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Gauss law operator algebra and double commutators in chiral gauge theories
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We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic
currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi
identity in an iterative computation. Our method takes the subtleties of the equal-time limit into account and
leads to an algebra that satisfies the Jacobi identity. The noniterative terms appearing in the double commu-
tators can be traced back directly to the projective representation of the gauge] §@hf6-282197)02222-4

PACS numbeps): 11.15-q, 11.30.Rd, 11.46:q

[. INTRODUCTION consistency condition mentioned before. Nevertheless it was

not clear whether this prescription properly defines a double

Chiral gauge theories suffer after fermionic quantizationcommutator, since in the free theory the prescription fails to
from an anomalous breaking of gauge invariance due to th@ive the correct resultl8]. _ _
chiral anomaly[1]. The chiral anomaly is directly related " the present paper we give an algebraic BJL-type deri-

; . : vation of commutators and double commutators Gf;,,
géi;%g%??;?gﬁﬁl t?]isglzr:ber}gli)?tlﬂ[gség)u;zelaavcoongzgjr based only on consistency. This is related to the definition of

. . . a suitable regularization and renormalization of the time evo-
in these theorief2]. The Gauss law operator consists of two lution operatotU of the theory, and shows up in a nontrivial

partsG=Gx+G,, whereG, generatestime-independent  renormalization factor ob) (e.g.[3,4]). The derivation gives
gauge transformations on the gauge field &g J° acts on 4 proper definition of commutators and double commutators
fermions. Herel? is the zero component of theonsistent  in chiral gauge theories. Since little is known about a con-
fermionic current. The algebra d& has been studied in sistent quantization of the gauge field in anomalous gauge
many ways[2—16], since it is connected to the question of theories, we treat the gauge field as an external field with
consistency of quantized chiral gauge theories. Whereas tHdt=—=)=0. This defines an adiabatic solution of the
cohomological prediction has been verified by the results, théheory[16]. We show that the Schwinger terms of commu-
gt o o ot concid n genral, reor, s 20 61 b e algtracal o he angmaly iy
well known that an iterative calculation of double commuta—present approgch also provides a simple egplangtion for the
tors containingG,,, leads to a violation of the Jacobi iden-

tity. Doubl mmutators of fermioni rrents obtain ddiscrepancies in the algebra G/, in the literature. The
y. bouble commutalors of lermionic currents obtain€dq, o \method js applied to the calculation of double commu-
within an iterative computation do not satisfy a consistenc

Mators. As in the case of commutators we can derive all
condition, which relates them to the anoméll]. If one

; ) i : Schwinger terms from the anomaly only. The Jacobi identity
quantizes the gauge field, the gauge field @ts formally ~jg fyifilled nontrivially for the algebra of5,y,,. The result
given by the covariant derivative of the chromo-electric field .onfirms the validity of the BJL-type prescription given in
E? [5,10,14. In these calculations an anomalous Schwingel[ll] for the double commutators @,,,. It also indicates,
term occurs in the commutatpE?,E]. The double cOmmMu-  that this scheme should be valid in general.

tator[E*,[ E”,E°]] obtained in an iterative computation vio- | the second section we discuss the properties of the BIL
lates the Jacobi identity. Therefore it is not clear whether th@mit and give a definition of the Gauss law opera®rat
identificationG,= —D - E is correct. An explanation of these arpjtrary times as the time evolution 6f(t= — ). The pro-
facts would give some insight to the structure of chiral gauggective representation of the gauge grdop the Fock spage
theories. N _ _shows up in the properties of the time evolution operator.
Since a violation of the Jacobi identity also takes place inThe following two sections are dedicated to the derivation of
the case of free fermionic axial and vector currents, one CaBqual-time commutators and double commutators only using

study the free theory as a toy model. The Schwinger terms ithe anomaly equation. The last section summarizes the re-
the algebra of free currenfd7,18 have been shown to be gts.

