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Gauss law operator algebra and double commutators in chiral gauge theories

J. M. Pawlowski*
Theoretisch-Physikalisches-Institut, Universita¨t Jena, Fröbelstieg 1, D-07743 Jena, Germany

~Received 14 January 1997; published 22 December 1997!

We calculate within an algebraic Bjorken-Johnson-Low method anomalous Schwinger terms of fermionic
currents and the Gauss law operator in chiral gauge theories. The current algebra is known to violate the Jacobi
identity in an iterative computation. Our method takes the subtleties of the equal-time limit into account and
leads to an algebra that satisfies the Jacobi identity. The noniterative terms appearing in the double commu-
tators can be traced back directly to the projective representation of the gauge group.@S0556-2821~97!02222-4#

PACS number~s!: 11.15.2q, 11.30.Rd, 11.40.2q
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I. INTRODUCTION

Chiral gauge theories suffer after fermionic quantizat
from an anomalous breaking of gauge invariance due to
chiral anomaly@1#. The chiral anomaly is directly relate
~via cohomological descent equations@1#! to the anomalous
Schwinger term in the algebra of the Gauss law operatoG
in these theories@2#. The Gauss law operator consists of tw
partsG5GA1Gc , whereGA generates~time-independent!
gauge transformations on the gauge field andGc5J0 acts on
fermions. HereJ0 is the zero component of the~consistent!
fermionic current. The algebra ofG has been studied in
many ways@2–16#, since it is connected to the question
consistency of quantized chiral gauge theories. Whereas
cohomological prediction has been verified by the results,
algebras ofGA/c do not coincide in general. Moreover, it
well known that an iterative calculation of double commu
tors containingGA/c leads to a violation of the Jacobi iden
tity. Double commutators of fermionic currents obtain
within an iterative computation do not satisfy a consisten
condition, which relates them to the anomaly@11#. If one
quantizes the gauge field, the gauge field partGA is formally
given by the covariant derivative of the chromo-electric fie
Ea @5,10,16#. In these calculations an anomalous Schwin
term occurs in the commutator@Ea,Eb#. The double commu-
tator @Ea,@Eb,Ec## obtained in an iterative computation vio
lates the Jacobi identity. Therefore it is not clear whether
identificationGA52D•E is correct. An explanation of thes
facts would give some insight to the structure of chiral gau
theories.

Since a violation of the Jacobi identity also takes place
the case of free fermionic axial and vector currents, one
study the free theory as a toy model. The Schwinger term
the algebra of free currents@17,18# have been shown to b
operator valued. Considerations concerning the commut
algebra of composite operators in chiral gauge theories@19#
indicate that this is also true for the Schwinger terms in
algebra ofGA/c .

In @11,20# a Bjorken-Johnson-Low-~BJL-!type prescrip-
tion @21# was presented for the calculation of double co
mutators, which respects the Jacobi identity and satisfies
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consistency condition mentioned before. Nevertheless it
not clear whether this prescription properly defines a dou
commutator, since in the free theory the prescription fails
give the correct result@18#.

In the present paper we give an algebraic BJL-type d
vation of commutators and double commutators ofGA/c
based only on consistency. This is related to the definition
a suitable regularization and renormalization of the time e
lution operatorU of the theory, and shows up in a nontrivia
renormalization factor ofU ~e.g.@3,4#!. The derivation gives
a proper definition of commutators and double commutat
in chiral gauge theories. Since little is known about a co
sistent quantization of the gauge field in anomalous ga
theories, we treat the gauge field as an external field w
A(t52`)50. This defines an adiabatic solution of th
theory @16#. We show that the Schwinger terms of comm
tators can be derived algebraically from the anomaly with
further assumptions and without calculating diagrams. T
present approach also provides a simple explanation for
discrepancies in the algebra ofGA/c in the literature. The
same method is applied to the calculation of double comm
tators. As in the case of commutators we can derive
Schwinger terms from the anomaly only. The Jacobi iden
is fulfilled nontrivially for the algebra ofGA/c . The result
confirms the validity of the BJL-type prescription given
@11# for the double commutators ofGA/c . It also indicates,
that this scheme should be valid in general.

In the second section we discuss the properties of the
limit and give a definition of the Gauss law operatorG at
arbitrary times as the time evolution ofG(t52`). The pro-
jective representation of the gauge group~on the Fock space!
shows up in the properties of the time evolution operat
The following two sections are dedicated to the derivation
equal-time commutators and double commutators only us
the anomaly equation. The last section summarizes the
sults.

