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Nonperturbative three-point vertex in massless quenched QED
and perturbation theory constraints
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Dong, Munczek, and Roberts have shown how the full 3-point vertex that appears in the Schwinger-Dyson
equation for the fermion propagator can be expressed in terms of a constrained fulfgtionmassless
guenched QED. However, this analysis involved two key assumptions: that the fermion anomalous dimension
vanishes in the Landau gauge and that the transverse vertex has a simplified dependence on momenta. Here we
remove these assumptions and find the general form for a new constrained fudgtithhat ensures the
multiplicative renormalizability of the fermion propagator nonperturbatively. We then study the restriction
imposed orlJ, by recent perturbative calculations of the vertex and compute its leading logarithmic expansion.
SinceU; should reduce to this expansion in the weak coupling regime, this should serve as a guide to its
nonperturbative construction. We comment on the perturbative realization of the constraihis on
[S0556-282(198)01202-9

PACS numbes): 11.15.Tk, 11.10.Gh, 12.20.Ds

I. INTRODUCTION a new constrained functiot,(x). In terms of this, we
present the most general nonperturbative construction of the
The behavior of the fermion propagator in any gaugetransverse vertex required by the multiplicative renormaliz-
theory is determined by the fermion—gauge-boson vertexability of the fermion propagator.
While in perturbation theory a bare vertex is sufficient, in the  In this paper, we go on to discuss how perturbation theory
strong coupling regime it is well known that this simple an- can provide additional constraints &h, . Physically mean-
satz can lead to unacceptable results, such as an unrenormalgful solutions of the Schwinger-Dyson equations must
izable fermion propagator and gauge-dependent chiral synagree with perturbation theory in the weak coupling limit. Its
metry breakind1]. The Ward-Green-Takahashi identity for importance in dictating the nonperturbative structure of the
the vertex determines what is often called its longitudinalvertex has been appreciated in earlier wigtk7]. We obtain
part[2]. The remaining transverse part has long been knowtthe perturbative expansion &f;(x) to O(«), in the limit
to play a crucial role in ensuring the multiplicative renormal- whenx— 0, to which every nonperturbative construction of
izability of the fermion propagatof3,4,5. However, it is  U; must reduce. This is made possible by the recent pertur-
only very recently that a general form for the transverse verbative calculation of the transverse vertex by Kizileesial.
tex involving an odd number of gamma matrices has beefi7] U, being related to a Green’s function beyond lowest
written down for quenched QE[L,6]. With simplifying as-  order, is renormalization scheme dependent. In this paper we
sumptions, this ansatz ensures that the fermion propagator feave used the cutoff regularization scheme as is natural when
multiplicatively renormalizable and that if a dynamical massdiscussing multiplicative renormalizability, whereas the cal-
is generated then this phase transition occurs at a gaugeulation of the transverse vertex by Kizilerstial. [7] was
independent value of the critical coupliig]. This ansatz performed in the dimensional regularization scheme most
involves two unknown function8V;(x) andW,(x) of a di-  useful in perturbation theory, but which does not distinguish
mensionless ratia of momenta, each satisfying an integral between ultraviolet and infrared behaviors. In order to retain
and a derivative constraint. The integral condition WR  consistency, the perturbative evaluationldf has been re-
guarantees that the fermion propagator is multiplicatively
renormalizable, whereas that &, ensures that the critical q
coupling is a gauge-independent quantity. The derivative
conditions are consequences of the transverse vertex being -1 -1 4&—
free of kinematic singularities. In the case of massless fermi- —& = - hd
ons,W, drops out and onlyV; dictates what the transverse p k
vertex is. However, this construction involves the assump-
tion that the transverse vertex vanishes in the Landau gauge FIG. 1. Schwinger-Dyson equation for the fermion propagator.
and has no dependence on the angle between the fermiame straight lines represent fermions and the wavy line the photon.
momenta. Here we remove these assumptions and introdu@&e solid dots indicate full, as opposed to bare, quantities.
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stricted to leading logarithms alone, as these are scheme in- q,%(k,p)=0. (4)
. . put TA

dependent. This fact, however, prevents us from checking
explicitly that the integral condition o), is preserved in To satisfy Eq.(1) in a manner free of kinematic singularities,
perturbation theory, though consistency requires that it is. which in turn ensures that the Ward identity is satisfied, we

