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Gauge invariance and effective actions irD =3 at finite temperature
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For background gauge field configurations reducible to the s (KS ,A()?)) Wherezs is a constant, we
provide an elementary derivation of the recently obtained result for the exact induced Chern-8&8pns
effective action in QEDB at finite temperature. The method allows us to extend the result in several useful
ways: to obtain the analogous result for the “mixed” CS term in the Dorey-Mavromatos model of parity-
conserving planar superconductivity, thereby justifying their argument for flux quantization in the model; to
the induced CS term for adependent flux; and to the term of second ordeﬁ(ﬁ) (and all orders irﬁg) in
the effective actionfS0556-282(98)03502-4

PACS numbes): 11.10.Wx, 11.15.Tk, 11.30.Er

I. INTRODUCTION zero order parameter would violate the Coleman-Mermin-
Wagner theorenj22]). Without such an order parameter,
Recently, there has been significant progfdss4] in re-  however, it is difficult to see how some familiar phenomeno-
solving a puzzle concerning the gauge invariance of inducetbgical features of superconductivity can arise—in particular
Chern-Simons(CS) terms at finite temperaturdl,. In the flux quantization, which is conventionally derived from a
non-Abelian case, for example, general arguments imply thaBinzburg-Landau Lagrangian, assuming the order parameter
the coefficient of the CS term must be quantized at zerdas charge & (pair field. In their model, DM argued as
temperatur¢5], and also at nonzero temperatliée7], if the  follows. At T#0, (1) becomes
action is to be invariant under topologically nontrivial
(“large” ) gauge transformations. On the other hand, simple M eg (8
perturbative calculationg8—17], give the result that the ef- Iycs(T#0) =iN¢ ™[ 27 f de d’xe*""a,d,A, .
fect of moving to T#0 is simply to multiply the zero- 0
temperature CS term by a smoothly varying functionTof
[typically, tanhB|M|/2), whereg=1KkT andM is the mass _ _ o _ R
of the fermiorts) in the theory. Plainly, the perturbative re- Consider now a configuration in whici, =[as(7),0] and
sult contradicts the quantization requiremddB8-20. A A,=[0,A(X)]. Its contribution to the action should be invari-
similar difficulty arises in the Euclidean case o# 0 due to  ant under topologically nontrivial gauge transformations on
the S topology of the compactified Euclidean time. a;, of the form
Apart from its theoretical interest, the resolution of this
puzzle is important in some physical applications. To give ag—az+a,0(7) 3
one specific example, consider the Dorey-Mavrom&iid )
model [21] of two-dimensional superconductivity without
parity violation. This model employs two () gauge fields,
one the electromagnetic field,,, the other a “statistical”
gauge fielda,, which is also massless. There d¥g=2 M
flavors of four-component fermions, the mass term is parity ST s T#0)=iN; — nej d2xe;j A . @)
conserving, andA, and a, have opposite parity. At zero M|
temperature a “mixed Chern-SimoriMCS) term” is gen-
erated by a fermion loop with one exterfaland one exter- Considering then a superconducting annulus enclosing flux
nal a leg, the leading contribution to the action, in powers of ®, it follows that® has to have the valugestoring/ andc)
derivatives, being

2

with Q(B8)—Q(0)=2nm/g, wheren is an integer. Under
(3), the variation ofl",cg(T#0) is

