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Degeneracy and continuous deformations of supersymmetric domain walls
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In a wide class of supersymmetric theories degenerate families of the BPS-saturated domain walls exist. The
internal structure of these walls can continuously vary, without changing the wall tension. This is described by
hidden parameters~collective coordinates!. Differentiating with respect to the collective coordinates one gets a
set of the bosonic zero modes localized on the wall. Neither of them is related to the spontaneous breaking of
any symmetry. Through the residual 1/2 of supersymmetry each bosonic zero mode generates a fermionic
partner.@S0556-2821~98!03402-X#

PACS number~s!: 11.27.1d, 11.30.Pb
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I. INTRODUCTION

The central extensions ofN51 superalgebras in four di
mensions discovered recently@1–4# lead to the existence o
the BPS~Bogomolny-Prasad-Sommerfield!-saturated domain
walls in supersymmetric theories, with rather peculiar pro
erties. In Ref.@4# it was noted, in particular, that one and th
same model can have a variety of distinct domain walls
terpolating between the given pair of vacua. Here this rem
is elaborated. It will be shown that in a wide class of sup
symmetric models, typically, a~continuously degenerate!
family of the domain walls exist. Each domain wall from th
family is labeled by one or more hidden parameter~s!. Al-
though the internal structure of each domain wall is differe
they all have one and the same energy densityE. One can
view the domain walls from this family as bound states
two ~or more! ‘‘basic’’ domain walls, with the vanishing
binding energy. In other words, the ‘‘basic’’ domain walls d
not interact. In the two-dimensional reductions of the fo
dimensional theories under consideration the domain w
become kinks~solitons!. Our result translates then into
statement that the basic ‘‘solitons’’ do not interact with ea
other.

The hidden parameters are the collective coordinate
the domain wall solutions. The existence of some collect
coordinates is a trivial consequence of the fact that the
main walls spontaneously break a part of the fo
dimensional symmetries: translational invariance in thez di-
rection and 1/2 of supersymmetry~if the domain walls at
hand are BPS saturated!. Therefore, the occurrence of a c
ordinatez0 usually referred to as the wall center is not su
prising. We will show that similar coordinates survive f
each individual ‘‘component’’ of the ‘‘composite’’ BPS
wall. An analogous situation takes place in the two-instan
solution of the Yang-Mills theory. Each instanton is chara
terized by its individual center, so that we have eight coll
tive coordinates associated with translations, although o
four translational symmetries of the theory are spontaneo
broken on the solution. The symmetry of the solution
higher than that of the theory itself.

*Permanent address.
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One can introduce the overall wall centerZ0 and extra
collective coordinatesRi , which have the physical meanin
of, roughly, relative ‘‘distances’’ between different ‘‘compo
nents’’ of the wall. If all parametersRi tend to infinity, the
‘‘basic’’ components of the wall are infinitely separated. T
existence of such a limiting solution is trivial. The solutio
persists, however, at finite values ofRi , with the same ten-
sion E, independent ofRi .

Differentiating with respect to the collective coordinat
Ri one generates zero modes, localized on the wall and
sociated with a change in the internal structure of the w
These zero modes are unrelated to the trivial zero mode
responding to the shift of a wall, as a whole, in thez direc-
tion. Since 1/2 of supersymmetry is preserved, each e
bosonic zero mode will be accompanied by a fermio
counterpartner.

The continuously degenerate domain walls occur in
models in which the parameters in the superpoten
W(F,X, . . . ) arereal~or can be made real by an appropria
transformation of the fieldsF, X, . . . !, and all extrema of the
superpotential~classical minima of the potential! occur at
real values of the fieldsf, x, and so on.~Here f,x, . . .,
denote the lowest components of the superfieldsF, X,. . .!.
The class of theories admitting the degenerate families of
domain wall solutions is actually much wider, especially
one includes into consideration nonrenormalizable and
nonpolynomial superpotentials. The latter naturally appea
effective low-energy theories, see, e.g.,@5,6#. Since the gen-
eralization is quite straightforward, and will become com
pletely clear from what follows, I will limit myself here to
the generalized Wess-Zumino~WZ! models@7# with renor-
malizable superpotentials, assuming real values of par
eters, the more so that many practically important proble
belong to this class.

