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Initial value problem for maximally nonlocal actions
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We study the initial value problem for actions whose non-locality is “maximal” in the sense that there is no
dependence upon the separation between points. In contrast with many other non-local actions, the classical
solution set of these systems is at most discretely enlarged, and may even be restricted, with respect to that of
a local theory. We show that the solutions are those of a local theory whpaeetime constanparameters
vary with the initial value data according to algebraic equations. The various roots of these algebraic equations
can be plausibly interpreted in quantum mechanics as different components of a multi-component wave
function. It is also possible that the consistency of these algebraic equations imposes constraints upon the
initial value data which appear miraculous from the context of a local theory. Although the discussion and
examples are given in the context of simple mechanical systems the results should apply as well to field theory.
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PACS numbsds): 11.10.Lm

Most physicists probably recall wondering, at their first Q:=q, Q,=q, 3)
exposure to Lagrangians, why they are usually assumed to
depend only upon the zeroth and first time derivatives of theynd they are respectively conjugate to the following mo-
dynamical variable. The answer is very simple: allowingmenta:
higher time derivatives almost always leads to instabilities.

This has been known since Ostrogradski's canonical formu- oL(9,9,9) d dL(9,9,9) dL(9,9,9)

lation of such systems in the middle of the 19th Cenf{ury P.= 499 _ gt q"q a , Po= ﬂ
To understand the problem, consider the dynamics of a aq 9q aq

point particle in one dimension whose positiongig) and 4

whose Lagrangian_(q,q,d) includes second time deriva- N . . .
) A te th tion foP n inverted t Ive fay in
tives. We assume only that the second derivatives cannot be0 e the equation foP can be inverted to solve fay

removed by partial integration. This condition is known ast€MS ijUStQ11_,Q2 andP,; P, is only needed to expresg
non-degeneracgnd amounts to the invertibility of the equa- ~ ©OStrogradski’s Hamiltonian is

tion
. H=2 PQ-L 5)
dL(q,9,9)
PzzT, (1) )
a =P;Q+P0(Q1,Qz,P2)
to solve for g(g,q,P,). Under the assumption of non- -L(Q1,Q,,9(Q1,Q,,Py), (6)
degeneracy the Euler-Lagrange equations
and his canonical equations for time evolution are the obvi-
oL d L ( d\2aL ous ones suggested by the notation
dq dt yq dt) aq @ L aH
Qi_&_Piy Pi__a_Qi- (7)

define time evolution by determining the fourth derivative of

g(t) in terms ofq, q q and q One must therefore supply It is straightforward to verify that the evolution equations for
twice as much initial value data as in the usual case, and thi®,, Q, and P, simply reproduce the definitions &, P,
entails a new set of canonically conjugate coordinates in thand P,, respectively. The canonical expression of the Euler-
Hamiltonian formulation. In Ostrogradski’s construction the Lagrange equatiof2) is the evolution equation foP;. So

canonical coordinates are Ostrogradski’'s Hamiltonian generates time evolution; it is
also conserved when the Lagrangian is free of explicit time
dependence.
*Email address: bennett@nbivms.nbi.dk The problem with higher derivatives is apparent from ex-
TEmail address: hbech@nbivms.nbi.dk pression(6): the Hamiltonian is linear in R. Such a Hamil-
*Email address: woodard@phys.ufl.edu tonian can never be bounded below; in fact there is not even
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any barrier to the system’s decay. In a conventionally inter- _ .
acting system this means that one can excite positive energﬁ/[QFJ dsf(q(s),q(s), . . -)f dtg(q(t),q(t), .. V(s,t).
degrees of freedom while conserving energy by exciting
negative energy degrees of freedom. Since there are typically (8)
T e ey ands are crdnary uncons of the ynamica v
. . . ) , : able and some finite number of its derivatives, &{d,t) is
Wh'Ch, have little in common with the physical reality we a C-number weighting function which controls the amount of
perceive. _ _ o - non-locality. In a local theory the weighting function is infi-
Note the generality of the hlgher_derl_vatlve instability. It nitely peaked as=t: V(s,t)=&(s—t). The theory grows
does not depend upon any approximation scheme, nor ayore non-local as the weighting function becomes less and
feature of the Lagrangian except non-degeneracy. NOr ifyss sharply peaked a=t. For maximal non-locality the
quantization liable to prevent it because the instability is notyejghting function is just a constant. In this case the func-
confined to a small region of phase space. Note also thgonal F[q] breaks up into the product of two local function-
relation to the space of classical solutions: a non-degeneratgs. The general maximally non-local action is an arbitrary
higher derivative doubles the number of continuum degreefunction of local functionals of the dynamical variable.
of freedom and at least half of the new degrees of freedom As an example, consider the following generalization of
access negative energy. the one-dimensional harmonic oscillator:
Physicists are an inventive lot and such a bald no-go theo- -
rem provokes them to envisage tortuous evasions. It is im- S[q]= lim jT dt}m'qz— Eme/ZT E T dtq
possible to prove a negative, so we will not assert that there TowlJ-T 2 47700 T 4 /70 ’
is no way out for non-degenerate higher derivatives, but we 9
do urge a litle common sense. Ostrogradski's theorem , . ) )
should not seem surprising. It explains why every single sysWhere wo and 7 are constants with the respective dimen-
tem we have so far observed seems to be described, on tR&NS of frequency and length. An important fact about maxi-