We check the validity of the derivative constraint b have (following Ball and Chiy
in perturbation theory. This condition holds in the limit when T#(k,p)=a(k?p?) y*+b(k?p?) (k+p)(k+p)*, (5)
x—1. Analytical calculation olJ,; and its derivative in this
region is a prohibitively difficult task. However, numerical where
evaluation is possible. We find that the numerical results are

1 1
. . . 2 2 i
in excellent agreement with the proposed condition. a(ks,p?) 5 (F(kZ,AZ) + F(p2,A2))'

Il. WAVE FUNCTION RENORMALIZATION  F(p%A?) b(k2,p?) = 1 ( 1 1 ) 1 ©
. . . ’ 2 |F(k3,A%) F(p? A% /k°—p?’
The Schwinger-Dyson equation for the fermion propaga-
tor Sg(p) in QED with a bare coupling is displayed in Fig. and
1 and is given by T%(p,p)=0. @

4
iS;l(p)ziS(F’_l(p)—ezf d k4 YASe(KT(K,p)A ,,(9), Ball and Chiu[2] demonstrated that a set of 8 vectors
(2m) T#(k,p) formed a general basis for the transverse part, so
@) that
whereg=k—p. For massless fermion§:(p) can be ex- 3
pressed in terms of a single Lorentz scalar function T4(k.p)= (K202 ) TA(K 8
F(p2 A?), called the wave function renormalization, so that r(k.p) 2’1 ni(kE P At TEkp). ©

F(p?A?) Equations(4), (7) are then satisfied provided that in the limit
Se(p)= b k—p, the 7;(p?p20) are finite. As shown by Kizilefsu
et al. [7] a modification of the original Ball-Chiu basis is
where A is the ultraviolet cutoff used to indicate that the required to achieve this in an arbitrary covariant gauge in
integrals involved are divergent and need to be regularizecperturbation theory. One can then define the Minkowski
The bare propagatcﬁg(p)z 1/p. The photon propagator re- space basis to be]
mains unrenormalized in quenched QED: TE(k,p) = p“(k-q) — K (p-q),
Q.9

Aw(q>=q% 0t (E-1) ~7 | =AL () + € qg?h T4(K,p) = T4(k+p),

T5(k,p)=0%y*—q"d,
whereA;V(q), called the transverse part of the propagator, ) N
is defined by the above equation afids the standard cova- 14 (K.P)=a[y*(k+p) —k*—p*]=2(k—p)*o, k"p",
riant gauge parametel.*(k,p) is the full fermion-boson TE(K,p) = — oH"
vertex, for which we must make an ansatz in order to solve 5P o

Eq. (1). Keeping in mind that the vertex satisfies the Ward- TE(K,p) = y*(K2—p?) — (k+ p)“(k—p),
Green-Takahashi identity
. 1 T4 (k,p)=—3(k*=p?)[ y*(k+ p) — k*—p*]
a“T',(k,p)=Sc (k) =S (p), 2
+(k+p) oy, k*p”,
Ball and Chiu[2] considered the vertex as a sum of longitu- ey
dinal and transverse components: TE(k,p)=y*o, K'p"—k“p+p“k. 9
I#(k,p)=T"#(k,p)+T4(k,p), 3 On multiplying Eq.(1) by p, taking the trace, and making
use of Egs.(2), (3), (5), (6), (8), (99 we have, on Wick
wherel';(k,p) is defined by rotating to Euclidean space,
;—1_ii f 4 w a(k2 2) i[_ZAZ_B Zk_ ]+b(k2 2) i[_ZAZ(kZ_’_ 2)]
F(p2A?)  ~ a3 p2 K2q? P 7 g°k-p P P p
£

2
p
T EpEAD (K2=k-p)+ 72(K?,p?,9?)[ — A%(k?+ p?) ]+ m3(k?,p%,q) [ 242+ 3g%K- p]