® mhc 5
eq M =
FMCS:NfEW f dgxewpauﬁuAp: 1 Nie

wherem is an integer, ifél"ycg(T#0) is to be an integer
wheree and g are the couplings oA anda, respectively. multiple of 271, for any n in (4). Equation(5) gives the
Note that this term is not parity violating, though it is “to- required result forN;=2, the value indicated in the DM
pological.” One major novelty of this model is that it pro- model.
vides a mechanism for superconductivity in two space di- Thus, the flux quantization does not come from a charge-
mensions atT#0, without the existence of an order 2e order parameter in this model, but precisely by requiring
parameter which is a nonsinglet undefl}{,, (such a non- invariance, under topologically nontrivial gauge transforma-
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tions, of a CS-like term. Unfortunately, howevé2) is only BIM|
correct forT infinitesimally close to 0. Indeed, the standard F(x)=arcta+tanl'( >
lowest order derivative expansion calculation would yigld
multiplied by tanhpM/2), as stated above, and this
T-dependent factor would destroy the reg@it Remarkably enough, one sees tRathanges bynw when
Nevertheless, by analogy with other CS-like terms atA; undergoes a large gauge transformation with winding
T+0, there is reason to think that the quantization re)lt numbem, granted that the branch of the arctan is understood
should be true after all. Perhaps the blame could be laid otp be shifted correspondingly. This is exactly the same be-
using perturbation theory for the field undergoing the largehavior as in thel —0 limit (7), and consequently, quantiza-
gauge transformation. In an attempt to get away from perturtion arguments are verified far+0 also, for these configu-
bation theory, Cabrat al.[7], and Bralicet al. [23] consid-  rations. Note that such configurations would, in fact, be
ered how a more general ansatz, in which the tanh function igdequate for analyzing the Dorey-Mavromatos flux quantiza-
replaced by a general functiof(T), could be reconciled tion argument.
with gauge invariance, and concluded tRatould only be a The calculations of3] and[4] were formulated in such a
discrete-valued function of the temperature. The argumentway as to make essential use of the result for an anomalous
of [7] and[23], however, depend crucially on the form of the Fujikawa Jacobiah24] associated with a global chiral rota-
ansatz assumed, and it turns out that it does not, in faction on the fermionic variables, involving;. This result is
represent the true nonperturbative structure. intrinsically nonperturbative, and reveals the true structure of
A crucial advance was made by Duneeal. [1], who  the odd-parity term, at least for the specified configuration.
considered a solvable model inHd dimensions, in which a But, while certainly leading to a satisfactory outcome as re-
CS-like term is generated at zero temperature. These authogards gauge invariance, the method[8f and [4] seems
found that the exact effective action at finite temperature waperhaps rather special, and possibly difficult to generalize to
indeed gauge invariant, even though its perturbative exparether situations, for example, the Dorey-Mavromatos prob-
sion produced a result precisely analogous to that found ifem. In addition, it would be interesting to know if the same
2+1 dimensions, namely, the gauge-non-invariant formresult could be obtained by somehow summing up all powers
“tanh(BM/2)XT'c(T=0)." As Dunne et al. remark [1],  of A; in a conventional perturbativglus derivativé expan-
the exact result cannot be written as the integral of a densitysion approach, as actually envisaged by Duenel. [1].
in Euclidean spacetime, suggesting that the type of ansaigfter all, it was in the latter context that the gauge nonin-
considered iff7] and[23] is not adequate. variance puzzle emerged, and it would be nice to see its
Subsequently, nonperturbative calculations of the effecresolution there too. Such an approach is certainly capable of
tive action in the 2-1 Abelian case[2] and its explicit  treating anomalylike terms correcflg5], provided a suitable
temperature-dependent parity-breaking gaithave shown regularization is performed. Nontopological contributions
that the complete effective action is indeed invariant undeean be obtained this way too, of course, and the approach
both large and small gauge transformations, the resuBlof  might be capable of handling more general background field
in particular, showing some remarkable similarity to that Ofconfigurations than those considered 3 and[4].
Dunneet al.[1], as we shall discuss further in Sec. Ill below.  The purpose of the present paper is to provide such an
The calculation of(3] has now been extended to the non-alternative derivation of the results (8] and[4], based on
Abelian casd4]. straightforward effective action techniques; to extend it to
It is important to note, however, that the explicit the case in which the flux is allowed to depend gnto
(2+1)-dimensional results have only been obtained for ajerive the corresponding result for the DM model, thus res-
particular class of background gauge field configuration. Ircuing their flux quantization argument; and to present the
the Abelian case, for example, they have the form result for the nontopological term which is quadratic in the
~ . magnetic fieldF;; , and correct to all orders A3, for the
A= (Az,A(X)), (6) case of a single gauge fiell
~ . . Before proceeding, one important remark needs to be
where A;=(1/8)/§drAs(7) [these configurations - are made. The gauge field configurations which are considered
gauge-equivalent to those in whidk,=(A3(7),A(X)), as in [3] and[4] are effectivelyr~independentor equivalent to
discussed in the following sectigrFor this case, the result =~independent ongsand this is crucial in all the existing
of [3] and[4] is the following. For a theory with one two- explicit calculations including our own which follow. In the
component fermion of madd, the zero temperature limit of nonstatictime-dependent case, terms arigie to Landau
the induced CS action is damping which are nonanalytic at the origin of momentum
space, and which are therefore intrinsically nonlocal, as has

