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Gauge invariance and effective actions inD53 at finite temperature
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~Received 4 September 1997; published 19 December 1997!

For background gauge field configurations reducible to the formAm5„Ã3 ,AW (xW )… whereÃ3 is a constant, we
provide an elementary derivation of the recently obtained result for the exact induced Chern-Simons~CS!
effective action in QED3 at finite temperature. The method allows us to extend the result in several useful
ways: to obtain the analogous result for the ‘‘mixed’’ CS term in the Dorey-Mavromatos model of parity-
conserving planar superconductivity, thereby justifying their argument for flux quantization in the model; to

the induced CS term for at-dependent flux; and to the term of second order inAW (xW ) ~and all orders inÃ3! in
the effective action.@S0556-2821~98!03502-4#

PACS number~s!: 11.10.Wx, 11.15.Tk, 11.30.Er
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I. INTRODUCTION

Recently, there has been significant progress@1–4# in re-
solving a puzzle concerning the gauge invariance of indu
Chern-Simons~CS! terms at finite temperature,T. In the
non-Abelian case, for example, general arguments imply
the coefficient of the CS term must be quantized at z
temperature@5#, and also at nonzero temperature@6,7#, if the
action is to be invariant under topologically nontrivi
~‘‘large’’ ! gauge transformations. On the other hand, sim
perturbative calculations@8–17#, give the result that the ef
fect of moving to TÞ0 is simply to multiply the zero-
temperature CS term by a smoothly varying function ofT
@typically, tanh(buMu/2), whereb51/kT andM is the mass
of the fermion~s! in the theory#. Plainly, the perturbative re
sult contradicts the quantization requirement@18–20#. A
similar difficulty arises in the Euclidean case forTÞ0 due to
the S1 topology of the compactified Euclidean time.

Apart from its theoretical interest, the resolution of th
puzzle is important in some physical applications. To g
one specific example, consider the Dorey-Mavromatos~DM!
model @21# of two-dimensional superconductivity withou
parity violation. This model employs two U~1! gauge fields,
one the electromagnetic fieldAm , the other a ‘‘statistical’’
gauge fieldam , which is also massless. There areNf>2
flavors of four-component fermions, the mass term is pa
conserving, andAm and am have opposite parity. At zero
temperature a ‘‘mixed Chern-Simons~MCS! term’’ is gen-
erated by a fermion loop with one externalA and one exter-
nal a leg, the leading contribution to the action, in powers
derivatives, being

GMCS5Nf

eq

2p

M

uM u E d3xemnram]nAr , ~1!

wheree and g are the couplings ofA and a, respectively.
Note that this term is not parity violating, though it is ‘‘to
pological.’’ One major novelty of this model is that it pro
vides a mechanism for superconductivity in two space
mensions atTÞ0, without the existence of an orde
parameter which is a nonsinglet under U~1!EM ~such a non-
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zero order parameter would violate the Coleman-Merm
Wagner theorem@22#!. Without such an order paramete
however, it is difficult to see how some familiar phenomen
logical features of superconductivity can arise—in particu
flux quantization, which is conventionally derived from
Ginzburg-Landau Lagrangian, assuming the order param
has charge 2e ~pair field!. In their model, DM argued as
follows. At TÞ0, ~1! becomes

GMCS~TÞ0!5 iN f

M

uM u
eg

2p E
0

b

dtE d2xemnram]nAr .

~2!

Consider now a configuration in whicham5@a3(t),0W # and
Ar5@0,AW (xW )#. Its contribution to the action should be invar
ant under topologically nontrivial gauge transformations
a3 , of the form

a3→a31]tV~t! ~3!

with V(b)2V(0)52np/g, wheren is an integer. Under
~3!, the variation ofGMCS(TÞ0) is

dGMCS~TÞ0!5 iN f

M

uM u
neE d2xe i j ] iAj . ~4!

Considering then a superconducting annulus enclosing
F, it follows thatF has to have the value~restoring\ andc!

F5
mhc

Nfe
~5!

wherem is an integer, ifdGMCS(TÞ0) is to be an integer
multiple of 2p i , for any n in ~4!. Equation~5! gives the
required result forNf52, the value indicated in the DM
model.

