!
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which indicates thatH6 are formally positive operators
Thus, their energy spectrum cannot go below zero.1 The fac-
torization ~2! also implies thatV6 have ~almost! the same
spectrum because there is a one-to-one mapping betwee
energy eigenstatescE

(6) :

cE
~1 !5

1

AE
S d

dx
1W~x! DcE

~2 ! ,

cE
~2 !5

1

AE
S 2

d

dx
1W~x! DcE

~1 ! . ~3!

The caveat ‘‘almost’’ is needed above because this mapp
between states does not apply to the ‘‘zero modes’’~eigen-
states withE50), which due to the positivity ofH6 are the
lowest possible states in the spectrum. From Eqs.~2! it is
easy to see that the Schro¨dinger equation @2]x

2

1V6(x)#cE
(6)5EcE

(6) has zero modes,

c0
~6 !~x!5expS 6Ex

WD , ~4!

provided these functionsc0
(6) belong to the Hilbert space

SUSY is said to be unbroken if at least one of thec0
(6) is a

true zero mode. Otherwise, SUSY is said to be broken
namically. In the broken SUSY case there are no zero mo
and so the spectra ofV6 are identical@due to the mapping
~3!#.

In the ‘‘standard cases’’@1#, in whichV6(x) tend to posi-
tive asymptotic values asx→6`, this means thatc0

(6) must
be normalizable in order to be true zero modes. But it is cl
that in these cases, at most only one of the functionsc0

(6)

1In some cases whereV6(x) are singularH6 may have negative
energy states@5#. We shall exclude such cases from the pres
discussion.
1271 © 1997 The American Physical Society
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1272 57GERALD DUNNE AND JOSHUA FEINBERG
may be normalizable. Thus the spectra of the potentialsV6

coincide except possibly for the zero energy ground s
level. For example, if the~well-behaved! superpotential
tends to asymptotic values with opposite signs asx→6`,
then one of the zero modes in Eq.~4! is normalizable, and
SUSY is unbroken; superpotentials that are odd functio
W(2x)52W(x), belong to this class. Dynamically broke
SUSY occurs when the superpotential tends to asympt
values with equal signs asx→6` ; superpotentials that ar
even inx are of this type.

Two simple representative examples of unbroken SU
are~i! W(x)5x, which gives the harmonic oscillator. Of th
two functionsc0

(6)5e6x2/2, clearly only c0
(2) is normaliz-

able and hence a zero mode.~ii ! W(x)5 j tanhx ~with j a
positive integer!, which gives the Po¨schl-Teller potentials

V65 j 22 j ~ j 71!sech2x. ~5!

Once again, of the two possibilitiesc0
(6)5@coshx#6j, only

c0
(2) is normalizable.V2 has j discrete bound states@with

energiesEn5n(2 j 2n) for n50,1, . . . ,j 21# and a con-
tinuum beginning atE5 j 2; on the other hand,V1 has j
21 discrete bound states@with energiesEn5n(2 j 2n) for
n51, . . . ,j 21# and a continuum beginning atE5 j 2. The
two spectra coincide manifestly, except for the zero mod

Now consider the superpotentialW(x) to be periodic,
with period L: W(x1L)5W(x). The potentialsV6(x) in
Eq. ~1! are therefore also periodic with periodL. From the
Bloch-Floquet theory@6#, the Hilbert space consists of qua
siperiodic functions: functions that satisfyck(x1L)
5(exp ikL)ck(x), where the real quantityk is the crystal
momentum.

From Eq.~4! we havec0
(6)(x1L)5e6fLc0

(6)(x) where
the real constantfL is given by

fL5E
x

x1L

W~y!dy. ~6!

For either one of the functionsc0
(6) to belong to the Hilbert

space, we must identify6fL5 ikL. But fL is real, which
means thatfL5kL50. Thus, the two functionsc0

(6) either
both belong to the Hilbert space, in which case they a
strictly periodic with periodL, c0

(6)(x1L)5c0
(6)(x), or

~whenfLÞ0) neither of thembelongs to the Hilbert space2

~Note that this is the exact opposite of the situation for n
periodic potentials where ifc0

(6) is a zero mode ofV6 , then
c0

(7) is not a zero mode ofV7 .! Thus, in the periodic case
the spectra ofV1 andV2 matchcompletely.