tan(x) |. (9)

ie [M| e,Bﬂg, 5 been emphasized {i20]. Finding the explicit functional de-
LedT=0)=5- 3 f d*xejediAe () pendence o, which ensures gauge invariance in the non-
static case seems to be difficult. However, if one assumes
while at finite temperature the result is that (after including the gauge field dynamijcenly static

guantities are going to be considered, namely, that the time-
2 like momentum is always imaginary and discrete, then Lan-
f d*xejkdiAx,  (8) dau damping cannot occur. This is what happens in the cal-
culation of static quantities, such as the free energy.
where The structure of this paper is as follows: In Sec. Il we

eﬁxs
2
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present the calculation of the term linear in the magnetic As shown in Ref[3], the ~-dependence of the Dirac op-

flux, discussing in particular the casesa) One two-
component fermionic flavor and one gauge fidlo), many
four-component flavors and two gauge fieltlrixed CS
term), and (c) extension to the case of adependent .

Section Il deals with the next term in the expansion in pow-

ers ofAJ— .

II. TERMS LINEAR IN THE MAGNETIC FLUX
A. Two-component case: Parity-breaking term

We shall consider here the effective actiofA) which is

induced by integrating out a massive two-component fer-

mion field coupled to an Abelian gauge fiekl, in 2+1
dimensions at finite temperature,

e*F(A):f DYDY exd —Se(A)]. (10)
The Euclidean actiosg(A) for the fermion is given by

Se(A)= foﬁdrf d2xp(h+ieA+M) . (11

erator, which comes only frond;, can be removed by a
redefinition of the integrated fermionic fields with a gauge
function

T 1 (8
Q(T):_deT,Ag(T,)+E J;) dr’'As(7'), (18

without affecting the spatial componems. Such a trans-
formation renderd\; constant and equal to its mean value,

~ 1 (8
A3:E J'O d’TA3(T). (19)

Following [3], the determinant is written as an infinite prod-
uct of the corresponding#1 Euclidean Dirac operators

n=+wx

detd+ieA+M)= []

n=-—o

defd+M+iys(w,+eAg)],
(20

wherew,=(2n+1)(=/p) is the usual Matsubara frequency
for fermions andd is the two-dimensional Euclidean Dirac

In this section, we are using Euclidean Dirac matrices in théperator

irreducible representation of the Dirac algelraducible
representations will be considered in the next segtion
Y1=01, Y2=02, ¥3=03 (12
where o; are the usual Pauli matrices am=1/T is the
inverse temperature. The label 3 is used to denote the E
clidean time coordinate. The fermionic fields obey antipe-

riodic boundary conditions in the timelike direction

P(BX)=—p(0X), P(B.X)=—(0X), VX,

with x denoting the two space coordinates. The gauge fiel
satisfies periodic boundary conditions

13

A (B.X)=A,(0x), VX. (14
We shall first consider configurations satisfying
As=As(7), Aj=A|(x), j=12. (15)

As stated in Ref[3], and elaborated in Ref4], these con-

figurations allow one to study gauge invariance under trans-

formations with nontrivial windings around the compactified
time coordinate:

Y7, X)—e BN Y7 %) (7)€ (7, x)
A (1,X)—A,(7,X)+3d,Q(7,X) (16)

where

2
Q(ﬁ,x)=Q(O,X)+?k (17

andk is an integer which labels the homotopy class of the

gauge transformation.

d:7j((9j+ieAj):l9+ieA, (21)
where we have adopted the convention of using the slash to
denote contraction with the two spatial Dirac matrices, when
there is no risk of confusion. Then, the effective actigi\)
gorresponding to this configuration will be

n=+ow

F(A)== 2 Triogld+iy@,+M] (22

&vhere we have defined,= w,+eAg. This trace cannot, of
course, be evaluated explicitly. But if we want to reproduce
the result for the induced parity breaking term8f and[4],

it is sufficient to evaluate it up to linear order &), without
making any expansion i\;. A naive application of this
approach leads, however, to an ambiguous result, as we will
now see. Let us call this terfiY)(A). It is formally given

by
n=+o

FOA)=—ie 2 TIAWG+iys@,+ M) (23

where the trace is evaluated over functional and Dirac indi-
ces. When written in momentum spa¢23) becomes

n=+o

rYAa)=—ie X

n=—o

d?p

2 MA) (B +i 3y M) 1]

(24)

where tr is the Dirac trace, arﬁj(p) is the Fourier trans-
form of A;(x) with respect to the two space variables

