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Nonperturbative three-point vertex in massless quenched QED
and perturbation theory constraints
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Dong, Munczek, and Roberts have shown how the full 3-point vertex that appears in the Schwinger-Dyson
equation for the fermion propagator can be expressed in terms of a constrained functionW1 in massless
quenched QED. However, this analysis involved two key assumptions: that the fermion anomalous dimension
vanishes in the Landau gauge and that the transverse vertex has a simplified dependence on momenta. Here we
remove these assumptions and find the general form for a new constrained functionU1 that ensures the
multiplicative renormalizability of the fermion propagator nonperturbatively. We then study the restriction
imposed onU1 by recent perturbative calculations of the vertex and compute its leading logarithmic expansion.
SinceU1 should reduce to this expansion in the weak coupling regime, this should serve as a guide to its
nonperturbative construction. We comment on the perturbative realization of the constraints onU1 .
@S0556-2821~98!01202-8#

PACS number~s!: 11.15.Tk, 11.10.Gh, 12.20.Ds
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I. INTRODUCTION

The behavior of the fermion propagator in any gau
theory is determined by the fermion–gauge-boson ver
While in perturbation theory a bare vertex is sufficient, in t
strong coupling regime it is well known that this simple a
satz can lead to unacceptable results, such as an unreno
izable fermion propagator and gauge-dependent chiral s
metry breaking@1#. The Ward-Green-Takahashi identity fo
the vertex determines what is often called its longitudi
part @2#. The remaining transverse part has long been kno
to play a crucial role in ensuring the multiplicative renorm
izability of the fermion propagator@3,4,5#. However, it is
only very recently that a general form for the transverse v
tex involving an odd number of gamma matrices has b
written down for quenched QED@1,6#. With simplifying as-
sumptions, this ansatz ensures that the fermion propagat
multiplicatively renormalizable and that if a dynamical ma
is generated then this phase transition occurs at a ga
independent value of the critical coupling@6#. This ansatz
involves two unknown functionsW1(x) andW2(x) of a di-
mensionless ratiox of momenta, each satisfying an integr
and a derivative constraint. The integral condition onW1
guarantees that the fermion propagator is multiplicativ
renormalizable, whereas that onW2 ensures that the critica
coupling is a gauge-independent quantity. The deriva
conditions are consequences of the transverse vertex b
free of kinematic singularities. In the case of massless fer
ons,W2 drops out and onlyW1 dictates what the transvers
vertex is. However, this construction involves the assum
tion that the transverse vertex vanishes in the Landau ga
and has no dependence on the angle between the fer
momenta. Here we remove these assumptions and intro
570556-2821/97/57~2!/1242~8!/$15.00
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a new constrained functionU1(x). In terms of this, we
present the most general nonperturbative construction of
transverse vertex required by the multiplicative renorma
ability of the fermion propagator.

In this paper, we go on to discuss how perturbation the
can provide additional constraints onU1 . Physically mean-
ingful solutions of the Schwinger-Dyson equations mu
agree with perturbation theory in the weak coupling limit.
importance in dictating the nonperturbative structure of
vertex has been appreciated in earlier work@4–7#. We obtain
the perturbative expansion ofU1(x) to O(a), in the limit
whenx→0, to which every nonperturbative construction
U1 must reduce. This is made possible by the recent per
bative calculation of the transverse vertex by Kizilersu¨ et al.
@7# U1 , being related to a Green’s function beyond lowe
order, is renormalization scheme dependent. In this pape
have used the cutoff regularization scheme as is natural w
discussing multiplicative renormalizability, whereas the c
culation of the transverse vertex by Kizilersu¨ et al. @7# was
performed in the dimensional regularization scheme m
useful in perturbation theory, but which does not distingu
between ultraviolet and infrared behaviors. In order to ret
consistency, the perturbative evaluation ofU1 has been re-

FIG. 1. Schwinger-Dyson equation for the fermion propagat
The straight lines represent fermions and the wavy line the pho
The solid dots indicate full, as opposed to bare, quantities.
1242 © 1997 The American Physical Society
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57 1243NONPERTURBATIVE THREE-POINT VERTEX IN . . .
stricted to leading logarithms alone, as these are schem
dependent. This fact, however, prevents us from check
explicitly that the integral condition onU1 is preserved in
perturbation theory, though consistency requires that it is

We check the validity of the derivative constraint onU1
in perturbation theory. This condition holds in the limit whe
x→1. Analytical calculation ofU1 and its derivative in this
region is a prohibitively difficult task. However, numeric
evaluation is possible. We find that the numerical results
in excellent agreement with the proposed condition.