operator valued. Considerations concerning the commutator

algebra of composite operators in chiral gauge thedfi6$ Il. THE GAUSS LAW OPERATOR
indicate that this is also true for the Schwinger terms in the ) ] ]
algebra ofG,,,,. _ In the follovymg_ the gauge f|eld_ is treated as an _external
In [11,20 a Bjorken-Johnson-LowBJL-)type prescrip- field. The fermionic action of a chiral gauge theory is
tion [21] was presented for the cal;glatio_n of doublg com- _ 1— s R P
mutators, which respects the Jacobi identity and satisfies thg[ w,z//,A]=|f d4xE(¢9+ 5 A) Y jh=iy 5 Yy
(2.1
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1
A=A, TrtP=— 2570 [t2tP]=fabqe, AR(x)=D2%x) WA
2 “SAC(x) Al
1 1
_i 0123 0123 _123_ _ vpo
vs=iy vy yTy®, e C=e =1, (2.2 = a2 e*’rrg, Tr[ta(AV&pAU+ EAvApArr”'

The Gauss law operat@ in gauge theories is the generator 2.6

of time-independent gauge transformations and thus the gequation (2.6) also indicates the existence of a nontrivial
erator of gauge transformations on the Fock space. The apenormalization factor in Eq2.4). In the following we will
propriate gauge in this framework is the Weyl gaude=0.  only use the definition o[ A] with a regularized current in
However, we cannot neglect terms dependentBat inter-  Eq. (2.5 and the anomaly E¢2.6) as an input to calculate
mediate steps, since we will use functional derivativescommutators and double commutators.

(81 5Ag)A°  which contribute. Only the variation At t=—o we deal with a free theonG(—=,x) [see Eq.
(5/5A0)|A0:0A0 vanishes. Commutators & (defined on (2.3)]is given by

the Fock spageare given by the equal-time commutators of

P where the fermionic part is the zero component of the con-
Ga(x)z—if dxoD2(x) +jx), sistent currend:
SAP(X)
Gw(—OO,X)IJO(—OO'X)
b_ b b with
D5’=0,6%"+ fA°A7 2.3
J( ) 0 f A-j (2.9
-0 X) = -J. .
where the first part oG generates time-independent gauge OA(—,X) :

transformations on théxterna) gauge field and the second . o ) )

part acts on fermions. However, for an anomalous gaugencel in Eq.(2.5) is gauge field dependent due to the regu-
theory we have to be careful with this identification. There-larization,J differs from j for arbitrary time by a term pro-
fore we start at=—o with vanishing gauge field=0, portlonal to JA,(6/0A)j*. Ga is the generator of_ time- .
where the identification is justified. The time evolution of iNdependent gauge transformations on the gauge field and is
G(t=—,x) definesG at later times. Since we work with an 9iven by

external gauge field, the time evolution operdtbis given

by Ga(—o0 =—'fd Dt (2.9
aA(—2,x)=—1| dtD; (tix)a‘Aib(t,x) (2.9

U(—o,xg)=T*ex if d3xfxo dtA-j(x) (2.4) The equal-time commutators G, ,( —,X) are the canoni-
70 —w ' ' cal commutators, since the gauge field vanishes

[A(—,x)=0]. Now we define the Gauss law operator
G(x) for arbitrary timesx, as the time evolution of

U(Yg,Xg)=U(—%,Xg)U(Yqg, — ), G(—2,x). The fermionic parG,(x) of G is given by the
zero component of the consistent currdnt

whereT* is the Lorentz covariantized time ordered product. G (x)=3%(x)

U has to be regularized and renormaliZedy.,[4] and ref- _

erences therejn If the representation of the gauge group isWith

projective(on the Fock spageU (xq,X) =1 cannot be main- _

tained in general. For our purpose it is sufficient to discuss JX)=U(Xg, =) I(=x)U(=2,%p). (210

the properties of The time evolution ofG, is given by

Ga(X)=U(Xg,=%)Ga(—%,X)U(—2,Xp)
iW[A]=In(0|T*exp[if d4xA~j(x)]|0>

=—if dtDP(t,x) & |(t,x), (2.1
=In(0|U(—0,%0)|0). (2.5

where é'is given by

Integrability (consistencyof W[ A] is crucial for the follow-

ing calculations. Using a gauge covariant regularization of g1t x)=U(x,,—%)U(—%,xq)——
the currentj [22], the integrability ofW[ A] shows up in the SAP(t,x)
(consistentanomaly equation (2.12

