PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Degeneracy and continuous deformations of supersymmetric domain walls
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In a wide class of supersymmetric theories degenerate families of the BPS-saturated domain walls exist. The
internal structure of these walls can continuously vary, without changing the wall tension. This is described by
hidden parametergollective coordinates Differentiating with respect to the collective coordinates one gets a
set of the bosonic zero modes localized on the wall. Neither of them is related to the spontaneous breaking of
any symmetry. Through the residual 1/2 of supersymmetry each bosonic zero mode generates a fermionic
partner.[S0556-282(198)03402-X]

PACS numbgs): 11.27+d, 11.30.Pb

[. INTRODUCTION One can introduce the overall wall centgg and extra
collective coordinate®;, which have the physical meaning
The central extensions d=1 superalgebras in four di- of, roughly, relative “distances” between different “compo-
mensions discovered recenfly—4] lead to the existence of nents” of the wall. If all parameterR; tend to infinity, the
the BPS(Bogomolny-Prasad-Sommerfigidaturated domain  “pasic” components of the wall are infinitely separated. The
walls in supersymmetric theories, with rather peculiar propexistence of such a limiting solution is trivial. The solution
erties. In Ref[4] it was nOted, in particular, that one and the persistS, however, at finite values BI, with the same ten-
same m_odel can have a yariety_of distinct domain .waIIs iNsion &, independent oR; .
terpolating between the given pair of vacua. Here this remark pitterentiating with respect to the collective coordinates
is elaborated. It will be shown that in a wide class of superg one generates zero modes, localized on the wall and as-
symmetric models_, typlcally: dcontlnuously degenergte sociated with a change in the internal structure of the wall.
;Zm:g ?sf ﬁg%;g?%'; gsgsofxﬁgrgarizggr?qsgx&g&m the These zero modes are unrelated to the trivial zero mode cor-
responding to the shift of a wall, as a whole, in thédirec-

though the internal structure of each domain wall is differentlt. Si 172 of . d h ext
they all have one and the same energy denSitPne can lon. since Of Supersymmetry 1S preserved, each extra

view the domain walls from this family as bound states ofPosonic zero mode will be accompanied by a fermionic
two (or more “basic” domain walls, with the vanishing Ccounterpartner. _ _
binding energy. In other words, the “basic” domain walls do ~ The continuously degenerate domain walls occur in the
not interact. In the two-dimensional reductions of the four-models in which the parameters in the superpotential
dimensional theories under consideration the domain wall¥(®,X, .. .) arereal(or can be made real by an appropriate
become kinks(solitong. Our result translates then into a transformation of the field®, X, .. .), and all extrema of the
statement that the basic “solitons” do not interact with eachsuperpotentialclassical minima of the potentjabccur at
other. real values of the fields, x, and so on.(Here ¢,x, ...,
The hidden parameters are the collective coordinates alenote the lowest components of the superfididsx,...).
the domain wall solutions. The existence of some collectiveThe class of theories admitting the degenerate families of the
coordinates is a trivial consequence of the fact that the dodomain wall solutions is actually much wider, especially if
main walls spontaneously break a part of the four-one includes into consideration nonrenormalizable and/or
dimensional symmetries: translational invariance inzftd-  nonpolynomial superpotentials. The latter naturally appear in
rection and 1/2 of supersymmetfif the domain walls at effective low-energy theories, see, el®.6]. Since the gen-
hand are BPS saturaed herefore, the occurrence of a co- eralization is quite straightforward, and will become com-
ordinatez, usually referred to as the wall center is not sur-pletely clear from what follows, | will limit myself here to
prising. We will show that similar coordinates survive for the generalized Wess-Zumin®VzZ) models[7] with renor-
each individual “component” of the “composite” BPS malizable superpotentials, assuming real values of param-
wall. An analogous situation takes place in the two-instantoreters, the more so that many practically important problems
solution of the Yang-Mills theory. Each instanton is charac-belong to this class.
terized by its individual center, so that we have eight collec- Assume for definiteness that the superpotenkidlhas
tive coordinates associated with translations, although onlyhree extremdl will call them genericallyM;, M., and
four translational symmetries of the theory are spontaneously;, where M stands for a complete set of superfields in the
broken on the solution. The symmetry of the solution isproblem at hand These extrema are ordered in such a way
higher than that of the theory itself. that W(M 1) <W(M,)<IW(M3). The energy density of
the BPS domain walls is proportional to the central charge in
the corresponding transitigrl,2], which in turn reduces to
*Permanent address. the difference of the superpotentials
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where the subscripf marks the transition from thigh to jth