II. WAVE FUNCTION RENORMALIZATION F „p2,L2
…

The Schwinger-Dyson equation for the fermion propa
tor SF(p) in QED with a bare couplinge is displayed in Fig.
1 and is given by

iSF
21~p!5 iSF

021
~p!2e2E d4k

~2p!4 gmSF~k!Gn~k,p!Dmn~g!,

~1!

where q5k2p. For massless fermions,SF(p) can be ex-
pressed in terms of a single Lorentz scalar funct
F(p2,L2), called the wave function renormalization, so th

SF~p!5
F~p2,L2!

p”
,

where L is the ultraviolet cutoff used to indicate that th
integrals involved are divergent and need to be regulariz
The bare propagatorSF

0(p)51/p”. The photon propagator re
mains unrenormalized in quenched QED:

Dmn~q!5
1

q2 S gmn1~j21!
qmqn

q2 D[Dmn
T ~q!1j

qmqn

q4 ,

whereDmn
T (q), called the transverse part of the propagat

is defined by the above equation andj is the standard cova
riant gauge parameter.Gm(k,p) is the full fermion-boson
vertex, for which we must make an ansatz in order to so
Eq. ~1!. Keeping in mind that the vertex satisfies the Wa
Green-Takahashi identity

qmGm~k,p!5SF
21~k!2SF

21~p!, ~2!

Ball and Chiu@2# considered the vertex as a sum of longit
dinal and transverse components:

Gm~k,p!5GL
m~k,p!1GT

m~k,p!, ~3!

whereGT
m(k,p) is defined by
in-
g

re

-

n
t

d.

,

e
-

qmGT
m~k,p!50. ~4!

To satisfy Eq.~1! in a manner free of kinematic singularitie
which in turn ensures that the Ward identity is satisfied,
have~following Ball and Chiu!

GL
m~k,p!5a~k2,p2!gm1b~k2,p2!~k”1p” !~k1p!m, ~5!

where

a~k2,p2!5
1

2 S 1

F~k2,L2!
1

1

F~p2,L2! D ,

b~k2,p2!5
1

2 S 1

F~k2,L2!
2

1

F~p2,L2! D 1

k22p2 , ~6!

and

GT
m~p,p!50. ~7!

Ball and Chiu @2# demonstrated that a set of 8 vecto
Ti

m(k,p) formed a general basis for the transverse part,
that

GT
m~k,p!5(

i 51

8

t i~k2,p2,q2!Ti
m~k,p!. ~8!

Equations~4!, ~7! are then satisfied provided that in the lim
k→p, the t i(p2,p2,0) are finite. As shown by Kizilersu¨
et al. @7# a modification of the original Ball-Chiu basis i
required to achieve this in an arbitrary covariant gauge
perturbation theory. One can then define the Minkow
space basis to be@7#

T1
m~k,p!5pm~k•q!2km~p•q!,

T2
m~k,p!5T1

m~k”1p” !,

T3
m~k,p!5q2gm2qmq” ,

T4
m~k,p!5q2@gm~k”1p” !2km2pm#22~k2p!mslnklpn,

T5
m~k,p!52smnqn,

T6
m~k,p!5gm~k22p2!2~k1p!m~k”2p” !,

T7
m~k,p!52 1

2 ~k22p2!@gm~k”1p” !2km2pm#

1~k1p!mslnklpn,

T8
m~k,p!5gmslnklpn2kmp” 1pmk” . ~9!