Assume for definiteness that the superpotentialW has
three extrema~I will call them genericallyM1 , M2 , and
M3 , whereM stands for a complete set of superfields in t
problem at hand!. These extrema are ordered in such a w
that W(M1),W(M2),W(M3). The energy density of
the BPS domain walls is proportional to the central charge
the corresponding transition@1,2#, which in turn reduces to
the difference of the superpotentials
1258 © 1997 The American Physical Society
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57 1259DEGENERACY AND CONTINUOUS DEFORMATIONS OF . . .
« i j 52@W~Mj !2W~Mi !#, ~1!

where the subscripti j marks the transition from thei th to j th
vacuum. It is obvious then that if a family of the BPS doma
walls 13 exist, all walls from this family are degenerate; th
energy density is

E~R![«135«121«23. ~2!

The BPS domain walls 12 and 23 are the ‘‘basic’’ comp
nents comprising all walls from the 13 family. As a cons
quence of Eq.~1! they do not interact.

The fact that a family of solutions in the 13 transitio
exists can be easily established by inspecting the creek e
tions @4# ~see also@8#! defining the BPS domain walls. Ther
is no need in finding the actual solutions of these equatio
The creek equations can be interpreted as complexified e
tions of motion of a high viscosity fluid~whose inertia can be
neglected! on a profile associated withW. For the real su-
perpotentials and real solutions this interpretation is es
cially simple, since complexification becomes redundant,
profile is just given by2W ~with the above convention
regarding the ordering!, and a very rich physical intuition
everyone has in this type of motion allows one to imme
ately see whether or not a family of solutions exists in
given transition, by a simple examination of the profile
2W.

Although the above assertions are general, I will illustr
them in the generalized WZ models describing dynamics
two chiral superfields. There is no doubt, however, that
der the same circumstances degenerate families of the
main walls, with hidden parameters and a variety of z
modes corresponding to a change in the wall internal st
ture, appear in any model, including strongly coupled ga
models. This may have important implications for the d
main walls in supersymmetric Yang-Mills theories@3#. I will
not dwell on this topic in the present paper, leaving it f
future publications.

The minimal WZ model, with one chiral superfield an
renormalizable superpotential, generically has only one
of vacua, and a single BPS wall, with no hidden parame
@1,4#. The only bosonic zero mode existing in this model
that associated with the translation of the wall as a who
Thus, this model is uninteresting for our current purposes.
reveal the phenomenon it is necessary to consider mo
with two or more chiral superfields. Since all essential ing
dients appear already at the level of two-field models,
will limit ourselves to two chiral superfields.

II. GENERAL OBSERVATIONS

To explain the essence of the problem it is convenien
start from a nonsupersymmetric system of two real sc
fields f andx,

L5
1

2
@~]mf!21~]mx!22V~f,x!#. ~3!

For a short while we will forget about thefx coupling and
consider decoupled fields. We will incorporate afx interac-
tion term later. Assume that the self-interaction potential
a double-well shape,
r
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l
2lf2D 2

1S m2

g
2gx2D 2

, ~4!

where m and m are the mass terms andl and g are the
coupling constants. This potential has four classical minim
$f,x%* ,

M15H 2
m

l
,2

m

g J , M25H m

l
,2

m

g J ,

M35H 2
m

l
,

m

g J , M45H m

l
,

m

g J . ~5!

~It also has a maximum at the origin.! The field configuration
interpolating betweenM1 andM2 is the domain wall of the
f field,

f5
m

l
tanhm~z2z0!, x52

m

g
, ~6!

while that interpolating betweenM2 andM4 is the domain
wall of the x field,

f5
m

l
, x5

m

g
tanhm~z2z0!, ~7!

wherez0 andz0 are the centers of the corresponding wal
Finally, interpolating between the first and the four

minima is a superposition of two previous walls,

f5
m

l
tanhm~z2z0!, x5

m

g
tanhm~z2z0!. ~8!

The double-wall configuration~8! has two collective co-
ordinatesz0 and z0—not surprisingly, of course, since th
fields f and x are decoupled so far, and the total ener
density residing in the configuration~8! does not depend on
the relation betweenz0 andz0 , and is equal to

E~z0 ,z0!5«121«24,

«125
4m3

3l2 , «245
4m3

3g2 . ~9!