Thus, the flux quantization does not come from a char
2e order parameter in this model, but precisely by requiri
invariance, under topologically nontrivial gauge transform
1171 © 1997 The American Physical Society



rd

is

a

o
rg
tu

n

n
e
ac

th
a
a

d
rm

sit
sa

ec

de

o
.

n-

it
r
I

e

lt
-
f

ing
od

be-
-

-
be
za-

lous
-

of
on.
re-

to
ob-
e
ers

in-
its

le of

ns
ach
eld

an

to

es-
the
he

be
red

e

m
has

n-
es

me-
an-
cal-

e

1172 57I. J. R. AITCHISON AND C. D. FOSCO
tions, of a CS-like term. Unfortunately, however,~2! is only
correct forT infinitesimally close to 0. Indeed, the standa
lowest order derivative expansion calculation would yield~2!
multiplied by tanh(bM/2), as stated above, and th
T-dependent factor would destroy the result~5!.

Nevertheless, by analogy with other CS-like terms
TÞ0, there is reason to think that the quantization result~5!
should be true after all. Perhaps the blame could be laid
using perturbation theory for the field undergoing the la
gauge transformation. In an attempt to get away from per
bation theory, Cabraet al. @7#, and Bralicet al. @23# consid-
ered how a more general ansatz, in which the tanh functio
replaced by a general functionF(T), could be reconciled
with gauge invariance, and concluded thatF could only be a
discrete-valued function of the temperature. The argume
of @7# and@23#, however, depend crucially on the form of th
ansatz assumed, and it turns out that it does not, in f
represent the true nonperturbative structure.

A crucial advance was made by Dunneet al. @1#, who
considered a solvable model in 011 dimensions, in which a
CS-like term is generated at zero temperature. These au
found that the exact effective action at finite temperature w
indeed gauge invariant, even though its perturbative exp
sion produced a result precisely analogous to that foun
211 dimensions, namely, the gauge-non-invariant fo
‘‘tanh(bM/2)3GCS(T50).’’ As Dunne et al. remark @1#,
the exact result cannot be written as the integral of a den
in Euclidean spacetime, suggesting that the type of an
considered in@7# and @23# is not adequate.

Subsequently, nonperturbative calculations of the eff
tive action in the 211 Abelian case@2# and its explicit
temperature-dependent parity-breaking part@3# have shown
that the complete effective action is indeed invariant un
both large and small gauge transformations, the result of@3#,
in particular, showing some remarkable similarity to that
Dunneet al. @1#, as we shall discuss further in Sec. III below
The calculation of@3# has now been extended to the no
Abelian case@4#.

It is important to note, however, that the explic
(211)-dimensional results have only been obtained fo
particular class of background gauge field configuration.
the Abelian case, for example, they have the form

Am5„Ã3 ,AW ~xW !…, ~6!

where Ã35(1/b)*0
bdtA3(t) @these configurations ar

gauge-equivalent to those in whichAm5„A3(t),AW (xW )…, as
discussed in the following section#. For this case, the resu
of @3# and @4# is the following. For a theory with one two
component fermion of massM , the zero temperature limit o
the induced CS action is

GCS~T→0!5
ie

2p

uM u
M

ebÃ3

2 E d2xe jk] jAk , ~7!

while at finite temperature the result is

GCS~TÞ0!5
ie

2p

uM u
M

FS ebÃ3

2 D E d2xe jk] jAk , ~8!

where
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F~x!5arctanF tanhS buM u
2 D tan~x!G . ~9!

Remarkably enough, one sees thatF changes bynp when
A3 undergoes a large gauge transformation with wind
numbern, granted that the branch of the arctan is understo
to be shifted correspondingly. This is exactly the same
havior as in theT→0 limit ~7!, and consequently, quantiza
tion arguments are verified forTÞ0 also, for these configu
rations. Note that such configurations would, in fact,
adequate for analyzing the Dorey-Mavromatos flux quanti
tion argument.