+ 76(k%,p%,07)[3(K?— p?)k- pl+ 5(k?,p?,0%)[2A%] . (10
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whereA2= (k- p)?>—k?p?. Note that only thos@* with odd numbers of gamma matrices contribute in the case of massless
fermions—incidentally, these are then the same as in the basis propd@dAnthis stage, it appears impossible to proceed

any further without demanding that the be independent of the angle between the fermion momentum vdctndp, i.e.,
independent ofi?. This assumption allows us to carry out the angular integration ir{E. We shall show later in this paper

that this assumption is not a necessary requirement for solving the above Schwinger-Dyson equation and this can readily be
undone. In order to distinguish the transverse components which are assumed to be indepepideminahe real ones which
explicitly depend org? [7], we denote the former byf“, suggesting that these are only effectiye Now carrying out the

angular integration,

1 o

k4
Fp?A7) 3

p’

2 dk? 3 1
fOA W@ FGAY {b(kz,pﬂ{z(k%p% +75(k% p?) —Z(k2+p2><k2—3p2>}

|

+ Tgff(k2’p2) |:% (k2_3p2) + Tgf‘f(kZ’pZ)[g (kZ_ p2) + Tgff(kZ’pZ)[ (k2_3p2):|] 0(p2_k2)

+

b(kz,pz)B (k?— pz)} - + TS”(kz,pz)[ - % (k?+p?)(p?=3Kk?) |+ TS“(kZ,pZ)E (p2—3k2)}

F(p%)
+r‘;“<k2,p2>E (K2~ p?) +r§“(k2,p2>[% (p2—3k2>H e(k2—p2>}. (19
|
Following Dong, Munczek, and Robeffts], Bashir and Pen- 1 k?+p? 1 1
nington[6] have proposed an ansatz for the transverse ver- Tgﬁ(kz.p2)= 3 (K2—p?)2 (F(kz,Az) F(pz'Az))

tex. They require it to be chosen such that the fermion propa-
gator is multiplicatively renormalizable, and in the case of
massive fermions, the chiral symmetry-breaking phase tran-
sition takes place at a gauge-invariant value of the coupling.
They show that the transverse vertex can be written in terms
of two unknown functionswW,; and W,, each obeying an
integral and a derivative condition. In the case of a chirally
symmetric solution, the transverse vertex reduces to being a 1 1 1

function of W, alone. However, this construction involves + 6 kKZ—p? s,(KZp?) Uil =
the additional assumption that the transverse vertex is zero in v

the Landau gauge. In general, the solution of Ed) im-

posed by multiplicative renormalizability in quenched QED 4 y—v ( 1 1 )

1k>+p?__
Yy Ter(k%,p?)

s T 3a K—p? |\ F(KZAD) T F(pZAD)
(14
F(p?,A%)=A(p%A?)Y (12

in any covariant gauge witA a constant. The assumption of \yhere
a vanishing transverse vertex in the Landau gauge means that
the anomalous dimensiopis equal tov=aé&/4s. Crucially
this is not the general solution; nor is it even in agreement k2 p?
with perturbation theory8]. The anomalous dimensionis s1(K?,p?) = o7 F(k?A?)+ 2 F(p%A?)
not zero in the Landau gauge. Consequently, we fix the ef-
fective transverse vertex quite generally in terms of a func-
tion U4(x) through a series of steps analogous to those folgng
lowed in Refs[1,6].

The result is

Tert(K2,p?) = 5(K?,p%) + 75(K%, p?)

— L, L, 11 1 k? p?
Teﬁ(k,p)szW Ul? —Ulp

2w y—v 1 1
o K-p? [F(IK,AY) F(p?AY))

—3(k%+p?) 75"(k?,p?). (15)

To see how these forms arise uniquely, let us substitute Egs.
(13 (13), (14) into Eq.(11) to obtain
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Uy(k?/p?)F(k?A?)

1 14 A2 dk? F(kZ,AZ) o J’pZ dk2k2
F(pZA?) ~ V)2 K F(pAAD) 8rm p*

U1(p?/k?)F(K? A

(K?Ip*)F(K?, A%

)+(p2/k2)F(p2,A2)

o fAZ dk?
87 Jp2 K2 (KP?)F (K% A

4+ (p?Ik*)F(p% A

A2 dKk2 F(K2,A2)
)Jpz W F(p2AY)
(16)