vacuum. It is obvious then that if a family of the BPS domai”whereu and m are the mass terms andand g are the

walls 13 exist, all walls from this family are degenerate; the"coupling constants. This potential has four classical minima,

energy density is {b.x},
E(R)=e13=e1ot €03, i) [ © m] [,U« m]
Ml: — 5 v [ M2: NEREE
The BPS domain walls 12 and 23 are the “basic” compo- A9 A9
nents comprising all walls from the 13 family. As a conse-
quence of Eq(1) they do not interact. M= ( £ T], =12 T}. ()
The fact that a family of solutions in the 13 transition AN g AT g

exists can be easily established by inspecting the creek equa- ) o ) ) )
tions[4] (see alsd8]) defining the BPS domain walls. There _(It also hqs a maximum at the 0r|g)rThe field gonflguratlon
is no need in finding the actual solutions of these equationdnterpolating betweer\ 1, and.M, is the domain wall of the
The creek equations can be interpreted as complexified equé’— field,

tions of motion of a high viscosity fluidvhose inertia can be m

neglected on a profile associated with/. For the real su- b= Lt tanhu(z—2z0), x=-—, (6)
perpotentials and real solutions this interpretation is espe- A g

cially simple, since complexification becomes redundant, the . i i ) .
profile is just given by—W (with the above conventions while that mtgrpolatmg betweetv, and.M, is the domain
regarding the ordering and a very rich physical intuition Wall of the x field,

everyone has in this type of motion allows one to immedi-

m
ately see whether or not a family of solutions exists in the = E, x= — tanhm(z—¢y), (7)
given transition, by a simple examination of the profile of A 9

—-W.

Although the above assertions are general, | will iIIustrateWherezo and{, are the centers of the corresponding walls.

them in the generalized WZ models describing dynamics of,n ir';:;g"?/s’ ;nstﬁgi(;gggoge;}’ﬁfg p'{rg?/i(jgztwirlllg the fourth
two chiral superfields. There is no doubt, however, that un- ’
der the same circumstances degenerate families of the do- uw m

main walls, with hidden parameters and a variety of zero b= N tanhu(z—zy), x=—tanhm(z—¢). (8)
modes corresponding to a change in the wall internal struc- 9

ture, appear in any model, including strongly coupled gauge
models. This may have important implications for the do-
main walls in supersymmetric Yang-Mills theorigg. | will

not dwell on this topic in the present paper, leaving it for
future publications.

The minimal WZ model, with one chiral superfield and
renormalizable su_perpotentlal, gent_erlcally has only one pair &(2o,Lo) = 819+ E4s
of vacua, and a single BPS wall, with no hidden parameters
[1,4]. The only bosonic zero mode existing in this model is
that associated with the translation of the wall as a whole.
Thus, this model is uninteresting for our current purposes. To
reveal the phenomenon it is necessary to consider mode|s

with two or more chiral superfields. Since all essential ingre-N Other words, the two components of the domain wall con-

dients appear already at the level of two-field models, Wefiguration (8) do not'interact with ‘?aCh other. They experi-
will limit ourselves to two chiral superfields ence neither attraction nor repulsion. One can say that the

domain wall configuratiori8) is infinitely (continuously de-
generate.