Zj(p)zf d?xe™ P A (X). (25)
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It is immediate to check that, by rationalizing the denomi-way, with higher powers of&& still retaining only one
nator and taking the Dirac trace {84), we obtain 0, which ower of A. At the term of order'&)zﬁ\, for example, one
is an un_propitious start to the calculation, and might seem il have three momentum integrals before sthdependence
e e e e o i of As i remoued, and one might wonder i a futhr and
such that the associated magnetic flux is nonzero, then itsore complicated limiting procedgre IS requ!red. But it "4”?3
) oo ' out that a well-regulated expression is obtained by retaining
zero momentum component is necessarily singular, and thé?n extra momentum dependence in only the “final” propa-
result of (24) will be of the ambiguous form B . Indeed, gator as in(29)
from the definition(25) of the Fourier transform, we see that '

the magnetic fluxp can be expressed as the following limit n=+o

~ . _ 42
A PEUA3 AR =~ (i1e)'A5 2 f (qu)Z lim - tr{ ys(ip
(I)Ef d2XEjk(9]Ak:i lim ejkquk(q)- (26) e ot
q—0

+iyzoa+ M) ys(ip+iyze,
It follows from (26) that, if we want to have a nonzero fldix, 13 . . 1
then the zero-momentum component &f necessarily di- M) AL+ E) +iysentM]T,
verges. We somehow need to introduce another momentum (30
(q) into the problem, and work with the finite quantidy. _
In order to see how to do this let us consider, in fact, theand the same is true for higher ordersAg.
leading term in the expansion 6%1(A) in powers ofA;, But clearly the prospect of evaluating the general term
which is just the perturbative action '™V and then trying to sum up the answer so as to obtain
the full T, which is nonperturbative iA;, is unappealing.
Fortunately, this is not necessary. Recall that we resorted to
perturbation theory i\ in order to gain insight into the IR
_ L behavior—we were not otherwise forced to expand the de-
XA(b+iyz0n+M)"7]. (27 nhominator in(24) in powers ofAs. Indeed, the formulag9)
and(30) indicate thai24) should be interpreted in terms of a
limit in which the argument of the trace is replaced by
AQ)[i(p+4)+iys@,+M] L, and then the limitg—0 is
taken. At this point, however, one realizes that such an ex-
n=+o pression, though IR regular, is UV divergent. To regulate the
F(l'l)[ﬂg(x),ﬂ(i)] =(ie)2 X, d?pd?q UV divergence, we work instead with the derivativeldfA)
n=-e with respect toA;, which improves the large momentum
dependence of the integrand by adding an extra propagator,
and amounts to subtracting the valuefgt=0. These con-

n=+ow

r(l,l)(A):(ie)Z E Tr[’)/gz\g(ﬁ'i_ i Y3wn+ M)_l
n=—ow

In this expression it is clear that the trace will involve a
second momentum integrationAf; is allowed to depend on
x as well as onr:

Xtr[(p+q 73K3| p)

X (ip+iyz0,+ M) Xp|Alp+Qq) siderations then lead to the well-behaved expression
X(i(p+ad)+iyso,+M)"1], (29 5 =+
L —T'(A)=—-¢? I'mfd2 tr H+iy,0
where tr means trace over the Dirac indices only. The case of gA, A) n:E—w qLO ptriya(pl(4+iyst,
x-independenf\; may then be obtained via the limiting pro- _
cess in which the dependence d&;(x) is removed, leading +M) T IAb+i Yo, + |\/|)*1|p+q>}, (31
to
oo ) We are now ready to evaluat®l). After taking the trace,
~ 5 Ty dp one finds that the only nonvanishing contribution to the de-
(1, = 2 L
1A A ]=(e) A3n;_w f (2m)° rivative of I'(A) is
X lim tr{ys(ip +iysw,+M)LA(Q) J e -
gq—0 " TF(A):ZMez E I|m[€]kq]Ak(q)]
(9A3 nN=-%°qg—0
X((p+d)+iyaontM) Y (29 -
p 1
ionalizi i | i X . (32
Rationalizing the second denominator and taking the Dirac f (2m)?2 (p2+a‘)ﬁ+M2)2

trace reveals the presence of a term proportiondl,tavhose
contribution is precisely the odd-parity perturbative action, . _
for our special field configuration. One can proceed in thigVNich, by using(26), may be put as