The calculations of@3# and@4# were formulated in such a
way as to make essential use of the result for an anoma
Fujikawa Jacobian@24# associated with a global chiral rota
tion on the fermionic variables, involvingÃ3 . This result is
intrinsically nonperturbative, and reveals the true structure
the odd-parity term, at least for the specified configurati
But, while certainly leading to a satisfactory outcome as
gards gauge invariance, the method of@3# and @4# seems
perhaps rather special, and possibly difficult to generalize
other situations, for example, the Dorey-Mavromatos pr
lem. In addition, it would be interesting to know if the sam
result could be obtained by somehow summing up all pow
of Ã3 in a conventional perturbative~plus derivative! expan-
sion approach, as actually envisaged by Dunneet al. @1#.
After all, it was in the latter context that the gauge non
variance puzzle emerged, and it would be nice to see
resolution there too. Such an approach is certainly capab
treating anomalylike terms correctly@25#, provided a suitable
regularization is performed. Nontopological contributio
can be obtained this way too, of course, and the appro
might be capable of handling more general background fi
configurations than those considered in@3# and @4#.

The purpose of the present paper is to provide such
alternative derivation of the results of@3# and @4#, based on
straightforward effective action techniques; to extend it
the case in which the flux is allowed to depend ont; to
derive the corresponding result for the DM model, thus r
cuing their flux quantization argument; and to present
result for the nontopological term which is quadratic in t
magnetic fieldFi j , and correct to all orders inÃ3 , for the
case of a single gauge fieldA.

Before proceeding, one important remark needs to
made. The gauge field configurations which are conside
in @3# and@4# are effectivelyt-independent~or equivalent to
t-independent ones!, and this is crucial in all the existing
explicit calculations including our own which follow. In th
nonstatictime-dependent case, terms arise~due to Landau
damping! which are nonanalytic at the origin of momentu
space, and which are therefore intrinsically nonlocal, as
been emphasized in@20#. Finding the explicit functional de-
pendence onAm which ensures gauge invariance in the no
static case seems to be difficult. However, if one assum
that ~after including the gauge field dynamics! only static
quantities are going to be considered, namely, that the ti
like momentum is always imaginary and discrete, then L
dau damping cannot occur. This is what happens in the
culation of static quantities, such as the free energy.

The structure of this paper is as follows: In Sec. II w
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57 1173GAUGE INVARIANCE AND EFFECTIVE ACTIONS IN . . .
present the calculation of the term linear in the magne
flux, discussing in particular the cases:~a! One two-
component fermionic flavor and one gauge field,~b! many
four-component flavors and two gauge fields~mixed CS
term!, and ~c! extension to the case of at-dependentAj .
Section III deals with the next term in the expansion in po
ers ofAj .

II. TERMS LINEAR IN THE MAGNETIC FLUX

A. Two-component case: Parity-breaking term

We shall consider here the effective actionG(A) which is
induced by integrating out a massive two-component
mion field coupled to an Abelian gauge fieldAm in 211
dimensions at finite temperature,

e2G~A!5E Dc̄Dc exp@2SF~A!#. ~10!

The Euclidean actionSF(A) for the fermion is given by

SF~A!5E
0

b

dtE d2xc̄~]”1 ieA” 1M !c. ~11!

In this section, we are using Euclidean Dirac matrices in
irreducible representation of the Dirac algebra~reducible
representations will be considered in the next section!:

g15s1 , g25s2 , g35s3 ~12!

where s i are the usual Pauli matrices andb51/T is the
inverse temperature. The label 3 is used to denote the
clidean time coordinatet. The fermionic fields obey antipe
riodic boundary conditions in the timelike direction

c~b,x!52c~0,x!, c̄~b,x!52c̄~0,x!, ;x, ~13!

with x denoting the two space coordinates. The gauge fi
satisfies periodic boundary conditions

Am~b,x!5Am~0,x!, ;x. ~14!

We shall first consider configurations satisfying

A35A3~t!, Aj5Aj~x!, j 51,2. ~15!

As stated in Ref.@3#, and elaborated in Ref.@4#, these con-
figurations allow one to study gauge invariance under tra
formations with nontrivial windings around the compactifi
time coordinate:

c~t,x!→e2 ieV~t,x!c~t,x!, c̄~t,x!→eieV~t,x!c̄~t,x!