II. THE GAUSS LAW OPERATOR

In the following the gauge field is treated as an exter
field. The fermionic action of a chiral gauge theory is

S@ c̄ ,c,A#5 i E d4xc̄ S ]”1
12g5

2
A” Dc, j a

m5 i c̄
12g5

2
gmtac

~2.1!

with the notation
1193 © 1997 The American Physical Society
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1194 57J. M. PAWLOWSKI
A5Aata, Trtatb52
1

2
dab, @ ta,tb#5 f abctc,

g55 ig0g1g2g3, e01235e12351. ~2.2!

The Gauss law operatorG in gauge theories is the generat
of time-independent gauge transformations and thus the
erator of gauge transformations on the Fock space. The
propriate gauge in this framework is the Weyl gaugeA050.
However, we cannot neglect terms dependent onA0 at inter-
mediate steps, since we will use functional derivativ
(d/dA0)A0 which contribute. Only the variation
(d/dA0)uA050A0 vanishes. Commutators ofG ~defined on
the Fock space! are given by the equal-time commutators

Ga~x!52 i E dx0Di
ab~x!

d

dAi
b~x!

1 j a
0~x!,

Dm
ab5]mdab1 f acbAm

c , ~2.3!

where the first part ofG generates time-independent gau
transformations on the~external! gauge field and the secon
part acts on fermions. However, for an anomalous ga
theory we have to be careful with this identification. The
fore we start att52` with vanishing gauge fieldA50,
where the identification is justified. The time evolution
G(t52`,x) definesG at later times. Since we work with a
external gauge field, the time evolution operatorU is given
by

U~2`,x0!.T* expH i E d3xE
2`

x0
dtA• j ~x!J , ~2.4!

U~y0 ,x0!5U~2`,x0!U~y0 ,2`!,

whereT* is the Lorentz covariantized time ordered produ
U has to be regularized and renormalized~e.g.,@4# and ref-
erences therein!. If the representation of the gauge group
projective~on the Fock space!, U(x0 ,x0)51 cannot be main-
tained in general. For our purpose it is sufficient to disc
the properties of

iW@A#5 ln^0uT* expH i E d4xA• j ~x!J u0&

5 ln^0uU~2`,`!u0&. ~2.5!

Integrability ~consistency! of W@A# is crucial for the follow-
ing calculations. Using a gauge covariant regularization
the currentj @22#, the integrability ofW@A# shows up in the
~consistent! anomaly equation
n-
p-

s

e
-

.

s

f

Aa~x!5Dm
ac~x!

d

dAm
c ~x!

W@A#

5
1

24p2
emnrs]m TrF taS An]rAs1

1

2
AnArAsD G .

~2.6!

Equation ~2.6! also indicates the existence of a nontrivi
renormalization factor in Eq.~2.4!. In the following we will
only use the definition ofW@A# with a regularized current in
Eq. ~2.5! and the anomaly Eq.~2.6! as an input to calculate
commutators and double commutators.

At t52` we deal with a free theory.G(2`,x) @see Eq.
~2.3!# is given by

G~2`,x!5GA~2`,x!1Gc~2`,x!, ~2.7!

where the fermionic part is the zero component of the c
sistent currentJ:

Gc~2`,x!5J0~2`,x!

with

J~2`,x!5
d

dA~2`,x!
E A• j . ~2.8!

Sincej in Eq. ~2.5! is gauge field dependent due to the reg
larization,J differs from j for arbitrary time by a term pro-
portional to *Am(d/dA) j m. GA is the generator of time-
independent gauge transformations on the gauge field an
given by

GA~2`,x!52 i E dtDi
ab~ t,x!

d

dAi
b~ t,x!

. ~2.9!

The equal-time commutators ofGA/c(2`,x) are the canoni-
cal commutators, since the gauge field vanish
@A(2`,x)50#. Now we define the Gauss law operat
G(x) for arbitrary times x0 as the time evolution of
G(2`,x). The fermionic partGc(x) of G is given by the
zero component of the consistent currentJ:

Gc~x!5J0~x!

with

J~x!5U~x0 ,2`!J~2`,x!U~2`,x0!. ~2.10!

The time evolution ofGA is given by

GA~x!5U~x0 ,2`!GA~2`,x!U~2`,x0!

52 i E dtDi
ab~ t,x!d b

i ~ t,x!, ~2.11!

whered is given by

d b
i ~ t,x!5U~x0 ,2`!U~2`,x0!

d

dAi
b~ t,x!

1Gb
i ~ t,x!

~2.12!
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with

Gb
i ~ t,x!5 iu~x02t !Jb

i ~ t,x!.

G i can be seen as a nontrivial connection for the deriva
d/dA as in the two-dimensional theory@16#. However, in
contrast to@16# it is not possible to constructG i explicitly in
four dimensions. We relate expectation values ofGA to de-
rivatives ofW@A# with respect to the gauge field. The expe
tation value ofGA is connected toW@A# via

^GA~x!&5E dtu~x02t !Di
ab~ t,x!

d

dAi
b~ t,x!