In other words, the two components of the domain wall co
figuration ~8! do not interact with each other. They expe
ence neither attraction nor repulsion. One can say that
domain wall configuration~8! is infinitely ~continuously! de-
generate.

The profile of the potential energyV0 is depicted in Fig.
1. The range of variation of$f,x% corresponding to Fig. 1 is
given in Fig. 2. The wall solutions interpolating fromA to B
and fromB to D are obviously the ‘‘basic’’ components o
the wall solution interpolating fromA to D. They are obvi-
ously unique in the sense that theAB andBD wall trajecto-
ries on Fig. 1 are unique. That’s not the case for theAD wall
solution. The latter has a hidden parameter—a relative p
tion of the components’ centers,R5z02z0 . If R50 theAD
wall trajectory runs right on top of the hill on Fig. 1. IfR
Þ0 it deviates either to the right from the top or to the le
There exists a continuous family of trajectories, with one a
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1260 57M. SHIFMAN
the sameE. In Fig. 2 the parameterR is reinterpreted as an
angle g determining the direction of motion in the initia
moment of time.

I remind the reader that the creek interpretation of
equations defining the BPS wall@4,8# implies that the vari-
able z is interpreted as ‘‘time.’’ Correspondingly, differen
tiation overz will be denoted by an overdot, say,ḟ is thef

component of the ‘‘velocity,’’ẋ is thex component, and so
on. The angleg determines the direction of the ‘‘velocity’
vectorg5arccot(ḟ/ẋ). For instance, for the solution~8! the
angle of injection at the initial moment of time,z→2`, is
tang5m2m22gl21exp2(z02z0).

The degeneracy isimmediatelylifted, generally speaking
once one switches on an interaction betweenf andx. Gone
with this degeneracy is the existence of the hidden param
and a continuous family of theAD trajectories.

Indeed, consider a typical interaction term, say,

DV5aS x22
m2

g2 D S f22
m2

l2 D , ~10!

FIG. 1. The potential of the two-field model given in Eq.~4! for
the following values of the parameters:l5g51, m51, m51.2.
The points A,B,C,D mark four vacua of the model. The fou
minima A to D correspond toM1 toM4 , see Eq.~5!.

FIG. 2. The range of variation of the fieldsf and x on the
previous plot is shown by the solid line. The four minima are d
picted as closed circles. The dashed lines show the wall trajecto
AB and BD, while the dotted lines show two~out of infinitely
many! possibleAD trajectories.g is the injection angle of the cree
~at z→2`!.
e

ter

to be added toV0 . The interaction is chosen in such a wa
that the positions of the minima ofV are not shifted~Fig. 2!.
This is done for technical reasons only, to facilitate calcu
tions. We could have easily dealt with any other interact
term. To simplify things further we will work in the limit
a!1. This is a technical assumption too, inessential for
final conclusion.

In the first order ina the change in the wall tension is

DE5a
m2m2

l2g2 I ,

I 5E
2`

`

dz
1

cosh2~mz!

1

cosh2@m~z2R!#
. ~11!

If a,0 an attraction between the basic wall compone
arises; theAB and BD walls collapse, and the only wal
solution connecting the pointsA and D that persists runs
exactly on top of the hill. On the other hand, ifa is positive,
on the contrary, the basic components experience repuls
and strictly speaking, there is noAD wall at all. It exists only
as a limiting superposition of theAB andBD walls, located
infinitely far from each other,R→`. In the first case the
angleg on Fig. 2 is arctan(lm/gm), in the second case it is
either zero orp/2. In any case the collective coordinate a
sociated withR disappears.

Even if the interaction termDV is fine-tuned in such a
way that classicallyDE50, a nonvanishingDE inevitably
emerges at the quantum level, as a result of loop correcti
ruining the degeneracy of theAD trajectories inherent to the
decoupled fields. There is no symmetry which would for
DE to stay at zero in the nonsupersymmetric case onceDV
Þ0, and it does not.

In contrast, it will be shown that supersymmetric BP
walls are generically continuously degenerate. In the mod
with two chiral superfields, besides the overall wall cent
there exists one extra collective coordinate even in the p
ence of thefx coupling. It characterizes the wall interna
structure, and is analogous toR or the angleg.

