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Initial value problem for maximally nonlocal actions
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We study the initial value problem for actions whose non-locality is ‘‘maximal’’ in the sense that there is no
dependence upon the separation between points. In contrast with many other non-local actions, the classical
solution set of these systems is at most discretely enlarged, and may even be restricted, with respect to that of
a local theory. We show that the solutions are those of a local theory whose~spacetime constant! parameters
vary with the initial value data according to algebraic equations. The various roots of these algebraic equations
can be plausibly interpreted in quantum mechanics as different components of a multi-component wave
function. It is also possible that the consistency of these algebraic equations imposes constraints upon the
initial value data which appear miraculous from the context of a local theory. Although the discussion and
examples are given in the context of simple mechanical systems the results should apply as well to field theory.
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Most physicists probably recall wondering, at their fir
exposure to Lagrangians, why they are usually assume
depend only upon the zeroth and first time derivatives of
dynamical variable. The answer is very simple: allowi
higher time derivatives almost always leads to instabiliti
This has been known since Ostrogradski’s canonical form
lation of such systems in the middle of the 19th Century@1#.

To understand the problem, consider the dynamics o
point particle in one dimension whose position isq(t) and
whose LagrangianL(q,q̇,q̈) includes second time deriva
tives. We assume only that the second derivatives canno
removed by partial integration. This condition is known
non-degeneracyand amounts to the invertibility of the equa
tion

P25
]L~q,q̇,q̈!

]q̈
, ~1!

to solve for q̈(q,q̇,P2). Under the assumption of non
degeneracy the Euler-Lagrange equations

]L

]q
2

d

dt

]L

]q̇
1S d

dtD
2 ]L

]q̈
50 ~2!

define time evolution by determining the fourth derivative

q(t) in terms ofq, q̇, q̈ and q̂. One must therefore suppl
twice as much initial value data as in the usual case, and
entails a new set of canonically conjugate coordinates in
Hamiltonian formulation. In Ostrogradski’s construction t
canonical coordinates are
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Q1[q, Q2[q̇, ~3!

and they are respectively conjugate to the following m
menta:

P1[
]L~q,q̇,q̈!

]q̇
2

d

dt

]L~q,q̇,q̈!

]q̈
, P2[

]L~q,q̇,q̈!

]q̈
.

~4!

Note the equation forP2 can be inverted to solve forq̈ in

terms of justQ1, Q2 andP2; P1 is only needed to expressq̂.
Ostrogradski’s Hamiltonian is

H5(
i

PiQ̇i2L ~5!

5P1Q21P2q̈~Q1 ,Q2 ,P2!

2L„Q1 ,Q2 ,q̈~Q1 ,Q2 ,P2!…, ~6!

and his canonical equations for time evolution are the ob
ous ones suggested by the notation

Q̇i5
]H

]Pi
, Ṗi52

]H

]Qi
. ~7!

It is straightforward to verify that the evolution equations f
Q1, Q2 and P2 simply reproduce the definitions ofQ2, P2
andP1, respectively. The canonical expression of the Eul
Lagrange equation~2! is the evolution equation forP1. So
Ostrogradski’s Hamiltonian generates time evolution; it
also conserved when the Lagrangian is free of explicit ti
dependence.

The problem with higher derivatives is apparent from e
pression~6!: the Hamiltonian is linear in P1. Such a Hamil-
tonian can never be bounded below; in fact there is not e
1167 © 1997 The American Physical Society
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any barrier to the system’s decay. In a conventionally int
acting system this means that one can excite positive en
degrees of freedom while conserving energy by excit
negative energy degrees of freedom. Since there are typic
many more ways of exciting a degree of freedom than n
the system will tend to migrate to very highly excited sta
which have little in common with the physical reality w
perceive.

Note the generality of the higher derivative instability.
does not depend upon any approximation scheme, nor
feature of the Lagrangian except non-degeneracy. No
quantization liable to prevent it because the instability is
confined to a small region of phase space. Note also
relation to the space of classical solutions: a non-degene
higher derivative doubles the number of continuum degr
of freedom and at least half of the new degrees of freed
access negative energy.

Physicists are an inventive lot and such a bald no-go th
rem provokes them to envisage tortuous evasions. It is
possible to prove a negative, so we will not assert that th
is no way out for non-degenerate higher derivatives, but
do urge a little common sense. Ostrogradski’s theor
should not seem surprising. It explains why every single s
tem we have so far observed seems to be described, o
fundamental level, by a Lagrangian containing no high
than first time derivatives. The bizarre and incredible th
would be if this fact was simply an accident.