W@A#,

~2.13!

where the expectation value^•••& refers to the background
defined byW@A#.

In the following we will present equal-time commutato
and double commutators as derivatives ofW@A# with respect
to the gauge field. The componentsGA/c of G are connected
to the followingA derivatives:

G̃A
a~x!5E dtu~x02t !Di

ab~ t,x!
d

dAi
b~ t,x!

,

e

-

G̃c
a~x!5E dtu~x02t !]0

d

dA0
a~ t,x!

5
d

dA0
a~x!

. ~2.14!

With Eqs.~2.13! and ~2.14! we derive the well-known rela-
tion @23# between the time derivative ofG5GA1Gc and the
anomaly~usingA050)

]x0
^Ga~x0 ,x!&5]x0

G̃~x!W@A#5Dm
ab d

dAm
b

W@A#5Aa.

~2.15!

The equal-time commutator ofGA(x0 ,x) with an operator

O~y!5U~y0 ,2`!O~2`,y!U~2`,y0!

with

@A,O#50 ~2.16!

is given by
ve
@U~x0 ,2`!GA~2`,x!U~2`,x0!,U~x0 ,2`!O~2`,y!U~2`,x0!#. ~2.17!

With Di(d/dAi)U(x0 ,x0)50 we would conclude

@GA~x0 ,x!,O~x0 ,y!#5U~x0 ,2`!@GA~2`,y!,O~2`,y!#U~2`,x0!. ~2.18!

Since we expect a projective representation of the gauge group,Di(d/dAi)U(x0 ,x0)50 cannot be assumed. Indeed we ha
G̃A(2`,x)U(x0 ,x0)Þ0. This can be taken into account by carefully calculating the equal-time limit

lim
t→x0

GA~2`,x!U~2`,t !U~x0 ,2`!5 lim
t→x0

GA~2`,x!U~x0 ,t !52 i lim
p0→`

E dteip0~ t2x0!Di
ab~ t,x!

d

dAi
b~ t,x!

U~2`,`!.

~2.19!

The limit p0→` in the last line projects on the terms witht5x0 in D(d/dA)U(2`,`). Thus we conclude

^@GA~x!,O~y!#ET&52 i lim
p0→`

E dx0eip0~x02y0!Di
ab~x!

d

dAi
b~x!

^O~y!&. ~2.20!

For operatorsO containing (d/dA) we have additional terms proportional to (d/dA)@GA#. Equation~2.20! has the form of a
BJL limit @21#, which connects the time-ordered product of two~bosonic! operatorsA,B with their equal-time commutator. We
have formally

E dx0eip0x0]x0
TA~x!B~0!5E dx0eip0x0]x0

@u~x0!A~x!B~0!1u~2x0!B~0!A~x!#

5@A~x!,B~0!#x0501E dx0eip0x0T]x0
A~x!B~0!. ~2.21!

Providing a suitable regularization for the operatorsA andB, the second term vanishes in the limitp0→`. The extension to
double commutators is obvious@20#:

@A~x!,@B~y!,C~0!##ET5 lim
p0→`

lim
q0→`

E dx0dy0eip0x0eiq0y0]x0
]y0

TA~x!B~y!C~0!, ~2.22!
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1196 57J. M. PAWLOWSKI
where the subscript ET denotes equal time. In Eq.~2.22! we first have to perform theq0→` limit. Moreover this only provides
a proper definition of the double commutator, if the regularization of the time ordered productTA(x)B(y)C(0) does not affect
the u functions. However, performing the BJL limit perturbatively in Feynman integrals, this condition is violated b
exchange of integration and limit procedure. The diagrammatic calculation of double commutators with formally equ
BJL limits does not give the same result in general~e.g., fermionic currents@11,15,20#!, which indicates the failure of the
iterative BJL limit. This is the reason for the violation of the Jacobi identity within the iterative BJL procedure@15,18#.

Commutators containingGA can be expressed as the limit of time-ordered products with the BJL method. With use o
~2.11! and ~2.20! we get (O does not contain (d/dA))

^@GA~x!,O~0!#ET&5 lim
p0→`

E dx0eip0x0]x0
^T* GA~x!O~0!&52 i lim

p0→`
E dteip0tDi

ab~ t,x!
d

dAi
b~ t,x!

^O~0!&. ~2.23!

The covariantized time orderingT* appears naturally in the definition of the BJL limit, ifGA is involved. However, if

^0uT* O~y!expS i E A• j D u0&5^0uTO~y!expS i E A• j D u0&, ~2.24!

the results do not depend on the use of the usual time orderingT or T* . The operatorsO mentioned here have the property E
~2.24!.

Equation ~2.23! can be extended to arbitrary commutators and double commutators ofGA , if we take into account
derivatives ofGA with respect to the gauge field.