+T(t,x)
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with

ég<x)=f dté(xe—1)do . (2.14

TL(t,X) =1 B(xg— 1) J5(t,%). SAB(LX)  SA(X)

I'' can be seen as a nontrivial connection for the derivative .
5/8A as in the two-dimensional theofl6]. However, in  With Egs.(2.13 and(2.14 we derive the well-known rela-

contrast tq 16] it is not possible to construdt’ explicitly in ~ tion 23l bet\_/veenot_he time derivative @=G,+G,, and the
four dimensions. We relate expectation valuegSgfto de- ~ anomaly(usingA™=0)

rivatives of W[ A] with respect to the gauge field. The expec-
tation value ofG, is connected t&V[A] via _ , 0
Ix{G¥(X0,X)) = dx G(X) W[A] =D EW[A] =A%

6 u
G x=fdt0x—tD-abt,x— Al 2.1
(Ga(X)) (Xo—t)D( )5Aib(t’X)W[] (2.1
(2.13 : :
The equal-time commutator @ 5(Xq,x) with an operator
where the expectation value- -) refers to the background
defined bYW Al. O(y)=U(yo, =)0~ ,y)U(~,yo)

In the following we will present equal-time commutators
and double commutators as derivativesMfA] with respect )
to the gauge field. The compone@sg,, of G are connected with
to the following A derivatives:

[A,0]=0 (2.16
62(x)=fdte(xo—t)Df"b(t,x)M%, o
i (t,X) is given by
|
[U(Xo, = ®)Ga(—%,X)U(~%,X0),U(Xg, =%)O(—,y)U(~%,X)]. (2.17
With D'(6/ 5A)U(Xg,%0) =0 we would conclude
[Ga(X0,X),0(Xg,Y) = U (Xg, = ®)[Ga(—,Y),0(—%,y) JU(—,Xp). (2.18

Since we expect a projective representation of the gauge gBgp/SA)U(xq,%X,)=0 cannot be assumed. Indeed we have
Ga(—2,X)U(Xq,%Xo) #0. This can be taken into account by carefully calculating the equal-time limit

. o
lim GA(—o2,x)U(—2,t)U(Xg,— )= lim Ga(—2,X)U(Xq,t)=—i lim J’dte'po(‘Xo)D?b(t,X)mU(—m,m)-
o 2.19

t—Xg t—Xg po—®

The limit pg—o° in the last line projects on the terms witk Xg in D(8/ SA)U(—,»). Thus we conclude

R ipg(Xg—Yo) M ab 6
([Gx(0,00)Jen) =i lm | dxeePee 90D —2—(0(y)). 220

Po—® 5A| (X)

For operator®© containing @/ 5A) we have additional terms proportional t6/0A)[ G4]. Equation(2.20 has the form of a
BJL limit [21], which connects the time-ordered product of tiiosonig¢ operatorsd, B with their equal-time commutator. We
have formally

f dxpe'P*og, TA(x)B(0)= f dxoe'P*0g, [ B(Xo) A(X)B(0) + 6(—X0)B(0)A(X)]

=[A(X),B(0)]y,—0+ f dxoe'PP*oT 3, A(X)B(0). (2.21

Providing a suitable regularization for the operatdrandB, the second term vanishes in the limg—o°. The extension to
double commutators is obvio(i&0]:

[A(X),[B(Y),C(0)]]er= lim lim f dxodyge'PoXoe'd¥og, 3y TA(x)B(y)C(0), (2.22

po—bw qO"w
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where the subscript ET denotes equal time. In@®]2 we first have to perform thg,— o limit. Moreover this only provides

a proper definition of the double commutator, if the regularization of the time ordered pa(ctB(y)C(0) does not affect

the 6 functions. However, performing the BJL limit perturbatively in Feynman integrals, this condition is violated by the

exchange of integration and limit procedure. The diagrammatic calculation of double commutators with formally equivalent

BJL limits does not give the same result in gendeal., fermionic current§11,15,2Q), which indicates the failure of the

iterative BJL limit. This is the reason for the violation of the Jacobi identity within the iterative BJL procethyis.
Commutators containinG, can be expressed as the limit of time-ordered products with the BJL method. With use of Egs.