Passing to the discussion of the continuous degenerac
the domain walls in the generalized WZ models, as in
nonsupersymmetric example above, it is instructive to s
from two decoupled superfields. The superpotential has
form

W0~F,X!5S m2

l
F2

l

3
F3D1S m2

g
X2

g

3
X3D . ~12!

~I hasten to add that aFX coupling will be introduced
shortly.! If the lowest components of the superfieldsF andX
are denoted byf and x, the extrema of the superpotenti
~12! ~i.e., the solutions of the equations]W0 /]F50 and
]W0 /]X50! are the same as in Eq.~5!. The values of the
superpotential at the extrema are

~W0!* 57
2m3

3l2 7
2m3

3g2 .

The profile of the function2W0(F,X) is shown on Fig. 3.
The first extremumM1 is the maximum of this function,
M4 is the minimum,M2,3 are the saddle points.
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57 1261DEGENERACY AND CONTINUOUS DEFORMATIONS OF . . .
The AB and BD walls exist, they are given by Eqs
~6!, ~7!. The corresponding trajectories are unique. TheAD
domain wall ~8! represents a continuous family of traject
ries, with an extra collective coordinate,R or g,

g5arccot~ḟ/ẋ !z→2`5arccotFm2

m2

g

l
~coshR1sinhR!2G .

~HereR5z02z0 .! It can be viewed as a bound state of t
AB andBD walls, with the vanishing binding energy.

So far, everything is in one-to-one correspondence w
the situation in the decoupled nonsupersymmetric exam
Now comes a drastic distinction.

Let us switch an interaction term and show the followin
~i! A family of the AD walls persists. This family is de

generate since for any wall from the familyE5«121«24,
where

«1252@W~M2!2W~M1!#,

«2452@W~M4!2W~M2!#.

~ii ! Any interaction term couplingF and X, which does
not cause a ‘‘catastrophic’’ restructuring of the profileW,
does guarantee the point~i!. ~I will explain later what is
meant by catastrophic.!

As a matter of fact, the equalityE5«121«24 is a trivial
consequence of the relation between the BPS wall ten
and the central charge in the transition at hand, simila
Eqs.~1!,~2!. We need to prove only that a continuous fam
of the BPS trajectories, connecting the pointsA andD ~the
extremaM1 andM4! exists. In the absence of couplin
betweenF andX, the proof is explicit, see Eq.~8!. When the
interaction is switched on, the analytic form of the solution
unknown, but the fact of its existence follows from the cre
equations@4,8#

FẆ 5¹W W̄. ~13!

FIG. 3. The profile of the superpotential2W(F,X), Eqs.
~12!, ~18!. The notations are the same as in Figs. 1 and 2.
h
le.

.

n
o

k

~HereFW is a generic set of the superfields; under the rules
the game we have accepted, one can drop the bar overW on
the right-hand side.! We will prove two straightforward con-
sequences of Eq.~13!.

~I! An infinite number of the wall trajectories originat
from every maximum of (2W), and infinitely many trajec-
tories end up in every minimum.

~II ! Only one trajectory departs from every saddle point
(2W), and only one arrives.

Needless to say that, since we are speaking of maxi
minima, and saddle points, we continue dealing, as pre
ously, only with the real solutions of the creek equatio
~13!, assuming all parameters in the superpotential to be r
In the complex plane all extrema are saddle points, of cou

To prove the assertions~I! and ~II ! above consider the
profileW(F,X) near the extremum points. Near the extrem

W5W* 1P2~dF,dX!,

where

dF5F2F* , dX5X2X* ,

and P2 is a homogeneous polynomial of the second ord
By a real rotation of the fieldsdF, dX,

$dF,dX%→$D1 ,D2%,

one can always diagonalizeP2 . In terms of the diagona
variablesD1,2

P25
1

2
AD1

21
1

2
BD2

2,

whereA,B are some constants, and the creek equations
the form

Ḋ15AD1 , Ḋ25BD2 . ~14!