We want to emphasize that Eq.~2.11! and the BJL limit Eq.~2.23! coincide with the BJL formulas for2D•E in a chiral
theory with quantized gauge field, where only fermionic loops are taken into account@6#.

III. THE ALGEBRA OF COMPONENTS OF G

In the following we use the properties ofGA/c ,W@A# and the BJL method for the calculation of the equal-time comm
tators ofGA/c . The results are derived only from the consistent anomaly. It is well known that the Schwinger terms
different commutators are related by functional derivatives of the anomaly~e.g.,@7#!. Given these relations we only have
calculate one Schwinger term from the~consistent! anomalyA. First we derive the relations between Schwinger terms wit
the formalism introduced in Sec. II. It follows by Eq.~2.23!:

^@Ga~x!,Gc
b~y!#ET&52 i lim

p0→`
E dx0eip0~x02y0!]0

xG̃a~x!^Jb
0~y!&52 i lim

p0→`
E dx0eip0~x02y0!

d

dA0
b~y!

]0
xG̃A

a~x!W@A#,

~3.1!

where the integrability ofW@A# was used by commuting the derivatives with respect toA. With Eq. ~2.15! we conclude

^@Ga~x!,Gc
b~y!#ET&52 i lim

p0→`
E dx0eip0~x02y0!

d

dA0
b~y!
Aa~x!1 i lim

p0→`
E dx0eip0~x02y0!

d

dA0
b~y!

f acdA0
c~x!

d

dA0
d~x!

W@A#

5 i ^Gc
[a,b]~x!&d~x2y!2 i E dx0

d

dA0
b~y!
Aa~x!. ~3.2!

The relations between the other commutators follow similarly. We quote the results

^@Ga~x!,GA
b~y!#ET&5 i ^GA

[a,b]~x!&d~x2y!1 i E dx0D j
bd~y!

d

d]0Aj
d~y!
Aa~x!,

^@Ga~x!,Gc
b~y!#ET&5 i ^Gc

[a,b]~x!&d~x2y!2 i E dx0

d

dA0
b~y!
Aa~x!, ~3.3!

^@Ga~x!,Gb~y!#ET&5 i ^G[a,b]~x!&d~x2y!2 i E dx0F d

dA0
b~y!

2Di
bc~y!

d

d]0Ai
c~y!

GAa~x!.

Now we calculate the commutator@GA
a ,GA

b # with Eq. ~3.3! and considerations concerning symmetry properties.
anomalous Schwinger terms are connected to terms inW@A# containing at least cubic powers of the gauge field. Hence
Schwinger terms contain at least linear powers of the gauge field. The only term with the correct symmetry properti
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^@GA
a~x!,GA

b~y!#ST&5qe i jkDi
ac~x!D j

bd~y! Tr@$tc,td%Ak#d~x2y!, ~3.4!

which is connected to a U~1! curvature in field space@5,10,16#. In the present approach it follows by observation that
Schwinger term, Eq.~3.4!, is directly related toDi(d/dAi)U(x0 ,x0)Þ0, whereU(x0 ,x0) defines a loop with fixed poin
t52`. It remains to determine the constantq. Equation~3.3! establishes the relation between the Schwinger term, Eq.~3.4!,
and @Gc

a ,GA
a #ET

^@Gc
a~x!,GA

b~y!#ET&52^@GA
a~x!,GA

b~y!#ST&1 i E dx0D j
bd~y!

d

d]0Aj
d~y!
Aa~x!. ~3.5!

It follows from Eqs.~3.4! and ~3.5! that

^@Gc
a~x!,GA

b~y!#ET&;2qe i jkD j
bd~y! Tr@$ta,td%Ak~x!#] i

xd~x2y!. ~3.6!

We only have to evaluate these terms contributing to@Gc
a ,GA

a #ST to determineq. For this purpose we introduce the covaria

current J̃ , which differs from the consistent current by the Bardeen-Zumino polynomialDJ @24#:

^Ja
m&5^ J̃ a

m&2DJa
m

with

DJa
m5

1

24p2
emnrs TrF ta$An ,]rAs%1

3

2
AnArAsG . ~3.7!

We use the gauge covariance of^J̃& in the following derivation. With Eq.~3.7! we have

^@Gc
a~x!,GA

b~y!#ET&5 i lim
p0→`

E dy0eip0~y02x0!D j
bd~y!

d

dAj
d~y!

^Ja
0~x!&

5 i lim
p0→`

E dy0eip0~y02x0!D j
bd~y!

d

dAj
d~y!

@^ J̃ a
0~x!&2DJa

0~x!#. ~3.8!