Am~t,x!→Am~t,x!1]mV~t,x! ~16!

where

V~b,x!5V~0,x!1
2p

e
k ~17!

and k is an integer which labels the homotopy class of
gauge transformation.
c
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As shown in Ref.@3#, the t-dependence of the Dirac op
erator, which comes only fromA3 , can be removed by a
redefinition of the integrated fermionic fields with a gau
function

V~t!52E
0

t

dt8A3~t8!1
1

b E
0

b

dt8A3~t8!, ~18!

without affecting the spatial componentsAj . Such a trans-
formation rendersA3 constant and equal to its mean value

Ã35
1

b E
0

b

dtA3~t!. ~19!

Following @3#, the determinant is written as an infinite pro
uct of the corresponding 111 Euclidean Dirac operators

det~]”1 ieA” 1M !5 )
n52`

n51`

det@d” 1M1 ig3~vn1eÃ3!#,

~20!

wherevn5(2n11)(p/b) is the usual Matsubara frequenc
for fermions andd” is the two-dimensional Euclidean Dira
operator

d” 5g j~] j1 ieAj !5]”1 ieA” , ~21!

where we have adopted the convention of using the slas
denote contraction with the two spatial Dirac matrices, wh
there is no risk of confusion. Then, the effective actionG(A)
corresponding to this configuration will be

G~A!52 (
n52`

n51`

Tr log@d” 1 ig3ṽn1M # ~22!

where we have definedṽn5vn1eÃ3 . This trace cannot, of
course, be evaluated explicitly. But if we want to reprodu
the result for the induced parity breaking term of@3# and@4#,
it is sufficient to evaluate it up to linear order inAj , without
making any expansion inÃ3 . A naive application of this
approach leads, however, to an ambiguous result, as we
now see. Let us call this termG (1)(A). It is formally given
by

G~1!~A!52 ie (
n52`

n51`

Tr@A” ~]”1 ig3ṽn1M !21# ~23!

where the trace is evaluated over functional and Dirac in
ces. When written in momentum space,~23! becomes

G~1!~A!52 ie (
n52`

n51` E d2p

~2p!2 tr@A”̃ ~0!~ ip” 1 ig3ṽn1M !21#

~24!

where tr is the Dirac trace, andÃj (p) is the Fourier trans-
form of Aj (x) with respect to the two space variables

Ãj~p!5E d2xe2 ip•xAj~x!. ~25!
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It is immediate to check that, by rationalizing the denom
nator and taking the Dirac trace in~24!, we obtain 0, which
is an unpropitious start to the calculation, and might seem
contradict the results of reference@3#. The way out of this
impasse is to realize that, if we are going to deal with anAj
such that the associated magnetic flux is nonzero, then
zero momentum component is necessarily singular, and
result of ~24! will be of the ambiguous form 03`. Indeed,
from the definition~25! of the Fourier transform, we see th
the magnetic fluxF can be expressed as the following lim

F[E d2xe jk] jAk5 i lim
q→0

e jkqj Ãk~q!. ~26!

It follows from ~26! that, if we want to have a nonzero flux1

then the zero-momentum component ofÃj necessarily di-
verges. We somehow need to introduce another momen
(q) into the problem, and work with the finite quantityF.

In order to see how to do this let us consider, in fact,
leading term in the expansion ofG (1)(A) in powers ofÃ3 ,
which is just the perturbative action

G~1,1!~A!5~ ie!2 (
n52`

n51`

Tr@g3Ã3~]”1 ig3vn1M !21

3A” ~]”1 ig3vn1M !21#. ~27!

In this expression it is clear that the trace will involve
second momentum integration ifÃ3 is allowed to depend on
x as well as ont:

G~1,1!@Ã3~x!,AW ~xW !#5~ ie!2 (
n52`

n51` E d2pd2q

3tr@^p1qug3Ã3up&

3~ ip” 1 ig3vn1M !21^puA” up1q&

3~ i ~p” 1q” !1 ig3vn1M !21#, ~28!

where tr means trace over the Dirac indices only. The cas
x-independentÃ3 may then be obtained via the limiting pro
cess in which thex dependence ofÃ3(x) is removed, leading
to

G~1,1!@Ã3 ,AW ~x!#5~ ie!2Ã3 (
n52`

1` E d2p

~2p!2

3 lim
q→0

tr$g3~ ip” 1 ig3vn1M !21A”̃ ~q!