To summarize, we see that

2This conclusion is valid provided thec0
(6) do not have nodes

~i.e., zeros, which means that the other function has poles!. This
condition is violated, for example, in the case of the Scarf poten
@7# V(x);csc2(x), for which W(x)5 j cotx. We shall exclude such
singular potentials from the present discussion, but note that t
deserve further study — even in the nonperiodic case, singula
perpotentials naturally exhibit interesting properties@5#.
te
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fL5E
0

L

W~y!dy50 ~7!

is a necessary condition for unbroken SUSY, and when
condition is satisfied, the bosonic and fermionic sectors h
identical spectra, including zero modes. The Witten ind
then vanishes.

It is instructive to consider some simple special classe
periodic superpotentials which satisfy Eq.~7!. First, suppose
the superpotential is antisymmetric on a half-period:

WS x1
L

2D52W~x!. ~8!

Then, from Eqs.~1! and ~8! we obtain

V6S x1
L

2D5V7~x!. ~9!

The potentialsV6 are simply translations of one another b
half a period, and thus are essentially identical in sha
Therefore, they must support exactly the same spectrum
SUSY indeed tells us they do. We refer to such a pair
isospectral V6 that are identical in shape as ‘‘sel
isospectral.’’ A simple example of a superpotential of th
type is W(x)5sinx, with V1(x)5sin2(x)1cosx5V2(x
1p).

Second, consider periodic superpotentials that are e
functions ofx,

W~2x!5W~x!, ~10!

but which also satisfy the conditionfL50 @by subtracting an
appropriate constant, any evenW(x) can be brought into this
class#. The functiondW(x)/dx is odd and so Eq.~1! implies

V6~2x!5V7~x!. ~11!

The two potentials are then simply reflections of one anoth
They have the same shape and therefore give rise to ex
the same spectrum, as we know from SUSY. Such poten
are also self-isospectral. A simple example of a superpo
tial of this type is W(x)5cosx, with V1(x)5cos2(x)
2sinx5V2(2x).

Third and last, consider periodic superpotentials that
odd functions ofx:

W~2x!52W~x!. ~12!

ThenfL50 is satisfied trivially. The functiondW(x)/dx is
even and thusV6(x) are also even. In this case,V6(x) are
not necessarily related by simple translations or reflectio
They are isospectral, but may not be self-isospectral. As
example, the superpotentialW(x)5sinx1sin2x gives rise to
an isospectral pair which is not self-isospectral, wh
W(x)5sinx1sin3x @which also belongs to the first speci
class mentioned above:W(x1p)52W(x)# gives rise to a
self-isospectral pair.

To make these general ideas more explicit, we n
present a class of exactly soluble models. We illustrate
class beginning with the simplest case. Consider the su
potential
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W~x!5m
sn~xum!cn~xum!

dn~xum!
. ~13!

Here sn(xum), cn(xum), and dn(xum) are the Jacobi elliptic
functions@8,9#, and the~real! elliptic modulus parameterm
can be chosen, 0,m<1. Given this superpotential, the iso
spectral pair~1! of potentials is

V65H 22m12~m21!/dn2~xum!,

22m22dn2~xum!.
~14!

Some relevant properties of the Jacobi elliptic functions
listed here.

~1! Periodicity properties:

sn„x12K~m!um…52sn~xum!,

cn„x12K~m!um…52cn~xum!,

dn„x12K~m!um…5dn~xum!. ~15!

Here K(m) is the ‘‘real elliptic quarter period’’:K(m)
[*0

p/2du/A12msin2u.
~2! Differentiation properties:

d

dx
sn~xum!5cn~xum! dn~xum!,

d

dx
cn~xum!52sn~xum! dn~xum!,

d

dx
dn~xum!52m sn~xum! cn~xum!. ~16!

~3! Quadratic relations:

2dn2~xum!112m52m cn2~xum!5m sn2~xum!2m.
~17!