J ST d? 1
— T['(A)=—-2iMe2d D, p2 33
1Zero-flux configurations giv& =0 without any ambiguity. This ~ dA3 n=—o (2m)° (p*+ @, +M?)
is consistent with the result ¢8]. (33
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Performing the(convergentmomentum integral i33), we  the results of the previous section to each of the two terms in
obtain the action, just by replacing; by a;. This amounts to using
an o,= w,+ €35 in the propagators. As a consequence, for
N; four-component fermions we get

J A= iMezq)n:iw 1 @
IA; 27 e B2+M?Z

_ ie BM g (8
When this expression is integrated term by term o\gr it I'(Aa)= = NP arctar{tanhT tar(i JO d7a3(7)”’
yields
. n=-+w© - (40)
_le w,teh;
L(A)=5_ @ > arctariiT] (35)

n=—o

which is the result that assures the validity of the flux quan-
. L . ization argument for any nonzero temperature, as explained
This series is exactly equal to the one that appears in Re

n the Introduction.
[3], and indeed, it shows already the identity of this result to
the one obtained there by the “decoupling” change of vari-

ables. Thus we conclude that, for one fermionic flavor, and C. rdependentA,
ke.eplng terms linear IIA]' , the result for the induced action As an examp|e of an extension of the kind of Conﬁgura_
I'is tion that can be treated with this method, we shall consider

the case of a gauge field where the constraint 7of
independence oA, is relaxed, namely,

(36) As=Ag(7), A=A[(7X). (41)

ra= 1 o hAM edeA
( )_ﬁ arctantanh—- tan > Jdr o(7)

As in [3,4], the branch of the arctan i85) and (36) is e will, however, calculate this within the approximation of
defined so as to maké a continuous function 0¢BAz as it keeping terms linear iA;, and everything shall be discussed
moves continuously through the valuesk with k integer.  for the single flavor two-component case. The necessary
Also note that, for the non-Abelian configurations considerecthanges to make it appropriate for the many flavors four-
in (4), the steps that lead to our final expressi@6) hold  component case are analogous to the ones performed in Sec.
true, with the only addition of a trace over colour indices, in|| B.

agreement withj4]. As for the previous configurations, we first go to a gauge
where A3(7)— A3 becomes a constant. After thig,; will
B. Four-component case: Mixed CS term remain ~-dependent. In spite of the fact that there is no

In this section we show what the consequences of th&ranslation invariance, we perform a Fourier transformation
procedure of the previous section are for the case of th¥/ith respect to the imaginary time it11), obtaining
Lagrangian appearing in the DM model. In that model, the

fermionic action is defined to be m— e n—te

1 _
SA=5 3 S [ a0 omal b+ 5+ M]
Ne g L B m==«x n==x
sf:Zl fodrf d2Xiy(b+ieA+igars+ M)y, (37)

+ieA™ Y (X)}g(x) (42)
where the Dirac matrices are in the reducibbe 41 represen-
o where
tation:
fo. O [ 1ax2 0 Z(k)zi f’ngefiZkr/BA,(x 7) 43)
nels —oM)’ S P R |

whereu=1,2,3,l5, is the 2< 2 identity matrix anda isthe  The only change that we have to make in the calculation
flavour index. It is easy to see that the mass term is parityorresponding to the statid; case is that now the matrix
conserving; indeed, rewriting the action in terms of two-whose determinant we are evaluating is not diagonal in the

component fermions, we get space of Matsubara frequencies. Then
N¢ B o B
Si=> f drf dX[ xar(H+i€A+iga+M)xar ['(A)=—Tr log{ Sy n[ 4+ ys@,+M]+ie AM M (x)}
a=1 Jo (44)
+ xar(b+ieA—igd—M)xao] (39

where now, of course, the trace also affects the discrete fre-

where x,; and x,, are the upper and lower two-component quencies. There is an important simplification which occurs
spinors corresponding t@, . because we are actually dealing with the first order term in

For the particular configuration®z=as(7), and A, A;. When consideripg this first order term in the derivative
=A|(x) (all the other components0), we can directly apply ~ of I with respect toA;, we obtain
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T (A) - less, we think that a calculation of tif&(A?) term has some