3~ i ~p” 1q” !1 ig3vn1M !21%. ~29!

Rationalizing the second denominator and taking the D
trace reveals the presence of a term proportional toF, whose
contribution is precisely the odd-parity perturbative actio
for our special field configuration. One can proceed in t

1Zero-flux configurations giveG50 without any ambiguity. This
is consistent with the result of@3#.
-
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way, with higher powers ofÃ3 , still retaining only one
power ofAW . At the term of order (Ã3)2AW , for example, one
will have three momentum integrals before thex-dependence
of Ã3 is removed, and one might wonder if a further a
more complicated limiting procedure is required. But it tur
out that a well-regulated expression is obtained by retain
an extra momentum dependence in only the ‘‘final’’ prop
gator as in~29!,

G~2,1!@Ã3 ,AW ~xW !#52~ ie!3Ã3
2 (

n52`

n51` E d2q

~2p!2 lim
q→0

tr$g3~ ip”

1 ig3vn1M !21g3~ ip” 1 ig3vn

1M !21A”̃ ~q!@ i ~p” 1q” !1 ig3vn1M #21%,

~30!

and the same is true for higher orders inÃ3 .
But clearly the prospect of evaluating the general te

G (n,1), and then trying to sum up the answer so as to obt
the full G (1), which is nonperturbative inÃ3 , is unappealing.
Fortunately, this is not necessary. Recall that we resorte
perturbation theory inÃ3 in order to gain insight into the IR
behavior—we were not otherwise forced to expand the
nominator in~24! in powers ofÃ3 . Indeed, the formulas~29!
and~30! indicate that~24! should be interpreted in terms of
limit in which the argument of the trace is replaced

A”̃ (q)@ i (p” 1q” )1 ig3ṽn1M #21, and then the limitq→0 is
taken. At this point, however, one realizes that such an
pression, though IR regular, is UV divergent. To regulate
UV divergence, we work instead with the derivative ofG(A)
with respect toÃ3 , which improves the large momentum
dependence of the integrand by adding an extra propag
and amounts to subtracting the value atÃ350. These con-
siderations then lead to the well-behaved expression

]

]Ã3

G~A!52e2 (
n52`

n51`

lim
q→0

E d2ptr$g3^pu~]”1 ig3ṽn

1M !21A”̃ ~]”1 ig3ṽn1M !21up1q&%. ~31!

We are now ready to evaluate~31!. After taking the trace,
one finds that the only nonvanishing contribution to the d
rivative of G(A) is

]

]Ã3

G~A!52Me2 (
n52`

n51`

lim
q→0

@e jkqj Ãk~q!#

3E d2p

~2p!2

1

~p21ṽn
21M2!2

, ~32!

which, by using~26!, may be put as

]

]Ã3

G~A!522iMe2F (
n52`

n51` E d2p

~2p!2

1

~p21ṽn
21M2!2

.

~33!
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Performing the~convergent! momentum integral in~33!, we
obtain

]

]Ã3

G~A!52
iMe2

2p
F (

n52`

n51`
1

ṽn
21M2

. ~34!

When this expression is integrated term by term overÃ3 , it
yields

G~A!5
ie

2p
F (

n52`

n51`

arctanFvn1eÃ3

M G . ~35!

This series is exactly equal to the one that appears in
@3#, and indeed, it shows already the identity of this result
the one obtained there by the ‘‘decoupling’’ change of va
ables. Thus we conclude that, for one fermionic flavor, a
keeping terms linear inAj , the result for the induced actio
G is

G~A!5
ie

2p
F arctanF tanh

bM

2
tanS e

2 E
0

b

dtA3~t! D G .
~36!

As in @3,4#, the branch of the arctan in~35! and ~36! is
defined so as to makeG a continuous function ofebÃ3 as it
moves continuously through the values 2pk, with k integer.
Also note that, for the non-Abelian configurations conside
in ~4!, the steps that lead to our final expression~36! hold
true, with the only addition of a trace over colour indices,
agreement with@4#.