Both constants,A and B are positive near the maximum o
2W, negative near the minimum, and one positive o
negative near the saddle points. The appropriate asymp
behavior of the trajectory isD1,2→0 at z→2` for the out-
going trajectory, and atz→` for the incoming trajectory.
The solutions of Eqs.~14! with the appropriate asymptotic
are

D15C1eAz, D25C2eBz ~15!

for the trajectories leaving a maximum or arriving at a min
mum of 2W. HereC1,2 are arbitrary constants, whose rat
determinesg. At the same time for the trajectories attach
to the saddle points we have

D15C1eAz, D250 ~16!

and

D150, D25C2eBz. ~17!

The first one leaves a saddle point, the second arrive~I
assume for definiteness thatA.0, B,0!. It is quite obvious
that in Eq.~15! a continuous parameter emerges, while th
is no such freedom in the case of Eqs.~16!,~17!.
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1262 57M. SHIFMAN
Not every trajectory leaving a maximum will end up at
minimum ~or at a saddle point, a special case!, thus generat-
ing a legitimate BPS wall. Some trajectories will lead
abysses, yielding no BPS-saturated domain wall solutions
other words, there are global constraints on the angleg.
These constraints become clear from a visual examinatio
the profile of2W. Thus, in the trivial case of Eq.~12! the
boundary values of the angle areg* 50 andg* 5p/2. In-
troducing an interaction betweenF and X we shift the
vacuum values of the fieldsF* ,X* , the corresponding val
ues of the superpotential~determining the central charges!,
the boundary valuesg* , but as long as the interaction ter
does not cause a ‘‘geographical’’ disaster, the continu
degeneracy of theAD wall family will survive, the model
will support a unique trajectory for theAB and BD walls,
and a continuous family for theAD walls.

A typical interaction is

DW52aFX, W5W01DW. ~18!

The coupling betweenF and X distorts details of the
profile, as compared with the decoupling limit, but the gro
features remain the same: one maximum, one minimum,
saddle points. The maximum of2W is the highest point, the
saddle points are somewhat below, and the minimum of2W
is the lowest point. Starting from the maximum, the cre
descends to either of the saddle points, from either of
saddle points it descends to the minimum. Finally, there
family of trajectories connecting the maximum and the mi
mum directly. What particular trajectory is chosen depen
on the angleg of the stream injection at the initial moment o
time ~i.e., z→2`!. If a!um2mu the boundary value ofg,
instead of zero, becomesg* 5aum2mu211O(a2).

Other couplings betweenF andX, not necessarily reduc
ing to Eq. ~18!, are possible too. The general pattern w
continue to hold until the interaction betweenF and X be-
comes so strong that the gross features of the ‘‘slope’’ un
consideration change—e.g., a new ‘‘mountain ridg
emerges preventing the descent to the minimum, or the m
mum raises up to the level of the maximum, and so on. T
can only happen under special conditions, ata;um2mu.
This catastrophic restructuring is a different story, howev
which will not be touched in the present paper. As long
the coupling betweenF and X does not change the overa
general pattern of the extrema on the ‘‘slope,’’ a continuo
family of the AD walls will exist.

III. ELABORATING A SPECIFIC EXAMPLE

To get further insight on the impact the continuously d
generate BPS wall families may have, it is instructive
work out particular models. Therefore, I choose a concr
coupling betweenF andX, and rewrite the two-field mode
at hand in a slightly different form by passing to new sup
fields ~which I will still continue callingF andX!,

W5
m2

l
F2

l

3
F32aFX2. ~19!

The four extrema$F,X%* are
In

of
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M15H 2
m

l
,0J , M2,35H 0,6

m

Ala
J , M45H m

l
,0J .

~20!

The values of the superpotential at extrema are

W~M1!52
2

3

m3

l2 , W~M2,3!50, W~M4!5
2

3

m3

l2 .

~21!

The profile of the corresponding function2W is shown on
Fig. 4, while the scalar potential in the model at hand
presented on Fig. 5. The essential points are explained
Fig. 6. It is assumed thata,l. As we will see shortly, the
relation betweena andl is important.

At aÞl the only apparent symmetry of the model~19!
~additionally to supersymmetry! is a discreteZ4 ,

F→6F

FIG. 4. The profile of the superpotential2W in the model~19!
for the following values of the parameters:l5m51, a50.49. The
pointsA,B,C,D mark four vacua of the model:A is the maximum
of 2W corresponding toM1 ,D is the minimum corresponding to
M4 ,B,C are saddle pointsM2,3.