It follows from the covariance of̂J̃& that the first term on the right-hand side does not contribute to Eq.~3.6!. Thus, only
taking into account terms which can contribute to Eq.~3.6!, we get (e i jk5e0i jk)

^@Gc
a~x!,GA

b~y!#ET&;2 i lim
p0→`

E dy0eip0~y02x0!D j
bd~y!

d

dAj
d~y!

DJa
0~x!;2

i

24p2
e i jkD j

bd~y! Tr@$ta,td%Ak~x!#] i
xd~x2y!.

~3.9!

This determinesq5 i /24p2 and we have finally

^@GA
a~x!,GA

b~y!#ET&5 i ^GA
[a,b]~x!&d~x2y!1

i

24p2
e i jkDi

ac~x!D j
bd~y! Tr@$tc,td%Ak#d~x2y!. ~3.10!

Together with Eq.~3.3! this determines all commutators. The results coincide with the literature~e.g.,@5,7#!.

IV. DOUBLE COMMUTATORS

In the derivation of Eq.~3.10! we used relations only valid as expectation values@see Eqs.~3.5!–~3.10!#. Thus we expect
that it is not possible to calculate the double commutator@GA

a ,@GA
b ,GA

c ## iteratively. Using the form ofGA @see Eq.~2.11!# we
conclude

^@GA
a~x!,@GA

b~y!,GA
c ~z!##ET&5^@GA

a~x!,iGA
[b,c]~y!#ET&d~y2z!

1 i E
t,t8,t9

H FDi
ad~ t,x!

d

dAi
d~ t,x!

@D j
be~ t8,y!Dk

c f~ t9,z!#G ^@d e
j ~ t8,y!,d f

k~ t9,z!#&

1Di
ad~ t,x!D j

be~ t8,y!Dk
c f~ t9,z!^@d d

i ~ t,x!,@d e
j ~ t8,y!,d f

k~ t9,z!##&J . ~4.1!
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The first two terms follow easily with Eq.~3.10!, since they only involve derivatives ofG̃A with respect to the gauge field
However, the last term cannot be calculated with the known commutators. It follows from algebraic considerations th
to vanish if the Jacobi identity is fulfilled. The structure of the double commutator

Kde f
i jk ~x,y,z!5 i E

t,t8,t9
Di

ad~ t,x!D j
be~ t8,y!Dk

c f~ t9,z!^@d d
i ~ t,x!,@d e

j ~ t8,y!,d f
k~ t9,z!##& ~4.2!

follows by dimensional analysis as

Kde f
i jk ~x,y,z!5qe i jkDi

ad~x!D j
be~y!Dk

c f~z! Tr@ td$te,t f%#d~x2y!d~y2z!. ~4.3!

The iterative result obtained with Eq.~3.10! is q51/24p2. The Jacobi identity is only satisfied whenq50. Performing the BJL
limit we get, for the last term in Eq.~4.1!,

Kde f
i jk ~x,y,z!52 lim

p0→`

lim
q0→`

E dx0dy0dz0eip0x0eiq0y0u~2z0!Di
ad~x!D j

be~y!Dk
c f~z!

3F d

dAi
d~x!

d

dAj
e~y!

d

dAk
f ~z!

W@A#G
50. ~4.4!

The only terms of

d

dAi
d~x!

d

dAj
e~y!

d

dAk
f ~z!

W@A#

which contribute to Eq.~4.4! are proportional to]0d(z02y0)d(z02x0),]0d(x02z0)d(y02z0) and ]0d(x02z0)d(x02y0).
The group structure is similar to Eq.~3.10!. It follows with the integrability ofW@A# that Eq.~4.4! is proportional to

Tr@ td$te,t f%#@]0d~z02y0!d~z02x0!1cycl. perms. of~x0 ,y0 ,z0!#50. ~4.5!

In an iterative BJL limit one would only take into account one of the terms proportional to]0d(z02y0)d(z02x0) and
]0d(x02z0)d(x02y0). However, only the sum of these two terms add up to zero in the limit, which is the reason fo
violation of the Jacobi identity within an iterative calculation@the term proportional to]0d(x02z0)d(y02z0) is suppressed
with p0 /(p01q0) in the BJL limit in Eq.~4.4!#. With Eq. ~4.4! we have finally

^@GA
a~x!,@GA

b~y!,GA
c ~z!##ET&5^@GA

a~x!,iGA
[b,c]~y!#ET&d~y2z!

1
1

24p2
e jklE dtDi

ad~x!F d

dAi
d~x!

@D j
be~y!Dk

c f~z!#G Tr@$te,t f%Al #d~y2z!

5^@GA
a~x!,@GA

b~y!,GA
c ~z!## i t&

2
1

24p2
e i jkDi

ad~x!D j
be~y!Dk

c f~z! Tr@ td$te,t f%#d~x2y!d~y2z!. ~4.6!