B. Four-component case: Mixed CS term

In this section we show what the consequences of
procedure of the previous section are for the case of
Lagrangian appearing in the DM model. In that model,
fermionic action is defined to be

Sf5 (
a51

Nf E
0

b

dtE d2xc̄a~]”1 ieA” 1 iga” t31M !ca ~37!

where the Dirac matrices are in the reducible 434 represen-
tation:

gm5S sm 0

0 2sm
D , t35S I 232 0

0 2I 232
D , ~38!

wherem51,2,3,I 232 is the 232 identity matrix anda is the
flavour index. It is easy to see that the mass term is pa
conserving; indeed, rewriting the action in terms of tw
component fermions, we get

Sf5 (
a51

Nf E
0

b

dtE d2x@ x̄a1~]”1 ieA” 1 iga” 1M !xa1

1x̄a2~]”1 ieA” 2 iga” 2M !xa2# ~39!

wherexa1 andxa2 are the upper and lower two-compone
spinors corresponding toca .

For the particular configurationsa35a3(t), and Aj
5Aj (x) ~all the other components50!, we can directly apply
f.
o
-
d

d

e
e

e

ty
-

the results of the previous section to each of the two term
the action, just by replacingÃ3 by ã3 . This amounts to using
an ṽn5vn1eã3 in the propagators. As a consequence,
Nf four-component fermions we get

G~A,a!5
ie

p
NfF arctanF tanh

bM

2
tanS g

2 E
0

b

dta3~t! D G ,
~40!

which is the result that assures the validity of the flux qua
tization argument for any nonzero temperature, as explai
in the Introduction.

C. t-dependentAj

As an example of an extension of the kind of configu
tion that can be treated with this method, we shall consi
the case of a gauge field where the constraint oft-
independence ofAj is relaxed, namely,

A35A3~t!, Aj5Aj~t,x!. ~41!

We will, however, calculate this within the approximation
keeping terms linear inAj , and everything shall be discusse
for the single flavor two-component case. The necess
changes to make it appropriate for the many flavors fo
component case are analogous to the ones performed in
II B.

As for the previous configurations, we first go to a gau
where A3(t)→Ã3 becomes a constant. After this,Aj will
remain t-dependent. In spite of the fact that there is not
translation invariance, we perform a Fourier transformat
with respect to the imaginary time in~11!, obtaining

SF~A!5
1

b (
m52`

m51`

(
n52`

n51` E d2xc̄m~x!$dm,n@]”1 ig3ṽn1M #

1 ieA”̃ ~m2n!~x!%cn~x! ~42!

where

Ãj
~k!5

1

b E
0

b

dte2 i2kr/bAj~x,t!. ~43!

The only change that we have to make in the calculat
corresponding to the staticAj case is that now the matrix
whose determinant we are evaluating is not diagonal in
space of Matsubara frequencies. Then

G~A!52Tr log$dm,n@]”1 ig3ṽn1M #1 ieA”̃ ~m2n!~x!%
~44!

where now, of course, the trace also affects the discrete
quencies. There is an important simplification which occ
because we are actually dealing with the first order term
Aj . When considering this first order term in the derivati
of G with respect toÃ3 , we obtain
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]G~A!

]Ã3

52e2 Tr$g3~]”1 ig3ṽm1M !21A”̃ ~m2n!

3~]”1 ig3ṽn1M !21%

52e2 (
n52`

n51`

Tr$g3~]”1 ig3ṽn1M !21

3A”̃ ~0!~]”1 ig3ṽn1M !21%. ~45!

Note that only the zero-frequency component ofAj appears
in this expression, which, on the other hand, can now
evaluated analogously to the static-Aj case, by replacingAj
by its zero-frequency component. The final result is then

G~A!5
ie

2p

1

b E
0

b

dtF~t!

3arctanF tanhS bM

2 D tanS e

2 E
0

b

dt8A3~t8! D G ,
~46!

whereF(t)[*d2xe jk] jAk(x,t).