On multiplying Eq.~1! by p” , taking the trace, and makin
use of Eqs.~2!, ~3!, ~5!, ~6!, ~8!, ~9! we have, on Wick
rotating to Euclidean space,
1

F~p2,L2!
512

a

4p3

1

p2 E d4k
F~k2,L2!

k2q2 H a~k2,p2!
1

q2 @22D223q2k•p#1b~k2,p2!
1

q2 @22D2~k21p2!#

2
j

F~p2,L2!

p2

q2 ~k22k•p!1t2~k2,p2,q2!@2D2~k21p2!#1t3~k2,p2,q2!@2D213q2k•p#

1t6~k2,p2,q2!@3~k22p2!k•p#1t8~k2,p2,q2!@2D2#J . ~10!



sless
ed

r
eadily be

1244 57A. BASHIR, A. KIZILERSÜ, AND M. R. PENNINGTON
whereD25(k•p)22k2p2. Note that only thoseTi
m with odd numbers of gamma matrices contribute in the case of mas

fermions—incidentally, these are then the same as in the basis proposed in@2#. At this stage, it appears impossible to proce
any further without demanding that thet i be independent of the angle between the fermion momentum vectorsk andp, i.e.,
independent ofq2. This assumption allows us to carry out the angular integration in Eq.~10!. We shall show later in this pape
that this assumption is not a necessary requirement for solving the above Schwinger-Dyson equation and this can r
undone. In order to distinguish the transverse components which are assumed to be independent ofq2 from the real ones which
explicitly depend onq2 @7#, we denote the former byt i

eff , suggesting that these are only effectivet i . Now carrying out the
angular integration,

1

F~p2,L2!
512

a

4p E
0

L2 dk2

k2 F~k2,L2!F k4

p4 H b~k2,p2!F3

2
~k21p2!G1t2

eff~k2,p2! F2
1

4
~k21p2!~k223p2!G

1t3
eff~k2,p2! F1

2
~k223p2!G1t6

eff~k2,p2!F3

2
~k22p2!G1t8

eff~k2,p2!F1

2
~k223p2!G J u~p22k2!

1H b~k2,p2!F3

2
~k22p2!G2

j

F~p2!
1t2

eff~k2,p2!F2
1

4
~k21p2!~p223k2!G1t3

eff~k2,p2!F1

2
~p223k2!G

1t6
eff~k2,p2!F3

2
~k22p2!G1t8

eff~k2,p2!F1

2
~p223k2!G J u~k22p2!G . ~11!
ve
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Following Dong, Munczek, and Roberts@1#, Bashir and Pen-
nington @6# have proposed an ansatz for the transverse
tex. They require it to be chosen such that the fermion pro
gator is multiplicatively renormalizable, and in the case
massive fermions, the chiral symmetry-breaking phase t
sition takes place at a gauge-invariant value of the coupl
They show that the transverse vertex can be written in te
of two unknown functionsW1 and W2 , each obeying an
integral and a derivative condition. In the case of a chira
symmetric solution, the transverse vertex reduces to bein
function of W1 alone. However, this construction involve
the additional assumption that the transverse vertex is ze
the Landau gauge. In general, the solution of Eq.~11! im-
posed by multiplicative renormalizability in quenched QE
is

F~p2,L2!5A~p2/L2!g ~12!

in any covariant gauge withA a constant. The assumption o
a vanishing transverse vertex in the Landau gauge means
the anomalous dimensiong is equal ton[aj/4p. Crucially
this is not the general solution; nor is it even in agreem
with perturbation theory@8#. The anomalous dimensiong is
not zero in the Landau gauge. Consequently, we fix the
fective transverse vertex quite generally in terms of a fu
tion U1(x) through a series of steps analogous to those
lowed in Refs.@1,6#.

The result is

t̄eff~k2,p2!5
1

4

1

k22p2

1

s1~k2,p2! FU1S k2

p2D2U1S p2

k2D G
2

2p

a

g2n

k22p2 S 1

F~k2,L2!
2

1

F~p2,L2! D ,

~13!
r-
a-
f
n-
g.
s

y
a

in

hat

t

f-
-
l-

t6
eff~k2,p2!52

1

2

k21p2

~k22p2!2 S 1

F~k2,L2!
2

1

F~p2,L2! D

1
1

3

k21p2

k22p2 t̄eff~k2,p2!