The relevance of Ostrogradski’s theorem to non-local
tions is that the instability grows worse as more higher
rivatives are added. For Lagrangians which depend n
degenerately upon theNth time derivative the associate
Hamiltonian is linear in all but possibly one of theN canoni-
cal momenta@1#. When a particular non-local model can b
represented as the limit of a sequence of non-degene
higher derivative theories, then essentially half of the cano
cal degrees of freedom in the non-local model must acc
negative energy. This would seem to be a problem unless
dynamics can somehow contrive to prevent or at least s
press the excitation of these degrees of freedom.

The higher derivative representation is valid for no
locality that enters through entire functions of the derivat
operator which cannot be subsumed into a field redefinit
A familiar example of such a system is string field theo
@2#. On the other hand, the higher derivative representatio
certainly not valid for many forms of non-locality. For ex
ample, one generally obtains a non-local Lagrangian by
tegrating out one or more of the fundamental dynamical v
ables. These Lagrangians contain poles of the deriva
operator, so it is not correct to consider them as limits
higher derivative Lagrangians. And since it is of course va
to solve them in the original, local form, there is no exte
sion of the space of classical solutions.

A local action is defined as the integral of a function
the dynamical variable and some finite number of its deri
tives. What we will call amaximally non-local actionin-
volves non-trivial functions of such terms. To understa
what we mean by the adjective ‘‘maximal,’’ consider a no
local functional of the positionq(t) of a one-dimensiona
particle:
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F@q#5E ds f„q~s!,q̇~s!, . . . …E dtg„q~ t !,q̇~ t !, . . . …V~s,t !.

~8!

Here f and g are ordinary functions of the dynamical var
able and some finite number of its derivatives, andV(s,t) is
a C-number weighting function which controls the amount
non-locality. In a local theory the weighting function is infi
nitely peaked ats5t: V(s,t)5d(s2t). The theory grows
more non-local as the weighting function becomes less
less sharply peaked ats5t. For maximal non-locality the
weighting function is just a constant. In this case the fun
tional F@q# breaks up into the product of two local function
als. The general maximally non-local action is an arbitra
function of local functionals of the dynamical variable.

As an example, consider the following generalization
the one-dimensional harmonic oscillator:

S@q#5 lim
T→`

H E
2T

T

dt
1

2
mq̇22

1

4
mv0

2l 0
2TS 1

TE2T

T

dt
q2

l 0
2D 2J ,

~9!

wherev0 and l 0 are constants with the respective dime
sions of frequency and length. An important fact about ma
mally non-local actions is that their equations of motion a
local except for coupling ‘‘constants’’ which are functions
integrals of local functions of the dynamical variable. For t
example just presented one finds

dS@q#

dq~ t !
52mq̈~ t !2mv2@q#q~ t !50, ~10!

where the oscillator’s frequency is

w2@q#[ lim
T→`

v0
2

Tl 0
2E

2T

T

dtq2~ t !. ~11!

It has been argued that quantum field theoretic version
maximally non-local actions might explain the apparent fi
tuning of certain coupling constants@3#. Of course any such
mechanism would be pointless if it inescapably entailed
Ostrogradskian instabilities. The aim of this paper is to sh
that it does not.

It is simplest to begin by solving the maximally non-loc
harmonic oscillator~9!. From its definition~11!, v2@q# must
be positive semi-definite, so the general solution for fixedv
is

q~ t !5q0cos~vt !1
q̇0

v
sin~vt !, ~12!

whereq0 and q̇0 are the initial value data. Substituting th
into the definition ofv2 gives

v25
v0

2

l 0
2S q0

21
q̇0

2

v2D . ~13!

This equation has two solutions but only the positive roo
consistent with the explicit positive semi-definiteness of E
~11!. We can therefore write
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v25
v0

2l 0
2 ~v0q0

21Av0
2q0

414l 0
2q̇0

2!. ~14!

Since this theory is time translation invariant, it makes
difference if we replaceq0 and q̇0 in v2@q# by q(t) and
q̇(t), respectively. The vanishing ofdv2/dt follows from the
equation of motion~10!. The conserved energy associat
with time translation invariance is

E5
1

2
mq̇21

1

2
mv2q2. ~15!

To make it generate time evolution we define the Pois
brackets as follows:

$q,q̇%5q̇Y ]E

]q̇
~16!

5
1

m

Av0
2q414l 0

2q̇2

Av0
2q414l 0

2q̇21v0q2
.

~17!

This makes the Poisson bracket ofq with E give q̇. The
other evolution equation

q̈5$q̇,E%52
]E

]q
3$q,q̇%, ~18!

follows by taking the time derivative and using energy co
servation. It can also be checked explicitly.