The profile of the potential energy, is depicted in Fig.
To explain the essence of the problem it is convenient tol- The range of variation df,x} corresponding to Fig. 1 is

start from a nonsupersymmetric system of two real scalagiven in Fig. 2. The wall solutions interpolating frofto B
fields ¢ and y, and fromB to D are obviously the “basic” components of

the wall solution interpolating fromh to D. They are obvi-
ously unique in the sense that tA& andBD wall trajecto-
L= E[((?M¢)2+(0"#)()2—V(¢,X)], ®) ries on Fig. 1 are unique. That's not the case forAlizwall
solution. The latter has a hidden parameter—a relative posi-
For a short while we will forget about théy coupling and tion of the components’ centelR={,—z,. If R=0 theAD
consider decoupled fields. We will incorporatebg interac-  wall trajectory runs right on top of the hill on Fig. 1. R
tion term later. Assume that the self-interaction potential has# 0 it deviates either to the right from the top or to the left.
a double-well shape, There exists a continuous family of trajectories, with one and

The double-wall configuratio8) has two collective co-
ordinatesz, and {;—not surprisingly, of course, since the
fields ¢ and y are decoupled so far, and the total energy
density residing in the configuratidi8) does not depend on
the relation betweern, and ¢y, and is equal to

3 3

4u 4m
812=W, 824:3_92- C)

IIl. GENERAL OBSERVATIONS
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to be added td/y. The interaction is chosen in such a way
that the positions of the minima &f are not shiftedFig. 2).
This is done for technical reasons only, to facilitate calcula-
tions. We could have easily dealt with any other interaction
term. To simplify things further we will work in the limit
a<1. This is a technical assumption too, inessential for the
final conclusion.

In the first order ina the change in the wall tension is

22

uem
A5=a€)\2—gz|,

1= dezcosi’?(,uz) cos[m(z—R)]" an

If «a<0 an attraction between the basic wall components
FIG. 1. The potential of the two-field model given in Eg) for ~ arises; theAB and BD walls collapse, and the only wall
the following values of the parameters=g=1, =1, m=1.2.  solution connecting the point& and D that persists runs
The pointsA,B,C,D mark four vacua of the model. The four exactly on top of the hill. On the other hand dfis positive,
minima A to D correspond toM; to M,, see Eq(5). on the contrary, the basic components experience repulsion,
and strictly speaking, there is D wall at all. It exists only
the samet. In Fig. 2 the parameteR is reinterpreted as an as a limiting superposition of th&B andBD walls, located
angle y determining the direction of motion in the initial infinitely far from each otherR—o. In the first case the
moment of time. angley on Fig. 2 is arctarNim/gp), in the second case it is
| remind the reader that the creek interpretation of theeither zero orm/2. In any case the collective coordinate as-
equations defining the BPS wa#,8] implies that the vari-  sociated withR disappears.
ablez is interpreted as “time.” Correspondingly, differen-  Even if the interaction ternAV is fine-tuned in such a
tiation overz will be denoted by an overdot, sag,is the¢p  way that classicallyAé=0, a nonvanishingA€ inevitably

component of the “velocity,”y is the y component, and so emerges at the quantum level, as a result of loop corrections,
on. The angley determines the direction of the “velocity” ruining the degeneracy of th&D trajectories inherent to the
vector y=arccotg/y). For instance, for the solutiof8) the gic?upled f|telds. T_hetrr? IS no symmetry V\:h.'Ch wou(;%\;orce
?ngle ofzinleécgc_)r; at t2he initial moment of time;— —, is ioioaﬁda% g‘o gsefr?oltn e nonsupersymmetric case ande
anTme/ij;egeras;Fi)h;n%eé%teMifted, generally speaking, In contrast, !t will be _shown that supersymmetric BPS
once one switches on an interaction betweeand y. Gone walls are generically continuously degenerate. In the models

with this degeneracy is the existence of the hidden parametégﬁ'th tWO. cthlral sup;erfleld”s, li'esudes tg.e civerall V\{alltr?enter,
and a continuous family of thaD trajectories. ere exists one extra collective coordinate even in the pres-

Indeed, consider a typical interaction term, say ence of theqSX.coupIing. It characterizes the wall internal
' ' ' structure, and is analogous Ror the angley.
) m> ) w? Passing to the discussion of the continuous degeneracy of
X~ ?)(¢ - F) (100 the domain walls in the generalized WZ models, as in the
nonsupersymmetric example above, it is instructive to start
X from two decoupled superfields. The superpotential has the
form

AV=a«

C.——?D

2
+(%x— 9x3). (12

2
A
W0(<I>,X)=(MT®——<I>3 =

3

o (I hasten to add that &X coupling will be introduced
shortly) If the lowest components of the superfiefiandX
are denoted byp and y, the extrema of the superpotential
(12) (i.e., the solutions of the equatior8V,/d® =0 and

W IW,y19X=0) are the same as in E¢p). The values of the
A@g—3-=9B superpotential at the extrema are
2ud 2m?