(2.1 and(2.20 we get © does not contain/ 5A))

_ 5
lim fdte'pO‘Diab(t,x)éb—<O(0)). (2.23

{[GA(X),0(0)]gr)= pIim f dxoe'Po*0g, (T* GA(X)O(0))= AP(t,x)

=i
0— > Po—®

The covariantized time orderinfg* appears naturally in the definition of the BJL limit,&, is involved. However, if

<0|T*0(y)exp<if A-j)|o>=<o|T0(y)exp(if A-j)|0), (2.24

the results do not depend on the use of the usual time ord€rond * . The operator® mentioned here have the property Eq.
(2.24.

Equation (2.23 can be extended to arbitrary commutators and double commutato@s, pfif we take into account
derivatives ofG, with respect to the gauge field.

We want to emphasize that E@.11) and the BJL limit Eq(2.23 coincide with the BJL formulas for-D-E in a chiral
theory with quantized gauge field, where only fermionic loops are taken into acd®unt

Ill. THE ALGEBRA OF COMPONENTS OF G

In the following we use the properties &,,,,,W[A] and the BJL method for the calculation of the equal-time commu-
tators ofG,,,,. The results are derived only from the consistent anomaly. It is well known that the Schwinger terms of the
different commutators are related by functional derivatives of the anofealy,[7]). Given these relations we only have to
calculate one Schwinger term from tfeonsistentanomaly.A. First we derive the relations between Schwinger terms within
the formalism introduced in Sec. Il. It follows by E(R.23:

. —_ . 1) ~
([G3(x),G5(y)Jery=—1 lim f dxoe'PoX0 Y0 G A(x) (I)(y)) = —i lim f dxpe'PolXo Yol ——— 5¥G3(x)W[A],
Po— Po— 5A0(y)

(3.9

where the integrability ofM A] was used by commuting the derivatives with respedhtaVith Eq. (2.15 we conclude

([G*(%),Gy(y) ]en = _ip'oiTw f dxgePoXo™vo) e (y)Aa(X)“p'oiTw f dxge'Poxo~vo) Ay) fac9AG(x) p Ag(x) WIA]
:i<G[;~b1(x)>5(x—y)—if dxo 5Ag(y),43(x). (3.2
The relations between the other commutators follow similarly. We quote the results
([G*(0,G3(y) len=i(GL ) o0x-y)+i | DY) 5 AN
(6% (0,63 e =i(GE 000y ~i [ axg T (3.3

([G*(x),G°(y)en =I(GI*?(x)) 8(x—y) —i f dxo

SAY(Y)

Now we calculate the commutatr@GaA,Gfi] with Eqg. (3.3 and considerations concerning symmetry properties. The
anomalous Schwinger terms are connected to ternW[iA] containing at least cubic powers of the gauge field. Hence the
Schwinger terms contain at least linear powers of the gauge field. The only term with the correct symmetry properties is
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([GA(X),GA(Y)1sn =€ D2x)DPU(y) TH{t°tHA]S(x—y), (3.4

which is connected to a () curvature in field spacg5,10,16. In the present approach it follows by observation that the
Schwinger term, Eq(3.4), is directly related taD'(8/ SA)U(xg,%0) #0, whereU(xq,X,) defines a loop with fixed point
t=—oo. It remains to determine the constantEquation(3.3) establishes the relation between the Schwinger term(Z4),
and[Gj,,Galer

——A%(x). (3.9
S9oAT(Y) (

([G5(x),GR(Y) Jeny = —([GAM),GA(Y)Jsp) +i f dxeDP(y)
It follows from Egs.(3.4) and (3.5 that
([G5(x),GR(Y) Jen)~ —qe*DPy) Tr{t? U A(X) 13} o(x—y). (3.6

We only have to evaluate these terms contributin@G@,G,"ﬁ‘\]ST to determineg. For this purpose we introduce the covariant
currentd, which differs from the consistent current by the Bardeen-Zumino polynatlg24]:

(35)=(38) -

with

Gant

3
a{Avv p rr}+§AvApA(r . (37)

AJE= !
& a2 €

We use the gauge covariance(&l} in the following derivation. With Eq(3.7) we have

5
([G3(x),GR(Y)Jen)=i lim f dyoe'PoYo X0>Db"<y> d (3200)
Po—* ]()
=i lim | dygePo¥o~X)pPd J9x))—A(x)]. 3.8
'p;%f Yo (y)aA?(y)H (x)) (x)] (3.8

It follows from the covariance o¢3> that the first term on the right-hand side does not contribute to(E6). Thus, only
taking into account terms which can contribute to E216), we get '* = €°1k)

([G5(X),GR(Y)Jer)~ —i lim f dyge'PoYo XD P (y) ———AJY(x 5 €1DPUy) TH{tA tHA() 191 8(x—y).
Po— > 5Aj(y)
(3.9
This determines|=i/24w? and we have finally
([GA(X),GAW Ieny =1(GR () 8(x—y) + = €D DPUy) TH{tot%} A 8(x~y). (3.10

Together with Eq(3.3) this determines all commutators. The results coincide with the literggéuge [5,7]).

IV. DOUBLE COMMUTATORS

In the derivation of Eq(3.10 we used relations only valid as expectation vallse Eqs(3.5—(3.10]. Thus we expect
that it is not possible to calculate the double commut@ﬁﬁ,[G,’i ,Gx]] iteratively. Using the form oG, [see Eq(2.11)] we
conclude

([GAMX).[GR(Y),Ga(D)]]er) =([GA(X),iIGR I (y)Ier) 8(y—2)

+i f
t,t,,t"

+D{t, ) DY y)DE (17, 2)([ 8y(t,%), [ 8Lt y), &5(t", z)]]>} 4.0

29(t,x) —5——[DP(t',y)DF(t", 2T [{[ 64t ,y), 8F(t",2)])

SAY(t,x
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The first two terms follow easily with E¢3.10), since they only involve derivatives & , with respect to the gauge field.
However, the last term cannot be calculated with the known commutators. It follows from algebraic considerations that it has
to vanish if the Jacobi identity is fulfilled. The structure of the double commutator

Kdsi(x.y,2)=i f , DI EODFI ) DR, 2)([8(tX), [ 8t ), 51(1".2)]1) 4.2
follows by dimensional analysis as
Kds(x,¥,:2)=qe™* DI x)DYe(y) DE'(2) Trt{te,t}18(x—y) 8(y—2). 4.3

The iterative result obtained with E€R.10 is q= 1/2472. The Jacobi identity is only satisfied whgrs-0. Performing the BJL
limit we get, for the last term in Eq4.1),

Kis(x.y.2)= — lim lim f dxodyod zoe'Po0e'0¥op( — z5) DFY(x) D P(y) DE'(2)

pg—® gog—®
S é 8
X|—5 S —W[A]
SAY(X) SAS(y) SAl(2)
=0. (4.9
The only terms of
S )

WA
SAT(x) SAS(Y) SA(2) Al

which contribute to Eq(4.4) are proportional tay8(zg—Yo) 8(Zg—Xg),do0(Xo— Zg) 8(Yo— Zo) and dg8(Xe— Zg) 8(Xo—Yo)-
The group structure is similar to E¢B.10. It follows with the integrability ofW[ A] that Eq.(4.4) is proportional to

Tttt [ 908(zo— Yo) 8(Zo— Xo) + cycl. perms. of Xq,Yo,20)]=0. (4.5

In an iterative BJL limit one would only take into account one of the terms proportional&z,—y,) 5(zo— %) and

o 8(Xg—2Zg) 8(Xg—Yo). However, only the sum of these two terms add up to zero in the limit, which is the reason for the
violation of the Jacobi identity within an iterative calculatithe term proportional t@,5(Xy— zg) 8(Yo— Zp) is suppressed

with pg/(po+qo) in the BJL limit in Eq.(4.4)]. With Eq. (4.4) we have finally

([GAMX).[GR(Y),Ga(D)]]en) =([GA(X),iIGR I (y)|er) 8(y—2)

JkIJ dtD ad(x)

[Db%y)Dﬁf(z)] T {t8tT A 18(y—2)

= <[Gi(x),[GA(Y),GX(Z)]]iO

5a2 € DIODYYIDY (@) T 80 y) oy—2). 4.6

The double commutator with the subscriptis the iterative double commutator.