1
1

6

1

k22p2

1

s1~k2,p2! FU1S k2

p2D1U1S p2

k2D G

2
4p

3a

g2n

k22p2 S 1

F~k2,L2!
1

1

F~p2,L2! D ,

~14!

where

s1~k2,p2!5
k2

p2 F~k2,L2!1
p2

k2 F~p2,L2!

and

t̄eff~k2,p2!5t3
eff~k2,p2!1t8

eff~k2,p2!

2 1
2 ~k21p2!t2

eff~k2,p2!. ~15!

To see how these forms arise uniquely, let us substitute E
~13!, ~14! into Eq. ~11! to obtain
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1

F~p2,L2!
511nE

p2

L2 dk2

k2

F~k2,L2!

F~p2,L2!
2

a

8p E
0

p2 dk2k2

p4

U1~k2/p2!F~k2,L2!

~k2/p2!F~k2,L2!1~p2/k2!F~p2,L2!

2
a

8p E
p2

L2 dk2

k2

U1~p2/k2!F~k2,L2!

~k2/p2!F~k2,L2!1~p2/k2!F~p2,L2!
1~g2n!E

0

p2 dk2k2

p4 1~g2n!E
p2

L2 dk2

k2

F~k2,L2!

F~p2,L2!
,

~16!

where we recalln[aj/(4p). Multiplicative renormalizability requires that the renormalizedFR be related to the unrenor
malizedF through a multiplicative factorZ by

F~p2,L2!5Z~m2/L2!FR~p2,m2!, ~17!

so that the solution of this equation is

FR~k2,m2!

FR~p2,m2!
5

F~k2,L2!

F~p2,L2!
5S k2

p2D g

. ~18!

Now this power behavior is the solution of

1

F~p2,L2!
511gE

p2

L2 dk2

k2

F~k2,L2!

F~p2,L2!
. ~19!

Consequently, from Eq.~16!, this imposes the following restriction on the transverse vertex and hence the functionU1(k2/p2):

a

8p E
0

p2 dk2k2

p4

U1~k2/p2!@F~k2,L2!/F~p2,L2!#

~k2/p2!@F~k2,L2!/F~p2,L2!#1~p2/k2!
1

a

8p E
p2

L2 dk2

k2

U1~p2/k2!

~k2/p2!1~p2/k2!@F~p2,L2!/F~k2,L2!#

2
1

2
~g2n!50. ~20!
o

v

of

Introducing the variablex, where

x5k2/p2 ;0<k2,p2,

x5p2/k2 ;p2<k2,L2, ~21!

in the first two terms of the above equation, Eq.~20! be-
comes simply

E
0

21

dx
U1~x!x11g

x211x11g 1E
p2/L2

1

dx
U1~x!x21

x211x11g 5
4p

a
~g2n!.

~22!

We can now letL2→`, and so we simply have

E
0

1

dx U1~x!5
4p

a
~g2n!. ~23!

Note that the previous construction@1,6# explicitly assumed
that g5n5aj/(4p) and then U1(x)→W1(x) and
*0

1dxW1(x)50. Moreover, the simplified vertex of@4# cor-
responds to settingW1(x)50.

The transverse vertex has no kinematic singularities. M
tivated by the perturbative calculation of Ball and Chiu@2# in
the Feynman gauge and later by Kizilersu¨ et al. @7# in arbi-
trary covariant gauges, it is a plausible assumption that e
-

en

nonperturbatively this is achieved by the individualt i ’s be-
ing free of kinematic singularities. The antisymmetry
t6

eff (k2,p2) underk2↔p2 interchange then requires that

lim
k2→p2

~k22p2!t6
eff~k2,p2!50. ~24!

This imposes another constraint onU1(x):

U1~1!1U18~1!526g1
8p

a
~g2n!~22g!. ~25!