+(7 V)f

where we recalb=«&/(47). Multiplicative renormalizability requires that the renormaliZed be related to the unrenor-

malizedF through a multiplicative factoZ by

F(p? A%)=Z(u? A*)Fr(p? 1?), 17
so that the solution of this equation is

Fr(k?u?)  F(3A?) (K27 1

FrpZud) F(P2AD) | p?) (19

Now this power behavior is the solution of

1

F(pZA?) 17

A2 dk2 F(K2,A2)
 TEREAY (19

Consequently, from Eq16), this imposes the following restriction on the transverse vertex and hence the fudeiotip?):

a fpzdkzkz U1 (k?/p?)[F(k* A%)/F(p? A?)]
8 p*  (K°/p?)[F(k* A?)/F(p*A%)]+(p°/k?)
1
—E('y—u)=0.
Introducing the variabl&, where
x=k?/p? VO=k?<p?,
x=p2lk? Vp2<k®<A? (21)

in the first two terms of the above equation, EQ0) be-

comes simply
U,(x)xt*” 1 u
1(X) +j dx L
p2/A2

-1
f dx
0 X

—1+Xl+y

-1
box =%T (y—v).

(22

x 14 x1ty

We can now letA2—x, and so we simply have

1 A
f dx Us(X)=— (y—»). (23
0 o

Note that the previous constructi¢h,6] explicitly assumed

that y=v=aé&/(4w) and then U;(x)—W;(x) and
J5dxW,(x)=0. Moreover, the simplified vertex ¢#] cor-
responds to settingV;(x)=0.

The transverse vertex has no kinematic singularities. Mo-

tivated by the perturbative calculation of Ball and Cf&iiin
the Feynman gauge and later by Kizilersual. [7] in arbi-

trary covariant gauges, it is a plausible assumption that even

a fAz dKk? U4 (p2/k2)

2 K2 (KIp?)+ (pPIKO)[F(p%AD)/F (K2, A?)]

(20

nonperturbatively this is achieved by the individudk be-
ing free of kinematic singularities. The antisymmetry of
7" (k?,p?) underk?— p? interchange then requires that

lim (k?—
kzﬂp2

p?) 78(k?,p?)=0. (24)
This imposes another constraint b (x):

8
Ui +Uj(1)= =67+ — (y=)(2=. (@9

For later, let us note that Eg€l3) and(14) can be inverted
to write U, in terms of ther®":

k2 _
Ul(pv)=sl(kz,pz)[(k2—3p2)reﬁ(k2.p2)
3 k?+p? 1 1
T2 \FIRAY) F(p? A7)
+3(k?—p?) 75 (K, p?)

8m 1
Ta YRR

(26)
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We now set about using recent perturbative calculations of off 1 2 ) 2 oo
the structure of the vertex to determine the weak coupling 75 (K*,p 2) j d9 7 Tz(k P, q9)AT,
limit of this U;.

lIl. REAL VERTEX AND EFFECTIVE VERTEX 75(k2,p?) = f(k2 o7 f da 73(k .p%,9%)

Calculation ofU4(x) is nontrivial. This is because to be
able to solve the Schwinger-Dyson equation for the fermion
propagator requires assumptions to be made about the way
the fermion-boson vertek#(k,p,q) depends upom?. In- L
deed, it seems impossible to proceed analytically without ¢, > o 2 o
assuming that the vertex is independent of the photon mo- 76 (k%p%)= fo(k?,p?) fo dé q° 7e(K%p% a0k p,
mentumd; otherwise, we cannot carry out the integration
over the angular variable. A motivation for this simplifying
assumption comes from the large momentum behavior of the 7§ (K?,p?)= k2 0% f do > 7 Ts(kzypz,qz)Az,
vertex in perturbation theory, where it does, indeed, only 28)
depend on the variabld€ and p?, andnot on q2 [4]:

a§ k?

Ir(k,p)=— |n52

3
x| A%+ > a2k p),

where
kK
(et

(27)

f(k?,p? 2—3p?) o(p?—k?)

oom

However, it is clear from the perturbative calculation of Kiz- [

ilersi, Reenders, and Penningtpr] that the same does not p

hold true for all the ranges df? and p?. Instead, theg? e

dependence occurs in almost every term of each ofrthe

We should, therefore, keep in mind that whenever we are k? _ p? s 5
- Fe(p —k HF O(ke—p9)|.