III. THE TERM QUADRATIC IN A¢

The previous section considered various examples
what is, in fact, the imaginary part of the full effective actio
in Euclidean space. It is this part, linear in the flux, whi
exhibits the interesting properties under large gauge trans
mations. The real part of the effective action is not anom
lous in that sense, and the terms of second and higher o
in Aj should be straightforwardly gauge invariant. Neverth
e

of

r-
-
er
-

less, we think that a calculation of theO(Aj
2) term has some

interest in the present context, for the following reason.
the soluble (011) model considered by Dunneet al. @1# the
complete effective action~for one flavor! is

G~A!5 logFcosx2 i tanhS bM

2 D sin xG ~47!

wherex5bÃ/2 andÃ5(1/b)*0
bdtA(t). The imaginary part

of this is, of course, just the arctan function found in@3# and
@4# and in Sec. II above. An obvious question to ask
whether the real part of the action in our 211 case~always
for our special field configuration! bears any relation to the
real part of~47!. We therefore calculate the first nonvanis
ing contribution to the real part, that of orderAj

2, retaining
all powers ofÃ3 .

We consider one two-component fermion and start as
fore, from the exact expression for the derivative of the
fective action with respect toÃ3 . The term of order two in
Aj @denoted (]G (2)/]Ã3)(A)# is

]G~2!

]Ã3

~A!5 ie2 (
n52`

1`

Tr$g3~]”1 ig3ṽn1M !21A” ~]”1 ig3ṽn

1M !21A” ~]”1 ig3ṽn1M !21%, ~48!

which needs no IR regularization. Evaluating the Dirac tra
and the functional trace in momentum space, we can w
this term as

]G~2!

]Ã3

~A!5 ie3E d2p

~2p!2
Ãj~p!G jk~p!Ãk~2p! ~49!

where
tforward

n

G jk~p!52 (
n52`

1`

i ṽnE d2q

~2p!2 F ~p22q22ṽn
22M2!d jk14qjqk12~pjqk1qj pk!

@~p1q!21ṽn
21M2#2~q21ṽn

21M2! G . ~50!

All the momentum integrals appearing in the last expression are convergent, and moreover, by a lengthy but straigh
calculation we can recast it into the following explicitly gauge invariant form

G jk~p!52 (
n52`

1`

i ṽnF 1

4p E
0

1 dx

Dn
2 ~x1x222x3!G~p2d jk2pj pk!, ~51!

where

Dn5M21ṽn
21x~12x!p2. ~52!

On the other hand, this may also be written as

G jk~p!5
2 i

4pe2 E0

1

dx
x1x222x3

AM21x~12x!p2

]2

]Ã3
2 (

n52`

1`

arctanF ṽn

AM21x~12x!p2G ~p2d jk2pj pk!. ~53!

The summation over frequencies can be obtained by borrowing the result appearing in@3,4#. Inserting this into the expressio
for the second order term in the derivative of the effective action, and integrating overÃ3 , yields

G~2!~Ã3 ,Aj !2G~2!~0,Aj !5 ie3E d2p

~2p!2 Ãj~p!Gjk~p!Ãk~2p! ~54!
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where

Gjk~p!52
ib

8pe
~p2d jk2pj pk!E

0

1

dx
x1x222x3

AM21x~12x!p2

tanhFb2 AM21x~12x!p2G
cos2S ebÃ3

2 D 1tanh2Fb2 AM21x~12x!p2Gsin2S ebÃ3

2 D . ~55!

We do not write the explicit form ofG (2)(0,Aj ) because it is perturbative and insensitive to large gauge transforma
Indeed, it can be obtained, for example, by puttingA350 andAj5Aj (x) in the result for the induced parity conserving ter
presented in@19#. The expression~55! would of course become nonlocal if converted to the coordinate-space represen
nevertheless it is, in fact, invariant under large gauge transformations onÃ3 . A derivative expansion of~55! gives a series of
local terms, the leading one of which is

G~2!~Ã3 ,Aj !2G~2!~0,Aj !.
e2b

48pM

tanhS bM

2
D

cos2S ebÃ3

2
D 1tanh2S bM

2
D sin2S ebÃ3

2
D E d2xFjkF jk . ~56!

It is indeed amusing, and perhaps of some significance, that the denominator function appearing in~56! is just the modulus
squared of the complex function whose logarithm is the result~47! of Dunneet al. @1#, just as the imaginary part of ou
effective action involves the phase of that function. We have, however, not been able to explore this possible connec
further as yet.
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