The double commutator with the subscripti t is the iterative double commutator.
Now we proceed as in the case of the commutators. We use the anomaly and the double commutator Eq.~4.6! to calculate

the other double commutators contributing to the algebra ofG. As an important first step we prove, that double commuta
with the structure@GA/c

a ,@GA/c
b ,Gc## agree with the iterative results. We derive, with the use of the notation Eq.~2.14!,

^@GA/c
a ~x!,@Gc

b~y!,Gc~0!##ET&52 lim
p0→`

lim
q0→`

p0q0E dy0dx0eip0x0eiq0y0^T* GA/c
a ~x!Gc

b~y!Gc~0!&

5 i lim
p0→`

p0E dx0eip0x0G̃A/c
a ~x! lim

q0→`

q0E dy0eiq0y0^T* Gc
b~y!Gc~0!&

5 lim
p0→`

p0E dx0eip0x0G̃A/c
a ~x! lim

q0→`

q0E dy0eiq0y0G̃c
b~y!G̃c~0!W@A#. ~4.7!
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Here we used, that derivatives ofGA/c
a with respect to the gauge field vanish in the BJL limit with at leastp0 /(p01q0)→0.

Performing the limitq0→` we get

^@GA/c
a ~x!,@Gc

b~y!,Gc~0!##ET&5 i lim
p0→`

E dx0eip0x0]0
xG̃A/c

a ~x!^Gc
[b,c]~0!&d~y!

2 lim
p0→`

p0E dx0eip0x0G̃A/c
a ~x!F lim

q0→`

q0E dy0eiq0y0G̃c
b~y!E dtu~2t !Ac~ t,0!G

5^@GA/c
a ~x!,iGc

[b,c]~0!#ET&d~y!1E dx0]0G̃A/c
a ~x!E dy0

d

dA0
b~y!
Ac~0!. ~4.8!

For GA/c
a 5Gc

a the second term in the last line vanishes. ForGA/c
a 5GA

a we have

E dx0]0G̃A
a~x!5E dx0Di

ad~x!
d

dAi
d~x!

.

Thus Eq.~4.8! is the iterative result. In the derivation we used

G̃c~x!W@A#5E dtu~x02t !SAc~ t,x!2 f cdeA0
d~ t,x!

d

dA0
e~ t,x!

W@A# D . ~4.9!

The Schwinger term in Eq.~4.8! is simply given by functional derivatives of the anomaly in contrast to the Schwinger ter
@GA

a ,@GA
b ,GA

c ##. It is directly related to the two-cocycle in the algebra of the Gauss law operatorG.
Applying the derivation of Eq.~4.8! to the double commutator@GA/c

a ,@GA
b ,Gc##, we get

^@GA/c
a ~x!,@GA

b~y!,Gc~0!##ET&52 lim
p0→`

lim
q0→`

p0q0E dy0dx0eip0x0eiq0y0^T* GA/c
a ~x!GA

b~y!Gc~0!&

5 i lim
p0→`

p0E dx0eip0x0G̃A/c
a ~x! lim

q0→`

q0E dy0eiq0y0^T* GA
b~y!Gc~0!&

2E dtu~2t !Di
[b,c]d~ t,0!F d

dAi
d~ t,0!

G̃A/c
a ~x!GW@A#d~y!

5^@GA/c~x!,iGA
[b,c]~0!#ET&d~y!2E dx0]0G̃A/c

a ~x!E dy0D j
bd~y!

d

d]0Aj
d~y!
Ac~0!.

~4.10!

It follows with Eqs.~4.8! and~4.10! that double commutators of the form@GA/c
a ,@GA/c

b ,Gc## agree with the iterative results
Therefore they can be calculated from the known commutators, Eqs.~3.3! and~3.10!. The algebra for arbitrary combination
of GA/c is determined with the double commutators, Eqs.~4.6!, ~4.8!, ~4.10!, and the result for@Gc

a ,@GA
b ,GA

c ##. We calculate

^@Gc
a~x!,@GA

b~y!,GA
c ~0!##ET&5^@Gc

a~x!,iGA
[b,c]~0!#ET&d~y!2 lim

p0→`

lim
q0→`

E dx0dy0dz0eip0x0eiq0y0u~2z0!

3Di
bd~y!D j

ce~z!
d

dAi
d~y!

d

dAj
e~z!

]0

d

dA0
a~x!

W@A#. ~4.11!

Using

]0

d

dAa
0~x!

W@A#5Aa~x!2FDk
a f~x!

d

dAk
f ~x!

1 f ag fA0
g~x!

d

dA0
f ~x!

GW@A#

it follows that
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^@Gc
a~x!,@GA

b~y!,GA
c ~0!##ET&5^@Gc

a~x!,iGA
[b,c]~0!#ET&d~y!2E dx0dy0Di

bd~y!D j
ce~z!

d

d]0Ai
d~y!

d

dAj
e~z!
Aa~x!