(p?—3k?) 6(k? pz)},

neglecting theg® dependence, we are not talking about the fo(k?,p?) = -
' 4

exact, but only theffectivevertex. In order to find a connec-

tion between the two, we compare E¢E0) and(11), which  The perturbative evaluation ufeﬁ using Eq.(28) is made

yields the foIIowmg exact relation between the real and thepossmle by the calculation of K|2|Ierm al.[7] for the real

effective 7 : T

3 k2 3 £ (k+p)?
Tz(kz,pz,q2)=8:Az+ { (&- 2)( 5a2 A%+ (K2 +p?) | +k-p|=In — [(f 2) Az(kz—pz)k-p+§rzz
4
q 3 .,
+|nk2—pz[(§—2) Az dkpté-l +(§—2)}, (29
~-2)(3
3(k?,p?%,q%) = S:Az [Jo[(§8 ) (p (k2= p?)2(k-p)*+ (K*+ pz)z)—Az}
+n o i S| (e-2) Z_pz 1—i(k+ )2k
2A2 p p
q4 2 2 1 2
+In 2 2[@ 2) & (4A2(k p2)—1||+ 5 (6-2)(k+p) (30
(k?,p%,0%) (§-2) k*[ 3 (k+p)?
T = goma (Jo[?(l—P(k'p)z 47 +InF[W N
4 _3 )
+In (2 | 532 4K D —2], S

a q* k?
75(k%p%,0%) = g— [qz{k pJo+In W} = (k*=p?)ln Ez} , (32
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vnere 020D = ey {1405 P T4k )2+ 7ip?
73(k%P%0%) = 1512 | 1402~ g [4(k-p)*+ 7k%p7]
2 1 k- 3 k-
= 4 p 2 2,2 p
JO mfdwa(w_p)Z(w_k)Z* —W[Z(kp) +3kp]+§ 1+§_kT

1
124 1k2n2
+ 5@ [12(k-p)*+kp7]

2 k-p—A k-p+A
e R

1 q° In(k-p—A

— |n - R
p p 27 p? \k-ptA) ] 3 2
k-p) k
(33 ( K
+4 6 In 02’
and a(§—2) kp 3
Te(kzap2,q2)2—2—2477k 1+—kz—+m[2(k'l3)2+k2p2]
1 oIny 4k-p k?
fx=Sl—x=—fd—. 34 .0)2+ k2p2 -
(X)=Sp(1-x) By (34 + g [2(k-p)?+k2p ]}m o7
y 5 o a 2k-p 2 o K
Although the Eqs(29)—(32) appear a little complicated, the  7a(k*,p%,0%) == 7—7 |1+ 3 17+ 51z (k-p)%In '
nice thing is that all ther; are expressed in terms of elemen- (36)

tary functions and a single scalar integdgl Kizilersuet al.
have carried out the calculation in the dimensional regularwe learn the following points from the above calculation.
ization scheme, whereas here, so as to be able to identify the To the lowest order in k7, all four 7, are independent of
ultraviolet behavior readily, we use the cutoff method. Con-the angle between the momeritand p.
sequently, we restrict our discussion to leading logarithms, Substituting these, in the expression for the full trans-
which are independent of the choice of the regularization/erse vertex, we retrieve the perturbative result for the trans-
scheme. In the asymptotic limk®>p?, the integrals can be verse vertex derived by Curtis and Penningidh Eq. (27).
evaluated analytically and the separation between the leadinghis serves as one of the checks of the calculation.
and the next to leading terms becomes apparent. Comparing the equations for the real, Egs.(29)—(32),

In order to have a perturbative expansionifr, we have  with their largek? limit, Eq. (36), one can see that all the?
to go up toO(1k?% in 75", 7§", and 7§, andO(1k®) in 75", factors have disappeared from the denominator. Hence, for
instead of just keeping the terms of ordé(1/k?) and largek? the r; are explicitly finite for all values of the an-
O(1k*), respectively. Consequently, in an arbitrary gaugegular variable.
we have to go up t@(1/k’) in evaluatingl, for k? large. We can now use Ed28) to find out the large? expan-
The expansion ofly, keeping only the logarithms, to the sion of the effectiver;. This yields
required order in the limit whek?>p? is