FIG. 2. The range of variation of the fields and y on the
previous plot is shown by the solid line. The four minima are de-
picted as closed circles. The dashed lines show the wall trajectories
AB and BD, while the dotted lines show twéout of infinitely ~ The profile of the function—W,(®,X) is shown on Fig. 3.
many) possibleAD trajectories.y is the injection angle of the creek The first extremumM; is the maximum of this function,
(at z— — ). M, is the minimum, M, ; are the saddle points.

Wo)s = 32 37
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(Here<f> is a generic set of the superfields; under the rules of
the game we have accepted, one can drop the banoven

the right-hand sid¢ We will prove two straightforward con-
sequences of Eq13).

(I) An infinite number of the wall trajectories originate
from every maximum of £ ), and infinitely many trajec-
tories end up in every minimum.

(1) Only one trajectory departs from every saddle point of
(=W), and only one arrives.

Needless to say that, since we are speaking of maxima,
minima, and saddle points, we continue dealing, as previ-
ously, only with the real solutions of the creek equations
(13), assuming all parameters in the superpotential to be real.
In the complex plane all extrema are saddle points, of course.

To prove the assertiond) and (Il) above consider the
profile W(®,X) near the extremum points. Near the extrema

W=W, +P,(6D,56X),
FIG. 3. The profile of the superpotentiat W(P,X), Egs.

(12), (18). The notations are the same as in Figs. 1 and 2. where

b=P—-P,, X=X-X,,
The AB and BD walls exist, they are given by Egs. * *

(6), (7). The corresponding trajectories are unique. M2  and P, is a homogeneous polynomial of the second order.
domain wall(8) represents a continuous family of trajecto- By a real rotation of the fields®, 6X,
ries, with an extra collective coordinate,or v,
{60,6X}—{A1,A,),
2

y=arccot éﬁ/k)za_m:arcco ﬂzg(cosrR+ sinhR)?|. one can always diagonalize,. In terms of the diagonal
m< A variablesA; ,

(HereR={y—z,.) It can be viewed as a bound state of the
AB andBD walls, with the vanishing binding energy.

So far, everything is in one-to-one correspondence with
the situation in the decoupled nonsupersymmetric examplavhereA,B are some constants, and the creek equations take
Now comes a drastic distinction. the form

Let us switch an interaction term and show the following. ) )

(i) A family of the AD walls persists. This family is de- A1=AA;, Ap=BA;. (14
generate since for any wall from the famiff=eq,+e94,
where

1 2 1 2
PZZEAAJ_—’_ EBA ,

Both constantsA and B are positive near the maximum of
—W, negative near the minimum, and one positive one
negative near the saddle points. The appropriate asymptotic
behavior of the trajectory id; ,—0 atz— — for the out-
going trajectory, and at—oo for the incoming trajectory.
£94= 2[W(My) = W(M))]. The solutions of Eqs(14) with the appropriate asymptotics
are

g12= 2[W(M3z) =W (M)],

(ii) Any interaction term couplingb and X, which does
not cause a ‘“catastrophic” restructuring of the profitg,
does guarantee the poifi). (I will explain later what is
meant by catastrophijc.