For later, let us note that Eqs.~13! and ~14! can be inverted
to write U1 in terms of thet i

eff :

U1S k2

p2D5s1~k2,p2!F ~k223p2!t̄eff~k2,p2!

1
3

2

k21p2

k22p2 S 1

F~k2,L2!
2

1

F~p2,L2! D
13~k22p2!t6

eff~k2,p2!

1
8p

a
~g2n!

1

F~k2,L2!G . ~26!
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We now set about using recent perturbative calculations
the structure of the vertex to determine the weak coup
limit of this U1 .

III. REAL VERTEX AND EFFECTIVE VERTEX

Calculation ofU1(x) is nontrivial. This is because to b
able to solve the Schwinger-Dyson equation for the ferm
propagator requires assumptions to be made about the
the fermion-boson vertexGm(k,p,q) depends uponq2. In-
deed, it seems impossible to proceed analytically with
assuming that the vertex is independent of the photon
mentumq; otherwise, we cannot carry out the integrati
over the angular variable. A motivation for this simplifyin
assumption comes from the large momentum behavior of
vertex in perturbation theory, where it does, indeed, o
depend on the variablesk2 andp2, andnot on q2 @4#:

GT
m~k,p!.2

aj

8p
ln

k2

p2 Fgm2
kmk”

k2 G . ~27!

However, it is clear from the perturbative calculation of Ki
ilersü, Reenders, and Pennington@7# that the same does no
hold true for all the ranges ofk2 and p2. Instead, theq2

dependence occurs in almost every term of each of thet i .
We should, therefore, keep in mind that whenever we
neglecting theq2 dependence, we are not talking about t
exact, but only theeffectivevertex. In order to find a connec
tion between the two, we compare Eqs.~10! and~11!, which
yields the following exact relation between the real and
effectivet i :
of
g

n
ay

t
o-

e
y

e

e

t2
eff~k2,p2!5

1

f ~k2,p2!
E

0

p

du
sin2 u

q2 t2~k2,p2,q2!D2,

t3
eff~k2,p2!5

1

f ~k2,p2!
E

0

p

du
sin2 u

q2 t3~k2,p2,q2!

3S D21
3

2
q2k•pD ,

t6
eff~k2,p2!5

1

f 6~k2,p2!
E

0

p

du
sin2 u

q2 t6~k2,p2,q2!k•p,

t8
eff~k2,p2!5

1

f ~k2,p2!
E

0

p

du
sin2 u

q2 t8~k2,p2,q2!D2,

~28!

where

f ~k2,p2!5
p

8 F k2

p2 ~k223p2!u~p22k2!

1
p2

k2 ~p223k2!u~k22p2!G ,
f 6~k2,p2!5

p

4 F k2

p2 u~p22k2!1
p2

k2 u~k22p2!G .
The perturbative evaluation oft i

eff using Eq.~28! is made
possible by the calculation of Kizilersu¨ et al. @7# for the real
t i :
t2~k2,p2,q2!5
a

8pD2 H J0F1

2
~j22!S 3

2D2 q2k2p21~k21p2! D1k•pG2 ln
k2

p2 F ~j22!
3

4D2 ~k22p2!k•p1
j

2

~k1p!2

k22p2 G
1 ln

q4

k2p2 F ~j22!
3

4D2 q2k•p1j21G1~j22!J , ~29!

t3~k2,p2,q2!5
a

8pD2 H J0F ~j22!

8 S 3

D2 ~k22p2!2~k•p!21~k21p2!2D2D2G
1 ln

k2

p2 F ~j22!
k22p2

4 S 12
3

2D2 ~k1p!2k•pD G
1 ln

q4

k2p2 F ~j22!
k•p

2 S 3

4D2 ~k22p2!21D G1
1

2
~j22!~k1p!2J , ~30!

t6~k2,p2,q2!

k22p2 5
a~j22!