Since the energy~15! of this system is bounded below w
have shown by explicit example that the Ostrogradskian
stabilities are not inevitable for maximally non-local action
For the system considered there was not even any enla
ment of the solution set of its local cognate — there is
unique solution for every choice ofq0 andq̇0. This feature is
not generic; more complicated models can show a disc
enlargement of the solution set. Consider, for example,
following maximally non-local action:

S@q#5 lim
T→`

H E
2T

T

dtF1

2
mq̇22

1

4
mv0

2q2G
2

1

8
mv0

2l 0
2TsinF 2

TE2T

T

dt
q2

l 0
2G J . ~19!

The field equations are again those of a harmonic oscill
but with a slightly different form for the frequency-square

dS@q#

dq~ t !
52m$q̈~ t !1v2@q#q~ t !%, ~20!

v2@q#[v0
2cos2F lim

T→`

1

TE2T

T

dt
q2

l 0
2G . ~21!

For fixedv the general initial value solution is still Eq.~12!
so v2 is any positive root of the following transcendent
equation:
o

n

-

-
.
e-

a

te
e

or

v25v0
2cos2F q0

2

l 0
2 1

q̇0
2

v2l 0
2G . ~22!

For q̇0Þ0 there are a countable infinity of solutions. N
closed form can be obtained, but for large integersN they
are, approximately,

vN
2 '

2

2N11

q̇0
2

pl 0
2

. ~23!

Of course the energy is still Eq.~15! — with the new mean-
ing of v2 — and it is positive semi-definite for each root.

Another curious feature of maximally non-local actions
the possibility forrestrictionson the initial value data. It is
this property which might offer an explanation for otherwi
miraculous fine tunings@3#. To understand it, consider th
following maximally non-local harmonic oscillator:

S@q#5 lim
T→`

H 2
1

2
mv0

2l 0
2expF2

1

TE2T

T

dt
q̇2

v0
2l 0

2G
2

1

2
mv0

2q2J . ~24!

The equation of motion is still that of a harmonic oscillat
but with its frequency-squared defined as

v2@q#[v0
2expF lim

T→`

1

TE2T

T

dt
q̇2

v0
2l 0

2G . ~25!

One determinesv2 as a function of the initial value dat
from the following transcendental equation:

v25v0
2expF v2q0

2

v0
2l 0

2 1
q̇0

2

v0
2l 0

2G . ~26!

When the ratioq0 /l 0 is much less than 1 the exponenti
grows slowly enough to intersect the quadratic, and there
two solutions. However, whenq0 /l 0 is larger than 1 there is
no solution.

In fact the analysis we have just gone through applies
well to field theory. The field equations of maximally non
local actions are related to local ones whose couplin
l1 ,l2 , . . . , are really non-dynamical constants. Suppo
that the local cognate of a maximally non-local action h
the following general initial value solution:

f~ t,xW !5F@f0 ,ḟ0#~ t,xW ,l1 ,l2 , . . . !. ~27!

Since its maximally non-local cousin has the same fi
equation~by definition! its solutions must be the same, e
cept that the couplings,l1 ,l2 , . . . , arespacetime constan
integrals of the dynamical variable:

l i5L i@f#. ~28!

Substituting the general initial value solution~27! into these
integrals gives algebraic equations for the couplings:
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l i5L i†F@f0 ,ḟ0#~ t,xW ,l1 ,l2 , . . . !‡. ~29!

There will in general be more than one root, the choice
which represents discrete degrees of freedom not prese
the local theory. It is also possible that some or all of t
roots may disappear unless the initial value data lie wit
certain regions.

If its local cognate has a conserved energy the same f
tional will be conserved for a maximally non-local actio
One will also be able to impose Poisson brackets to mak
generate time evolution. Whether or not this energy
bounded below will depend upon what the various solutio
do to the energy functional of the local cognate. But o
explicit example of the non-local oscillator shows that t
Hamiltonian can be bounded below, so there is no gen
instability of the Ostrogradskian type.
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We close by proposing a physical interpretation for t
discrete degrees of freedom associated with multiple root
the parameter equations. We do not feel one is entitled
select a particular root and ignore the others. Instead,
believe that in quantum mechanics a natural interpreta
for the various roots is as different components of a mu
component wave function. One could then treat the vari
roots the way one works with spin or internal quantum nu
bers such as isospin. Note that the dynamics of each com
nent would be the same except for different couplings. I
tempting to speculate that such a formalism might be use
unify the mysterious generational structures which appea
elementary particle physics.
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