As a matter of fact, the equalit§=¢c,+ e, is a trivial
consequence of the relation between the BPS wall tensio
and the central charge in the transition at hand, similar to
Egs.(1),(2). We need to prove only that a continuous family A,=C,e"% A,=0 (16)
of the BPS trajectories, connecting the poiAtandD (the
extrema M, and M,) exists. In the absence of coupling and
between®d andX, the proof is explicit, see E48). When the

AlzcleAZ, AZZCZEBZ (15)

for the trajectories leaving a maximum or arriving at a mini-
mum of —W. HereC, , are arbitrary constants, whose ratio
determinesy. At the same time for the trajectories attached
0 the saddle points we have

interaction is switched on, the analytic form of the solution is A,=0, A,=C,e®2 (17)
unknown, but the fact of its existence follows from the creek ] )
equationd4,8] The first one leaves a saddle point, the second arrfles

assume for definiteness that-0, B<0). It is quite obvious
. that in Eq.(15) a continuous parameter emerges, while there
d=VW. (13 is no such freedom in the case of E¢6),(17).
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Not every trajectory leaving a maximum will end up at a
minimum (or at a saddle point, a special cashus generat-
ing a legitimate BPS wall. Some trajectories will lead to
abysses, yielding no BPS-saturated domain wall solutions. In
other words, there are global constraints on the angle
These constraints become clear from a visual examination of
the profile of —W. Thus, in the trivial case of Eq12) the
boundary values of the angle atg =0 andy, = #/2. In-
troducing an interaction betwee® and X we shift the
vacuum values of the field®, ,X, , the corresponding val-
ues of the superpotentiétietermining the central charges
the boundary values, , but as long as the interaction term
does not cause a ‘“‘geographical”’ disaster, the continuous
degeneracy of th&D wall family will survive, the model
will support a unique trajectory for thAB and BD walls,
and a continuous family for thAD walls.

A typical interaction is

FIG. 4. The profile of the superpotential}V in the model(19)
for the following values of the parameteds=m=1, «=0.49. The
AW=2a®X, W=Wo+AW. (18) pointsA,B,C,D mark four vacua of the modeh is the maximum
of —W corresponding toM,,D is the minimum corresponding to
The coupling betweer and X distorts details of the A,,B,C are saddle pointd, 3.
profile, as compared with the decoupling limit, but the gross
features remain the same: one maximum, one minimum, two m m m
saddle points. The maximum ef)V is the highest point, the M1:[ - —,0] , Mos= [ O,i—} , My= ‘—,0} .
saddle points are somewhat below, and the minimum ¥ A \/)\_a A
is the lowest point. Starting from the maximum, the creek (20
descends to either of the saddle points, from either of the ]
saddle points it descends to the minimum. Finally, there is d he values of the superpotential at extrema are
family of trajectories connecting the maximum and the mini- o 3 5
mum directly. What particular trajectory is chosen depends _ m _ _em
on the angley of the s{)ream injection at the initial momeﬁt of WMy =~ 32\2" WMz9 =0, WIMy)= Az
time (i.e., z— —). If a<|u—m| the boundary value of, (22)
instead of zero, becomeg, = a|u—m| 1+ 0(a?).
Other couplings betwees® and X, not necessarily reduc- The profile of the corresponding function)V is shown on
ing to Eq. (18), are possible too. The general pattern will Fig. 4, while the scalar potential in the model at hand is
continue to hold until the interaction betwednand X be-  presented on Fig. 5. The essential points are explained on
comes so strong that the gross features of the “slope” undeFig. 6. It is assumed that<<\. As we will see shortly, the
consideration change—e.g., a new “mountain ridge” relation betweenx and\ is important.
emerges preventing the descent to the minimum, or the mini- At a#\ the only apparent symmetry of the mod&b)
mum raises up to the level of the maximum, and so on. Thigadditionally to supersymmetrys a discreteZ,,,
can only happen under special conditions,aat|u—m|.
This catastrophic restructuring is a different story, however, o o)
which will not be touched in the present paper. As long as
the coupling betwee® and X does not change the overall
general pattern of the extrema on the “slope,” a continuous
family of the AD walls will exist.