Finally, we note that whenm51 these relations all reduc
to those for the familiar hyperbolic functions since

sn~xu1!5tanhx, cn~xu1!5sechx, dn~xu1!5sechx.
~18!

Thus, whenm51 the superpotential in Eq.~13! reduces to
tanhx and the isospectral potentials~14! reduce to thej 51
case of the example in Eq.~5!. ~The reader is urged to con
sider them→1 limit at all stages of the subsequent discu
sion.!

From the periodicity properties~15!, the superpotentia
W(x) in Eq. ~13! and the potentialsV6 in Eq. ~14! have
period 2K(m):

V6„x12K~m!…5V6~x!. ~19!

The zero modes~4! are3

c0
~6 !~x!5e7 log dn~xum!5@dn~xum!#71. ~20!

3Note that the function dn(xum) has no nodes or poles on the re
axis.
e

-

Both c0
(1) andc0

(2) have period 2K(m), and areboth good
zero modes. Thus the spectra ofV6 should beidentical. This
can be checked explicitly because the spectrum can be c
puted exactly, since the Schro¨dinger equation for the poten
tials ~14! is an example of the Lame´ equation, whose explicit
solution is known in terms of elliptic functions@9#. Each
spectrum has a single bound band and a continuum
shown in Fig. 1.

The upper edge of the bound band has energyE151
2m, with Bloch wave functions

c1
~6 !5H sn~xum!/dn~xum!,

cn~xum!,
~21!

while the the lower edge of the continuum band has ene
E251, and Bloch wave functions

c2
~6 !5H cn~xum!/dn~xum!,

sn~xum!.
~22!

These band-edge properties may be verified directly us
the various properties listed in Eqs.~16!,~17!.

Concentrating on the potentialV2 ~an analogous analysi
holds forV1), the Schro¨dinger equation can be written@us-
ing Eq. ~17!# in Laméform:

c95@2m sn2~xum!2m2E#c. ~23!

This equation has two independent solutions

c~x!5
H~x6a!

Q~x!
e7xZ~a!. ~24!

where the parametera is related to the energy eigenvalueE
by E5dn2(aum); H(x) is the Jacobi eta function,Q(x) the
Jacobi theta function, andZ(a) the Jacobi zeta function@9#.
It is an instructive exercise to verify that at the band edg
these solutions reduce to the wave functions in E
~20!,~21!,~22!, and furthermore that whenm51 they reduce

FIG. 1. The spectrum of the isospectral pair of potentials in E
~14!, as a function of the elliptic parameterm. There is a single
bound band, bounded below by energyE050, and above by energy
E1512m. There is also a continuum band beginning atE251.
Note that whenm51 the bound band smoothly degenerates int
single discrete bound level of energyE050; this is just the zero
mode of thej 51 Pöschl-Teller system in Eq.~5!.
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1274 57GERALD DUNNE AND JOSHUA FEINBERG
to the well-known bound state and continuum states for
Pöschl-Teller potentialV25122tanh2x.

Given the exact solution~24! we can use Bloch’s theorem
to find the exact dispersion relation between the energE
and the crystal momentumk:

c„x12K~m!…5eik2K~m!c~x!,

k57
p

2K~m!
6 iZ„dn21~AEum!…. ~25!

We plotted this dispersion relation in Fig. 2, which clea
shows the band gap. Note that it is rare to have an e
solution for these band features.

The isospectral potentialsV6 in Eq. ~14! are also self-
isospectral. Indeed, using the properties

sn„x1K~m!um…5cn~xum!/dn~xum!,

cn„x1K~m!um…52A12m sn~xum!/dn~xum!,

dn„x1K~m!um…5A12m/dn~xum!, ~26!

we see that the superpotential~13! satisfies the condition~8!,
and the two potentials are identical up to a displacemen
half a period~see Fig. 3!:

V1„x1K~m!…5V2~x!. ~27!

FIG. 2. Theexactdispersion relation~25! between energyE and
crystal momentumk for the isospectral system~14!. This plot is for
m50.3, and we clearly see the band gap betweenE50.7 andE
51. The horizontal line marks the edge of the Brillouin zone,
which k5p/@2K(m)#.