Now we proceed as in the case of the commutators. We use the anomaly and the double commuth®rtegalculate
the other double commutators contributing to the algebr@.ofs an important first step we prove, that double commutators
with the structure{Gi,¢,[GR,¢,G°]] agree with the iterative results. We derive, with the use of the notatioi2ELy),

([GA(X).[GY(y),G%(0)]]gr)=— lim lim poQoJ dyodxoe'Poroe!dovo(T* G, ,(X)GE(y)G(0))

Po—>® Gpg—*=

=i lim pof dxoe'Po0G,,(X) lim QOJ dyoe'1oYo(T* Gh(y)G*(0))
p0—>oo

q0—>30

= lim pof dxg€ pOXOGA,(//(X) lim CIoJ dyoe'qOVOG,/,(y)GC(O)W[A]. 4.7
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Here we used, that derivatives Gf,’w with respect to the gauge field vanish in the BJL limit with at lgast(py+qo)—0.
Performing the limitgg—~ we get

([Ga/y(¥),[CY(y),G (0)]]en) =i lim f dxee'Po*og5Ga,,(x)(GL 9 (0)) 8(y)

po—>w

— lim pof dxoe'Po*G3, ,(X)

lim qof dyoei%yoég,(y)f dw(—t)AC(t,O)}

Po— qo—*
a + ~[b,c] —~a 4 c
=([Gay(x),iGy*(0)Jer) S(Y) + | dXodoGiasy(X) | dYo—5—A(0). (4.9
oAg(Y)
For Gj,,= G}, the second term in the last line vanishes. Bgy,=Gj we have
dxﬁéax=fde-adx .
J 090GA(X) 0'()5A?(x)
Thus Eq.(4.8) is the iterative result. In the derivation we used
GS(X)W[A :f dtd(xo—t)| A°(t,x)— f9AY(t,x W[A]]|. 4.9
(X)W[A] (o)(() ol )5A8(t,x)[] (4.9

The Schwinger term in Eq4.8) is simply given by functional derivatives of the anomaly in contrast to the Schwinger term of
[GA ,[GR,Gj]]. It is directly related to the two-cocycle in the algebra of the Gauss law opeeator
Applying the derivation of Eq(4.8) to the double commutatcﬁlGi‘\,w,[GE\ ,G°1], we get

([Gy(X).[GA(Y),G%(0)]Ten)=— lim lim pogo f dyodxoe'Poxoeldo¥o(T* G%, ,(X) GR(Y)GE(0))

Pg—® fo—®

=i lim po [ dxePoB,00 I g [ dyoe (T GR(YIG(0))

Po— Jo—>

- J dte(—t)D[>(t,0) WIA]S(y)

5Aid(t,0) A/a//(x)

A%(0).

=([G AGR(0)]er) 8(y)— | dxodoGi dy,D4(y)——
([Gay00.1GE (0N Teryoy)— | dxoieBitx) | dyoD}(y) ATy

(4.10
It follows with Egs.(4.8) and(4.10 that double commutators of the fo{rﬂ?i,w,[G,’i,w,Gc]] agree with the iterative results.

Therefore they can be calculated from the known commutators,(BE@s.and (3.10. The algebra for arbitrary combinations
of G,y is determined with the double commutators, Eds6), (4.8), (4.10, and the result fo[Gf},,[GR ,Ga]]- We calculate

([G5(X),[GR(Y),G&(0)]1en) =([G}(x),iGR(0)]er) 8(y) - lim  lim f dxodyodzee'Po*oe!d0¥og( — z;)

Po—% qg—*
x DPY(y)D¢(z) o a W[A] (4.11)
CTTT T sAdy) oA%z) CoAR(x) '
Using
— 4a _ af fagf g
005A2(X)W[A] A%(x)—| D (X)aAL(x)+ AO(X)aAg(x) WIA]

it follows that
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) )
([G5(),[GR(Y),GA(0)]Teny =([G}(X),iGR(0) Jer) 8(y) — f dxodyoD?P(y)D§%(2) STy 5Ae(z)Aa<x>
oA i