32pD2 H J0Fq2

2 S 12
3

D2 ~k•p!2D1D2G1 ln
k2

p2 F 3

2D2 k•p~k22p2!2
~k1p!2

k22p2 G
1 ln

q4

k2p2 F 23

2D2 q2k•pG22J , ~31!

t8~k2,p2,q2!5
a

8pD2 H q2Fk•pJ01 ln
q4

k2p2G2~k22p2!ln
k2

p2J , ~32!
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where

J05
2

ip2 E d4v
1

v2~v2p!2~v2k!2 ,

5
2

D F f S k•p2D

p2 D2 f S k•p1D

p2 D1
1

2
ln

q2

p2 lnS k•p2D

k•p1D D G ,
~33!

and

f ~x!5Sp~12x!52E
x

1

dy
ln y

12y
. ~34!

Although the Eqs.~29!–~32! appear a little complicated, th
nice thing is that all thet i are expressed in terms of eleme
tary functions and a single scalar integralJ0 . Kizilersü et al.
have carried out the calculation in the dimensional regu
ization scheme, whereas here, so as to be able to identify
ultraviolet behavior readily, we use the cutoff method. Co
sequently, we restrict our discussion to leading logarith
which are independent of the choice of the regularizat
scheme. In the asymptotic limitk2@p2, the integrals can be
evaluated analytically and the separation between the lea
and the next to leading terms becomes apparent.

In order to have a perturbative expansion forU1 , we have
to go up toO(1/k4) in t3

eff , t6
eff, andt8

eff , andO(1/k6) in t2
eff ,

instead of just keeping the terms of orderO(1/k2) and
O(1/k4), respectively. Consequently, in an arbitrary gau
we have to go up toO(1/k7) in evaluatingJ0 for k2 large.
The expansion ofJ0 , keeping only the logarithms, to th
required order in the limit whenk2@p2 is

J05
2

k2 F11
k•p

k2 2
1

3

p2

k2 1
4

3

~k•p!2

k4 2
p2k•p

k4 12
~k•p!3

k6

1
1

5

p4

k42
12

5

p2~k•p!2

k6 1
16

5

~k•p!4

k8 1
p4k•p

k6

2
16

3

p2~k•p!3

k8 1
16

3

~k•p!5

k10 G ln k2

p2 , ~35!

Now the perturbative expansion of the realt i can be writ-
ten as

t2~k2,p2,q2!

52
a

12pk4 H 112
k•p

k2 1
1

5k4 @18~k•p!22k2p2#

2jF213
k•p

k2 1
1

5k4 @24~k•p!217k2p2#G J ln
k2

p2 ,
r-
he
-
s,
n

ng

,

t3~k2,p2,q2!5
a

12pk2 H 110
k•p

k2 2
1

5k4 @4~k•p!217k2p2#

2
k•p

k6 @2~k•p!213k2p2#1jF11
3

2

k•p

k2

1
1

5k4 @12~k•p!21k2p2#

14
~k•p!3

k6 G J ln
k2

p2 ,

t6~k2,p2,q2!5
a~j22!

24pk2 H 11
k•p

k2 1
3

5k4 @2~k•p!21k2p2#

1
4k•p

5k6 @2~k•p!21k2p2#J ln
k2

p2 ,

t8~k2,p2,q2!52
a

4pk2 H 11
2

3

k•p

k2 1
2

3k4 ~k•p!2J ln
k2

p2 .

~36!

We learn the following points from the above calculation
To the lowest order in 1/k2, all four t i are independent o

the angle between the momentak andp.
Substituting theset i in the expression for the full trans

verse vertex, we retrieve the perturbative result for the tra
verse vertex derived by Curtis and Pennington@4#, Eq. ~27!.
This serves as one of the checks of the calculation.

Comparing the equations for the realt i , Eqs.~29!–~32!,
with their largek2 limit, Eq. ~36!, one can see that all theD2

factors have disappeared from the denominator. Hence
largek2, the t i are explicitly finite for all values of the an
gular variable.