fundamental level, by a Lagrangian containing no higherma"y non-local actions is that their equations of motion are

than first time derivatives. The bizarre and incredible thing!o,fal e>|<cerf)t| for IC;)upIL_ng “c%ntitar;ts” Wh.'Chl are_fli)rllctlgns t%f
would be if this fact was simply an accident. integrals of local functions of the dynamical variable. For the

The relevance of Ostrogradski’'s theorem to non-local acg—:-xample Just presented one finds

tions is that the instability grows worse as more higher de- 59q]
rivatives are added. For Lagrangians which depend non-
degenerately upon thblth time derivative the associated
Hamiltonian is linear in all but possibly one of ti\ecanoni-  where the oscillator’s frequency is
cal momentd1]. When a particular non-local model can be
represented as the limit of a sequence of non-degenerate o o wy (T )
higher derivative theories, then essentially half of the canoni- wq]= lim T/(ZJTdtq (0. (1D
cal degrees of freedom in the non-local model must access i
negative energy. This would seem to be a problem unless the has been argued that quantum field theoretic versions of
dynamics can somehow contrive to prevent or at least sumgmaximally non-local actions might explain the apparent fine
press the excitation of these degrees of freedom. tuning of certain coupling constanitd]. Of course any such
The higher derivative representation is valid for non-mechanism would be pointless if it inescapably entailed the
locality that enters through entire functions of the derivativeOstrogradskian instabilities. The aim of this paper is to show
operator which cannot be subsumed into a field redefinitionthat it does not.
A familiar example of such a system is string field theory It is simplest to begin by solving the maximally non-local
[2]. On the other hand, the higher derivative representation ibarmonic oscillatof9). From its definition(11), w*[q] must
certainly not valid for many forms of non-locality. For ex- be positive semi-definite, so the general solution for fixed
ample, one generally obtains a non-local Lagrangian by inis
tegrating out one or more of the fundamental dynamical vari-
ables. These Lagrangians contain poles of the derivative
operator, so it is not correct to consider them as limits of
higher derivative Lagrangians. And since it is of course valid .
to solve them in the original, local form, there is no exten-whereq, and g, are the initial value data. Substituting this

m=—ma(t)—mw2[qm(t)=0, (10

2

g(t)=ggcoq wt) + %sin(wt), (12

sion of the space of classical solutions. into the definition ofw?® gives

A local action is defined as the integral of a function of ) Sy
the dynamical variable and some finite number of its deriva- wz_@( 2 @) (13)
tives. What we will call amaximally non-local actiorin- AR

volves non-trivial functions of such terms. To understand

what we mean by the adjective “maximal,” consider a non-This equation has two solutions but only the positive root is
local functional of the positiorg(t) of a one-dimensional consistent with the explicit positive semi-definiteness of Eq.
particle: (11). We can therefore write
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wo 2
w2=2—/g<woqé+ Voids+4/505)- (14) w?= w2co ﬂg+ q;gl (22

Since this theory is time translation invariant, it makes no . o :
For qy#0 there are a countable infinity of solutions. No

@fference i .We replacago -an-d do in »7q] by q(t) and closed form can be obtained, but for large integdrshey
q(t), respectively. The vanishing dfw?/dt follows from the are, approximately,

equation of motion(10). The conserved energy associated

with time translation invariance is 2 qz
w2~ = (23)
1 .1 N2N+1 2
242 )
Ezzmq2+ 5 Mo’ (15