1E dx0dy0Di
bd~y!D j

ce~z!
d

dAi
d~y!

d

d]0Aj
e~z!
Aa~x!

1 lim
p0→`

lim
q0→`

E dx0dy0dz0eip0x0eiq0y0u~2z0!

3Di
bd~y!D j

ce~z!
d

dAi
d~y!

d

dAj
e~z!

Dk
a f~x!

d

dAk
f ~x!

W@A#. ~4.12!

The terms containing functional derivatives of the anomaly have the form

E dx0E dy0Di
bd~y!D j

ce~z!F d

dAi
d~y!

d

d]0Aj
e~z!

2
d

d]0Ai
d~y!

d

dAj
e~z!

GAa~x!

5
1

24p2
e i jkDi

bd~y!D j
ce~z!]k

x Tr@ ta$td,te%#d~x2y!d~x2z!. ~4.13!

The last term on the right-hand side of Eq.~4.12! consists of equal-time commutators of the form@d[a,g] ,dh# @see Eq.~3.10!#
and terms proportional todA

3W@A#, which vanish in the BJL limit. Performing the BJL limit, we are led to

^@Gc
a~x!,@GA

b~y!,GA
c ~z!##ET&5^@Gc

a~x!,iGA
[b,c]~y!#ET&d~y2z!1

1

24p2
e i jkDi

bd~y!D j
ce~z!]k

x

3 Tr@ ta$td,te%#d~x2y!d~x2z!2 i E dtdt8Di
bd~ t,y!D j

ce~ t8,z!

3$^@d [a,d]
i ~ t,y!,d e

j ~ t8,z!#&d~x2y!2^@d [a,e]
j ~ t8,z!,d d

i ~ t,y!#&d~x2z!%

5^@Gc
a~x!,iGA

[b,c]~y!#ET&d~y2z!1
1

24p2
e i jkDi

bd~y!D j
ce~z!]k

x Tr@ ta$td,te%#d~x2y!d~x2z!

2e i jk
1

24p2
Di

bd~y!D j
ce~z! Tr@~$@ ta,td#,te%1$@ ta,te#,td%!Ak~x!#d~x2y!d~x2z!

5^@Gc
a~x!,iGA

[b,c]~y!#ET&d~y2z!

1
1

24p2
e i jkDi

bd~y!D j
ce~z!Dk

a f~x! Tr@ t f$td,te%#d~x2y!d~x2z!. ~4.14!

The noniterative part in Eq.~4.14! is exactly the same as for the double commutator, Eq.~4.6!, with a relative minus sign. We
conclude

^@Ga~x!,@GA
b~y!,GA

c ~z!##ET&5^@Ga~x!,@GA
b~y!,GA

c ~z!## i t&. ~4.15!

We want to emphasize that the noniterative part of Eq.~4.14! is also connected to the fact that the result for the commut
@GA

a ,GA
b # @see Eq.~3.10!# is not valid on the operator level. With Eqs.~4.8!, ~4.10!, and ~4.15! it follows that double

commutators containing at least one fullG are given by the iterative results. We collect the results

^@GA/c
a ~x!,@GA/c

b ~y!,Gc~z!##ET&5^@GA/c
a ~x!,@GA/c

b ~y!,Gc~z!## i t&,
~4.16!

^@Ga~x!,@GA/c
b ~y!,GA/c

c ~z!##ET&5^@Ga~x!,@GA/c
b ~y!,GA/c

c ~z!## i t&.

Equation~4.16!, the commutators, Eqs.~3.3! and~3.10!, and the double commutator, Eq.~4.6!, fix all double commutators, a
already mentioned. The algebra of twoGA’s and oneGc is given by
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^@GA
a~x!,@GA

b~y!,Gc
c ~z!##ET&5^@GA

a~x!,@GA
b~y!,Gc

c ~z!## i t&1
1

24p2
e i jkDi

ad~x!

3D j
be~y!Dk

c f~z! Tr@ td$te,t f%#d~x2y!d~y2z!,
~4.17!

^@Gc
a~x!,@GA

b~y!,GA
c ~z!##ET&5^@Gc

a~x!,iGA
[b,c]~y!#ET&1

1

24p2
e i jkDi

ad~x!

3D j
be~y!Dk

c f~z! Tr@ td$te,t f%#d~x2y!d~y2z!.

The algebra of twoGc and oneGA is given by

^@Gc
a~x!,@GA

b~y!,Gc
c ~z!##ET&52

1

24p2
e i jkDi

ad~x!D j
be~y!Dk

c f~z!