__ a2 P~ —1Z(m-n) . . ! .

~—=—€" Tr{ys(d+iyz0,+ M) "A interest in the present context, for the following reason. In
A3 the soluble (6-1) model considered by Dunret al.[1] the

complete effective actioffor one flavoy is

. BM)
cosx—1 tan > sin X

X (h+iysoa+M)~1}
n=+oo

T(A)=I
=S TH{ys(b+iysd,+ M)t (A)=log
n=—o

(47

_ wherex= BA/2 andA= (1/,8)fgd 7A(7). The imaginary part
XAO(h+iys@,+M) 71}, (45) of this is, of course, just the arctan function found & and
[4] and in Sec. Il above. An obvious question to ask is
Note that only the zero-frequency componentAgfappears whether the real part of the action in our-2 case(always
in this expression, which, on the other hand, can now béor our special field configuratiorbears any relation to the
evaluated analogously to the staficcase, by replacing; real part of(47). We therefore calculate the first nonvanish-
by its zero-frequency component. The final result is then: ing contribution to the real part, that of ordéf, retaining

all powers ofA;.

['(A)= e l 'Bd ®(7) We consider one two-component fermion and start as be-

2m B Jo fore, from the exact expression for the derivative of the ef-

BM e (B fective action with respect t8;. The term of order two in
Xarcta{tanl‘(T tar(z f dT’Ag(T’)) , A; [denoted ¢I'®/dAz)(A)] is
0
or@ +e
(46 —— (A)=ie? S THys(d+iys@at+ M) TA(I+iy53,
3 n=-=

Whereq)(T) EdeXEjkﬁjAk(X, 'T) .

A +M) Ab+iysm,+ M), (48)
Ill. THE TERM QUADRATIC IN A . L . .
which needs no IR regularization. Evaluating the Dirac trace

The previous section considered various examples o&nd the functional trace in momentum space, we can write
what is, in fact, the imaginary part of the full effective action this term as
in Euclidean space. It is this part, linear in the flux, which
exhibits the interesting properties under large gauge transfor- ~ dI'®
mations. The real part of the effective action is not anoma- IA (A)=ie

: : 3

lous in that sense, and the terms of second and higher order
in A should be straightforwardly gauge invariant. Neverthe-where

d’p ~ -
5 APT (P)A—p) (49

)

+ d2
=23 iz, [ 5

(50)

(P~ a*—®2-M?) Okt 400+ 2(p;dk+a;Px)
[(p+a)*+ T+ MA@+ T+ M?) |

All the momentum integrals appearing in the last expression are convergent, and moreover, by a lengthy but straightforward
calculation we can recast it into the following explicitly gauge invariant form

+ o0
|1 [idx
[P)=2 3 B 5= | g 020 (701 ppo 59
where
Dp=M?+@2+x(1—x)p>. (52
On the other hand, this may also be written as
—i (1 x+x2-2x3 @2 = @ )
Ti(p)=— f dx —5 2, arcta (P? 8= PjPy)- (53)
4me? Jo " M2+ x(1—x)p? 9A5 nZ7 VM2+x(1—x)p?

The summation over frequencies can be obtained by borrowing the result appedBp.itserting this into the expression
for the second order term in the derivative of the effective action, and integratingdgyerields

_ d?p ~ _
PRy, A) - T0A) =i [ 50 A(IGK(PIAC-P) (59
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where

tanl‘{g VM2+x(1-x)p?

Gu(p) iB (025 )fld X+ x2— 23 -
k(P =T 8me P~ o~ PjPxk X M XL p? .
e ° M+ x(1=x)p cos’-(—eﬁzA3 +tanr?§ M?+x(1—x)p? sinz(—e'BzAg)

We do not write the explicit form oF(Z)(O,Aj) because it is perturbative and insensitive to large gauge transformations.
Indeed, it can be obtained, for example, by putthg=0 andA;=A;(x) in the result for the induced parity conserving term
presented i19]. The expressions5) would of course become nonlocal if converted to the coordinate-space representation;
nevertheless it is, in fact, invariant under large gauge transformatioAs 0A derivative expansion of55) gives a series of
local terms, the leading one of which is
BM
) tanh —
e 2

48mM co§(e'BA3 +tankt AM

. o] EPA3

Sl

It is indeed amusing, and perhaps of some significance, that the denominator function appg&éhgijust the modulus
squared of the complex function whose logarithm is the re@it of Dunneet al. [1], just as the imaginary part of our
effective action involves the phase of that function. We have, however, not been able to explore this possible connection any
further as yet.
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