ef‘fk2 2 1—-2 +16 1 )pz]l k2
= - — —_ _— —_—— —_— n s
2 kp 1p2 4(k-p)? pk-p _(k-p)® 2 (KR " o “5iztienp
Jo=z | It o3ty @ t2—%
k k- 3k° 3 Kk k k ) ’
i p?) =+ —2 L1ty 2 [L 3 P K
L1pt 12p%kp) 16(kp)? p'kep EA LR = R S R vl Led
5k* 5 Kk° 5 k® k®
—-2) 5p2) k?
16 p2(k-p)® 16 (k-p)5] K2 off 2 2y A€ sp7| K
"3 @ Tz g (39 o (P Teme |13 g
eff 1.2 2 @ 1p% K
Now the perturbative expansion of the reaktan be writ- 7g (K%p ):_m 1+§p In F
ten as
2 U S D p2|k2
(K2, p2,9?) Ter(K%,p%) = 87k2 25 3 2 & K2 npz-
(37)
a kp 1 Using the definition, Eq(26), for U;(x), we then deduce its
=T [1+2W+ T [18(k-p)?—k?p?] leading logarithmic form to be simply
k-p 1 5 > 5 k2 x=0 o
—& 2+3?+W[24(kp) +7kp7]|In F, Ui(x) = Eln X. (38
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The above equation is the scheme-independent perturbati
expression fotJ ;(x) for x—0, to which every nonperturba- ] " numerical result __
tive construction must reduce in the weak coupling regime I analytical result — 7
This is the main and remarkably simple result of this section
Note first and most importantly, all terms of the type
In x/x in the equations for the neatly cancel out in the
expression folU,(x). If this had not happened, such terms ©/¢
would have led to nonintegrable contributions. This cancel-
lation is consistent with Eq23), which shows that there can
be no Inx/x term to O(a). Note, second, that the leading
logarithmic perturbative expression for, (x) turns out to be
independent of the gauge parameter. While we could imag . . .
ine checking thafédx U;(X) =47 (y— v)/a numerically by 20 A5 -0 50 5 o 15 20
constructing the integrand explicitly from Eq&6), (28)—
(32 the lack of consistency arising from the use of two dif-
ferent schemes would render such an attempt meaningless _ _
(beyond leading logarithris FIG. 2. w/a of Eq. (_39) is plotted as a function of th_e gauge
Importantly, our results are in agreement with the rules OParameterg. The solid line which represents. the numerical result
the Landau-Khalatnikov transformati¢]. These determine lies ComPIEtely on top of the dashed analytical resulg¢/4m of
the gauge dependence of a Green’s function, once one knov'vzg' (39), in perfect agreement.
its behavior in some covariant gauge. Thus, if in the Landau
gauge

—
(=3

o & A L o v & o
— ——

'
—_
<

IV. CONCLUSIONS

The nonperturbative study of the fermion propagator
through its Schwinger-Dyson equation requires an ansatz for
F(p%A%)=Ag(p?/A?%), the fermion—gauge-boson vertex. Here we have shown that
. this vertex (in the case of massless fermipnsan be ex-
thgn these_rule§9,10,11,12 applled to quenched QED re- pressed in terms of a single unknown functidp(x) con-
quire that, in a general covariant gauge, strained to ensure the multiplicative renormalizability of the
fermion propagator. We have devised a general nonperturba-
F(p2,A2)=A(p¥A2)”, tive fqrm for this function_and so developed a simple con-
struction for the full fermion-boson vertex. We have then
where y=yo+aél4m and A,A, are constants. Thug  calculated its perturbative expansion and found the remark-
=aél(47) provides the only gauge dependence to theably simple result that t@(a):
anomalous dimensiofl0-12. Consequently, in Eq$13)—
(15, (20—(23), (25), (26), the factor y—v=1y, is gauge x=0 o
independent and in perturbation theory 6{a?). Thus, Up(x) = 5 Inx.
fédx U;(x) too must be of0(a) and generally gauge inde-
pendent, like itx— 0 limit, Eq. (38). Any nonperturbative ansatz far,(x) should agree with this
Because the derivative condition, E@5), is merely a in the weak coupling limit. This should help in pinning down
statement of the transverse vertex being free of kinematithe only unknown part of the full interaction vertex, E¢),
singularities, regardless of in what scheme it has been calcyé), (8), (13)—(15), and so finally encapsulate the physics
lated, it can be checked numerically. ®d«), the derivative  encoded in the Schwinger-Dyson equation for the fermion
condition reads propagator.

, 16 3aé
o=U,(1)+Uj(1)— — Y=~ 5 (39 ACKNOWLEDGMENTS
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