3 Tr@ td$te,t f%#d~x2y!d~y2z!,
~4.18!

^@GA
a~x!,@Gc

b~y!,Gc
c ~z!##ET&5^@GA

a~x!,@Gc
b~y!,Gc

c ~z!## i t&2
1

24p2
e i jkDi

ad~x!D j
be~y!Dk

c f~z! Tr@ td$te,t f%#

3d~x2y!d~y2z!.

The algebra of the fermionic currents is given by

^@Gc
a~x!,@Gc

b~y!,Gc
c ~z!##ET&5^@Gc

a~x!,iGc
[b,c]~y!#ET&d~y2z!1

1

24p2
e i jkDi

ad~x!D j
be~y!Dk

c f~z! Tr@ td$te,t f%#

3d~x2y!d~y2z!. ~4.19!
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It can be shown explicitly in a long, but straightforward ca
culation, that the Jacobi identity is fulfilled for all these r
sults. Since we have related the double commutators to
rivatives of W@A# with respect to the gauge field, th
provides a convenient way to prove the Jacobi identity~in-
tegrability of W@A#).

V. DISCUSSION

In this paper a purely algebraic BJL-type derivation of t
algebra of the Gauss law operatorG in chiral gauge theories
was given. The theory has been defined in an external ga
field ~adiabatic solution!. The expectation values of commu
tators and double commutators can be expressed as de
tives ofW@A# with respect to the gauge field. All Schwinge
terms follow with the anomaly without any further assum
tion.

The Schwinger terms depend on the properties of the t
evolution operatorU, which defines the underlying theory.
the representation of the gauge group is projective~on the
Fock space!, we haveDi(d/dAi)U(x0 ,x0)Þ0 ~see Sec. II!.
This is the reason for the Schwinger term in the commuta
@GA

a ,GA
b # @Eq. ~3.10!#. We want to emphasize that the expl

nation of this Schwinger term is based purely on an adiab
solution of the theory in an external gauge field. There is
need to introduce a quantized gauge field to obtain this
sult.

The commutators@Eqs.~3.3! and~3.10!# coincide with the
BJL results obtained via the explicit calculation of diagra
e-

ge

va-

-

e

r

ic
o
e-

s

@5#, or path integral methods@7#, where only fermionic loops
give contributions. In contrast with these approaches we
not need to calculate diagrams nor do we need further
sumptions as in@7#. The algebraic derivation in@7# was
based on the assumption that@GA

a ,GA
b #ST50 for G defined

with the covariant current. Adding the Bardeen-Zumi
polynomialDJ0 to Gc we get the results forG defined with
the covariant current~e.g.,@7–10#!.

It is also possible to relate the Schwinger terms ofGA/c
obtained in the present paper to those in@13,14#. Although
the consistent current was used in@13,14# and the algebra of
G coincides with Eq.~3.3!, the Schwinger terms in the alge
bra of GA/c are different. This can be explained by studyin
the time evolution operatorU. If we assume that

U~x0 ,x0!51, ~5.1!

in Eq. ~2.18! we would arrive at the results of@13#. In @13#,
Eq. ~5.1! was used implicitly, since the commutators ofGA/c
were calculated as defined in Eq.~2.18!. Condition ~5.1! is
equivalent to gauge invariance of the underlying theory.
@14# such a theory was constructed by adding a We
Zumino field. In this theoryG is not the full Gauss law
operator, sinceG does not generate gauge transformations
the Wess-Zumino field. The results in@13# coincide with
those of@14#, which confirms the interpretation.
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The double commutators have been derived by using
integrability of W@A#. Double commutators, which contai
at least oneG agree with the iterative results. The Jaco
identity is satisfied by our results@Eqs.~4.6!, ~4.17!, ~4.18!,
and ~4.19!#. This is an outcome of the integrability~consis-
tency! of W@A#, since the double commutators are related
derivatives ofW@A# with respect to the gauge field. In a
iterative calculation one drops terms ensuring the integra
ity @see Eq.~4.4! and the following discussion#, which leads
to the violation of the Jacobi identity. Since double comm
tators containing at least oneG agree with the iterative re
sult, there is only one noniterative term~up to a minus sign!

1

24p2
e i jkDi

ad~x!D j
be~y!Dk

c f~z! Tr@ td$te,t f%#d~x2y!d~y2z!.

~5.2!
,

e

i

o

il-

-

This can be traced back to the fact that the gauge gr
representation is projective and is related directly to
Schwinger term in the commutator@GA

a ,GA
b #.

The noniterative terms of double commutators, which
related via cyclic permutation of the operators, are identi
~no relative minus sign! @see Eqs.~4.17!–~4.19!#. The BJL-
type prescription of@11# only works in this case. Therefor
the results here confirm the validity of the prescription in t
case ofGA/c . Moreover, the connection of the noniterativ
term, Eq.~5.2!, to the integrability of the generating func
tional W@A# indicates that this should hold for arbitrar
double commutators.
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