FIG. 5. The scalar potential in the same model.
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57 1263DEGENERACY AND CONTINUOUS DEFORMATIONS OF . . .
and

X→6X. ~22!

This symmetry connects the vacuaM1 andM4 , orM2 and
M3 : M1 is physically equivalent toM4 while M2 is
equivalent toM3 . Z4 is spontaneously broken down toZ2 in
any of the four vacuum states. No symmetry relatesM1 to
M2 .

As previously,A marks the maximum,D the minimum,
andB,C mark the saddle points. The wallsAB andAC are
equivalent, and so are the wallsBD and CD. The domain
walls AD andBC are different. The first one is BPS, whil
the second is non-BPS; their tensions do not coincide.

The ellipse depicted on Fig. 6 by a thick solid line, as w
as the horizontal axis, also depicted by a thick solid line,
level lines—they give the zero of the superpotential. Plu
and minuses indicate the height of2W in the corresponding
regions~positive or negative!. The dashed lineBACD is the
boundary of the region where a continuous family of t
degenerateAD trajectories lies. Any trajectory leaving th
point A with the ‘‘velocity’’ directed in the lower half-plane
will end up in an abyss, while those with the ‘‘velocity’’ in
the upper half-plane will arrive at the pointD. One of such
trajectories is depicted by the dotted line. The correspond
wall tension is

E5
8

3

m3

l2 . ~23!

Two trajectories are exceptional; they lead fromA to C or B.
The energy density of these walls is

«5
4

3

m3

l2 . ~24!

The dashed lineBAC is the edge of the mountain ridge
while the dashed lineCDB is the bottom of a valley. By
inspecting the matrix of the second derivatives ofW one
readily convinces oneself that the dashed line is horizonta

FIG. 6. The map ofF and X, for the previous plots, with the
level lines. The thick solid lines denote zero of the superpoten
2W, Eq. ~19!. The regions of the positive height are marked
pluses, the regions of the negative height by minuses. The da
lines denote the trajectories of the BPS walls coming to~or leaving
from! the saddle points. The dotted line is one of~infinitely many!
possibleAD walls.
l
e
s

g

at

the pointsA andD, while it approaches the saddle pointsB
andC at the angles6p/4. It is pretty obvious that the cree
leaving B at 2p/4 will arrive at D. If a,l/2, the certain
special trajectories from theAD family can be found analyti-
cally,

F5
m

l
tanh~Mz!, X56

m

Aal
A12

2a

l

1

cosh~Mz!
,

~25!

where

M5
2am

l
.

For these trajectories atz→2` the ‘‘velocities’’ are hori-
zontal. ~Further details can be found in Shifman and V
loshin @10#.!

Instead of analyzing the creek equations, one could pr
the existence of the continuously degenerate family of
AD walls in an indirect way, by counting the fermion ze
modes using the index theorem@9#. A symmetric solution of
the creek equation

X50, F5
m

l
tanh~mz! ~26!

obviously exists. Now, if one calculates the matrix of t
second derivatives~the fermion mass matrix! ]2W/]F i]F j
on the solution~26!, this matrix is diagonal,

]2W/]F i]F j522diag$lF,aF%,

with both eigenvalues changing sign along the trajecto
~26!. From the index theorem@9# we then learn of the exis
tence of two fermion zero modes. Since the solution~26!
preserves 1/2 of supersymmetry, each fermion zero m
must have a boson partner. Thus, we must have two bo
zero modes. One is associated with a shift of the wall cen
another reflects the possibility of shifting the trajectory alo
the ‘‘slope’’ ~i.e., changing the internal structure of the wa!
without changing the tension.

A. Non-BPS wall connecting the saddle pointsM2 andM3

Since the pointsB andC both lie at zero of the superpo
tential, there is no BPS wall connecting them@1,4#. A non-
BPS wall exists. The corresponding value ofF50, while
X(z) satisfies the second-order equation

d2X

dz2 522aXS m2

l
2aX2D . ~27!

Its solution is

X5
m

Ala
tanh~Mz!, M5Aa

l
m. ~28!

l
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A straightforward calculation of the tension of theBC wall
yields

Ẽ5Al

a

8

3

m3

l2 5Al

a
2«. ~29!