We can now use Eq.~28! to find out the largek2 expan-
sion of the effectivet i . This yields

t2
eff~k2,p2!52

a

12pk4 H 122j1
16

5 S 1

3
2j D p2

k2J ln
k2

p2 ,

t3
eff~k2,p2!51

a

12pk2 H 11
1

4
j1

1

5 S 7

3
2

3

4
j D p2

k2J ln
k2

p2 ,

t6
eff~k2,p2!5

a~j22!

16pk2 H 11
5

3

p2

k2J ln
k2

p2 ,

t8
eff~k2,p2!52

a

4pk2 H 11
1

3

p2

k2J ln
k2

p2 ,

t̄eff~k2,p2!52
a

8pk2 H 11
1

2
j2

1

3 S 12
11

2
j D p2

k2J ln
k2

p2 .

~37!

Using the definition, Eq.~26!, for U1(x), we then deduce its
leading logarithmic form to be simply

U1~x! 5
x→0 a

2p
ln x. ~38!
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The above equation is the scheme-independent perturb
expression forU1(x) for x→0, to which every nonperturba
tive construction must reduce in the weak coupling regim
This is the main and remarkably simple result of this secti

Note first and most importantly, all terms of the typ
ln x/x in the equations for thet i neatly cancel out in the
expression forU1(x). If this had not happened, such term
would have led to nonintegrable contributions. This canc
lation is consistent with Eq.~23!, which shows that there ca
be no lnx/x term to O~a!. Note, second, that the leadin
logarithmic perturbative expression forU1(x) turns out to be
independent of the gauge parameter. While we could im
ine checking that*0

1dx U1(x)54p(g2n)/a numerically by
constructing the integrand explicitly from Eqs.~26!, ~28!–
~32! the lack of consistency arising from the use of two d
ferent schemes would render such an attempt meaning
~beyond leading logarithms!.

Importantly, our results are in agreement with the rules
the Landau-Khalatnikov transformation@9#. These determine
the gauge dependence of a Green’s function, once one kn
its behavior in some covariant gauge. Thus, if in the Land
gauge

F~p2,L2!5A0~p2/L2!g0,

then these rules@9,10,11,12# applied to quenched QED re
quire that, in a general covariant gauge,

F~p2,L2!5A~p2/L2!g,

where g5g01aj/4p and A,A0 are constants. Thusn
5aj/(4p) provides the only gauge dependence to
anomalous dimension@10–12#. Consequently, in Eqs.~13!–
~15!, ~20!–~23!, ~25!, ~26!, the factorg2n5g0 is gauge
independent and in perturbation theory ofO(a2). Thus,
*0

1dx U1(x) too must be ofO~a! and generally gauge inde
pendent, like itsx→0 limit, Eq. ~38!.

Because the derivative condition, Eq.~25!, is merely a
statement of the transverse vertex being free of kinem
singularities, regardless of in what scheme it has been ca
lated, it can be checked numerically. ToO~a!, the derivative
condition reads

v[U1~1!1U18~1!2
16p

a
g052

3aj

2p
. ~39!

Making use of the complete expressions in Eqs.~26!, ~28!–
~32!, we plot v/a versus the gauge parameterj in Fig. 2.
The numerical and analytical results are in excellent ag
ment with each other.
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IV. CONCLUSIONS

The nonperturbative study of the fermion propaga
through its Schwinger-Dyson equation requires an ansatz
the fermion–gauge-boson vertex. Here we have shown
this vertex ~in the case of massless fermions! can be ex-
pressed in terms of a single unknown functionU1(x) con-
strained to ensure the multiplicative renormalizability of t
fermion propagator. We have devised a general nonpertu
tive form for this function and so developed a simple co
struction for the full fermion-boson vertex. We have th
calculated its perturbative expansion and found the rem
ably simple result that toO~a!:

U1~x! 5
x→0 a

2p
lnx.

Any nonperturbative ansatz forU1(x) should agree with this
in the weak coupling limit. This should help in pinning dow
the only unknown part of the full interaction vertex, Eqs.~5!,
~6!, ~8!, ~13!–~15!, and so finally encapsulate the physi
encoded in the Schwinger-Dyson equation for the ferm
propagator.
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