Of course the energy is still E¢15) — with the new mean-
To make it generate time evolution we define the Poissofnd of ® — and it is positive semi-definite for each root.

brackets as follows: Another curious feature of maximally non-local actions is
the possibility forrestrictionson the initial value data. It is
&E this property which might offer an explanation for otherwise
{a,9}=q aq (16)  miraculous fine tuning$3]. To understand it, consider the

following maximally non-local harmonic oscillator:

dt

1 v wéq4+4/gq2 B Em 22 1J~T 92

=— . - S[q]= lim ,
M Jw2q*+ 4,262+ woQ? T T w3/
17
: L mee? (24)
This makes the Poisson bracket @fwith E give g. The 2 Mwod™ -
other evolution equation
The equation of motion is still that of a harmonic oscillator
S JE but with its frequency-squared defined as
a={q E}———><{q a}, (18)
. . . . (T
follows by taking the time derivative and using energy con- w?[q]=wiexg lim ff dt——|. (25
servation. It can also be checked explicitly. Tow ! J=T @/

Since the energyl5) of this system is bounded below we
have shown by explicit example that the Ostrogradskian inOne determinesv® as a function of the initial value data
stabilities are not inevitable for maximally non-local actions. from the following transcendental equation:
For the system considered there was not even any enlarge- _
ment of the solution set of its local cognate — there is a 2 g N a5
unique solution for every choice of, andq,. This feature is w?=wgex wy/o wi/?|
not generic; more complicated models can show a discrete
enlargement of the solution set. Consider, for example, thgvhen the ratiog,//, is much less than 1 the exponential
following maximally non-local action: grows slowly enough to intersect the quadratic, and there are
two solutions. However, wheqy /7 is larger than 1 there is
S[q]= lim [ f no solution.
o In fact the analysis we have just gone through applies as
well to field theory. The field equations of maximally non-
1
_§m“’0 TS”’{ J' dt/Z ] (19 \,\,,..., arereally non-dynamical constants. Suppose
that the local cognate of a maximally non-local action has
The field equations are again those of a harmonic oscillatoihe following general initial value solution:
but with a slightly different form for the frequency-squared: R ) R
¢(t,X)=®[¢0,¢0](t,x,)\1,7\2,...). (27)

(26)

mq2——mw0q

local actions are related to local ones whose couplings,

) .
%I—m{q(tsz[q]q(t)}, (20 Since its maximally non-local cousin has the same field
equation(by definition its solutions must be the same, ex-
107 ¢ cept that the couplings_)\l,)\z, e arespacetime constant
0y q]= wOC052 T“m f /O} (21 integrals of the dynamical variable:

_ o S Ni=Ai[ 4] (28
For fixedw the general initial value solution is still E¢L2)
so w? is any positive root of the following transcendental Substituting the general initial value soluti¢27) into these
equation: integrals gives algebraic equations for the couplings:
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A= A[DB bo, bol(t.X A1 Mo, )], 29 ~We close by proposing a physi_cal intgrpretat!on for the

! [PLo.dol( 12 )] @9 discrete degrees of freedom associated with multiple roots of

There will in general be more than one root, the choice ofhe parameter equations. We do not feel one is entitled to
which represents discrete degrees of freedom not present fi¢lect a particular root and ignore the others. Instead, we
the local theory. It is also possible that some or all of thebelieve that in quantum mechanics a natural interpretation

roots may disappear unless the initial value data lie withirfO" the various roots is as different components of a multi-

certain regions. component wave function. One could then treat the various
If its local cognate has a conserved energy the same fun oots the way one works with Spin of internal quanturm num-

tional will be conserved for a maximally non-local action. ers such as isospin. Note that the dynamics of each compo-

One will also be able to impose Poisson brackets to make {Eent would be the same except for different couplings. It is

generate time evolution. Whether or not this energy isemptlng to speculate that such a formalism might be used to

bounded below will depend upon what the various solutionsunlfy the mysterious generational structures which appear in

do to the energy functional of the local cognate. But ourelementary particle physics.
explicit example of the non-local oscillator shows that the This work was partially supported by INTAS Grant 93-
Hamiltonian can be bounded below, so there is no generi@316, EF Contract SCI 0340@’'STS and by DOE Contract

instability of the Ostrogradskian type. DE-FG02-97ER41029.
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