At a,l the energy density of the non-BPS wall~28! is
higher than the sum of the energy densities of the BPS w
connectingBD andDC, see Eq.~24!. The wall ~28! is clas-
sically unstable with respect to the decay into two BPS w
BD andDC, separated by an infiniteDz interval. How the
instability begins to develop is clearly seen from Fig. 5. If w
start from the solution~28!, with F50, it is energetically
expedient to push the trajectory away from the top of the
in the F direction. Quantitatively, one can analyze t
Hamiltonian for F in the background~28!, assuming that
F(z) is small, i.e., keeping only the quadratic terms inF and
omitting higher orders. The mode equation forF takes the
form

H 2
d2

dz2 1M2F42S 41
2l

a D 1

cosh2~Mz!G J Fn~z!5EnFn~z!

~30!

with the boundary conditions

Fn~z→6`!50.

The parameterM is the same as in Eq.~28!.
At a,l the lowest modeF0 is negative,E0,0. This

means that allowing the wall trajectory to slide down in t
direction ofF0 ,

F;F0 ,

we make the energy density of theBC wall lower than that
in Eq. ~29!. This is the way the instability in Eq.~28! starts.
The evolution of the instability ends when the wall~28!
breaks into two well-separated pieces, two BPS walls c
nectingM2 toM4 andM4 toM3 , respectively.

If a.l, on the contrary, the above two BPS walls a
attracted to each other. They form a stable bound stat
non-BPS wall~28!, connectingM2 toM3 directly. The wall
tensionẼ is smaller than the sum of the tensions of theBD
andDC walls.

Note, that the tensions of the BPS walls are calcula
exactly, while those of the non-BPS walls, generally spe
ing, receive corrections due to quantum loops. If the c
pling constants are small, these corrections are small too,
can be neglected everywhere except in the immediate vi
ity of the pointa5l.

The pointa5l is special. At this point the tension of th
non-BPS wallBC is exactly equal to the sum of the tensio
of theBD andDC walls and equal to the tension of the BP
wall AD,

Ẽ52«5E. ~31!
lls

s

ll

-

a

d
-
-
nd
n-

This is due to the fact that ata5l the model~19! degener-
ates into a system of two decoupled superfields (F6X)/&,
and theBC wall becomes physically identical to theAD one.
Thus, although an additional symmetry emerges ata5l,
this limit is uninteresting.

B. Integrating out a heavy field

In many applications one has to deal with effecti
Lagrangians which are written for light degrees of freedo
after one integrates out heavy degrees of freedom. An
ample which is widely discussed now is the effective L
grangian for the supersymmetric Yang-Mills theory@5,6#.
Here we show that, integrating out heavy fields, typically o
erases any trace of the continuous degeneracy of the
walls existing before the heavy degrees of freedom are el
nated.

Let us turn again to the model~19!, and consider the limit
a@l. Then in the vacuaM1 andM4 the field X is much
heavier thanF:

MX

MF
5

a

l
. ~32!

As a matter of fact, this ratio holds~almost! everywhere
along the trajectory connectingM1 andM4 . The only ex-
ception is atF50. Therefore, following a standard routine
one is tempted to integrate out the fieldX in order to obtain
an effective Lagrangian for the ‘‘light’’ fieldF. The standard
routine is based on the Born-Oppenheimer procedure:
freezes the value ofF, and for every given value finds a
optimal value ofX minimizing the energy of the field con
figuration at hand. In this way one finds that for all values
F ~exceptF50, but we will forget about this one ‘‘singu
lar’’ point, as it is commonly done! the corresponding opti-
mal value ofX vanishes, as a consequence of the equa
]W/]X50. Substituting this solution back toW(F,X) given
in Eq. ~19!, we arrive at the effective Lagrangian for theF
field, representing nothing but the minimal WZ model. As
well-known @1,4#, the wall solution in this model is unique
Thus, integrating outX in the manner of Born-Oppenheime
we loose any possibility of exploring the continuous fam
of the BPS walls, which exists in the full theory. It is high
probable that a similar situation may take place in t
Veneziano-Yankielowicz effective Lagrangian@5# ~see also
@3#!, where an uncontrollable number of ‘‘heavy’’ degrees
freedom is eliminated. Whether this is the case, and if
what is the dimension of the parameter space of the B
walls in the supersymmetric Yang-Mills theories remains
open question.
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