Wl N

Ill. ELABORATING A SPECIFIC EXAMPLE

To get further insight on the impact the continuously de-
generate BPS wall families may have, it is instructive to
work out particular models. Therefore, | choose a concrete
coupling betweerb and X, and rewrite the two-field model
at hand in a slightly different form by passing to new super-
fields (which | will still continue calling® and X),

m? N )
W= 0= 20— a®XZ, (19

The four extremd ®,X}, are FIG. 5. The scalar potential in the same model.
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the pointsA andD, while it approaches the saddle poifts
andC at the anglest 7/4. It is pretty obvious that the creek
leavingB at — 7/4 will arrive atD. If a<A/2, the certain
special trajectories from th&D family can be found analyti-
cally,

® m M N m 1 2a 1
N tanh(Mz), _\/ﬁ N coshiMz)’
, , (25)
FIG. 6. The map ofb and X, for the previous plots, with the
level lines. The thick solid lines denote zero of the superpotentialvhere
—W, Eq.(19. The regions of the positive height are marked by
pluses, the regions of the negative height by minuses. The dashed _ 2am
lines denote the trajectories of the BPS walls comin¢ptdeaving M= N
from) the saddle points. The dotted line is one(iofinitely many)
possibleAD walls. For these trajectories at— —o the “velocities” are hori-
zontal. (Further details can be found in Shifman and Vo-

and loshin[10].)

Instead of analyzing the creek equations, one could prove
the existence of the continuously degenerate family of the
X—=xX. (22 AD walls in an indirect way, by counting the fermion zero

) modes using the index theord®)]. A symmetric solution of
This symmetry connects the vacid; andM,, or M, and  the creek equation

Msz: My is physically equivalent toM, while M, is
equivalent taMs. Z, is spontaneously broken downZg in
any of the four vacuum states. No symmetry relatds to m
M,. X=0, &= x tanim2) (26)

As previously,A marks the maximumD the minimum,
andB,C mark the saddle points. The waksB andAC are  obviously exists. Now, if one calculates the matrix of the
equivalent, and so are the walD andCD. The domain second derivativegthe fermion mass matrjmzl/v/ﬁcbi&@j
walls AD andBC are different. The first one is BPS, while on the solution26), this matrix is diagonal,
the second is non-BPS; their tensions do not coincide.

The ellipse depicted on Fig. 6 by a thick solid line, as well
as the horizontal axis, also depicted by a thick solid line, are aZW/arbiaCDj: —2diag\®,ad},
level lines—they give the zero of the superpotential. Pluses
and minuses indicate the height-efV in the corresponding With both eigenvalues changing sign along the trajectory
regions(positive or negative The dashed linBACD s the  (26). From the index theorerf8] we then learn of the exis-
boundary of the region where a continuous family of theténce of two fermion zero modes. Since the soluti@6)

degenerateAD trajectories lies. Any trajectory leaving the Preserves 1/2 of supersymmetry, each fermion zero mode
point A with the “velocity” directed in the lower half-plane Must have a boson partner. Thus, we must have two boson

will end up in an abyss, while those with the “velocity” in Z€ro modes. One is associated with a shift of the wall center,
the upper half-plane will arrive at the poibt. One of such ~ another reflects the possibility of shifting the trajectory along

trajectories is depicted by the dotted line. The correspondin§e “slope” (i.e., changing the internal structure of the wall
wall tension is without changing the tension.

A. Non-BPS wall connecting the saddle points\i, and M3

c= . (23) Since the point8 andC both lie at zero of the superpo-
3\ tential, there is no BPS wall connecting théin4]. A non-

] ) ] BPS wall exists. The corresponding value &0, while
Two trajectories are exceptional; they lead fréo C orB. (7 satisfies the second-order equation

The energy density of these walls is

3 d*X 2 x(mz x2) (27
4 m o — — LA -~ .
6== 7. (24) dz’ A
3
The dashed linAC is the edge of the mountain ridge, Its solution is

while the dashed lin€€DB is the bottom of a valley. By m
inspecting the matrix of the second derivatives)of one X=—tan(Mz), M= \/E m (28)
readily convinces oneself that the dashed line is horizontal at VAa A
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A straightforward calculation of the tension of tB&C wall ~ This is due to the fact that at=\ the model(19) degener-

yields ates into a system of two decoupled superfielis-(X)/v2,
3 and theB C wall becomes physically identical to teD one.
T_ §§m__ ﬁ Thus, although an additional symmetry emergesyat\,
E= 5 = 2¢. (29 o S . ;
a3\ @ this limit is uninteresting.
At a<\ the energy density of the non-BPS w#l8) is _ _
higher than the sum of the energy densities of the BPS walls B. Integrating out a heavy field
connectingBD andDC, see Eq(24). The wall(28) is clas- In many applications one has to deal with effective