)
SAN(Y) 839A%(2)

+ f dxdyoDP(y)D%(2) A3(x)

+ lim  lim jdedyodzoe‘pOXOe‘qoyOG(—zo)

Po—>® gg—=

X DPYy)DS%(z) —— Daf(x W[A]. 4.1
PUy) J<>5Aid(y) e ( )W(X) [A] (4.12

The terms containing functional derivatives of the anomaly have the form

é é

dxo f dyoD?(y)D{(2) - A% ()
f C TLATY) 8a0AT(2)  Sa0AT(Y) SAS(2)
1 ijkybd ce X astd te

= 5,2 DD A T ] 6(x~y) 6(x~ 2. (4.13

The last term on the right-hand side of E4.12 consists of equal-time commutators of the fdré, g , ] [see Eq(3.10]
and terms proportional té‘iW[A], which vanish in the BJL limit. Performing the BJL limit, we are led to

([G3(x).[GR(Y).Ga(2)1Ten =([G5(X),iIGR () Jer) S(y—2) + e*DPY(y)D§(2) o5

2472
X Tr[ta{td,te}]a(x—y)5(x—z)—if dtdt'DP(t,y) D%’ ,2)

X[ Blaq (1Y), 8L, 2) 1) S(x—y) = ([ 8la 4(1",2), 84(t.y) 1) S(x—2)}

=([G3(x),iGR(y)Jen) d(y—2) + eDPY(y) D4 (2) o TH 12t 18] 8(x—y) 8(x—2)

2472

_ ik

DPY(y)D%(2) Trl ({[t?t9], 18+ {[t%,t°],t) Au() ] 8(x—y) S(x—2)

772

=([G3(x),iGR(y)Ien d(y—2)

1
+ —— €*DPU(y)DfA2)DF (%) Tt 151 8(x—y) 8(x—2). 4.19
241

The noniterative part in Eq4.14) is exactly the same as for the double commutator,(E®), with a relative minus sign. We
conclude

([G3(x),[GR(Y),Ga(D)1Ten =([G*(x),[GR(Y).GA(D) 1Tir)- (4.15

We want to emphasize that the noniterative part of @dl4) is also connected to the fact that the result for the commutator
[Gi,G,ﬁ] [see EQ.(3.10] is not valid on the operator level. With Eq&t.8), (4.10, and (4.15 it follows that double
commutators containing at least one fGllare given by the iterative results. We collect the results

([GA(X).[GRu(¥). G (D 1Ten = ([ G/ (X).[ G/ (¥),G(2) 1), 416

([G2(X).[GR/y(Y), G (D ]Ten) =([G*(X),[GR1(¥). Gy (D) TTi)-

Equation(4.16), the commutators, Eg$3.3) and(3.10, and the double commutator, E¢.6), fix all double commutators, as
already mentioned. The algebra of t&'s and oneG, is given by
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([GAX).[GR(Y),GH2)1]en) =([GAX).[GA(Y),G(2)]];

;D)

X DP(y)D§(2) Trt{tet}]a(x—y) a(y—2),

(4.17
a b c _ a el 1 ijkyad
([GH(X),[GA(Y),GA(2)]]en =([G}(X),iIGx ;€ DN ()
xD(y)Dg(2) Tttt 1 8(x—y) 8(y—2).
The algebra of twds,, and oneG, is given by
([GH(x),[GAY),Gy(D]]en) =~ —— € *D{*()D*(y)D{(2)
dsie +f _ _
X Tttt} o(x—y) a(y—2), (4.18
a b c _ a b c 1 ijkyad be cf dyye +f
([GAMX).[G(Y), G (D) ]en) =([GA(X).[Gy(¥),G (D) Tit 5 € DT (x)DA(y)Dy (2) TrtHte )]
X 6(X—Yy)6(y—2).
The algebra of the fermionic currents is given by
a b c _ a +~[b,c] _ 1 ijkyad be cf dyse +f
([GL(X).[GUY), Gy Ten) =([C(X),iG () Jen) 8(y—2 + —— €*Di*(x)D(y) Dy (2) Tr[t{t%t'}]
X 8(X—Yy)8(y—2). (4.19