FIG. 3. The self-isospectral potentials~14!: V2 ~left! and V1

~right!. Note that they are identical, except for being displaced
half a period. These plots are for the elliptic parameterm50.7.
e

ct

y

Since each potential extends indefinitely and periodica
they are indistinguishable as far as their spectrum is c
cerned.

This raises the question of what happens in them→1
limit, because we know that whenm51 the potentialsV6

are genuinely different and onlyV2 has a zero mode. The
situation is best illustrated by Fig. 4. Consider a single per
2K(m)<x<K(m). As m→1, K(m)→`, and this single
period becomes our real line. On this domain, the poten
V2 becomes 122tanh2x, and its bound band collapse
smoothly into a single discrete bound level~see Fig. 1!.
Moreover, the Bloch wave functions~20! and ~21! at the
lower and upper edges of the bound band each tend smoo
to the normalizable wave functionc0

(2)5sechx of this
single bound state. On the other hand, on this domainV1

flattens out and becomes 1, which has no bound states~only
a continuumE.1). Correspondingly, the Bloch wave func
tions~20! and~21! at the lower and upper edges of the bou
band tend smoothly to coshx and sinhx ~respectively!, which
arenot normalizable. Displacing this picture byK(m) ~i.e.,
by half a period!, the roles ofV2 andV1 are interchanged.

This is just the simplest example of a general class
exactly solvable periodic potentials with bound bands.
deed, it is a classic result that the spectrum of the La´
equation

c95@ j ~ j 11!m sn2~xum!2E#c ~28!

has j bound bands and a continuum band@9#. Moreover, the
exact solution@analogous to Eq.~24!# can be written in terms
of elliptic functions~although forj >2 the relation between
the energy and the crystal momentum becomes more diffi
to specify explicitly!. In order to make the connection be
tween these Lame´ equations and SUSY quantum mechan
we must shift the Lame´ potential by a constant to ensure th
the lower edge of the lowest band has energyE50. For
example, forj 52 the self-isospectral pair of potentials is

V65H 22m1412Am22m1116~m21!/dn2~xum!,

22m1412Am22m1126dn2~xum!.
~29!

t

y

FIG. 4. The upper~lower! level shows the potentialV2 (V1)
for various values of the elliptic modulus parameterm50.5, m
50.9, andm50.999, going from left to right. Notice thatV1 is
identical toV2 , but shifted by half a period. Also note that asm
approaches 1, within the central period,2K(m)<x<K(m), V2

approaches a Po¨schl-Teller potential with a single binding well
while V1 flattens out to a constant. The situation is interchange
we displace the picture byK(m), which is half a period of the
potentials.
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The energy spectrum is shown in Fig. 5, and the band-e
Bloch wave functions forV2 are

E050:c0
~2 !5m111Am22m1123msn2~xum!,

E15212m12Am22m11:c1
~2 !5cn~xum!dn~xum!,

E252112m12Am22m11:c2
~2 !5sn~xum!dn~xum!,

E3522m12Am22m11:c3
~2 !5sn~xum!cn~xum!,

E454Am22m11:c4
~2 !5m112Am22m11

23msn2~xum!. ~30!

The band-edge Bloch wave functionscn
(1) for V1 are

obtained simply by shifting thecn
(2) in Eqs. ~30! by half a

period. The superpotential for the isospectral pair~29! is de-
termined by the zero modec0

(2) :

W52
d

dx
log c0

~2 !5
6msn~xum!cn~xum!dn~xum!

m111Am22m1123msn2~xum!
.

~31!

When m51 this reduces toW52tanhx, which is thej 52
Pöschl-Teller model in Eq.~5!.

This procedure may be repeated for higher integer va
of j in the Laméequation~28!, leading to a general class o
self-isospectral periodic potentials. The band-edge Bl
wave functions~there are 2j 11 of them since there arej
bound bands! are always polynomials of orderj in the Jacobi
elliptic functions~known as Lame´ functions@9#!. Thus, it is
a straightforward algebraic problem to determine the ba
edge wave functions and energies. Indeed, in a beautiful
per @10#, Alhassidet al. showed that the band-edge energ
are simply the eigenvalues of the su~2! operatorJx

21mJy
2 ,

with Jx and Jy being the standard su~2! generators in a
(2 j 11! dimensional matrix reprentation~see also@11#!.