sically unstable with respect to the decay into two BPS wallg agrangians which are written for light degrees of freedom
BD andDC, separated by an infinitaz interval. How the  after one integrates out heavy degrees of freedom. An ex-
InStabI|Ity beginS to deVeIOp iS C|eal’|y seen from Flg 5. If Weamp|e Wh|Ch iS W|de|y discussed now iS the effective La-
start from the SOlUtior(ZS), with ®=0, it is energetically grangian for the Supersymmetric Yang-Mi”s thec[@,G]
expedient to push the trajectory away from the top of the hillHere we show that, integrating out heavy fields, typically one
in the @ direction. Quantitatively, one can analyze theerases any trace of the continuous degeneracy of the BPS

Hamiltonian for® in the background28), assuming that \alls existing before the heavy degrees of freedom are elimi-
®(z) is small, i.e., keeping only the quadratic termshirand  pated.

omitting higher orders. The mode equation fbrtakes the Let us turn again to the modél9), and consider the limit
form a>\. Then in the vacua\1; and M, the field X is much
heavier thanb:
¢ M2 4—| 4 a1 ®(2)=E P
az" "o [cosiimz) | [ PP = EaPi(2) My @ (32
(30) M(I) )\ )

with the boundary conditions As a matter of fact, this ratio hold&@lmos) everywhere

along the trajectory connectingt; and M,. The only ex-
® (2 +0)=0 ception is atb =0. Therefore, following a standard routine,
n + . ) . . .
one is tempted to integrate out the fieldin order to obtain
) ) an effective Lagrangian for the “light” fieldb. The standard
The parameteM is the same as in E¢28). . routine is based on the Born-Oppenheimer procedure: one
At a<\ the lowest moded, is negative,Eq<0. This  freezes the value ob, and for every given value finds an
means that allowing the wall trajectory to slide down in theoptimal value ofX minimizing the energy of the field con-
direction of @, figuration at hand. In this way one finds that for all values of
® (except® =0, but we will forget about this one “singu-
lar” point, as it is commonly donethe corresponding opti-
mal value ofX vanishes, as a consequence of the equation
dWI 9X=0. Substituting this solution back W(®,X) given
in Eq. (19), we arrive at the effective Lagrangian for tde

(I)"‘@o,

we make the energy density of tlBeC wall lower than that

in Eq. (29). .This is the way th? instability in Eq28) starts. field, representing nothing but the minimal WZ model. As is
The evolution of the instability ends when the w&li8)  \ye||_known[1,4], the wall solution in this model is unique.

breaks into two well-separated pieces, two BPS walls conyp g integrating oux in the manner of Born-Oppenheimer
necting M, to M, and M, to M;, respectively. we loose any possibility of exploring the continuous family

If a>A\, on the contrary, the above two BPS walls aret ihe Bps walls, which exists in the full theory. It is highly
attracted to each other. They form a stable bound state, Srobable that a similar situation may take place in the

non-BPE wall28), connectingM, to M3 directly. The wall  \/aneziano-Yankielowicz effective Lagrangi@B] (see also
tension¢ is smaller than the sum of the tensions of BB  [3]), where an uncontrollable number of “heavy” degrees of
andDC walls. freedom is eliminated. Whether this is the case, and if so,
Note, that the tensions of the BPS walls are calculatedvhat is the dimension of the parameter space of the BPS
exactly, while those of the non-BPS walls, generally speakwalls in the supersymmetric Yang-Mills theories remains an
ing, receive corrections due to quantum loops. If the couopen question.
pling constants are small, these corrections are small too, and
can be neglected everywhere except in the immediate vicin-
ity of the pointa=A\.
The pointa=N\ is special. At this point the tension of the | would like to thank M. Voloshin for a discussion. This
non-BPS walBC is exactly equal to the sum of the tensions work was done during my stay at InstitutrfTheoretische
of theBD andDC walls and equal to the tension of the BPS Physik IlI, Universita Erlangen-Nunberg. | am grateful to
wall AD, F. Lenz and other members of the group for kind hospitality.
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