It can be shown explicitly in a long, but straightforward cal- [5], or path integral method§], where only fermionic loops
culation, that the Jacobi identity is fulfilled for all these re- give contributions. In contrast with these approaches we do
sults. Since we have related the double commutators to deot need to calculate diagrams nor do we need further as-
rivatives of W[ A] with respect to the gauge field, this sumptions as if7]. The algebraic derivation if7] was
provides a convenient way to prove the Jacobi iderfiity ~— based on the assumption tH&@3 ,G%]sr=0 for G defined
tegrability of W[ A]). with the covariant current. Adding the Bardeen-Zumino

polynomialAJ° to G, we get the results foG defined with

V. DISCUSSION the covariant currente.g.,[7—10)).
It is also possible to relate the Schwinger termszof,,

In this paper a purely algebraic BJL-type derivation of theobtained in the present paper to thosg18,14]. Although
algebra of the Gauss law operatsrin chiral gauge theories the consistent current was used ir8,14] and the algebra of
was given. The theory has been defined in an external gaug® coincides with Eq(3.3), the Schwinger terms in the alge-
field (adiabatic solution The expectation values of commu- bra of G,,, are different. This can be explained by studying
tators and double commutators can be expressed as derii@re time evolution operatdd. If we assume that
tives of W[ A] with respect to the gauge field. All Schwinger
terms follow with the anomaly without any further assump-
tion.

The Schwinger terms depend on the properties of the time
evolution operatotJ, which defines the underlying theory. If
the representation of t_he gauge group is projectme the
Fock spackg we haveD'(8/8A")U(Xg,X)#0 (see Sec. )l in Eq. (2.18 we would arrive at the results $13]. In [13],
This is the reason for the Schwinger term in the commutatoEq. (5.1) was used implicitly, since the commutatorsCQ,iM
[G2,G2] [Eq.(3.10]. We want to emphasize that the expla- were calculated as defined in E@.18. Condition (5.1) is
nation of this Schwinger term is based purely on an adiabatiequivalent to gauge invariance of the underlying theory. In
solution of the theory in an external gauge field. There is nd14] such a theory was constructed by adding a Wess-
need to introduce a quantized gauge field to obtain this reZumino field. In this theoryG is not the full Gauss law
sult. operator, sinc& does not generate gauge transformations on

The commutatorpEgs.(3.3) and(3.10] coincide with the  the Wess-Zumino field. The results [d3] coincide with
BJL results obtained via the explicit calculation of diagramsthose of[ 14], which confirms the interpretation.

U(Xo,Xo):L (51)
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The double commutators have been derived by using th&his can be traced back to the fact that the gauge group
integrability of W[A]. Double commutators, which contain representation is projective and is related directly to the

at least oneG agree with the iterative results. The Jacobi Schwinger term in the commutatp63 ,G2].

identity is satisfied by our resulf&qgs. (4.6), (4.17), (4.18),
and(4.19]. This is an outcome of the integrabilitgonsis-

The noniterative terms of double commutators, which are
related via cyclic permutation of the operators, are identical

tency of W[ A], since the double commutators are related to(no relative minus sign[see Eqs(4.17—(4.19]. The BJL-
derivatives of W[ A] with respect to the gauge field. In an type prescription of11] only works in this case. Therefore
iterative calculation one drops terms ensuring the integrabilthe results here confirm the validity of the prescription in the

ity [see Eq(4.4) and the following discussidnwhich leads

case ofG,,,. Moreover, the connection of the noniterative

to the violation of the Jacobi identity. Since double commu-term, Eq.(5.2), to the integrability of the generating func-

tators containing at least or@ agree with the iterative re-
sult, there is only one noniterative terup to a minus sign

e D) DPy)DF(2) THEtE ] 8(x—y) S(y—2).
(5.2

2472

tional W[A] indicates that this should hold for arbitrary

double commutators.
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