FIG. 5. The spectrum of the isospectral pair of potentials in
~29!, as a function of the elliptic parameterm. There are two bound
bands, and a continuum band beginning atE54Am22m11. Note
that whenm51 the bound bands smoothly degenerate into t
discrete bound levels of energyE50 andE53 and a continuum
threshold atE54; these are the two bound states and continu
threshold of thej 52 Pöschl-Teller system in Eq.~5!.
ge

es

h

-
a-
s

Another generalization of the single bound band exam
~14! is obtained by generalizing the superpotential~13! to

W~x!5 j m
sn~xum!cn~xum!

dn~xum!
, ~32!

where j is a positive integer. The resulting self-isospect
potentialsV65W26W8 are

V65 j 2~22m!2 j ~ j 71!dn2~xum!1 j ~ j 61!

3~m21!/dn2~xum!. ~33!

The zero mode Bloch wave functions arec0
(6)

5@dn(xum)#7 j . The potentials ~33! are self-isospectral
V1„x1K(m)…5V2(x), as can be seen from Fig. 6. No
also that asm→1, in the domain2K(m)<x<K(m), V2

approaches the Po¨schl-Teller potentialV2 in Eq. ~5! which
hasj discrete bound states, whileV1 approaches the Po¨schl-
Teller potentialV1 in Eq. ~5! which hasj 21 discrete bound
states.

In conclusion, we have shown that for supersymme
quantum mechanical models with periodic potentials it
possible for both isospectral potentials to support ze
modes, in contrast to the standard nonperiodic case w
either one or neither~but not both! of the isospectral pair ha
a zero mode. Thus it is possible to have supersymmetry
broken and yet also have a vanishing Witten index. In p
ticular, we presented some explicit exactly soluble examp
in which the supersymmetric pair of potentials have identi
shapes in that they are either translated by one half-pe
relative to one another or reflections of one another rela
to the origin. Such potentials obviously have identical ba
spectra~including zero modes! and we named them ‘‘self-
isospectral.’’ It would be interesting to extend some of the
ideas to field theoretic examples. For example, given that
condition for unbroken SUSY in the periodic case~7! is so
different from that in the nonperiodic case, can periodic
perpotentials lead to new mechanisms for SUSY breaki
Finally, it is well known that the stability equation for sol
tonic excitations in field theories is related to SUSY quant

.

o

FIG. 6. The upper~lower! level shows the potentialV2 (V1) in
Eq. ~33! for j 53 and for various values of the elliptic modulu
parameterm50.5, m50.9, andm50.999, going from left to right.
Notice thatV1 is identical toV2 , but shifted by half a period. Also
note that asm approaches 1, within the central period,2K(m)
<x<K(m), V2 approaches thej 53 Pöschl-Teller potential, while
V1 approaches thej 52 Pöschl-Teller potential. The situation is
interchanged if we displace the picture byK(m), which is half a
period of the potentials.
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1276 57GERALD DUNNE AND JOSHUA FEINBERG
mechanics@14,15#; thus, we can ask if SUSY plays a role
the formation ofperiodic lattices of topological structures i
relativistic field theories, generalizing previous applicatio
to solid-state systems@16,17#.

Note added. After completing this work we learned tha
the closely related problem of elliptic supersymmetric mo
els on a circle, of circumferenceL, was studied in@12#,
where it was noted that both supersymmetric sectors car
zero modes with periodic boundary conditions. These m
els have discrete spectra, and the precise form of the disc
SY
e

s

-

ed
-

ete

spectrum is determined by the boundary conditions, which
general may be parametrized asc(x1L)5eiax/Lc(x); thus,
in particular,a50 corresponds to periodic boundary cond
tions whilea5p corresponds to antiperiodic boundary co
ditions. In fact, the closure of all the discrete spectra asa
changes froma50 to a52p fills out the band spectrum o
the corresponding periodic potential problem@13#.

This work has been supported by DOE grant DE-FG0
92ER40716.00~G.D.! and NSF grant PHY89-04035~J.F.!.
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